Science.gov

Sample records for non-newtonian bingham fluid

  1. Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham

    NASA Astrophysics Data System (ADS)

    Rahmani, Lakhdar; Seghier, O.; Draoui, B.; Benachour, E.

    2016-03-01

    A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P). The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.

  2. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  3. Verification of vertically rotating flume using non-newtonian fluids

    USGS Publications Warehouse

    Huizinga, R.J.

    1996-01-01

    Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.

  4. Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media

    SciTech Connect

    Wu, Yu-Shu.

    1990-02-01

    A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: development of numerical and analytical solutions; theoretical studies of transient flow of non-Newtonian fluids in porous media; and applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. Transient flow of a general pseudoplastic fluid has been studied numerically. 125 refs., 91 figs., 12 tabs.

  5. Electrokinetics of non-Newtonian fluids: a review.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2013-12-01

    This work presents a comprehensive review of electrokinetics pertaining to non-Newtonian fluids. The topic covers a broad range of non-Newtonian effects in electrokinetics, including electroosmosis of non-Newtonian fluids, electrophoresis of particles in non-Newtonian fluids, streaming potential effect of non-Newtonian fluids and other related non-Newtonian effects in electrokinetics. Generally, the coupling between non-Newtonian hydrodynamics and electrostatics not only complicates the electrokinetics but also causes the fluid/particle velocity to be nonlinearly dependent on the strength of external electric field and/or the zeta potential. Shear-thinning nature of liquids tends to enhance electrokinetic phenomena, while shear-thickening nature of liquids leads to the reduction of electrokinetic effects. In addition, directions for the future studies are suggested and several theoretical issues in non-Newtonian electrokinetics are highlighted.

  6. Theoretical Studies of Non-Newtonian and Newtonian Fluid Flowthrough Porous Media

    SciTech Connect

    Wu, Y.S.

    1990-02-01

    A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: (1) development of numerical and analytical solutions; (2) theoretical studies of transient flow of non-Newtonian fluids in porous media; and (3) applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. Based on this solution, a graphic approach for evaluating non-Newtonian displacement efficiency has been developed. The Buckley-Leverett-Welge theory is extended to flow problems with non-Newtonian fluids. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. The results show that this kind of displacement is a complicated process and is determined by the rheological properties of the non-Newtonian fluids and the flow conditions, in addition to relative permeability data. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. For flow at a constant rate, non-Newtonian flow behavior in a fractured

  7. Undulatory swimming in non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Li, Gaojin

    2015-11-01

    Microorganisms often swim in complex fluids exhibiting both elasticity and shear-thinning viscosity. The motion of low Reynolds number swimmers in complex fluids is important for better understanding the migration of sperms and formation of bacterial biofilms. In this work, we numerically investigate the effects of non-Newtonian fluid properties, including shear-thinning and elasticity, on the undulatory locomotion. Our results show that elasticity hinders the swimming speed, but a shear-thinning viscosity in the absence of elasticity enhances the speed. The combination of the two effects hinders the swimming speed. The swimming boost in a shear-thinning fluid occurs even for an infinitely long flagellum. The swimming speed has a maximum, whose value depends on the flagellum oscillation amplitude and fluid rheological properties. The power consumption, on the other hand, follows a universal scaling law. This work is supported by NSF CBET-1445955 and Indiana CTSI TR001108.

  8. A Non-Newtonian Fluid Robot.

    PubMed

    Hachmon, Guy; Mamet, Noam; Sasson, Sapir; Barkai, Tal; Hadar, Nomi; Abu-Horowitz, Almogit; Bachelet, Ido

    2016-01-01

    New types of robots inspired by biological principles of assembly, locomotion, and behavior have been recently described. In this work we explored the concept of robots that are based on more fundamental physical phenomena, such as fluid dynamics, and their potential capabilities. We report a robot made entirely of non-Newtonian fluid, driven by shear strains created by spatial patterns of audio waves. We demonstrate various robotic primitives such as locomotion and transport of metallic loads-up to 6-fold heavier than the robot itself-between points on a surface, splitting and merging, shapeshifting, percolation through gratings, and counting to 3. We also utilized interactions between multiple robots carrying chemical loads to drive a bulk chemical synthesis reaction. Free of constraints such as skin or obligatory structural integrity, fluid robots represent a radically different design that could adapt more easily to unfamiliar, hostile, or chaotic environments and carry out tasks that neither living organisms nor conventional machines are capable of.

  9. Global Solvability of the One-Dimensional Cosserat-Bingham Fluid Equations

    NASA Astrophysics Data System (ADS)

    Shelukhin, V. V.; Chemetov, N. V.

    2015-09-01

    The equations for micropolar Bingham fluid are considered and global existence of a weak solution for pressure driven flows is proved for a one-dimensional boundary-value problem with periodic boundary conditions. In contrast to the classical Bingham fluid, the micropolar Bingham fluid supports local micro-rotations and two types of plug zones. Our approach is different from that of Duvaut-Lions developed for the classical Bingham viscoplastic materials. We do not apply the variational inequality but make use an approximation of the generalized Bingham fluid by a Non-Newtonian fluid with a continuous constitutive law.

  10. Coupling electrokinetics and rheology: Electrophoresis in non-Newtonian fluids.

    PubMed

    Khair, Aditya S; Posluszny, Denise E; Walker, Lynn M

    2012-01-01

    We present a theoretical scheme to calculate the electrophoretic motion of charged colloidal particles immersed in complex (non-Newtonian) fluids possessing shear-rate-dependent viscosities. We demonstrate that this non-Newtonian rheology leads to an explicit shape and size dependence of the electrophoretic velocity of a uniformly charged particle in the thin-Debye-layer regime, in contrast to electrophoresis in Newtonian fluids. This dependence is caused by non-Newtonian stresses in the bulk (electroneutral) fluid outside the Debye layer, whose magnitude is naturally characterized in an electrophoretic Deborah number.

  11. Physical-based non-Newtonian fluid animation using SPH

    NASA Astrophysics Data System (ADS)

    Mao, Hai

    Fluids are commonly seen in our daily lives. They exhibit a wide range of motions, which depend on their physical properties, and often result in amazing visual phenomena. Hence, fluid animation is a popular topic in computer graphics. The animation results not only enrich a computer-generated virtual world but have found applications in generating special effects in motion pictures and in computer games. The three-dimensional (3D) Navier-Stokes (NS) equation is a comprehensive mechanical description of the fluid motions. Smoothed Particle Hydrodynamics (SPH) is a popular particle-based fluid modeling formulation. In physical-based fluid animation, the fluid models are based on the 3D NS equation, which can be solved using SPH based methods. Non-Newtonian fluids form a rich class of fluids. Their physical behavior exhibits a strong and complex stress-strain relationship which falls outside the modeling range of Newtonian fluid mechanics. In physical-based fluid animation, most of the fluid models are based on Newtonian fluids, and hence they cannot realistically animate non-Newtonian fluid motions such as stretching, bending, and bouncing. Based on the 3D NS equation and SPH, three original contributions are presented in this dissertation, which address the following three aspects of fluid animation: (1) particle-based non-Newtonian fluids, (2) immiscible fluid-fluid collision, and (3) heating non-Newtonian fluids. Consequently, more varieties of non-Newtonian fluid motions can be animated, which include stretching, bending, and bouncing.

  12. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    NASA Astrophysics Data System (ADS)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  13. Flow Curve Determination for Non-Newtonian Fluids.

    ERIC Educational Resources Information Center

    Tjahjadi, Mahari; Gupta, Santosh K.

    1986-01-01

    Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)

  14. Controlling and minimizing fingering instabilities in non-Newtonian fluids.

    PubMed

    Fontana, João V; Dias, Eduardo O; Miranda, José A

    2014-01-01

    The development of the viscous fingering instability in Hele-Shaw cells has great practical and scientific importance. Recently, researchers have proposed different strategies to control the number of interfacial fingering structures, or to minimize as much as possible the amplitude of interfacial disturbances. Most existing studies address the situation in which an inviscid fluid displaces a viscous Newtonian fluid. In this work, we report on controlling and minimizing protocols considering the situation in which the displaced fluid is a non-Newtonian, power-law fluid. The necessary changes on the controlling schemes due to the shear-thinning and shear thickening nature of the displaced fluid are calculated analytically and discussed.

  15. Non-newtonian fluid flow through three-dimensional disordered porous media.

    PubMed

    Morais, Apiano F; Seybold, Hansjoerg; Herrmann, Hans J; Andrade, José S

    2009-11-06

    We investigate the flow of various non-newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of (i) the disordered geometry of the pore space, (ii) the fluid rheological properties, and (iii) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions.

  16. Electro-osmotic mobility of non-Newtonian fluids

    PubMed Central

    Zhao, Cunlu; Yang, Chun

    2011-01-01

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161

  17. Electro-osmotic mobility of non-Newtonian fluids.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2011-03-23

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy-Chapman solution to the Poisson-Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases.

  18. Dynamic wetting with viscous Newtonian and non-Newtonian fluids.

    PubMed

    Wei, Y; Rame, E; Walker, L M; Garoff, S

    2009-11-18

    We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.

  19. Intermittent outgassing through a non-Newtonian fluid.

    PubMed

    Divoux, Thibaut; Bertin, Eric; Vidal, Valérie; Géminard, Jean-Christophe

    2009-05-01

    We report an experimental study of the intermittent dynamics of a gas flowing through a column of a non-Newtonian fluid. In a given range of the imposed constant flow rate, the system spontaneously alternates between two regimes: bubbles emitted at the bottom either rise independently one from the other or merge to create a winding flue which then connects the bottom air entrance to the free surface. The observations are reminiscent of the spontaneous changes in the degassing regime observed on volcanoes and suggest that, in the nature, such a phenomenon is likely to be governed by the non-Newtonian properties of the magma. We focus on the statistical distribution of the lifespans of the bubbling and flue regimes in the intermittent steady state. The bubbling regime exhibits a characteristic time whereas, interestingly, the flue lifespan displays a decaying power-law distribution. The associated exponent, which is significantly smaller than the value 1.5 often reported experimentally and predicted in some standard intermittency scenarios, depends on the fluid properties and can be interpreted as the ratio of two characteristic times of the system.

  20. Laminar boundary-layer flow of non-Newtonian fluid

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Chern, S. Y.

    1979-01-01

    A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.

  1. Steady flow of a non-Newtonian fluid through a contraction

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Lumley, J. L.

    1978-01-01

    A steady-state analysis is conducted to examine the basic flow structure of a non-Newtonian fluid in a domain including an inflow region, a contraction region, and an outflow region. A Cartesian grid system is used throughout the entire flow domain, including the contraction region, thus creating an irregular grid cell structure adjacent to the curved boundary. At node points adjacent to the curved boundary symmetry conditions are derived for the different flow variables in order to solve the governing difference equations. Attention is given to the motion and non-Newtonian constitutive equations, the boundary conditions, the numerical modeling of the non-Newtonian equations, the stream function contour lines for the non-Newtonian fluid, the vorticity contour lines for the non-Newtonian fluid, the velocity profile across the contraction, and the shear stress contour lines for the non-Newtonian fluid.

  2. Turbulent Entrainment into Non-Newtonian Fluid Mud Gravity Currents

    NASA Astrophysics Data System (ADS)

    Jacobson, Michael; Testik, Firat

    2011-11-01

    This study presents insights into turbulent entrainment of ambient water into fluid mud gravity currents. It is well established that fluid mud suspensions exhibit pseudo-plastic behavior. Gravity current laboratory experiments were conducted for constant-volume release configuration with different initial concentrations of fluid mud, representing different rheological properties (i.e. different Power-law model constants). A high quality data set of concentration and velocity profiles of fluid mud gravity currents was collected to calculate the entrainment velocity, we. The entrainment ratio (E =we / U , U - characteristic velocity) was calculated following the well-accepted Morton-Taylor-Turner entrainment hypothesis, which states that the inflow across the edge of a turbulent flow is proportional to some characteristic velocity. The entrainment ratio was further measured qualitatively using a light opaqueness technique. A semi-empirical parameterization for the entrainment ratio is proposed. The findings of this study are expected to be of significance for modeling various non-Newtonian gravity currents, in particular for modeling fluid mud gravity currents generated during dredge disposal operations in coastal waters. Contact Author.

  3. An Improved Lattice Boltzmann Model for Non-Newtonian Flows with Applications to Solid-Fluid Interactions in External Flows

    NASA Astrophysics Data System (ADS)

    Adam, Saad; Premnath, Kannan

    2016-11-01

    Fluid mechanics of non-Newtonian fluids, which arise in numerous settings, are characterized by non-linear constitutive models that pose certain unique challenges for computational methods. Here, we consider the lattice Boltzmann method (LBM), which offers some computational advantages due to its kinetic basis and its simpler stream-and-collide procedure enabling efficient simulations. However, further improvements are necessary to improve its numerical stability and accuracy for computations involving broader parameter ranges. Hence, in this study, we extend the cascaded LBM formulation by modifying its moment equilibria and relaxation parameters to handle a variety of non-Newtonian constitutive equations, including power-law and Bingham fluids, with improved stability. In addition, we include corrections to the moment equilibria to obtain an inertial frame invariant scheme without cubic-velocity defects. After preforming its validation study for various benchmark flows, we study the physics of non-Newtonian flow over pairs of circular and square cylinders in a tandem arrangement, especially the wake structure interactions and their effects on resulting forces in each cylinder, and elucidate the effect of the various characteristic parameters.

  4. Using ultrasonic Doppler velocimetry to investigate the mixing of non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Patel, Dineshkumar; Ein-Mozaffari, Farhad; Mehrvar, Mehrab

    2012-12-01

    Mixing is a critical unit operation, which is widely used in chemical and allied industries. Mixing of non-Newtonian fluids is a challenging task due to the complex rheology exhibited by these fluids. Pseudoplastic fluids with yield stress are an important class of non-Newtonian fluids. In this study, we utilized ultrasonic Doppler velocimetry (UDV) to explore the flow field generated by different impellers in the agitation of xanthan gum solutions and pulp suspensions, which are yield-pseudoplastic fluids.

  5. Pressure transient behavior of dilatant non-Newtonian/Newtonian fluid composite reservoirs

    SciTech Connect

    Okpobiri, G.A.; Ikoku, C.U.

    1983-11-01

    This study investigates pressure falloff testing in non-Newtonian/Newtonian fluid composite reservoirs. The non-Newtonian fluids of interest exhibit dilatant behavior. Initial water saturation is accounted for. Application of non-Newtonian well test analysis techniques and conventional Horner (Newtonian) techniques is investigated. The effects of different injection times before shut-in, external radii, flow behavior indexes and non-Newtonian fluid consistencies on the pressure transient behavior constitute the salient features of this work. It is shown that early time falloff pressure data can be analyzed by non-Newtonian techniques while the late shut-in data, under certain conditions, can be analyzed by the conventional Horner method. The time when the Newtonian fluid starts influencing the non-Newtonian falloff curves and the location of the non-Newtonian fluid front can be estimated by using the radius of investigation equation for power-law fluids and volumetric balance equation respectively. Rheological consideration is made to illustrate the pressure transient behavior.

  6. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

    NASA Astrophysics Data System (ADS)

    Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon

    2015-08-01

    Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow

  7. The Rayleigh-Taylor instability of Newtonian and non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Doludenko, A. N.; Fortova, S. V.; Son, E. E.

    2016-10-01

    Along with Newtonian fluids (for example, water), fluids with non-Newtonian rheology are widespread in nature and industry. The characteristic feature of a non-Newtonian fluid is the non-linear dependence between the shear stress and shear rate tensors. The form of this relation defines the types of non-Newtonian behavior: viscoplastic, pseudoplastic, dilatant and viscoelastic. The present work is devoted to the study of the Rayleigh-Taylor instability in pseudoplastic fluids. The main aim of the work is to undertake a direct three-dimensional numerical simulation of the mixing of two media with various rheologies and obtain the width of the mixing layer and the kinetic energy spectra, depending on the basic properties of the shear thinning liquids and the Atwood number. A theoretical study is carried out on the basis of the Navier-Stokes equation system for weakly compressible media.

  8. Non-Newtonian fluid flow over a heterogeneously slippery surface

    NASA Astrophysics Data System (ADS)

    Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.

    2015-11-01

    The no-slip boundary condition does not always hold. In the past, we have investigated the influence of effective wall slip on interfacial transport for a bubble mattress - a superhydrophobic surface consisting of an array of transverse gas-filled grooves. We proved experimentally that the amount of effective wall slip depends on the bubble protrusion angle and the surface porosity (Karatay et al., PNAS 110, 2013), and predicted that mass transport can be enhanced significantly (Haase et al., Soft Matter 9, 2013). Both studies involve the flow of water. In practise, however, many liquids encountered are non-Newtonian, like blood and polymer solutions. This raises some interesting questions. How does interfacial transport depend on the rheological properties of the liquid? Does the time-scale of the experiment matter? A bubble mattress is a suitable platform to investigate this, due to local variations in shear rate. We predict that for shear-thinning liquids, compared to water, the amount of wall slip can be enhanced considerably, although this depends on the applied flow rate. Experiments are performed to proof this behaviour. Simulations are used to assess what will happen when the characteristic time-scale of the system matches the relaxation time of the visco-elastic liquid. R.G.H.L. acknowledges the European Research Council for the ERC starting grant 307342-TRAM.

  9. Effect of non-Newtonian fluid properties on bovine sperm motility.

    PubMed

    Hyakutake, Toru; Suzuki, Hiroki; Yamamoto, Satoru

    2015-09-18

    The swimming process by which mammal spermatozoa progress towards an egg within the reproductive organs is important in achieving successful internal fertilization. The viscosity of oviductal mucus is more than two orders of magnitude greater than that of water, and oviductal mucus also has non-Newtonian properties. In this study, we experimentally observed sperm motion in fluids with various fluid rheological properties and investigated the influence of varying the viscosity and whether the fluid was Newtonian or non-Newtonian on the sperm motility. We selected polyvinylpyrrolidone and methylcellulose as solutes to create solutions with different rheological properties. We used the semen of Japanese cattle and investigated the following parameters: the sperm velocity, the straight-line velocity and the amplitude from the trajectory, and the beat frequency from the fragellar movement. In a Newtonian fluid environment, as the viscosity increased, the motility of the sperm decreased. However, in a non-Newtonian fluid, the straight-line velocity and beat frequency were significantly higher than in a Newtonian fluid with comparable viscosity. As a result, the linearity of the sperm movement increased. Additionally, increasing the viscosity brought about large changes in the sperm flagellar shape. At low viscosities, the entire flagellum moved in a curved flapping motion, whereas in the high-viscosity, only the tip of the flagellum flapped. These results suggest that the bovine sperm has evolved to swim toward the egg as quickly as possible in the actual oviduct fluid, which is a high-viscosity non-Newtonian fluid.

  10. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  11. Learning about Non-Newtonian Fluids in a Student-Driven Classroom

    ERIC Educational Resources Information Center

    Dounas-Frazer, D. R.; Lynn, J.; Zaniewski, A. M.; Roth, N.

    2013-01-01

    We describe a simple, low-cost experiment and corresponding pedagogical strategies for studying fluids whose viscosities depend on shear rate, referred to as "non-Newtonian fluids." We developed these materials teaching for the Compass Project, an organization that fosters a creative, diverse, and collaborative community of science…

  12. Stretch flow of confined non-Newtonian fluids: nonlinear fingering dynamics.

    PubMed

    Brandão, Rodolfo; Fontana, João V; Miranda, José A

    2013-12-01

    We employ a weakly nonlinear perturbative scheme to investigate the stretch flow of a non-Newtonian fluid confined in Hele-Shaw cell for which the upper plate is lifted. A generalized Darcy's law is utilized to model interfacial fingering formation in both the weak shear-thinning and weak shear-thickening limits. Within this context, we analyze how the interfacial finger shapes and the nonlinear competition dynamics among fingers are affected by the non-Newtonian nature of the stretched fluid.

  13. Interfacial instabilities affect microfluidic extraction of small molecules from non-Newtonian fluids.

    PubMed

    Helton, Kristen L; Yager, Paul

    2007-11-01

    As part of a project to develop an integrated microfluidic biosensor for the detection of small molecules in saliva, practical issues of extraction of analytes from non-Newtonian samples using an H-filter were explored. The H-filter can be used to rapidly and efficiently extract small molecules from a complex sample into a simpler buffer. The location of the interface between the sample and buffer streams is a critical parameter in the function of the H-filter, so fluorescence microscopy was employed to monitor the interface position; this revealed apparently anomalous fluorophore diffusion from the samples into the buffer solutions. Using confocal microscopy to understand the three-dimensional distribution of the fluorophore, it was found that the interface between the non-Newtonian sample and Newtonian buffer was both curved and unstable. The core of the non-Newtonian sample extended into the Newtonian buffer and its position was unstable, producing a fluorescence intensity profile that gave rise to the apparently anomalously fast fluorophore transport. These instabilities resulted from the pairing of rheologically dissimilar fluid streams and were flowrate dependent. We conclude that use of non-Newtonian fluids, such as saliva, in the H-filter necessitates pretreatment to reduce viscoelasticity. The interfacial variation in position, stability and shape caused by the non-Newtonian samples has substantial implications for the use of biological samples for quantitative analysis and analyte extraction in concurrent flow extraction devices.

  14. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  15. Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization

    NASA Astrophysics Data System (ADS)

    Abou Najm, Majdi; Atallah, Nabil; Selker, John; Roques, Clément; Stewart, Ryan; Rupp, David; Saad, George; El-Fadel, Mutasem

    2016-04-01

    Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization. We present a new method that transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). Those radii and weights are optimized in terms of flow and porosity to represent the functional hydraulic behavior of real porous media. The method also allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation revealed the ability of the proposed method to represent the water retention and functional infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media composed of different combinations of sizes and numbers of capillary tubes that the use of different non-Newtonian fluids enables the prediction of the pore structure. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil-root-plant continuum, carbon sequestration into geologic formations, soil remediation, petroleum reservoir engineering, oil exploration and groundwater modeling.

  16. Fingering instability in non-Newtonian fluids during squeeze flow in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Dutta Choudhury, M.; Tarafdar, S.

    2015-05-01

    Instability at the interface separating different fluids, may develop under different conditions, leading to increased roughness of the boundary. A difference in viscosity of the fluids is usually responsible for viscous fingering, this occurs when the pressure on the low viscosity side is higher. We report here a reverse effect when a non-Newtonian fluid is squeezed between two plane surfaces by applying a force. We observe that a wave-like irregularity develops on the interface, though the viscosity of the air surrounding the fluid is negligible compared to the apparent viscosity of the thick potato starch gel under study. Development of the wavelength of the undulations as a function of the fluid composition and other factors is studied. We suggest a qualitative explanation for this effect, which is observed only in non-Newtonian fluids.

  17. Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids.

    PubMed

    Gupta, Renu; Bansal, Ajay

    2013-08-01

    Axial dispersion is an important parameter in the performance of packed bed reactors. A lot of fluids exhibit non-Newtonian behaviour but the effect of rheological parameters on axial dispersion is not available in literature. The effect of rheology on axial dispersion has been analysed for viscoinelastic and viscoelastic non-Newtonian fluids. Aqueous solutions of carboxymethyl cellulose and polyacrylamide have been chosen to represent viscoinelastic and viscoelastic liquid-phases. Axial dispersion has been measured in terms of BoL number. The single parameter axial dispersion model has been applied to analyse RTD response curve. The BoL numbers were observed to increase with increase in liquid flow rate and consistency index 'K' for viscoinelastic as well as viscoelastic fluids. Bodenstein correlation for Newtonian fluids proposed has been modified to account for the effect of fluid rheology. Further, Weissenberg number is introduced to quantify the effect of viscoelasticity.

  18. Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure

    NASA Astrophysics Data System (ADS)

    Dutta Choudhury, Moutushi; Chandra, Subrata; Nag, Soma; Das, Shantanu; Tarafdar, Sujata

    2011-09-01

    Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.

  19. Vortex rings in non-Newtonian viscoelastic fluids play yo-yo

    NASA Astrophysics Data System (ADS)

    Albagnac, Julie; Laupsien, David; Anne-Archard, Dominique

    2014-11-01

    Vortex rings are coherent vortical structures widely presents in geophysical flows and engineering applications. Numerous applications imply industrial processes including food processing, or petrol industry. Those applications are very often confronted with non-Newtonian fluids. Nevertheless, to the best of our knowledge, only few studies dealing with vortex dynamics in non-Newtonian shear-thinning fluids exist, and none with viscoelastic ones. The aim for the present study is to characterize experimentally the dynamics of vortex rings generated thanks to a piston-cylinder apparatus in various viscoelastic fluids as a function of the generalized Reynolds number, the piston stroke and the final piston position relative to the cylinder exit. In particular, the elastic property of the fluid will be highlighted by the furling-unfurling of vortex rings.

  20. Classical XY model with conserved angular momentum is an archetypal non-Newtonian fluid.

    PubMed

    Evans, R M L; Hall, Craig A; Simha, R Aditi; Welsh, Tom S

    2015-04-03

    We find that the classical one-dimensional XY model, with angular-momentum-conserving Langevin dynamics, mimics the non-Newtonian flow regimes characteristic of soft matter when subjected to counterrotating boundaries. An elaborate steady-state phase diagram has continuous and first-order transitions between states of uniform flow, shear-banding, solid-fluid coexistence and slip planes. Results of numerical studies and a concise mean-field constitutive relation offer a paradigm for diverse nonequilibrium complex fluids.

  1. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    NASA Astrophysics Data System (ADS)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  2. A comparison of numerical methods for non-Newtonian fluid flows in a sudden expansion

    NASA Astrophysics Data System (ADS)

    Ilio, G. Di; Chiappini, D.; Bella, G.

    2016-06-01

    A numerical study on incompressible laminar flow in symmetric channel with sudden expansion is conducted. In this work, Newtonian and non-Newtonian fluids are considered, where non-Newtonian fluids are described by the power-law model. Three different computational methods are employed, namely a semi-implicit Chorin projection method (SICPM), an explicit algorithm based on fourth-order Runge-Kutta method (ERKM) and a Lattice Boltzmann method (LBM). The aim of the work is to investigate on the capabilities of the LBM for the solution of complex flows through the comparison with traditional computational methods. In the range of Reynolds number investigated, excellent agreement with the literature results is found. In particular, the LBM is found to be accurate in the prediction of the fluid flow behavior for the problem under consideration.

  3. Numerical Solution of Hydrodynamics Lubrications with Non-Newtonian Fluid Flow

    NASA Astrophysics Data System (ADS)

    Osman, Kahar; Sheriff, Jamaluddin Md; Bahak, Mohd. Zubil; Bahari, Adli; Asral

    2010-06-01

    This paper focuses on solution of numerical model for fluid film lubrication problem related to hydrodynamics with non-Newtonian fluid. A programming code is developed to investigate the effect of bearing design parameter such as pressure. A physical problem is modeled by a contact point of sphere on a disc with certain assumption. A finite difference method with staggered grid is used to improve the accuracy. The results show that the fluid characteristics as defined by power law fluid have led to a difference in the fluid pressure profile. Therefore a lubricant with special viscosity can reduced the pressure near the contact area of bearing.

  4. Transfer of Microparticles across Laminar Streams from Non-Newtonian to Newtonian Fluid.

    PubMed

    Ha, Byunghang; Park, Jinsoo; Destgeer, Ghulam; Jung, Jin Ho; Sung, Hyung Jin

    2016-04-19

    Engineering inertial lift forces and elastic lift forces is explored to transfer microparticles across laminar streams from non-Newtonian to Newtonian fluid. A co-stream of non-Newtonian flow loaded with microparticles (9.9 and 2.0 μm in diameter) and a Newtonian carrier medium flow in a straight rectangular conduit is devised. The elastic lift forces present in the non-Newtonian fluid, undeterred by particle-particle interaction, successfully pass most of the larger (9.9 μm) particles over to the Newtonian fluid. The Newtonian fluid takes over the larger particles and focus them on the equilibrium position, separating the larger particles from the smaller particles. This mechanism enabled processing of densely suspended particle samples. The method offers dilution-free (for number densities up to 10,000 μL(-1)), high throughput (6700 beads/s), and highly efficient (>99% recovery rate, >97% purity) particle separation operated over a wide range of flow rate (2 orders of magnitude).

  5. FDA's nozzle numerical simulation challenge: non-Newtonian fluid effects and blood damage.

    PubMed

    Trias, Miquel; Arbona, Antonio; Massó, Joan; Miñano, Borja; Bona, Carles

    2014-01-01

    Data from FDA's nozzle challenge-a study to assess the suitability of simulating fluid flow in an idealized medical device-is used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are computed and compared with experimental data from three different laboratories, getting a very good agreement. Special care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for hemolysis parameters is discussed.

  6. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    PubMed

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  7. CFD simulation of non-Newtonian fluid flow in anaerobic digesters.

    PubMed

    Wu, Binxin; Chen, Shulin

    2008-02-15

    A general mathematical model that predicts the flow fields in a mixed-flow anaerobic digester was developed. In this model, the liquid manure was assumed to be a non-Newtonian fluid, and the flow governed by the continuity, momentum, and k-epsilon standard turbulence equations, and non-Newtonian power law model. The commercial computational fluid dynamics (CFD) software, Fluent, was applied to simulate the flow fields of lab-scale, scale-up, and pilot-scale anaerobic digesters. The simulation results were validated against the experimental data from literature. The flow patterns were qualitatively compared for Newtonian and non-Newtonian fluids flow in a lab-scale digester. Numerical simulations were performed to predict the flow fields in scale-up and pilot-scale anaerobic digesters with different water pump power inputs and different total solid concentration (TS) in the liquid manure. The optimal power inputs were determined for the pilot-scale anaerobic digester. Some measures for reducing dead and low velocity zones were proposed based upon the CFD simulation results.

  8. Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel

    NASA Astrophysics Data System (ADS)

    Triveni, B.; Vishwanadham, B.; Venkateshwar, S.

    2008-09-01

    Heat transfer studies to Newtonian and non-Newtonian fluids are carried out in a stirred vessel fitted with anchor/turbine impeller and a coil for heating/cooling with an objective of determining experimentally the heat transfer coefficient of few industrially important systems namely castor oil and its methyl esters, soap solution, CMC and chalk slurries. The effect of impeller geometry, speed and aeration is investigated. Generalized Reynolds and Prandtl numbers are calculated using an apparent viscosity for non-Newtonian fluids. The data is correlated using a Sieder-Tate type equation. A trend of increase in heat transfer coefficient with RPM in presence and absence of solids has been observed. Relatively high values of Nusselt numbers are obtained for non-Newtonian fluids when aeration is coupled with agitation. The contribution of natural convection to heat transfer has been accounted for by incorporating the Grashof number. The correlations developed based on these studies are applied for design of commercial scale soponification reactor. Power per unit volume resulted in reliable design of a reactor.

  9. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids.

    PubMed

    Lu, Gui; Wang, Xiao-Dong; Duan, Yuan-Yuan

    2016-10-01

    Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.

  10. Non-Newtonian fluid effects on surface reactions in a microfluidic flow cell

    NASA Astrophysics Data System (ADS)

    Akgül, M. Bahattin; Sarı, Gözde; Pakdemirli, Mehmet

    2012-11-01

    Mass transfer over a reactive surface in microfluidic flow cells plays a key role in understanding biomoleculer interactions and diagnosis of small molecules for biomedical and environmental applications. The effects of Non-Newtonian power law fluid on the binding reaction kinetic of immunoglobulin G in a flow cell are analyzed in this study. Governing equations for the fluid flow, mass transport and surface reaction are derived. The finite element method is employed to solve resulting equations. In addition, the effects of volumetric flow rate, fluid behavior index and reaction constants on the surface reaction are analyzed and presented graphically.

  11. Viscoelastic fluid-structure interaction between a non-Newtonian fluid flow and flexible cylinder

    NASA Astrophysics Data System (ADS)

    Dey, Anita; Modarres-Sadeghi, Yahya; Rothstein, Jonathan

    2016-11-01

    It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds numbers due to a purely elastic flow instability. In this talk, we will present a series of experiments investigating the response of a flexible cylinder placed in the cross flow of a viscoelastic fluid. The elastic flow instabilities occurring at high Weissenberg numbers can exert fluctuating forces on the flexible cylinder thus leading to nonlinear periodic oscillations of the flexible structure. These oscillations are found to be coupled to the time-dependent state of viscoelastic stresses in the wake of the flexible cylinder. The static and dynamic responses of the flexible cylinder will be presented over a range of flow velocities, along with measurements of velocity profiles and flow-induced birefringence, in order to quantify the time variation of the flow field and the state of stress in the fluid.

  12. Squeeze film lubrication for non-Newtonian fluids with application to manual medicine.

    PubMed

    Chaudhry, Hans; Bukiet, Bruce; Roman, Max; Stecco, Antonio; Findley, Thomas

    2013-01-01

    In this paper, we computed fluid pressure and force on fascia sheets during manual therapy treatments using Squeeze Film Lubrication theory for non-Newtonian fluids. For this purpose, we developed a model valid for three dimensional fluid flow of a non-Newtonian liquid. Previous models considered only one-dimensional flows in two dimensions. We applied this model to compare the one-dimensional flow of HA, considered as a lubricating fluid, around or within the fascia during sliding, vibration, and back-and-forth sliding manipulation treatment techniques. The fluid pressure of HA increases dramatically as fascia is deformed during manual therapies. The fluid force increases more during vertical vibratory manipulation treatment than in constant sliding, and back and forth motion. The variation of fluid pressure/force causes HA to flow near the edges of the fascial area under manipulation in sliding and back and forth motion which may result in greater lubrication. The fluid pressure generated in manual therapy techniques may improve sliding and permit muscles to work more efficiently.

  13. Flow non-normality-induced transient growth in superposed Newtonian and non-Newtonian fluid layers.

    PubMed

    Camporeale, C; Gatti, F; Ridolfi, L

    2009-09-01

    In recent years non-normality and transient growths have attracted much interest in fluid mechanics. Here, we investigate these topics with reference to the problem of interfacial instability in superposed Newtonian and non-Newtonian fluid layers. Under the hypothesis of the lubrication theory, we demonstrate the existence of significant transient growths in the parameter space region where the dynamical system is asymptotically stable, and show how they depend on the main physical parameters. In particular, the key role of the density ratio is highlighted.

  14. Learning About Non-Newtonian Fluids in a Student-Driven Classroom

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, D. R.; Lynn, J.; Zaniewski, A. M.; Roth, N.

    2013-01-01

    We describe a simple, low-cost experiment and corresponding pedagogical strategies for studying fluids whose viscosities depend on shear rate, referred to as "non-Newtonian fluids." We developed these materials teaching for the Compass Project, an organization that fosters a creative, diverse, and collaborative community of science students at UC Berkeley. Incoming freshmen worked together in a week-long residential program to explore physical phenomena through a combination of conceptual model-building and hands-on experimentation. During the program, students were exposed to three major aspects of scientific discovery: developing a model, testing the model, and investigating deviations from the model.

  15. Spreading of completely wetting, non-Newtonian fluids with non-power-law rheology.

    PubMed

    Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong; Su, Ay

    2010-08-01

    Spreading non-Newtonian liquids with non-power-law rheology on completely wetting surfaces are seldom investigated. This study assessed the wetting behavior of polydimethylsiloxane (PDMS), a Newtonian fluid, two carboxymethylcellulose (CMC) sodium solutions, a PDMS+2%w/w silica nanoparticle suspension and three polyethylene glycol (PEG400)+5-10%w/w silica nanoparticle suspensions (non-power-law fluids) on a mica surface. The theta(D)-U and R-t data for spreading drops of the six tested, non-power-law fluids can be described by power-law wetting models. We propose that this behavior is attributable to a uniform shear rate (a few tens to a few hundreds of s(-1)) distributed over the thin-film regime that controls spreading dynamics. Estimated film thickness was below the resolution of an optical microscope for direct observation. Approximating a general non-Newtonian fluid spreading as a power-law fluid greatly simplifies theoretical analysis and data interpretation.

  16. Computational fluid dynamics investigation of turbulence models for non-newtonian fluid flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-12-01

    In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.

  17. Pullback Asymptotic Behavior of Solutions for a 2D Non-autonomous Non-Newtonian Fluid

    NASA Astrophysics Data System (ADS)

    Liu, Guowei

    2016-10-01

    This paper studies the pullback asymptotic behavior of solutions for the non-autonomous incompressible non-Newtonian fluid in 2D bounded domains. Firstly, with a little high regularity of the force, the semigroup method and ɛ -regularity method are used to establish the existence of compact pullback absorbing sets. Then, with a minimal regularity of the force, by verifying the flattening property also known as the "Condition (C)", the author proves the existence of pullback attractors for the universe of fixed bounded sets and for the another universe given by a tempered condition. Furthermore, the regularity of pullback attractors is given.

  18. Acoustic waveform of continuous bubbling in a non-Newtonian fluid.

    PubMed

    Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei

    2009-12-01

    We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.

  19. Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1984-01-01

    A procedure is outlined for the numerical solution of the complete elastohydrodynamic lubrication of rectangular contacts incorporating a non-Newtonian fluid model. The approach uses a Newtonian model as long as the shear stress is less than a limiting shear stress. If the shear stress exceeds the limiting value, the shear stress is set equal to the limiting value. The numerical solution requires the coupled solution of the pressure, film shape, and fluid rheology equations from the inlet to the outlet. Isothermal and no-side-leakage assumptions were imposed in the analysis. The influence of dimensionless speed, load, materials, and sliding velocity and limiting-shear-strength proportionality constant on dimensionless minimum film thickness was investigated. Fourteen cases were used in obtaining the minimum-film-thickness equation for an elastohydrodynamically lubricated rectangular contact incorporating a non-Newtonian fluid model. Computer plots are also presented that indicate in detail pressure distribution, film shape, shear stress at the surfaces, and flow throughout the conjunction.

  20. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  1. Non-Newtonian Fluid Model Incorporated into Elastohydrodynamic Lubrication of Rectangular Contacts

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    A procedure is outlined for the numerical solution of the complete elastohydrodynamic lubrication of rectangular contacts incorporating a non-Newtonian fluid model. The approach uses a Newtonian model as long as the shear stress is less than a limiting shear stress. If the shear stress exceeds the limiting value, the shear stress is set equal to the limiting value. The numerical solution requires the coupled solution of the pressure, film shape, and fluid rheology equations from the inlet to the outlet. Isothermal and no-side-leakage assumptions were imposed in the analysis. The influence of dimensionless speed, load, materials, and sliding velocity and limiting-shear-strength proportionality constant on dimensionless minimum film thickness was investigated. Fourteen cases were used in obtaining the minimum-film-thickness equation for an elastohydrodynamically lubricated rectangular contact incorporating a non-Newtonian fluid model. Computer plots are also presented that indicate in detail pressure distribution, film shape, shear stress at the surfaces, and flow throughout the conjunction.

  2. Non-Newtonian Effects of Second-Order Fluids on the Hydrodynamic Lubrication of Inclined Slider Bearings.

    PubMed

    Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa

    2014-01-01

    Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid.

  3. Non-Newtonian Effects of Second-Order Fluids on the Hydrodynamic Lubrication of Inclined Slider Bearings

    PubMed Central

    Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa

    2014-01-01

    Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid. PMID:27437446

  4. Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok

    2006-01-01

    One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time

  5. On three-dimensional linear stability of Poiseuille flow of Bingham fluids

    NASA Astrophysics Data System (ADS)

    Frigaard, Ian; Nouar, Cherif

    2003-10-01

    Plane channel Poiseuille flow of a Bingham fluid is characterized by the Bingham number, B, which describes the ratio of yield and viscous stresses. Unlike purely viscous non-Newtonian fluids, which modify hydrodynamic stability studies only through the dissipation and the basic flow, inclusion of a yield stress additionally results in a modified domain and boundary conditions for the stability problem. We investigate the effects of increasing B on the stability of the flow, using eigenvalue bounds that incorporate these features. As B→∞ we show that three-dimensional linear stability can be achieved for a Reynolds number bound of form Re=O(B3/4), for all wavelengths. For long wavelengths this can be improved to Re=O(B), which compares well with computed linear stability results for two-dimensional disturbances [J. Fluid Mech. 263, 133 (1994)]. It is also possible to find bounds of form Re=O(B1/2), which derive from purely viscous dissipation acting over the reduced domain and are comparable with the nonlinear stability bounds in J. Non-Newt. Fluid Mech. 100, 127 (2001). We also show that a Squire-like result can be derived for the plane channel flow. Namely, if the equivalent eigenvalue bounds for a Newtonian fluid yield a stability criterion, then the same stability criterion is valid for the Bingham fluid flow, but with reduced wavenumbers and Reynolds numbers. An application of these results is to bound the regions of parameter space in which computational methods need to be used.

  6. Relating Mason number to Bingham number in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Sherman, Stephen G.; Becnel, Andrew C.; Wereley, Norman M.

    2015-04-01

    Magnetorheological (MR) fluids are described using two nondimensional numbers, the Bingham and Mason numbers. The Mason number is the ratio of particle magnetic forces to viscous forces and describes the behavior of MR fluids at the microscopic, particle level scale. At the macroscopic, continuum scale, Bingham number is the ratio of yield stress to viscous stress, and describes the bulk motion of the fluid. If these two nondimensional numbers can be related, then microscopic models can be directly compared to macroscopic results. We show that if microscopic and macroscopic forces are linearly related, then Bingham and Mason number are inversely related, or, alternatively, that the product of the Bingham number and the Mason number is a constant. This relationship is experimentally validated based on measurements of apparent viscosity on a high shear rate, γ ˙ ≈ 10 000s-1, Searle cell rheometer. This relationship between Mason number and Bingham number is then used to analyze a Mason number based result, and is also used to inform the MR fluid device design process.

  7. Coalescence of drops and bubbles rising through a non-Newtonian fluid in a tube.

    PubMed

    Al-Matroushi, Eisa; Borhan, Ali

    2009-04-01

    We conducted an experimental study of the interaction and coalescence of two drops (of the same fluid) or bubbles translating under the action of buoyancy in a cylindrical tube. The close approach of two Newtonian fluid particles of different size in a non-Newtonian continuous phase was examined using image analysis, and measurements of the coalescence time are reported for various particle size ratios, Bond numbers, and particle-to-suspending-fluid viscosity ratios. The flow disturbance behind the leading bubble and the viscoelastic nature of the continuous phase seemed to retard bubble coalescence. The time scale for coalescence of liquid drops in highly elastic continuous phase was influenced by the relative motion of the drops and their coalescence behavior.

  8. Validation of computational non-Newtonian fluid model for membrane bioreactor.

    PubMed

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to their high effluent quality. One of the main problems with such systems is a relative large energy consumption, compared to conventional activated sludge (CAS) systems, which has led to further research in this specific area. A powerful tool for optimizing MBR-systems is computational fluid dynamics (CFD) modelling, which gives researchers the ability to describe the flow in the systems. A parameter which is often neglected in such models is the non-Newtonian properties of active sludge, which is of great importance for MBR systems since they operate at sludge concentrations up to a factor of 10 compared to CAS systems, resulting in strongly shear thinning liquids. A CFD-model is validated against measurements conducted in a system with rotating cross-flow membranes submerged in non-Newtonian liquids, where tangential velocities are measured with a Laser Doppler Anemometer (LDA). The CFD model is found to be capable of modelling the correct velocities in a range of setups, making CFD models a powerful tool for optimization of MBR systems.

  9. Generalized multiscale finite element method for non-Newtonian fluid flow in perforated domain

    NASA Astrophysics Data System (ADS)

    Chung, E. T.; Iliev, O.; Vasilyeva, M. V.

    2016-10-01

    In this work, we consider a non-Newtonian fluid flow in perforated domains. Fluid flow in perforated domains have a multiscale nature and solution techniques for such problems require high resolution. In particular, the discretization needs to honor the irregular boundaries of perforations. This gives rise to a fine-scale problems with many degrees of freedom which can be very expensive to solve. In this work, we develop a multiscale approach that attempt to solve such problems on a coarse grid by constructing multiscale basis functions. We follow Generalized Multiscale Finite Element Method (GMsFEM) [1, 2] and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems [3, 4]. We show that with a few basis functions in each coarse block, one can accurately approximate the solution, where each coarse block can contain many small inclusions.

  10. Microconfined shear deformation of a droplet in an equiviscous non-newtonian immiscible fluid: experiments and modeling.

    PubMed

    Minale, Mario; Caserta, Sergio; Guido, Stefano

    2010-01-05

    In this work, the microconfined shear deformation of a droplet in an equiviscous non-Newtonian immiscible fluid is investigated by modeling and experiments. A phenomenological model based on the assumption of ellipsoidal shape and taking into account wall effects is proposed for systems made of non-Newtonian second-order fluids. The model, without any adjustable parameters, is tested by comparison with experiments under simple shear flow performed in a sliding plate apparatus, where the ratio between the distance between the confining walls and the droplet radius can be varied. The agreement between model predictions and experimental data is good both in steady state shear and in transient drop retraction upon cessation of flow. The results obtained in this work are relevant for microfluidics applications where non-Newtonian fluids are used.

  11. Mathematical simulation of nonisothermal filling of plane channel with non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Borzenko, E.; Ryltseva, K.; Frolov, O.; Shrager, G.

    2016-10-01

    In this paper, the fountain flow of a non-Newtonian fluid during the filling of a plane vertical channel with due account of dissipative heating is investigated. The rheological features of the medium are defined by Ostwald de Waele power-law with exponential temperature dependence of viscosity. The numerical solution of the problem is obtained using a finite-difference method, based on the SIMPLE algorithm, and the method of invariants for compliance with the natural boundary conditions on free surface. It was shown that the flow separates into a two-dimensional flow zone in the vicinity of the free surface and a onedimensional flow zone away from it. The parametrical investigations of kinematic and thermophysical properties of the flow and the dependence of the free surface behavior on the basic criteria and rheological parameters are implemented.

  12. Similarity solution for unsteady gravity-driven dry patch in a non-Newtonian fluid flow

    NASA Astrophysics Data System (ADS)

    Abas, Siti Sabariah; Mohd Yatim, Yazariah

    2013-04-01

    We consider an unsteady thin-film flow of a non-Newtonian fluid around a dry patch subject to gravitational acceleration on an inclined plane. The general governing partial differential equation is transformed into the second-order ordinary differential equation using a unique travelling-wave similarity transformation. The analysis shows that the dry patch has a parabolic shape and the film thickness was found to increase monotonically away from the dry patch. Numerical solutions of the similarity equation are obtained for the velocity of the dry patch. These numerical solutions are also compared with the asymptotic solutions in the certain limits. The effects of power-law index on the behavior and patterns of the solutions are also discussed.

  13. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Hinke, Jessica A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2016-06-01

    Four commonly used refractive-index (RI)-matched Newtonian blood-analog fluids are reviewed, and different non-Newtonian blood-analogs, with RI of 1.372-1.495, are investigated. Sodium iodide (NaI), sodium thiocyanate (NaSCN) and potassium thiocyanate are used to adjust the RI of blood-analogs to that of test sections for minimizing optical distortions in particle image velocimetry data, and xanthan gum (XG) is added to the fluids to give them non-Newtonian properties (shear thinning and viscoelasticity). Our results support the general belief that adding NaI to Newtonian fluids matches the RI without changing the kinematic viscosity. However, in contrast to claims made in a few studies that did not measure rheology, our investigation revealed that adding NaI or NaSCN to XG-based non-Newtonian fluids changes the viscosity of the fluids considerably and reduces the shear-thinning property. Therefore, the RI of non-Newtonian blood-analog fluids with XG cannot be adjusted easily by varying the concentration of NaI or NaSCN and needs more careful rheological study.

  14. Aspects of non-Newtonian flow and displacement in porous media

    SciTech Connect

    Shah, C.; Yortsos, Y.C.

    1993-02-01

    The rheology of many heavy oils has been shown to be non-Newtonian, Bingham plastics being one manifestation of heavy oil flow. In EOR applications, non-Newtonian fluids such as low concentration polymer solutions, emulsions, gels etc. are simultaneously injected to increase the viscosity of driving agents that displace oil. Such rheologically complex fluids are used to improve sweep efficiencies, divert displacing fluids and block swept zones. The present study has been undertaken to understand the flow of non-Newtonian fluids through porous media. The work considered involves the numerical (pore network) modeling of both single and multiphase flow of power-law and Bingham plastic fluids in network-like porous media. We consider aspects of both single- and multi-phase flow and displacement. Section 2 describes elementary aspects of non-Newtonian flow and some simple models for porous media. Viscoelastic effects in the flow of non-Newtonian fluids are also discussed. The section includes a brief literature review on non-Newtonian flow in porous media. Section 3 describes single-phase flow.

  15. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    NASA Astrophysics Data System (ADS)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  16. Fast imaging technique to study drop impact dynamics of non-Newtonian fluids.

    PubMed

    Xu, Qin; Peters, Ivo; Wilken, Sam; Brown, Eric; Jaeger, Heinrich

    2014-03-05

    In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena.

  17. Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)

    NASA Astrophysics Data System (ADS)

    Hidema, R.; Yamada, N.; Furukawa, H.

    2012-04-01

    In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.

  18. Morphological stability of an interface between two non-Newtonian fluids moving in a Hele-Shaw cell.

    PubMed

    Martyushev, L M; Birzina, A I

    2015-01-01

    The problem of the morphological stability of an interface in the case of the displacement of one non-Newtonian fluid by another non-Newtonian fluid in a radial Hele-Shaw cell has been considered. Both fluids have been described by the two-parameter Ostwald-de Waele power-law model. The nonzero viscosity of the displacing fluid has been taken into account. A generalized Darcy's law for the system under consideration, as well as an equation for the determination of the critical size of morphological stability with respect to harmonic perturbations (linear analysis), has been derived. Morphological phase diagrams have been constructed, and the region of the parameters in which nonequilibrium reentrant morphological transitions are possible has been revealed.

  19. Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves.

    PubMed

    Kazys, Rymantas; Mazeika, Liudas; Sliteris, Reimondas; Raisutis, Renaldas

    2014-04-01

    In order to perform monitoring of the polymerisation process, it is necessary to measure viscosity. However, in the case of non-Newtonian highly viscous fluids, viscosity starts to be dependent on the vibration or rotation frequency of the sensing element. Also, the sensing element must possess a sufficient mechanical strength. Some of these problems may be solved applying ultrasonic measurement methods, however until now most of the known investigations were devoted to measurements of relatively low viscosities (up to a few Pas) of Newtonian liquids. The objective of the presented work is to develop ultrasonic method for measurement of viscosity of high viscous substances during manufacturing process in extreme conditions. For this purpose the method based on application of guided Lamb waves possessing the predominant component of in-plane displacements (the S0 and the SH0 modes) and propagating in an aluminium planar waveguide immersed in a viscous liquid has been investigated. The simulations indicated that in the selected modes mainly in-plane displacements are dominating, therefore the attenuation of those modes propagating in a planar waveguide immersed in a viscous liquid is mainly caused by viscosity of the liquid. The simulation results were confirmed by experiments. All measurements were performed in the viscosity standard Cannon N2700000. Measurements with the S0 wave mode were performed at the frequency of 500kHz. The SH0 wave mode was exited and used for measurements at the frequency of 580kHz. It was demonstrated that by selecting the particular mode of guided waves (S0 or SH0), the operation frequency and dimensions of the aluminium waveguide it is possible to get the necessary viscosity measurement range and sensitivity. The experiments also revealed that the measured dynamic viscosity is strongly frequency dependent and as a characteristic feature of non-Newtonian liquids is much lower than indicated by the standards. Therefore, in order to get the

  20. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.

    PubMed

    Mondal, Sourav; De, Sirshendu

    2013-03-01

    Quantification of mass transfer in porous microchannel is of paramount importance in several applications. Transport of neutral solute in presence of convective-diffusive EOF having non-Newtonian rheology, in a porous microchannel was presented in this article. The governing mass transfer equation coupled with velocity field was solved along with associated boundary conditions using a similarity solution method. An analytical solution of mass transfer coefficient and hence, Sherwood number were derived from first principles. The corresponding effects of assisting and opposing pressure-driven flow and EOF were also analyzed. The influence of wall permeation, double-layer thickness, rheology, etc. on the mass transfer was also investigated. Permeation at the wall enhanced the mass transfer coefficient more than five times compared to impervious conduit in case of pressure-driven flow assisting the EOF at higher values of κh. Shear thinning fluid exhibited more enhancement of Sherwood number in presence of permeation compared to shear thickening one. The phenomenon of stagnation was observed at a particular κh (∼2.5) in case of EOF opposing the pressure-driven flow. This study provided a direct quantification of transport of a neutral solute in case of transdermal drug delivery, transport of drugs from blood to target region, etc.

  1. Gravity driven instabilities in miscible non-Newtonian fluid displacements in porous media

    NASA Astrophysics Data System (ADS)

    Freytes, V. M.; D'Onofrio, A.; Rosen, M.; Allain, C.; Hulin, J. P.

    2001-02-01

    Gravity driven instabilities in model porous packings of 1 mm diameter spheres are studied by comparing the broadening of the displacement front between fluids of slightly different densities in stable and unstable configurations. Water, water-glycerol and water-polymer solutions are used to vary independently viscosity and molecular diffusion and study the influence of shear-thinning properties. Both injected and displaced solutions are identical but for a different concentration of NaNO 3 salt used as an ionic tracer and to introduce the density contrast. Dispersivity in stable configuration increases with polymer concentration - as already reported for double porosity packings of porous grains. Gravity-induced instabilities are shown to develop below a same threshold Péclet number Pe for water and water-glycerol solutions of different viscosities and result in considerable increases of the dispersivity. Measured threshold Pe values decrease markedly on the contrary with polymer concentration. The quantitative analysis demonstrates that the development of the instabilities is controlled by viscosity through a characteristic gravity number G (ratio between hydrostatic and viscous pressure gradients). A single threshold value of G accounts for results obtained on Newtonian and non-Newtonian solutions.

  2. Analysis of the flow of non-Newtonian visco-elastic fluids in fractal reservoir with the fractional derivative

    NASA Astrophysics Data System (ADS)

    Tong, Dengke; Wang, Ruihe

    2004-08-01

    In this paper, fractional order derivative, fractal dimension and spectral dimension are introduced into the seepage flow mechanics to establish the relaxation models of non-Newtonian viscoelastic fluids with the fractional derivative in fractal reservoirs. A new type integral transform is introduced, and the flow characteristics of non-Newtonian viscoelastic fluids with the fractional order derivative through a fractal reservoir are studied by using the integral transform, the discrete Laplace transform of sequential fractional derivatives and the generalized Mittag-Leffler functions. Exact solutions are obtained for arbitrary fractional order derivative. The long-time and short-time asymptotic solutions for an infinite formation are also obtained. The pressure transient behavior of non-Newtonian viscoelastic fluids flow through an infinite fractal reservoir is studied by using the Stehfest's inversion method of the numerical Laplace transform. It is shown that the clearer the viscoelastic characteristics of the fluid, the more the fluid is sensitive to the order of the fractional derivative. The new type integral transform provides a new analytical tool for studying the seepage mechanics of fluid in fractal porous media.

  3. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.

    PubMed

    Ali, N; Asghar, Z; Anwar Bég, O; Sajid, M

    2016-05-21

    Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics.

  4. Mathematical modeling of a non-Newtonian fluid flow in the main fracture inside permeable porous media

    NASA Astrophysics Data System (ADS)

    Ilyasov, A. M.; Bulgakova, G. T.

    2016-08-01

    This paper describes a mathematical model of the main fracture isolation in porous media by water-based mature gels. While modeling injection, water infiltration from the gel pack through fracture walls is taking into account, due to which the polymer concentration changes and the residual water resistance factor changes as a consequence. The salutation predicts velocity and pressure fields of the non-Newtonian incompressible fluid filtration for conditions of a non-deformable formation as well as a gel front trajectory in the fracture. The mathematical model of agent injection into the main fracture is based on the fundamental laws of continuum mechanics conservation describing the flow of non-Newtonian and Newtonian fluids separated by an interface plane in a flat channel with permeable walls. The mathematical model is based on a one-dimensional isothermal approximation, with dynamic parameters pressure and velocity, averaged over the fracture section.

  5. Data on the mixing of non-Newtonian fluids by a Rushton turbine in a cylindrical tank.

    PubMed

    Khapre, Akhilesh; Munshi, Basudeb

    2016-09-01

    The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank' (Khapre and Munshi, 2015) [1]. The tracer injection method is used for the prediction of mixing time and mixing efficiency of a Rushton turbine impeller.

  6. Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis.

    PubMed

    Blythe, T W; Sederman, A J; Mitchell, J; Stitt, E H; York, A P E; Gladden, L F

    2015-06-01

    Conventional rheological characterisation using nuclear magnetic resonance (NMR) typically utilises spatially-resolved measurements of velocity. We propose a new approach to rheometry using pulsed field gradient (PFG) NMR which readily extends the application of MR rheometry to single-axis gradient hardware. The quantitative use of flow propagators in this application is challenging because of the introduction of artefacts during Fourier transform, which arise when realistic sampling strategies are limited by experimental and hardware constraints and when particular spatial and temporal resolution are required. The method outlined in this paper involves the cumulant analysis of the acquisition data directly, thereby preventing the introduction of artefacts and reducing data acquisition times. A model-dependent approach is developed to enable the pipe-flow characterisation of fluids demonstrating non-Newtonian power-law rheology, involving the use of an analytical expression describing the flow propagator in terms of the flow behaviour index. The sensitivity of this approach was investigated and found to be robust to the signal-to-noise ratio (SNR) and number of acquired data points, enabling an increase in temporal resolution defined by the SNR. Validation of the simulated results was provided by an experimental case study on shear-thinning aqueous xanthan gum solutions, whose rheology could be accurately characterised using a power-law model across the experimental shear rate range of 1-100 s(-1). The flow behaviour indices calculated using this approach were observed to be within 8% of those obtained using spatially-resolved velocity imaging and within 5% of conventional rheometry. Furthermore, it was shown that the number of points sampled could be reduced by a factor of 32, when compared to the acquisition of a volume-averaged flow propagator with 128 gradient increments, without negatively influencing the accuracy of the characterisation, reducing the

  7. Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates

    NASA Astrophysics Data System (ADS)

    Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.

    2015-12-01

    In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.

  8. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    PubMed

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning.

  9. Mathematical modeling of slope flows with entrainment as flows of non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Zayko, Julia; Eglit, Margarita

    2015-04-01

    Non-Newtonian fluids in which the shear stresses are nonlinear functions of the shear strain rates are used to model slope flows such as snow avalanches, mudflows, debris flows. The entrainment of bottom material is included into the model basing on the assumption that in entraining flows the bed friction is equal to the shear stress of the bottom material (Issler et al, 2011). Unsteady motion down long homogeneous slopes with constant inclines is studied numerically for different flow rheologies and different slope angles. Variation of the velocity profile, increase of the flow depth and velocity due to entrainment as well as the value of the entrainment rate is calculated. Asymptotic formulae for the entrainment rate are derived for unsteady flows of different rheological properties. REFERENCES Chowdhury M., Testik F., 2011. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering 38, 256-270. Eglit, M.E., Demidov, K.S., 2005. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1-2), 10-23. Eglit M. E., Yakubenko A. E., 2012, Mathematical Modeling of slope flows entraining bottom material. Eglit M. E., Yakubenko A. E., 2014, Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol. 108, 139-148. Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), pp.143-147 Kern M. A., Tiefenbacher F., McElwaine J., N., 2004. The rheology of snow in large chute flows. Cold Regions Science and Technology, 39, 181 -192. Naaim, M., Faug, T., Naaim-Bouvet, F., 2003. Dry granular flow modelling including erosion and deposition. Surv. Geophys. 24, 569-585. Naaim, M., Naaim-Bouvet, F., Faug, T., Bouchet, A., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39, 193-204. Rougier, J & Kern, M 2010, 'Predicting snow

  10. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    PubMed

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.

  11. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.

    PubMed

    Widmer Soyka, René P; López, Alejandro; Persson, Cecilia; Cristofolini, Luca; Ferguson, Stephen J

    2013-11-01

    Fluids present or used in biology, medicine and (biomedical) engineering are often significantly non-Newtonian. Furthermore, they are chemically complex and can interact with the porous matrix through which they flow. The porous structures themselves display complex morphological inhomogeneities on a wide range of length scales. In vertebroplasty, a shear-thinning fluid, e.g. poly(methyl methacrylate) (PMMA), is injected into the cavities of vertebral trabecular bone for the stabilization of fractures and metastatic lesions. The main objective of this study was therefore to provide a protocol for numerically investigating the rheological properties of PMMA-based bone cements to predict its spreading behavior while flowing through vertebral trabecular bone. A numerical upscaling scheme based on a dimensionless formulation of the Navier-Stokes equation is proposed in order to relate the pore-scale rheological properties of the PMMA that were experimentally estimated using a plate rheometer, to the continuum-scale. On the pore length scale, a viscosity change on the order of one magnitude was observed whilst the shear-thinning properties caused a viscosity change on the order of only 10% on the continuum length scale and in a flow regime that is relevant for vertebroplasty. An experimental validation, performed on human cadaveric vertebrae (n=9), showed a significant improvement of the cement spreading prediction accuracy with a non-Newtonian formulation. A root mean square cement surface prediction error of 1.53mm (assuming a Newtonian fluid) and 1.37mm (assuming a shear-thinning fluid) was found. Our findings highlight the importance of incorporating the non-Newtonian fluids properties in computational models of porous media at the appropriate length scale.

  12. Consistent prediction of streaming potential in non-Newtonian fluids: the effect of solvent rheology and confinement on ionic conductivity.

    PubMed

    Bandopadhyay, Aditya; Chakraborty, Suman

    2015-03-21

    By considering an ion moving inside an imaginary sphere filled with a power-law fluid, we bring out the implications of the fluid rheology and the influence of the proximity of the other ions towards evaluating the conduction current in an ionic solution. We show that the variation of the conductivity as a function of the ionic concentration is both qualitatively and quantitatively similar to that predicted by the Kohlrausch law. We then utilize this consideration for estimating streaming potentials developed across narrow fluidic confinements as a consequence of the transport of ions in a convective medium constituting a power-law fluid. These estimates turn out to be in sharp contrast to the classical estimates of streaming potential for non-Newtonian fluids, in which the effect of rheology of the solvent is merely considered to affect the advection current, disregarding its contributions to the conduction current. Our results have potential implications of devising a new paradigm of consistent estimation of streaming potentials for non-Newtonian fluids, with combined considerations of the confinement effect and fluid rheology in the theoretical calculations.

  13. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.

    PubMed

    Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Jung, Hyunwook; Shin, Sehyun

    2012-04-07

    Pure separation and sorting of microparticles from complex fluids are essential for biochemical analyses and clinical diagnostics. However, conventional techniques require highly complex and expensive labeling processes for high purity separation. In this study, we present a simple and label-free method for separating microparticles with high purity using the elasto-inertial characteristic of a non-Newtonian fluid in microchannel flow. At the inlet, particle-containing sample flow was pushed toward the side walls by introducing sheath fluid from the center inlet. Particles of 1 μm and 5 μm in diameter, which were suspended in viscoelastic fluid, were successfully separated in the outlet channels: larger particles were notably focused on the centerline of the channel at the outlet, while smaller particles continued flowing along the side walls with minimal lateral migration towards the centerline. The same technique was further applied to separate platelets from diluted whole blood. Through cytometric analysis, we obtained a purity of collected platelets of close to 99.9%. Conclusively, our microparticle separation technique using elasto-inertial forces in non-Newtonian fluid is an effective method for separating and collecting microparticles on the basis of size differences with high purity.

  14. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.

  15. Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection

    NASA Astrophysics Data System (ADS)

    M. El-Hawary, H.; Mostafa, A. A. Mahmoud; Reda, G. Abdel-Rahman; Abeer, S. Elfeshawey

    2014-09-01

    The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two-parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge—Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.

  16. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions

    PubMed Central

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314

  17. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method.

    PubMed

    Khali, S; Nebbali, R; Ameziani, D E; Bouhadef, K

    2013-05-01

    In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Re(c) for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers.

  18. Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-Newtonian fluids

    SciTech Connect

    Janečka, Adam Průša, Vít

    2015-04-28

    We discuss the benefits of using the so-called implicit type constitutive relations introduced by K. R. Rajagopal, J. Fluid Mech. 550, 243-249 (2006) and K. R. Rajagopal, Appl. Math. 48, 279-319 (2003) in the description of the behaviour of non-Newtonian fluids. In particular, we focus on the benefits of using the implicit type constitutive relations in the mathematical modelling of fluids in which the shear stress/shear rate dependence is given by an S-shaped curve, and in modelling of fluids that exhibit nonzero normal stress differences. We also discuss a thermodynamical framework that allows one to cope with the implicit type constitutive relations.

  19. MHD mixed convection analysis in an open channel by obstructed Poiseuille flow of non-Newtonian power law fluid

    NASA Astrophysics Data System (ADS)

    Rabbi, Khan Md.; Rakib, Tawfiqur; Das, Sourav; Mojumder, Satyajit; Saha, Sourav

    2016-07-01

    This paper demonstrates magneto-hydrodynamic (MHD) mixed convection flow through a channel with a rectangular obstacle at the entrance region using non-Newtonian power law fluid. The obstacle is kept at uniformly high temperature whereas the inlet and top wall of the channel are maintained at a temperature lower than obstacle temperature. Poiseuille flow is implemented as the inlet velocity boundary condition. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method has been appointed to solve the continuity, momentum and energy equations. The problem has been solved for wide range of pertinent parameters like Richardson number (Ri = 0.1 - 10) at a constant Reynolds number (Re = 100), Hartmann number (Ha = 0 - 100), power index (n = 0.6 - 1.6). The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study has been illustrated by average Nusselt number plots. It is observed that increment of Hartmann number (Ha) tends to decrease the heat transfer rate up to a critical value (Ha = 20) and then let increase the heat transfer performance. Thus maximum heat transfer rate has been recorded for higher Hartmann number and Rayleigh number in case of pseudo-plastic (n = 0.6) non-Newtonian fluid flow.

  20. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  1. Uniform lateral mass flux effect on natural convection of non-Newtonian fluids over a cone in porous media

    SciTech Connect

    Yih, K.A.

    1998-10-01

    Convective heat transfer in a porous medium has a number of thermal engineering applications such as ceramic processing, nuclear reactor cooling system, crude oil drilling, chemical reactor design, ground water pollution and filtration processes. In this paper, the authors have investigated a boundary layer analysis for uniform lateral mass flux effect on natural convection of non-Newtonian power-law fluids along an isothermal or isoflux vertical cone embedded in a porous medium. Numerical results for the dimensionless temperature profiles as well as the local Nusselt number are presented for the mass flux parameter, viscosity index n and geometry shape parameter {lambda}. The local surface heat transfer increases for the case withdrawal of fluid, the increase of the value of {lambda}. The local Nusselt number is found to be significantly affected by the surface mass flux than the viscosity index.

  2. Analysis of the formation and evolution of vortex rings in non Newtonian fluids using 3D PTV

    NASA Astrophysics Data System (ADS)

    Bajpayee, Abhishek; Techet, Alexandra

    2013-11-01

    Formation and evolution of vortex rings have been studied for a long time but mostly only in Newtonian fluids. However, many fluids in nature and in the industry such as blood, crude oil, etc., exhibit non Newtonian characteristics. Palacios-Morales and Zenit recently studied the formation of vortex rings in shear thinning liquids for the first time using 2D PIV and compared experimental findings with theoretical predictions. The authors recently demonstrated the applicability of Light Field (LF) imaging to conduct 3D Particle Tracking Velocimetry (PTV) to study densely seeded flow fields and their evolution over time using synthetic data. LF based 3D PTV is now used to quantitatively study vortex rings created in Glycerin based on multiple parameters and the results are compared with previous findings. ONR (Grant #N00014-12-1-0787, Dr. Steven Russell), Naval Engineering Education Center.

  3. A constitutive framework for the non-Newtonian pressure tensor of a simple fluid under planar flows.

    PubMed

    Hartkamp, Remco; Todd, B D; Luding, Stefan

    2013-06-28

    Non-equilibrium molecular dynamics simulations of an atomic fluid under shear flow, planar elongational flow, and a combination of shear and elongational flow are unified consistently with a tensorial model over a wide range of strain rates. A model is presented that predicts the pressure tensor for a non-Newtonian bulk fluid under a homogeneous planar flow field. The model provides a quantitative description of the strain-thinning viscosity, pressure dilatancy, deviatoric viscoelastic lagging, and out-of-flow-plane pressure anisotropy. The non-equilibrium pressure tensor is completely described through these four quantities and can be calculated as a function of the equilibrium material constants and the velocity gradient. This constitutive framework in terms of invariants of the pressure tensor departs from the conventional description that deals with an orientation-dependent description of shear stresses and normal stresses. The present model makes it possible to predict the full pressure tensor for a simple fluid under various types of flows without having to produce these flow types explicitly in a simulation or experiment.

  4. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    SciTech Connect

    Leishear, R.

    2009-09-09

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.

  5. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel

  6. Spreading dynamics and dynamic contact angle of non-Newtonian fluids.

    PubMed

    Wang, X D; Lee, D J; Peng, X F; Lai, J Y

    2007-07-17

    The spreading dynamics of power-law fluids, both shear-thinning and shear-thickening fluids, that completely or partially wet solid substrate was investigated theoretically and experimentally. An evolution equation for liquid-film thickness was derived using a lubrication approximation, from which the dynamic contact angle versus the contact line moving velocity relationship was evaluated. In the capillary spreading regime, film thickness h is proportional to xi3/(n+2) (xi is the distance from the contact line), whereas in the gravitational regime, h is proportional to xi1/(n+2), relating to the rheological power exponent n. The derived model fit the experimental data well for a shear-thinning fluid (0.2% w/w xanthan solution) or a shear-thickening fluid (7.5% w/w 10 nm silica in polypropylene glycol) on a completely wetted substrate. The derived model was extended using Hoffmann's proposal for partially wetting fluids. Good agreement was also attained between model predictions and the shear-thinning fluid (1% w/w cmc solution) and shear-thickening fluid (10% w/w 15 nm silica) on partially wetted surfaces.

  7. Flow instabilities during annular displacement of one non-Newtonian fluid by another

    NASA Astrophysics Data System (ADS)

    Tehrani, M. A.; Bittleston, S. H.; Long, P. J. G.

    1993-02-01

    This paper describes an experimental setup for axial laminar flow of liquids in the annulus between two eccentered cylinders. The design uses a conductivity method for measuring peak axial velocities around the annulus, and for the determination of displacement efficiency when displacing one fluid by another (displacement efficiency being defined as the ratio of volume of displaced fluid removed from the annulus, to the volume of the annulus, after a given number of annular volumes have been pumped). In an eccentric annulus, lower axial velocity in the narrow side produces “channeling” of the displacing fluid in the wide side and reduces the displacement efficiency. A positive density contrast between the two fluids can increase the efficiency by promoting azimuthal flow of the (denser) displacing fluid towards the narrow side. In this paper we report that gravity driven azimuthal flow is prone to severe instabilities which accelerate the displacement process but may leave behind an immobile strip of the displaced fluid in the narrow side.

  8. Propagation of Gravity Currents of non-Newtonian Power-Law Fluids in Porous Media

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2014-12-01

    A comprehensive analytical and experimental framework is presented to describe gravity-driven motions of rheologically complex fluids through porous media. These phenomena are relevant in geophysical, environmental, industrial and biological applications. The fluid is characterized by an Ostwald-DeWaele constitutive equation with behaviour index n. The flow is driven by the release of fluid at the origin of an infinite porous domain. In order to represent several possible spreading scenarios, we consider: i) different domain geometries: plane, radial, and channelized, with the channel shape parameterized by k; ii) instantaneous or continuous injection, depending on the time exponent of the volume of fluid in the current, α; iii) horizontal or inclined impermeable boundaries. Systematic heterogeneity along the streamwise and/or transverse direction is added to the conceptualization upon considering a power-law permeability variation governed by two additional parameters ω and β. Scalings for current length and thickness are derived in self similar form coupling the modified Darcy's law accounting for the fluid rheology with the mass balance equation. The length, thickness, and aspect ratio of the current are studied as functions of model parameters; several different critical values of α emerge and govern the type of dependency, as well as the tendency of the current to accelerate or decelerate and become thicker or thinner at a given point. The asymptotic validity of the solutions is limited to certain ranges of model parameters. Experimental validation is performed under constant volume, constant and variable flux regimes in tanks/channels filled with transparent glass beads of uniform or variable diameter, using shear-thinning suspensions and Newtonian mixtures. The experimental results for the length and profile of the current agree well with the self-similar solutions at intermediate and late times.

  9. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.

    PubMed

    Nandy, S; Tarbell, J M

    1987-01-01

    Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.

  10. Magnetic targeting in the impermeable microvessel with two-phase fluid model--non-Newtonian characteristics of blood.

    PubMed

    Shaw, Sachin; Murthy, P V S N

    2010-09-01

    The present investigation deals with finding the trajectories of the drug dosed magnetic carrier particle in a microvessel with two-phase fluid model which is subjected to the external magnetic field. The radius of the microvessel is divided into the endothelial glycocalyx layer in which the blood is assumed to obey Newtonian character and a core and plug regions where the blood obeys the non-Newtonian Herschel-Bulkley character which is suitable for the microvessel of radius 50 microm. The carrier particles, bound with nanoparticles and drug molecules are injected into the vascular system upstream from malignant tissue, and captured at the tumor site using a local applied magnetic field. The applied magnetic field is produced by a cylindrical magnet positioned outside the body and near the tumor position. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel are considered in the present problem. An algorithm is given to solve the system of coupled equations for trajectories of the carrier particle in the invasive case. The trajectories of the carrier particle are found for both invasive and noninvasive targeting systems. A comparison is made between the trajectories in these cases. Also, the present results are compared with the data available for the impermeable microvessel with single-phase fluid flow. Also, a prediction of the capture of therapeutic magnetic nanoparticle in the impermeable microvasculature is made for different radii, distances and volume fractions in both the invasive and noninvasive cases.

  11. PFG NMR and Bayesian analysis to characterise non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Blythe, Thomas W.; Sederman, Andrew J.; Stitt, E. Hugh; York, Andrew P. E.; Gladden, Lynn F.

    2017-01-01

    Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n , yield stress τ0 , and consistency factor k , by analysis of the signal in q -space. This approach eliminates the need for velocity image acquisition and expensive gradient hardware. We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sampling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16 points are required to be sampled to provide rheological parameters accurate to within 2% of the ground truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions (model Herschel-Bulkley fluids) using PFG NMR at a 1H resonance frequency of 85.2 MHz; for SNR > 1000, only 8 points are required to be sampled. This corresponds to a total acquisition time of <60 s and represents an 88% reduction in acquisition time when compared to MR flow imaging. Comparison of the shear stress-shear rate relationship, quantified using Bayesian NMR, with non-Bayesian NMR methods demonstrates that the Bayesian NMR approach is in agreement with MR flow imaging to within the accuracy of the measurement. Furthermore, as we increase the concentration of Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-dependent behaviour and the different geometries used. This behaviour highlights the need for

  12. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.

    PubMed

    Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism.

  13. Accelerated Sedimentation Velocity Assessment for Nanowires Stabilized in a Non-Newtonian Fluid.

    PubMed

    Chang, Chia-Wei; Liao, Ying-Chih

    2016-12-27

    In this work, the long-term stability of titanium oxide nanowire suspensions was accessed by an accelerated sedimentation with centrifugal forces. Titanium oxide (TiO2) nanoparticle (NP) and nanowire (NW) dispersions were prepared, and their sizes were carefully characterized. To replace the time-consuming visual observation, sedimentation velocities of the TiO2 NP and NW suspensions were measured using an analytical centrifuge. For an aqueous TiO2 NP suspension, the measured sedimentation velocities were linearly dependent on the relative centrifugal forces (RCF), as predicted by the classical Stokes law. A similar linear relationship was also found in the case of TiO2 NW aqueous suspensions. However, NWs preferred to settle parallel to the centrifugal direction under high RCF because of the lower flow resistance along the long axis. Thus, the extrapolated sedimentation velocity under regular gravity can be overestimated. Finally, a stable TiO2 NW suspension was formulated with a shear thinning fluid and showed great stability for weeks using visual observation. A theoretical analysis was deduced with rheological shear-thinning parameters to describe the nonlinear power-law dependence between the measured sedimentation velocities and RCF. The good agreement between the theoretical predictions and measurements suggested that the sedimentation velocity can be properly extrapolated to regular gravity. In summary, this accelerated assessment on a theoretical basis can yield quantitative information about long-term stability within a short time (a few hours) and can be further extended to other suspension systems.

  14. Three dimensional laminar non-Newtonian fluid flow and heat transfer in the entrance region of a cross-shaped duct

    SciTech Connect

    Etemad, S.G.

    1997-11-01

    Many important industrial fluids are non-Newtonian in their flow characteristics. These include food materials, soap and detergent slurries, polymer solutions and many others. In the most of the industries such as polymer, foods, petrochemical the heat exchanger is an especially important component of the processing equipment. In the design of heat exchanger, the prediction of the heat transfer coefficient plays a key role as a design factor. Here the Galerkin finite element is used to solve the three dimensional momentum and energy equations for laminar non-Newtonian flow in cross-shaped straight duct. Both flow and heat transfer develop simultaneously from the entrance of the channel. Uniform wall temperature (T) and also constant wall heat flux both axially and peripherally (H2) are used as thermal boundary conditions. The power-law model is chosen to characterize the non-Newtonian behavior of the fluid. The effect of power-law index and geometric parameter on the apparent friction factor as well as Nusselt number are presented and discussed.

  15. Dynamic scaling of unsteady shear-thinning non-Newtonian fluid flows in a large-scale model of a distal anastomosis

    NASA Astrophysics Data System (ADS)

    Gray, J. D.; Owen, I.; Escudier, M. P.

    2007-10-01

    Dimensional analysis has been applied to an unsteady pulsatile flow of a shear-thinning power-law non-Newtonian liquid. An experiment was then designed in which both Newtonian and non-Newtonian liquids were used to model blood flow through a large-scale (38.5 mm dia.), simplified, rigid arterial junction (a distal anastomosis of a femorodistal bypass). The flow field within the junction was obtained by Particle Imaging Velocimetry and near-wall velocities were used to calculate the wall shear stresses. Dimensionless wall shear stresses were obtained at different points in the cardiac cycle for two different but dynamically similar non-Newtonian fluids; the good agreement between the measured dimensionless wall shear stresses confirm the validity of the dimensional analysis. However, blood exhibits a constant viscosity at high-shear rates and to obtain complete dynamic similarity between large-scale experiments and life-scale flows, the high-shear viscosity also needs to be included in the analysis. How this might be done is discussed in the paper.

  16. Similarity and Boubaker Polynomials Expansion Scheme BPES comparative solutions to the heat transfer equation for incompressible non-Newtonian fluids: case of laminar boundary energy equation

    NASA Astrophysics Data System (ADS)

    Zheng, L. C.; Zhang, X. X.; Boubaker, K.; Yücel, U.; Gargouri-Ellouze, E.; Yıldırım, A.

    2011-08-01

    In this paper, a new model is proposed for the heat transfer characteristics of power law non- Newtonian fluids. The effects of power law viscosity on temperature field were taken into account by assuming that the temperature field is similar to the velocity field with modified Fourier's law of heat conduction for power law fluid media. The solutions obtained by using Boubaker Polynomials Expansion Scheme (BPES) technique are compared with those of the recent related similarity method in the literature with good agreement to verify the protocol exactness.

  17. In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models.

    PubMed

    Yang, Chun; Tang, Dalin; Yuan, Chun; Hatsukami, Thomas S; Zheng, Jie; Woodard, Pamela K

    2007-01-01

    It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic, isotropic, incompressible and homogeneous. Blood flow was assumed to be laminar, non-Newtonian, viscous and incompressible. In vivo/ex vivo MRI images were acquired using histologically-validated multi-spectral MRI protocols. The 3D FSI models were solved and results were compared with those from a Newtonian FSI model and wall-only/fluid-only models. A 145% difference in maximum principal stresses (Stress-P(1)) between the FSI and wall-only models and 40% difference in flow maximum shear stress (MSS) between the FSI and fluid-only models were found at the throat of the plaque using a severe plaque sample (70% severity by diameter). Flow maximum shear stress (MSS) from the rigid wall model is much higher (20-40% in maximum MSS values, 100-150% in stagnation region) than those from FSI models.

  18. Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows

    NASA Astrophysics Data System (ADS)

    Başağaoğlu, Hakan; Harwell, John R.; Nguyen, Hoa; Succi, Sauro

    2017-04-01

    Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21 × performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids.

  19. Capillary rise of a non-Newtonian power law liquid: impact of the fluid rheology and dynamic contact angle.

    PubMed

    Digilov, Rafael M

    2008-12-02

    The impact of non-Newtonian behavior and the dynamic contact angle on the rise dynamics of a power law liquid in a vertical capillary is studied theoretically and experimentally for quasi-steady-state flow. An analytical solution for the time evolution of the meniscus height is obtained in terms of a Gaussian hypergeometric function, which in the case of a Newtonian liquid reduces to the Lucas-Washburn equation modified by the dynamic contact angle correction. The validity of the solution is checked against experimental data on the rise dynamics of a shear-thinning cmc solution in a glass microcapillary, and excellent agreement is found.

  20. Low-density lipoprotein accumulation within a carotid artery with multilayer elastic porous wall: fluid-structure interaction and non-Newtonian considerations.

    PubMed

    Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza

    2015-09-18

    Low-density lipoprotein (LDL), which is recognized as bad cholesterol, typically has been regarded as a main cause of atherosclerosis. LDL infiltration across arterial wall and subsequent formation of Ox-LDL could lead to atherogenesis. In the present study, combined effects of non-Newtonian fluid behavior and fluid-structure interaction (FSI) on LDL mass transfer inside an artery and through its multilayer arterial wall are examined numerically. Navier-Stokes equations for the blood flow inside the lumen and modified Darcy's model for the power-law fluid through the porous arterial wall are coupled with the equations of mass transfer to describe LDL distributions in various segments of the artery. In addition, the arterial wall is considered as a heterogeneous permeable elastic medium. Thus, elastodynamics equation is invoked to examine effects of different wall elasticity on LDL distribution in the artery. Findings suggest that non-Newtonian behavior of filtrated plasma within the wall enhances LDL accumulation meaningfully. Moreover, results demonstrate that at high blood pressure and due to the wall elasticity, endothelium pores expand, which cause significant variations on endothelium physiological properties in a way that lead to higher LDL accumulation. Additionally, results describe that under hypertension, by increasing angular strain, endothelial junctions especially at leaky sites expand more dramatic for the high elastic model, which in turn causes higher LDL accumulation across the intima layer and elevates atherogenesis risk.

  1. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has

  2. Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness

    NASA Astrophysics Data System (ADS)

    Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin

    2016-11-01

    This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.

  3. Non-Newtonian Fluids Spreading with Surface Tension Effect: 3D Numerical Analysis Using FEM and Experimental Study

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Kieweg, Sarah

    2010-11-01

    Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.

  4. Numerical Study of Non-Newtonian Boundary Layer Flow of Jeffreys Fluid Past a Vertical Porous Plate in a Non-Darcy Porous Medium

    NASA Astrophysics Data System (ADS)

    Ramachandra Prasad, V.; Gaffar, S. Abdul; Keshava Reddy, E.; Bég, O. Anwar

    2014-07-01

    Polymeric enrobing flows are important in industrial manufacturing technology and process systems. Such flows are non-Newtonian. Motivated by such applications, in this article we investigate the nonlinear steady state boundary layer flow, heat, and mass transfer of an incompressible Jefferys non-Newtonian fluid past a vertical porous plate in a non-Darcy porous medium. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, Keller-box finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely Deborah number (De), Darcy number (Da), Prandtl number (Pr), ratio of relaxation to retardation times (λ), Schmidt number (Sc), Forchheimer parameter (Λ), and dimensionless tangential coordinate (ξ) on velocity, temperature, and concentration evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate, mass transfer rate, and local skin friction are also investigated. It is found that the boundary layer flow is decelerated with increasing De and Forchheimer parameter, whereas temperature and concentration are elevated. Increasing λ and Da enhances the velocity but reduces the temperature and concentration. The heat transfer rate and mass transfer rates are found to be depressed with increasing De and enhanced with increasing λ. Local skin friction is found to be decreased with a rise in De, whereas it is elevated with increasing λ. An increasing Sc decreases the velocity and concentration but increases temperature.

  5. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    PubMed

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  6. MHD Effects on Non-Newtonian Power-Law Fluid Past a Continuously Moving Porous Flat Plate with Heat Flux and Viscous Dissipation

    NASA Astrophysics Data System (ADS)

    Kishan, N.; Shashidar Reddy, B.

    2013-06-01

    The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.

  7. Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-06-01

    Steady flow and physiological pulsatile flow in a rigid 180° curved tube are investigated using particle image velocimetry. A non-Newtonian blood-analog fluid is used, and in-plane primary and secondary velocity fields are measured. A vortex detection scheme ( d 2-method) is applied to distinguish vortical structures. In the pulsatile flow case, four different vortex types are observed in secondary flow: deformed-Dean, Dean, Wall and Lyne vortices. Investigation of secondary flow in multiple cross sections suggests the existence of vortex tubes. These structures split and merge over time during the deceleration phase and in space as flow progresses along the 180° curved tube. The primary velocity data for steady flow conditions reveal additional vortices rotating in a direction opposite to Dean vortices—similar to structures observed in pulsatile flow—if the Dean number is sufficiently high.

  8. Time Independent Fluids

    ERIC Educational Resources Information Center

    Collyer, A. A.

    1973-01-01

    Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)

  9. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe

    NASA Astrophysics Data System (ADS)

    Tong, Dengke; Wang, Ruihe; Yang, Heshan

    2005-08-01

    This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.

  10. Digital image correlation applied to the calculation of the out-of-plane deformation induced by the formation of roll waves in a non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Aranda, Alfredo; Amigo, Nicolás; Ihle, Christian; Tamburrino, Aldo

    2016-06-01

    A method based on digital image correlation (DIC) is implemented for measuring the height of the roll waves developed in a non-Newtonian fluid flowing on an inclined channel. A projector and a high-resolution digital camera, placed vertically above the fluid surface, are used to project and record a random speckle pattern located on the free liquid surface, where the pattern is deformed due to the developed roll waves. According to the experimental geometry, the height of the roll waves associated to the out-of-plane deformation of the dots is obtained through a quantitative relationship between the experimental parameters and the in-plane displacement field in the flow direction. In terms of this, the out-of-plane deformation is found using a DIC criterion based on the speckle comparison between a reference image without the deformed pattern and an image with a deformed pattern. The maximum height of the roll waves computed with this technique is compared with the height measured using a lateral camera, with both results differing by <10% over the set of experimental instances.

  11. A computational analysis of natural convection in a vertical channel with a modified power law non-Newtonian fluid

    SciTech Connect

    Lee, S.R.; Irvine, T.F. Jr.; Greene, G.A.

    1998-04-01

    An implicit finite difference method was applied to analyze laminar natural convection in a vertical channel with a modified power law fluid. This fluid model was chosen because it describes the viscous properties of a pseudoplastic fluid over the entire shear rate range likely to be found in natural convection flows since it covers the shear rate range from Newtonian through transition to simple power law behavior. In addition, a dimensionless similarity parameter is identified which specifies in which of the three regions a particular system is operating. The results for the average channel velocity and average Nusselt number in the asymptotic Newtonian and power law regions are compared with numerical data in the literature. Also, graphical results are presented for the velocity and temperature fields and entrance lengths. The results of average channel velocity and Nusselt number are given in the three regions including developing and fully developed flows. As an example, a pseudoplastic fluid (carboxymethyl cellulose) was chosen to compare the different results of average channel velocity and Nusselt number between a modified power law fluid and the conventional power law model. The results show, depending upon the operating conditions, that if the correct model is not used, gross errors can result.

  12. Analysis of von Kármán's swirling flow on a rotating disc in Bingham fluids

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Sengupta, Sayantan

    2016-01-01

    In this article, the flow above a rotating disc, which was first studied by von Kármán for a Newtonian fluid, has been investigated for a Bingham fluid in three complementary but separate ways: by computational fluid dynamics (CFD), by a semi-analytical approach based on a new transformation law, and by another semi-analytical approach based on von Kármán's transformation. The full equations, which consist of a set of partial differential equations, are solved by CFD simulations. The semi-analytical approach, in which a set of ordinary differential equations is solved, is developed here by simplifying the full equations invoking several assumptions. It is shown that the new transformation law performs better and reduces to von Kármán's transformation as a limiting case. The present paper provides a closed-form expression for predicting the non-dimensional moment coefficient which works well in comparison with values obtained by the full CFD simulations. Detailed variations of tangential, axial, and radial components of the velocity field as a function of Reynolds number (Re) and Bingham number (Bn) have been determined. Many subtle flow physics and fluid dynamic issues are explored and critically explained for the first time in this paper. It is shown how two opposing forces, viz., the viscous and the inertial forces, determine certain important characteristics of the axial-profiles of non-dimensional radial velocity (e.g., the decrease of maxima, the shift of maxima, and the crossing over). It has been found that, at any Re, the maximum value of the magnitude of non-dimensional axial velocity decreases with an increase in Bn, thereby decreasing the net radial outflow. A comparison between the streamline patterns in Newtonian and Bingham fluids shows that, for a Bingham fluid, a streamline close to the disc-surface makes a higher number of complete turns around the axis of rotation. The differences between the self-similarity in a Newtonian fluid flow and the

  13. A study of particle settling in non-Newtonian fluids; Part 2: Rheological characterization of polymer solutions

    SciTech Connect

    Jin, L.; Chenevert, M.E. . Dept. of Petroleum Engineering)

    1994-03-01

    Aqueous solutions of different concentrations of three polymers: a synthetic high molecular weight polymer, partially hydrolyzed polyacrylamide (PHPA), a xanthan-type biopolymer (Xanvis), and a cellulose-type polymer (HEC) were investigated in this study. It was found that the steric arrangement of molecules or interactions between molecules can be detected by a systematically designed strain and frequency sweep measurement, and is reflected by the different relaxation times of the solutions. The degree of elasticity can be quantified by G[prime]/[vert bar]G*[vert bar] in linear viscoelastic range. The responses of the fluids to frequency sweeps are displayed in a normalized moduli versus normalized frequency pattern derived from the Maxwell model. Results show that within the tested concentration ranges, PHPA solutions are highly elastic with moderate relaxation times that are strain and concentration insensitive. Xanvis solutions are also highly elastic, but with high relaxation times that are both strain and concentration sensitive, indicating a different mechanism of elasticity compared to PHPA solutions. HEC (cellulose derivatives) are mostly viscous shear thinning fluids with weak elasticity and short relaxation times that are insensitive to strain, but sensitive to concentration.

  14. Transient growth in Taylor-Couette flow of a Bingham fluid.

    PubMed

    Chen, Cheng; Wan, Zhen-Hua; Zhang, Wei-Guo

    2015-04-01

    In this paper we investigate linear transient growth of perturbation energy in Taylor-Couette flow of a Bingham fluid. The effects of yield stress on transient growth and the structure of the optimal perturbation are mainly considered for both the wide-gap case and the narrow-gap case. For this purpose we complement the linear stability of this flow subjected to axisymmetric disturbances, presented by Landry et al. [M. P. Landry, I. A. Frigaard, and D. M. Martinez, J. Fluid Mech. 560, 321 (2006)], with the transient growth characteristics of both axisymmetric and nonaxisymmetric perturbations. We obtain the variations of the relative amplitude of optimal perturbation with yield stress, analyze the roles played by the Coriolis force and the additional stress in the evolution of meridional perturbations for the axisymmetric modes, and give the explanations for the possible change of the optimal azimuthal mode (featured by the maximum optimal energy growth G(opt)) with yield stress. These results might help us in the understanding of the effect of fluid rheology on transient growth mechanism in vortex flows.

  15. Transient growth in Taylor-Couette flow of a Bingham fluid

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Wan, Zhen-Hua; Zhang, Wei-Guo

    2015-04-01

    In this paper we investigate linear transient growth of perturbation energy in Taylor-Couette flow of a Bingham fluid. The effects of yield stress on transient growth and the structure of the optimal perturbation are mainly considered for both the wide-gap case and the narrow-gap case. For this purpose we complement the linear stability of this flow subjected to axisymmetric disturbances, presented by Landry et al. [M. P. Landry, I. A. Frigaard, and D. M. Martinez, J. Fluid Mech. 560, 321 (2006), 10.1017/S0022112006000620], with the transient growth characteristics of both axisymmetric and nonaxisymmetric perturbations. We obtain the variations of the relative amplitude of optimal perturbation with yield stress, analyze the roles played by the Coriolis force and the additional stress in the evolution of meridional perturbations for the axisymmetric modes, and give the explanations for the possible change of the optimal azimuthal mode (featured by the maximum optimal energy growth Gopt) with yield stress. These results might help us in the understanding of the effect of fluid rheology on transient growth mechanism in vortex flows.

  16. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  17. Accuracy of non-Newtonian Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Daniel; Schneider, Andreas; Böhle, Martin

    2015-11-01

    This work deals with the accuracy of non-Newtonian Lattice Boltzmann simulations. Previous work for Newtonian fluids indicate that, depending on the numerical value of the dimensionless collision frequency Ω, additional artificial viscosity is introduced, which negatively influences the accuracy. Since the non-Newtonian fluid behavior is incorporated through appropriate modeling of the dimensionless collision frequency, a Ω dependent error EΩ is introduced and its influence on the overall error is investigated. Here, simulations with the SRT and the MRT model are carried out for power-law fluids in order to numerically investigate the accuracy of non-Newtonian Lattice Boltzmann simulations. A goal of this accuracy analysis is to derive a recommendation for an optimal choice of the time step size and the simulation Mach number, respectively. For the non-Newtonian case, an error estimate for EΩ in the form of a functional is derived on the basis of a series expansion of the Lattice Boltzmann equation. This functional can be solved analytically for the case of the Hagen-Poiseuille channel flow of non-Newtonian fluids. With the help of the error functional, the prediction of the global error minimum of the velocity field is excellent in regions where the EΩ error is the dominant source of error. With an optimal simulation Mach number, the simulation is about one order of magnitude more accurate. Additionally, for both collision models a detailed study of the convergence behavior of the method in the non-Newtonian case is conducted. The results show that the simulation Mach number has a major impact on the convergence rate and second order accuracy is not preserved for every choice of the simulation Mach number.

  18. Physiological non-Newtonian blood flow through single stenosed artery

    NASA Astrophysics Data System (ADS)

    Mamun, Khairuzzaman; Rahman, Mohammad Matiur; Akhter, Most. Nasrin; Ali, Mohammad

    2016-07-01

    A numerical simulation to investigate the Non-Newtonian modelling effects on physiological flows in a three dimensional idealized artery with a single stenosis of 85% severity. The wall vessel is considered to be rigid. Oscillatory physiological and parabolic velocity profile has been imposed for inlet boundary condition. Where the physiological waveform is performed using a Fourier series with sixteen harmonics. The investigation has a Reynolds number range of 96 to 800. Low Reynolds number k - ω model is used as governing equation. The investigation has been carried out to characterize two Non-Newtonian constitutive equations of blood, namely, (i) Carreau and (ii) Cross models. The Newtonian model has also been investigated to study the physics of fluid. The results of Newtonian model are compared with the Non-Newtonian models. The numerical results are presented in terms of pressure, wall shear stress distributions and the streamlines contours. At early systole pressure differences between Newtonian and Non-Newtonian models are observed at pre-stenotic, throat and immediately after throat regions. In the case of wall shear stress, some differences between Newtonian and Non-Newtonian models are observed when the flows are minimum such as at early systole or diastole.

  19. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.

    PubMed

    Muehlhausen, M-P; Janoske, U; Oertel, H

    2015-03-01

    Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects.

  20. Semiclassical law for the apparent viscosity of non-Newtonian fluids: An analogy between thixotropy of fluids and sintering of solids

    NASA Astrophysics Data System (ADS)

    Mezzasalma, Stefano A.

    2000-08-01

    A theory is presented to describe the apparent viscosity of thixotropic fluids as a function of the rate of shear. It represents the extension of a semiclassical approach that was previously formulated to deal with matter densification phenomena in solids starting from the state equation of the medium. In this context, the Debye expression for the Helmholtz free energy has been provided with a density of vibrational modes that accounts for atomic and microstructural changes occurring at the frequency scale of momentum transport (see diffusion). Working out the steady-state condition with respect to time gives an equation relating reduced apparent viscosity (η˜) and shear rate (γ˜) through the temperature value (θ*) that is energetically equivalent to the medium vibrations implied. Viscosity also turns out to depend on the Debye temperature θD (see φ˜θ*/θD) and an equivalent Gruneisen parameter (μ), defined with respect to viscosity variations. Increasing φ in pseudoplastic and dilatant media, respectively, increases and decreases η˜, which always increases with increasing μ. The analogy between dilatancy/sintering and pseudoplasticity/desintering is suggested, and a correspondence between matter and momentum transports is traced on the basis of the phononic spectrum properties. Application to experimental measurements are presented and discussed for aqueous monodispersions of polystyrene (PS) latex particles, aqueous glycerol solutions of partially hydrolyzed polyacrylamide (PHPAA) at different sodium chloride (NaCl) concentrations, polymethylmethacrylate (PMMA) suspensions in dioctylphthalate (DOP), and for a molecularly thin liquid film of octamethylciclotetrasiloxane (OMCTS). Best fit coefficients for φ and μ have been constrained to the Debye temperature and the effective low-shear viscosity (η0) according to their dependences upon the suspended volume fraction (φ), θD=θD(φ), and η0=η0(φ), and the agreement with experimental data is

  1. Numerical simulation of the non-Newtonian mixing layer

    NASA Technical Reports Server (NTRS)

    Azaiez, Jalel; Homsy, G. M.

    1993-01-01

    This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.

  2. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  3. Weakly nonlinear analysis of Rayleigh-Bénard convection in a non-Newtonian fluid between plates of finite conductivity: Influence of shear-thinning effects

    NASA Astrophysics Data System (ADS)

    Bouteraa, Mondher; Nouar, Chérif

    2015-12-01

    Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Rac and the critical wave number kc decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value αc of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that αc increases with decreasing ξ . The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξc, below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015), 10.1017/jfm.2015.64]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξc. The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.

  4. Weakly nonlinear analysis of Rayleigh-Bénard convection in a non-Newtonian fluid between plates of finite conductivity: Influence of shear-thinning effects.

    PubMed

    Bouteraa, Mondher; Nouar, Chérif

    2015-12-01

    Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Ra(c) and the critical wave number k(c) decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value α(c) of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that α(c) increases with decreasing ξ. The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξ(c), below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015)]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξ(c). The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.

  5. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    PubMed

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  6. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Allouche, M. H.; Millet, S.; Botton, V.; Henry, D.; Ben Hadid, H.; Rousset, F.

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  7. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.

    PubMed

    Sriyab, Somchai

    2014-01-01

    The flow of blood in narrow arteries with bell-shaped mild stenosis is investigated that treats blood as non-Newtonian fluid by using the K-L model. When skin friction and resistance of blood flow are normalized with respect to non-Newtonian blood in normal artery, the results present the effect of stenosis length. When skin friction and resistance of blood flow are normalized with respect to Newtonian blood in stenosis artery, the results present the effect of non-Newtonian blood. The effect of stenosis length and effect of non-Newtonian fluid on skin friction are consistent with the Casson model in which the skin friction increases with the increase of either stenosis length or the yield stress but the skin friction decreases with the increase of plasma viscosity coefficient. The effect of stenosis length and effect of non-Newtonian fluid on resistance of blood flow are contradictory. The resistance of blood flow (when normalized by non-Newtonian blood in normal artery) increases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length. The resistance of blood flow (when normalized by Newtonian blood in stenosis artery) decreases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length.

  8. The extensional rheology of non-Newtonian materials

    NASA Technical Reports Server (NTRS)

    Spiegelberg, Stephen H.; Gaudet, Samuel; Mckinley, Gareth H.

    1994-01-01

    It has been proposed to measure the extensional viscosity function of a non-Newtonian polymer solution in a reduced gravity environment as part of the Advanced Fluid Module. In ground-based extensional measurements, the no-sip boundary condition at solid-fluid interfaces always result in appreciable shear gradients in the test fluid; however the removal of gravitational body forces permits controlled extensional deformation of containerless test samples and the first unambiguous measurements of this kind. Imperative to successful implementation of this experiment is the generation and subsequent deformation of a stable cylindrical column of test fluid. A study of the generation and deformation of liquid bridges demonstrates that Newtonian liquid bridges undergo capillary breakup as anticipated when stretched beyond a critical aspect ratio; non-Newtonian liquid bridges, however, are stabilized by the strain-hardening phenomenon exhibited by these materials. Numerical simulations of Newtonian breakup are compared with experimental results, and show that previous ground-based attempts at measuring the extensional viscosity of Newtonian fluids are of limited accuracy.

  9. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    NASA Astrophysics Data System (ADS)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  10. Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery.

    PubMed

    Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola

    2016-06-14

    In this work, non-Newtonian effects on Low-Density Lipoprotein (LDL) transport across an artery are analyzed with a multi-layer model. Four rheological models (Carreau, Carreau-Yasuda, power-law and Newtonian) are used for the blood flow through the lumen. For the non-Newtonian cases, the arterial wall is modeled with a generalized momentum equation. Convection-diffusion equation is used for the LDL transport through the lumen, while Staverman-Kedem-Katchalsky, combined with porous media equations, are used for the LDL transport through the wall. Results are presented in terms of filtration velocity, Wall Shear Stresses (WSS) and concentration profiles. It is shown that non-Newtonian effects on mass transport are negligible for a healthy intramural pressure value. Non-Newtonian effects increase slightly with intramural pressure, but Newtonian assumption can still be considered reliable. Effects of arterial size are also analyzed, showing that Newtonian assumption can be considered valid for both medium and large arteries, in predicting LDL deposition. Finally, non-Newtonian effects are also analyzed for an aorta-common iliac bifurcation, showing that Newtonian assumption is valid for mass transport at low Reynolds numbers. At a high Reynolds number, it has been shown that a non-Newtonian fluid model can have more impact due to the presence of flow recirculation.

  11. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes.

    PubMed

    Chevalier, Thibaud; Talon, Laurent

    2015-02-01

    In this paper, we numerically investigate the statistical properties of the nonflowing areas of Bingham fluid in two-dimensional porous media. First, we demonstrate that the size probability distribution of the unyielded clusters follows a power-law decay with a large size cutoff. This cutoff is shown to diverge following a power law as the imposed pressure drop tends to a critical value. In addition, we observe that the exponents are almost identical for two different types of porous media. Finally, those scaling properties allow us to account for the quadratic relationship between the pressure gradient and velocity.

  12. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step.

    PubMed

    Choi, Hyo Won; Barakat, Abdul I

    2005-01-01

    Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.

  13. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.

    PubMed

    Chen, Jie; Lu, Xi-Yun; Wang, Wen

    2006-01-01

    Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.

  14. Dynamics of Non-Newtonian Liquid Droplet Collision

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yang, Vigor

    2012-11-01

    Collision of Newtonian liquid droplets has been extensively investigated both experimentally and numerically for decades. Limited information, however, is available about non-Newtonian droplet collision dynamics. In the present work, high-fidelity numerical simulations were performed to study the situation associated with shear-thinning non-Newtonian liquids. The formulation is based on a complete set of conservation equations for the liquid and the surrounding gas phases. An improved volume-of-fluid (VOF) method, combined with an innovative topology-oriented adaptive mesh refinement (TOAMR) technique, was developed and implemented to track the interfacial dynamics. The complex evolution of the droplet surface over a broad range of length scales was treated accurately and efficiently. In particular, the thin gas film between two approaching droplets and subsequent breakup of liquid threads were well-resolved. Various types of droplet collision were obtained, including coalescence, bouncing, and reflexive and stretching separations. A regime diagram was developed and compared with that for Newtonian liquids. Fundamental mechanisms and key parameters that dictate droplet behaviors were identified. In addition, collision-induced atomization was addressed. This work was sponsored by the U.S. Army Research Office under the Multi-University Research Initiative under contract No. W911NF-08-1-0124. The support and encouragement provided by Dr. Ralph Anthenien are gratefully acknowledged.

  15. Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling.

    PubMed

    Li, W G; Luo, X Y; Chin, S B; Hill, N A; Johnson, A G; Bird, N C

    2008-11-01

    Bile flow is thought to play an essential role in the pathophysiological genesis of cholelithiasis (gallstone formation) and in gallbladder pain. In this paper, we extend our previous study of the human biliary system (Li et al., 2007, J. Biomech. Eng., 129:164-173) to include two important factors: the non-Newtonian properties of bile, and elastic deformation of the cystic duct. A one-dimensional (1D) model is analyzed and compared with three-dimensional (3D) fluid-structure interaction simulations. It is found that non-Newtonian bile raises resistance to the flow of bile, which can be augmented significantly by the elastic deformation (collapse) of the cystic duct. We also show that the 1D model predicts the pressure drop of the cystic duct flow well for all cases considered (Newtonian or non-Newtonian flow, rigid or elastic ducts), when compared with the full 3D simulations.

  16. A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions

    ERIC Educational Resources Information Center

    Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s

    2014-01-01

    A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…

  17. Nonlinear drainage of some non-Newtonian free films

    NASA Astrophysics Data System (ADS)

    Tabakova, S.

    2015-10-01

    In the present work we apply the generalized lubrication approach (including inertial, viscous, capillary and van-der-Waals forces) to study the dynamics of a free thin film of a non-Newtonian fluid, whose viscosity is described by the Power law and Carreau models. For planar films with fully mobile surfaces, this approach leads to a system of two nonlinear PDE for the film thickness and lateral velocity. This system is solved numerically in the case of laterally bounded free films. The calculations of the film shape and velocity are presented using data of some real liquids: blood and aqueous solution of 0.5% hydroxyethylcellulose. It is shown that the Power law model predicts a very different viscosity to the Carreau model viscosity, although that the film profiles are not very different for all film wetting angles.

  18. Inline Ultrasonic Rheometry of a Non-Newtonian Waste Simulant

    SciTech Connect

    Pfund, David M.; Pappas, Richard A.

    2004-03-31

    This is a discussion of non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure requires knowledge of the flow profile in and the pressure drop along the long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel which is often used as a Hanford waste simulant are presented. The operating parameters and limitations of the ultrasound based instrument will be discussed. The component parts of the instrument have been packaged into a unit for field use. The presentation also discusses the features and engineering optimizations done to enhance field usability of the instrument.

  19. Effects of non Newtonian spiral blood flow through arterial stenosis

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  20. Impinging jet spray formation using non-Newtonian liquids

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  1. Sinking of spherical slablets through a non-Newtonian mantle

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Crameri, F.; Petersen, R. I.; Tackley, P. J.

    2013-12-01

    The dominant driving force for plate tectonics is slab pull, in which sinking slabs pull the trailing plate. Forward plate velocities are typically similar in magnitude (7 cm/yr) as estimates for sinking velocities of slabs through the upper mantle. However, these estimates are based on data for slabs that are coherent into the transition zone as well as models that considered the upper mantle to be entirely Newtonian. Dislocation creep in the upper mantle can strongly influence mantle flow, and is likely activated for flow around vertically sinking slabs in the uppermost mantle. Thus, it is possible that in some scenarios, a non-Newtonian mantle will have an influence on plate motions but it is unclear to what degree. To address this question, we investigate how the non-Newtonian rheology modifies the sinking velocities of slablets (spherical, negatively buoyant and highly viscous blobs). The model set-up is similar to a Stokes sphere sinking, but is in 2-D cartesian with temperature-and stress-dependent rheology. For these numerical models, we use the StagYY code and also includes a pseudo-free surface (';sticky air') with a thin surface thermal boundary. The sinking blob is both highly viscous and compositionally dense, but is the same temperature as the background fluid which eliminates thermal diffusion and associated variations in thermal buoyancy. The model domain is 2x1 and allows enough distance to the sidewalls so that sinking velocites are not influenced by the boundary conditions. We compare our results with those previously obtained for salt diapirs rising through a power-law rheology mantle/crust (Weinberg, 1993; Weinberg and Podladchikov, 1994) which provided both numerical and analytic results. Previous results indicate a speed-up of an order of magnitude is possible. We then extend the models and analysis to mantle convection systems that include for single-sided subduction. Surface plate motions are driven by the subducting slabs to which they are

  2. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.

    PubMed

    Chen, Jie; Lu, Xi-Yun

    2004-12-01

    The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier-Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau-Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.

  3. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.

    PubMed

    Marrero, Victor L; Tichy, John A; Sahni, Onkar; Jansen, Kenneth E

    2014-10-01

    It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s-1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s-1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, "Predictive Medicine: Computational Techniques in Therapeutic Decision Making," Comput. Aided Surg., 4, pp. 231-247; 1998, "Finite Element Modeling of Blood Flow in Arteries," Comput. Methods Appl. Mech. Eng., 158, pp. 155-196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive

  4. Studying Mixing in Non-Newtonian Blue Maize Flour Suspensions Using Color Analysis

    PubMed Central

    Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés

    2014-01-01

    Background Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. Methodology and Findings We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Conclusion and Relevance Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions. PMID:25401332

  5. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  6. Dynamic viscosity measurement in non-Newtonian graphite nanofluids.

    PubMed

    Duan, Fei; Wong, Ting Foong; Crivoi, Alexandru

    2012-07-02

    : The effective dynamic viscosity was measured in the graphite water-based nanofluids. The shear thinning non-Newtonian behavior is observed in the measurement. On the basis of the best fitting of the experimental data, the viscosity at zero shear rate or at infinite shear rate is determined for each of the fluids. It is found that increases of the particle volume concentration and the holding time period of the nanofluids result in an enhancement of the effective dynamic viscosity. The maximum enhancement of the effective dynamic viscosity at infinite rate of shear is more than 24 times in the nanofluids held for 3 days with the volume concentration of 4% in comparison with the base fluid. A transmission electron microscope is applied to reveal the morphology of aggregated nanoparticles qualitatively. The large and irregular aggregation of the particles is found in the 3-day fluids in the drying samples. The Raman spectra are extended to characterize the D and G peaks of the graphite structure in the nanofluids. The increasing intensity of the D peak indicates the nanoparticle aggregation growing with the higher concentration and the longer holding time of the nanofluids. The experimental results suggest that the increase on effective dynamic viscosity of nanofluids is related to the graphite nanoparticle aggregation in the fluids.

  7. Inelastic non-Newtonian flow over heterogeneously slippery surfaces.

    PubMed

    Haase, A Sander; Wood, Jeffery A; Sprakel, Lisette M J; Lammertink, Rob G H

    2017-02-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n=0.4, the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.

  8. Inelastic non-Newtonian flow over heterogeneously slippery surfaces

    NASA Astrophysics Data System (ADS)

    Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.

    2017-02-01

    In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n =0.4 , the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.

  9. Non-Newtonian Viscosity Modeling of Crude Oils—Comparison Among Models

    NASA Astrophysics Data System (ADS)

    Ramírez-González, Patsy V.; Aguayo, Juan Pablo; Quiñones-Cisneros, Sergio E.; Deiters, Ulrich K.

    2009-04-01

    The presence of precipitated wax or even just low temperatures may induce non-Newtonian rheological behavior in crude oils. Such behavior can be found at operating conditions, for instance, in reservoirs at deep-water conditions. Therefore, reliable rheological models for crude oils applicable over the wide range of conditions the fluid may encounter are essential for a large number of oil technology applications. Such models must also be composition dependent, as many applications require predicting the rheological behavior of the fluid under strong compositional changes, e.g., recovery applications such as vapor extraction (VAPEX) processes or blending of fluids for improved rheological characteristics for piping, among many other applications. In this study, a comparative analysis between some published models applicable to the description of the non-Newtonian behavior of crude oils is carried out. Emphasis is placed on the stability of the model predictions within the wide range of conditions that may be encountered.

  10. Non-Newtonian Aspects of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  11. Non-Newtonian Rheology of Calc-Alkaline Obsidian at High Stresses and Strain Rates

    NASA Astrophysics Data System (ADS)

    Dingwell, D. B.; Hess, K.; Lavallee, Y.; Cordonnier, B.; Mueller, S.

    2005-12-01

    The importance of the Non-Newtonian regime at high stress and strain rates has been reported for a variety of silicate melts subject to different tests but never for natural samples bearing their original contents of magmatic water and microlite content. Here, we used a unique high-load (<500 MPa), high-temperature (<1300°C) deformation apparatus for studying in situ the Non-Newtonian flow behaviour of magmas. A series of experiments were performed on calc-alkaline obsidian lavas from Lipari (Italy), Iceland, and Cougar Creek Dome, Yellowstone (USA), and compared to depolymerized melt (NIST 710). The samples were heated to relevant magmatic effusive temperatures that yielded similar relaxation timescales and were deformed under constant stress in the range of 100 to 200 MPa. The onset of the Non-Newtonian flow regime, registered by a decreasing viscosity with time (at fixed strain rate), occurred at 120 MPa for the depolymerized melt. The Non-Newtonian flow behavior was observed up to pressures as high as approx. 180 MPa, where the samples fragmented readily (hot cracking). In contrast, all three calc-alkaline rhyolitic melt remained in a Newtonian regime up to approx. 160 MPa. The window of Non-Newtonian behavior was, however, very narrow and most samples fragmented instantaneously in the attempt of pursuing the deformation. If this is not an experimental artefact, we conclude that modeling of the flow behaviour of a ascending crystal- and bubble-free calc-alkaline rhyolitic dome magma can be performed using a simple Newtonian fluid approximation. Thus the Non-Arrhenian model of Hess and Dingwell (1996) for the compositional and temperature dependence of viscosity could be applied.

  12. Convective Instability in Ice I with Non-Newtonian Rheology: Application to the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Barr, A. C.; Zhong, S.; Pappalardo, R. T.

    2004-01-01

    At the temperatures and stresses associated with the onset of convection in an ice I shell of the Galilean satellites, ice behaves as a non-Newtonian fluid with a viscosity that depends on both temperature and strain rate. The convective stability of a non-Newtonian ice shell can be judged by comparing the Rayleigh number of the shell to a critical value. Previous studies suggest that the critical Rayleigh number for a non-Newtonian fluid depends on the initial conditions in the fluid layer, in addition to the thermal, rheological, and physical properties of the fluid. We seek to extend the existing definition of the critical Rayleigh number for a non-Newtonian, basally heated fluid by quantifying the conditions required to initiate convection in an ice I layer initially in conductive equilibrium. We find that the critical Rayleigh number for the onset of convection in ice I varies as a power (-0.6 to -0.5) of the amplitude of the initial temperature perturbation issued to the layer, when the amplitude of perturbation is less than the rheological temperature scale. For larger-amplitude perturbations, the critical Rayleigh number achieves a constant value. We characterize the critical Rayleigh number as a function of surface temperature of the satellite, melting temperature of ice, and rheological parameters so that our results may be extrapolated for use with other rheologies and for a generic large icy satellite. The values of critical Rayleigh number imply that triggering convection from a conductive equilibrium in a pure ice shell less than 100 km thick in Europa, Ganymede, or Callisto requires a large, localized temperature perturbation of a few kelvins to tens of kelvins to soften the ice and therefore may require tidal dissipation in the ice shell.

  13. Collision Dynamics and Internal Mixing of Droplets of Non-Newtonian Liquids

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Zhang, Peng; Law, Chung K.; Wang, Tianyou

    2015-11-01

    The efficient internal mixing of colliding droplets upon coalescence is critical to various technological processes such as color manipulation in ink-jet printing and the initiation of the liquid-phase reaction of gelled hypergolic propellants in rocket engines. Recognizing that such processes can be optimized by varying the impact inertia as well as employing fluids of non-Newtonian rheology, the head-on collision, coalescence, and internal mixing pattern between two impacting equal-sized droplets of non-Newtonian fluids is computationally investigated by using the lattice Boltzmann method. Results show that, with increasing non-Newtonian effects, droplet deformation and separation following coalescence is promoted for shear-thinning fluids, while permanent coalescence allowing an extended duration for mixing is promoted for shear-thickening fluids. Furthermore, large-scale internal mixing is promoted for the colliding droplets with larger shear-thinning disparity, while coalescence and mixing is synergistically facilitated for the collision between a shear-thinning droplet and a shear-thickening droplet. The individual and coupled influences of viscosity on the droplet deformation and impact inertia, internal motion, viscous loss, and merging of the colliding interfaces leading to the observed outcomes are mechanistically identified and described.

  14. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.

    1988-02-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a laser Doppler velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm (2 inches). Detailed flow measurements including turbulence quantities such as Reynolds stress were measured with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are one micron or less. A non-Newtonian slurry from small particles could maintain large particles (100 micron size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems. Velocity profiles were acquired by the LDV in the laminar, transitional, and turbulent flow regimes. The velocity profile for laminar flow was in agreement with theory. The range of the transition region was 21 percent of the transition velocity in comparison to 50 percent for a Newtonian fluid.

  15. Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  16. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.

    PubMed

    Chen, Jie; Lu, Xi-Yun

    2006-01-01

    The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.

  17. Rheological transition in mantle convection with a composite temperature-dependent, non-Newtonian and Newtonian rheology

    NASA Technical Reports Server (NTRS)

    Van Den Berg, Arie P.; Yuen, David A.; Van Keken, Peter E.

    1995-01-01

    Numerical simulations of mantle convection with a composite temperature-dependent, Newtonian and non-Newtonian creep law have revealed a transition in the dominant creep mechanism with the increasing vigour of convection. Newtonian creep is found to dominate in the low Rayleigh number regime. With sufficiently high effective Rayleigh number, the overall creep mechanism in the convective flow becomes non-Newtonian. The transitional Rayleigh number increases strongly with the activation energy. These results would suggest a scenario that in the early epochs of Earth the flow in the mantle would have been governed by non-Newtonian rheology and would have exhibited both strong spatial and temporal fluctuations. With time the flow mechanism would behave like a Newtonian fluid and would have a different time-dependent character. In time-dependent Newtonian-dominated flows there are still localized features with distinctly non-Newtonian character. Our analysis of the relative contributions to the lateral viscosity field supports the idea that the inference of the nature of lateral viscosity heterogeneities by seismic tomography may be strongly contaminated by the dominant non-Newtonian contributions to the total lateral viscosity field.

  18. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.

    1988-05-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a Laser Doppler Velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry. Flow measurements including turbulence quantities such as Reynolds stress were measured with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are two microns or less. A non-Newtonian slurry from small particles could maintain large particles (one millimeter size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems.

  19. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.

    1987-10-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a laser Doppler velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm (2 inches). Detailed flow measurements including turbulence quantities such as Reynolds stress will be taken with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are one micron or less. A non-Newtonian slurry from small particles could maintain large particles (100 micron size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems.

  20. Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows.

    PubMed

    Boi, S; Mazzino, A; Pralits, J O

    2013-09-01

    The emergence of fluid instabilities in the relevant limit of vanishing fluid inertia (i.e., arbitrarily close to zero Reynolds number) has been investigated for the well-known Kolmogorov flow. The finite-time shear-induced order-disorder transition of the non-Newtonian microstructure and the corresponding viscosity change from lower to higher values are the crucial ingredients for the instabilities to emerge. The finite-time low-to-high viscosity change for increasing shear characterizes the rheopectic fluids. The instability does not emerge in shear-thinning or -thickening fluids where viscosity adjustment to local shear occurs instantaneously. The lack of instabilities arbitrarily close to zero Reynolds number is also observed for thixotropic fluids, in spite of the fact that the viscosity adjustment time to shear is finite as in rheopectic fluids. Renormalized perturbative expansions (multiple-scale expansions), energy-based arguments (on the linearized equations of motion), and numerical results (of suitable eigenvalue problems from the linear stability analysis) are the main tools leading to our conclusions. Our findings may have important consequences in all situations where purely hydrodynamic fluid instabilities or mixing are inhibited due to negligible inertia, as in microfluidic applications. To trigger mixing in these situations, suitable (not necessarily viscoelastic) non-Newtonian fluid solutions appear as a valid answer. Our results open interesting questions and challenges in the field of smart (fluid) materials.

  1. CFD analysis of Newtonian and non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Khojasteh, Danial; Mousavi, Seyed Mahmood; Kamali, Reza

    2016-11-01

    In the present study, the behaviors of Newtonian and shear-thinning non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces have been investigated numerically using Ansys-Fluent. In this context, the volume-of-fluid technique is applied to track the free-surface of the liquid, and variable time-step is also utilized to control the Courant number. Furthermore, we have considered the dependence of viscosity, density and surface tension on temperature during the simulation. The results are compared to available experimental data at the same conditions, such as boundary conditions. The results demonstrate that there is a good agreement between the obtained results and the experimental trends, concerning normalized diameter profiles at various Weber numbers. Therefore, the focus of the present study is an assessment of the effects of variations in Weber number, contact angle and surface temperature for Newtonian and non-Newtonian liquids on dynamics behavior of droplet in collision with hydrophobic and hydrophilic surfaces. The results represent that the behaviors of Newtonian and non-Newtonian droplets are totally different, indicating the droplet sensitivity to the working parameters.

  2. Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?

    PubMed

    Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary

    2017-04-01

    Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.

  3. Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.

    PubMed

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.

  4. Microsphere interaction with non-Newtonian solid-supported films to model respiratory therapies

    NASA Astrophysics Data System (ADS)

    Lee, Nathan; Ally, Javed; Kappl, Michael; Butt, Hans-Jürgen

    2012-10-01

    Films used as lubricants and particle filters interact with microspheres. One example of a biological particle filter is the mucus lining the human respiratory system. In the conducting airways of the respiratory tract, a 10 μm thick layer of mucus sits on top of a periciliary layer. These cilia sweep the mucus towards the nose and mouth whereby debris, such as dust and bacteria that are trapped by the mucus layer, may be expelled from the body. Mucus, like other biofluids, can be modeled after a non-Newtonian fluid due to their viscoelastic properties. Interactions between particles and non-Newtonian thin films have not been widely characterized. Atomic force microscopy (AFM) is an ideal technique due to its ability to measure in the microNewtown and micrometer scale. The AFM setup also allows for calculation of the force from direct contact of the particle with the film. Data from these experiments may further the development aerosol-based respiratory therapies. Factors such as particle size and approach speed are necessary to determine improved parameters for drug deposition and retention. It is the goal of this study to analyze interaction forces between particles and non-Newtonian solid-supported films.

  5. Mantle flow pressure and the angle of subduction - Non-Newtonian corner flows

    NASA Technical Reports Server (NTRS)

    Tovish, A.; Schubert, G.; Luyendyk, B. P.

    1978-01-01

    Corner flows of Newtonian and non-Newtonian fluids are used to model the flow in a subduction zone which is viscously driven by the motions of the converging plates and the descending slab. The pressures induced by the flow tend to lift the slab up beneath the overriding plate thereby offsetting the tendency of gravity to align the slab with the vertical. The low angles of subduction observed in Peru and Central Chile may be the result of strong dynamic pressures forcing the slab up against the overriding plate. Viscous coupling between the overriding plate and the downgoing slab is essential if the nonvertical dips of slabs are a consequence of the balance between gravitational and pressure torques. For a Newtonian mantle, shear stresses and pressures on the top of the slab are comparable. If the mantle is non-Newtonian, however, the pressures greatly exceed the shear stresses, for most acute dip angles. Thus frictional forces on the top and bottom surfaces of slabs are less important in resisting slab descent into a non-Newtonian mantle than they are in resisting penetration into a Newtonian mantle.

  6. Investigating the impact of non-Newtonian blood models within a heart pump.

    PubMed

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2017-01-01

    A detailed computational fluid dynamics (CFD) study of transient, turbulent blood flow through a positive displacement left ventricular assist device is performed. Two common models for non-Newtonian blood flow are compared to the Newtonian model to investigate their impact on predicted levels of shear rate and wall shear stress. Given that both parameters are directly relevant to the evaluation of risk from thrombus and haemolysis, there is a need to assess the sensitivity to modelling non-Newtonian flow effects within a pulsatile turbulent flow, in order to identify levels of uncertainly in CFD. To capture the effects of turbulence, the elliptic blending Reynolds stress model is used in the present study, on account of superior performance of second moment closure schemes previously identified by the present authors. The CFD configuration includes two cyclically rotating valves and a moving pusher plate to periodically vary the chamber volume. An overset mesh algorithm is used for each instance of mesh motion, and a zero gap technique was employed to ensure full valve closure. The left ventricular assist device was operated at a pumping rate of 86 BPM (beats per minute) and a systolic duration of 40% of the pumping cycle, in line with existing experimental data to which comparisons are made. The sensitivity of the variable viscosity models is investigated in terms of mean flow field, levels of turbulence and global shear rate, and a non-dimensional index is used to directly evaluate the impact of non-Newtonian effects. The clinical relevance of the results is reported along with a discussion of modelling uncertainties, observing that the turbulent kinetic energy is generally predicted to be higher in non-Newtonian flow than that observed in Newtonian flow. Copyright © 2016 John Wiley & Sons, Ltd.

  7. An experimental evaluation of the non-Newtonian scaling effects in a rotodynamic left ventricular assist device

    NASA Astrophysics Data System (ADS)

    Miklosovic, David Scott

    Significant work has been done in the last 10 years to advance the technology of long-term mechanical circulatory assistance, particularly the left ventricular assist device (LVAD). Traditionally, rotary LVADs have been developed using conventional fluid dynamic design methods and Newtonian scaling laws, since non-Newtonian effects were previously assumed to be of second-order importance. To evaluate centrifugal pump performance scaling and flow patterns in a non-Newtonian fluid, the Large-Scale Rotor Testbed (LSRT) at The Ohio State University was developed to test two 9X-scale blood pump impellers in a baseline volute housing of the Innovative Ventricular Assist System (IVAS) designed by the Cleveland Clinic Foundation. Non-Newtonian fluids yielded pump performance deficits of first-order importance, or up to 11% of the Newtonian performance. Thus, the non-Newtonian effects were of the same magnitude as substantial variations in the impeller geometry. Moreover, the dimensionless pressure- and flow-coefficients showed that the non-Newtonian performance deviated from the similarity laws at critical Reynolds numbers that were 2.4--2.7 times higher than the Newtonian value of 71,000. Above the critical Reynolds number, the non-Newtonian fluids followed a similarity behavior, but it was different from the Newtonian case. The deviation increased with the magnitude of shear-thinning behavior as measured by the Weissenberg number. Shear-thinning xanthan gum solutions were used as non-Newtonian test fluids in concentrations from 0 to 1,200 ppm. Fluid samples were characterized in a Couette rheometer to determine viscosity behavior, biological degradation, and shear-induced polymer chain breakdown. The solutions proved to be stable and useful for a duration of up to two weeks of routine LSRT testing. Because the LSRT pump operates in a low-specific speed, low-flow regime, flow visualizations revealed a strong adverse pressure gradient and a prominent inverse Ekman layer in

  8. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.

    PubMed

    Morales, Hernán G; Larrabide, Ignacio; Geers, Arjan J; Aguilar, Martha L; Frangi, Alejandro F

    2013-09-03

    Endovascular coiling aims to isolate the aneurysm from blood circulation by altering hemodynamics inside the aneurysm and triggering blood coagulation. Computational fluid dynamics (CFD) techniques have the potential to predict the post-operative hemodynamics and to investigate the complex interaction between blood flow and coils. The purpose of this work is to study the influence of blood viscosity on hemodynamics in coiled aneurysms. Three image-based aneurysm models were used. Each case was virtually coiled with a packing density of around 30%. CFD simulations were performed in coiled and untreated aneurysm geometries using a Newtonian and a Non-Newtonian fluid models. Newtonian fluid slightly overestimates the intra-aneurysmal velocity inside the aneurysm before and after coiling. There were numerical differences between fluid models on velocity magnitudes in coiled simulations. Moreover, the non-Newtonian fluid model produces high viscosity (>0.007 [Pas]) at aneurysm fundus after coiling. Nonetheless, these local differences and high-viscous regions were not sufficient to alter the main flow patterns and velocity magnitudes before and after coiling. To evaluate the influence of coiling on intra-aneurysmal hemodynamics, the assumption of a Newtonian fluid can be used.

  9. Sinking of spherical slablets through a non-Newtonian mantle

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio; Stegman, Dave; Petersen, Robert; Tackley, Paul

    2014-05-01

    The dominant driving force for plate tectonics is slab pull, in which sinking slabs pull the trailing plate. Forward plate velocities are typically similar in magnitude (7 cm/yr) as estimates for sinking velocities of slabs through the upper mantle. However, these estimates are based on data for slabs that are coherent into the transition zone as well as models that considered the upper mantle to be entirely Newtonian. Dislocation creep in the upper mantle can strongly influence mantle flow, and is likely activated for flow around vertically sinking slabs in the uppermost mantle. Thus, it is possible that in some scenarios, a non-Newtonian mantle will have an influence on plate motions but it is unclear to what degree. To address this question, we investigate how the non-Newtonian rheology modifies the sinking velocities of slablets (spherical, negatively buoyant and highly viscous blobs). The model set-up is similar to a Stokes sphere sinking, but is in 2-D cartesian with temperature-and stress-dependent rheology. For these numerical models, we use the Stag-YY code (e.g., Tackley 2008) and apply a pseudo-free surface using the 'sticky-air' approach (Matsumoto and Tomoda 1983; Schmeling et al, 2008, Crameri et al., 2012). The sinking blob is both highly viscous and compositionally dense, but is the same temperature as the background fluid which eliminates thermal diffusion and associated variations in thermal buoyancy. The model domain is 2x1 or 4x1 and allows enough distance to the sidewalls so that sinking velocities are not influenced by the boundary conditions. We compare our results with those previously obtained for salt diapirs rising through a power-law rheology mantle/crust (Weinberg, 1993; Weinberg and Podladchikov, 1994), which provided both numerical and analytic results. Previous results indicate a speed-up of an order of magnitude is possible. Finally, we then extend the models and analysis to mantle convection systems that include for single

  10. Non-newtonian Effects in Viscous Flows

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Meyers, Ronald E.

    1996-01-01

    Revision of the mathematical formalism of fluid dynamics suggests that some physical inconsistencies (infinite time of approaching equilibrium and fully deterministic solutions to the Navier-Stokes equations) can be removed by relaxing the Lipschitz conditions, i.e., the boundedness of the derivatives, in the constitutive equations. Physically such a modification can be interpreted as an incorporation of an infinitesimal static friction in the constitutive law. A modified version of the Navier-Stokes equations is introduced, discussed, and illustrated by examples. It is demonstrated that all the new effects in the modified model emerge within vanishingly small neighborhoods of equilibrium states which are the only domains where the governing equations are different from classical.

  11. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.

    PubMed

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2014-01-01

    Particle image velocimetry (PIV) was used to investigate the influence of a non-Newtonian blood analog of aqueous xanthan gum on flow separation in laminar and transitional environments and in both steady and pulsatile flow. Initial steady pressure drop measurements in laminar and transitional flow for a Newtonian analog showed an extension of laminar behavior to Reynolds number (Re) ~ 2900 for the non-Newtonian case. On a macroscale level, this showed good agreement with porcine blood. Subsequently, PIV was used to measure flow patterns and turbulent statistics downstream of an axisymmetric stenosis in the aqueous xanthan gum solution and for a Newtonian analog at Re ~ 520 and Re ~ 1250. The recirculation length for the non-Newtonian case was reduced at Re ~ 520 resultant from increased viscosity at low shear strain rates. At Re ~ 1250, peak turbulent intensities and turbulent shear stresses were dampened by the non-Newtonian fluid in close proximity to the blockage outlet. Although the non-Newtonian case's recirculation length was increased at peak pulsatile flow, turbulent shear stress was found to be elevated for the Newtonian case downstream from the blockage, suggesting shear layer fragmentation and radial transport. Our findings conclude that the xanthan gum elastic polymer prolongs flow stabilization, which in turn emphasizes the importance of non-Newtonian blood characteristics on the resulting flow patterns in such cardiovascular environments.

  12. Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar

    2016-10-01

    Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.

  13. Weak solutions for a non-Newtonian diffuse interface model with different densities

    NASA Astrophysics Data System (ADS)

    Abels, Helmut; Breit, Dominic

    2016-11-01

    We consider weak solutions for a diffuse interface model of two non-Newtonian viscous, incompressible fluids of power-law type in the case of different densities in a bounded, sufficiently smooth domain. This leads to a coupled system of a nonhomogenouos generalized Navier-Stokes system and a Cahn-Hilliard equation. For the Cahn-Hilliard part a smooth free energy density and a constant, positive mobility is assumed. Using the {{L}∞} -truncation method we prove existence of weak solutions for a power-law exponent p>\\frac{2d+2}{d+2} , d  =  2, 3.

  14. Theory of non-Newtonian viscosity of red blood cell suspension: effect of red cell deformation.

    PubMed

    Murata, T

    1983-01-01

    The effects of the deformation of red blood cells on non-Newtonian viscosity of a concentrated red cell suspension are investigated theoretically. To simplify the problem an elastic spherical shell filled with an incompressible Newtonian fluid is considered as a model of a normal red cell. The equation of the surface of the shell suspended in a steady simple shear flow is calculated on the assumption that the deformation from a spherical shape is very small. The relative viscosity of a concentrated suspension of such particles is obtained based on the "free surface cell" method proposed by Happel. It is shown that the relative viscosity decreases as the shear rate increases.

  15. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid

    NASA Astrophysics Data System (ADS)

    Akbari, Omid Ali; Toghraie, Davood; Karimipour, Arash; Marzban, Ali; Ahmadi, Gholam Reza

    2017-02-01

    In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.

  16. Non-Newtonian Study of Blood Flow in an Abdominal Aortic Aneurysm with a Stabilized Finite Element Method

    NASA Astrophysics Data System (ADS)

    Marrero, Victor; Sahni, Onkar; Jansen, Kenneth; Tichy, John; Taylor, Charles

    2008-11-01

    In recent years the methods of computational fluid dynamics (CFD) have been applied to the human cardiovascular system to better understand the relationship between arterial blood flow and the disease process, for example in an abdominal aortic aneurysm (AAA). Obviously, the technical challenges associated with such modeling are formidable. Among the many problems to be addressed, in this paper we add yet another complication -- the known non-Newtonian nature of blood. In this preliminary study, we used a patient-based AAA model with rigid walls. The pulsatile nature of the flow and the RCR outflow boundary condition are considered. We use the Carreau-Yasuda model to describe the non-Newtonian viscosity variation. Preliminary results for 200K, 2M, and 8M elements mesh are presented for the Newtonian and non-Newtonian cases. The broad fundamental issue we wish to eventually resolve is whether or not non-Newtonian effects in blood flow are sufficiently strong in unhealthy vessels that they must be addressed in meaningful simulations. Interesting differences during the flow cycle shed light on the problem, but further research is needed.

  17. Turbulence modeling based on non-Newtonian constitutive laws

    NASA Astrophysics Data System (ADS)

    Mompean, G.; Qiu, X.; Schmitt, F. G.; Thompson, R.

    2011-12-01

    This work revisits the analogy between Newtonian turbulence and non-Newtonian laminar flows. Several direct numerical simulations (DNS) data of a plane channel flow, for a large range of Reynolds numbers (180 <= Reτ <= 2000) were explored. The profiles of mean velocity and second moment quantities were used to extract viscometric functions in the non-Newtonian modeling framework. The Reynolds stress tensor is expressed in terms of a set of basis kinematic tensors based on a projection of a nonlinear framework. The coefficients of the model are given as functions of the intensity of the mean strain tensor. The apparent eddy turbulent viscosity, the first and second normal stress differences are presented as function of the shear rate. One of the advantages of the new algebraic nonlinear power law constitutive equation derived in the paper, is that is only dependent on the mean velocity gradient and can be integrated up to the wall.

  18. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs.

    PubMed

    Hippelheuser, James E; Lauric, Alexandra; Cohen, Alex D; Malek, Adel M

    2014-11-28

    Most computational fluid dynamic (CFD) simulations of aneurysm hemodynamics assume constant (Newtonian) viscosity, even though blood demonstrates shear-thinning (non-Newtonian) behavior. We sought to evaluate the effect of this simplifying assumption on hemodynamic forces within cerebral aneurysms, especially in regions of low wall shear stress, which are associated with rupture. CFD analysis was performed for both viscosity models using 3D rotational angiography volumes obtained for 26 sidewall aneurysms (12 with blebs, 12 ruptured), and parametric models incorporating blebs at different locations (inflow/outflow zone). Mean and lowest 5% values of time averaged wall shear stress (TAWSS) computed over the dome were compared using Wilcoxon rank-sum test. Newtonian modeling not only resulted in higher aneurysmal TAWSS, specifically in areas of low flow and blebs, but also showed no difference between aneurysms with or without blebs. In contrast, for non-Newtonian analysis, bleb-bearing aneurysms showed significantly lower 5% TAWSS compared to those without (p=0.005), despite no significant difference in mean dome TAWSS (p=0.32). Non-Newtonian modeling also accentuated the differences in dome TAWSS between ruptured and unruptured aneurysms (p<0.001). Parametric models further confirmed that realistic non-Newtonian viscosity resulted in lower bleb TAWSS and higher focal viscosity, especially when located in the outflow zone. The results show that adopting shear-thinning non-Newtonian blood viscosity in CFD simulations of intracranial aneurysms uncovered hemodynamic differences induced by bleb presence on aneurysmal surfaces, and significantly improved discriminant statistics used in risk stratification. These findings underline the possible implications of using a realistic model of blood viscosity in predictive computational hemodynamics.

  19. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: Non-Newtonian effects.

    PubMed

    Sharifi, Alireza; Niazmand, Hamid

    2015-10-01

    Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model.

  20. Theory of creeping gravity currents of a non-Newtonian liquid

    SciTech Connect

    Gratton, Julio; Minotti, Fernando; Mahajan, Swadesh M.

    1999-12-01

    Recently several experiments on creeping gravity currents have been performed, using highly viscous silicone oils and putties. The interpretation of the experiments relies on the available theoretical results that were obtained by means of the lubrication approximation with the assumption of a Newtonian rheology. Since very viscous fluids are usually non-Newtonian, an extension of the theory to include non-Newtonian effects is needed. We derive the governing equations for unidirectional and axisymmetric creeping gravity currents of a non-Newtonian liquid with a power-law rheology, generalizing the usual lubrication approximation. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found that are in good agreement with experiment. We also derive solutions of the waiting-time type, as well as those describing steady flows from a constant source to a sink. General traveling-wave solutions are given, and analytic formulas for a simple case are derived. A phase plane formalism that allows the systematic derivation of self-similar solutions is introduced. The application of the Boltzmann transform is briefly discussed. All the self-similar solutions obtained here have their counterparts in Newtonian flows, as should be expected because the power-law rheology involves a single-dimensional parameter as the Newtonian constitutive relation. Thus one finds similarity solutions whenever the analogous Newtonian problem is self-similar, but now the spreading relations are rheology-dependent. In most cases this dependence is weak but leads to significant differences easily detected in experiments. The present results may also be of interest for geophysics since the lithosphere deforms according to an average power-law rheology. (c) 1999 The American

  1. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta

    PubMed Central

    Soulis, Johannes V.; Fytanidis, Dimitrios K.; Lampri, Olga P.; Giannoglou, George D.

    2016-01-01

    Background The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. Methods The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Results Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. Conclusions We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta. PMID:28197271

  2. Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel

    NASA Astrophysics Data System (ADS)

    Xiang, Hao; Chen, Bin

    2015-02-01

    The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We0.28Fr0.78 (We is the Weber number, Fr is the Froude number).

  3. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Mannheimer, R. J.; Grimley, T. A.; Park, J. T.; Morrow, T. B.

    1987-04-01

    The structure of non-Newtonian slurries in laminar, transitional, and turbulent flow regimes in pipes is studied. Experiments are conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm. Flow measurements including turbulence quantities such as Reynolds stress are taken with a two-component laser-Doppler velocimeter in a transparent test section with a transparent model slurry. Two transparent model slurries have been developed with non-Newtonian rheological properties. Silica gel particles with diameters on the order of one micron are suspended in two different hydrocarbon liquid mixtures with viscosities of 1.19 and 6.39 cS. In rheological measurements with a concentric cylinder viscometer, slurries from both liquid mixtures exhibited slip. From a linear regression analysis with a power-law model, slurries with the higher viscosity fluid had yield values of 80 and 30 dyn/sq cm for silica gel concentrations of 5.6 and 4.0% by weight, respectively, and the exponents were 0.584 and 0.763. The measured refractive index for the transparent slurries is 1.454 where the difference in refractive index between the fluid and silica gel is estimated to be less than 0.001. Bench scale tests with large diameter silica gel particles on the order of 100 microns have produced slurries with excessive turbidity. A silica gel manufactured by a different process which may form a less turbid slurry is currently under investigation.

  4. Non-Newtonian Crystal- and Bubble-Rich Lava Rheology in Compression

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Hess, K.; Cordonnier, B.; Dingwell, D. B.

    2006-12-01

    Volcanic eruption models are still hampered by the lack of multiphase magmatic rheology laws. Fortunately, the lack of sufficient rheological data for lavas bearing crystals and vesicles is now being systematically experimentally addressed. Most rheological models consider suspension rheology according to the Einstein- Roscoe equation or a modification of it. This approach does not contain a Non-Newtonian description (strain- rate dependence). Here, experiments using high-load, high-temperature uniaxial apparatus were carried out to simulate multiphase lava deformation under stresses ranging from 1 to 70 MPa. Samples from Unzen, Colima, Anak Krakatau and Bezymianny (containing 30, 50, 70 and 80 % phenocrysts, and 5, 8, 23 and 9 % vesicles, respectively) were chosen for this study. Obtained results reveal that multiphase lavas behave as pseudo-plastic fluids exhibiting an important component of shear thinning. The viscosity of all lavas decreases exponentially by ca. 1.5 log units between the strain rates of 10-6 and 10-3 s-1; point at which viscous heating and micro-cracking begin to be detected. The strong exponential dependence of the viscosity on strain rate holds the promise of yielding a Non-Newtonian rheology law and consequentially challenges the completeness of the Einstein-Roscoe equation to treat suspension rheology in volcanic eruption models.

  5. Rosie Phillips Bingham: On Becoming

    ERIC Educational Resources Information Center

    Neville, Helen A.

    2012-01-01

    Rosie Phillips Bingham has contributed to the field of counseling psychology and the broader discipline of psychology in myriad ways. She is nationally recognized for her innovation, leadership skills, and fundraising capabilities. She is also known for her commitment to student development and her caring mentoring approach. In this life…

  6. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis.

    PubMed

    Tian, Fang-Bao; Zhu, Luoding; Fok, Pak-Wing; Lu, Xi-Yun

    2013-09-01

    Atherosclerotic plaque can cause severe stenosis in the artery lumen. Blood flow through a substantially narrowed artery may have different flow characteristics and produce different forces acting on the plaque surface and artery wall. The disturbed flow and force fields in the lumen may have serious implications on vascular endothelial cells, smooth muscle cells, and circulating blood cells. In this work a simplified model is used to simulate a pulsatile non-Newtonian blood flow past a stenosed artery caused by atherosclerotic plaques of different severity. The focus is on a systematic parameter study of the effects of plaque size/geometry, flow Reynolds number, shear-rate dependent viscosity and flow pulsatility on the fluid wall shear stress and its gradient, fluid wall normal stress, and flow shear rate. The computational results obtained from this idealized model may shed light on the flow and force characteristics of more realistic blood flow through an atherosclerotic vessel.

  7. Gas-driven displacement of a non-Newtonian liquid in a radial Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2012-11-01

    The displacement of a non-Newtonian liquid by a less viscous fluid has applications in a number of industries such as lubricating oils, injection molding and cement placement in oil wells to name a few. A convenient geometry to study such a problem is that of the Hele-Shaw cell due to its ability to effectively reduce the flow to two dimensions when the gap spacing is much smaller than the other spatial dimensions. We will study the radial displacement of a finite drop of non-Newtonian shear-thinning and extensionally-thickening liquid by a gas at constant pressure in a Hele-Shaw cell with gap spacing O(10-100) microns. Different concentrations of a polymer in oil will be used to examine changes in the displacement rate, residual film thickness and resulting Saffman-Taylor instability as the viscoelastic time scale overtakes that of the bulk displacement.

  8. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.

    PubMed

    Bleyer, J; Coussot, P

    2014-06-01

    We study the flow, through a model two-dimensional porous medium, of Newtonian fluids, power-law fluids, and viscoplastic fluids in the laminar regime and with moderate or dominant effects of the yielding term. A numerical technique able to take properly into account yielding effects in viscoplastic flows without any regularization is used to determine the detailed flow characteristics. We show that as soon as the distance between the disks forming the porous medium is sufficiently small, the velocity field and in particular the distribution function of the velocity of these different fluids in a wide range of flow regimes are similar. Moreover, the volume fraction of fluid at rest is negligible even at low flow rate. Thus the non-Newtonian character of a fluid flowing through such a complex geometry tends to be broken. We suggest that this is due to the fact that in a flow through a channel of rapidly varying cross section, the deformation, and thus the flow field, is imposed on the fluid, a situation that is encountered almost everywhere in a porous medium. These results make it possible to deduce a general expression for Darcy's law of these fluid types and estimate the parameters appearing in this expression.

  9. Non-Newtonian Characteristics of Gochujang and Chogochujang at Different Temperatures

    PubMed Central

    Choi, Ji Eun; Lee, Jun Ho

    2017-01-01

    This study was conducted to determine the rheological properties of gochujang and chogochujang at different temperatures (25, 35, and 45°C). Rheological properties of the samples were determined using a rotational rheometer at a shear range of 1 to 40 s−1. Gochujang and chogochujang were found to be non-Newtonian fluids according to the Herschel-Bulkley model. Yield stress and consistency coefficient of gochujang at different temperatures were higher than those of chogochujang, whereas the opposite was observed for flow behavior index. Moreover, all rheological properties of gochujang and chogochujang decreased with increasing temperature. The consistency coefficient was related to temperature using an Arrhenius-type relationship. Gochujang (14.48 kJ/mol) had slightly higher activation energy than chogochujang (14.03 kJ/mol).

  10. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids

    PubMed Central

    2011-01-01

    The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples. PMID:22027018

  11. Convection in ice I with non-Newtonian rheology: Application to the icy Galilean satellites

    NASA Astrophysics Data System (ADS)

    Barr, Amy Courtright

    2004-12-01

    Observations from the Galileo spacecraft suggest that the Jovian icy satellites Europa, Ganymede, and Callisto have liquid water oceans beneath their icy surfaces. The outer ice I shells of the satellites represent a barrier between their surfaces and their oceans and serve to decouple fluid motions in their deep interiors from their surfaces. Understanding heat and mass transport by convection within the outer ice I shells of the satellites is crucial to understanding their geophysical and astrobiological evolution. Recent laboratory experiments suggest that deformation in ice I is accommodated by several different creep mechanisms. Newtonian deformation creep accommodates strain in warm ice with small grain sizes. However, deformation in ice with larger grain sizes is controlled by grain-size-sensitive and dislocation creep, which are non-Newtonian. Previous studies of convection have not considered this complex rheological behavior. This thesis revisits basic geophysical questions regarding heat and mass transport in the ice I shells of the satellites using a composite Newtonian/ non-Newtonian rheology for ice I. The composite rheology is implemented in a numerical convection model developed for Earth's mantle to study the behavior of an ice I shell during the onset of convection and in the stagnant lid convection regime. The conditions required to trigger convection in a conductive ice I shell depend on the grain size of the ice, and the amplitude and wavelength of temperature perturbation issued to the ice shell. If convection occurs, the efficiency of heat and mass transport is dependent on the ice grain size as well. If convection occurs, fluid motions in the ice shells enhance the nutrient flux delivered to their oceans, and coupled with resurfacing events, may provide a sustainable biogeochemical cycle. The results of this thesis suggest that evolution of ice grain size in the satellites and the details of how tidal dissipation perturbs the ice shell to

  12. Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model

    NASA Astrophysics Data System (ADS)

    van Wyk, Stevin; Prahl Wittberg, Lisa; Bulusu, Kartik V.; Fuchs, Laszlo; Plesniak, Michael W.

    2015-07-01

    Complex, unsteady fluid flow phenomena in the arteries arise due to the pulsations of the heart that intermittently pumps the blood to the extremities of the body. The many different flow waveform variations observed throughout the arterial network are a result of this process and a function of the vessel properties. Large scale secondary flow structures are generated throughout the aortic arch and larger branches of the arteries. An experimental 180° curved artery test section with physiological inflow conditions was used to validate the computational methods implemented in this study. Good agreement of the secondary flow structures is obtained between experimental and numerical studies of a Newtonian blood-analog fluid under steady-state and pulsatile, carotid artery flow rate waveforms. Multiple vortical structures, some of opposite rotational sense to Dean vortices, similar to Lyne-type vortices, were observed to form during the systolic portion of the pulse. Computational tools were used to assess the effect of blood-analog fluid rheology (i.e., Newtonian versus non-Newtonian). It is demonstrated that non-Newtonian, blood-analog fluid rheology results in shear layer instabilities that alter the formation of vortical structures during the systolic deceleration and onwards during diastole. Additional vortices not observed in the Newtonian cases appear at the inside and outside of the bend at various times during the pulsation. The influence of blood-analog shear-thinning viscosity decreases mean pressure losses in contrast to the Newtonian blood analog fluid.

  13. Electro-hydrodynamic instability in a microchannel between a Newtonian and a non-Newtonian liquid

    NASA Astrophysics Data System (ADS)

    Ersoy, Gülsüm; Kerem Uguz, A.

    2012-06-01

    We perform linear stability analysis of the interface between a Newtonian fluid and a non-Newtonian fluid, assumed to obey the Upper Convective Maxwell model, flowing in a channel due to a pressure gradient subject to an electric field applied normal to the interface. The fluids are assumed to be immiscible, incompressible and leaky dielectric. A detailed parametric study of the effects of the system parameters, such as Weissenberg number, Reynolds number, applied potential and physical and electrical properties of the fluids, is conducted. It is found that increasing the applied voltage could be stabilizing or destabilizing depending on the electrical properties of the liquids, and increasing the Weissenberg number decreases the maximum growth rate without changing the corresponding wavenumber and increases the critical wavenumber. The effect of the height ratio of the liquids is analyzed through neutral curves for given electric numbers, i.e. applied potential. The critical wavenumber decreases with height ratio and converges to a value for all the electric numbers considered.

  14. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  15. Dynamics of a fluid flow on Mars: lava or mud?

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Mouginis-Mark, P. J.

    2013-12-01

    We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar

  16. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.

    PubMed

    Amiri Delouei, A; Nazari, M; Kayhani, M H; Succi, S

    2014-05-01

    In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.

  17. Analytical and numerical modelling of Newtonian and non-Newtonian liquid in a rotational cross-flow MBR.

    PubMed

    Bentzen, T R; Ratkovich, N; Madsen, S; Jensen, J C; Bak, S N; Rasmussen, M R

    2012-01-01

    Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross-flow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of, for example, impellers. Validation of the CFD (computational fluid dynamics) model was made against laser Doppler anemometry (LDA) tangential velocity measurements (error less than 8%) using water as a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated sludge (AS) is a non-Newtonian liquid, for which the CFD model was modified incorporating the non-Newtonian behaviour of AS. Shear stress and area-weighted average shear stress relationships were made giving error less that 8% compared with the CFD results. An empirical relationship for the area-weighted average shear stress was developed for water and AS as a function of the angular velocity and the total suspended solids concentration. These relationships can be linked to the energy consumption of this type of systems.

  18. Effects of non-Newtonian gravity on the properties of strange stars

    NASA Astrophysics Data System (ADS)

    Lu, Zhen-Yan; Peng, Guang-Xiong; Zhou, Kai

    2017-02-01

    The properties of strange star matter are studied in the equivparticle model with inclusion of non-Newtonian gravity. It is found that the inclusion of non-Newtonian gravity makes the equation of state stiffer if Witten’s conjecture is true. Correspondingly, the maximum mass of strange stars becomes as large as two times the solar mass, and the maximum radius also becomes bigger. The coupling to boson mass ratio has been constrained within the stability range of strange quark matter.

  19. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.

    PubMed

    Caballero, A D; Laín, S

    2015-08-01

    Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consistent WSS distribution pattern. The WSS magnitude, however, is influenced by the model used. WSS is found to be the lowest in the vicinity of the three arch branches and along the distal walls of the branches themselves. In this region, the local non-Newtonian importance factor and the blood viscosity are elevated, and the shear rate is low. The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall. Furthermore, the capabilities of the applied non-Newtonian models appeared at low-flow velocities. It is concluded that, while the non-Newtonian power-law model approximates the blood viscosity and WSS calculations in a more satisfactory way than the other non-Newtonian models at low shear rates, a cautious approach is given in the use of this blood viscosity model. Finally, some preliminary transient results are presented.

  20. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.

    PubMed

    Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F

    2011-07-01

    A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

  1. Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations

    NASA Astrophysics Data System (ADS)

    Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy

    2014-02-01

    The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.

  2. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.

    PubMed

    Hatami, M; Hatami, J; Ganji, D D

    2014-02-01

    In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect.

  3. Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube

    PubMed Central

    Mondal, Sourav; De, Sirshendu

    2013-01-01

    Mass transport of a neutral solute for a power law fluid in a porous microtube under electro-osmotic flow regime is characterized in this study. Combined electro-osmotic and pressure driven flow is conducted herein. An analytical solution of concentration profile within mass transfer boundary layer is derived from the first principle. The solute transport through the porous wall is also coupled with the electro-osmotic flow to predict the solute concentration in the permeate stream. The effects of non-Newtonian rheology and the operating conditions on the permeation rate and permeate solute concentration are analyzed in detail. Both cases of assisting (electro-osmotic and poiseulle flow are in same direction) and opposing flow (the individual flows are in opposite direction) cases are taken care of. Enhancement of Sherwood due to electro-osmotic flow for a non-porous conduit is also quantified. Effects if non-Newtonian rheology on Sherwood number enhancement are observed. PMID:24404046

  4. Lie group analysis of flow and heat transfer of non-Newtonian nanofluid over a stretching surface with convective boundary condition

    NASA Astrophysics Data System (ADS)

    Afify, Ahmed A.; El-Aziz, Mohamed Abd

    2017-02-01

    The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge-Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.

  5. Non-Newtonian effects of blood on LDL transport inside the arterial lumen and across multi-layered arterial wall with and without stenosis

    NASA Astrophysics Data System (ADS)

    Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza; Mesri, Yaser

    2016-06-01

    Blood non-Newtonian behavior on low-density lipoproteins (LDL) accumulation is analyzed numerically, while fluid-multilayered arteries are adopted for nonstenotic and 30%-60% symmetrical stenosed models. Present model considers non-Newtonian effects inside the lumen and within arterial layers simultaneously, which has not been examined in previous studies. Navier-Stokes equations are solved along with the mass transport convection-diffusion equations and Darcy’s model for species transport inside the luminal flow and across wall layers, respectively. Carreau model for the luminal flow and the modified Darcy equation for the power-law fluid within arterial layers are employed to model blood rheological characteristics, appropriately. Results indicate that in large arteries with relatively high Reynolds number Newtonian model estimates LDL concentration patterns well enough, however, this model seriously incompetent for regions with low WSS. Moreover, Newtonian model for plasma underestimates LDL concentration especially on luminal surface and across arterial wall. Therefore, applying non-Newtonian model seems essential for reaching to a more accurate estimation of LDL distribution in the artery. Finally, blood flow inside constricted arteries demonstrates that LDL concentration patterns along the stenoses inside the luminal flow and across arterial layers are strongly influenced as compared to the nonstenotic arteries. Additionally, among four stenosis severity grades, 40% stenosis is prone to more LDL accumulation along the post-stenotic regions.

  6. Novel measurement of blood velocity profile using translating-stage optical method and theoretical modeling based on non-Newtonian viscosity model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Beom; Lim, Jaeho; Hong, Hyobong; Kresh, J. Yasha; Wootton, David M.

    2015-07-01

    Detailed knowledge of the blood velocity distribution over the cross-sectional area of a microvessel is important for several reasons: (1) Information about the flow field velocity gradients can suggest an adequate description of blood flow. (2) Transport of blood components is determined by the velocity profiles and the concentration of the cells over the cross-sectional area. (3) The velocity profile is required to investigate volume flow rate as well as wall shear rate and shear stress which are important parameters in describing the interaction between blood cells and the vessel wall. The present study shows the accurate measurement of non-Newtonian blood velocity profiles at different shear rates in a microchannel using a novel translating-stage optical method. Newtonian fluid velocity profile has been well known to be a parabola, but blood is a non-Newtonian fluid which has a plug flow region at the centerline due to yield shear stress and has different viscosities depending on shear rates. The experimental results were compared at the same flow conditions with the theoretical flow equations derived from Casson non-Newtonian viscosity model in a rectangular capillary tube. And accurate wall shear rate and shear stress were estimated for different flow rates based on these velocity profiles. Also the velocity profiles were modeled and compared with parabolic profiles, concluding that the wall shear rates were at least 1.46-3.94 times higher than parabolic distribution for the same volume flow rate.

  7. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.

    PubMed

    Kabinejadian, Foad; Ghista, Dhanjoo N

    2012-09-01

    We have recently developed a novel design for coronary arterial bypass surgical grafting, consisting of coupled sequential side-to-side and end-to-side anastomoses. This design has been shown to have beneficial blood flow patterns and wall shear stress distributions which may improve the patency of the CABG, as compared to the conventional end-to-side anastomosis. In our preliminary computational simulation of blood flow of this coupled sequential anastomoses design, the graft and the artery were adopted to be rigid vessels and the blood was assumed to be a Newtonian fluid. Therefore, the present study has been carried out in order to (i) investigate the effects of wall compliance and non-Newtonian rheology on the local flow field and hemodynamic parameters distribution, and (ii) verify the advantages of the CABG coupled sequential anastomoses design over the conventional end-to-side configuration in a more realistic bio-mechanical condition. For this purpose, a two-way fluid-structure interaction analysis has been carried out. A finite volume method is applied to solve the three-dimensional, time-dependent, laminar flow of the incompressible, non-Newtonian fluid; the vessel wall is modeled as a linearly elastic, geometrically non-linear shell structure. In an iteratively coupled approach the transient shell equations and the governing fluid equations are solved numerically. The simulation results indicate a diameter variation ratio of up to 4% and 5% in the graft and the coronary artery, respectively. The velocity patterns and qualitative distribution of wall shear stress parameters in the distensible model do not change significantly compared to the rigid-wall model, despite quite large side-wall deformations in the anastomotic regions. However, less flow separation and reversed flow is observed in the distensible models. The wall compliance reduces the time-averaged wall shear stress up to 32% (on the heel of the conventional end-to-side model) and somewhat

  8. Non-Newtonian rheology of bubble-bearing magmas: effects on conduit dynamics.

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; Papale, Paolo; Montagna, Chiara

    2015-04-01

    Non-Newtonian rheology typically arises in magmas from the presence of a dispersed phase. In particular bubbles can reduce or increase the relative viscosity, depending on size and strain regime (i.e., capillary number), for example large bubbles, as well as low strain, reduce the apparent viscosity. In a Non-Newtonian regime it is not possible to define a strain-rate-independent viscosity and the velocity profile is complex. In this work we extended the 1D, steady, isothermal, multiphase non-homogeneous magma ascent model of Papale (2001) to 1.5D to include the Non-Newtonian effect of a bubble-bearing magma. The model has been tested with a basaltic test case. In this way we were able to calculate depth-dependent Non-newtonian velocity profiles across the conduit radius along with shear strain-rate and viscosity distributions. Moreover, the model could quantify the effects of the Non-Newtonian rheology on conduit flow dynamics, in terms of flow variables (e.g. velocity, pressure). P. Papale (2001). Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. JGR, 106, 11043-11065.

  9. Determination of the Köthe-Toeplitz Duals over the Non-Newtonian Complex Field

    PubMed Central

    Kadak, Uğur

    2014-01-01

    The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983), Grossman and Katz (1978), and Grossman (1979). Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Köthe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Köthe space and solidness. PMID:25028678

  10. Determination of the Köthe-Toeplitz duals over the non-Newtonian complex field.

    PubMed

    Kadak, Uğur

    2014-01-01

    The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983), Grossman and Katz (1978), and Grossman (1979). Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Köthe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Köthe space and solidness.

  11. The Extensional Rheology of Non-Newtonian Materials

    NASA Technical Reports Server (NTRS)

    Spiegelberg, Stephen H.; McKinley, Gareth H.

    1996-01-01

    The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.

  12. Quantum signatures of non-Newtonian orbits in the asymmetric infinite square well.

    PubMed

    Timberlake, Todd K; Nelson, Molly M

    2009-03-01

    An infinite square well with a rectangular step is one of the simplest systems to exhibit non-Newtonian ray-splitting periodic orbits in the classical limit. We examine eigenvalue spacings in the quantum version of this system. The sequence of spacings shows deviations from uniformity at energies just above the step height and distinct resonance features are visible at certain energies. Semiclassical analysis shows that these features are directly related to the presence of non-Newtonian orbits in the classical system. In addition, the resonance features are shown to produce revivals in suitably constructed wave packets peaked at the resonance energy.

  13. Front microrheology of the non-Newtonian behaviour of blood: scaling theory of erythrocyte aggregation by aging.

    PubMed

    Trejo-Soto, C; Costa-Miracle, E; Rodriguez-Villarreal, I; Cid, J; Castro, M; Alarcon, T; Hernandez-Machado, A

    2017-04-04

    We introduce a new framework to study the non-Newtonian behaviour of fluids at the microscale based on the analysis of front advancement. We apply this methodology to study the non-linear rheology of blood in microchannels. We carry out experiments in which the non-linear viscosity of blood samples is quantified at different haematocrits and ages. Under these conditions, blood exhibits a power-law dependence on the shear rate. In order to analyse our experimental data, we put forward a scaling theory which allows us to define an adhesion scaling number. This theory yields a scaling behaviour of the viscosity expressed as a function of the adhesion capillary number. By applying this scaling theory to samples of different ages, we are able to quantify how the characteristic adhesion energy varies as time progresses. This connection between microscopic and mesoscopic properties allows us to estimate quantitatively the change in the cell-cell adhesion energies as the sample ages.

  14. Simultaneous pulsatile flow and oscillating wall of a non-Newtonian liquid

    NASA Astrophysics Data System (ADS)

    Herrera-Valencia, E. E.; Sánchez-Villavicencio, M. L.; Calderas, F.; Pérez-Camacho, M.; Medina-Torres, L.

    2016-11-01

    In this work, analytical predictions of the rectilinear flow of a non-Newtonian liquid are given. The fluid is subjected to a combined flow: A pulsatile time-dependent pressure gradient and a random longitudinal vibration at the wall acting simultaneously. The fluctuating component of the combined pressure gradient and oscillating flow is assumed to be of small amplitude and can be adequately represented by a weakly stochastic process, for which a quasi-static perturbation solution scheme is suggested, in terms of a small parameter. This flow is analyzed with the Tanner constitutive equation model with the viscosity function represented by the Ellis model. According to the coupled Tanner-Ellis model, the flow enhancement can be separated in two contributions (pulsatile and oscillating mechanisms) and the power requirement is always positive and can be interpreted as the sum of a pulsatile, oscillating, and the coupled systems respectively. Both expressions depend on the amplitude of the oscillations, the perturbation parameter, the exponent of the Ellis model (associated to the shear thinning or thickening mechanisms), and the Reynolds and Deborah numbers. At small wall stress values, the flow enhancement is dominated by the axial wall oscillations whereas at high wall stress values, the system is governed by the pulsating noise perturbation. The flow transition is obtained for a critical shear stress which is a function of the Reynolds number, dimensionless frequency and the ratio of the two amplitudes associated with the pulsating and oscillating perturbations. In addition, the flow enhancement is compared with analytical and numerical predictions of the Reiner-Phillipoff and Carreau models. Finally, the flow enhancement and power requirement are predicted using biological rheometric data of blood with low cholesterol content.

  15. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.

    PubMed

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-04-01

    Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate.

  16. The stretching of an electrified non-Newtonian jet: A model for electrospinning

    NASA Astrophysics Data System (ADS)

    Feng, J. J.

    2002-11-01

    Electrospinning uses an external electrostatic field to accelerate and stretch a charged polymer jet, and may produce ultrafine "nanofibers." Many polymers have been successfully electrospun in the laboratory. Recently Hohman [et al.] [Phys. Fluids, 13, 2201 (2001)] proposed an electrohydrodynamic model for electrospinning Newtonian jets. A problem arises, however, with the boundary condition at the nozzle. Unless the initial surface charge density is zero or very small, the jet bulges out upon exiting the nozzle in a "ballooning instability," which never occurs in reality. In this paper, we will first describe a slightly different Newtonian model that avoids the instability. Well-behaved solutions are produced that are insensitive to the initial charge density, except inside a tiny "boundary layer" at the nozzle. Then a non-Newtonian viscosity function is introduced into the model and the effects of extension thinning and thickening are explored. Results show two distinct regimes of stretching. For a "mildly stretched" jet, the axial tensile force in the fiber resists stretching, so that extension thinning promotes stretching and thickening hinders stretching. For a "severely stretched" jet, on the other hand, the tensile force enhances stretching at the beginning of the jet and suppresses it farther downstream. The effects of extensional viscosity then depend on the competition between the upstream and downstream dynamics. Finally, we use an empirical correlation to simulate strain hardening typical of polymeric liquids. This generally steepens the axial gradient of the tensile stress. Stretching is more pronounced at the beginning but weakens later, and ultimately thicker fibers are produced because of strain hardening.

  17. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow.

    PubMed

    Chamorro, Moisés G; Reyes, Francisco Vega; Garzó, Vicente

    2015-11-01

    We study in this work a steady shearing laminar flow with null heat flux (usually called "uniform shear flow") in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved by means of three different but complementary routes, two of them being theoretical (Grad's moment method applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike in previous studies on granular sheared suspensions, the collisional moment associated with the momentum transfer is determined in Grad's solution by including all the quadratic terms in the stress tensor. This theoretical enhancement allows for the detection and evaluation of the normal stress differences in the plane normal to the laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments of the velocity distribution function. Comparison between our theoretical and numerical results shows in general a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the distribution function), and the velocity distribution of the kinetic model for quite strong inelasticity and not too large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of our analytical results that allows us to describe in detail the flow dynamics of the granular sheared suspension.

  18. Non-Newtonian Viscosity of Escherichia coli Suspensions

    NASA Astrophysics Data System (ADS)

    Gachelin, Jérémie; Miño, Gastón; Berthet, Hélène; Lindner, Anke; Rousselet, Annie; Clément, Éric

    2013-06-01

    The viscosity of an active suspension of E. coli bacteria is determined experimentally as a function of the shear rate using a Y-shaped microfluidic channel. From the relative suspension viscosity, we identify rheological thickening and thinning regimes as well as situations at low shear rate where the viscosity of the bacteria suspension can be lower than the viscosity of the suspending fluid. In addition, bacteria concentration and velocity profiles in the bulk are directly measured in the microchannel.

  19. On line and double integrals in the non-Newtonian sense

    NASA Astrophysics Data System (ADS)

    ćakmak, Ahmet Faruk; Başar, Feyzi

    2014-08-01

    This paper is devoted to line and double integrals in the sense of non-Newtonian calculus (*-calculus). Moreover, in the sense of *-calculus, the fundamental theorem of calculus for line integrals and double integrals are stated and proved, and some applications are presented.

  20. Generalized solution for 1-D non-Newtonian flow in a porous domain due to an instantaneous mass injection

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Ciriello, V.

    2011-12-01

    Non-Newtonian fluid flow in porous media is of considerable interest in hydrology, chemical and petroleum engineering, and biofluid mechanics. We consider an infinite porous domain of plane (d=1), cylindrical (d=2) or semi-spherical geometry (d=3), having uniform permeability k and porosity Φ, initially at uniform pressure and saturated by a weakly compressible non-Newtonian fluid, and analyze the dynamics of the pressure variation generated within the domain by an instantaneous mass injection m0 in its origin. The fluid is described by a rheological power-law model of given consistency index H and flow behavior index n; the flow law is a modified Darcy's law depending on H, Φ, n. Coupling flow law and mass balance equations yields the nonlinear partial differential equation governing the pressure field; an analytical solution is derived in space r and time t as a function of a self-similar variable η=r/tβ(n). We revisit and expand the work in previous papers by providing a dimensionless general formulation and solution to the problem for d=1,2,3. When a shear-thinning fluid (n<1) is considered, the analytical solution exhibits traveling wave characteristics, in variance with Newtonian fluids; the front velocity is proportional to t(n-2)/2 in plane geometry, t(2n-3)/(3-n) in cylindrical geometry, and t(3n-4)/(4-2n) in semi-spherical geometry. The front position is a markedly increasing function of n and is inversely dependent on d; the pressure front advances at a slower rate for larger values of compressibility, higher injected mass and lower porosity. When pressure is considered, it is seen that an increase in d from 1 to 3 brings about an order of magnitude reduction. An increase in compressibility implies a significant decrease in pressure, especially at early times. To reflect the uncertainty inherent in values of the problem parameters, we then consider selected properties of fluid (flow behavior index n) and porous domain (permeability k, porosity

  1. Numerical simulation of non-Newtonian free shear flows

    NASA Technical Reports Server (NTRS)

    Homsy, G. M.; Azaiez, J.

    1993-01-01

    Free shear flows, like those of mixing layers, are encountered in aerodynamics, in the atmosphere, and in the ocean as well as in many industrial applications such as flow reactors or combustion chambers. It is, therefore, crucial to understand the mechanisms governing the process of transition to turbulence in order to predict and control the evolution of the flow. Delaying transition to turbulence as far downstream as possible allows a gain in energy expenditure while accelerating the transition can be of interest in processes where high mixing is desired. Various methods, including the use of polymer additives, can be effective in controlling fluid flows. The drag reduction obtained by the addition of small amounts of high polymers has been an active area of research for the last three decades. It is now widely believed that polymer additives can affect the stability of a large variety of flows and that dilute solutions of these polymers have been shown to produce drag reductions of over 80 percent in internal flows and over 60 percent in external flows under a wide range of conditions. The major thrust of this work is to study the effects of polymer additives on the stability of the incompressible mixing layer through large scale numerical simulations. In particular, we focus on the two dimensional flow and examine how the presence of viscoelasticity may affect the typical structures of the flow, namely roll-up and pairing of vortices.

  2. Newtonian to non-Newtonian flow transition in lung surfactants

    NASA Astrophysics Data System (ADS)

    Sadoughi, Amir; Hirsa, Amir; Lopez, Juan

    2010-11-01

    The lining of normal lungs is covered by surfactants, because otherwise the surface tension of the aqueous layer would be too large to allow breathing. A lack of functioning surfactants can lead to respiratory distress syndrome, a potentially fatal condition in both premature infants and adults, and a major cause of death in the US and world-wide. We use a home-built Brewster angle microscope on an optically accessible deep channel viscometer to simultaneously observe the mesoscale structures of DPPC, the primary constituent of lung surfactant, on water surface and measure the interfacial velocity field. The measured interfacial velocity is compared to Navier-Stokes computations with the Boussinesq-Scriven surface model. Results show that DPPC monolayer behaves i) purely elastically at low surface pressures on water, ii) viscoelastically at modest surface pressures, exhibiting non-zero surface shear viscosity that is independent of the shear rate and flow inertia, and iii) at surface pressures approaching film collapse, DPPC loses its fluid characteristics, and a Newtonian surface model no longer captures its hydrodynamics.

  3. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    SciTech Connect

    Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.

    2000-06-01

    Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation.

  4. Velocity and shear rate estimates of some non-Newtonian oscillatory flows in tubes

    NASA Astrophysics Data System (ADS)

    Kutev, N.; Tabakova, S.; Radev, S.

    2016-10-01

    The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.

  5. Supersoft symmetry energy encountering non-Newtonian gravity in neutron stars.

    PubMed

    Wen, De-Hua; Li, Bao-An; Chen, Lie-Wen

    2009-11-20

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  6. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    SciTech Connect

    Wen Dehua; Li Baoan; Chen Liewen

    2009-11-20

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  7. Numerical Experiments in Complex Hæmodynamic Flows. Non-Newtonian Effects

    NASA Astrophysics Data System (ADS)

    Basombrío, Fernando G.; Dari, Enzo A.; Buscaglia, Gustavo C.; Feijóo, Raúl A.

    Numerical experiments for non-trivial flows, close to realistic situations in hæmodynamics, are described and interpreted. Two geometries have been selected: an axisymmetric corrugated tube (with periodic boundary conditions) and a 3D bifurcation with an obstructed end (anastomosis). Results concern sensitivity of errors associated to the time-step size and mesh refinement, but essentially consist of the quantitative estimation of non-Newtonian effects based on Casson's rheological model, treated in retarded form. The time-step lag of such effects is the main reason for evaluating the sensitivity of errors. Due to the high computational cost characterizing the problems to be faced, we expect that the present results will be useful when real geometries should be modeled. The main conclusions are that non-Newtonian effects may be relevant (especially for secondary flows) and that, in most cases, for the same level of errors the use of Casson's law does not generate excessive additional computational costs. Thus, within this strategy, the user can accurately solve the problem using this rheological model without having to worry if the non-Newtonian effects are important or not.

  8. Pulsatile non-Newtonian haemodynamics in a 3D bifurcating abdominal aortic aneurysm model.

    PubMed

    Ma, J; Turan, A

    2011-08-01

    Numerical prediction of non-Newtonian blood flow in a 3D abdominal aortic aneurysm bifurcating model is carried out. The non-Newtonian Carreau model is used to characterise the shear thinning behaviour of the human blood. A physical inlet velocity waveform incorporating a radial velocity distribution reasonably representative of a practical case configuration is employed. Case studies subject to both equal and unequal outlet pressures at iliac bifurcations are presented to display convincingly the downstream pressure influences on the flow behaviour within the aneurysm. Simulations indicate that the non-Newtonian aspects of the blood cannot at all be neglected or given a cursory treatment. The wall shear stress (WSS) is found to change significantly at both the proximal and distal ends of the aneurysm. At the peak systole, the WSS is peak around the bifurcation point, whereas the WSS becomes zero in the bifurcation point. Differential downstream pressure fields display significant effects regarding the flow evolution in the iliac arteries, whereas little or no effects are observed directly on the flow details in the aneurysm.

  9. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms.

    PubMed

    Khan, M O; Steinman, D A; Valen-Sendstad, K

    2016-10-01

    Computational fluid dynamics (CFD) shows promise for informing treatment planning and rupture risk assessment for intracranial aneurysms. Much attention has been paid to the impact on predicted hemodynamics of various modelling assumptions and uncertainties, including the need for modelling the non-Newtonian, shear-thinning rheology of blood, with equivocal results. Our study clarifies this issue by contextualizing the impact of rheology model against the recently demonstrated impact of CFD solution strategy on the prediction of aneurysm flow instabilities. Three aneurysm cases were considered, spanning a range of stable to unstable flows. Simulations were performed using a high-resolution/accuracy solution strategy with Newtonian and modified-Cross rheology models and compared against results from a so-called normal-resolution strategy. Time-averaged and instantaneous wall shear stress (WSS) distributions, as well as frequency content of flow instabilities and dome-averaged WSS metrics, were minimally affected by the rheology model, whereas numerical solution strategy had a demonstrably more marked impact when the rheology model was fixed. We show that point-wise normalization of non-Newtonian by Newtonian WSS values tended to artificially amplify small differences in WSS of questionable physiological relevance in already-low WSS regions, which might help to explain the disparity of opinions in the aneurysm CFD literature regarding the impact of non-Newtonian rheology. Toward the goal of more patient-specific aneurysm CFD, we conclude that attention seems better spent on solution strategy and other likely "first-order" effects (eg, lumen segmentation and choice of flow rates), as opposed to "second-order" effects such as rheology.

  10. Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth's Gravitational Field.

    PubMed

    Nesvizhevsky, V V; Protasov, K V

    2005-01-01

    An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.

  11. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.

    PubMed

    Soulis, Johannes V; Giannoglou, George D; Chatzizisis, Yiannis S; Seralidou, Kypriani V; Parcharidis, George E; Louridas, George E

    2008-01-01

    The capabilities and limitations of various molecular viscosity models, in the left coronary arterial tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, wall shear stress (WSS) and wall shear stress gradient (WSSG). The vessel geometry was acquired using geometrically correct 3D intravascular ultrasound (3D IVUS). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. The WSS distribution yielded a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS and low WSSG values occurred at the outer walls of the major bifurcation in proximal LCA regions. The Newtonian blood flow was found to be a good approximation at mid- and high-strain rates. The non-Newtonian Power Law, Generalized Power Law, Carreau and Casson and Modified Cross blood viscosity models gave comparable molecular viscosity, WSS and WSSG values. The Power Law and Walburn-Schneck models over-estimated the non-Newtonian global importance factor I(G) and under-estimated the area averaged WSS and WSSG values. The non-Newtonian Power Law and the Generalized Power Law blood viscosity models were found to approximate the molecular viscosity and WSS calculations in a more satisfactory way.

  12. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    SciTech Connect

    Poloski, Adam P.; Adkins, Harold E.; Abrefah, John; Casella, Andrew M.; Hohimer, Ryan E.; Nigl, Franz; Minette, Michael J.; Toth, James J.; Tingey, Joel M.; Yokuda, Satoru T.

    2009-03-01

    correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.

  13. Homogenization of an incompressible non-Newtonian flow through a thin porous medium

    NASA Astrophysics Data System (ADS)

    Anguiano, María; Suárez-Grau, Francisco Javier

    2017-04-01

    In this paper, we consider a non-Newtonian flow in a thin porous medium Ω _{ɛ} of thickness ɛ which is perforated by periodically solid cylinders of size a_{ɛ}. The flow is described by the 3D incompressible Stokes system with a nonlinear viscosity, being a power of the shear rate (power law) of flow index 1

  14. Process averaging in a granular medium with non-Newtonian interlayers

    NASA Astrophysics Data System (ADS)

    Karakin, A. V.; Shklover, V. E.

    1992-08-01

    The paper is concerned with the problem of process averaging in three-component media consisting of solid grains, a non-Newtonian viscously deformable material filling the gaps between the grains, and a nonviscous liquid or a gas within the pores. The basic equations are derived in general form for an arbitrary rheological law and then further specified for a power-law rheological behavior. Macrorelations are obtained analytically and in quadratures for shear and tension/compression. A full solution is obtained for a specific type of microstructure. Some particular cases are examined.

  15. Matrix transformations between certain sequence spaces over the non-Newtonian complex field.

    PubMed

    Kadak, Uğur; Efe, Hakan

    2014-01-01

    In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix transformations in sequence spaces over the field ℂ(*) and characterize some classes of infinite matrices with respect to the non-Newtonian calculus. Also we give the necessary and sufficient conditions on an infinite matrix transforming one of the classical sets over ℂ(*) to another one. Furthermore, the concept for sequence-to-sequence and series-to-series methods of summability is given with some illustrated examples.

  16. Postglacial rebound with a non-Newtonian upper mantle and a Newtonian lower mantle rheology

    NASA Technical Reports Server (NTRS)

    Gasperini, Paolo; Yuen, David A.; Sabadini, Roberto

    1992-01-01

    A composite rheology is employed consisting of both linear and nonlinear creep mechanisms which are connected by a 'transition' stress. Background stress due to geodynamical processes is included. For models with a non-Newtonian upper-mantle overlying a Newtonian lower-mantle, the temporal responses of the displacements can reproduce those of Newtonian models. The average effective viscosity profile under the ice-load at the end of deglaciation turns out to be the crucial factor governing mantle relaxation. This can explain why simple Newtonian rheology has been successful in fitting the uplift data over formerly glaciated regions.

  17. Non-Newtonian Convection and Compositional Buoyancy: Advances in Modeling Convection and Dome Formation on Europa

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.; Barr, A. C.

    2004-01-01

    Numerical modeling of non-Newtonian convection in ice shows that convection controlled by grain boundary sliding rheology may occur in Europa. This modeling confirms that thermal convection alone cannot produce significant dome elevations. Domes may instead be produced by diapirs initiated by thermal convection that in turn induces compositional segregation. Exclusion of impurities from warm upwellings would allow sufficient buoyancy for icy plumes to account for the observed approximately 100 m topography of domes, provided the ice shell has a small effective elastic thickness (approximately 0.2 to 0.5 km) and contains low eutectic-point impurities at the few percent level.

  18. The viscous characterization of hydroxyethyl starch (HES) plasma volume expanders in a non-Newtonian blood analog.

    PubMed

    Walker, Andrew M; Xiao, Yao; Johnston, Clifton R; Rival, David E

    2013-01-01

    Although information pertaining to the viscous characterization of HES 130/0.4 Voluven® and HES 260/0.45 Pentaspan® is available, quantification is limited to 100% concentrations. We focus here on the quantification of their viscous behavior along with HES 130/0.4 Volulyte® in a shear thinning non-Newtonian blood analog of aqueous xanthan gum and glycerol. Dynamic viscosities of multiple batches of HES fluids were measured through capillary viscometry. The viscous behavior of 100%, 25% and 12.5% concentrations were then measured through a closed flow loop across physiologically relevant flow rates. Measured viscosities were 2.57 millipascal second (mPa·s) 6.52 mPa·s and 2.48 mPa·s for HES 130/0.4 Voluven®, HES 260/0.45 and HES 130/0.4 Volulyte®, respectively. Pipe flow analysis found that all HES fluids displayed Newtonian behavior at 100% concentrations. 25% concentrations of both HES 130/0.4 fluids decreased analog viscosity 23%-29% at a flow rate of 1.0 ml/s and 16%-21% at a flow rate of 22.5 ml/s. At a flow rate of 22.5 ml/s, 25% and 12.5% concentrations of HES 260/0.45 resulted in analog viscosity changes of 3.9%-4.5%. Capillary viscosity reductions of approximately 7% and 14.5% in HES 130/0.4 Voluven® and HES 260/0.45 suggest changes in molecular composition to batches previously measured. Maintenance of analog viscosity suggests that HES 260/0.45 would be suitable as a high viscosity plasma expander in extreme hemodilution through preservation of microcirculatory function and wall shear stress (WSS).

  19. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry

    SciTech Connect

    Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin; Kobelke, Jens; Wondraczek, Lothar; Troles, Johann; Caillaud, Celine; Schmidt, Markus A.

    2015-05-18

    The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glass network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.

  20. Elastically driven surface plumes in rimming flow of a non-Newtonian fluid.

    PubMed

    Seiden, Gabriel; Steinberg, Victor

    2012-11-01

    A polymer solution partially filling a rotating horizontal drum undergoes an elastically driven instability at low Reynolds numbers. This instability manifests itself through localized plumelike bursts, perturbing the free liquid surface. Here we present an expanded experimental account regarding the dynamics of individual plumes and the statistics pertaining to the complex collective interaction between plumes, which leads to plume coagulation. We also present a detailed description of an optical technique that enables the visualization and measurement of surface perturbations in coating flows within a rotating horizontal drum.

  1. Shear History Extensional Rheology Experiment II (SHERE II) Microgravity Rheology with Non-Newtonian Polymeric Fluids

    NASA Technical Reports Server (NTRS)

    Jaishankar, Aditya; Haward, Simon; Hall, Nancy Rabel; Magee, Kevin; McKinley, Gareth

    2012-01-01

    The primary objective of SHERE II is to study the effect of torsional preshear on the subsequent extensional behavior of filled viscoelastic suspensions. Microgravity environment eliminates gravitational sagging that makes Earth-based experiments of extensional rheology challenging. Experiments may serve as an idealized model system to study the properties of lunar regolith-polymeric binder based construction materials. Filled polymeric suspensions are ubiquitous in foods, cosmetics, detergents, biomedical materials, etc.

  2. Toward Technological Application of Non-Newtonian Fluids & Complex Materials/Modeling, Simulation, & Design of Experiments

    DTIC Science & Technology

    2007-11-02

    34Therrmanechanical Equations Governing a Material with Prescribed Temperature-Dependent Density, with Applications to Nonisothernal Plane Poiseuille Flow ", D...1-0431 Materials/Modeling, Simulation , & Design of Experiments 6. AUTHORS M. Gregory Forest & Stephen E. Bechtel 7. PERFORMING ORGANIZATION NAME(S...made significant progress in each of these general areas. We produced high resolution models and codes that simulate molten fiber manufacturing

  3. Effects of Flow and Non-Newtonian Fluids on Nonspherical Cavitation Bubbles,

    DTIC Science & Technology

    1983-04-10

    which incLudes stress accumulation with fading memory was employed by Fogler and Goddard (1970. 1971), who specified a relaxation modulus (memory... Fogler and Goddard present large elastic effects, i.e. changes in the R(t) profiles, but for parameter values which minimize surface 1’ .1 23 tension...also on its appropriate time derivative in a differential model or on the pertinent past values for an Integral equation. Follow- ing Fogler and

  4. Mantle plumes - A boundary layer approach for Newtonian and non-Newtonian temperature-dependent rheologies. [modeling for island chains and oceanic aseismic ridges

    NASA Technical Reports Server (NTRS)

    Yuen, D. A.; Schubert, G.

    1976-01-01

    Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.

  5. MHD boundary-layer flow of a non-Newtonian nanofluid past a stretching sheet with a heat source/sink

    NASA Astrophysics Data System (ADS)

    Madhu, M.; Kishan, N.

    2016-09-01

    The goal of the present paper is to examine the magnetohydrodynamic effects on the boundary layer flow of the Jeffrey fluid model for a non-Newtonian nanofluid past a stretching sheet with considering the effects of a heat source/sink. The governing partial differential equations are reduced to a set of coupled nonlinear ordinary differential equations by using suitable similarity transformations. These equations are then solved by the variational finite element method. The profiles of the velocity, temperature, and nanoparticle volume fraction are presented graphically, and the values of the Nusselt and Sherwood numbers are tabulated. The present results are compared with previously published works and are found to be in good agreement with them.

  6. Test of non-Newtonian gravitational forces at micrometer range with two-dimensional force mapping

    NASA Astrophysics Data System (ADS)

    Wang, Jianbo; Guan, Shengguo; Chen, Kai; Wu, Wenjie; Tian, Zhaoyang; Luo, Pengshun; Jin, Aizi; Yang, Shanqing; Shao, Chenggang; Luo, Jun

    2016-12-01

    We report an isoelectronic test of non-Newtonian forces at micrometer range by sensing the lateral force between a gold sphere and a density modulation source mass using a soft cantilever. Two-dimensional (2D) force mapping, in combination with in situ topographic imaging, is applied to verify the isoelectronic property of the surface. The force signal is found to be electrostatic force dominated, which is correlated with the density modulation structure for thinner gold coating and reduced by thicker gold coating and thermal annealing. Maximum likelihood estimation is used to extract the constraint on the hypothetical force based on the 2D data, and the experiment sets a constraint on the Yukawa type forces without subtraction of the model dependent force background. This result would be a meaningful complementary to previous tests with different methods.

  7. Matrix Transformations between Certain Sequence Spaces over the Non-Newtonian Complex Field

    PubMed Central

    Efe, Hakan

    2014-01-01

    In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix transformations in sequence spaces over the field ℂ* and characterize some classes of infinite matrices with respect to the non-Newtonian calculus. Also we give the necessary and sufficient conditions on an infinite matrix transforming one of the classical sets over ℂ* to another one. Furthermore, the concept for sequence-to-sequence and series-to-series methods of summability is given with some illustrated examples. PMID:25110740

  8. Exact Solutions for Stokes' Flow of a Non-Newtonian Nanofluid Model: A Lie Similarity Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Taha; Aziz, A.; Khalique, C. M.

    2016-07-01

    The fully developed time-dependent flow of an incompressible, thermodynamically compatible non-Newtonian third-grade nanofluid is investigated. The classical Stokes model is considered in which the flow is generated due to the motion of the plate in its own plane with an impulsive velocity. The Lie symmetry approach is utilised to convert the governing nonlinear partial differential equation into different linear and nonlinear ordinary differential equations. The reduced ordinary differential equations are then solved by using the compatibility and generalised group method. Exact solutions for the model equation are deduced in the form of closed-form exponential functions which are not available in the literature before. In addition, we also derived the conservation laws associated with the governing model. Finally, the physical features of the pertinent parameters are discussed in detail through several graphs.

  9. Flow of a Non-Newtonian Liquid with a Free Surface

    NASA Astrophysics Data System (ADS)

    Borzenko, E. I.; Shrager, G. R.

    2016-07-01

    A fountain flow of a non-Newtonian liquid filling a vertical plane channel was investigated. The problem of this flow was solved by the finite-difference method on the basis of a system of complete equations of motion with natural boundary conditions on the free surface of the liquid. The stability of calculations was provided by regularization of the rheological Ostwald-de Waele law. It is shown that the indicated flow is divided into a zone of two-dimensional flow in the neighborhood of the free surface and a zone of one-dimensional flow at a distance from this surface. A parametric investigation of the dependence of the kinetic characteristics of the fountain flow and the behavior of its free surface on the determining criteria of this flow and its rheological parameters has been performed.

  10. Frogs use a viscoelastic tongue and non-Newtonian saliva to catch prey.

    PubMed

    Noel, Alexis C; Guo, Hao-Yuan; Mandica, Mark; Hu, David L

    2017-02-01

    Frogs can capture insects, mice and even birds using only their tongue, with a speed and versatility unmatched in the world of synthetic materials. How can the frog tongue be so sticky? In this combined experimental and theoretical study, we perform a series of high-speed films, material tests on the tongue, and rheological tests of the frog saliva. We show that the tongue's unique stickiness results from a combination of a soft, viscoelastic tongue coupled with non-Newtonian saliva. The tongue acts like a car's shock absorber during insect capture, absorbing energy and so preventing separation from the insect. The shear-thinning saliva spreads over the insect during impact, grips it firmly during tongue retraction, and slides off during swallowing. This combination of properties gives the tongue 50 times greater work of adhesion than known synthetic polymer materials such as the sticky-hand toy. These principles may inspire the design of reversible adhesives for high-speed application.

  11. The Non-Newtonian Rheology of Real Magmas: insights into 3D microstructures

    NASA Astrophysics Data System (ADS)

    Pistone, M.; Caricchi, L.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.

    2010-12-01

    We present high-resolution 3D microstructures of three-phase magmas composed of melt, bubbles and crystals in different proportions deformed at magmatic pressure and temperature conditions. This study aims to constrain the dependence of rheological and physical properties of magmas on the viscosity of the silicate melt, the applied deformation rate, the relative contents of crystals and bubbles and on the interactions between these phases. The starting material is composed of a hydrous haplogranitic melt containing H2O (2.26 wt%) and CO2 (624 ppm) and different proportions of quartz crystals (between 24 and 65 vol%; 63-125 μm in diameter) and bubbles (between 9 and 12 vol%; 5-150 μm in diameter). Experiments were performed in simple shear using a HT-HP internally-heated Paterson-type rock deformation apparatus (Paterson and Olgaard, 2000) at strain rates ranging between 5×10-5 s-1 and 4×10-3 s-1, at a constant pressure of 200 MPa and temperatures ranging between 723 and 1023 K. Synchrotron based X-ray tomographic microscopy performed at the TOMCAT beamline (Stampanoni et al., 2006) at the Swiss Light Source enabled quantitative evaluation of the 3D microstructure. At high temperature and low strain rate conditions the silicate melt behaves as a Newtonian liquid (Webb and Dingwell, 1990). Higher deformation rates and the contemporary presence of gas bubbles and solid crystals make magma rheology more complex and non-Newtonian behaviour occurs. In all experimental runs two different non-Newtonian effects were observed: shear thinning (decrease of viscosity with increasing strain rate) in high crystal-content magmas (55-65 vol% crystals; 9-10 vol% bubbles) and shear thickening (increase of viscosity with increasing strain rate) in magmas at lower degree of crystallinity (24 vol% crystals; 12 vol% bubbles). Both behaviours were observed at intermediate crystal-content (44 vol% crystals; 12 vol% bubbles), with an initial thickening that subsequently gives way to

  12. Thermocapillary flow of a non-Newtonian nanoliquid film over an unsteady stretching sheet

    NASA Astrophysics Data System (ADS)

    Narayana, Mahesha; Metri, Prashant G.; Silvestrov, Sergei

    2017-01-01

    The influence of surface tension on the laminar flow of a thin film of a non-Newtonian nanoliquid over an unsteady stretching sheet is considered. Surface tension is assumed vary linearly with temperature. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid. Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations with the application of similarity transformations. Resultant two-point boundary value problem is solved numerically using a shooting method together with Runge-Kutta-Fehlberg and Newton-Raphson schemes. The effect of surface tension on the dynamics of the considered problem is presented graphically and analyzed in detail. The clear liquid results form special case of the present study.

  13. Magnetohydrodynamic third-grade non-Newtonian nanofluid flow through a porous coaxial cylinder

    NASA Astrophysics Data System (ADS)

    Sadikin, Zubaidah; Kechil, Seripah Awang

    2015-10-01

    The convective flow of third grade non-Newtonian nanofluid through porous coaxial cylinders with inclined magnetic field is investigated. The governing partial differential equations are transformed to a system of nonlinear ordinary differential equations using the non-dimensional quantities. The transformed system of nonlinear ordinary differential equations is solved numerically using the fourth-order Runge-Kutta method. The viscosity of the nanofluid is considered as a function of temperature in form of Vogel's model. Numerical solutions are obtained for the velocity, temperature and nanoparticles concentration. The effects of the some physical parameters particularly the angle of inclination, the magnetic, Brownian motion and thermophoresis parameters on non-dimensional velocity, temperature and nanoparticles concentration are analyzed. It is found that as the angle of inclination of magnetic field increases, the velocity decreases. The results also show that increasing the thermophoresis parameter and Brownian motion, the temperature increases. By increasing the Brownian motion or decreasing the thermophoresis parameter, nanoparticles concentration increases.

  14. Numerical investigation of haemodynamics in a helical-type artery bypass graft using non-Newtonian multiphase model.

    PubMed

    Wen, Jun; Liu, Kai; Khoshmanesh, Khashayar; Jiang, Wentao; Zheng, Tinghui

    2015-01-01

    The classic single-phase Newtonian blood flow model ignores the motion of red blood cells (RBCs) and their interaction with plasma. To address these issues, we adopted a multiphase non-Newtonian model to carry out a comparative study between a helical artery bypass graft (ABG) and a conventional ABG in which the blood flow is composed of plasma and RBCs. The investigation focused on the mechanism of RBC buildup in an ABG but the haemodynamic parameters obtained by single-phase and multiphase models were also compared. The aggregation of RBCs along the inside wall of a conventional ABG and at the heel of its distal anastomosis was predicted while a poor aggregation was observed along the helical ABG. In addition, RBCs were observed to gradually sediment along the gravity direction. However, the computed haemodynamic parameters by multiphase model qualitatively agreed well with those by single-phase model. It was concluded that (1) the single-phase computational fluid dynamics (CFD) is reasonable to do the computation of haemodynamic parameters in ABGs; (2) secondary flow does not definitely produce buildup of RBCs in the inside curvature, its configuration played an important role in the movement of RBCs and the dominating one-way rotating flow in a helical ABG guaranteed no buildup of RBCs on its inside wall and (3) gravity direction is important for the movement of RBCs which may help to explain why doing exercise is good for human health. This study helps to shed light on the migration of RBCs in ABGs, which cannot be explored by single-phase CFD models, and provides more understanding of the underlying flow mechanism for ABG failure.

  15. Study of hydrodynamics and heat transfer in non-Newtonian liquid-gas two-phase flow in horizontal pipes

    SciTech Connect

    Deshpande, S.D.

    1985-01-01

    Non-Newtonian liquid-gas stratified flow data in 0.026- and 0.052-m-diameter pipes were obtained. Interfacial level gradients between the two phases were observed. The Heywood-Charles model is found to be valid for pseudoplastic liquid-gas uniform stratified flow. Two-phase drag reduction in non-Newtonian systems was not achieved as the transition to semi-slug flow occurred before the model criteria were reached. Interfacial liquid and gas shear stresses were compared. A new parameter ..sigma../sup 2/ is introduced which is a numerical indication of the interfacial level gradient. Two-phase drag reduction was experimentally observed in polymer solution-air plug-slug flow in 0.026- and 0.052-m-diameter pipes. The Hubbard-Dukler pressure drop model was extended to non-Newtonian systems. Reasonable agreement between the experiment and the model predictions is obtained. However, more work needs to be done in order to better understand the two-phase drag reduction phenomena. Liquid holdup correlations were developed for both Newtonian and non-Newtonian systems which successfully correlate the holdup over a wide range of parameters. The Petukhov correlation is found to be better than the Dittus-Boelter correlation in predicting the single-phase water heat-transfer coefficients.

  16. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    2001-01-01

    We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. Rheological investigations of water based drilling fluid system developed using synthesized nanocomposite

    NASA Astrophysics Data System (ADS)

    Jain, Rajat; Mahto, Triveni K.; Mahto, Vikas

    2016-02-01

    In the present study, polyacrylamide grafted xanthan gum/multiwalled carbon nanotubes (PA-g-XG/MWCNT) nanocomposite was synthesized by free radical polymerization technique using potassium persulfate as an initiator. The polyacrylamide was grafted on xanthan gum backbone in the presence of MWCNT. The synthesized nanocomposite was characterized by X-ray diffraction technique (XRD), and Fourier transform infrared spectroscopy analysis (FT-IR). The morphological characteristics of the nanocomposite were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses. Also, its temperature resistance property was observed with Thermogravimetric analysis (TGA). The effect of nanocomposite on the rheological properties of the developed drilling fluid system was analyzed with a strain controlled rheometer and Fann viscometer. Flow curves were drawn for the developed water based drilling fluid system at elevated temperatures. The experimental data were fitted to Bingham, power-law, and Herschel Bulkley flow models. It was observed that the Herschel Bulkley flow model predict the flow behavior of the developed system more accurately. Further, nanocomposite exhibited non-Newtonian shear thinning flow behavior in the developed drilling fluid system. Nanocomposite showed high temperature stability and had a significant effect on the rheological properties of the developed drilling fluid system as compared to conventionally used partially hydrolyzed polyacrylamide (PHPA) polymer.

  18. Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel

    NASA Astrophysics Data System (ADS)

    Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration

    2015-11-01

    Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  19. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-01-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  20. Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators

    SciTech Connect

    Raffai, Peter; Szeifert, Gabor; Matone, Luca; Bartos, Imre; Marka, Zsuzsa; Aso, Yoichi; Ricci, Fulvio; Marka, Szabolcs

    2011-10-15

    We present an experimental opportunity for the future to measure possible violations to Newton's 1/r{sup 2} law in the 0.1-10 m range using dynamic gravity field generators (DFG) and taking advantage of the exceptional sensitivity of modern interferometric techniques. The placement of a DFG in proximity to one of the interferometer's suspended test masses generates a change in the local gravitational field that can be measured at a high signal to noise ratio. The use of multiple DFGs in a null-experiment configuration allows us to test composition-independent non-Newtonian gravity significantly beyond the present limits. Advanced and third-generation gravitational-wave detectors are representing the state-of-the-art in interferometric distance measurement today, therefore, we illustrate the method through their sensitivity to emphasize the possible scientific reach. Nevertheless, it is expected that due to the technical details of gravitational-wave detectors, DFGs shall likely require dedicated custom-configured interferometry. However, the sensitivity measure we derive is a solid baseline indicating that it is feasible to consider probing orders of magnitude into the pristine parameter well beyond the present experimental limits significantly cutting into the theoretical parameter space.

  1. Numerical Simulations of Non-Newtonian Convection in Ice: Application to Europa

    NASA Technical Reports Server (NTRS)

    Barr, A. C.; Pappalardo, R. T.

    2003-01-01

    Numerical simulations of solid state convection in Europa's ice shell have so far been limited to consideration of Newtonian flow laws, where the viscosity of ice is strongly dependent upon temperature, predicting that a stagnant lid should form at the top (10-40%) of a convecting ice shell. Such large thicknesses seem to contradict estimates of the effective elastic thickness of Europa s ice shell during its geologically active period. Recent laboratory experiments characterize the rheology of ice as the sum of contributions from several temperature and strain rate-dependent creep mechanisms. We present the results of numerical simulations of convection within Europa s ice shell using the finite-element model Citcom, applying the non-Newtonian rheology of grain boundry sliding. Our calculations suggest a shallower brittle/ductile transition and larger interior convective velocities compared to Newtonian rheology. The flow field is time-dependent, with small, localized upwellings and downwellings at the thermal boundary layers that have minimal topographic expression at the surface.

  2. Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow

    NASA Astrophysics Data System (ADS)

    Alam, Meheboob; Saha, Saikat

    2014-11-01

    The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.

  3. Physics of Life: A Model for Non-Newtonian Properties of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if

  4. A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases

    NASA Astrophysics Data System (ADS)

    Le, N. T. P.; Xiao, H.; Myong, R. S.

    2014-09-01

    The discontinuous Galerkin (DG) method has been popular as a numerical technique for solving the conservation laws of gas dynamics. In the present study, we develop an explicit modal DG scheme for multi-dimensional conservation laws on unstructured triangular meshes in conjunction with non-Newtonian implicit nonlinear coupled constitutive relations (NCCR). Special attention is given to how to treat the complex non-Newtonian type constitutive relations arising from the high degree of thermal nonequilibrium in multi-dimensional gas flows within the Galerkin framework. The Langmuir velocity slip and temperature jump conditions are also implemented into the two-dimensional DG scheme for high Knudsen number flows. As a canonical scalar case, Newtonian and non-Newtonian convection-diffusion Burgers equations are studied to develop the basic building blocks for the scheme. In order to verify and validate the scheme, we applied the scheme to a stiff problem of the shock wave structure for all Mach numbers and to the two-dimensional hypersonic rarefied and low-speed microscale gas flows past a circular cylinder. The computational results show that the NCCR model yields the solutions in better agreement with the direct simulation Monte Carlo (DSMC) data than the Newtonian linear Navier-Stokes-Fourier (NSF) results in all cases of the problem studied.

  5. A Qualitative Investigation of Deposition Velocities of a Non-Newtonian Slurry in Complex Pipeline Geometries

    SciTech Connect

    Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K.; Luna, Maria; Minette, Michael J.; Tingey, Joel M.

    2009-05-11

    The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 μm in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.

  6. 76 FR 53964 - Dale J. Bingham, P.A.; Revocation of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Enforcement Administration Dale J. Bingham, P.A.; Revocation of Registration On February 4, 2011, the Deputy... Show Cause to Dale J. Bingham, P.A. (Registrant), of Ash Fork, Arizona. The Show Cause Order proposed... Registration MB1048746, issued to Dale J. Bingham, P.A., be, and it hereby is, revoked. I further order...

  7. The Viscosity of Polymeric Fluids.

    ERIC Educational Resources Information Center

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  8. Oxygenation to Bovine Blood in Artificial Heart and Lung Using Vibrating Flow Pump: Experiment and Numerical Analysis Based on Non-Newtonian Model

    NASA Astrophysics Data System (ADS)

    Shintaku, Hirofumi; Yonemura, Tsubasa; Tsuru, Kazuaki; Isoyama, Takashi; Yambe, Tomoyuki; Kawano, Satoyuki

    In this study, we construct an experimental apparatus for a prototype artificial heart and lung (AHL) by installing hollow fibers into the cylindrical tube of the vibrating flow pump (VFP). The oxygenation characteristics are investigated both by experiments using bovine blood and by numerical analyses based on the computational fluid dynamics. The analyses are carried out at the Reynolds numbers Re ranged from O(1) to O(103), which are determined based on the experimental conditions. The blood flow and the diffusion of oxygen gas are analyzed based on the Newtonian/non-Newtonian, unsteady, incompressible and axisymmetric Navier-Stokes equations, and the advection-diffusion equation. The results show that the oxygenation rate increases in proportion to Re1/3, where the phenomenon corresponds to the decreasing thickness of the concentration boundary layer with Re. Although the effects of the vibrating flow and the rheology of the blood are clearly appeared on the velocity field, their effects on the gas exchange are relatively small at the ranges of prescribed Reynolds numbers. Furthermore, the numerical results in terms of the oxygenation rate are compared with the experimental ones. The basic design data of VFP were accumulated for the development of AHL in the clinical applications.

  9. The LS-STAG immersed boundary method for non-Newtonian flows in irregular geometries: flow of shear-thinning liquids between eccentric rotating cylinders

    NASA Astrophysics Data System (ADS)

    Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire

    2015-04-01

    This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.

  10. Unsteady solute dispersion in Herschel-Bulkley fluid in a tube with wall absorption

    NASA Astrophysics Data System (ADS)

    Rana, Jyotirmoy; Murthy, P. V. S. N.

    2016-11-01

    The axial dispersion of solute in a pulsatile flow of Herschel-Bulkley fluid through a straight circular tube is investigated considering absorption/reaction at the tube wall. The solute dispersion process is described by adopting the generalized dispersion model suggested by Sankarasubramanian and Gill ["Unsteady convective diffusion with interphase mass transfer," Proc. R. Soc. A 333, 115-132 (1973)]. Firstly the exchange, convection, and dispersion coefficients are determined for small and large time, and then the axial mean concentration of a solute in the tube is determined. The effect of power-law index l, yield stress of fluid τy, wall absorption parameter β, amplitude of fluctuating pressure component e, and Womersley frequency parameter α on the convection, dispersion, and mean concentration of solute is discussed for a Herschel-Bulkley fluid in the tube. The single frequency period in the oscillation of dispersion coefficient K2 is observed for small values of α while the double frequency period is noticed for large values of α at small time. Only positive dispersion occurs for small values of α. Both positive and negative dispersion is seen for large values of α. Also, the occurrence of negative dispersion is influenced by the parameters l, τy, β, and e for large values of α. A comparative study of the convection, dispersion, and mean concentration of solute among the Newtonian and non-Newtonian Herschel-Bulkley, power-law, Bingham, and Casson [J. Rana and P. V. S. N. Murthy, "Solute dispersion in pulsatile casson fluid flow in a tube with wall absorption," J. Fluid Mech. 793, 877-914 (2016)] fluid models is presented at small and large time. Also, large time behaviour of non-Newtonian Carreau and Carreau-Yasuda fluid models [J. Rana and P. V. S. N. Murthy, "Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption," Proc. R. Soc. A 472, 20160294 (2016)] is considered for comparison with other discussed fluid models

  11. Interdisciplinary Research Programs in Geophysical Fluid Dynamics

    DTIC Science & Technology

    2007-09-30

    scientific disciplines that deal with the dynamics of stratified fluids, rotating fluids, fluid with phase changes and non-Newtonian fluids. To formulate...clearing-house for the mathematical, experimental and computational techniques which serve astrophysics, climate science, geodynamics, meteorology and... Zika , Physical Oceanography, University of New South Wales, “The stability of cascading flows”. RESULTS The Principal Lectures and Fellows

  12. Numerical analysis of mixed convection in lid-driven cavity using non-Newtonian ferrofluid with rotating cylinder inside

    NASA Astrophysics Data System (ADS)

    Rabbi, Khan Md.; Shuvo, Moinuddin; Kabir, Rabiul Hasan; Mojumder, Satyajit; Saha, Sourav

    2016-07-01

    Mixed convection in a lid-driven square enclosure with a rotating cylinder inside has been analyzed using non-Newtonian ferrofluid (Fe3O4-water). Left vertical wall is heated while the right vertical wall is kept cold. Bottom wall and cylinder surface are assumed to be adiabatic. Top wall has a moving lid with a constant velocity U0. Galerkin method of finite element analysis has been used to solve the governing equations. Numerical accuracy of solution is ensured by the grid independency test. A variety of Richardson number (Ri = 0.1 - 10) at a governing Reynolds number (Re = 100), power law index (n = 0.5 - 1.5), rotational speed (Ω = 0 - 15) and solid volume fraction of ferrous particles (φ = 0 - 0.05) are employed for this present problem. To illustrate flow and thermal field, streamline and isotherms are included. Average Nusselt number plots are shown to show overall heat transfer rate. It is observed that better heat transfer is achieved at higher rotational speed (Ω), Richardson number (Ri) and power law index (n). This paper also concludes significant variation in streamline and isotherm patterns for higher solid volume fraction (φ) of non-Newtonian ferrofluid.

  13. Influence of non-Newtonian Properties of Blood on the Wall Shear Stress in Human Atherosclerotic Right Coronary Arteries

    PubMed Central

    Liu, Biyue; Tang, Dalin

    2011-01-01

    The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum WSS occurred at the proximal side of the stenosis, near the outer wall in the curved artery with no stenosis. The lumen area near the inner wall distal to the stenosis region experienced a lower WSS during the entire cardiac cycle. Among the factors of stenosis size, blood viscosity, and flow rate, the size of the stenosis has the most significant effect on the spatial and temporal WSS distributions qualitatively and quantitatively. PMID:21379375

  14. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    PubMed Central

    Mehmood, Ahmer; Ali, Asif; Saleem, Najma

    2014-01-01

    This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060

  15. Breaking of non-Newtonian character in flows through a porous medium.

    PubMed

    Chevalier, T; Rodts, S; Chateau, X; Chevalier, C; Coussot, P

    2014-02-01

    From NMR measurements we show that the velocity field of a yield stress fluid flowing through a disordered well-connected porous medium is very close to that for a Newtonian fluid. In particular, it is shown that no arrested regions exist even at very low velocities, for which the solid regime is expected to be dominant. This suggests that these results obtained for strongly nonlinear fluid can be extrapolated to any nonlinear fluid. We deduce a generalized form of Darcy's law for such materials and provide insight into the physical origin of the coefficients involved in this expression, which are shown to be moments of the second invariant of the strain rate tensor.

  16. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.

    2004-01-01

    The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in

  17. Simulation of Droplet Generation in a Non-Newtonian Dense Granular Suspension

    NASA Astrophysics Data System (ADS)

    Mårtensson, Gustaf; Svensson, Martin; Mark, Andreas; Edelvik, Fredrik

    2015-11-01

    As with the jet printing of dyes and other low-viscosity fluids, the jetting of dense fluid suspensions is dependent on the repeatable break-off of the fluid filament into well-formed droplets. It is well known that the break-off of dense suspensions is dependent on the volume fraction of the solid phase, particle size and morphology, fluid phase viscosity et cetera, see for example van Deen et al. (2013). The purpose of this study is to propose a novel simulation framework and to show that it captures the main effects such as droplet shape, volume and speed in a cylindrical duct test configuration. The granular suspension is modelled as a mixed single phase suspension, where the local thermodynamic properties are determined by the mixture level. The simulations are performed with IBOFlow, a multiphase flow solver, coupled with LaStFEM, a large strain FEM solver. To study how the droplet generation is affected by the acceleration of the fluid, simulations are performed for a series of actuation profiles. The simulation results were compared to experimental data obtained from an industrial jetting head. The simulations exhibit qualitative agreement with the experimental data. A sensitivity to the inlet boundary condition with respect to the resulting droplet speed was observed. Thanks to Swedish Research Council (Grant 2010-4334).

  18. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    NASA Astrophysics Data System (ADS)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-03-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  19. Time-Resolved imaging Studies of Laser-Induced Jet Formation in Non-Newtonian Liquid Films

    NASA Astrophysics Data System (ADS)

    Turkoz, Emre; Arnold, Craig

    2016-11-01

    Blister-actuated laser-induced forward transfer (BA-LIFT) is a nozzle-less printing technique that offers an alternative to inkjet printing. The lack of a nozzle allows for a wider range of inks since clogging is not a concern. In this work, a focused laser pulse is absorbed within a polymer layer coated with a thin liquid film. The pulse causes a rapidly expanding blister to be formed that induces a liquid jet. Various well-studied non-Newtonian solutions are tested to examine how the shear-thinning and shear-thickening characteristics affect jet formation. The time delay between pulses is varied along with the energy, and different regimes of transfer are identified. We explore how Ohnesorge number, Weber number and spot size affect the jet formation and evaluate parameters that lead to breakup of jets into droplets.

  20. Convection in Ice I with Composite Newtonian/Non-Newtonian Rheology: Application to the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Barr, Amy C.; Pappalardo, Robert T.

    2005-01-01

    Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the outer ice I shells of Europa, Ganymede, and Callisto. We use numerical methods to determine the conditions required to trigger convection in an ice I shell with a stress-, temperature-, and grain-size-dependent rheology measured in laboratory experiments by Goldsby and Kohlstedt [2001] (henceforth GK2001). Triggering convection from an initially conductive ice shell with a non-Newtonian rheology for ice I requires that a finite-amplitude temperature perturbation be issued to the ice shell [2]. Here, we characterize the amplitude and wavelength of temperature perturbation required to initiate convection in the outer ice I shells of Europa, Ganymede, and Callisto using the GK2001 rheology for a range of ice grain sizes.

  1. Another word on the rheology of silicone putty: Bingham

    NASA Astrophysics Data System (ADS)

    Dixon, John M.; Summers, John M.

    Silicone putty, a material commonly used as a rock-analog in tectonic scale-model studies, exhibits rheological behavior that is similar to the Bingham rheological model over a wide range of strain rate. Nevertheless, at low strain rates a power law is a useful approximation. Similarly, at high strain rates a linear viscous model can be applied. Thus, the choice of rheologic expression can be based on knowledge of the range of stress levels that are achieved in a given model. Conversely, models can be designed to develop appropriate stress levels so that the rheological formulation appropriate to the relevant prototype material will be applicable.

  2. An active particle in a complex fluid

    NASA Astrophysics Data System (ADS)

    Datt, Charu; Natale, Giovanniantonio; Hatzikiriakos, Savvas G.; Elfring, Gwynn J.

    2016-11-01

    Active particles are self-driven units capable of converting stored or ambient free-energy into systematic movement. We discuss here the case when such particles move through non-Newtonian fluids. Neglecting inertial forces, we employ the reciprocal theorem to calculate the propulsion velocity of a single swimmer in a weakly non-Newtonian fluid with background flow. We also derive a general expression for the velocity of an active particle modelled as a squirmer in a second-order fluid. We then discuss how active colloids are affected by the medium rheology, namely viscoelasticity and shear-thinning.

  3. Power-law rheology and flow behavior of low-invasion coring fluids

    SciTech Connect

    McGuire, P.L.

    1981-08-01

    An improved pressure coring system has been developed in which an extremely viscous polymer mud is extruded by the core and is used to seal and protect the core from flushing by drilling fluids. The polymer mud must be extremely viscous to minimize invasion, yet must be extruded through a long, narrow annular gap with a minimum of pressure buildup. A highly non-Newtonian shear-thinning polymer is utilized in the low invasion coring fluid. This paper describes the measurement and modeling of non-Newtonian rheology from rotary viscometer data in detail since the simplified equations which are generally used with these instruments can be grossly in error. The development of both an approximate analytical solution and an exact numerical solution of the non-Newtonian extrusion process is presented. These solutions were used to optimize the non-Newtonian rheology of the low-invasion fluid which will be used in actual coring operations.

  4. Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.

    2016-12-01

    The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.

  5. Reduced viscosity interpreted for fluid/gas mixtures

    NASA Technical Reports Server (NTRS)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  6. Nuclear magnetic resonance imaging for viscosity measurements of non-Newtonian fluids using a miniaturized RF coil

    NASA Astrophysics Data System (ADS)

    Goloshevsky, A. G.; Walton, J. H.; Shutov, M. V.; de Ropp, J. S.; Collins, S. D.; McCarthy, M. J.

    2005-02-01

    This work reports on applications of a miniaturized RF coil combined with a capillary tube for the design of a portable on-line/in-line magnetic resonance imaging (MRI) based viscometer. A microfabricated Helmholtz RF coil with the average diameter of 7 mm and a Teflon tube with ID = 1.02 mm were utilized. Tube flows of two aqueous CMC polymer solutions (2% with MW = 250k and 1% with MW = 700k) of different viscosities at 1.99 µL s-1 volumetric flow rate were monitored. It was shown that the RF coil and the capillary permit measurement of shear thinning phenomena during flow. A constitutive power law model was used to analyse the tube flows. Viscosity was successfully measured for both the CMC solutions. The less viscous CMC solution was found to have the power index n = 0.77 ± 0.06 and the flow consistency coefficient K = 1.68, whereas the more viscous CMC solution exhibited n = 0.5 ± 0.03 and K = 7.23. The MRI measurements compared well with measurements of the same samples performed on a conventional rotational rheometer. The range of shear rates covered by the obtained MRI viscosity data was 3-20 s-1.

  7. Time-dependent electrokinetic flows of non-Newtonian fluids in microchannel-array for energy conversion

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team

    2016-11-01

    We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).

  8. The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler.

    PubMed

    Broniarz-Press, L; Sosnowski, T R; Matuszak, M; Ochowiak, M; Jabłczyńska, K

    2015-05-15

    The paper contains results of the experimental study on atomization process of aqueous solutions of glycerol and aqueous solutions of glycerol-polyacrylamide (Rokrysol WF1) in an ultrasonic inhaler. In experiments the different concentration aqueous solutions of glycerol and glycerol-polyacrylamide have been tested. The results have been obtained by the use of laser diffraction technique. The differences between characteristics of ultrasonic atomization for test liquids have been observed. The analysis of drop size histograms shows that the different sizes of drops have been formed during atomization process. The present study confirmed the previous reports which suggested that the drops size changes with the increase in viscosity of solution changes in spray characteristics were also observed. It has been shown that the shear and extensional viscosities affect the process of atomization.

  9. Fluid physics phenomena of resistojet thrusters

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J. (Principal Investigator)

    1996-01-01

    This final report includes a list of publications and part of an M.S. thesis titled 'Analyses in Theoretical and Experimental Fluid Flow', by Tony G. Howell. The thesis discusses analyses of momentum and heat transfer occurring in a laminar boundary layer of a non-Newtonian power-law fluid, and experiments completed in a simulated space thruster's plume for prediction comparison.

  10. NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows

    SciTech Connect

    Bouillard, J.X.; Sinton, S.W.

    1995-02-01

    The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

  11. Preconditioned iterative methods for unsteady non-Newtonian flow between eccentrically rotating cylinders

    SciTech Connect

    Gwynllyw, D.Rh.; Phillips, T.N.

    1994-12-31

    The journal bearing is an essential part of all internal combustion engines as a means of transferring the energy from the piston rods to the rotating crankshaft. It consists essentially of an inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the bearing), which is at the end of the piston rod. In general, the two cylinders are eccentric and there is a lubricating film of oil separating the two surfaces. The addition of polymers to mineral (Newtonian) oils to minimize the variation of viscosity with temperature has the added effect of introducing strain-dependent viscosity and elasticity. The physical problem has many complicating features which need to be modelled. It is a fully three-dimensional problem which means that significant computational effort is required to solve the problem numerically. The system is subject to dynamic loading in which the journal is allowed to move under the forces the fluid imparts on it and also any other loads such as that imparted by the engine force. The centre of the journal traces out a nontrivial locus in space. In addition, there is significant deformation of the bearing and journal and extensive cavitation of the oil lubricant. In the present study the authors restrict themselves to the two-dimensional statically loaded problem. In previous work a single domain spectral method was used which employed a bipolar coordinate transformation to map the region between the journal and the bearing onto a rectangle. The flow variables were then approximated on this rectangle using Fourier-Chebyshev expansions. However, to allow for future possible deformation of the journal and bearing surfaces due to increased load in the dynamically loaded case they have decided to use a more versatile spectral element formulation.

  12. Explaining the Non-Newtonian Character of Aggregating Monoclonal Antibody Solutions Using Small-Angle Neutron Scattering

    PubMed Central

    Castellanos, Maria Monica; Pathak, Jai A.; Leach, William; Bishop, Steven M.; Colby, Ralph H.

    2014-01-01

    A monoclonal antibody solution displays an increase in low shear rate viscosity upon aggregation after prolonged incubation at 40°C. The morphology and interactions leading to the formation of the aggregates responsible for this non-Newtonian character are resolved using small-angle neutron scattering. Our data show a weak repulsive barrier before proteins aggregate reversibly, unless a favorable contact with high binding energy occurs. Two types of aggregates were identified after incubation at 40°C: oligomers with radius of gyration ∼10 nm and fractal submicrometer particles formed by a slow reaction-limited aggregation process, consistent with monomers colliding many times before finding a favorable strong interaction site. Before incubation, these antibody solutions are Newtonian liquids with no increase in low shear rate viscosity and no upturn in scattering at low wavevector, whereas aggregated solutions under the same conditions have both of these features. These results demonstrate that fractal submicrometer particles are responsible for the increase in low shear rate viscosity and low wavevector upturn in scattered intensity of aggregated antibody solutions; both are removed from aggregated samples by filtering. PMID:25028888

  13. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing

    SciTech Connect

    Poloski, Adam P.; Bonebrake, Michael L.; Casella, Andrew M.; Johnson, Michael D.; Toth, James J.; Adkins, Harold E.; Chun, Jaehun; Denslow, Kayte M.; Luna, Maria; Tingey, Joel M.

    2009-07-01

    One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR

  14. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03

  15. Onset of Convection in Ice I with Composite Newtonian and Non-Newtonian Rheology: Application to the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the ice I shells of Europa, Ganymede, and Callisto. We use numerical methods and existing parameterizations of the critical Rayleigh number to determine the conditions required to trigger convection in an ice I shell with the stress-, temperature- and grain size- dependent rheology measured in laboratory experiments by Goldsby and Kohlstedt [2001]. The critical Rayleigh number depends on the ice grain size and the amplitude and wavelength of temperature perturbation issued to an initially conductive ice I shell. If the shells have an assumed uniform grain size less than 0.4 mm, deformation during initial plume growth is accommodated by Newtonian volume diffusion. If the ice grain size is between 0.4 mm and 3 cm, deformation during plume growth is accommodated by weakly non-Newtonian grain boundary sliding, where the critical ice shell thickness for convection depends on the amplitude of temperature perturbation to the _0.5 power. If the ice grain size exceeds 2 cm, convection can not occur in the ice I shells of the Galilean satellites regardless of the amplitude or wavelength of temperature perturbation. If the grain size in a convecting ice I shell evolves to effective values greater than 2 cm, convection will cease. If the ice shell has a grain size large enough to permit flow by dislocation creep, the ice is too stiff to permit convection, even in the thickest possible ice I shell. Consideration of the composite rheology implies that estimates of the grain size in the satellites and knowledge of their initial thermal states are required when judging the convective instability of their ice I shells.

  16. Thermal convection of viscoelastic shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  17. Stokesian locomotion in elastic fluids: Experiments

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Lauga, Eric

    2010-11-01

    In many instances of biological relevance, self-propelled cells have to swim through non-Newtonian fluids. In order to provide fundamental understanding on the effect of such non-Newtonian stresses on locomotion, we have studied the motion an oscillating magnetic swimmer immersed in both Newtonian and non-Newtonian liquids at small Reynolds numbers. The swimmer is made with a small rare earth (Neodymium-Iron-Boron) magnetic rod (3 mm) to which a flexible tail was glued. This array was immersed in cylindrical container (50 mm diameter) in which the test fluid was contained. A nearly uniform oscillating magnetic field was created with a Helmholtz coil (R=200mm) and a AC power supply. For the Newtonian case, a 30,000 cSt silicon oil was used. In the non-Newtonian case, a fluid with nearly constant viscosity and large first normal stress difference (highly elastic) was used; this fluid was made with Corn syrup with a small amount of polyacrylamide. The swimming speed was measured, for different amplitudes and frequencies, using a digital image analysis. The objective of the present investigation is to determine whether the elastic effects of the fluid improve or not the swimming performance. Some preliminary results will be presented and discussed.

  18. The Propagation of the Gravity Current of Viscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Liu, Ye

    2014-11-01

    We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.

  19. Oral perceptual discrimination of viscosity differences for non-newtonian liquids in the nectar- and honey-thick ranges.

    PubMed

    Steele, Catriona M; James, David F; Hori, Sarah; Polacco, Rebecca C; Yee, Clemence

    2014-06-01

    Thickened liquids are frequently used in the management of oropharyngeal dysphagia. Previous studies suggest that compression of a liquid bolus between the tongue and the palate in the oral phase of swallowing serves a sensory function, enabling the tuning of motor behavior to match the viscosity of the bolus. However, the field lacks information regarding healthy oral sensory discrimination ability for small differences in liquid viscosity. We undertook to measure oral viscosity discrimination ability for five non-Newtonian xanthan gum-thickened liquids in the nectar- and honey-thick range. Xanthan gum concentration ranged from 0.5 to 0.87 % and increased by an average of 0.1 % between stimuli in the array. This translated to an average apparent viscosity increase of 0.2-fold between adjacent stimuli at 50 reciprocal seconds (/s). A triangle test paradigm was used to study stimulus discrimination in 78 healthy adults in two, sex-balanced age cohorts. Participants were provided 5-ml samples of liquids in sets of three; one liquid differed in xanthan gum concentration from the other two. Participants were required to sample the liquid orally and indicate which sample was perceived to have a different viscosity. A protocol of 20 sets (60 samples) allowed calculation of the minimum difference in xanthan gum concentration detected accurately. On average, participants were able to accurately detect a 0.38-fold increase in xanthan-gum concentration, translating to a 0.67-fold increase in apparent viscosity at 50/s. The data did not suggest the existence of a nonlinear point boundary in apparent viscosity within the range tested. No differences in viscosity discrimination were found between age cohorts or as a function of sex. The data suggest that for xanthan gum-thickened liquids, there may be several increments of detectably different viscosity within the ranges currently proposed for nectar- and honey-thick liquids. If physiological or functional differences in

  20. Collective motion of microswimmers in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ardekani, Arezoo

    2015-11-01

    The dynamics of suspension of self-propelled microorganisms show fascinating hydrodynamic phenomena, such as, large scale swarming motion, locally correlated motion, enhanced particle diffusion, and enhanced fluid mixing. Even though many studies have been conducted in a Newtonian fluid, the collective motion of microorganisms in non-Newtonian fluids is less understood. The non-Newtonian fluid rheological properties, such as viscoelasticity and shear-dependent viscosity in saliva, mucus and biofilm, significantly affect the swimming properties and hydrodynamic interaction of microorganisms. In this work, we use direct numerical simulation to investigate the collective motion of rod-like swimmers in viscoelastic fluids. Two swimming types, pusher and puller, are investigated. The background viscoelastic fluid is modeled using an Oldroyd-B constitutive equation. This work is supported by NSF CBET-1445955 and Indiana CTSI TR001108.

  1. Steady flow for shear thickening fluids in domains with unbounded sections

    NASA Astrophysics Data System (ADS)

    Dias, Gilberlandio J.

    2017-02-01

    We solve the stationary Stokes and Navier-Stokes equations for non-Newtonian incompressible fluids with shear dependent viscosity in domains with outlets containing unbounded cross sections, in the case of shear thickening viscosity. The flux assumes arbitrary given values and the growth of the cross sections are analyzed under different convergence hypotheses, inclusive the growth of Dirichlet's integral of the velocity field is deeply related the convergence hypotheses of such sections. We extend the results of the section 4 of [12, Ladyzhenskaya and Solonnikov] (for Newtonian fluids) to non-Newtonian fluids using the techniques found in [3, Dias and Santos].

  2. Pulsatile flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel

    NASA Astrophysics Data System (ADS)

    Shawky, Hameda Mohammed

    2009-08-01

    The flow due to the pulsatile pressure gradient of dusty non-Newtonian fluid with heat transfer in a channel is considered. The system is stressed by an external magnetic field. The non-Newtonian fluid under consideration is obeying the rheological equation of state due to Ree-Eyring’s stress-strain relation. The equations of momentum and energy have been solved by using Lightill method. The velocity and temperature distributions of the two phase of the dusty fluid are obtained. The effects of various physical parameters of distributions the problem on these distributions are discussed and illustrated graphically through a set of figure.

  3. Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock

    NASA Astrophysics Data System (ADS)

    Fareo, A. G.; Mason, D. P.

    2016-06-01

    Group invariant analytical and numerical solutions for the evolution of a two-dimensional fracture with nonzero initial length in permeable rock and driven by an incompressible non-Newtonian fluid of power-law rheology are obtained. The effect of fluid leak-off on the evolution of the power-law fluid fracture is investigated.

  4. Bingham-NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI.

    PubMed

    Tariq, Maira; Schneider, Torben; Alexander, Daniel C; Gandini Wheeler-Kingshott, Claudia A; Zhang, Hui

    2016-06-01

    This paper presents Bingham-NODDI, a clinically-feasible technique for estimating the anisotropic orientation dispersion of neurites. Direct quantification of neurite morphology on clinical scanners was recently realised by a diffusion MRI technique known as neurite orientation dispersion and density imaging (NODDI). However in its current form NODDI cannot estimate anisotropic orientation dispersion, which is widespread in the brain due to common fanning and bending of neurites. This work proposes Bingham-NODDI that extends the NODDI formalism to address this limitation. Bingham-NODDI characterises anisotropic orientation dispersion by utilising the Bingham distribution to model neurite orientation distribution. The new model estimates the extent of dispersion about the dominant orientation, separately along the primary and secondary dispersion orientations. These estimates are subsequently used to estimate the overall dispersion about the dominant orientation and the dispersion anisotropy. We systematically evaluate the ability of the new model to recover these key parameters of anisotropic orientation dispersion with standard NODDI protocol, both in silico and in vivo. The results demonstrate that the parameters of the proposed model can be estimated without additional acquisition requirements over the standard NODDI protocol. Thus anisotropic dispersion can be determined and has the potential to be used as a marker for normal brain development and ageing or in pathology. We additionally find that the original NODDI model is robust to the effects of anisotropic orientation dispersion, when the quantification of anisotropic dispersion is not of interest.

  5. Numerical Flow Simulation for Bingham Plastics in a Single-Screw Extruder

    NASA Astrophysics Data System (ADS)

    Böhme, G.; Broszeit, J.

    Numerical simulations have been performed concerning the operation of a single-screw extruder, pumping a Bingham plastic under isothermal, developed flow conditions. Under the assumption of sufficiently low Reynolds numbers, inertia effects are neglected. The singular rheological behavior of the Bingham plastic is considered as the limiting case within a class of generalized Newtonian liquids with smooth constitutive equations. The validation of this regularization process is shown for a related flow problem where the Bingham solution is known analytically. A mixed finite-element method is applied to the flow in the screw-extruder to reduce the equations of motion, the continuity equation, and the regularized constitutive equation to a set of nonlinear algebraic equations, which are solved using a Newton method. In particular, the pumping characteristics of a given screw geometry are extracted from the finite-element calculations, i.e., the dependence of the volumetric flow rate and of the power requirement on the axial pressure drop, on the screw speed, and on the rheological parameters. Calculated flow fields clearly show the size and position of regions in the extruder channel where the Bingham plastic behaves like a solid.

  6. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  7. Electrorheological Fluids: Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Eftekhari, A.; Belvin, K. W.; Singh, J. J.

    1996-01-01

    Electrorheological fluids (ERF) are an intriguing class of non-Newtonian industrial fluids. They consist of fine dielectric particles suspended in liquids of low dielectric constants. The objectives of this research were to select a particulate system such that: (1) its density can be varied to match that of the selected liquid, and (2) the dielectric constant of the particles and the liquids should be such that the critical fields needed for asymptotic increase in viscosity are less than or equal to 10 KV/cm. Synthetic Zeolite particles were selected as the solute/suspensions. Octoil oil was selected as the solvent. The results are summarized here.

  8. Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.

  9. Intermittent Flow In Yield Stress Fluids Slows Down Chaotic Mixing

    NASA Astrophysics Data System (ADS)

    Boujlel, Jalila; Wendell, Dawn; Gouillart, Emmanuelle; Pigeonneau, Franck; Jop, Pierre; Laboratoire Surface du Verre et Interfaces Team

    2013-11-01

    Many mixing situations involve fluids with non-Newtonian properties: mixing of building materials such as concrete or mortar are based on fluids that have shear- thinning rheological properties. Lack of correct mixing can waste time and money, or lead to products with defects. When fluids are stirred and mixed together at low Reynolds number, the fluid particles should undergo chaotic trajectories to be well mixed by the so-called chaotic advection resulting from the flow. Previous work to characterize chaotic mixing in many different geometries has primarily focused on Newtonian fluids. First studies into non-Newtonian chaotic advection often utilize idealized mixing geometries such as cavity flows or journal bearing flows for numerical studies. Here, we present experimental results of chaotic mixing of yield stress fluids with non-Newtonian fluids using rod-stirring protocol with rotating vessel. We describe the various steps of the mixing and determine their dependence on the fluid rheology and speeds of rotation of the rods and the vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This result is confirmed via numerical simulations.

  10. Design of agitation systems in Bingham slurries by pilot simulation

    SciTech Connect

    Nielsen, M.G.

    1987-01-01

    A method was required to determine the optimum agitator speed needed to produce overall motion of the Defense Waste Processing Facility (DWPF) high-level waste slurries in remote process cell vessels. Project schedule and limited process space required an accurate determination of agitator horsepower and size without the benefit of full-scale testing. The small scale testing of unique clear rheologically similar fluid is described along with tests and scale-up procedures. 2 refs., 3 figs.

  11. Pressurized fluid damping of nanoelectromechanical systems.

    PubMed

    Svitelskiy, Oleksiy; Sauer, Vince; Liu, Ning; Cheng, Kar-Mun; Finley, Eric; Freeman, Mark R; Hiebert, Wayne K

    2009-12-11

    Interactions of nanoscale structures with fluids are of current interest both in the elucidation of fluid dynamics at these small scales, and in determining the ultimate performance of nanoelectromechanical systems outside of vacuum. We present a comprehensive study of nanomechanical damping in three gases (He, N2, CO2), and liquid CO2. Resonant dynamics in multiple devices of varying size and frequency is measured over 10 decades of pressure (1 mPa-20 MPa) using time-domain stroboscopic optical interferometry. The wide pressure range allows full exploration of the regions of validity of Newtonian and non-Newtonian flow damping models. Observing free molecular flow behavior extending above 1 atm, we find a fluid relaxation time model to be valid throughout, but not beyond, the non-Newtonian regime, and a Newtonian flow vibrating spheres model to be valid in the viscous limit.

  12. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.

    PubMed

    Hu, Qi-Hui; Li, Jing-Yin; Zhang, Ming-Yuan; Zhu, Xian-Ran

    2012-04-01

    The head curves of a 1.5:1 new axial blood pump model were measured using five working fluids at five rotational speeds. The working fluids were water, a 39wt% aqueous glycerin solution (GS), and three aqueous xanthan gum solutions (XGSs) with different concentrations. The flow velocities and shear stresses in the mechanical clearance between the casing and rotor were investigated using a laser Doppler velocimeter and hot-film sensor. At every rotational speed, the experiment in which viscous GS was used in the pump model showed a head curve lower than that obtained using water, whereas the head obtained using viscoelastic XGS was higher than that generated using water. A maximum difference of 65.8% between the heads measured in the 0.06% XGS and GS experiments was detected. The higher head produced by the XGS may have originated from the drag-reduction effect of XGS viscoelasticity. The measurements showed that a reverse washout flow at a velocity of 0.05-0.11m/s occurs in the clearance. This reverse washout flow is crucial to preventing flow stagnation and accompanying thrombus formation. The wall shear stress and the Taylor number of the rotating Couette-like flow in the clearance both indicated that it is a turbulent flow.

  13. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    NASA Technical Reports Server (NTRS)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  14. Eula Bingham-experience bares "the real world" and smart politics saves lives.

    PubMed

    Dunn, Mary Lee; Hoppin, Polly; Rosenberg, Beth

    2009-01-01

    Eula Bingham, toxicologist and former head of the Occupational Safety and Health Administration, is now at that place in her professional life where she can look back over her long career and identify its turning points and evaluate what worked and what didn't, what was important and what of lesser significance. In two interviews, she also looks at the present and the future and expresses concerns about the way we live now.

  15. Rosie Phillips Bingham: Award for Distinguished Professional Contributions to Institutional Practice.

    PubMed

    2015-11-01

    The APA Awards for Distinguished Professional Contributions to Institutional Practice are intended to recognize outstanding practitioners in psychology. One of the 2015 award winners is Rosie Phillips Bingham, who received this award for being "an extraordinary psychologist and dedicated, visionary leader who has made a tremendous difference in psychology and in the institutions in which she has worked." Rosie's award citation, biography, and a selected bibliography are presented here.

  16. Nonrelativistic analysis of solutions of Einstein's equations and generation of their new exact solutions with required Newtonian and Non-Newtonian limits

    NASA Astrophysics Data System (ADS)

    Koppel, A.

    1987-10-01

    In section 1, a brief survey about the development of investigations in the field of nonrelativistic (NR) limits of solutions for Einstein's gravitational field equations in Tartu starting from the pioneering works by H.Keres [1-5] is presented. In sect.2, basic principles of the general approach to "NR analysis" of relativistic solutions of gravitational field equations elaborated by the author (see also [15-19,23]) are given. In sect 3, basic formulae of a new simple method (see [25-26]) for calculating Hansen's mass and current (angular momentum) s-pole moments of any asymptotically flat (AF) stationary axisymmetric (SAS) metric are presented. The formulae (3.17-18) that enable to determine the NR analogs of these relativistic AF SAS vacuum metrics may have the non-Newtonian NR limit,i.e., when current (angular momentum) s-pole moments are preserved in the NR limits well. In sect. 4, a combined method for calculating NR limits and multipole structure to analyse modern generation techniques of new exact AF SAS vacuum solutions of Einstein's equations is used. In this way, the change of the multipole structure and NR limit, induced by the generation procedure, will be determined, even without any explicit generation of solutions, and, under certain conditions, some recipes for the generation of solutions with the required relativistic and NR multipole structure can be obtained as well. Thereby, certain new ways of solving the problem formulated by H. Keres for generation new solutions with the required NR (Newtonian and non-Newtonian) limits are provided. Sect 5 gives explicit analytical formulae (3.1,5.16-27) for a new exact AF SAS vacuum metric obtained under certain restrictions (see(5.12)) by Neugebauer's generation method [31], in case N=1, when the seed solution is static and has the dipole term only (see formulae (4.4-5),(5.1-9)). After the generation has been carried out an Ehlers' transformation (see (3.14),(5.10)) is used. In octupole approximation, the

  17. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    PubMed

    Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  18. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    SciTech Connect

    Bercovici, D.

    1995-02-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  19. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    NASA Technical Reports Server (NTRS)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  20. Hemodynamic Analysis in an Idealized Artery Tree: Differences in Wall Shear Stress between Newtonian and Non-Newtonian Blood Models

    PubMed Central

    Weddell, Jared C.; Kwack, JaeHyuk; Imoukhuede, P. I.; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758

  1. Influence of the combined effect of magnetic field and rotation on the onset of a non-Newtonian viscoelastic nanofluid layer: Linear and nonlinear analyses

    NASA Astrophysics Data System (ADS)

    Khurana, Meenakshi; Rana, Puneet; Srivastava, Sangeet

    2016-12-01

    In the present paper, we present both linear and nonlinear analyses to investigate thermal instability on a rotating non-Newtonian viscoelastic nanofluid layer under the influence of a magnetic field. In the linear stability analysis, the stationary and oscillatory modes of convection are obtained for various controlling parameters using the normal mode technique. Both Nusselt and Sherwood numbers are calculated after employing the minimal truncated Fourier series to steady and unsteady state. The main findings conclude that rotation and strain retardation parameter increase the value of the critical Rayleigh number in the neutral stability curve which delays the onset of convection in the nanofluid layer while the stress relaxation parameter enhances the convection. The magnetic field stabilizes the system for low values of the Taylor number (rotation) but an inverse trend is observed for high Taylor number. Both Nusselt and Sherwood numbers initially oscillate with time until the steady state prevails and they decrease with both Chandrasekhar and Taylor numbers. The magnitude of the streamlines and the contours of both isotherms and iso-nanohalines concentrate near the boundaries for large values of Ra, indicating an increase in convection.

  2. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    SciTech Connect

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  3. Computational fluid dynamics '92; Proceedings of the European Computational Fluid Dynamics Conference, 1st, Brussels, Belgium, Sep. 7-11, 1992. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Hirsch, Charles (Editor); Periaux, J. (Editor); Kordulla, W. (Editor)

    1992-01-01

    A conference was held on Computational Fluid Dynamics (CFD) and produced related papers. Topics included CFD algorithms, transition and turbulent flow, hypersonic reacting flow, incompressible flow, two phase flow and combustion, internal flow, compressible flow, grid generation and adaption, boundary layers, environmental and industrial applications, and non-Newtonian flow.

  4. Computational fluid dynamics '92; Proceedings of the European Computational Fluid Dynamics Conference, 1st, Brussels, Belgium, Sep. 7-11, 1992. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Hirsch, Charles; Periaux, J.; Kordulla, W.

    A conference was held on Computational Fluid Dynamics (CFD) and produced related papers. Topics included CFD algorithms, transition and turbulent flow, hypersonic reacting flow, incompressible flow, two phase flow and combustion, internal flow, compressible flow, grid generation and adaption, boundary layers, environmental and industrial applications, and non-Newtonian flow. For individual titles, see A95-95358 through A95-95507.

  5. Considerations of blood properties, outlet boundary conditions and energy loss approaches in computational fluid dynamics modeling.

    PubMed

    Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang

    2014-02-01

    Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.

  6. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  7. Optical monitoring for power law fluids during spin coating.

    PubMed

    Jardim, P L G; Michels, A F; Horowitz, F

    2012-01-30

    Optical monitoring is applied, in situ and in real time, to non-newtonian, power law fluids in the spin coating process. An analytical exact solution is presented for thickness evolution that well fits to most measurement data. As result, typical rheological parameters are obtained for several CMC (carboximetilcelullose) concentrations and rotation speeds. Optical monitoring thus precisely indicates applicability of the model to power law fluids under spin coating.

  8. Feasibility Study for the K-Area Bingham Pump Outage Pit (643-1G)

    SciTech Connect

    Palmer, E.R.

    1997-05-01

    The K-Area Bingham Pump Outage Pit (KBPOP) is one of four BPOP areas at Savannah River Site (SRS), collectively referred to as the BPOP waste unit group. This Feasibility Study (FS) of Remedial Alternatives serves as the lead FS for the BPOP waste unit group. This section identifies the purpose and scope of the FS and presents site background information summarized from the Final Remedial Investigation Report with Baseline Risk Assessment (RI/BRA) WSRC-RP- 95-1555, Rev. 1.2 (WSRC 1997).

  9. Proposed plan for the K-Area Bingham Pump Outage Pit (643-1G)

    SciTech Connect

    Palmer, E.

    1997-06-01

    This Proposed Plan is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this Proposed Plan is to describe the preferred remedial alternative for addressing the K-Area Bingham Pump Outage Pit (643-1G) (K BPOP) located at the Savannah River Site (SRS) in Aiken, South Carolina and to solicit public comments on the preferred alternative.

  10. Squirming through shear thinning fluids

    NASA Astrophysics Data System (ADS)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  11. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  12. 77 FR 21835 - Savage, Bingham & Garfield Railroad Company-Trackage Rights Exemption-Elgin, Joliet and Eastern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Surface Transportation Board Savage, Bingham & Garfield Railroad Company--Trackage Rights Exemption--Elgin, Joliet and Eastern Railway Company Pursuant to a written trackage rights agreement dated March 5, 2012, Elgin, Joliet and Eastern Railway Company (CN),\\1\\ has agreed to grant limited overhead trackage...

  13. Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis

    NASA Astrophysics Data System (ADS)

    Hibert, Clément; Ekström, Göran; Stark, Colin P.

    2014-07-01

    Joint interpretation of long- and short-period seismic signals generated by landslides sheds light on the dynamics of slope failure, providing constraints on landslide initiation and termination and on the main phases of acceleration and deceleration. We carry out a combined analysis of the seismic signals generated by two massive landslides that struck the Bingham Canyon Mine pit on 10 April 2013. Inversion of the long-period waveforms yields time series for the bulk landslide forces and momenta, from which we deduce runout trajectories consistent with the deposit morphology. Comparing these time series with the short-period seismic data, we are able to infer when and where major changes take place in landslide momentum along the runout path. This combined analysis points to a progressive fracturing of the masses during acceleration indicates that deceleration starts the moment they reach the pit floor and suggests that the bulk movement is stopped by a topographic barrier.

  14. The fluid dynamics of the chocolate fountain

    NASA Astrophysics Data System (ADS)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  15. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Gat, Amir; Boyko, Evgeniy; Bercovici, Moran

    2016-11-01

    We study the fluid-structure interaction dynamics of non-Newtonian flow through a slender linearly elastic cylinder at the creeping flow regime. Specifically, considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a non-homogeneous p-Laplacian equation governing the viscous-elastic dynamics. We obtain exact solutions for the pressure and deformation fields for various initial and boundary conditions, for both shear thinning and shear thickening fluids. In particular, impulse or a step in inlet pressure yield self-similar solutions, which exhibit a compactly supported propagation front solely for shear thinning fluids. Applying asymptotic expansions, we provide approximations for weakly non-Newtonian behavior showing good agreement with the exact solutions sufficiently far from the front.

  16. Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit

    NASA Astrophysics Data System (ADS)

    Kang, Jianhong; Xu, Mingyu

    2009-04-01

    The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.

  17. Three-dimensional blade coating of complex fluid

    NASA Astrophysics Data System (ADS)

    Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie

    2015-11-01

    The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.

  18. Finite amplitude instability of second-order fluids in plane Poiseuille flow.

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Lin, C. H.

    1972-01-01

    The hydrodynamic stability of plane Poiseuille flow of second-order fluids to finite amplitude disturbances is examined using the method of Stuart and Watson as extended by Reynolds and Potter. For slightly non-Newtonian fluids subcritical instabilities are predicted. No supercritical equilibrium states are expected if the entire spectrum of disturbance wavelengths is present. Possible implications with respect to the Toms phenomenon are discussed.

  19. Phenomenological Blasius-type friction equation for turbulent power-law fluid flows

    NASA Astrophysics Data System (ADS)

    Anbarlooei, H. R.; Cruz, D. O. A.; Ramos, F.; Silva Freire, A. P.

    2015-12-01

    We propose a friction formula for turbulent power-law fluid flows, a class of purely viscous non-Newtonian fluids commonly found in applications. Our model is derived through an extension of the friction factor analysis based on Kolmogorov's phenomenology, recently proposed by Gioia and Chakraborty. Tests against classical empirical data show excellent agreement over a significant range of Reynolds number. Limits of the model are also discussed.

  20. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    PubMed Central

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels. PMID:26858520

  1. Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea

    2014-05-01

    Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The

  2. Helical propulsion in shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Gómez, Saúl; Godínez, Francisco A.; Lauga, Eric; Zenit, Roberto

    2017-02-01

    Swimming microorganisms often have to propel in complex, non-Newtonian fluids. We carry out experiments with self-propelling helical swimmers driven by an externally rotating magnetic field in shear-thinning, inelastic fluids. Similarly to swimming in a Newtonian fluid, we obtain for each fluid a locomotion speed which scales linearly with the rotation frequency of the swimmer, but with a prefactor which depends on the power index of the fluid. The fluid is seen to always increase the swimming speed of the helix, up to 50% faster and thus the strongest of such type reported to date. The maximum relative increase for a fluid power index of around 0.6. Using simple scalings, we argue that the speed increase is not due to the local decrease of the flow viscosity around the helical filament but hypothesise instead that it originates from confinement-like effect due to viscosity stratification around the swimmer.

  3. Bingham Canyon Landslide: Force History Analysis and Identification of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Pankow, K. L.; Ford, S. R.; Kubacki, T.; Koper, K. D.; Whidden, K. M.; Moore, J. R.; McCarter, M. K.

    2013-12-01

    On 10 April 2013 two massive rock avalanches, separated in time by 1.5 hours, occurred at the Bingham Canyon copper mine located in the Oquirrh Mountains near Salt Lake City, UT. Following the first slide, small (ML ≤ 2.5) tectonic earthquakes began occurring beneath the mine area, suggesting the earthquakes were triggered by the rock avalanches. Seismic data from the landslide events and tectonic quakes were well recorded by the Utah Regional Seismic Network. Signals from the rock avalanches are broadband and have a duration approaching two minutes each. Magnitude estimates for the two slides vary considerably based on methodology (slide 1: ML 2.5, MC 4.2, MSW 5.0; slide 2: ML 2.4, MC 3.5, MSW 4.9), which is indicative of a non-earthquake source. Initial estimates from Kennecott Utah Copper show that the combined rock avalanches moved a total mass of ~150 billion kg, equivalent to a source volume of ~55 million m3, and preliminary analysis based on signal duration and peak amplitudes of the seismograms suggest that the two slides were roughly equal in volume. However, when using a time-varying point source to invert for the landslide force history, we find that the second slide was approximately half the volume and half the mass of the first slide. Using the force history, we are also able to track the path of each rock avalanche, with good match to field observations. Waveform template analysis using two weeks of data preceding the rock avalanches show that the induced seismic events began following the first slide. This analysis will be extended further back in time to better determine if these events were induced by the rock avalanches. Earthquakes identified by the template analysis will also be located using newly calculated station delays determined from ground-truth events and relative relocation. If possible, we will also determine first-motion focal mechanisms for the larger induced quakes. The Bingham Canyon rock avalanches are two of the best

  4. Curious Fluid Flows: From Complex Fluid Breakup to Helium Wetting

    NASA Astrophysics Data System (ADS)

    Huisman, Fawn Mitsu

    This work encompasses three projects; pinch-off dynamics in non-Newtonian fluids; helium wetting on alkali metals; and the investigation of quartz tuning forks as cryogenic pressure transducers. Chapter 1 discusses the breakup of a non-Newtonian yield stress fluid bridge. We measured the minimum neck radius, hmin, as a function of time and fit it to a power law with exponent n 1. We then compare n1 to exponent n2, obtained from a rotational rheometer using a Herschel-Bulkley model. We confirm n1=n2 for the widest variety of non-Newtonian fluids to date. When these fluids are diluted with a Newtonian fluid n1 does not equal n2. No current models predict that behavior, identifying a new class of fluid breakup. Chapter 2 presents the first chemical potential-temperature phase diagram of helium on lithium, sodium and gold, using a novel pressure measurement system. The growth and superfluid transition of a helium film on these substrates is measured via an oscillator for isotherms (fixed temperature, varying amount of helium gas), and quenches (fixed amount of helium gas, varying temperature). The chemical potential-temperature plot is similar for gold, lithium and sodium despite the large difference in the substrate binding energies. No signs of a 2-D liquid-vapor transition were seen. Chapter 3 discusses the creation of a 32.768 kHz quartz tuning fork in situ pressure transducer. Tuning forks are used to measure pressure at room temperature, but no work addresses their potential as cryogenic pressure transducers. We mapped out the behavior of a tuning fork as a function of pressure at 298, 7.0, 2.5, 1.6, 1.0 and 0.7 K by measuring the quality factor. The fork is sensitive to pressures above 0.1 mTorr, limiting its use as a pressure gauge at 0.6 K and below. The experimental curves were compared to a theoretical Q(P, T) function that was refined using the 298 K data. At cryogenic temperatures the formula breaks down in the viscous region and becomes inaccurate. The

  5. Existence Theory for Stochastic Power Law Fluids

    NASA Astrophysics Data System (ADS)

    Breit, Dominic

    2015-06-01

    We consider the equations of motion for an incompressible non-Newtonian fluid in a bounded Lipschitz domain during the time interval (0, T) together with a stochastic perturbation driven by a Brownian motion W. The balance of momentum reads as where v is the velocity, the pressure and f an external volume force. We assume the common power law model and show the existence of martingale weak solution provided . Our approach is based on the -truncation and a harmonic pressure decomposition which are adapted to the stochastic setting.

  6. Bingham Dai, Adolf Storfer, and the tentative beginnings of psychoanalytic culture in China, 1935-1941.

    PubMed

    Blowers, Geoffrey

    2004-01-01

    This paper looks at the work of two figures who, while marginal to theoretical developments within the history of psychoanalysis, each briefly played an important role in the dissemination of analytical ideas in China, contributing to an early psychoanalytic culture there. Bingham Dai, a native of China, while studying for a PhD in sociology at Chicago, received instruction from Harry Stack Sullivan and a psychoanalytic training under Karen Horney's supervision. However, the neo-Freudian outlook with which this experience imbued him had its roots in an earlier encounter with his experiments in personality education first conducted on students in a Tientsin high school, and later in Shantung under the direction of the conservative Confucian scholar and reformer, Liang Shu Ming. These experiences convinced him that a less orthodox psychoanalytic perspective was what Chinese patients with psychological problems required. He returned in 1935 to teach medical psychology to doctors at Peking Union Medical College, taking a few into analysis and treating some patients. However, the Sino-Japanese war brought these activities to a close and he left in 1939, just a few months after the former Freud publisher and Viennese émigré, Adolf Storfer, arrived. Storfer set about publishing "Gelbe Post," a German language periodical replete with articles on psychoanalysis, linguistics and Chinese culture. But limited finances, severe competition from a rival publisher, plus his own ill health, forced him to abandon this in spite of the support offered him through the many contributors in the international psychoanalytic community whose articles he published. The paper concludes by considering the relative historiographic fate of the men upon whom subsequent scholarship has been very unevenly focused.

  7. Heat Transfer and Flow of a Casson Fluid Due to a Stretching Cylinder with the Soret and Dufour Effects

    NASA Astrophysics Data System (ADS)

    Mahdy, A.

    2015-07-01

    Numerical solutions of the problem on flow and heat transfer of a non-Newtonian fluid outside a stretching permeable cylinder are obtained with regard to suction or blowing and the Soret and Dufour effects. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations by employing similarity transformations, and the obtained equations are solved numerically by using the shooting technique. The main purpose of the study is to investigate the effect of the governing parameters, namely, the Casson, Soret, and Dufour parameters, the suction/injection parameter, and the Prandtl and Reynolds numbers, on the velocity and temperature profiles, as well as on the skin friction coefficient and temperature gradient at the surface.

  8. Theory and applications of drilling fluid hydraulics

    SciTech Connect

    Whittaker, A.

    1985-01-01

    A reference on drilling fluid hydraulics, this text provides information, nomenclature and equations. Chapter 1 introduces the basic principles of fluid properties. Chapter 2 discusses the general principles, models and measurements related to fluid flow. Newtonian, Bingham, Power Law, Casson, Robertson-Stiff and Herschel-Bulkley models are all discussed. Chapters 3 through 10 analyze hydraulic problems specific to drilling fluids and the drilling process including: viscometric measurements, pressure losses, swab and surge pressures, cuttings transport, and hydraulics optimization. Each chapter concludes with a bibliography. For consistency, nomenclature remains constant and SI units are used throughout the text. All key equations using oilfield units are listed in the appendices.

  9. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer

    NASA Astrophysics Data System (ADS)

    Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

    2017-02-01

    The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.

  10. Flow of Oldroyd 8-constant fluid in a scraped surface heat exchanger

    NASA Astrophysics Data System (ADS)

    Imran, A.; Siddiqui, A. M.; Rana, M. A.

    2016-12-01

    In this work the flow of the Oldroyd 8-constant fluid model in a scraped surface heat exchanger (SSHE) is studied. We have taken the steady incompressible isothermal flow of a fluid around a periodic arrangement of pivoted scraper blades in a channel for a generalized Poiseuille flow, and the flow is modeled using the lubrication-approximation theory (LAT), where as in SSHE the gaps between the blades and the device walls are narrow. Using these approximations we got the non-linear boundary value problem which is solved using the Adomian decomposition method. Expressions for velocity profiles for different regions, flow rates, stream function are obtained. Graphical and tabular representation for the velocity profile and for the different flow parameters involved is also incorporated. Foodstuffs behave as non-Newtonian material, possess shear-thinning and shear-thickening effects, so they are considered for the understanding of non-Newtonian effects inside the SSHE Oldroyd 8-constant fluid model. In addition to food industry this work will also be helpful in pharmaceutical and chemical industries as most of the materials used in the industry are non-Newtonian in nature.

  11. Yield strengths of flows on the earth, Mars, and moon. [application of Bingham plastic model to lava flows

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Arthur, D. W. G.; Schaber, G. G.

    1978-01-01

    Dimensions of flows on the earth, Mars, and moon and their topographic gradients obtained from remote measurements are used to calculate yield strengths with a view to explore the validity of the Bingham plastic model and determine whether there is a relation between yield strengths and silica contents. Other factors are considered such as the vagaries of natural phenomena that might contribute to erroneous interpretations and measurements. Comparison of yield strengths of Martian and lunar flows with terrestrial flows suggests that the Martian and lunar flows are more akin to terrestrial basalts than they are to terrestrial andesites, trachytes, and rhyolites.

  12. Infrasound Observations of the Massive Landslide at Bingham Canyon Copper Mine

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Arrowsmith, S.; Burlacu, R.; Hayward, C.; Pankow, K. L.

    2013-12-01

    On 10 April 2013 approximately 55 million m3 of rock collapsed from the northeastern wall of the approximately one-kilometer deep open-pit Bingham Canyon copper mine near Salt Lake City, Utah, generating clear seismic and infrasound signals. The material released in two sudden rock avalanches separated in time by about 1.5 hours. The magnitudes for the two slides were determined to be ML 2.5 and 2.4 and MSW 5.0 and 4.9, respectively. Seismic signals with durations approaching two minutes from both rock avalanches were recorded on stations of the University of Utah (UU) regional seismic network and other networks at distances of ~6 to greater than 400 km. In addition, the first event was recorded on seven UU infrasound arrays at distances of ~13 - 400 km and the second at five infrasound arrays between ~57 and 400 km distance. Comparison of the seismograms from the two slides show differences in the long-period energy. There are also clear differences in the infrasound observations. For example, at the closest array recording both slides, the duration of the infrasound signal for the first slide is much longer than for the second slide. In addition, infrasound attributed to the first rock avalanche resulted in multiple arrival observations at the three most distant arrays, while only one array had multiple arrivals for the latter event. For the five infrasound arrays, with detections for both rock avalanches, we look for signal differences by cataloging duration, amplitude, azimuth, dominant period, correlation coefficients, group and trace velocity. In addition, propagation modeling through ground-to-space (G2S) profiles will be performed to determine if atmospheric differences can account for the varying infrasound observations, and the source of the infrasound signal will be located using the Bayesian Infrasonic Source Location procedure. With a wealth of geophysical data we aim to determine if the seismic and infrasound signals have a common source and if the

  13. Decoupling mass adsorption from fluid viscosity and density in quartz crystal microbalance measurements using normalized conductance modeling

    NASA Astrophysics Data System (ADS)

    Parlak, Z.; Biet, C.; Zauscher, S.

    2013-08-01

    We describe the physical understanding of a method which differentiates between the frequency shift caused by fluid viscosity and density from that caused by mass adsorption in the resonance of a quartz crystal resonator. This method uses the normalized conductance of the crystal to determine a critical frequency at which the fluid mass and fluid loss compensate each other. Tracking the shift in this critical frequency allows us to determine purely mass adsorption on the crystal. We extended this method to Maxwellian fluids for understanding the mass adsorption in non-Newtonian fluids. We validate our approach by real-time mass adsorption measurements using glycerol and albumin solutions.

  14. Current research in cavitating fluid films

    NASA Technical Reports Server (NTRS)

    Brewe, D. E. (Editor); Ball, J. H. (Editor); Khonsari, M. M. (Editor)

    1990-01-01

    A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.

  15. Pulsatile flow of blood using a modified second-grade fluid model

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-07-01

    We study the unsteady pulsatile flow of blood in an artery, where the effects of body acceleration are included. The blood is modeled as a modified second-grade fluid where the viscosity and the normal stress coefficients depend on the shear rate. It is assumed that the blood near the wall behaves as a Newtonian fluid, and in the core as a non-Newtonian fluid. This phenomenon is also known as the Fahraeus–Lindqvist effect. The equations are made dimensionless and solved numerically.

  16. Measurements of fluid viscosity using a miniature ball drop device.

    PubMed

    Tang, Jay X

    2016-05-01

    This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.

  17. Measurements of fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay X.

    2016-05-01

    This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.

  18. Mechanics of granular-frictional-visco-plastic fluids in civil and mining engineering

    NASA Astrophysics Data System (ADS)

    Alehossein, H.; Qin, Z.

    2013-10-01

    The shear stress generated in mine backfill slurries and fresh concrete contains both velocity gradient dependent and frictional terms, categorised as frictional viscous plastic fluids. This paper discusses application of the developed analytical solution for flow rate as a function of pressure and pressure gradient in discs, pipes and cones for such frictional Bingham-Herschel-Bulkley fluids. This paper discusses application of this continuum fluid model to industrial materials like mine and mineral slurries, backfills and fresh concrete tests.

  19. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  20. Numerical Simulation of Fluid Mud Gravity Currents

    NASA Astrophysics Data System (ADS)

    Yilmaz, N. A.; Testik, F. Y.

    2011-12-01

    Fluid mud bottom gravity currents are simulated numerically using a commercial computational fluid dynamics software, ANSYS-Fluent. In this study, Eulerian-Eulerian multi-fluid method is selected since this method treats all phases in a multiphase system as interpenetrated continua. There are three different phases in the computational model constructed for this study: water, fluid mud, and air. Water and fluid mud are defined as two miscible fluids and the mass and momentum transfers between these two phases are taken into account. Fluid mud, which is a dense suspension of clay particles and water, is defined as a single-phase non-Newtonian fluid via user-defined-functions. These functions define the physical characteristics (density, viscosity, etc.) of the fluid mud and these characteristics vary with changing suspension concentration due to mass transfer between the fluid mud and the water phase. Results of this two-dimensional numerical model are verified with data obtained from experiments conducted in a laboratory flume with a lock-release set-up. Numerical simulations are currently being conducted to elucidate turbulent entrainment of ambient water into fluid mud gravity currents. This study is motivated by coastal dredge disposal operations.

  1. Physics through the 1990s: Plasmas and fluids

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  2. Mechanisms of Fluid-Mud Interactions Under Waves

    DTIC Science & Technology

    2006-01-01

    can be modeled as a constant, Bingham plastic with viscosity regularization, or a general Herschel-Bulkley fluid. The implementation of an implicit...results to SWAN simulations. He found that the wave attenuation in periods with moderate waves and low wind was fairly well described with friction ... factors that are typical of rippled sandy sea floors. He also found that in periods with stronger winds the spectral energy balance was sensitive

  3. Fundamental studies of fluid mechanics and stability in porous media. Progress report

    SciTech Connect

    Homsy, G.M.

    1993-08-01

    This progress report covers our work over the last grant period (1990-1993). Work has been in the following areas: semi-analytical studies of enhanced energy transport in natural convection due to time dependent body forces; large scale simulations of non-linear instabilities in porous media flow for situations of interest in petroleum recovery; analytical studies of `chimney` formation in unstable freezing mixtures; analytical and experimental studies of contact line dynamics for Newtonian and non-Newtonian fluids; and large scale numerical simulations of shear instabilities of viscoelastic fluids.

  4. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model

    NASA Astrophysics Data System (ADS)

    Wenchang, Tan; Mingyu, Xu

    2002-08-01

    The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak.

  5. Coating Of Model Rheological Fluids In Microchannels

    NASA Astrophysics Data System (ADS)

    Koelling, Kurt; Boehm, Michael

    2008-07-01

    Researchers have strived to understand and quantify the dynamics within the myriad micro/nano-devices proposed and developed within the last decade. Concepts such as fluid flow, mass transfer, molecule manipulation, and reaction kinetics must be understood in order to intelligently design and operate these devices. In addition to general engineering principles, intelligent design should also focus on material properties (e.g. density, viscosity, conductivity). One key property, viscosity, will play a large part of any fluidic device, including biomedical devices, because the fluids used will, most likely, be non-Newtonian and therefore highly dependent upon the shear rate. Be it a biomedical or macromolecule separation device, or simply the processing of polymeric material, select model polymers and simple flow schemes can be used to investigate the dynamics within micro-devices. Here, we present results for the processing of Newtonian and non-Newtonian polymeric fluids in micro-channels during two-phase penetrating flow. The system investigated is a circular capillary 100 microns in diameter, which is pre-filled with a polymeric liquid. The polymeric liquid is either of Newtonian viscosity, or the same liquid with dispersed high molecular weight polystyrene, which exhibits viscoelastic behavior. A second, immiscible phase, silicone oil of low Newtonian viscosity, is pumped into the system and subsequently cores the polymeric liquid. The dynamics of bubble flow (e.g. bubble velocity and bubble shape) as well as the influence of rheology on coating will be investigated. By studying these model systems, we will learn how complex fluids behave on progressively smaller size scales.

  6. Relaxation Dynamics of Non-Power-Law Fluids

    NASA Astrophysics Data System (ADS)

    Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong

    2013-12-01

    The relaxation of non-Newtonian liquids with non-power-law rheology on partially wetted surfaces is rarely investigated. This study assesses the relaxation behavior of 14 partial wetting systems with non-power-law fluids by sessile drop method. These systems are two carboxymethylcellulose sodium solutions on two kinds of slides, cover glass, and silicon wafer surfaces; three polyethylene glycol (PEG400) + silica nanoparticle suspensions on polymethyl methacrylate and polystyrene surfaces. The dynamic contact angle and moving velocity of contact line relationship data for relaxation drops of the 14 tested systems demonstrate a power-law fluid-like behavior, and the equivalent power exponent for a certain fluid on different solid substrates are uniform. By analyzing the relationship between the equivalent power exponent and shear rate, it is proposed that a fluid regime with shear rates of a few tens of s controls relaxation dynamics.

  7. Inertial migration of elastic particles in a pressure-driven power-law fluid

    NASA Astrophysics Data System (ADS)

    Bowie, Samuel; Alexeev, Alexander

    2016-11-01

    Using three-dimensional computer simulations, we study the cross-stream migration of deformable particles in a channel filled with a non-Newtonian fluid driven by a pressure gradient. Our numerical approach integrates lattice Boltzmann method and lattice spring method in order to model fluid structural interactions of the elastic particle and the surrounding power fluid in the channel. The particles are modeled as elastic shells filled with a viscous fluid that are initially spherical. We focus on the regimes where the inertial effects cannot be neglected and cause cross-stream drift of particles. We probe the flow with different power law indexes including both the shear thickening and thinning fluids. We also examine migration of particles of with different elasticity and relative size. To isolate the non-Newtonian effects on particle migration, we compare the results with the inertial migration results found in the case where the channel is filled with a simple Newtonian fluid. The results can be useful for applications requiring high throughput separation, sorting, and focusing of both synthetic particles and biological cells in microfluidic devices. Financial support provided by National Science Foundation (NSF) Grant No. CMMI1538161.

  8. Study of blood flow in several benchmark micro-channels using a two-fluid approach

    PubMed Central

    Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad

    2015-01-01

    It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs. PMID:26240438

  9. The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Fetecau, Corina; Jamil, Muhammad; Fetecau, Constantin; Vieru, Dumitru

    2009-09-01

    The velocity field corresponding to the Rayleigh-Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.

  10. Multiplate magnetorheological fluid limited slip differential clutch

    NASA Astrophysics Data System (ADS)

    Kavlicoglu, Barkan M.; Gordaninejad, Faramarz; Evrensel, Cahit A.; Fuchs, Alan; Korol, George

    2003-08-01

    This study focuses on the design and characterization of a multi-plate magneto-rheological fluid (MRF) limited slip differential (LSD) clutch. Three-dimensional electromagnetic finite element analyzes are performed to optimize the MRF LSD clutch design. The torque transfer capacity of the clutch is predicted utilizing Bingham-Plastic constitutive model of the MRF. The MRF LSD clutch is tested at different velocities and applied magnetic fields. The clutch heating is also examined under different operating conditions to determine the thermal effects on the torque transfer performance of the multi-plate clutch.

  11. Hiemenz flow and heat transfer of a third grade fluid

    NASA Astrophysics Data System (ADS)

    Sahoo, Bikash

    2009-03-01

    The laminar flow and heat transfer of an incompressible, third grade, electrically conducting fluid impinging normal to a plane in the presence of a uniform magnetic field is investigated. The heat transfer analysis has been carried out for two heating processes, namely, (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). By means of the similarity transformation, the governing non-linear partial differential equations are reduced to a system of non-linear ordinary differential equations and are solved by a second-order numerical technique. Effects of various non-Newtonian fluid parameters, magnetic parameter, Prandtl number on the velocity and temperature fields have been investigated in detail and shown graphically. It is found that the velocity gradient at the wall decreases as the third grade fluid parameter increases.

  12. Dynamics of the Bingham Canyon mine landslides from long-period and short-period seismic signal analysis

    NASA Astrophysics Data System (ADS)

    Hibert, C.; Ekstrom, G.; Stark, C. P.

    2013-12-01

    On April 10, 2013, one of the largest landslides observed in North America occurred at the Bingham Canyon copper mine near Salt Lake City, Utah. Seismic waves recorded by the Global Seismographic Network suggest that two major slope failures occurred: at 03:31UT and at 05:06UT with long-period surface-wave magnitudes of Msw~5.1 and Msw~4.9 respectively. The combined debris of these landslides has been estimated at 150 million tonnes. We used long-period surface wave data to invert for the Landslide Force History (LFH) of each of the two events, allowing us to infer the trajectories of landslide motion and their average dynamic properties [1]. These inferred runout paths are broadly consistent with those deduced from analysis of the landslide scar using air photographs, satellite imagery and differential topographic maps. However, the total mass obtained from the LFH analysis is less consistent: using the observed runout distances for calibration [1], our inversions suggest a total landslide mass 50% less than that reported by the mining company. A further complexity, possibly related, is revealed by analysis of the short-period seismic waves, which indicates that the 05:06UT detection is in fact the composite signal of two distinct landslide seismic sources. Usually, high-frequency (HF, >1Hz) seismic signals generated by landslides are hard to observe because of their strong scattering and attenuation with distance. However, a very dense network of broadband seismic stations exists in the vicinity of the Bingham Canyon mine. Thus, we were able to compare the LFH, long-period and HF seismic signals for both events. Joint analysis of the inverted trajectory and the HF seismic signal recorded at the closest stations shows that, for the first 03:31UT event, a backward movement of the mass center started just after a final burst in the very high-frequency (VHF, >20Hz) signal. After this final burst, a tremor-like signal is observed in the VHF. This tremor-like signal

  13. The hydrodynamic interaction of two small freely-moving particles in a Couette flow of a yield stress fluid

    NASA Astrophysics Data System (ADS)

    Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah

    2016-11-01

    The flows of non-Newtonian slurries, often suspensions of noncolloidal particles in yield stress fluids, are ubiquitous in many natural phenomena and industrial processes. Investigating the microstructure is essential allowing the refinement of macroscopic equations for complex suspensions. One important constraint on the dynamics of a Stokesian suspension is reversibility, which is not necessarily valid for complex fluids. The interaction of two particles in a reversing shear flow of complex fluids is a guide to understand the behavior of complex suspensions. We study the hydrodynamic interaction of two small freely-moving spheres in a linear flow field of yield stress fluids. An important point is that non-Newtonian fluid effects can be varied and unusual. Depending on the shear rate, even a yield stress fluid might show hysteresis, shear banding and elasticity at the local scales that need to be taken into account. We study these effects with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry in an original apparatus. We show our preliminary experimental results. NSF.

  14. Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids

    NASA Technical Reports Server (NTRS)

    Henson, Van Emden; Shaker, A. W.

    1993-01-01

    We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.

  15. Time Periodic Electro-Osmotic-Flow of Jeffrey Fluid in a Circular Microtube

    NASA Astrophysics Data System (ADS)

    Jian, Y. J.; Liu, Q. S.; Duan, H. Z.; Chang, L.; Yang, L. G.

    2011-09-01

    Flow behavior of time periodic electro-osmotic flow (EOF) of non-Newtonian (Jeffrey) fluids in a circular microtube is investigated based on a linearized Poisson-Boltzmann equation, together with the Cauchy momentum equation and the Jeffrey constitutive equation. Taking near-wall depletion effects of macromolecules into account, we divided the flow region into skimming layer and the bulk. Analytical solutions of EOF velocity distribution are obtained. By numerical computations, the influences of the related parameters on the velocity amplitude are studied.

  16. Spray Formation of Herschel-Bulkley Fluids using Impinging Jets

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil; Gao, Jian; Chen, Jun; Sojka, Paul E.

    2015-11-01

    The impinging jet spray formation of two non-Newtonian, shear-thinning, Herschel-Bulkley fluids was investigated in this work. The water-based gelled solutions used were 1.0 wt.-% agar and 1.0 wt.-% kappa carrageenan. A rotational rheometer and a capillary viscometer were used to measure the strain-rate dependency of viscosity and the Herschel-Bulkley Extended (HBE) rheological model was used to characterize the shear-thinning behavior. A generalized HBE jet Reynolds number Rej , gen - HBE was used as the primary parameter to characterize the spray formation. A like-on-like impinging jet doublet was used to produce atomization. Shadowgraphs were captured in the plane of the sheet formed by the two jets using a CCD camera with an Nd:YAG laser beam providing the back-illumination. Typical behavior for impinging jet atomization using Newtonian liquids was not generally observed due to the non-Newtonian, viscous properties of the agar and kappa carrageenan gels. Instead various spray patterns were observed depending on Rej , gen - HBE. Spray characteristics of maximum instability wavelength and sheet breakup length were extracted from the shadowgraphs. Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  17. Physiological Flow of Jeffrey Six Constant Fluid Model due to Ciliary Motion

    NASA Astrophysics Data System (ADS)

    Shaheen, A.; Hussain, S.; Nadeem, S.

    2016-12-01

    The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. Bk is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. in the history, the viscous-dissipation effect is usually represented by the Brinkman number.

  18. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Lee, Pilhwa; Wolgemuth, Charles

    2016-11-01

    While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.

  19. Application of the Legendre wavelets method to the parallel plate flow of a third grade fluid and forced convection in a porous duct

    NASA Astrophysics Data System (ADS)

    Ali, N.; Ullah, Mati; Sajid, M.; Khan, S. U.

    2017-03-01

    A method based on Legendre wavelets is presented in this paper to discuss the flow of a third grade fluid between parallel plates and the forced convection in a porous duct. The flow problems are modeled in terms of integral equations which are then solved by the Legendre wavelets method. The comparison between present results and the existing solutions shows that the Legendre wavelets method is a powerful tool for solving nonlinear boundary value problems. We hope this method can be used for solving many interesting problems arising in non-Newtonian fluids.

  20. A computational study of the dynamic motion of a bubble rising in Carreau model fluids

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Yoshida, Yutaka; Sussman, Mark

    2010-04-01

    We present the results of three-dimensional direct numerical simulations of the dynamic motion of a gas bubble rising in Carreau model fluids. The simulations are carried out by a coupled level-set/volume-of-fluid (CLSVOF) method, which combines some of the advantages of the volume-of-fluid (VOF) method with the level-set (LS) method. In our study, it is shown that the motion of a rising gas bubble largely depends on the Carreau model parameters, n and B (n, the slope of decreasing viscosity and B, time constant). Both the model parameters, n and B, have considerable influence on the bubble rise motion. Using numerical analysis, we can understand in detail the bubble morphology for non-Newtonian two-phase flow systems. We also discuss bubble rise motion in shear-thinning fluids in terms of the effective viscosity, ηeff, the effective Reynolds number, Reeff and the effective Morton number, Meff.

  1. Theoretical and Experimental Investigations of Identifying the Ingredients of an Oil-Water Mixture Based on a Characteristic Fluid Inverse Problem

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Yuan, Han; Zhao, Jian; Mei, Ning

    2016-12-01

    To identify the ingredients of an oil-water mixture in petroleum production or petrochemicals process, a method based on a characteristic liquid inverse problem was developed by clarifying its real viscosity and thermal conductivity. A heat transfer and fluid flow model for an oil-water mixture was established for tube flow in this paper. By means of the measured temperature distribution in the tube, the thermal physical properties of the oil-water mixture can be obtained by the governing equations in the model according to their characteristics as a Newtonian or non-Newtonian fluid. The fluid characteristic can be deduced by the rheological properties of the oil-water mixture. Both the Newtonian fluid and non-Newtonian fluid governing equations were established to determine the mixture components. Experiments were also conducted to verify the numerical solutions for the ingredients of the oil-water mixture. The comparison between theoretical solutions and experimental results shows that the maximum error based on the suitable fluid model is 3.11 %, which demonstrated the feasibility of the proposed method for estimating the ingredients of an oil-water mixture.

  2. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  3. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  4. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, P. K.; McDonnell, A. G.; Prabhakar, R.; Yeo, L. Y.; Friend, J.

    2011-02-01

    Forming capillary bridges of low-viscosity (lsim10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities—water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  5. The flow of power law fluids in elastic networks and porous media.

    PubMed

    Sochi, Taha

    2016-02-01

    The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.

  6. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid.

    PubMed

    Liu, Rong; Liu, Qiu Sheng

    2012-06-01

    Linear stability in Hagen-Poiseuille flow of a shear-thinning fluid is considered. The non-Newtonian viscosity is described by the Carreau rheological law. The effects of shear thinning on the stability are investigated using the energy method and the nonmodal stability theory. The energy analysis shows that the nonaxisymmetric disturbance with the azimuthal wave number m=1 has the lowest critical energy Reynolds number for both the Newtonian and shear-thinning cases. With the increase of shear thinning, the critical energy Reynolds number decreases for both the axisymmetric and nonaxisymmetric cases. For the nonmodal stability, we focus on two problems: response to external excitations and response to initial conditions. The former is studied by examining the ε pseudospectrum, and the latter by examining the energy growth function G(t). For both Newtonian and shear-thinning fluids, it is found that there can be a rather large transient growth even though the linear operator of the Hagen-Poiseuille flow has no unstable eigenvalue. For the problem of response to external excitations, the optimal response is achieved by disturbance with m=1 for both the Newtonian and non-Newtonian cases. For the problem of response to initial conditions, the optimal disturbance is in the form of streamwise uniform streaks. Being different from the Newtonian case, the azimuthal wave number of the optimal disturbance may be greater than 1 for strongly shear-thinning cases.

  7. Multiscale Computational Modeling of Bio-fluids in Real Anatomies and Microdevices

    NASA Astrophysics Data System (ADS)

    Trebotich, David; Miller, Greg

    2004-11-01

    We present new simulation results of bio-fluids in microfluidic devices and real anatomies using recently developed state-of-the-art computational fluid dynamics algorithms. These results include flows of both Newtonian and non-Newtonian (viscoelastic) continua as well as discrete particle chains embedded in the continuum. The flow domains considered for continuum flow are a stenotic carotid artery and a trachea which has undergone tracheostomy, where both geometries have been obtained from MRI images. These anatomical flows are highly resolved in both 2D and 3D. We also model DNA molecules in solution flowing through an extraction device used for amplification. We use a particle method where molecular chains are tightly coupled to the continuum via a hydrodynamic drag law such that the bulk fluid feels the effect of the particles.

  8. Electrokinetically modulated peristaltic transport of power-law fluids.

    PubMed

    Goswami, Prakash; Chakraborty, Jeevanjyoti; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-01-01

    The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields.

  9. Unsteady magnetohydrodynamic flow of a fourth grade fluid caused by an impulsively moving plate in a Darcy porous medium ߞ A group-theoretical analysis

    NASA Astrophysics Data System (ADS)

    Carrim, A. H.; Aziz, Taha; Mahomed, F. M.; Khalique, Chaudry Masood

    2016-06-01

    The effects of non-Newtonian fluids are investigated by means of an appropriate model studying the flow of a fourth grade fluid. The geometry of this model is described by the unsteady unidirectional flow of an incompressible fluid over an infinite flat plate within a porous medium. The fluid is electrically conducting in the presence of a uniform applied magnetic field. The classical Lie symmetry approach is utilized in order to construct group invariant solutions to the governing higher-order nonlinear partial differential equation (PDE). The conditional symmetry approach has also been utilized to solve the governing model. Some new classes of conditional symmetry solutions have been obtained for the model equation in the form of closed-form exponential functions. The invariant solution corresponding to the nontraveling wave type is considered to be the most significant solution for the fluid flow model under investigation since it directly incorporates the physical behavior of the flow model.

  10. Dual solution of Casson fluid over a porous medium: Exact solutions with extra boundary condition

    NASA Astrophysics Data System (ADS)

    Khan, Najeeb Alam; Khan, Sidra

    2016-12-01

    In this article we calculate the exact solution of the steady flow of non-Newtonian Casson fluid, over a stretching/shrinking sheet. The governing partial differential equations (PDEs) are transformed into ordinary differential equation (ODE) by using similarity transformation and then solved analytically by utilizing the exact solution. The closed form unique solution is obtained in the case of stretching sheet whereas for shrinking sheet unique and dual solutions are obtained. Influences of Casson fluid and suction/injection parameter on dimensionless velocity function are discussed and plotted graphically; also the effects of skin friction coefficient are presented in graphical form. Comparisons of current solutions with previous study are also made for the verification of the present study.

  11. Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow

    NASA Astrophysics Data System (ADS)

    López-Aguilar, J. E.; Tamaddon-Jahromi, H. R.; Webster, M. F.; Walters, K.

    2016-10-01

    This paper addresses the problem of matching experimental findings with numerical prediction for the extreme experimental levels of pressure-drops observed in the 4:1 sharp-corner contraction flows, as reported by Nigen and Walters ["Viscoelastic contraction flows: Comparison of axisymmetric and planar configurations," J. Non- Newtonian Fluid Mech. 102, 343-359 (2002)]. In this connection, we report on significant success in achieving quantitative agreement between predictions and experiments. This has been made possible by using a new swanINNFM model, employing an additional dissipative function. Notably, one can observe that extremely large pressure-drops may be attained with a suitable selection of the extensional viscous time scale. In addition, and on vortex structure, the early and immediate vortex enhancement for Boger fluids in axisymmetric contractions has also been reproduced, which is shown to be absent in planar counterparts.

  12. Hybrid solution for the laminar flow of power-law fluids inside rectangular ducts

    NASA Astrophysics Data System (ADS)

    Lima, J. A.; Pereira, L. M.; Macêdo, E. N.; Chaves, C. L.; Quaresma, J. N. N.

    The so-called generalized integral transform technique (GITT) is employed in the hybrid numerical-analytical solution of two-dimensional fully-developed laminar flow of non-Newtonian power-law fluids inside rectangular ducts. The characteristic of the automatic and straightforward global error control procedure inherent to this approach, permits the determination of fully converged benchmark results to assess the performance of purely numerical techniques. Therefore, numerical results for the product Fanning friction factor-generalized Reynolds number are computed for different values of power-law index and aspect ratio, which are compared with previously reported results in the literature, providing critical comparisons among them as well as illustrating the powerfulness of the integral transform approach. The resulting velocity profiles computed by using this methodology are also compared with those calculated by approximated methods for power-law fluids, within the range of governing parameters studied.

  13. Peristaltic Creeping Flow of Power Law Physiological Fluids through a Nonuniform Channel with Slip Effect

    PubMed Central

    Chaube, M. K.; Tripathi, D.; Bég, O. Anwar; Sharma, Shashi; Pandey, V. S.

    2015-01-01

    A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient, and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers, and so forth. PMID:27057132

  14. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions

    PubMed Central

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-01-01

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter). PMID:27708412

  15. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions.

    PubMed

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-06

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  16. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-01

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  17. On the thermodynamics of some generalized second-grade fluids

    SciTech Connect

    Man CS, Massoudi M

    2010-01-01

    The generalized second-grade fluids, which have been used for modeling the creep of ice and the flow of coal-water and coal-oil slurries, are among the simplest non-Newtonian fluid models that can describe shear-thinning/thickening and exhibit normal stress effects. In this article, we conduct thermodynamic analysis on a class of generalized second-grade fluids, one distinguishing feature of which is the existence of a constitutive function that describes frictional heating. We work within the framework of Serrin’s original formulation of neoclassical thermodynamics, where internal energy and entropy functions, if they exist for a continuous body at all, are to be derived from the classical First Law and (quantitatively reformulated) Second Law of thermodynamics for cycles. For the class of generalized second-grade fluids in question, we show from the First Law that an internal energy density u exists, and we derive the equation of energy balance; from the Second Law, we demonstrate the existence of an entropy density s and derive the Clausius–Duhem inequality that it satisfies.We obtain explicit expressions for u, s and the frictional heating , and derive thermodynamic restrictions on thematerial functions of temperature μ, α1, and α2 that appear in the constitutive relation for the Cauchy stress. For the special case of second-grade fluids, our expressions for u and s agree with those which Dunn and Fosdick [6] derived under the theoretical framework of the rational thermodynamics of Coleman and Noll.

  18. Interplay between optical, viscous, and elastic forces on an optically trapped Brownian particle immersed in a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Domínguez-García, P.; Forró, László; Jeney, Sylvia

    2016-10-01

    We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic, and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending on the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.

  19. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  20. PREFACE: XXI Fluid Mechanics Conference

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68

  1. Contact Line Instability of Gravity-Driven Flow of Power-Law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2015-11-01

    The moving contact line of a thin fluid film can often corrugate into fingers, which is also known as a fingering instability. Although the fingering instability of Newtonian fluids has been studied extensively, there are few studies published on contact line fingering instability of non-Newtonian fluids. In particular, it is still unknown how shear-thinning rheological properties can affect the formation, growth, and shape of a contact line instability. Our previous study (Hu and Kieweg, 2012) showed a decreased capillary ridge formation for more shear-thinning fluids in a 2D model (i.e. 1D thin film spreading within the scope of lubrication theory). Those results motivated this study's hypothesis: more shear-thinning fluids should have suppressed finger growth and longer finger wavelength, and this should be evident in linear stability analysis (LSA) and 3D (i.e. 2D spreading) numerical simulations. In this study, we developed a LSA model for the gravity-driven flow of shear-thinning films, and carried out a parametric study to investigate the impact of shear-thinning on the growth rate of the emerging fingering pattern. A fully 3D model was also developed to compare and verify the LSA results using single perturbations, and to explore the result of multiple-mode, randomly imposed perturbations. Both the LSA and 3D numerical results confirmed that the contact line fingers grow faster for Newtonian fluids than the shear-thinning fluids on both vertical and inclined planes. In addition, both the LSA and 3D model indicated that the Newtonian fluids form fingers with shorter wavelengths than the shear-thinning fluids when the plane is inclined; no difference in the most unstable (i.e. emerging) wavelength was observed at vertical. This study also showed that the distance between emerging fingers was smaller on a vertical plane than on a less-inclined plane for shear-thinning fluids, as previously shown for Newtonian fluids. For the first time for shear

  2. The transverse mobility of yield-stress fluids in fibrous media

    NASA Astrophysics Data System (ADS)

    Shahsavari, Setareh; McKinley, Gareth H.

    2015-11-01

    The pressure-drop/flow-rate relationship for fluids that exhibit a yield stress and a shear dependent viscosity flowing through fibrous media is studied numerically. The Cauchy momentum equation along with the Bingham or Herschel-Bulkley constitutive equations are solved for flow transverse to a periodic array of fibers and systematic parametric studies are used to understand the individual roles of geometrical characteristics and fluid rheological properties. We develop a scaling model to predict the fluid mobility as a function of the medium porosity and the Bingham number. In addition, using this scaling model we estimate the width of the unyielded region between two adjacent fibers. Numerical computations are combined with the scaling model to obtain a criterion for the critical pressure gradient required to drive flow. Variations in the size of the yielded zones, the velocity profiles and the resulting stress fields are investigated for the limiting cases of (i) densely packed fiber arrays and (ii) very sparsely distributed fibers, and the hydrodynamic transition between these configurations is investigated. While this work focuses on the flow of inelastic fluids, the methodology can be extended to consider more complex rheology such as flow of elasto-visco-plastic fluids.

  3. Locomotion by tangential deformation in a polymeric fluid

    NASA Astrophysics Data System (ADS)

    Zhu, Lailai; Lauga, Eric; Brandt, Luca

    2010-11-01

    Many biological cells such as bacteria often encounter viscous environments with suspended microstructures or macromolecules. The physics of micro-propulsion in such a non-Newtonian viscoelastic fluid has only recently started to be addressed. Here we present results of three-dimensional numerical simulations for the steady locomotion of a self-propelled body in a model polymeric (Giesekus) fluid at low Reynolds number. The microswimmer is driven by a purely tangential distortion on the outer surface reproduced as non-homogenous boundary condition on a rigid body. The swimming speed and efficiency for different values of the Weissenberg number and the viscosity ratio are reported. The swimming speed is lower in a visco-elastic fluid and is asymptotically recovering for large We approaching values for Newtonian swimmer. Interestingly, the efficiency is seen to significantly increase as the viscosity of the polymeric fluid is increased. Further analysis reveals that polymeric stresses break the Newtonian front-back symmetry in the flow profile around the body. Speed and efficiency for pusher and puller squirmers will be reported together with analysis of the velocity fields. Time-dependent boundary conditions shall also be considered.

  4. An Analysis of Peristaltic Flow of Finitely Extendable Nonlinear Elastic- Peterlin Fluid in Two-Dimensional Planar Channel and Axisymmetric Tube

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Asghar, Zaheer

    2014-09-01

    We have investigated the peristaltic motion of a non-Newtonian fluid characterized by the finitely extendable nonlinear elastic-Peterlin (FENE-P) fluid model. A background for the development of the differential constitutive equation of this model has been provided. The flow analysis is carried out both for two-dimensional planar channel and axisymmetric tube. The governing equations have been simplified under the widely used assumptions of long wavelength and low Reynolds number in a frame of reference that moves with constant wave speed. An exact solution is obtained for the stream function and longitudinal pressure gradient with no slip condition. We have portrayed the effects of Deborah number and extensibility parameter on velocity profile, trapping phenomenon, and normal stress. It is observed that normal stress is an increasing function of Deborah number and extensibility parameter. As far as the velocity at the channel (tube) center is concerned, it decreases (increases) by increasing Deborah number (extensibility parameter). The non-Newtonian rheology also affect the size of trapped bolus in a sense that it decreases (increases) by increasing Deborah number (extensibility parameter). Further, it is observed through numerical integration that both Deborah number and extensibility parameter have opposite effects on pressure rise per wavelength and frictional forces at the wall. Moreover, it is shown that the results for the Newtonian model can be deduced as a special case of the FENE-P model

  5. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Technical Reports Server (NTRS)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  6. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    PubMed

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity.

  7. Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid

    NASA Astrophysics Data System (ADS)

    Sahu, K. C.; Matar, O. K.

    2010-11-01

    The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.

  8. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    SciTech Connect

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.

  9. Finite and Infinite Width Stokes Layers in a Power-Law Fluid

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Pritchard, David; McArdle, Catriona

    2011-11-01

    Self-similar solutions for the oscillatory boundary layer (the ``Stokes layer'') in a semi-infinite power-law fluid bounded by an oscillating wall (the so-called Stokes problem) are obtained and analysed. These semi-analytical solutions differ qualitatively from the classical solution for a Newtonian fluid, both in the non-sinusoidal form of the velocity oscillations and in the manner at which their amplitude decays with distance from the wall. In particular, for shear-thickening fluids the velocity reaches zero at a finite distance from the wall, and for shear-thinning fluids it decays algebraically with distance, in contrast to the exponential decay for a Newtonian fluid. We demonstrate numerically that these self-similar solutions provide a good approximation to the flow driven by a sinusoidally oscillating wall. Further details can be found in the recent paper by D. Pritchard, C. R. McArdle and S. K. Wilson entitled ``The Stokes boundary layer for a power-law fluid,'' in Journal of Non-Newtonian Fluid Mechanics 166, 745-753 (2011).

  10. Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Guo; Zhang, Xi-Wen; Liu, Ying-Xi

    2012-06-01

    The effect of disturbed flow on the mass transfer from arterial surface to flowing blood was studied numerically, and the results were compared with that of our previous work. The arterial wall was assumed to be viscoelastic and the blood was assumed to be incompressible and non-Newtonian fluid, which is more close to human arterial system. Numerical results indicated that the mass transfer from the arterial surface to flowing blood in regions of disturbed flow is positively related with the wall shear rates and it is significantly enhanced in regions of disturbed flow with a local minimum around the reattachment point which is higher than the average value of the downstream. Therefore, it may be implied that the accumulation of cholesterol or lipids within atheromatous plaques is not caused by the reduced efflux of cholesterol or lipids, but by the infiltration of the LDL (low-density lipoprotein) from the flowing blood to the arterial wall.

  11. Patterns of gravity induced aggregate migration during casting of fluid concretes

    SciTech Connect

    Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.

    2012-12-15

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  12. The Start Of Ebullition In Quiescent, Yield-Stress Fluids

    SciTech Connect

    Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo

    2012-08-30

    Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.

  13. Jetting of a shear banding fluid in rectangular ducts

    NASA Astrophysics Data System (ADS)

    Salipante, Paul F.; Little, Charles A. E.; Hudson, Steven D.

    2017-03-01

    Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report the characteristics and causes of a jetting flow instability of shear banding wormlike micelle solutions in microfluidic channels with rectangular cross sections over an intermediate volumetric flow regime. Particle-tracking methods are used to measure the three-dimensional flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting occurs, it is self-contained within a portion of the channel where the flow velocity is greater than the surroundings. We observe that the instability forms in channels with aspect ratio greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress localizations. Jetting is not observed in a lower concentration solution without shear banding. Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar behavior to the experimental observations and indicate that compressive normal stresses in the cross-stream directions support the development of the jetting flow. Our results show that nonuniform flow of shear thinning fluids can develop across the wide dimension in rectangular microfluidic channels, with implications for microfluidic rheometry.

  14. Squeeze flow of a Carreau fluid during sphere impact

    NASA Astrophysics Data System (ADS)

    Uddin, J.; Marston, J. O.; Thoroddsen, S. T.

    2012-07-01

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Ztip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Ztip = Zmin) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  15. Effect of anticoagulant treatment in deep vein thrombosis: A patient-specific computational fluid dynamics study.

    PubMed

    Fortuny, Gerard; Herrero, Joan; Puigjaner, Dolors; Olivé, Carme; Marimon, Francesc; Garcia-Bennett, Josep; Rodríguez, Daniel

    2015-07-16

    A methodology that might help physicians to establish a diagnostic and treatment tailored for each specific patient with a pathological thrombus is presented. A realistic model for the geometry of a popliteal vein with a thrombus just above the knee was reconstructed from in vivo computed tomography images acquired from one specific patient and then it was used to perform computational fluid dynamics (CFD) simulations. The wall shear stress (WSS) response to the administration of anticoagulant drugs and the influence of viscosity on the shape of the velocity distribution were investigated. Both a Newtonian and a non-Newtonian viscosity model were implemented for different blood flow rates in the range 3-7 cm(3)/s. The effect of anticoagulants on the blood was simulated by setting three different levels of viscosity in the Newtonian model (μ/μ∞=0.60, 0.80 and 1 with μ∞=3.45×10(-3) Pas). A reduction of μ by a given amount always led to a more modest reduction, typically by a factor of two, of the resulting WSS levels. Moreover, for a given flow rate the calculation with the non-Newtonian viscosity model yielded WSS levels between 20% and 40% larger than those obtained in the corresponding Newtonian fluid simulation. It was also found that blood moves slowly in the region between the thrombus and the vein wall, a fact that will favor the growth of the thrombotic mass. Both the mean WSS levels and the degree of sluggishness of the blood flow can be described by functions of the Reynolds number.

  16. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    SciTech Connect

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  17. Magnetoviscous effect of ferrite-based magnetic fluid for EOR application

    NASA Astrophysics Data System (ADS)

    Latiff, Noor Rasyada Ahmad; Soleimani, Hassan; Zaid, Hasnah Mohd; Adil, Muhammad

    2016-11-01

    Magnetic fluid is proposed as a substitute for the application of polymer solution as a means to recover the residual oil left in the bypassed region in oil reservoirs. When subjected to magnetic field, the viscosity of magnetic fluids increases and enable flow control. In this study, the response of magnetic nanofluid with the applied magnetic field was observed as a function of shear rate. Two types of samples, namely magnetite and cobalt ferrite of 0.1% w/v of different polydispersity index, saturation magnetization and mean hydrodynamic particle size were used. The strength of the applied magnetic field was also varied to investigate the effect of magnetic field strength on the viscosity enhancement of magnetic fluid. Shear dependence response of the magnetic fluid exhibit non-Newtonian behavior when magnetic field of 20 to 40 mT was applied. Viscosity of the magnetic fluid reduced with increasing shear rates, showing shear thinning behavior. At a particular shear rate, viscosity remains constant when the strength of magnetic field increases indicating saturation in chain length even at low field. Magnetoviscous effect (MVE) is calculated as an indicator for a viscosity gain magnitude when magnetic field is applied. Cobalt ferrite sample shows larger MVE compared to magnetite that may be attributed to the higher polydispersity index. In conclusion, particle size distribution is the most dominant factor affecting MVE of the dilute magnetic fluid when magnetic field is applied.

  18. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  19. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  20. Pore fluid pressure and shear behavior in debris flows of different compositions

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa; Yohannes, Bereket; Hill, Kimberly; Dietrich, William

    2016-04-01

    Debris flows are mixtures of sediment and water that can have a wide range of different grain size distributions and water contents. The composition of the material is expected to have a strong effect on the development of pore fluid pressures in excess to hydrostatic, which in turn might affect the internal deformation behavior. We present a set of large scale experiments with debris flow mixtures of different compositions in a 4-m diameter rotating drum. Longitudinal profiles of basal fluid pressure and normal stress were measured and a probe to determine fluid pressure at different depths within the flow was developed and tested. Additionally we determined vertical profiles of mean particle velocities in the flow interior by measuring small variations of conductivity of the passing material and calculating the time lag between signals from two independent measurements at a small, known distance apart. Mean values of basal pore fluid pressure range from hydrostatic pressure for gravel-water flows to nearly complete liquefaction for muddy mixtures having a wide grain size distribution. The data indicate that the presence of fines dampens fluctuations of normalized fluid pressure and normal stress and concentrates shear at the base. The mobility of grain-fluid flows is strongly enhanced by a combination of fines in suspension as part of the interstitial fluid and a wide grain size distribution. Excess fluid pressure may arise from fluid displacement by converging grains at the front of the flow and the slow settling of grains through a highly viscous non-Newtonian fluid. Our findings support the need for pore pressure evolution and diffusion equations in debris flow models as they depend on particle size distributions. This study contributes to the understanding of the production of excess fluid pressure in grain fluid mixtures and may guide the development of constitutive models that describe natural events.

  1. Fluid mechanics aspects of magnetic drug targeting.

    PubMed

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  2. The numerical methods for the fluid flow of UCMCWS

    SciTech Connect

    Zhang Wenfu; Li Hui; Zhu Shuquan; Wang Zuna

    1997-12-31

    As an alternative for diesel oil for internal combustion engines, the fluid flow state of Ultra Clean Micronized Coal-Water Slurry (UCMCWS) in mini pipe and nozzle of a diesel engine must be known. In the laboratory three kinds of UCMCWS have been made with coal containing less than 0.8% ash, viscosity less than 600 mPa.s and concentration between 50% and 56%. Because the UCMCWS is a non-Newtonian fluid, there are no analytical resolution for pipe flow, especially in inlet and outlet sections. In this case using the numerical methods to research the flow state of UCMCWS is a useful method. Using the method of finite element, the flow state of UCMCWS in inlet and outlet sections (similar to a nozzle) have been studied. The distribution of velocity at different pressures of UCMCWS in outlet and inlet sections have been obtained. The result of the numerical methods is the efficient base for the pipe and nozzle design.

  3. Microfluidic-SANS: flow processing of complex fluids

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.

    2015-01-01

    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (~3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å-1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter.

  4. Microfluidic-SANS: flow processing of complex fluids

    PubMed Central

    Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.

    2015-01-01

    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å−1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter. PMID:25578326

  5. Passive mechanical behavior of human neutrophils: power-law fluid.

    PubMed Central

    Tsai, M A; Frank, R S; Waugh, R E

    1993-01-01

    The mechanical behavior of the neutrophil plays an important role in both the microcirculation and the immune system. Several laboratories in the past have developed mechanical models to describe different aspects of neutrophil deformability. In this study, the passive mechanical properties of normal human neutrophils have been further characterized. The cellular mechanical properties were assessed by single cell micropipette aspiration at fixed aspiration pressures. A numerical simulation was developed to interpret the experiments in terms of cell mechanical properties based on the Newtonian liquid drop model (Yeung and Evans, Biophys. J., 56: 139-149, 1989). The cytoplasmic viscosity was determined as a function of the ratio of the initial cell size to the pipette radius, the cortical tension, aspiration pressure, and the whole cell aspiration time. The cortical tension of passive neutrophils was measured to be about 2.7 x 10(-5) N/m. The apparent viscosity of neutrophil cytoplasm was found to depend on aspiration pressure, and ranged from approximately 500 Pa.s at an aspiration pressure of 98 Pa (1.0 cm H2O) to approximately 50 Pa.s at 882 Pa (9.0 cm H2O) when tested with a 4.0-micron pipette. These data provide the first documentation that the neutrophil cytoplasm exhibits non-Newtonian behavior. To further characterize the non-Newtonian behavior of human neutrophils, a mean shear rate gamma m was estimated based on the numerical simulation. The apparent cytoplasmic viscosity appears to decrease as the mean shear rate increases. The dependence of cytoplasmic viscosity on the mean shear rate can be approximated as a power-law relationship described by mu = mu c(gamma m/gamma c)-b, where mu is the cytoplasmic viscosity, gamma m is the mean shear rate, mu c is the characteristic viscosity at characteristic shear rate gamma c, and b is a material coefficient. When gamma c was set to 1 s-1, the material coefficients for passive neutrophils were determined to be mu c

  6. Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: Critical points

    NASA Astrophysics Data System (ADS)

    Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra

    2016-05-01

    The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (nc< n < ∞) , mass transfer parameter (sc < s < ∞) and shrinking parameter (χc < χ < 0) . For both the branches (upper and lower branch), the rate of heat transfer is an increasing function of the power-law index, Prandtl number and Biot number, whereas it is a decreasing function of the material constant and thermophoresis parameter.

  7. Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material

    NASA Astrophysics Data System (ADS)

    Son, Kwon Joong; Fahrenthold, Eric P.

    2012-07-01

    The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid’s hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.

  8. Comparing the mechanical properties of the porcine knee meniscus when hydrated in saline versus synovial fluid.

    PubMed

    Lakes, Emily H; Kline, Courtney L; McFetridge, Peter S; Allen, Kyle D

    2015-12-16

    As research progresses to find a suitable knee meniscus replacement, accurate in vitro testing becomes critical for feasibility and comparison studies of mechanical integrity. Within the knee, the meniscus is bathed in synovial fluid, yet the most common hydration fluid in laboratory testing is phosphate buffered saline (PBS). PBS is a relatively simple salt solution, while synovial fluid is a complex non-Newtonian fluid with multiple lubricating factors. As such, PBS may interact with meniscal tissue differently than synovial fluid, and thus, the hydration fluid may be an important factor in obtaining accurate results during in vitro testing. To evaluate these effects, medial porcine menisci were used to evaluate tissue mechanics in tension (n=11) and compression (n=15). In all tests, two samples from the same meniscus were taken, where one sample was hydrated in PBS and the other was hydrated in synovial fluid. Statistical analysis revealed no significant differences between the mean mechanical properties of samples tested in PBS compared to synovial fluid; however, compressive testing revealed the variability between samples was significantly reduced if samples were tested in synovial fluid. For example, the compressive Young׳s Modulus was 12.69±7.49MPa in PBS versus 12.34±4.27MPa in synovial fluid. These results indicate testing meniscal tissue in PBS will largely not affect the mean value of the mechanical properties, but performing compression testing in synovial fluid may provide more consistent results between samples and assist in reducing sample numbers in some experiments.

  9. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub

    2015-02-01

    This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  10. Development of an isolator working with magnetorheological elastomers and fluids

    NASA Astrophysics Data System (ADS)

    Sun, S. S.; Yang, J.; Li, W. H.; Du, H.; Alici, G.; Yan, T. H.; Nakano, Masami

    2017-01-01

    This paper reports an isolator whose damping and stiffness can be simultaneously controlled by magnetorheological (MR) fluids and MR elastomers. A hydraulically actuated MTS machine was used to test this variable stiffness and damping isolator after its prototype. The field-dependent responses including stiffness variability and damping variability, together with the amplitude-dependent response and frequency-dependent responses were separately tested and analyzed successively. The experimental results prove the successful implementation of the as-designed MRE-F isolator with obvious variable damping and stiffness. A new phenomenological model incorporating Bingham model and four-parameter model was developed to describe the dynamic properties of the isolator. The successful development, experimental testing, and modelling of this innovative variable stiffness and damping isolator make the concept of variable stiffness and damping become feasible.

  11. Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression

    NASA Astrophysics Data System (ADS)

    Pinto, F.; Meo, M.

    2016-09-01

    The ability to absorb a large amount of energy during an impact event without generating critical damages represents a key feature of new generation composite systems. Indeed, the intrinsic layered nature of composite materials allows the embodiment of specific hybrid plies within the stacking sequence that can be exploited to increase impact resistance and damping of the entire structure without dramatic weight increase. This work is based on the development of an impact-resistant hybrid composite obtained by including a thin layer of Non-Newtonian silica based fluid in a carbon fibres reinforced polymer (CFRP) laminate. This hybrid phase is able to respond to an external solicitation by activating an order-disorder transition that thickens the fluid increasing its viscosity, hence dissipating the energy impact without any critical failure. Several Shear Thickening Fluids (STFs) were manufactured by changing the dimensions of the particles that constitute the disperse phase and their concentrations into the continuous phase. The dynamic viscosity of the different STFs was evaluated via rheometric tests, observing both shear thinning and shear thickening effects depending on the concentration of silica particles. The solutions were then embedded as an active layer within the stacking sequence to manufacture the hybrid CFRP laminates with different embedded STFs. Free vibration tests were carried out in order to assess the damping properties of the different laminates, while low velocity impact tests were used to evaluate their impact properties. Results indicate that the presence of the non-Newtonian fluid is able to absorb up to 45 % of the energy during an impact event for impacts at 2.5 m/s depending on the different concentrations and particles dimensions. These results were confirmed via C-Scan analyses to assess the extent of the internal delamination.

  12. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  13. Fluid outflows from Venus impact craters - Analysis from Magellan data

    NASA Technical Reports Server (NTRS)

    Asimow, Paul D.; Wood, John A.

    1992-01-01

    Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.

  14. Physical principles of fluid-mediated insect attachment - Shouldn't insects slip?

    PubMed

    Dirks, Jan-Henning

    2014-01-01

    Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrates are separated by a continuous layer of fluid. This review summarizes the key physical and tribological principles that determine the adhesion and friction in such a model. Interestingly, such a simple wet-adhesion model falls short in explaining several features of insect adhesion. For example, it cannot predict the observed high static friction forces of the insects, which enable them to cling to vertical smooth substrates without sliding. When taking a closer look at the "classic" attachment model, one can see that it is based on several simplifications, such as rigid surfaces or continuous layers of Newtonian fluids. Recent experiments show that these assumptions are not valid in many cases of insect adhesion. Future tribological models for insect adhesion thus need to incorporate deformable adhesive pads, non-Newtonian properties of the adhesive fluid and/or partially "dry" or solid-like contact between the pad and the substrate.

  15. Flow boundary conditions for fluid mixtures at solid walls and moving contact lines

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2005-11-01

    Molecular simulations of slip at solid surfaces have focused on single component systems, but polymers are frequently blended to optimize performance. This talk will examine counterintuitive behavior that can arise when binary fluid mixtures flow past stationary solid walls in simple shear and at moving contact lines. In general the velocities of the two species do not go to zero at the walls. In addition to the slip found for single fluids, there may be velocity discontinuities due to diffusive fluxes and to interfacial forces when there is a concentration gradient.^1 Cases where the fluid velocity is largest near the wall and where the apparent slip length diverges will be shown, and a general boundary condition for multi-phase flow presented. The no-slip boundary condition leads to singular dissipation when the contact line between a fluid interface and solid moves, but it was suggested that a diffusive flux could remove this singularity.^2 The flow and stress near moving contact lines are analyzed for a range of interfacial widths, velocities and interactions. A significant diffusive flux is only observed in the layer closest to the solid and is not sufficient to remove the singularity. Instead, the finite molecular size and non-Newtonian effects cutoff the singularity.1. C. Denniston and M. O. Robbins, Phys. Rev. Lett. 87, 178302 (2001).2. H.-Y. Chen and D. Jasnow and J. Vinals, Phys. Rev. Lett. 85, 1686 (2000).

  16. Amniotic fluid

    MedlinePlus

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  17. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    PubMed

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics.

  18. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb

    Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.

  19. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals

    USGS Publications Warehouse

    Rosasco, G.J.; Roedder, E.

    1979-01-01

    Rosasco et al. (1975), reported the first successful application of laser-excited Raman spectroscopy for the identification and nondestructive partial analysis of individual solid, liquid, and gaseous phases in selected fluid inclusions. We report here the results of the application of a new instrument, based on back-scattering, that eliminates many of the previous stringent sample limitations and hence greatly expands the range of applicability of Raman spectroscopy to fluid inclusions. Fluid inclusions in many porphyry copper deposits contain 5-10 ??m 'daughter' crystals thought to be anhydrite but too small for identification by the previous Raman technique. Using the new instrument, we have verified that such daughter crystals in quartz from Bingham, Utah, are anhydrite. They may form by leakage of hydrogen causing internal autooxidation of sulfide ion. Daughter crystals were also examined in apatite (Durango, Mexico) and emerald (Muzo, Colombia). Valid analyses of sulfur species in solution in small fluid inclusions from ore deposits would be valuable, but are generally impossible by conventional methods. We present a calibration procedure for analyses for SO42- in such inclusions from Bingham, Utah (12,000 ?? 4000 ppm) and Creede, Colo. (probably < 500 ppm). A fetid Brazilian quartz, originally thought to contain liquid H2S, is shown to contain only HS- in major amounts. ?? 1979.

  20. A numerical model for dynamic crustal-scale fluid flow

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  1. Rheology of cubic particles suspended in a Newtonian fluid.

    PubMed

    Cwalina, Colin D; Harrison, Kelsey J; Wagner, Norman J

    2016-05-18

    Many real-world industrial processes involve non-spherical particles suspended in a fluid medium. Knowledge of the flow behavior of these suspensions is essential for optimizing their transport properties and designing processing equipment. In the present work, we explore and report on the rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and normal stress differences at high shear stresses. Scalings are proposed to connect the material properties of these suspensions of cubic particle to those measured for suspensions of spherical particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models for the viscosity and normal stress difference coefficients are presented for the shear-thickened state. The results of this study indicate that cubic particles offer new and unique opportunities to formulate colloidal dispersions for field-responsive materials.

  2. Heat Transfer in Complex Fluids

    SciTech Connect

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian

  3. CFD simulation of anaerobic digester with variable sewage sludge rheology.

    PubMed

    Craig, K J; Nieuwoudt, M N; Niemand, L J

    2013-09-01

    A computational fluid dynamics (CFD) model that evaluates mechanical mixing in a full-scale anaerobic digester was developed to investigate the influence of sewage sludge rheology on the steady-state digester performance. Mechanical mixing is provided through an impeller located in a draft tube. Use is made of the Multiple Reference Frame model to incorporate the rotating impeller. The non-Newtonian sludge is modeled using the Hershel-Bulkley law because of the yield stress present in the fluid. Water is also used as modeling fluid to illustrate the significant non-Newtonian effects of sewage sludge on mixing patterns. The variation of the sewage sludge rheology as a result of the digestion process is considered to determine its influence on both the required impeller torque and digester mixing patterns. It was found that when modeling the fluid with the Hershel-Bulkley law, the high slope of the sewage stress-strain curve at high shear rates causes significant viscous torque on the impeller surface. Although the overall fluid shear stress property is reduced during digestion, this slope is increased with sludge age, causing an increase in impeller torque for digested sludge due to the high strain rates caused by the pumping impeller. Consideration should be given to using the Bingham law to deal with high strain rates. The overall mixing flow patterns of the digested sludge do however improve slightly.

  4. Thermal Elasto-Hydrodynamic Lubrication by Non - Fluids with Rough Surfaces: its Application to Spur Gear Transmission.

    NASA Astrophysics Data System (ADS)

    Wang, Jian M.

    1995-01-01

    A theoretical investigation of the behavior of thermal elasto-hydrodynamic lubrication by non-Newtonian fluids under rough surfaces has been conducted. The study consists of two parts. In the first part, a general line contact elasto-hydrodynamic lubrication model is derived, which integrates several critical effects such as rheological characteristics of lubricants, roughness and temperature into one system. A more effective numerical algorithm is adopted to obtains the solutions under wide ranges of operating conditions. Observations and extensive discussions of the results lead to further understand the phenomena of the different interactions among the various factors in a elasto-hydrodynamic lubrication process. In the second part, the forgoing theory is applied to the specific problem of the spur gear transmission. Various kinematics and dynamics features associated with the lubrication process in the spur gear have been investigated. The results has shown that the pitch point EHL film thickness does not reliably represent the minimum EHL film thickness. The full thermal EHL calculation along the line of action is needed in order to predict the minimum film thickness and pressure peak more precisely. The actual location of the minimum film thickness along the line of action is strongly influenced by the dynamic load sharing profile. Surface roughness has the moderate effect on the gear lubrication. The effects become more significant when the roughness amplitudes approach the nominal film thickness. Non-Newtonian behavior of lubricants may significantly alter the level of the minimum film thickness and temperature distribution, but has only small effect on pressure peak.

  5. 3D-printed soft microrobot for swimming in biological fluids.

    PubMed

    Qiu, Tian; Palagi, Stefano; Fischer, Peer

    2015-08-01

    Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable micro-swimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

  6. A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows

    NASA Astrophysics Data System (ADS)

    Martins, F. P.; Oishi, C. M.; Afonso, A. M.; Alves, M. A.

    2015-12-01

    This work presents a numerical application of a generic conformation tensor transformation for simulating highly elastic flows of non-Newtonian fluids typically observed in computational rheology. In the Kernel-conformation framework [14], the conformation tensor constitutive law for a viscoelastic fluid is transformed introducing a generic tensor transformation function. The numerical stability of the application of the Kernel-conformation for highly elastic flows is ultimately related with the specific kernel function used in the matrix transformation, but also to the existence of singularities introduced either by flow geometry or by the characteristics of the constitutive equation. In this work, we implement this methodology in a free-surface Marker-And-Cell discretization methodology implemented in a finite differences method. The main contributions of this work are two fold: on one hand, we demonstrate the accuracy of this Kernel-conformation formulation using a finite differences method and free surfaces; on the other hand, we assess the numerical efficiency of specific kernel functions at high-Weissenberg number flows. The numerical study considers different viscoelastic fluid flow problems, including the Poiseuille flow in a channel, the lid-driven cavity flow and the die-swell free surface flow. The numerical results demonstrate the adequacy of this methodology for high Weissenberg number flows using the Oldroyd-B model.

  7. Experimental and computational fluid dynamic studies of mixing for complex oral health products

    NASA Astrophysics Data System (ADS)

    Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota

    2015-11-01

    Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.

  8. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  9. Fluid simulations with atomistic resolution: a hybrid multiscale method with field-wise coupling

    SciTech Connect

    Borg, Matthew K.; Lockerby, Duncan A.; Reese, Jason M.

    2013-12-15

    We present a new hybrid method for simulating dense fluid systems that exhibit multiscale behaviour, in particular, systems in which a Navier–Stokes model may not be valid in parts of the computational domain. We apply molecular dynamics as a local microscopic refinement for correcting the Navier–Stokes constitutive approximation in the bulk of the domain, as well as providing a direct measurement of velocity slip at bounding surfaces. Our hybrid approach differs from existing techniques, such as the heterogeneous multiscale method (HMM), in some fundamental respects. In our method, the individual molecular solvers, which provide information to the macro model, are not coupled with the continuum grid at nodes (i.e. point-wise coupling), instead coupling occurs over distributed heterogeneous fields (here referred to as field-wise coupling). This affords two major advantages. Whereas point-wise coupled HMM is limited to regions of flow that are highly scale-separated in all spatial directions (i.e. where the state of non-equilibrium in the fluid can be adequately described by a single strain tensor and temperature gradient vector), our field-wise coupled HMM has no such limitations and so can be applied to flows with arbitrarily-varying degrees of scale separation (e.g. flow from a large reservoir into a nano-channel). The second major advantage is that the position of molecular elements does not need to be collocated with nodes of the continuum grid, which means that the resolution of the microscopic correction can be adjusted independently of the resolution of the continuum model. This in turn means the computational cost and accuracy of the molecular correction can be independently controlled and optimised. The macroscopic constraints on the individual molecular solvers are artificial body-force distributions, used in conjunction with standard periodicity. We test our hybrid method on the Poiseuille flow problem for both Newtonian (Lennard-Jones) and non-Newtonian

  10. Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    PubMed

    Ali, N; Javid, K; Sajid, M; Anwar Bég, O

    2016-01-01

    Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n < 1) greater Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.

  11. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  12. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  13. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  14. An efficient implicit unstructured finite volume solver for generalised Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Jalali, Alireza; Sharbatdar, Mahkame; Ollivier-Gooch, Carl

    2016-03-01

    An implicit finite volume solver is developed for the steady-state solution of generalised Newtonian fluids on unstructured meshes in 2D. The pseudo-compressibility technique is employed to couple the continuity and momentum equations by transforming the governing equations into a hyperbolic system. A second-order accurate spatial discretisation is provided by performing a least-squares gradient reconstruction within each control volume of unstructured meshes. A central flux function is used for the convective terms and a solution jump term is added to the averaged component for the viscous terms. Global implicit time-stepping using successive evolution-relaxation is utilised to accelerate the convergence to steady-state solutions. The performance of our flow solver is examined for power-law and Carreau-Yasuda non-Newtonian fluids in different geometries. The effects of model parameters and Reynolds number are studied on the convergence rate and flow features. Our results verify second-order accuracy of the discretisation and also fast and efficient convergence to the steady-state solution for a wide range of flow variables.

  15. On a difficulty in eigenfunction expansion solutions for the start-up of fluid flow

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.

    2015-11-01

    Most mathematics and engineering textbooks describe the process of ``subtracting off'' the steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be solved by separation of variables (i.e., eigenfunction expansions). While this method produces the correct solution for the start-up of the flow of, e.g., a Newtonian fluid between parallel plates, it can lead to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show that the reason for this is the non-rigorous enforcement of the start-up condition in the textbook approach, which leads to a violation of the principle of causality. Nevertheless, these boundary-value problems can be solved correctly using eigenfunction expansions, and we present the formulation that makes this possible (in essence, an application of Duhamel's principle). The solutions obtained by this new approach are shown to agree identically with those obtained by using the Laplace transform in time only, a technique that enforces the proper start-up condition implicitly (hence, the same error cannot be committed). Supported, in part, by NSF Grant DMS-1104047 and the U.S. DOE (Contract No. DE-AC52-06NA25396) through the LANL/LDRD Program.

  16. Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2014-10-01

    In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.

  17. Experimental study and CFD simulation of rotational eccentric cylinder in a magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Omidbeygi, F.; Hashemabadi, S. H.

    2012-07-01

    In this study, a magnetorheological (MR) fluid is prepared using carbonyl iron filings and low viscosity lubricating oil. The effects of magnetic field and weight percentage of particles on the viscosity of the MR fluid have been measured using a rotational viscometer. The yield stress under an applied magnetic field was also obtained experimentally. In the absence of an applied magnetic field, the MR fluid behaves as a Newtonian fluid. When the magnetic field is applied, the MR fluid behaves like Bingham plastics with a magnetic field dependent yield stress. Afterward, the results compared with those of CFD simulation of two eccentric cylinders in the MR fluid. Results show that the influences of MR effects, caused by the applied magnetic field, on the model characteristics are significant and not negligible. The viscosity is enhanced by increasing of the magnetic field, eccentricity ratio and weight percentage of suspensions. The MR effects and increasing of weight percentage and eccentricity ratio also provide an enhancement in the yield stresses and required total torque for rotation of inner cylinder. Also the simulation results indicate a good representation of the experiment by the model.

  18. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation

    NASA Astrophysics Data System (ADS)

    Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.

    2016-11-01

    A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.

  19. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms.

    PubMed

    Biasetti, Jacopo; Spazzini, Pier Giorgio; Swedenborg, Jesper; Gasser, T Christian

    2012-01-01

    Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.

  20. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  1. Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery.

    PubMed

    Anastasiou, A D; Spyrogianni, A S; Koskinas, K C; Giannoglou, G D; Paras, S V

    2012-03-01

    The scope of this work is to study the pulsatile flow of a blood mimicking fluid in a micro channel that simulates a bifurcated small artery, in which the Fahraeus-Lindqvist effect is insignificant. An aqueous glycerol solution with small amounts of xanthan gum was used for simulating viscoelastic properties of blood and in vivo flow conditions were reproduced. Local flow velocities were measured using micro Particle Image Velocimetry (μ-PIV). From the measured velocity distributions, the wall shear stress (WSS) and its variation during a pulse were estimated. The Reynolds numbers employed are relatively low, i.e. similar to those prevailing during blood flow in small arteries. Experiments both with a Newtonian and a non-Newtonian fluid (having asymptotic viscosity equal to the viscosity of the Newtonian one) proved that the common assumption that blood behaves as a Newtonian fluid is not valid for blood flow in small arteries. It was also shown that the outer wall of the bifurcation, which is exposed to a lower WSS, is more predisposed to atherosclerotic plaque formation. Moreover, this region in small vessels is shorter than the one in large arteries, as the developed secondary flow decays faster. Finally, the WSS values in small arteries were found to be lower than those in large ones.

  2. Porous gravity currents: A survey to determine the joint influence of fluid rheology and variations of medium properties

    NASA Astrophysics Data System (ADS)

    Ciriello, Valentina; Longo, Sandro; Chiapponi, Luca; Di Federico, Vittorio

    2016-06-01

    We develop a model to grasp the combined effect of rheology and spatial stratifications on two-dimensional non-Newtonian gravity-driven flow in porous media. We consider a power-law constitutive equation for the fluid, and a monomial variation of permeability and porosity along the vertical direction (transverse to the flow) or horizontal direction (parallel to the flow). Under these assumptions, similarity solutions are derived in semi-analytical form for thin gravity currents injected into a two-dimensional porous medium and having constant or time-varying volume. The extent and shape of the porous domain affected by the injection is significantly influenced by the interplay of model parameters. These describe the fluid (flow behaviour index n), the spatial heterogeneity (coefficients β, γ, δ, ω for variations of permeability and porosity in the horizontal or vertical direction), and the type of release (volume exponent α). Theoretical results are validated against two sets of experiments with α = 1 (constant inflow) conducted with a stratified porous medium (simulated by superimposing layers of glass beads of different diameter) and a Hele-Shaw analogue for power-law fluid flow, respectively. In the latter case, a recently established Hele-Shaw analogy is extended to the variation of properties parallel to the flow direction. Comparison with experimental results shows that the proposed model is able to capture the propagation of the current front and the current profile.

  3. Demonstration of Mixing and Transferring Settling Cohesive Slurry Simulants in the AY-102 Tank - 12323

    SciTech Connect

    Adamson, Duane J.; Gauglitz, Phillip A.

    2012-07-01

    In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non- Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. Testing results show that water always transfers less seed particles, and is conservative when compared to fluids with a higher yield stress and/or higher viscosity at the same mixing/transfer parameters. The impact of non-Newtonian fluid properties depends on the magnitude of the yield stress. A higher yield stress in the carrier fluid resulted in more seed particles being transferred to the RTs. A dimensional analysis highlighting the role of a yield stress (due to cohesive particle interactions) defined four regions of behavior and indicates how the results obtained in this study can be applied to the full-scale mixing behavior of a high level waste tank. The analysis indicates that the regions of behavior for full-scale mixing have been adequately represented by the current small-scale tests. (authors)

  4. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    NASA Astrophysics Data System (ADS)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  5. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils

    PubMed

    Kelly; Humphrey

    1998-03-01

    Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers.

  6. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    SciTech Connect

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

  7. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  8. Further validation to the variational method to obtain flow relations for generalized Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2015-05-01

    We continue our investigation to the use of the variational method to derive flow relations for generalized Newtonian fluids in confined geometries. While in the previous investigations we used the straight circular tube geometry with eight fluid rheological models to demonstrate and establish the variational method, the focus here is on the plane long thin slit geometry using those eight rheological models, namely: Newtonian, power law, Ree-Eyring, Carreau, Cross, Casson, Bingham and Herschel-Bulkley. We demonstrate how the variational principle based on minimizing the total stress in the flow conduit can be used to derive analytical expressions, which are previously derived by other methods, or used in conjunction with numerical procedures to obtain numerical solutions which are virtually identical to the solutions obtained previously from well established methods of fluid dynamics. In this regard, we use the method of Weissenberg-Rabinowitsch- Mooney-Schofield (WRMS), with our adaptation from the circular pipe geometry to the long thin slit geometry, to derive analytical formulae for the eight types of fluid where these derived formulae are used for comparison and validation of the variational formulae and numerical solutions. Although some examples may be of little value, the optimization principle which the variational method is based upon has a significant theoretical value as it reveals the tendency of the flow system to assume a configuration that minimizes the total stress. Our proposal also offers a new methodology to tackle common problems in fluid dynamics and rheology.

  9. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.

    PubMed

    Kiani, H; Mousavi, M E; Mousavi, Z E

    2010-12-01

    Fluid gels are known to be very shear-thinning materials with yield stress. In this study, the rheological properties of gellan and gellan-pectin fluid gels in fermented dairy drinks were evaluated using viscometric measurements. Both gellan- and gellan-pectin-containing solutions showed the rheological properties of fluid gels resulting in stabilization of particles; but no evidence of a fluid gel was observed for those with pectin alone and those with no hydrocolloid content. Unlike pectin, gellan gum was capable of creating significant values of yield stress and accordingly stabilized colloidal particles and extrinsic added solid particles in the fermented dairy drink. However, pectin improved the stability in combination with gellan. The origin of fluid gel formation was assumed to be both permanent interactions occurring between gellan and proteins, forming hairy particle gels and transient interactions between the particle gels. The significance of yield stress values for particle stability was demonstrated and two methods, including a noteworthy infinite apparent viscosity method and a conventional Bingham approach, were employed to calculate the values of yield stress. Both the methods showed a good application potential due to their simplicity, reasonable results and also wide availability of the instrument applied.

  10. Flow and Geometry Control the Onset of Jamming in Fractures with High Solid-Fraction Fluids

    NASA Astrophysics Data System (ADS)

    Medina, R.; Elkhoury, J. E.; Shannon, L. J.; Detwiler, R. L.; Morris, J.; Prioul, R.; Desroches, J.

    2013-12-01

    Fluids containing a large fraction of suspended solids are common in the subsurface. Examples include fluids used for environmental remediation, hydraulic fracturing fluids and magma. These fluid-solid mixtures behave as non-Newtonian fluids where interactions between fluid, suspended solids, and pore walls can lead to jamming of the suspended solids. Jamming causes the velocity of the solid to decrease locally to zero causing a rapid decrease in permeability as the fluid is forced to flow through the pore space within the immobilized solid. Here we present results from experiments that quantify the flow of non-Newtonian suspensions in an analog parallel-plate fracture (transparent 15cm x 15cm with ~3-mm aperture) and explore the dependence of jamming on flow conditions, fracture geometry, and the action of gravity. We used guar gum mixed with water (0.75%) as the fluid and added 50% by volume of crushed silica (< 300μm). Flow rates ranged from 0.2ml/min to 6.0ml/min, cell orientation varied from horizontal to vertical (bottom to top) flow and a transducer provided continuous measurement of differential pressure across the cell. A strobed LED panel backlit the cell and a high-resolution CCD camera captured frequent (0.2 Hz) images during all experiments. Particle image velocimetry (PIV) yielded measurements of the evolving velocity field during experiments (see Figure). In the vertical orientation during the initial period of high flow rate, outflow decreased rapidly and the differential pressure increased indicating jamming within the cell. Subsequent efforts to flush solids from the cell suggested that jamming occurred at the inlet of the cell. This was likely due to settling of solids within the flow field indicating that the time scale associated with settling was shorter than the time scale of advection through the cell. In the horizontal orientation, localized jamming occurred at the lowest flow rate in a region near the outlet. This suggests that when

  11. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  12. Wellbore fluid

    SciTech Connect

    Dorsey, D.L.; Corley, W.T.

    1983-12-27

    A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.

  13. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2004-08-05

    The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 microL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25 degrees C +/- 0.5 degrees C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

  14. Electrophoresis of a sphere at an arbitrary position in a spherical cavity filled with Carreau fluid.

    PubMed

    Hsu, Jyh-Ping; Hung, Shih-Hsing; Yu, Hsiu-Yu

    2004-12-01

    Boundary effects on the electrophoretic behavior of a charged entity are of both fundamental and practical significance. Here, they are examined by considering the case where a sphere is at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electrical field. Previous analyses are extended to the case of a non-Newtonian fluid, and a Carreau model is adopted for this purpose. The effects of key parameters such as the thickness of a double layer, the relative sizes of particle and cavity, the position of a particle, and the nature of a fluid on the electrophoretic mobility of a particle are discussed. Several interesting phenomena are observed. For example, if the applied electric field points toward north, the mobility of a particle has a local maximum when it is at the center of a cavity. However, if a particle is sufficiently close to the north pole of a cavity, its mobility exhibits a local minimum as its position varies. This does not occur when the particle is close to the south pole of the cavity; instead, it may move in the direction opposite to that of the applied electric field. For a Newtonian fluid, if a particle is close to the north pole of a cavity, its upward movement yields a clockwise (counterclockwise) vortex near the north pole of the cavity and a counterclockwise (clockwise) vortex near the south pole of the cavity on its right (left)-hand side. The latter is not observed for a Carreau fluid.

  15. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  16. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  17. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  18. High frequency electromagnetism, heat transfer and fluid flow coupling in ANSYS multiphysics.

    PubMed

    Sabliov, Cristina M; Salvi, Deepti A; Boldor, Dorin

    2007-01-01

    The goal of this study was to numerically predict the temperature of a liquid product heated in a continuous-flow focused microwave system by coupling high frequency electromagnetism, heat transfer, and fluid flow in ANSYS Multiphysics. The developed model was used to determine the temperature change in water processed in a 915 MHz microwave unit, under steady-state conditions. The influence of the flow rates on the temperature distribution in the liquid was assessed. Results showed that the average temperature of water increased from 25 degrees C to 34 degrees C at 2 l/min, and to 42 degrees C at 1 l/min. The highest temperature regions were found in the liquid near the center of the tube, followed by progressively lower temperature regions as the radial distance from the center increased, and finally followed by a slightly higher temperature region near the tube's wall corresponding to the energy distribution given by the Mathieu function. The energy distribution resulted in a similar temperature pattern, with the highest temperatures close to the center of the tube and lower at the walls. The presented ANSYS Multiphysics model can be easily improved to account for complex boundary conditions, phase change, temperature dependent properties, and non-Newtonian flows, which makes for an objective of future studies.

  19. Modelling the fluid mechanics of cilia and flagella in reproduction and development.

    PubMed

    Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R

    2012-10-01

    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

  20. Emergence of Coherent Localized Structures in Shear Deformations of Temperature Dependent Fluids

    NASA Astrophysics Data System (ADS)

    Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios E.

    2016-12-01

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states—in the form of similarity solutions—that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in uc(Katsaounis) and uc(Tzavaras) (SIAM J Appl Math 69:1618-1643, 2009).