Sample records for non-uniform sampling theory

  1. New non-linear photovoltaic effect in uniform bipolar semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitudemore » is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.« less

  2. Measurement of non-uniform residual stresses by combined Moiré interferometry and hole-drilling method: Theory, experimental method and applications

    NASA Astrophysics Data System (ADS)

    Ya, Min; Dai, Fulong; Xie, Huimin; Lü, Jian

    2003-12-01

    Hole-drilling method is one of the most convenient methods for engineering residual stress measurement. Combined with moiré interferometry to obtain the relaxed whole-field displacement data, hole-drilling technique can be used to solve non-uniform residual stress problems, both in-depth and in-plane. In this paper, the theory of moiré interferometry and incremental hole-drilling (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation. An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented. Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.

  3. A non-uniformly under-sampled blade tip-timing signal reconstruction method for blade vibration monitoring.

    PubMed

    Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun

    2015-01-22

    High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  4. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    PubMed Central

    Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun

    2015-01-01

    High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612

  5. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi

    2018-04-01

    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  6. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  7. Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast Cancer and Nonlinear Reconstruction

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0524 TITLE: Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast Cancer and Nonlinear Reconstruction...author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...COVERED 30 Sep 2016 - 29 Sep 2017 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast

  8. Kaon Condensation and the Non-Uniform Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi

    2004-04-01

    Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.

  9. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and uniformity index of meltblown and spunbond samples was measured. Results for filtration test show some deviation between theoretical and experimental filtration efficiency by considering different types of fiber diameter. This deviation can occur due to variation in basis weight non-uniformity. So an appropriate theory is required to predict the variation of filtration efficiency with respect to non-uniformity of nonwoven filter media. And the results for air permeability test showed that uniformity index determined by quadrant method and measured properties have some relationship. In the other word, air permeability decreases as uniformity index on nonwoven web increase.

  10. Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory

    NASA Astrophysics Data System (ADS)

    Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.

    2018-01-01

    The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.

  11. Evidence against the temporal subsampling account of illusory motion reversal

    PubMed Central

    Kline, Keith A.; Eagleman, David M.

    2010-01-01

    An illusion of reversed motion may occur sporadically while viewing continuous smooth motion. This has been suggested as evidence of discrete temporal sampling by the visual system in analogy to the sampling that generates the wagon–wheel effect on film. In an alternative theory, the illusion is not the result of discrete sampling but instead of perceptual rivalry between appropriately activated and spuriously activated motion detectors. Results of the current study demonstrate that illusory reversals of two spatially overlapping and orthogonal motions often occur separately, providing evidence against the possibility that illusory motion reversal (IMR) is caused by temporal sampling within a visual region. Further, we find that IMR occurs with non-uniform and non-periodic stimuli—an observation that is not accounted for by the temporal sampling hypothesis. We propose, that a motion aftereffect is superimposed on the moving stimulus, sporadically allowing motion detectors for the reverse direction to dominate perception. PMID:18484852

  12. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    NASA Astrophysics Data System (ADS)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  13. Brillouin zone grid refinement for highly resolved ab initio THz optical properties of graphene

    NASA Astrophysics Data System (ADS)

    Warmbier, Robert; Quandt, Alexander

    2018-07-01

    Optical spectra of materials can in principle be calculated within numerical frameworks based on Density Functional Theory. The huge numerical effort involved in these methods severely constraints the accuracy achievable in practice. In the case of the THz spectrum of graphene the primary limitation lays in the density of the reciprocal space sampling. In this letter we have developed a non-uniform sampling using grid refinement to achieve a high local sampling density with only moderate numerical effort. The resulting THz electron energy loss spectrum shows a plasmon signal below 50 meV with a ω(q) ∝√{ q } dispersion relation.

  14. Non-circulatory fluid forces on porous bodies with application to panel flutter

    NASA Astrophysics Data System (ADS)

    Hajian, Rozhin; Jaworski, Justin W.

    2017-11-01

    The non-circulatory fluid forces acting on an oscillating porous panel or airfoil in uniform incompressible flow are derived from linearized potential theory. The fundamental integral equation for Holder-continuous porosity distributions is formulated and solved numerically for the special cases of non-porous and uniformly-porous panels with prescribed structural deformations. The new unsteady aerodynamic forces are then applied to aeroelastic stability predictions for porous panels or liners. Results from this analysis aim to form the basis of a complete unsteady aerodynamic theory for porous airfoils and their acoustic emissions based upon the unique attributes of natural fliers and swimmers.

  15. Experimental derivation of the fluence non-uniformity correction for air kerma near brachytherapy linear sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, E. A.; Almeida, C. E. de

    2008-07-15

    In brachytherapy, one of the elements to take into account for measurements free in air is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by two available theories by Kondo and Randolph [Radiat. Res. 13, 37-60 (1960)] and Bielajew [Phys. Med. Biol. 35, 517-538 (1990)], both conceived for point sources. This work presents the experimental validation of the Monte Carlo calculations made by Rodriguez and deAlmeida [Phys. Med. Biol. 49, 1705-1709 (2004)] for the non-uniformity correction specifically formore » a Cs-137 linear source measured using a Farmer type ionization chamber. The experimental values agree very well with the Monte Carlo calculations and differ from the results predicted by both theoretical models widely used. This result confirms that for linear sources there are some important differences at short distances from the source and emphasizes that those theories should not be used for linear sources. The data provided in this study confirm the limitations of the mentioned theories when linear sources are used. Considering the difficulties and uncertainties associated with the experimental measurements, it is recommended to use the Monte Carlo data to assess the non-uniformity factors for linear sources in situations that require this knowledge.« less

  16. Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Wattanasakulpong, Nuttawit; Chaikittiratana, Arisara; Pornpeerakeat, Sacharuck

    2018-06-01

    In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton's principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions.

  17. The effects of temperament, psychopathy, and childhood trauma among delinquent youth: A test of DeLisi and Vaughn's temperament-based theory of crime.

    PubMed

    DeLisi, Matt; Fox, Bryanna H; Fully, Matthew; Vaughn, Michael G

    Recent interest among criminologists on the construct of temperament has been fueled by DeLisi and Vaughn's (2014) temperament-based theory of antisocial behavior. Their theory suggests that core self-regulation capacity and negative emotionality are the most salient temperament features for understanding the emergence and maintenance of antisocial and violent behavior, even among offending populations. The present study tests the relative effects of these temperamental features along with psychopathic traits and trauma in their association with violent and non-violent delinquency in a sample of 252 juvenile offenders. Results from a series of negative binomial regression models indicate that temperament was uniformly more strongly associated with violent and non-violent delinquency than psychopathic traits and childhood traumatic events. Exploratory classification models suggested that temperament and psychopathy possessed similar predictive capacity, but neither surpassed prior history of violence and delinquency as a predictor of future offending. Overall, findings are supportive of DeLisi and Vaughn's temperament-based theory and suggest temperament as conceptualized and measured in the present study may play an important role as a risk factor for violent and non-violent delinquency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling

    PubMed Central

    Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2016-01-01

    Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464

  19. The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chin Mo; Na, Eunhye; Kim, Ingyu

    2015-05-07

    With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe{sub 2}O{sub 3}) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ′) and loss tangent (δ) atmore » 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.« less

  20. Toward microscale flow control using non-uniform electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran

    2018-02-01

    We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.

  1. Polarization-color mapping strategies: catching up with color theory

    NASA Astrophysics Data System (ADS)

    Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2017-09-01

    Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.

  2. Definition of a new thermal contrast and pulse correction for defect quantification in pulsed thermography

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Ibarra-Castanedo, Clemente; Bendada, AbdelHakim; Maldague, Xavier; Loaiza, Humberto; Caicedo, Eduardo

    2008-01-01

    It is well known that the methods of thermographic non-destructive testing based on the thermal contrast are strongly affected by non-uniform heating at the surface. Hence, the results obtained from these methods considerably depend on the chosen reference point. The differential absolute contrast (DAC) method was developed to eliminate the need of determining a reference point that defined the thermal contrast with respect to an ideal sound area. Although, very useful at early times, the DAC accuracy decreases when the heat front approaches the sample rear face. We propose a new DAC version by explicitly introducing the sample thickness using the thermal quadrupoles theory and showing that the new DAC range of validity increases for long times while preserving the validity for short times. This new contrast is used for defect quantification in composite, Plexiglas™ and aluminum samples.

  3. Widefield fluorescence sectioning with HiLo microscopy.

    PubMed

    Mertz, Jerome; Lim, Daryl; Chu, Kengyeh K; Bozinovic, Nenad; Ford, Timothy

    2009-01-01

    HiLo microscopy is a widefield fluorescence imaging technique that provides depth discrimination by combining two images, one with non-uniform illumination and one with uniform illumination. We discuss the theory of this technique and a variety of practical implementations in brain-tissue imaging and fluorescence endomicroscopy.

  4. Marcus-Hush-Chidsey theory of electron transfer to and from species bound at a non-uniform electrode surface: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.

    2011-11-01

    Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.

  5. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    NASA Astrophysics Data System (ADS)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  6. On the ground state of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  7. Theory and Simulation of Gain-Guided Noncollinear Modes in Chirped Quasi-Phase-Matched Optical Parametric Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    Chirped quasi-phase-matched (QPM) gratings offer essentially constant gain over wide bandwidths, making them promising candidates for short-pulse optical parametric amplifiers. However, experiments have shown that high-gain non-collinear processes exist in spite of the dephasing caused by the non-uniformity of the QPM grating and compete with the desired collinear broadband gain of the amplifier. In this paper, these non-collinear gain-guided modes are investigated numerically and analytically in a model that includes longitudinal non-uniformity of the phase-matching profile, lateral localization of the pump beam and non-collinear propagation of the interacting waves.

  8. Parametric excitation of tire-wheel assemblies by a stiffness non-uniformity

    NASA Astrophysics Data System (ADS)

    Stutts, D. S.; Krousgrill, C. M.; Soedel, W.

    1995-01-01

    A simple model of the effect of a concentrated radial stiffness non-uniformity in a passenger car tire is presented. The model treats the tread band of the tire as a rigid ring supported on a viscoelastic foundation. The distributed radial stiffness is lumped into equivalent horizontal (fore-and-aft) and vertical stiffnesses. The concentrated radial stiffness non-uniformity is modeled by treating the tread band as fixed, and the stiffness non-uniformity as rotating around it at the nominal angular velocity of the wheel. Due to loading, the center of mass of the tread band ring model is displaced upward with respect to the wheel spindle and, therefore, the rotating stiffness non-uniformity is alternately compressed and stretched through one complete rotation. This stretching and compressing of the stiffness non-uniformity results in force transmission to the wheel spindle at twice the nominal angular velocity in frequency, and therefore, would excite a given resonance at one-half the nominal angular wheel velocity that a mass unbalance would. The forcing produced by the stiffness non-uniformity is parametric in nature, thus creating the possibility of parametric resonance. The basic theory of the parametric resonance is explained, and a parameter study using derived lumped parameters based on a typical passenger car tire is performed. This study revealed that parametric resonance in passenger car tires, although possible, is unlikely at normal highway speeds as predicted by this model unless the tire is partially deflated.

  9. Non-uniform Continuum Model for Solvated Species Based on Frozen-Density Embedding Theory: The Study Case of Solvatochromism of Coumarin 153.

    PubMed

    Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A

    2014-09-01

    Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.

  10. Static Scene Statistical Non-Uniformity Correction

    DTIC Science & Technology

    2015-03-01

    Error NUC Non-Uniformity Correction RMSE Root Mean Squared Error RSD Relative Standard Deviation S3NUC Static Scene Statistical Non-Uniformity...Deviation ( RSD ) which normalizes the standard deviation, σ, to the mean estimated value, µ using the equation RS D = σ µ × 100. The RSD plot of the gain...estimates is shown in Figure 4.1(b). The RSD plot shows that after a sample size of approximately 10, the different photocount values and the inclusion

  11. TWO-PHASE FORMATION IN SOLUTIONS OF TOBACCO MOSAIC VIRUS AND THE PROBLEM OF LONG-RANGE FORCES

    PubMed Central

    Oster, Gerald

    1950-01-01

    In a nearly salt-free medium, a dilute tobacco mosaic virus solution of rod-shaped virus particles of uniform length forms two phases; the bottom optically anisotropic phase has a greater virus concentration than has the top optically isotropic phase. For a sample containing particles of various lengths, the bottom phase contains longer particles than does the top and the concentrations top and bottom are nearly equal. The longer the particles the less the minimum concentration necessary for two-phase formation. Increasing the salt concentration increases the minimum concentration. The formation of two phases is explained in terms of geometrical considerations without recourse to the concept of long-range attractive forces. The minimum concentration for two-phase formation is that concentration at which correlation in orientation between the rod-shaped particles begins to take place. This concentration is determined by the thermodynamically effective size and shape of the particles as obtained from the concentration dependence of the osmotic pressure of the solutions measured by light scattering. The effective volume of the particles is introduced into the theory of Onsager for correlation of orientation of uniform size rods and good agreement with experiment is obtained. The theory is extended to a mixture of non-uniform size rods and to the case in which the salt concentration is varied, and agreement with experiment is obtained. The thermodynamically effective volume of the particles and its dependence on salt concentration are explained in terms of the shape of the particles and the electrostatic repulsion between them. Current theories of the hydration of proteins and of long-range forces are critically discussed. The bottom layer of freshly purified tobacco mosaic virus samples shows Bragg diffraction of visible light. The diffraction data indicate that the virus particles in solution form three-dimensional crystals approximately the size of crystalline inclusion bodies found in the cells of plants suffering from the disease. PMID:15422102

  12. Two Different Views on the World Around Us: The World of Uniformity versus Diversity.

    PubMed

    Kwon, JaeHwan; Nayakankuppam, Dhananjay

    2016-01-01

    We propose that when individuals believe in fixed traits of personality (entity theorists), they are likely to expect a world of "uniformity." As such, they easily infer a population statistic from a small sample of data with confidence. In contrast, individuals who believe in malleable traits of personality (incremental theorists) are likely to presume a world of "diversity," such that they "hesitate" to infer a population statistic from a similarly sized sample. In four laboratory experiments, we found that compared to incremental theorists, entity theorists estimated a population mean from a sample with a greater level of confidence (Studies 1a and 1b), expected more homogeneity among the entities within a population (Study 2), and perceived an extreme value to be more indicative of an outlier (Study 3). These results suggest that individuals are likely to use their implicit self-theory orientations (entity theory versus incremental theory) to see a population in general as a constitution either of homogeneous or heterogeneous entities.

  13. Analysis of hysteresis effect on the vibration motion of a bimodal non-uniform micro-cantilever using MCS theory

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Korayem, A. H.; Hosseini Hashemi, Sh.

    2016-02-01

    Nowadays, to enhance the performance of atomic force microscopy (AFM) micro-cantilevers (MCs) during imaging, reduce costs and increase the surface topography precision, advanced MCs equipped with piezoelectric layers are utilized. Using the modified couple stress (MCS) theory not only makes the modeling more exhaustive, but also increases the accuracy of prediction of the vibration behavior of the system. In this paper, Hamilton's principle by consideration of the MCS theory has been used to extract the equations. In addition, to discretize the equations, differential quadrature method has been adopted. Analysis of the hysteresis effect on the vibration behavior of the AFM MC is of significant importance. Thus, to model the hysteresis effect, Bouc-Wen method, which is solved simultaneously with the vibration equations of non-uniform Timoshenko beam, has been utilized. Furthermore, a bimodal excitation of the MC has been considered. The results reveal that the hysteresis effect appears as a phase difference in the time response. Finally, the effect of the geometric parameters on the vibration frequency of the system which is excited by combination of the first two vibration modes of the non-uniform piezoelectric MC has been examined. The results indicate the considerable effect of the MC length in comparison with other geometric parameters such as the MC width and thickness.

  14. Uniform magnetic fields in density-functional theory

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  15. Uniform magnetic fields in density-functional theory.

    PubMed

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M

    2018-01-14

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  16. Main rotor-body action for virtual blades model

    NASA Astrophysics Data System (ADS)

    Kusyumov, Alexander; Kusyumov, Sergey; Mikhailov, Sergey; Romanova, Elena; Phayzullin, Konstantin; Lopatin, Evgeny; Barakos, G.

    2018-06-01

    This research aims to investigate a virtual blade model and assess rotor influence on helicopter fuselage aerodynamics. The rotor disk is discretized in the azimuthal direction, and a time-varied pressure jump is applied in regions occupied by the blades. To obtain the pressure jump, an actuator disk is employed using uniform and non-uniform blade load distribution, based on momentum theory.

  17. Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach

    PubMed Central

    Zhou, Shenggao; Wang, Zhongming; Li, Bo

    2013-01-01

    Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014

  18. Surface sampling techniques for 3D object inspection

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong S.; Gerhardt, Lester A.

    1995-03-01

    While the uniform sampling method is quite popular for pointwise measurement of manufactured parts, this paper proposes three novel sampling strategies which emphasize 3D non-uniform inspection capability. They are: (a) the adaptive sampling, (b) the local adjustment sampling, and (c) the finite element centroid sampling techniques. The adaptive sampling strategy is based on a recursive surface subdivision process. Two different approaches are described for this adaptive sampling strategy. One uses triangle patches while the other uses rectangle patches. Several real world objects were tested using these two algorithms. Preliminary results show that sample points are distributed more closely around edges, corners, and vertices as desired for many classes of objects. Adaptive sampling using triangle patches is shown to generally perform better than both uniform and adaptive sampling using rectangle patches. The local adjustment sampling strategy uses a set of predefined starting points and then finds the local optimum position of each nodal point. This method approximates the object by moving the points toward object edges and corners. In a hybrid approach, uniform points sets and non-uniform points sets, first preprocessed by the adaptive sampling algorithm on a real world object were then tested using the local adjustment sampling method. The results show that the initial point sets when preprocessed by adaptive sampling using triangle patches, are moved the least amount of distance by the subsequently applied local adjustment method, again showing the superiority of this method. The finite element sampling technique samples the centroids of the surface triangle meshes produced from the finite element method. The performance of this algorithm was compared to that of the adaptive sampling using triangular patches. The adaptive sampling with triangular patches was once again shown to be better on different classes of objects.

  19. Asynchronous signal-dependent non-uniform sampler

    NASA Astrophysics Data System (ADS)

    Can-Cimino, Azime; Chaparro, Luis F.; Sejdić, Ervin

    2014-05-01

    Analog sparse signals resulting from biomedical and sensing network applications are typically non-stationary with frequency-varying spectra. By ignoring that the maximum frequency of their spectra is changing, uniform sampling of sparse signals collects unnecessary samples in quiescent segments of the signal. A more appropriate sampling approach would be signal-dependent. Moreover, in many of these applications power consumption and analog processing are issues of great importance that need to be considered. In this paper we present a signal dependent non-uniform sampler that uses a Modified Asynchronous Sigma Delta Modulator which consumes low-power and can be processed using analog procedures. Using Prolate Spheroidal Wave Functions (PSWF) interpolation of the original signal is performed, thus giving an asynchronous analog to digital and digital to analog conversion. Stable solutions are obtained by using modulated PSWFs functions. The advantage of the adapted asynchronous sampler is that range of frequencies of the sparse signal is taken into account avoiding aliasing. Moreover, it requires saving only the zero-crossing times of the non-uniform samples, or their differences, and the reconstruction can be done using their quantized values and a PSWF-based interpolation. The range of frequencies analyzed can be changed and the sampler can be implemented as a bank of filters for unknown range of frequencies. The performance of the proposed algorithm is illustrated with an electroencephalogram (EEG) signal.

  20. The photon fluence non-uniformity correction for air kerma near Cs-137 brachytherapy sources.

    PubMed

    Rodríguez, M L; deAlmeida, C E

    2004-05-07

    The use of brachytherapy sources in radiation oncology requires their proper calibration to guarantee the correctness of the dose delivered to the treatment volume of a patient. One of the elements to take into account in the dose calculation formalism is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by the two theories available, both of which were conceived only for point sources. This work presents the Monte Carlo assessment of the non-uniformity correction factors for a Cs-137 linear source and a Farmer-type ionization chamber. The results have clearly demonstrated that for linear sources there are some important differences among the values obtained from different calculation models, especially at short distances from the source. The use of experimental values for each specific source geometry is recommended in order to assess the non-uniformity factors for linear sources in clinical situations that require special dose calculations or when the correctness of treatment planning software is verified during the acceptance tests.

  1. Two Different Views on the World Around Us: The World of Uniformity versus Diversity

    PubMed Central

    Nayakankuppam, Dhananjay

    2016-01-01

    We propose that when individuals believe in fixed traits of personality (entity theorists), they are likely to expect a world of “uniformity.” As such, they easily infer a population statistic from a small sample of data with confidence. In contrast, individuals who believe in malleable traits of personality (incremental theorists) are likely to presume a world of “diversity,” such that they “hesitate” to infer a population statistic from a similarly sized sample. In four laboratory experiments, we found that compared to incremental theorists, entity theorists estimated a population mean from a sample with a greater level of confidence (Studies 1a and 1b), expected more homogeneity among the entities within a population (Study 2), and perceived an extreme value to be more indicative of an outlier (Study 3). These results suggest that individuals are likely to use their implicit self-theory orientations (entity theory versus incremental theory) to see a population in general as a constitution either of homogeneous or heterogeneous entities. PMID:27977788

  2. Optimization of sampling pattern and the design of Fourier ptychographic illuminator.

    PubMed

    Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan

    2015-03-09

    Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.

  3. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    PubMed

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    PubMed Central

    Siddiqui, Muhammad Usama; Arif, Abul Fazal M.

    2016-01-01

    The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites. PMID:28773817

  5. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  6. A neural algorithm for the non-uniform and adaptive sampling of biomedical data.

    PubMed

    Mesin, Luca

    2016-04-01

    Body sensors are finding increasing applications in the self-monitoring for health-care and in the remote surveillance of sensitive people. The physiological data to be sampled can be non-stationary, with bursts of high amplitude and frequency content providing most information. Such data could be sampled efficiently with a non-uniform schedule that increases the sampling rate only during activity bursts. A real time and adaptive algorithm is proposed to select the sampling rate, in order to reduce the number of measured samples, but still recording the main information. The algorithm is based on a neural network which predicts the subsequent samples and their uncertainties, requiring a measurement only when the risk of the prediction is larger than a selectable threshold. Four examples of application to biomedical data are discussed: electromyogram, electrocardiogram, electroencephalogram, and body acceleration. Sampling rates are reduced under the Nyquist limit, still preserving an accurate representation of the data and of their power spectral densities (PSD). For example, sampling at 60% of the Nyquist frequency, the percentage average rectified errors in estimating the signals are on the order of 10% and the PSD is fairly represented, until the highest frequencies. The method outperforms both uniform sampling and compressive sensing applied to the same data. The discussed method allows to go beyond Nyquist limit, still preserving the information content of non-stationary biomedical signals. It could find applications in body sensor networks to lower the number of wireless communications (saving sensor power) and to reduce the occupation of memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam.

    PubMed

    Li, Yingli; Meguid, S A; Fu, Yiming; Xu, Daolin

    2014-02-08

    In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.

  8. The prior statistics of object colors.

    PubMed

    Koenderink, Jan J

    2010-02-01

    The prior statistics of object colors is of much interest because extensive statistical investigations of reflectance spectra reveal highly non-uniform structure in color space common to several very different databases. This common structure is due to the visual system rather than to the statistics of environmental structure. Analysis involves an investigation of the proper sample space of spectral reflectance factors and of the statistical consequences of the projection of spectral reflectances on the color solid. Even in the case of reflectance statistics that are translationally invariant with respect to the wavelength dimension, the statistics of object colors is highly non-uniform. The qualitative nature of this non-uniformity is due to trichromacy.

  9. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  10. Self-consistent theory for the linear and nonlinear propagation of a sinusoidal electron plasma wave. Application to stimulated Raman scattering in a non-uniform and non-stationary plasma

    NASA Astrophysics Data System (ADS)

    Bénisti, Didier

    2018-01-01

    In this paper, we address the theoretical resolution of the Vlasov-Gauss system from the linear regime to the strongly nonlinear one, when significant trapping has occurred. The electric field is that of a sinusoidal electron plasma wave (EPW) which is assumed to grow from the noise level, and to keep growing at least up to the amplitude when linear theory in no longer valid (while the wave evolution in the nonlinear regime may be arbitrary). The ions are considered as a neutralizing fluid, while the electron response to the wave is derived by matching two different techniques. We make use of a perturbation analysis similar to that introduced to prove the Kolmogorov-Arnold-Moser theorem, up to amplitudes large enough for neo-adiabatic results to be valid. Our theory is applied to the growth and saturation of the beam-plasma instability, and to the three-dimensional propagation of a driven EPW in a non-uniform and non-stationary plasma. For the latter example, we lay a special emphasis on nonlinear collisionless dissipation. We provide an explicit theoretical expression for the nonlinear Landau-like damping rate which, in some instances, is amenable to a simple analytic formula. We also insist on the irreversible evolution of the electron distribution function, which is nonlocal in the wave amplitude and phase velocity. This makes trapping an effective means of dissipation for the electrostatic energy, and also makes the wave dispersion relation nonlocal. Our theory is generalized to allow for stimulated Raman scattering, which we address up to saturation by accounting for plasma inhomogeneity and non-stationarity, nonlinear kinetic effects, and interspeckle coupling.

  11. Comparison of two leading uniform theories of edge diffraction with the exact uniform asymptotic solution

    NASA Technical Reports Server (NTRS)

    Boersma, J.; Rahmat-Samii, Y.

    1980-01-01

    The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.

  12. Elastic field of a spherical inclusion with non-uniform eigenfields in second strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Latifi Shahandashti, M.

    2017-09-01

    In this paper, within the complete form of Mindlin's second strain gradient theory, the elastic field of an isolated spherical inclusion embedded in an infinitely extended homogeneous isotropic medium due to a non-uniform distribution of eigenfields is determined. These eigenfields, in addition to eigenstrain, comprise eigen double and eigen triple strains. After the derivation of a closed-form expression for Green's function associated with the problem, two different cases of non-uniform distribution of the eigenfields are considered as follows: (i) radial distribution, i.e. the distributions of the eigenfields are functions of only the radial distance of points from the centre of inclusion, and (ii) polynomial distribution, i.e. the distributions of the eigenfields are polynomial functions in the Cartesian coordinates of points. While the obtained solution for the elastic field of the latter case takes the form of an infinite series, the solution to the former case is represented in a closed form. Moreover, Eshelby's tensors associated with the two mentioned cases are obtained.

  13. Spatially-resolved HPGe Gamma-ray Spectroscopy of Swipe Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Benjamin S.; VanDevender, Brent A.; Wood, Lynn S.

    Measurement of swipe samples is a critical element of the National Technical Nuclear Forensics (NTNF) mission. A unique, portable, germanium gamma imager (GeGI-s) from PHDS Co may provide complementary information to current techniques for swipe sample screening. The GeGI-s is a modified version of the commercial GeGI-4, a planar HPGe detector, capable of several million counts per second across the whole detector. The GeGI-s detector is a prototype of a commercial off-the-shelf high rate GeGI. The high rate capability allows high-activity samples be placed directly on the face of the detector. Utilizing the high energy resolution and pixelization of themore » detector, the GeGI-s can generate isotope specific spatial maps of the materials on the swipe sample. To prove this technology is viable for such mapping, the GeGI-s detector response to spatially distributed events must be well characterized. The detection efficiency as a function of location has been characterized to understand the non-uniformities presented as a collimated photon beam was rastered vertically and horizontally across the face of the detector. The detection efficiency as a function of location has been characterized to understand the non-uniformities presented as a collimated photon beam was rastered vertically and horizontally across the face of the detector. The response was found to be primarily uniform and symmetric, however two causes of non-uniformity were found. Both of these causes can ultimately be corrected for in off-line data analysis.« less

  14. Survival analysis for the missing censoring indicator model using kernel density estimation techniques

    PubMed Central

    Subramanian, Sundarraman

    2008-01-01

    This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented. PMID:18953423

  15. Survival analysis for the missing censoring indicator model using kernel density estimation techniques.

    PubMed

    Subramanian, Sundarraman

    2006-01-01

    This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented.

  16. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  17. The metallic sphere in a uniform ac magnetic field: A simple and precise experiment for exploring eddy currents and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Honke, Michael L.; Bidinosti, Christopher P.

    2018-06-01

    We describe a very simple experiment that utilizes standard laboratory equipment to measure the electromagnetic response of a metallic sphere exposed to a uniform ac magnetic field. Measurements were made for a variety of non-magnetic and magnetic metals, and in all cases the results fit very well with theory over the four orders of frequency (25 Hz to 102 kHz) explored here. Precise values of magnetic permeability and electrical conductivity can be extracted from fits to the data given the sphere radius only. The same apparatus is also used to explore the effects of geometry on eddy current generation as well as to demonstrate non-destructive testing through measurements on coins of different composition.

  18. Response of a thin airfoil encountering strong density discontinuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, F.E.

    1993-12-01

    Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise frommore » the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.« less

  19. Rotational magneto-acousto-electric tomography (MAET): theory and experimental validation

    PubMed Central

    Kunyansky, L; Ingram, C P; Witte, R S

    2017-01-01

    We present a novel two-dimensional (2D) MAET scanner, with a rotating object of interest and two fixed pairs of electrodes. Such an acquisition scheme, with our novel reconstruction techniques, recovers the boundaries of the regions of constant conductivity uniformly well, regardless of their orientation. We also present a general image reconstruction algorithm for the 2D MAET in a circular chamber with point-like electrodes immersed into the saline surrounding the object. An alternative linearized reconstruction procedure is developed, suitable for recovering the material interfaces (boundaries) when a non-ideal piezoelectric transducer is used for acoustic excitation. The work of the scanner and the linearized reconstruction algorithm is demonstrated using several phantoms made of high-contrast materials and a biological sample. PMID:28323633

  20. Ergodic theory and experimental visualization of chaos in 3D flows

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Mezic, Igor

    2000-11-01

    In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.

  1. Natural convection along a heated vertical plate immersed in a nonlinearly stratified medium: application to liquefied gas storage

    NASA Astrophysics Data System (ADS)

    Forestier, M.; Haldenwang, P.

    We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.

  2. A uniform geometrical optics and an extended uniform geometrical theory of diffraction for evaluating high frequency EM fields near smooth caustics and composite shadow boundaries

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1994-01-01

    A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) are developed for evaluating high frequency electromagnetic (EM) fields within transition regions associated with a two and three dimensional smooth caustic of reflected rays and a composite shadow boundary formed by the caustic termination or the confluence of the caustic with the reflection shadow boundary (RSB). The UGO is a uniform version of the classic geometrical optics (GO). It retains the simple ray optical expressions of classic GO and employs a new set of uniform reflection coefficients. The UGO also includes a uniform version of the complex GO ray field that exists on the dark side of the smooth caustic. The EUTD is an extension of the classic uniform geometrical theory of diffraction (UTD) and accounts for the non-ray optical behavior of the UGO reflected field near caustics by using a two-variable transition function in the expressions for the edge diffraction coefficients. It also uniformly recovers the classic UTD behavior of the edge diffracted field outside the composite shadow boundary transition region. The approach employed for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the fields which is then reduced using uniform asymptotic procedures. The UGO/EUTD analysis is also employed to investigate the far-zone RCS problem of plane wave scattering from two and three dimensional polynomial defined surfaces, and uniform reflection, zero-curvature, and edge diffraction coefficients are derived. Numerical results for the scattering and diffraction from cubic and fourth order polynomial strips are also shown and the UGO/EUTD solution is validated by comparison to an independent moment method (MM) solution. The UGO/EUTD solution is also compared with the classic GO/UTD solution. The failure of the classic techniques near caustics and composite shadow boundaries is clearly demonstrated and it is shown that the UGO/EUTD results remain valid and uniformly reduce to the classic results away from the transition regions. Mathematical details on the asymptotic properties and efficient numerical evaluation of the canonical functions involved in the UGO/EUTD expressions are also provided.

  3. Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken

    2013-11-01

    Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.

  4. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.

    1994-01-01

    Recent progress in both the linear and nonlinear aspects of stability theory has highlighted the importance of the receptivity problem. One of the most unclear aspects of receptivity study is the receptivity of boundary-layer flow normal to vortical disturbances. Some experimental and theoretical results permit the proposition that quasi-steady outer-flow vortical disturbances may trigger by-pass transition. In present work such interaction is investigated for vorticity normal to a leading edge. The interest in these types of vortical disturbances arise from theoretical work, where it was shown that small sinusoidal variations of upstream velocity along the spanwise direction can produce significant variations in the boundary-layer profile. In the experimental part of this work, such non-uniform flow was created and the laminar-turbulent transition in this flow was investigated. The experiment was carried out in a low-turbulence direct-flow wind tunnel T-361 at the Central Aerohydrodynamic Institute (TsAGI). The non-uniform flow was produced by laminar or turbulent wakes behind a wire placed normal to the plate upstream of the leading edge. The theoretical part of the work is devoted to studying the unstable disturbance evolution in a boundary layer with strongly non-uniform velocity profiles similar to that produced by outer-flow vorticity. Specifically, the Tollmien-Schlichting wave development in the boundary layer flow with spanwise variations of velocity is investigated.

  5. Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging

    PubMed Central

    Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2018-01-01

    Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations. PMID:29675325

  6. Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression

    NASA Astrophysics Data System (ADS)

    Farajpour, Ali; Arab Solghar, Alireza; Shahidi, Alireza

    2013-01-01

    In this article, the nonlinear buckling characteristics of multi-layered graphene sheets are investigated. The graphene sheet is modeled as an orthotropic nanoplate with size-dependent material properties. The graphene film is subjected by non-uniformly distributed in-plane load through its thickness. To include the small scale and the geometrical nonlinearity effects, the governing differential equations are derived based on the nonlocal elasticity theory in conjunction with the von Karman geometrical model. Explicit expressions for the postbuckling loads of single- and double-layered graphene sheets with simply supported edges under biaxial compression are obtained. For numerical results, six types of armchair and zigzag graphene sheets with different aspect ratio are considered. The present formulation and method of solution are validated by comparing the results, in the limit cases, with those available in the open literature. Excellent agreement between the obtained and available results is observed. Finally, the effects of nonlocal parameter, buckling mode number, compression ratio and non-uniform parameter on the postbuckling behavior of multi-layered graphene sheets are studied.

  7. Theoretical analysis of nonnuniform skin effects on drawdown variation

    NASA Astrophysics Data System (ADS)

    Chen, C.-S.; Chang, C. C.; Lee, M. S.

    2003-04-01

    Under field conditions, the skin zone surrounding the well screen is rarely uniformly distributed in the vertical direction. To understand such non-uniform skin effects on drawdown variation, we assume the skin factor to be an arbitrary, continuous or piece-wise continuous function S_k(z), and incorporate it into a well hydraulics model for constant rate pumping in a homogeneous, vertically anisotropic, confined aquifer. Solutions of depth-specific drawdown and vertical average drawdown are determined by using the Gram-Schmidt method. The non-uniform effects of S_k(z) in vertical average drawdown are averaged out, and can be represented by a constant skin factor S_k. As a result, drawdown of fully penetrating observation wells can be analyzed by appropriate well hydraulics theories assuming a constant skin factor. The S_k is the vertical average value of S_k(z) weighted by the well bore flux q_w(z). In depth-specific drawdown, however, the non-uniform effects of S_k(z) vary with radial and vertical distances, which are under the influence of the vertical profile of S_k(z) and the vertical anisotropy ratio, K_r/K_z. Therefore, drawdown of partially penetrating observation wells may reflect the vertical anisotropy as well as the non-uniformity of the skin zone. The method of determining S_k(z) developed herein involves the use of q_w(z) as can be measured with the borehole flowmeter, and K_r/K_z and S_k as can be determined by the conventional pumping test.

  8. Design Techniques for Uniform-DFT, Linear Phase Filter Banks

    NASA Technical Reports Server (NTRS)

    Sun, Honglin; DeLeon, Phillip

    1999-01-01

    Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.

  9. Digital phased array beamforming using single-bit delta-sigma conversion with non-uniform oversampling.

    PubMed

    Kozak, M; Karaman, M

    2001-07-01

    Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.

  10. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme

    NASA Astrophysics Data System (ADS)

    Qiang, Wei

    2011-12-01

    We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time ( t1) in the indirect dimension. For a beta amyloid (Aβ) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled.

  11. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.

    PubMed

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham; Burak, Yoram

    2017-06-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing.

  12. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules

    PubMed Central

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham

    2017-01-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal’s motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing. PMID:28628647

  13. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  14. Non-uniform sampling: post-Fourier era of NMR data collection and processing.

    PubMed

    Kazimierczuk, Krzysztof; Orekhov, Vladislav

    2015-11-01

    The invention of multidimensional techniques in the 1970s revolutionized NMR, making it the general tool of structural analysis of molecules and materials. In the most straightforward approach, the signal sampling in the indirect dimensions of a multidimensional experiment is performed in the same manner as in the direct dimension, i.e. with a grid of equally spaced points. This results in lengthy experiments with a resolution often far from optimum. To circumvent this problem, numerous sparse-sampling techniques have been developed in the last three decades, including two traditionally distinct approaches: the radial sampling and non-uniform sampling. This mini review discusses the sparse signal sampling and reconstruction techniques from the point of view of an underdetermined linear algebra problem that arises when a full, equally spaced set of sampled points is replaced with sparse sampling. Additional assumptions that are introduced to solve the problem, as well as the shape of the undersampled Fourier transform operator (visualized as so-called point spread function), are shown to be the main differences between various sparse-sampling methods. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Wave kinetics of random fibre lasers

    PubMed Central

    Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.

    2015-01-01

    Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177

  16. The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling.

    PubMed

    Shah, Jay; Williams, Wyn; Almeida, Trevor P; Nagy, Lesleis; Muxworthy, Adrian R; Kovács, András; Valdez-Grijalva, Miguel A; Fabian, Karl; Russell, Sara S; Genge, Matthew J; Dunin-Borkowski, Rafal E

    2018-03-21

    Recordings of magnetic fields, thought to be crucial to our solar system's rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system.

  17. Laboratory investigations of the physics of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.

    1982-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.

  18. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

    PubMed

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L

    2014-12-07

    We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.

  19. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.

    PubMed

    Rassier, Dilson E; Herzog, Walter; Wakeling, Jennifer; Syme, Douglas A

    2003-09-01

    Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.

  20. On the r-mode spectrum of relativistic stars: the inclusion of the radiation reaction

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2002-03-01

    We consider both mode calculations and time-evolutions of axial r modes for relativistic uniformly rotating non-barotropic neutron stars, using the slow-rotation formalism, in which rotational corrections are considered up to linear order in the angular velocity Ω. We study various stellar models, such as uniform density models, polytropic models with different polytropic indices n, and some models based on realistic equations of state. For weakly relativistic uniform density models and polytropes with small values of n, we can recover the growth times predicted from Newtonian theory when standard multipole formulae for the gravitational radiation are used. However, for more compact models, we find that relativistic linear perturbation theory predicts a weakening of the instability compared to the Newtonian results. When turning to polytropic equations of state, we find that for certain ranges of the polytropic index n, the r mode disappears, and instead of a growth, the time-evolutions show a rapid decay of the amplitude. This is clearly at variance with the Newtonian predictions. It is, however, fully consistent with our previous results obtained in the low-frequency approximation.

  1. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  2. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    PubMed

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Measurement of 3D refractive index distribution by optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan

    2018-01-01

    Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.

  4. Wave modeling in a cylindrical non-uniform helicon discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.; Hole, M. J.; Caneses, J. F.

    2012-08-15

    A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to themore » electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.« less

  5. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks.

    PubMed

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-08-31

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach.

  6. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks

    PubMed Central

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-01-01

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach. PMID:27589758

  7. Continuity of pullback and uniform attractors

    NASA Astrophysics Data System (ADS)

    Hoang, Luan T.; Olson, Eric J.; Robinson, James C.

    2018-03-01

    We study the continuity of pullback and uniform attractors for non-autonomous dynamical systems with respect to perturbations of a parameter. Consider a family of dynamical systems parameterized by λ ∈ Λ, where Λ is a complete metric space, such that for each λ ∈ Λ there exists a unique pullback attractor Aλ (t). Using the theory of Baire category we show under natural conditions that there exists a residual set Λ* ⊆ Λ such that for every t ∈ R the function λ ↦Aλ (t) is continuous at each λ ∈Λ* with respect to the Hausdorff metric. Similarly, given a family of uniform attractors Aλ, there is a residual set at which the map λ ↦Aλ is continuous. We also introduce notions of equi-attraction suitable for pullback and uniform attractors and then show when Λ is compact that the continuity of pullback attractors and uniform attractors with respect to λ is equivalent to pullback equi-attraction and, respectively, uniform equi-attraction. These abstract results are then illustrated in the context of the Lorenz equations and the two-dimensional Navier-Stokes equations.

  8. Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector

    NASA Astrophysics Data System (ADS)

    Doukas, Jason; Lin, Shih-Yuin; Hu, B. L.; Mann, Robert B.

    2013-11-01

    The Unruh effect refers to the thermal fluctuations a detector experiences while undergoing linear motion with uniform acceleration in a Minkowski vacuum. This thermality can be demonstrated by tracing the vacuum state of the field over the modes beyond the accelerated detector's event horizon. However, the event horizon is well-defined only if the detector moves with eternal uniform linear acceleration. This idealized condition cannot be fulfilled in realistic situations when the motion unavoidably involves periods of non-uniform acceleration. Many experimental proposals to test the Unruh effect are of this nature. Often circular or oscillatory motion, which lacks an obvious geometric description, is considered in such proposals. The proper perspective for theoretically going beyond, or experimentally testing, the Unruh-Hawking effect in these more general conditions has to be offered by concepts and techniques in non-equilibrium quantum field theory. In this paper we provide a detailed analysis of how an Unruh-DeWitt detector undergoing oscillatory motion responds to the fluctuations of a quantum field. Numerical results for the late-time temperatures of the oscillating detector are presented. We comment on the digressions of these results from what one would obtain from a naive application of Unruh's result.

  9. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  10. Task II: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.

  11. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  12. Thermo-Elastic Triangular Sandwich Element for the Complete Stress Field Based on a Single-Layer Theory

    NASA Technical Reports Server (NTRS)

    Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.

    2004-01-01

    This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.

  13. Transverse shear effects on the stress-intensity factor for a circumferentially cracked, specially orthotropic cylindrical shell

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1977-01-01

    The problem of a cylindrical shell containing a circumferential through crack is considered by taking into account the effect of transverse shear deformations. The formulation is given for a specially orthotropic material within the confines of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions regarding moment and stress resultants on the crack surface. Consequently, aside from multiplicative constants representing the stress intensity factors, the membrane and bending components of the asymptotic stress fields near the crack tip are found to be identical. The stress intensity factors are calculated separately for a cylinder under a uniform membrane load, and that under a uniform bending moment. Sample results showing the nature of the out-of-plane crack surface displacement and the effect of the Poisson's ratio are presented.

  14. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    NASA Astrophysics Data System (ADS)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  15. Intensity non-uniformity correction in MRI: existing methods and their validation.

    PubMed

    Belaroussi, Boubakeur; Milles, Julien; Carme, Sabin; Zhu, Yue Min; Benoit-Cattin, Hugues

    2006-04-01

    Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity non-uniformity consists in anatomically irrelevant intensity variation throughout data. It can be induced by the choice of the radio-frequency coil, the acquisition pulse sequence and by the nature and geometry of the sample itself. Numerous methods have been proposed to correct this artifact. In this paper, we propose an overview of existing methods. We first sort them according to their location in the acquisition/processing pipeline. Sorting is then refined based on the assumptions those methods rely on. Next, we present the validation protocols used to evaluate these different correction schemes both from a qualitative and a quantitative point of view. Finally, availability and usability of the presented methods is discussed.

  16. Laboratory investigations of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.; O'Neal, II

    1983-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used in modeling pressure transient behavior in vapor dominated geothermal systems. Transient, superheated steam flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure and then making a step increase in pressure at one end of the sample while monitoring the pressure transient breakthrough at the other end. It was found in experiments run at 100°, 125°, and 146°C that the time required for steam pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10–25 times longer than predicted by conventional superheated steam flow theory. It is hypothesized that the delay in the steam pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10°C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. This function was assumed to be an equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved.

  17. Measurement and simulation of millimeter wave scattering cross-sections from steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Hassan, A. M.; Martys, N. S.; Garboczi, E. J.; McMichael, R. D.; Stiles, M. D.; Plusquellic, D. F.; Stutzman, P. E.; Wang, S.; Provenzano, V.; Surek, J. T.; Novotny, D. R.; Coder, J. B.; Janezic, M. D.; Kim, S.

    2014-02-01

    Some iron oxide corrosion products exhibit antiferromagnetic magnetic resonances (AFMR) at frequencies on the order of 100 GHz at ambient temperatures. AFMR can be detected in laboratory conditions, which serves as the basis for a new non-destructive spectroscopic method for detecting early corrosion. When attempting to measure the steel corrosion in reinforced concrete in the field, rebar geometry must be taken into account. Experiments and numerical simulations have been developed at frequencies near 100 GHz to sort out these effects. The experimental setup involves a vector network analyzer with converter heads to up-convert the output frequency, which is then connected to a horn antenna followed by a 7.5 cm diameter polymer lens to focus the waves on the sample. Two sets of samples were studied: uniform cylindrical rods and rebar corrosion samples broken out of concrete with different kinds of coatings. Electromagnetic scattering from uniform rods were calculated numerically using classical modal expansion. A finite-element electromagnetic solver was used to model more complex rebar geometry and non-uniform corrosion layers. Experimental and numerical data were compared to help quantify and understand the anticipated effect of local geometrical features on AFMR measurements.

  18. Toward a Principled Sampling Theory for Quasi-Orders

    PubMed Central

    Ünlü, Ali; Schrepp, Martin

    2016-01-01

    Quasi-orders, that is, reflexive and transitive binary relations, have numerous applications. In educational theories, the dependencies of mastery among the problems of a test can be modeled by quasi-orders. Methods such as item tree or Boolean analysis that mine for quasi-orders in empirical data are sensitive to the underlying quasi-order structure. These data mining techniques have to be compared based on extensive simulation studies, with unbiased samples of randomly generated quasi-orders at their basis. In this paper, we develop techniques that can provide the required quasi-order samples. We introduce a discrete doubly inductive procedure for incrementally constructing the set of all quasi-orders on a finite item set. A randomization of this deterministic procedure allows us to generate representative samples of random quasi-orders. With an outer level inductive algorithm, we consider the uniform random extensions of the trace quasi-orders to higher dimension. This is combined with an inner level inductive algorithm to correct the extensions that violate the transitivity property. The inner level correction step entails sampling biases. We propose three algorithms for bias correction and investigate them in simulation. It is evident that, on even up to 50 items, the new algorithms create close to representative quasi-order samples within acceptable computing time. Hence, the principled approach is a significant improvement to existing methods that are used to draw quasi-orders uniformly at random but cannot cope with reasonably large item sets. PMID:27965601

  19. Toward a Principled Sampling Theory for Quasi-Orders.

    PubMed

    Ünlü, Ali; Schrepp, Martin

    2016-01-01

    Quasi-orders, that is, reflexive and transitive binary relations, have numerous applications. In educational theories, the dependencies of mastery among the problems of a test can be modeled by quasi-orders. Methods such as item tree or Boolean analysis that mine for quasi-orders in empirical data are sensitive to the underlying quasi-order structure. These data mining techniques have to be compared based on extensive simulation studies, with unbiased samples of randomly generated quasi-orders at their basis. In this paper, we develop techniques that can provide the required quasi-order samples. We introduce a discrete doubly inductive procedure for incrementally constructing the set of all quasi-orders on a finite item set. A randomization of this deterministic procedure allows us to generate representative samples of random quasi-orders. With an outer level inductive algorithm, we consider the uniform random extensions of the trace quasi-orders to higher dimension. This is combined with an inner level inductive algorithm to correct the extensions that violate the transitivity property. The inner level correction step entails sampling biases. We propose three algorithms for bias correction and investigate them in simulation. It is evident that, on even up to 50 items, the new algorithms create close to representative quasi-order samples within acceptable computing time. Hence, the principled approach is a significant improvement to existing methods that are used to draw quasi-orders uniformly at random but cannot cope with reasonably large item sets.

  20. A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment

    PubMed Central

    Mobli, Mehdi; Stern, Alan S.; Bermel, Wolfgang; King, Glenn F.; Hoch, Jeffrey C.

    2010-01-01

    One of the stiffest challenges in structural studies of proteins using NMR is the assignment of sidechain resonances. Typically, a panel of lengthy 3D experiments are acquired in order to establish connectivities and resolve ambiguities due to overlap. We demonstrate that these experiments can be replaced by a single 4D experiment that is time-efficient, yields excellent resolution, and captures unique carbon-proton connectivity information. The approach is made practical by the use of non-uniform sampling in the three indirect time dimensions and maximum entropy reconstruction of the corresponding 3D frequency spectrum. This 4D method will facilitate automated resonance assignment procedures and it should be particularly beneficial for increasing throughput in NMR-based structural genomics initiatives. PMID:20299257

  1. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts ofmore » the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.« less

  2. A Neural Model of Chromatic Induction in Uniform and Textured Images and Psychophysical Detection of Non-Opponent Chromatic Qualia

    ERIC Educational Resources Information Center

    Livitz, Gennady

    2011-01-01

    Color is a complex and rich perceptual phenomenon that relates physical properties of light to certain perceptual qualia associated with vision. Hering's opponent color theory, widely regarded as capturing the most fundamental aspects of color phenomenology, suggests that certain unique hues are mutually exclusive as components of a single color.…

  3. Potential and field produced by a uniform or non-uniform elliptical beam inside a confocal elliptic vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regenstreif, E.

    The potential produced by an isolated beam of elliptic cross-section seems to have been considered first by L.C. Teng. Image effects of line charges in elliptic vacuum chambers were introduced into accelerator theory by L. J. Laslett. Various approximate solutions for elliptic beams of finite cross-section coasting inside an elliptic vacuum chamber were subsequently proposed by P. Lapostolle and C. Bovet. A rigorous expression is derived for the potential produced by an elliptic beam inside an elliptic vacuum chamber, provided the beam envelope and the vacuum chamber can be assimilated to confocal ellipses.

  4. Method and apparatus for inspecting an EUV mask blank

    DOEpatents

    Goldberg, Kenneth A.

    2005-11-08

    An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, andmore » recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob’s ladder classification of non-empirical density functionals.« less

  6. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  7. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition.

    PubMed

    Pal, Partha P; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I; Nasibulin, Albert G

    2016-12-02

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  8. Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish

    2017-04-01

    Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.

  9. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  10. Temporal high-pass non-uniformity correction algorithm based on grayscale mapping and hardware implementation

    NASA Astrophysics Data System (ADS)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2015-08-01

    In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.

  11. Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Sim, Eun Seob; Chung, Yong-Chae

    2018-03-01

    In this study, the influence of the non-uniform surface of F- and O-functionalized Ti2C on the anchoring behavior of lithium polysulfide (LiPS) is investigated using density functional theory. In order to consider the non-uniform surface, the substitutional, vacancy, and S-trapped sites of F- and O-functionalized Ti2C are designed. The anchoring behavior is investigated considering the adsorption energy of LiPS, reactivity between Li atoms and the substrate, and the reduction state of the S atoms. On the F-substitutional site of the O-functionalized surface, it is confirmed that the suppressing mechanism changes from the neutralization of S atoms to the anchoring of LiPS. However, too strong of an interaction between Ti atoms exposed at the vacancy site and S atoms induces trapping of the S atom at the vacancies of both F- and O-functionalized surfaces. As a result of the trapping of the S atom, the use of active material decreases. In addition, the S-trapped site originated from the vacancy site does not affect the suppressing mechanism. In conclusion, to optimize the Ti2C-based MXene as an anchoring material for Li-S batteries, the preparation process should be focused on eliminating the vacancy of functional groups.

  12. Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2018-02-01

    An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method (SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G( s) and the first structural constant G I . As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G II , the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.

  13. Circular array of stable atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, Z.-B.; Hoskinson, A.; Hopwood, J.

    2010-12-01

    A circular array composed of six quarter-wavelength microstripline resonators sustains a stable ring-shaped microplasma in atmospheric pressure argon. A single power source (1 GHz, <5 W) drives all six resonators. The operation of the array is modeled by coupled mode theory (CMT) and confirmed by electromagnetic simulations. Non-uniformities in the plasma ring are attributed to parasitic plasma sheath capacitance and confirmed by CMT.

  14. Vocal production mechanisms in a non-human primate: morphological data and a model.

    PubMed

    Riede, Tobias; Bronson, Ellen; Hatzikirou, Haralambos; Zuberbühler, Klaus

    2005-01-01

    Human beings are thought to be unique amongst the primates in their capacity to produce rapid changes in the shape of their vocal tracts during speech production. Acoustically, vocal tracts act as resonance chambers, whose geometry determines the position and bandwidth of the formants. Formants provide the acoustic basis for vowels, which enable speakers to refer to external events and to produce other kinds of meaningful communication. Formant-based referential communication is also present in non-human primates, most prominently in Diana monkey alarm calls. Previous work has suggested that the acoustic structure of these calls is the product of a non-uniform vocal tract capable of some degree of articulation. In this study we test this hypothesis by providing morphological measurements of the vocal tract of three adult Diana monkeys, using both radiography and dissection. We use these data to generate a vocal tract computational model capable of simulating the formant structures produced by wild individuals. The model performed best when it combined a non-uniform vocal tract consisting of three different tubes with a number of articulatory manoeuvres. We discuss the implications of these findings for evolutionary theories of human and non-human vocal production.

  15. Laser investigation of the non-uniformity of fluorescent species in dental enamel

    NASA Astrophysics Data System (ADS)

    Tran, Stephanie U.; Ridge, Jeremy S.; Nelson, Leonard Y.; Seibel, Eric J.

    In the present study, artificial type I and type II erosions were created on dental specimen using acetic acid and EDTA respectively. Specimens were prepared by etching extracted teeth samples in acid to varying degrees, after which the absolute fluorescence intensity ratio of the etched enamel relative to sound enamel was recorded for each specimen using 405 and 532 nm laser excitation. Results showed differences in the fluorescence ratio of etched to sound enamel for type I and II erosions. These findings suggest a non-uniform distribution of fluorescent species in the interprismatic region as compared to the prismatic region.

  16. Transverse vibrations of non-uniform beams. [combined finite element and Rayleigh-Ritz methods

    NASA Technical Reports Server (NTRS)

    Klein, L.

    1974-01-01

    The free vibrations of elastic beams with nonuniform characteristics are investigated theoretically by a new method. The new method is seen to combine the advantages of a finite element approach and of a Rayleigh-Ritz analysis. Comparison with the known analytical results for uniform beams shows good convergence of the method for natural frequencies and modes. For internal shear forces and bending moments, the rate of convergence is less rapid. Results from experiments conducted with a cantilevered helicopter blade with strong nonuniformities and also from alternative theoretical methods, indicate that the theory adequately predicts natural frequencies and mode shapes. General guidelines for efficient use of the method are presented.

  17. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  18. Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures

    NASA Astrophysics Data System (ADS)

    Banerjee, Amartya S.; Suryanarayana, Phanish

    2016-11-01

    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) - a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide - a trend which can be ascribed to the variation in effective thickness of these materials. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.

  19. A simple depth-averaged model for dry granular flow

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yao; Stark, Colin P.; Capart, Herve

    Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.

  20. Isospectrals of non-uniform Rayleigh beams with respect to their uniform counterparts

    PubMed Central

    Ganguli, Ranjan

    2018-01-01

    In this paper, we look for non-uniform Rayleigh beams isospectral to a given uniform Rayleigh beam. Isospectral systems are those that have the same spectral properties, i.e. the same free vibration natural frequencies for a given boundary condition. A transformation is proposed that converts the fourth-order governing differential equation of non-uniform Rayleigh beam into a uniform Rayleigh beam. If the coefficients of the transformed equation match with those of the uniform beam equation, then the non-uniform beam is isospectral to the given uniform beam. The boundary-condition configuration should be preserved under this transformation. We present the constraints under which the boundary configurations will remain unchanged. Frequency equivalence of the non-uniform beams and the uniform beam is confirmed by the finite-element method. For the considered cases, examples of beams having a rectangular cross section are presented to show the application of our analysis. PMID:29515879

  1. Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers

    NASA Astrophysics Data System (ADS)

    Breuer, Kathrin; Meyer, Cord B.; Breuer, Felix A.; Richter, Anne; Exner, Florian; Weng, Andreas M.; Ströhle, Serge; Polat, Bülent; Jakob, Peter M.; Sauer, Otto A.; Flentje, Michael; Weick, Stefan

    2018-04-01

    The purpose of this work is the development of a robust and reliable three-dimensional (3D) Cartesian imaging technique for fast and flexible retrospective 4D abdominal MRI during free breathing. To this end, a non-uniform quasi random (NU-QR) reordering of the phase encoding (k y –k z ) lines was incorporated into 3D Cartesian acquisition. The proposed sampling scheme allocates more phase encoding points near the k-space origin while reducing the sampling density in the outer part of the k-space. Respiratory self-gating in combination with SPIRiT-reconstruction is used for the reconstruction of abdominal data sets in different respiratory phases (4D-MRI). Six volunteers and three patients were examined at 1.5 T during free breathing. Additionally, data sets with conventional two-dimensional (2D) linear and 2D quasi random phase encoding order were acquired for the volunteers for comparison. A quantitative evaluation of image quality versus scan times (from 70 s to 626 s) for the given sampling schemes was obtained by calculating the normalized mutual information (NMI) for all volunteers. Motion estimation was accomplished by calculating the maximum derivative of a signal intensity profile of a transition (e.g. tumor or diaphragm). The 2D non-uniform quasi-random distribution of phase encoding lines in Cartesian 3D MRI yields more efficient undersampling patterns for parallel imaging compared to conventional uniform quasi-random and linear sampling. Median NMI values of NU-QR sampling are the highest for all scan times. Therefore, within the same scan time 4D imaging could be performed with improved image quality. The proposed method allows for the reconstruction of motion artifact reduced 4D data sets with isotropic spatial resolution of 2.1  ×  2.1  ×  2.1 mm3 in a short scan time, e.g. 10 respiratory phases in only 3 min. Cranio-caudal tumor displacements between 23 and 46 mm could be observed. NU-QR sampling enables for stable 4D-MRI with high temporal and spatial resolution within short scan time for visualization of organ or tumor motion during free breathing. Further studies, e.g. the application of the method for radiotherapy planning are needed to investigate the clinical applicability and diagnostic value of the approach.

  2. Independence of the uniformity principle from Church's thesis in intuitionistic set theory

    NASA Astrophysics Data System (ADS)

    Khakhanyan, V. Kh

    2013-12-01

    We prove the independence of the strong uniformity principle from Church's thesis with choice in intuitionistic set theory with the axiom of extensionality extended by Markov's principle and the double complement for sets.

  3. Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces.

    PubMed

    Agudo-Canalejo, Jaime; Lipowsky, Reinhard

    2017-03-15

    Biological membranes and lipid vesicles often display complex shapes with non-uniform membrane curvature. When adhesive nanoparticles with chemically uniform surfaces come into contact with such membranes, they exhibit four different engulfment regimes as recently shown by a systematic stability analysis. Depending on the local curvature of the membrane, the particles either remain free, become partially or completely engulfed by the membrane, or display bistability between free and completely engulfed states. Here, we go beyond stability analysis and develop an analytical theory to leading order in the ratio of particle-to-vesicle size. This theory allows us to determine the local and global energy landscapes of uniform nanoparticles that are attracted towards membranes and vesicles. While the local energy landscape depends only on the local curvature of the vesicle membrane and not on the overall membrane shape, the global energy landscape describes the variation of the equilibrium state of the particle as it probes different points along the membrane surface. In particular, we find that the binding energy of a partially engulfed particle depends on the 'unperturbed' local curvature of the membrane in the absence of the particle. This curvature dependence leads to local forces that pull the partially engulfed particles towards membrane segments with lower and higher mean curvature if the particles originate from the exterior and interior solution, respectively, corresponding to endo- and exocytosis. Thus, for partial engulfment, endocytic particles undergo biased diffusion towards the membrane segments with the lowest membrane curvature, whereas exocytic particles move towards segments with the highest curvature. The curvature-induced forces are also effective for Janus particles with one adhesive and one non-adhesive surface domain. In fact, Janus particles with a strongly adhesive surface domain are always partially engulfed which implies that they provide convenient probes for experimental studies of the curvature-induced forces that arise for complex-shaped membranes.

  4. Propagation and scattering of acoustic-vorticity waves in annular swirling flows

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir Viktorovich

    1997-08-01

    The dissertation presents a fundamental extension of unsteady aerodynamic theory developed to predict fluctuating forces on aircraft structural components. These excitations may result from a variety of upstream flow non-uniformities such as atmospheric turbulence, airframe tip vortices and wakes, engine inlet distortions and secondary flows. In the frame of reference of a downstream aircraft component, an upstream flow non- uniformity appears as a propagating vorticity wave (a gust). Classical treatment of gust interaction problems developed for uniform, potential upstream mean flows is based on the fact that it is possible to consider separately incident or scattered acoustic, entropic and vortical modes of unsteady flow motion. A purely vortical gust remains 'frozen' as it convects with the flow. The coupling between different unsteady components may occur only at the surface of a solid structure, or in the close vicinity of a lifting body. The classical approach, however, is not justified for an aircraft engine system where the internal turbomachinery flow is non-uniform and non-potential as it exhibits a strong swirling motion. In such a flow, acting centrifugal and Coriolis forces couple the various unsteady modes which thus can no longer be determined independently of each other. The new developed theory follows the decomposition of unsteady velocity field into vortical and potential components. In spite of the modal coupling, this decomposition elucidates the physical phenomena associated with unsteady swirling motion by indicating the degree of interaction between the various modes. It paves the way for generalizing the classical definition of a gust for vortical swirling flows. The concept of a generalized gust is developed based on the eigenmode pseudospectral analysis of the coupled equations of unsteady swirling motion. This analysis reveals two distinct regions of eigenvalues corresponding to pressure-dominated nearly-sonic and vorticity- dominated nearly-convected eigenmodes. A compact discrete spectrum of nearly-convected eigenvalues clusters with infinitely increasing density approaching an accumulation convected critical layer. The generalized gust is then identified with the nearly-convected eigenspectrum and formulated in terms of a non-amplifying nearly-convected wave and an instability wave growing in the critical layer. Based on the generalized gust model, a boundary-value problem of unsteady three-dimensional acoustic-vorticity waves propagating in a vortical swirling flow and impinging on a turbomachinery blading is formulated and solved numerically. A set of benchmark results reveals a significant effect of swirling flow motion on aerodynamic and acoustic response of the annular cascade.

  5. Identifying Microlensing Events in Large, Non-Uniformly Sampled Surveys: The Case of the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Agueros, M. A.; Fournier, A.; Street, R.; Ofek, E.; Levitan, D. B.; PTF Collaboration

    2013-01-01

    Many current photometric, time-domain surveys are driven by specific goals such as searches for supernovae or transiting exoplanets, or studies of stellar variability. These goals in turn set the cadence with which individual fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to extremely non-uniform sampling over the survey's nearly 20,000 sq. deg. footprint. While the typical 7.26 sq. deg. PTF field has been imaged 20 times in R-band, ~2300 sq. deg. have been observed more than 100 times. We use the existing PTF data 6.4x107 light curves) to study the trade-off that occurs when searching for microlensing events when one has access to a large survey footprint with irregular sampling. To examine the probability that microlensing events can be recovered in these data, we also test previous statistics used on uniformly sampled data to identify variables and transients. We find that one such statistic, the von Neumann ratio, performs best for identifying simulated microlensing events. We develop a selection method using this statistic and apply it to data from all PTF fields with >100 observations to uncover a number of interesting candidate events. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large datasets, both of which will be useful to future wide-field, time-domain surveys such as the LSST.

  6. High-efficiency non-uniformity correction for wide dynamic linear infrared radiometry system

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Yu, Yi; Tian, Qi-Jie; Chang, Song-Tao; He, Feng-Yun; Yin, Yan-He; Qiao, Yan-Feng

    2017-09-01

    Several different integration times are always set for a wide dynamic linear and continuous variable integration time infrared radiometry system, therefore, traditional calibration-based non-uniformity correction (NUC) are usually conducted one by one, and furthermore, several calibration sources required, consequently makes calibration and process of NUC time-consuming. In this paper, the difference of NUC coefficients between different integration times have been discussed, and then a novel NUC method called high-efficiency NUC, which combines the traditional calibration-based non-uniformity correction, has been proposed. It obtains the correction coefficients of all integration times in whole linear dynamic rangesonly by recording three different images of a standard blackbody. Firstly, mathematical procedure of the proposed non-uniformity correction method is validated and then its performance is demonstrated by a 400 mm diameter ground-based infrared radiometry system. Experimental results show that the mean value of Normalized Root Mean Square (NRMS) is reduced from 3.78% to 0.24% by the proposed method. In addition, the results at 4 ms and 70 °C prove that this method has a higher accuracy compared with traditional calibration-based NUC. In the meantime, at other integration time and temperature there is still a good correction effect. Moreover, it greatly reduces the number of correction time and temperature sampling point, and is characterized by good real-time performance and suitable for field measurement.

  7. Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1991-01-01

    A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

  8. Beam’s-eye-view dosimetrics (BEVD) guided rotational station parameter optimized radiation therapy (SPORT) planning based on reweighted total-variation minimization

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei

    2015-03-01

    Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.

  9. Elastic instabilities in rubber

    NASA Astrophysics Data System (ADS)

    Gent, Alan

    2009-03-01

    Materials that undergo large elastic deformations can exhibit novel instabilities. Several examples are described: development of an aneurysm on inflating a rubber tube; non-uniform stretching on inflating a spherical balloon; formation of internal cracks in rubber blocks at a critical level of triaxial tension or when supersaturated with a dissolved gas; surface wrinkling of a block at a critical amount of compression; debonding or fracture of constrained films on swelling, and formation of ``knots'' on twisting stretched cylindrical rods. These various deformations are analyzed in terms of a simple strain energy function, using Rivlin's theory of large elastic deformations, and the results are compared with experimental measurements of the onset of unstable states. Such comparisons provide new tests of Rivlin's theory and, at least in principle, critical tests of proposed strain energy functions for rubber. Moreover the onset of highly non-uniform deformations has serious implications for the fatigue life and fracture resistance of rubber components. [4pt] References: [0pt] R. S. Rivlin, Philos. Trans. Roy. Soc. Lond. Ser. A241 (1948) 379--397. [0pt] A. Mallock, Proc. Roy. Soc. Lond. 49 (1890--1891) 458--463. [0pt] M. A. Biot, ``Mechanics of Incremental Deformations'', Wiley, New York, 1965. [0pt] A. N. Gent and P. B. Lindley, Proc. Roy. Soc. Lond. A 249 (1958) 195--205. [0pt] A. N. Gent, W. J. Hung and M. F. Tse, Rubb. Chem. Technol. 74 (2001) 89--99. [0pt] A. N. Gent, Internatl. J. Non-Linear Mech. 40 (2005) 165--175.

  10. Large-scale production of kappa-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate.

    PubMed

    Hunik, J H; Tramper, J

    1993-01-01

    Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.

  11. Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability

    NASA Astrophysics Data System (ADS)

    Schlutow, Mark; Klein, Rupert

    2017-04-01

    Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.

  12. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    NASA Astrophysics Data System (ADS)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  13. Item-level informant discrepancies across obese-overweight children and their parents on the PedsQL™ 4.0 instrument: an iterative hybrid ordinal logistic regression.

    PubMed

    Jafari, Peyman; Allahyari, Elahe; Salarzadeh, Mina; Bagheri, Zahra

    2016-01-01

    Child obesity has become a major health concern worldwide. In order to provide successful intervention strategies, it is necessary to understand how obese-overweight children and their parents perceive obesity and its consequences on child's health-related quality of life (HRQoL). This study aimed to assess measurement equivalence of the PedsQL™ 4.0 across obese-overweight children and their parents. The items in the PedsQL™ 4.0 were analysed for differential item functioning (DIF) across obese-overweight children and their parents using an iterative hybrid ordinal logistic regression/item response theory approach. The sample included 647 overweight-obese children and their parents, who completed child and parent reports of the PedsQL™ 4.0, respectively. Overall, 17 out of 23 (74%) items were flagged with DIF across two groups: eight items exhibited uniform DIF and nine items non-uniform DIF. In addition, parents of obese children rated the child's HRQoL significantly lower than their children in all domains of the PedsQL™ 4.0, and this finding did not change whether or not items with uniform DIF were included. Although obese-overweight children and their parents interpret items of the PedsQL™ 4.0 in a conceptually different manner, removing or retaining DIF items in the subscales had no significant effects on group differences. Accordingly, it appears that observed differences in HRQoL scores across child and parent reports are a true difference and not a reflection of measurement artefact.

  14. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the random subset chosen from a given PDF. Finally, it is demonstrated that metrics used to find optimal NUS distributions are heavily dependent on the inherent sensitivity of the random subset, and such optimisation is therefore less critical when using the proposed sampling scheme.

  15. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  16. Evaluating linguistic equivalence of patient-reported outcomes in a cancer clinical trial.

    PubMed

    Hahn, Elizabeth A; Bode, Rita K; Du, Hongyan; Cella, David

    2006-01-01

    In order to make meaningful cross-cultural or cross-linguistic comparisons of health-related quality of life (HRQL) or to pool international research data, it is essential to create unbiased measures that can detect clinically important differences. When HRQL scores differ between cultural/linguistic groups, it is important to determine whether this reflects real group differences, or is the result of systematic measurement variability. To investigate the linguistic measurement equivalence of a cancer-specific HRQL questionnaire, and to conduct a sensitivity analysis of treatment differences in HRQL in a clinical trial. Patients with newly diagnosed chronic myelogenous leukemia (n = 1049) completed serial HRQL assessments in an international Phase III trial. Two types of differential item functioning (uniform and non-uniform) were evaluated using item response theory and classical test theory approaches. A sensitivity analysis was conducted to compare HRQL between treatment arms using items without evidence of differential functioning. Among 27 items, nine (33%) did not exhibit any evidence of differential functioning in both linguistic comparisons (English versus French, English versus German). Although 18 items functioned differently, there was no evidence of systematic bias. In a sensitivity analysis, adjustment for differential functioning affected the magnitude, but not the direction or interpretation of clinical trial treatment arm differences. Sufficient sample sizes were available for only three of the eight language groups. Identification of differential functioning in two-thirds of the items suggests that current psychometric methods may be too sensitive. Enhanced methodologies are needed to differentiate trivial from substantive differential item functioning. Systematic variability in HRQL across different groups can be evaluated for its effect upon clinical trial results; a practice recommended when data are pooled across cultural or linguistic groups to make conclusions about treatment effects.

  17. A Volume-Fraction Based Two-Phase Constitutive Model for Blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Rui; Massoudi, Mehrdad; Hund, S.J.

    2008-06-01

    Mechanically-induced blood trauma such as hemolysis and thrombosis often occurs at microscopic channels, steps and crevices within cardiovascular devices. A predictive mathematical model based on a broad understanding of hemodynamics at micro scale is needed to mitigate these effects, and is the motivation of this research project. Platelet transport and surface deposition is important in thrombosis. Microfluidic experiments have previously revealed a significant impact of red blood cell (RBC)-plasma phase separation on platelet transport [5], whereby platelet localized concentration can be enhanced due to a non-uniform distribution of RBCs of blood flow in a capillary tube and sudden expansion. However,more » current platelet deposition models either totally ignored RBCs in the fluid by assuming a zero sample hematocrit or treated them as being evenly distributed. As a result, those models often underestimated platelet advection and deposition to certain areas [2]. The current study aims to develop a two-phase blood constitutive model that can predict phase separation in a RBC-plasma mixture at the micro scale. The model is based on a sophisticated theory known as theory of interacting continua, i.e., mixture theory. The volume fraction is treated as a field variable in this model, which allows the prediction of concentration as well as velocity profiles of both RBC and plasma phases. The results will be used as the input of successive platelet deposition models.« less

  18. Experimental test of photonic entanglement in accelerated reference frames

    NASA Astrophysics Data System (ADS)

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-05-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  19. Experimental test of photonic entanglement in accelerated reference frames.

    PubMed

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert

    2017-05-10

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  20. Research on Near Field Pattern Effects.

    DTIC Science & Technology

    1981-01-01

    block numbr) High frequency solutions Prolate spheroid mounted antennas Uniform Geometrical Theory of Diffraction Airborne antenna pattern predicti...Geometrical Theory of Diffraction solutions which were developed previously were DD 1473 EDITION OF I NOV 66 IS OBSOLETE UCASFE SECURITY CLASSIFICATION...be used later to simulate the fuselage of a general aircraft. The general uniform Geometrical Theory of Diffraction (GTD) solutions [1i which are

  1. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR

    PubMed Central

    Mobli, Mehdi; Hoch, Jeffrey C.

    2017-01-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. PMID:25456315

  2. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pristavu, G.; Brezeanu, G.; Badila, M.

    2015-06-29

    Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (Φ{sub Bn,l}) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures.more » The measured I{sub F}–V{sub F}–T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni{sub 2}Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni{sub 2}Si/4H-SiC Schottky contacts.« less

  3. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

    PubMed Central

    Gao, Yang; Liu, Zhibo; Sun, Dong-Ming; Huang, Le; Ma, Lai-Peng; Yin, Li-Chang; Ma, Teng; Zhang, Zhiyong; Ma, Xiu-Liang; Peng, Lian-Mao; Cheng, Hui-Ming; Ren, Wencai

    2015-01-01

    Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the self-limited catalytic surface growth of uniform monolayer WS2 single crystals of millimetre size and large-area films by ambient-pressure CVD on Au. The weak interaction between the WS2 and Au enables the intact transfer of the monolayers to arbitrary substrates using the electrochemical bubbling method without sacrificing Au. The WS2 shows high crystal quality and optical and electrical properties comparable or superior to mechanically exfoliated samples. We also demonstrate the roll-to-roll/bubbling production of large-area flexible films of uniform monolayer, double-layer WS2 and WS2/graphene heterostructures, and batch fabrication of large-area flexible monolayer WS2 film transistor arrays. PMID:26450174

  4. Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Xu, Feng; Diner, David J.

    2018-01-01

    We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.

  5. Non-iterative determination of the stress-density relation from ramp wave data through a window

    NASA Astrophysics Data System (ADS)

    Dowling, Evan; Fratanduono, Dayne; Swift, Damian

    2017-06-01

    In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Systematic Evaluation of Non-Uniform Sampling Parameters in the Targeted Analysis of Urine Metabolites by 1H,1H 2D NMR Spectroscopy.

    PubMed

    Schlippenbach, Trixi von; Oefner, Peter J; Gronwald, Wolfram

    2018-03-09

    Non-uniform sampling (NUS) allows the accelerated acquisition of multidimensional NMR spectra. The aim of this contribution was the systematic evaluation of the impact of various quantitative NUS parameters on the accuracy and precision of 2D NMR measurements of urinary metabolites. Urine aliquots spiked with varying concentrations (15.6-500.0 µM) of tryptophan, tyrosine, glutamine, glutamic acid, lactic acid, and threonine, which can only be resolved fully by 2D NMR, were used to assess the influence of the sampling scheme, reconstruction algorithm, amount of omitted data points, and seed value on the quantitative performance of NUS in 1 H, 1 H-TOCSY and 1 H, 1 H-COSY45 NMR spectroscopy. Sinusoidal Poisson-gap sampling and a compressed sensing approach employing the iterative re-weighted least squares method for spectral reconstruction allowed a 50% reduction in measurement time while maintaining sufficient quantitative accuracy and precision for both types of homonuclear 2D NMR spectroscopy. Together with other advances in instrument design, such as state-of-the-art cryogenic probes, use of 2D NMR spectroscopy in large biomedical cohort studies seems feasible.

  7. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

    NASA Astrophysics Data System (ADS)

    Coral, W.; Rossi, C.; Curet, O. M.

    2015-12-01

    This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

  8. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  9. An E-plane analysis of aperture-matched horn antennas using the moment method and the uniform geometrical theory of diffraction

    NASA Technical Reports Server (NTRS)

    Heedy, D. J.; Burnside, W. D.

    1984-01-01

    The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.

  10. Sampling and position effects in the Electronically Steered Thinned Array Radiometer (ESTAR)

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.

    1993-01-01

    A simple engineering level model of the Electronically Steered Thinned Array Radiometer (ESTAR) is developed that allows an identification of the major effects of the sampling process involved with this technique. It is shown that the ESTAR approach is sensitive to aliasing and has a highly non-uniform sensitivity profile. It is further shown that the ESTAR approach is strongly sensitive to position displacements of the low-density sampling antenna elements.

  11. A Comparative Study of the Coupling of Flow with Non-Fickean Thermodiffusion. Part I: Extended Irreversible Thermodynamics

    NASA Astrophysics Data System (ADS)

    Lebon, G.; Grmela, M.; Lhuillier, D.

    2003-03-01

    Our main objective is to describe non-Fickean thermodiffusion in binary fluids within the framework of three recent theories of non-equilibrium thermodynamics, namely Extended Irreversible Thermodynamics (EIT), GENERIC (General Equation for the Non-Equilibrium Reversible Irreversible Coupling) and Thermodynamics with Internal Variables (IVT). In the first part presented in this paper, we develop the EIT description. For pedagogical reasons, we start from the simplest situation to end with the most intricate one. Therefore, we first examine the simple problem of mass diffusion at uniform temperature. Then we study heat transport in a one-component fluid before considering the more complex coupled heat and mass transfer. In Part II developed in the accompanying paper, we follow the same hierarchy of situations from the point of view of GENERIC. Finally, in Part III, we present the point of view of the thermodynamic theory of internal variables. Similarities and differences between EIT, GENERIC and IVT are stressed. In the present work, we have taken advantage of the problem of heat conduction to revisit the notion of caloric.

  12. The Origins of Scintillator Non-Proportionality

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.

    2012-10-01

    Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.

  13. On the application of the partition of unity method for nonlocal response of low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Natarajan, Sundararajan

    2014-12-01

    The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.

  14. Local density approximation in site-occupation embedding theory

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel

    2017-01-01

    Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.

  15. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.

    PubMed

    Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju

    2018-05-29

    Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.

  16. Restoration of non-uniform exposure motion blurred image

    NASA Astrophysics Data System (ADS)

    Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng

    2014-11-01

    Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.

  17. Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration

    NASA Astrophysics Data System (ADS)

    Lovejoy, McKenna Roberts

    Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order polynomial with 16-bit precision, significant improvement over the one and two-point correction algorithms. All algorithm have been implemented in software with satisfactory results and the third order gain equalization non-uniformity correction algorithm has been implemented in hardware.

  18. Influence of Disorder on DNA Conductance

    NASA Technical Reports Server (NTRS)

    Adessi, Christophe; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    Disorder along a DNA strand due to non uniformity associated with the counter ion type and location, and in rise and twist are investigated using density functional theory. We then model the conductance through a poly(G) DNA strand by including the influence of disorder. We show that the conductance drops by a few orders of magnitude between typical lengths of 10 and 100 nm. Such a decrease occurs with on-site potential disorder that is larger than 100 meV.

  19. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    PubMed

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  20. Investigations on Torsion of the Two-Chords Single Laced Members

    NASA Astrophysics Data System (ADS)

    Lorkowski, Paweł; Gosowski, Bronisław

    2017-06-01

    The paper presents experimental and numerical studies to determine the equivalent second moment of area of the uniform torsion of the two-chord steel single laced members. The members are used as poles of railway traction network gates, and steel columns of framed buildings as well. The stiffness of uniform torsion of this kind of columns allows to the determine the critical loads of the spatial stability. The experimental studies have been realized on a single - span members with rotation arrested at their ends, loaded by a torque applied at the mid-span. The relationship between angle of rotation of the considered cross-section and the torque has been determined. Appropriate numerical model was created in the ABAQUS program, based on the finite element method. A very good compatibility has been observed between experimental and numerical studies. The equivalent second moment of area of the uniform torsion for analysed members has been determined by comparing the experimental and analytical results to those obtained from differential equation of non-uniform torsion, based on Vlasov's theory. Additionally, the parametric analyses of similar members subjected to the uniform torsion, for the richer range of cross-sections have been carried out by the means of SOFiSTiK program. The purpose of the latter was determining parametrical formulas for calculation of the second moment of area of uniform torsion.

  1. Axial p-n-junctions in nanowires.

    PubMed

    Fernandes, C; Shik, A; Byrne, K; Lynall, D; Blumin, M; Saveliev, I; Ruda, H E

    2015-02-27

    The charge distribution and potential profile of p-n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah-Noice-Shockley theory, the junction current-voltage characteristic was described by an alternative theory suitable for fast generation-recombination and slow diffusion-drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1 < η < 2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work.

  2. Development of a methodology to evaluate material accountability in pyroprocess

    NASA Astrophysics Data System (ADS)

    Woo, Seungmin

    This study investigates the effect of the non-uniform nuclide composition in spent fuel on material accountancy in the pyroprocess. High-fidelity depletion simulations are performed using the Monte Carlo code SERPENT in order to determine nuclide composition as a function of axial and radial position within fuel rods and assemblies, and burnup. For improved accuracy, the simulations use short burnups step (25 days or less), Xe-equilibrium treatment (to avoid oscillations over burnup steps), axial moderator temperature distribution, and 30 axial meshes. Analytical solutions of the simplified depletion equations are built to understand the axial non-uniformity of nuclide composition in spent fuel. The cosine shape of axial neutron flux distribution dominates the axial non-uniformity of the nuclide composition. Combined cross sections and time also generate axial non-uniformity, as the exponential term in the analytical solution consists of the neutron flux, cross section and time. The axial concentration distribution for a nuclide having the small cross section gets steeper than that for another nuclide having the great cross section because the axial flux is weighted by the cross section in the exponential term in the analytical solution. Similarly, the non-uniformity becomes flatter as increasing burnup, because the time term in the exponential increases. Based on the developed numerical recipes and decoupling of the results between the axial distributions and the predetermined representative radial distributions by matching the axial height, the axial and radial composition distributions for representative spent nuclear fuel assemblies, the Type-0, -1, and -2 assemblies after 1, 2, and 3 depletion cycles, is obtained. These data are appropriately modified to depict processing for materials in the head-end process of pyroprocess that is chopping, voloxidation and granulation. The expectation and standard deviation of the Pu-to-244Cm-ratio by the single granule sampling calculated by the central limit theorem and the Geary-Hinkley transformation. Then, the uncertainty propagation through the key-pyroprocess is conducted to analyze the Material Unaccounted For (MUF), which is a random variable defined as a receipt minus a shipment of a process, in the system. The random variable, LOPu, is defined for evaluating the non-detection probability at each Key Measurement Point (KMP) as the original Pu mass minus the Pu mass after a missing scenario. A number of assemblies for the LOPu to be 8 kg is considered in this calculation. The probability of detection for the 8 kg LOPu is evaluated with respect the size of granule and powder using the event tree analysis and the hypothesis testing method. We can observe there are possible cases showing the probability of detection for the 8 kg LOPu less than 95%. In order to enhance the detection rate, a new Material Balance Area (MBA) model is defined for the key-pyroprocess. The probabilities of detection for all spent fuel types based on the new MBA model are greater than 99%. Furthermore, it is observed that the probability of detection significantly increases by increasing granule sample sizes to evaluate the Pu-to-244Cm-ratio before the key-pyroprocess. Based on these observations, even though the Pu material accountability in pyroprocess is affected by the non-uniformity of nuclide composition when the Pu-to-244Cm-ratio method is being applied, that is surmounted by decreasing the uncertainty of measured ratio by increasing sample sizes and modifying the MBAs and KMPs. (Abstract shortened by ProQuest.).

  3. Noise-immune complex correlation for vasculature imaging based on standard and Jones-matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Li, En; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    A new optical coherence angiography (OCA) method, called correlation mapping OCA (cmOCA), is presented by using the SNR-corrected complex correlation. An SNR-correction theory for the complex correlation calculation is presented. The method also integrates a motion-artifact-removal method for the sample motion induced decorrelation artifact. The theory is further extended to compute more reliable correlation by using multi- channel OCT systems, such as Jones-matrix OCT. The high contrast vasculature imaging of in vivo human posterior eye has been obtained. Composite imaging of cmOCA and degree of polarization uniformity indicates abnormalities of vasculature and pigmented tissues simultaneously.

  4. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species.

    PubMed

    Ferrero, Giulio; Cordero, Francesca; Tarallo, Sonia; Arigoni, Maddalena; Riccardo, Federica; Gallo, Gaetano; Ronco, Guglielmo; Allasia, Marco; Kulkarni, Neha; Matullo, Giuseppe; Vineis, Paolo; Calogero, Raffaele A; Pardini, Barbara; Naccarati, Alessio

    2018-01-09

    The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.

  5. Uniform theory of the boundary diffraction wave

    NASA Astrophysics Data System (ADS)

    Umul, Yusuf Z.

    2009-04-01

    A uniform version of the potential function of the Maggi-Rubinowicz boundary diffraction wave theory is obtained by using the large argument expansion of the Fresnel integral. The derived function is obtained for the problem of diffraction of plane waves by a circular edge. The results are plotted numerically.

  6. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  7. Uniform Sampling Table Method and its Applications II--Evaluating the Uniform Sampling by Experiment.

    PubMed

    Chen, Yibin; Chen, Jiaxi; Chen, Xuan; Wang, Min; Wang, Wei

    2015-01-01

    A new method of uniform sampling is evaluated in this paper. The items and indexes were adopted to evaluate the rationality of the uniform sampling. The evaluation items included convenience of operation, uniformity of sampling site distribution, and accuracy and precision of measured results. The evaluation indexes included operational complexity, occupation rate of sampling site in a row and column, relative accuracy of pill weight, and relative deviation of pill weight. They were obtained from three kinds of drugs with different shape and size by four kinds of sampling methods. Gray correlation analysis was adopted to make the comprehensive evaluation by comparing it with the standard method. The experimental results showed that the convenience of uniform sampling method was 1 (100%), odds ratio of occupation rate in a row and column was infinity, relative accuracy was 99.50-99.89%, reproducibility RSD was 0.45-0.89%, and weighted incidence degree exceeded the standard method. Hence, the uniform sampling method was easy to operate, and the selected samples were distributed uniformly. The experimental results demonstrated that the uniform sampling method has good accuracy and reproducibility, which can be put into use in drugs analysis.

  8. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.

    PubMed

    Li, Li; Qin, Lei; Wang, Li-Kun; Wan, Yuan-Yuan; Sun, Bai-Sheng

    2008-05-01

    The 1-3-2 composite is made of 1-3 composite and ceramic base. Its effective properties are calculated based on the linear piezoelectric theory and uniform field theory. The influence of piezoelectric phase volume fraction and composite aspect (thickness/width) on resonance characteristic of square 1-3-2 piezoelectric composite plate has been researched. In addition, some 1-3-2 composite samples were fabricated by dice-fill technology. The resonance frequency of samples was investigated. The results show that the experiment agrees well with the calculation. The pure thickness resonance mode of 1-3-2 composite will be gained when the volume fraction of ceramic bottom is less than 30%; that of ceramic rods is in the range of 30 approximately 80% and the ratio of thickness to width is less than 0.35.

  9. Optimal regulation in systems with stochastic time sampling

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1980-01-01

    An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.

  10. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  11. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya

    2012-01-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+ concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+ to roots through phloem. Plants under non-uniform salinity extruded more Na+ from the root than those under uniform salinity. Root Na+ efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+ efflux and H+ influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+ extrusion was probably due to active Na+/H+ antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+ concentration, transport of excessive foliar Na+ to the low salinity side, and enhanced Na+ efflux from the low salinity root. PMID:22200663

  12. Experimental test of photonic entanglement in accelerated reference frames

    PubMed Central

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-01-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082

  13. Spatial and Temporal Evolution of Evaporation in a Drying Soil

    NASA Astrophysics Data System (ADS)

    Eichinger, W.; Nichols, J.; Cooper, D.; Prueger, J.

    2005-12-01

    The Los Alamos Scanning Raman Lidar is capable of making spatially resolved estimates of evapotranspiration over an area approaching a square kilometer, with relatively fine (25 meter) spatial resolution, using three dimensional measurements of water vapor concentrations. The method is based upon Monin-Obukhov similarity theory applied to spatially and temporally averaged data. During SMEX02, the instrument was positioned between fields of corn and soybeans. Periodic maps of evapotranspiration rates over the two fields are presented. The maps show the relatively uniform response in the early morning when surface moisture is available and progress through the day as surface water becomes increasingly limited. The change in ET rates between the two crop types is noted as are the spatial patterns as the surface dries non-uniformly.

  14. Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August

    2016-09-13

    Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with thismore » code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.« less

  15. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Feng; Ren, Yu-Xin; Jiang, Xiong

    2018-02-01

    This paper presents a simple approach for improving the performance of the weighted essentially non-oscillatory (WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifth-order WENO-JS (WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202-228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable. The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On non-uniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime, the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.

  17. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Anderson, Melvin S.

    1998-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.

  18. HetMappsS: Heterozygous mapping strategy for high resolution Genotyping-by-Sequencing Markers

    USDA-ARS?s Scientific Manuscript database

    Reduced representation genotyping approaches, such as genotyping-by-sequencing (GBS), provide opportunities to generate high-resolution genetic maps at a low per-sample cost. However, missing data and non-uniform sequence coverage can complicate map creation in highly heterozygous species. To facili...

  19. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry

    DTIC Science & Technology

    2015-12-01

    ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  20. 10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...

  1. 10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...

  2. 10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...

  3. 10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...

  4. 10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...

  5. Plenoptic layer-based modeling for image based rendering.

    PubMed

    Pearson, James; Brookes, Mike; Dragotti, Pier Luigi

    2013-09-01

    Image based rendering is an attractive alternative to model based rendering for generating novel views because of its lower complexity and potential for photo-realistic results. To reduce the number of images necessary for alias-free rendering, some geometric information for the 3D scene is normally necessary. In this paper, we present a fast automatic layer-based method for synthesizing an arbitrary new view of a scene from a set of existing views. Our algorithm takes advantage of the knowledge of the typical structure of multiview data to perform occlusion-aware layer extraction. In addition, the number of depth layers used to approximate the geometry of the scene is chosen based on plenoptic sampling theory with the layers placed non-uniformly to account for the scene distribution. The rendering is achieved using a probabilistic interpolation approach and by extracting the depth layer information on a small number of key images. Numerical results demonstrate that the algorithm is fast and yet is only 0.25 dB away from the ideal performance achieved with the ground-truth knowledge of the 3D geometry of the scene of interest. This indicates that there are measurable benefits from following the predictions of plenoptic theory and that they remain true when translated into a practical system for real world data.

  6. A repeatable and scalable fabrication method for sharp, hollow silicon microneedles

    NASA Astrophysics Data System (ADS)

    Kim, H.; Theogarajan, L. S.; Pennathur, S.

    2018-03-01

    Scalability and manufacturability are impeding the mass commercialization of microneedles in the medical field. Specifically, microneedle geometries need to be sharp, beveled, and completely controllable, difficult to achieve with microelectromechanical fabrication techniques. In this work, we performed a parametric study using silicon etch chemistries to optimize the fabrication of scalable and manufacturable beveled silicon hollow microneedles. We theoretically verified our parametric results with diffusion reaction equations and created a design guideline for a various set of miconeedles (80-160 µm needle base width, 100-1000 µm pitch, 40-50 µm inner bore diameter, and 150-350 µm height) to show the repeatability, scalability, and manufacturability of our process. As a result, hollow silicon microneedles with any dimensions can be fabricated with less than 2% non-uniformity across a wafer and 5% deviation between different processes. The key to achieving such high uniformity and consistency is a non-agitated HF-HNO3 bath, silicon nitride masks, and surrounding silicon filler materials with well-defined dimensions. Our proposed method is non-labor intensive, well defined by theory, and straightforward for wafer scale mass production, opening doors to a plethora of potential medical and biosensing applications.

  7. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Tewari, A.; Gokhale, A.M.

    In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.

  8. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain sizemore » variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.« less

  9. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Shumilkin, V. G.; Ustinov, M. V.; Zhigulev, S. V.

    1999-01-01

    Experimental and theoretical studies of low speed leading edge boundary layer receptivity to free-stream vorticity produced by upstream wires normal to the leading edge are discussed. Data include parametric variations in leading edge configuration and details of the incident disturbance field including single and multiple wakes. The induced disturbance amplitude increases with increases in the leading edge diameter and wake interactions. Measurements agree with the theory of M. E. Goldstein.

  10. Propeller Design Studies for the Acoustic Research Ship C.F.A.V. QUEST,

    DTIC Science & Technology

    1981-08-01

    8. 5. Manen , J.D. van , "Fundamentals of Ship Resistance and Propulsion Part B", International Shipbuilding Progress Vol. 4, No. 30, February 1957. 6...Oossanen, P. van "Calculation of Performance and Cavitation Characteristics of Propellers, Including the Effects of Non-Uniform Flow". PhD thesis...Delft U;.iversity of Technology, 1974. Also NSMB Publ!cat -,7 457 7. Gent, W. van . "On the Use of Lifting Surface Theory for Moderately and Heavily

  11. Equilibrium and Non-Equilibrium Condensation Phenomena in Tuneable 3D and 2D Bose Gases

    DTIC Science & Technology

    2016-04-01

    condensed gas " which remains condensed above the expected critical temperature, and performed one of the first studies of the strongly-interacting "unitary...34 Bose gas . With the 2d harmonic trap we showed how the interaction-driven BKT phase is connected with purely statistical theory, and with the 3d...box trap we created the world’s first atomic BEC in a quasi-uniform potential. 15. SUBJECT TERMS EOARD, Bose gas , ultracold, condensation, equilibrium

  12. A new approach to evaluate gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Dejager, O. C.; Swanepoel, J. W. H.; Raubenheimer, B. C.; Vandervalt, D. J.

    1985-01-01

    Misunderstandings about the term random samples its implications may easily arise. Conditions under which the phases, obtained from arrival times, do not form a random sample and the dangers involved are discussed. Watson's U sup 2 test for uniformity is recommended for light curves with duty cycles larger than 10%. Under certain conditions, non-parametric density estimation may be used to determine estimates of the true light curve and its parameters.

  13. SPECT reconstruction with nonuniform attenuation from highly under-sampled projection data

    NASA Astrophysics Data System (ADS)

    Li, Cuifen; Wen, Junhai; Zhang, Kangping; Shi, Donghao; Dong, Haixiang; Li, Wenxiao; Liang, Zhengrong

    2012-03-01

    Single photon emission computed tomography (SPECT) is an important nuclear medicine imaging technique and has been using in clinical diagnoses. The SPECT image can reflect not only organizational structure but also functional activities of human body, therefore diseases can be found much earlier. In SPECT, the reconstruction is based on the measurement of gamma photons emitted by the radiotracer. The number of gamma photons detected is proportional to the dose of radiopharmaceutical, but the dose is limited because of patient safety. There is an upper limit in the number of gamma photons that can be detected per unit time, so it takes a long time to acquire SPECT projection data. Sometimes we just can obtain highly under-sampled projection data because of the limit of the scanning time or imaging hardware. How to reconstruct an image using highly under-sampled projection data is an interesting problem. One method is to minimize the total variation (TV) of the reconstructed image during the iterative reconstruction. In this work, we developed an OSEM-TV SPECT reconstruction algorithm, which could reconstruct the image from highly under-sampled projection data with non-uniform attenuation. Simulation results demonstrate that the OSEM-TV algorithm performs well in SPECT reconstruction with non-uniform attenuation.

  14. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  15. Investigations on the properties of NH4HCO3 filled natural rubber based magnetorheological elastomers (MREs)

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Wang, Guoping; Wang, Wenju; Shi, Guanxin; Yang, Fufeng; Rui, Xiaoting

    2018-04-01

    Various anisotropic magnetorheological elastomers (MREs) were synthesized using the rubber mixing technique. Magnetic and temperature distributions of the experimental equipment and test instruments were analyzed by the ANSYS. NH4HCO3 was filled in the natural rubber matrix to modify properties of MREs. Microstructures and compositions of samples were studied by the scanning electron microscope (SEM), the energy dispersive x-ray spectroscopy (EDAX) analysis and x-ray powder diffraction (XRD). Via vibrating sample magnetometer (VSM) and density functional theory (DFT) method, the magnetic property of carbonyl iron (CI) was illuminated. The shear storage modulus and MR effect of MREs were investigated by the dynamic mechanical analyzer (DMA). It indicated that distributions of magnetic and temperature in the experimental and testing devices were uniform. Before vulcanization, CI particles were uniformly distributed in the matrix, while a CI chain structure was formed and embedded in the matrix after the vulcanization process. Moderate addition of NH4HCO3 accelerated the rubber vulcanization and enhanced the MR effect.

  16. 3D Material Response Analysis of PICA Pyrolysis Experiments

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    The PICA decomposition experiments of Bessire and Minton are investigated using 3D material response analysis. The steady thermoelectric equations have been added to the CHAR code to enable analysis of the Joule-heated experiments and the DAKOTA optimization code is used to define the voltage boundary condition that yields the experimentally observed temperature response. This analysis has identified a potential spatial non-uniformity in the PICA sample temperature driven by the cooled copper electrodes and thermal radiation from the surface of the test article (Figure 1). The non-uniformity leads to a variable heating rate throughout the sample volume that has an effect on the quantitative results of the experiment. Averaging the results of integrating a kinetic reaction mechanism with the heating rates seen across the sample volume yield a shift of peak species production to lower temperatures that is more significant for higher heating rates (Figure 2) when compared to integrating the same mechanism at the reported heating rate. The analysis supporting these conclusions will be presented along with a proposed analysis procedure that permits quantitative use of the existing data. Time permitting, a status on the in-development kinetic decomposition mechanism based on this data will be presented as well.

  17. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  18. A closer look at the effect of preliminary goodness-of-fit testing for normality for the one-sample t-test.

    PubMed

    Rochon, Justine; Kieser, Meinhard

    2011-11-01

    Student's one-sample t-test is a commonly used method when inference about the population mean is made. As advocated in textbooks and articles, the assumption of normality is often checked by a preliminary goodness-of-fit (GOF) test. In a paper recently published by Schucany and Ng it was shown that, for the uniform distribution, screening of samples by a pretest for normality leads to a more conservative conditional Type I error rate than application of the one-sample t-test without preliminary GOF test. In contrast, for the exponential distribution, the conditional level is even more elevated than the Type I error rate of the t-test without pretest. We examine the reasons behind these characteristics. In a simulation study, samples drawn from the exponential, lognormal, uniform, Student's t-distribution with 2 degrees of freedom (t(2) ) and the standard normal distribution that had passed normality screening, as well as the ingredients of the test statistics calculated from these samples, are investigated. For non-normal distributions, we found that preliminary testing for normality may change the distribution of means and standard deviations of the selected samples as well as the correlation between them (if the underlying distribution is non-symmetric), thus leading to altered distributions of the resulting test statistics. It is shown that for skewed distributions the excess in Type I error rate may be even more pronounced when testing one-sided hypotheses. ©2010 The British Psychological Society.

  19. Grid generation on trimmed Bezier and NURBS quilted surfaces

    NASA Technical Reports Server (NTRS)

    Woan, Chung-Jin; Clever, Willard C.; Tam, Clement K.

    1995-01-01

    This paper presents some recently added capabilities to RAGGS, Rockwell Automated Grid Generation System. Included are the trimmed surface handling and display capability and structures and unstructured grid generation on trimmed Bezier and NURBS (non-uniform rational B-spline surfaces) quilted surfaces. Samples are given to demonstrate the new capabilities.

  20. Statistical Searches for Microlensing Events in Large, Non-uniformly Sampled Time-Domain Surveys: A Test Using Palomar Transient Factory Data

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Agüeros, Marcel A.; Fournier, Amanda P.; Street, Rachel; Ofek, Eran O.; Covey, Kevin R.; Levitan, David; Laher, Russ R.; Sesar, Branimir; Surace, Jason

    2014-01-01

    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ~20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ~40 times in the R band, ~2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.

  1. Principles of Work Sample Testing. Volume I: A Non-Empirical Taxonomy of Test Uses; Volume II: Evaluation of Personnel Testing Programs; Volume III: Construction and Evaluation of Work Sample Tests; Volume IV: Generalizability.

    ERIC Educational Resources Information Center

    Guion, Robert M.; Ironson, Gail H.

    Challenges to classical psychometric theory are examined in the context of a broader range of fundamental, derived, and intuitive measurements in psychology; the challenges include content-referenced testing, latent trait theory, and generalizability theory. A taxonomy of psychological measurement is developed, based on: (1) purposes of…

  2. On a neutral particle with permanent magnetic dipole moment in a magnetic medium

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Salvador, C.

    2018-03-01

    We investigate quantum effects that stem from the interaction of a permanent magnetic dipole moment of a neutral particle with an electric field in a magnetic medium. We consider a long non-conductor cylinder that possesses a uniform distribution of electric charges and a non-uniform magnetization. We discuss the possibility of achieving this non-uniform magnetization from the experimental point of view. Besides, due to this non-uniform magnetization, the permanent magnetic dipole moment of the neutral particle also interacts with a non-uniform magnetic field. This interaction gives rise to a linear scalar potential. Then, we show that bound states solutions to the Schrödinger-Pauli equation can be achieved.

  3. Contraction of high eccentricity satellite orbits using uniformly regular KS canonical elements with oblate diurnally varying atmosphere.

    NASA Astrophysics Data System (ADS)

    Raj, Xavier James

    2016-07-01

    Accurate orbit prediction of an artificial satellite under the influence of air drag is one of the most difficult and untraceable problem in orbital dynamics. The orbital decay of these satellites is mainly controlled by the atmospheric drag effects. The effects of the atmosphere are difficult to determine, since the atmospheric density undergoes large fluctuations. The classical Newtonian equations of motion, which is non linear is not suitable for long-term integration. Many transformations have emerged in the literature to stabilize the equations of motion either to reduce the accumulation of local numerical errors or allowing the use of large integration step sizes, or both in the transformed space. One such transformation is known as KS transformation by Kustaanheimo and Stiefel, who regularized the nonlinear Kepler equations of motion and reduced it into linear differential equations of a harmonic oscillator of constant frequency. The method of KS total energy element equations has been found to be a very powerful method for obtaining numerical as well as analytical solution with respect to any type of perturbing forces, as the equations are less sensitive to round off and truncation errors. The uniformly regular KS canonical equations are a particular canonical form of the KS differential equations, where all the ten KS Canonical elements αi and βi are constant for unperturbed motion. These equations permit the uniform formulation of the basic laws of elliptic, parabolic and hyperbolic motion. Using these equations, developed analytical solution for short term orbit predictions with respect to Earth's zonal harmonic terms J2, J3, J4. Further, these equations were utilized to include the canonical forces and analytical theories with air drag were developed for low eccentricity orbits (e < 0.2) with different atmospheric models. Using uniformly regular KS canonical elements developed analytical theory for high eccentricity (e > 0.2) orbits by assuming the atmosphere to be oblate only. In this paper a new non-singular analytical theory is developed for the motion of high eccentricity satellite orbits with oblate diurnally varying atmosphere in terms of the uniformly regular KS canonical elements. The analytical solutions are generated up to fourth-order terms using a new independent variable and c (a small parameter dependent on the flattening of the atmosphere). Due to symmetry, only two of the nine equations need to be solved analytically to compute the state vector and change in energy at the end of each revolution. The theory is developed on the assumption that density is constant on the surfaces of spheroids of fixed ellipticity ɛ (equal to the Earth's ellipticity, 0.00335) whose axes coincide with the Earth's axis. Numerical experimentation with the analytical solution for a wide range of perigee height, eccentricity, and orbital inclination has been carried out up to 100 revolutions. Comparisons are made with numerically integrated values and found that they match quite well. Effectiveness of the present analytical solutions will be demonstrated by comparing the results with other analytical solutions in the literature.

  4. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian 361005; Smith, Pieter E. S.

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. Bymore » porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.« less

  5. Adaptive Importance Sampling for Uniformly Recurrent Markov Chains

    DTIC Science & Technology

    2003-01-01

    the National Science Foundation (NSF- DMS-0072004, NSF-ECS-9979250) and the Army Research Office (DAAD19-00-1-0549, DAAD19-02-1-0425). †Research of this...author supported in part by the National Science Foundation (NSF- DMS-0103669). Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Appl., 20:213—229, 1985. [2] S. Asmussen. Risk theory in a Markovian environment. Scand. Acturial J., pages 69—100, 1989. [3] S. Asmussen, R

  6. Analysis of the Use of Unmanned Combat Aerial Vehicles in Conjunction with Manned Aircraft to Counter Active Terrorists in Rough Terrain

    DTIC Science & Technology

    2015-06-01

    UCAVs) may enhance Turkey’s ability to counter active terrorists in that region. In this research, Map Aware Non-uniform Automata (MANA) is used to...Aerial Vehicles (UCAVs) may enhance Turkey’s ability to counter active terrorists in that region. In this research, Map Aware Non-uniform Automata (MANA...Attack Munition LOS Line-of-Sight MALE Medium-Altitude Long-Endurance MANA Map Aware Non-Uniform Automata MANA-V Map Aware Non-Uniform Automata

  7. Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid

    NASA Astrophysics Data System (ADS)

    Mehta, C. B.; Singh, M.

    2018-02-01

    Thermal Instability (Benard's Convection) in the presence of uniform rotation and uniform magnetic field (separately) is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard's stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.

  8. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  9. A Simple Joint Estimation Method of Residual Frequency Offset and Sampling Frequency Offset for DVB Systems

    NASA Astrophysics Data System (ADS)

    Kwon, Ki-Won; Cho, Yongsoo

    This letter presents a simple joint estimation method for residual frequency offset (RFO) and sampling frequency offset (STO) in OFDM-based digital video broadcasting (DVB) systems. The proposed method selects a continual pilot (CP) subset from an unsymmetrically and non-uniformly distributed CP set to obtain an unbiased estimator. Simulation results show that the proposed method using a properly selected CP subset is unbiased and performs robustly.

  10. Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-05-05

    An optical heat generation and detection system generates a first non-destructive pulsed beam of electromagnetic radiation that is directed upon a sample containing at least one interface between similar or dissimilar materials. The first pulsed beam of electromagnetic radiation, a pump beam, produces a non-uniform temperature change within the sample. A second non-destructive pulsed beam of electromagnetic radiation, a probe beam, is also directed upon the sample. Physical and chemical properties of the materials, and of the interface, are measured by observing changes in a transient optical response of the sample to the probe beam, as revealed by a time dependence of changes in, by example, beam intensity, direction, or state of polarization. The system has increased sensitivity to interfacial properties including defects, contaminants, chemical reactions and delaminations, as compared to conventional non-destructive, non-contact techniques. One feature of this invention is a determination of a Kapitza resistance at the interface, and the correlation of the determined Kapitza resistance with a characteristic of the interface, such as roughness, delamination, the presence of contaminants, etc. 31 figs.

  11. Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector

    DOEpatents

    Maris, Humphrey J; Stoner, Robert J

    1998-01-01

    An optical heat generation and detection system generates a first non-destructive pulsed beam of electromagnetic radiation that is directed upon a sample containing at least one interface between similar or dissimilar materials. The first pulsed beam of electromagnetic radiation, a pump beam (21a), produces a non-uniform temperature change within the sample. A second non-destructive pulsed beam of electromagnetic radiation, a probe beam (21b), is also directed upon the sample. Physical and chemical properties of the materials, and of the interface, are measured by observing changes in a transient optical response of the sample to the probe beam, as revealed by a time dependence of changes in, by example, beam intensity, direction, or state of polarization. The system has increased sensitivity to interfacial properties including defects, contaminants, chemical reactions and delaminations, as compared to conventional non-destructive, non-contact techniques. One feature of this invention is a determination of a Kapitza resistance at the interface, and the correlation of the determined Kapitza resistance with a characteristic of the interface, such as roughness, delamination, the presence of contaminants, etc.

  12. Start-On-The-Part Transient Model for In-Situ Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert c.; Marchello, Joseph M.

    1997-01-01

    Fabrication of a complex part by automated tape placement (ATP) can require starting up a new tape-end in the part interior, termed start-on-the-part. Careful thermal management of the starting transient is needed to achieve uniform crystallinity and inter-laminar weld strength - which is the objective of this modeling effort. The transient is modeled by a Fourier-Laplace transform solution of the time-dependent thermal transport equation in two spatial dimensions. The solution is subject to a quasi-steady approximation for the speed and length of the consolidation head. Sample calculations are done for the Langley ATP robot applying PEEK/carbon fiber composite and for two upgrades in robot performance. The head starts out almost at rest which meets an engineering requirement for accurate placement of the new tape-end. The head then rapidly accelerates until it reaches its steady state speed. This rapid acceleration, however, violates the quasi-steady approximation, so uniform weld strength and crystallinity during the starting transient are not actually achieved. The solution does give the elapsed time and distance from start-up to validity of the quasi-steady approximation - which quantifies the length of the non-uniform region. The elapsed time was always less than 0.1 s and the elapsed distance less than 1 cm. This quantification would allow the non-uniform region to be either trimmed away or compensated for in the design of a part. Such compensation would require experiments to measure the degree of non-uniformity, because the solution does not provide this information. The rapid acceleration suggests that the consolidation roller or belt be actively synchronized to avoid abrading the tape.

  13. Assessing the Straightforwardly-Worded Brief Fear of Negative Evaluation Scale for Differential Item Functioning Across Gender and Ethnicity.

    PubMed

    Harpole, Jared K; Levinson, Cheri A; Woods, Carol M; Rodebaugh, Thomas L; Weeks, Justin W; Brown, Patrick J; Heimberg, Richard G; Menatti, Andrew R; Blanco, Carlos; Schneier, Franklin; Liebowitz, Michael

    2015-06-01

    The Brief Fear of Negative Evaluation Scale (BFNE; Leary Personality and Social Psychology Bulletin , 9, 371-375, 1983) assesses fear and worry about receiving negative evaluation from others. Rodebaugh et al. Psychological Assessment, 16 , 169-181, (2004) found that the BFNE is composed of a reverse-worded factor (BFNE-R) and straightforwardly-worded factor (BFNE-S). Further, they found the BFNE-S to have better psychometric properties and provide more information than the BFNE-R. Currently there is a lack of research regarding the measurement invariance of the BFNE-S across gender and ethnicity with respect to item thresholds. The present study uses item response theory (IRT) to test the BFNE-S for differential item functioning (DIF) related to gender and ethnicity (White, Asian, and Black). Six data sets consisting of clinical, community, and undergraduate participants were utilized ( N =2,109). The factor structure of the BFNE-S was confirmed using categorical confirmatory factor analysis, IRT model assumptions were tested, and the BFNE-S was evaluated for DIF. Item nine demonstrated significant non-uniform DIF between White and Black participants. No other items showed significant uniform or non-uniform DIF across gender or ethnicity. Results suggest the BFNE-S can be used reliably with men and women and Asian and White participants. More research is needed to understand the implications of using the BFNE-S with Black participants.

  14. Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1999-01-01

    An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.

  15. Spectral methods in edge-diffraction theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, J.M.

    Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less

  16. The frequency dependence of the viscous component of the magnetic susceptibility of lunar rock and soil samples

    NASA Technical Reports Server (NTRS)

    Hanneken, J. W.; Vant-Hull, L. L.; Carnes, J. G.

    1976-01-01

    The susceptibility of two lunar samples (a soil and a low metamorphic grade breccia) has been measured in a weak field - 0.001 Oe - and as a function of frequency from 0.032 to 1.0 Hz. The measurements were made using a superconducting magnetometer. The results show that the susceptibility decreases linearly with the log of frequency. This observation is in agreement with a theoretical model for viscous decay based on the Neel theory of single-domain and superparamagnetic grains. The relation derived agrees with a model in which there is a uniform distribution of relaxation times.

  17. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal setsmore » in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.« less

  18. Statistical field theory description of inhomogeneous polarizable soft matter

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.

    2016-10-01

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  19. Statistical field theory description of inhomogeneous polarizable soft matter.

    PubMed

    Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H

    2016-10-21

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  20. Investigation of non-uniform radiation damage observed in the ZEUS Beam Pipe Calorimeter at HERA

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Fricke, U.; Surrow, B.; Wick, K.

    1999-08-01

    The ZEUS Beam Pipe Calorimeter (BPC) is a small tungsten/scintillator sampling calorimeter. It is positioned at a distance of approximately 4 cm from the HERA beams and approximately 3 m from the interaction point. The accumulated doses measured at the front side of the BPC during the HERA runs 1995, 1996 and 1997 were 12 kGy, 11 kGy and 2.5 kGy, respectively. The radiation dose influenced the optical components of the BPC. The degradation of some of the scintillators due to radiation damage has been examined using different monitoring systems. A simulation code was developed which describes quantitatively the effects of non-uniform radiation damage. The following report describes the radiation monitoring, the effects on the scintillator material and the impact on the energy linearity of the BPC.

  1. Estimating the duration of geologic intervals from a small number of age determinations: A challenge common to petrology and paleobiology

    NASA Astrophysics Data System (ADS)

    Glazner, Allen F.; Sadler, Peter M.

    2016-12-01

    The duration of a geologic interval, such as the time over which a given volume of magma accumulated to form a pluton, or the lifespan of a large igneous province, is commonly determined from a relatively small number of geochronologic determinations (e.g., 4-10) within that interval. Such sample sets can underestimate the true length of the interval by a significant amount. For example, the average interval determined from a sample of size n = 5, drawn from a uniform random distribution, will underestimate the true interval by 50%. Even for n = 10, the average sample only captures ˜80% of the interval. If the underlying distribution is known then a correction factor can be determined from theory or Monte Carlo analysis; for a uniform random distribution, this factor is n+1n-1. Systematic undersampling of interval lengths can have a large effect on calculated magma fluxes in plutonic systems. The problem is analogous to determining the duration of an extinct species from its fossil occurrences. Confidence interval statistics developed for species origination and extinction times are applicable to the onset and cessation of magmatic events.

  2. Dual-wavelength OR-PAM with compressed sensing for cell tracking in a 3D cell culture system

    NASA Astrophysics Data System (ADS)

    Huang, Rou-Xuan; Fu, Ying; Liu, Wang; Ma, Yu-Ting; Hsieh, Bao-Yu; Chen, Shu-Ching; Sun, Mingjian; Li, Pai-Chi

    2018-02-01

    Monitoring dynamic interactions of T cells migrating toward tumor is beneficial to understand how cancer immunotherapy works. Optical-resolution photoacoustic microscope (OR-PAM) can provide not only high spatial resolution but also deeper penetration than conventional optical microscopy. With the aid of exogenous contrast agents, the dual-wavelength OR-PAM can be applied to map the distribution of CD8+ cytotoxic T lymphocytes (CTLs) with gold nanospheres (AuNS) under 523nm laser irradiation and Hepta1-6 tumor spheres with indocyanine green (ICG) under 800nm irradiation. However, at 1K laser PRF, it takes approximately 20 minutes to obtain a full sample volume of 160 × 160 × 150 μm3 . To increase the imaging rate, we propose a random non-uniform sparse sampling mechanism to achieve fast sparse photoacoustic data acquisition. The image recovery process is formulated as a low-rank matrix recovery (LRMR) based on compressed sensing (CS) theory. We show that it could be stably recovered via nuclear-norm minimization optimization problem to maintain image quality from a significantly fewer measurement. In this study, we use the dual-wavelength OR-PAM with CS to visualize T cell trafficking in a 3D culture system with higher temporal resolution. Data acquisition time is reduced by 40% in such sample volume where sampling density is 0.5. The imaging system reveals the potential to understand the dynamic cellular process for preclinical screening of anti-cancer drugs.

  3. Effects of packaging and storage conditions on the quality of amoxicillin-clavulanic acid – an analysis of Cambodian samples

    PubMed Central

    2013-01-01

    Background The use of substandard and degraded medicines is a major public health problem in developing countries such as Cambodia. A collaborative study was conducted to evaluate the quality of amoxicillin–clavulanic acid preparations under tropical conditions in a developing country. Methods Amoxicillin-clavulanic acid tablets were obtained from outlets in Cambodia. Packaging condition, printed information, and other sources of information were examined. The samples were tested for quantity, content uniformity, and dissolution. Authenticity was verified with manufacturers and regulatory authorities. Results A total of 59 samples were collected from 48 medicine outlets. Most (93.2%) of the samples were of foreign origin. Using predetermined acceptance criteria, 12 samples (20.3%) were non-compliant. Eight (13.6%), 10 (16.9%), and 20 (33.9%) samples failed quantity, content uniformity, and dissolution tests, respectively. Samples that violated our observational acceptance criteria were significantly more likely to fail the quality tests (Fisher’s exact test, p < 0.05). Conclusions Improper packaging and storage conditions may reduce the quality of amoxicillin–clavulanic acid preparations at community pharmacies. Strict quality control measures are urgently needed to maintain the quality of amoxicillin–clavulanic acid in tropical countries. PMID:23773420

  4. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  5. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    NASA Astrophysics Data System (ADS)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginn, Timothy R.; Weathers, Tess

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understandingmore » of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well.« less

  7. Psychopathology and Thought Suppression: A Quantitative Review

    PubMed Central

    Magee, Joshua C.; Harden, K. Paige; Teachman, Bethany A.

    2012-01-01

    Recent theories of psychopathology have suggested that thought suppression intensifies the persistence of intrusive thoughts, and proposed that difficulty with thought suppression may differ between groups with and without psychopathology. The current meta-analytic review evaluates empirical evidence for difficulty with thought suppression as a function of the presence and specific type of psychopathology. Based on theoretical proposals from the psychopathology literature, diagnosed and analogue samples were expected to show greater recurrence of intrusive thoughts during thought suppression attempts than non-clinical samples. However, results showed no overall differences in the recurrence of thoughts due to thought suppression between groups with and without psychopathology. There was, nevertheless, variation in the recurrence of thoughts across different forms of psychopathology, including relatively less recurrence during thought suppression for samples with symptoms of Obsessive-Compulsive Disorder, compared to non-clinical samples. However, these differences were typically small and provided only mixed support for existing theories. Implications for cognitive theories of intrusive thoughts are discussed, including proposed mechanisms underlying thought suppression. PMID:22388007

  8. Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, A.; Ravichandran, R.; Park, J. H.

    The second-order non-Navier-Fourier constitutive laws, expressed in a compact algebraic mathematical form, were validated for the force-driven Poiseuille gas flow by the deterministic atomic-level microscopic molecular dynamics (MD). Emphasis is placed on how completely different methods (a second-order continuum macroscopic theory based on the kinetic Boltzmann equation, the probabilistic mesoscopic direct simulation Monte Carlo, and, in particular, the deterministic microscopic MD) describe the non-classical physics, and whether the second-order non-Navier-Fourier constitutive laws derived from the continuum theory can be validated using MD solutions for the viscous stress and heat flux calculated directly from the molecular data using the statistical method.more » Peculiar behaviors (non-uniform tangent pressure profile and exotic instantaneous heat conduction from cold to hot [R. S. Myong, “A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation,” Phys. Fluids 23(1), 012002 (2011)]) were re-examined using atomic-level MD results. It was shown that all three results were in strong qualitative agreement with each other, implying that the second-order non-Navier-Fourier laws are indeed physically legitimate in the transition regime. Furthermore, it was shown that the non-Navier-Fourier constitutive laws are essential for describing non-zero normal stress and tangential heat flux, while the classical and non-classical laws remain similar for shear stress and normal heat flux.« less

  9. Generation of complementary sampled phase-only holograms.

    PubMed

    Tsang, P W M; Chow, Y T; Poon, T-C

    2016-10-03

    If an image is uniformly down-sampled into a sparse form and converted into a hologram, the phase component alone will be adequate to reconstruct the image. However, the appearance of the reconstructed image is degraded with numerous empty holes. In this paper, we present a low complexity and non-iterative solution to this problem. Briefly, two phase-only holograms are generated for an image, each based on a different down-sampling lattice. Subsequently, the holograms are displayed alternately at high frame rate. The reconstructed images of the 2 holograms will appear to be a single, densely sampled image with enhance visual quality.

  10. Performance of wind turbines in a turbulent atmosphere

    NASA Technical Reports Server (NTRS)

    Sundar, R. M.; Sullivan, J. P.

    1981-01-01

    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency.

  11. Gender, Race, and Delinquent Behavior: An Extension of Power-Control Theory to American Indian Adolescents

    PubMed Central

    Eitle, David; Niedrist, Fallon; Eitle, Tamela McNulty

    2014-01-01

    Research testing Hagan’s power-control theory has largely been tested with samples of non-Hispanic whites. We extend prior research by testing the theory’s merits with a sample of American Indian (AI) adolescents. Overall, we find mixed support for the theory’s merits. However, we find that our measure of patriarchy is a robust predictor of AI female delinquent activity. We also find that a grandparent in the household serves to greatly reduce involvement in violent behavior among AI females. Compared to a sample of non-Hispanic whites, these results reveal the importance of testing explanations of deviant behavior across racial and ethnic groups. PMID:25342866

  12. Correlates of depression in bipolar disorder

    PubMed Central

    Moore, Paul J.; Little, Max A.; McSharry, Patrick E.; Goodwin, Guy M.; Geddes, John R.

    2014-01-01

    We analyse time series from 100 patients with bipolar disorder for correlates of depression symptoms. As the sampling interval is non-uniform, we quantify the extent of missing and irregular data using new measures of compliance and continuity. We find that uniformity of response is negatively correlated with the standard deviation of sleep ratings (ρ = –0.26, p = 0.01). To investigate the correlation structure of the time series themselves, we apply the Edelson–Krolik method for correlation estimation. We examine the correlation between depression symptoms for a subset of patients and find that self-reported measures of sleep and appetite/weight show a lower average correlation than other symptoms. Using surrogate time series as a reference dataset, we find no evidence that depression is correlated between patients, though we note a possible loss of information from sparse sampling. PMID:24352942

  13. Below-threshold harmonic generation from strong non-uniform fields

    NASA Astrophysics Data System (ADS)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  14. The second Eshelby problem and its solvability

    NASA Astrophysics Data System (ADS)

    Zou, Wen-Nan; Zheng, Quan-Shui

    2012-10-01

    It is still a challenge to clarify the dependence of overall elastic properties of heterogeneous materials on the microstructures of non-elliposodal inhomogeneities (cracks, pores, foreign particles). From the theory of elasticity, the formulation of the perturbance elastic fields, coming from a non-ellipsoidal inhomogeneity embedded in an infinitely extended material with remote constant loading, inevitably involve one or more integral equations. Up to now, due to the mathematical difficulty, there is almost no explicit analytical solution obtained except for the ellipsoidal inhomogeneity. In this paper, we point out the impossibility to transform this inhomogeneity problem into a conventional Eshelby problem by the equivalent inclusion method even if the eigenstrain is chosen to be non-uniform. We also build up an equivalent model, called the second Eshelby problem, to investigate the perturbance stress. It is probably a better template to make use of the profound methods and results of conventional Eshelby problems of non-ellipsoidal inclusions.

  15. Second harmonic sound field after insertion of a biological tissue sample

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  16. DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D.

    PubMed

    Shuvaev, Sergey A; Lazutkin, Alexander A; Kedrov, Alexander V; Anokhin, Konstantin V; Enikolopov, Grigori N; Koulakov, Alexei A

    2017-01-01

    Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.

  17. Frictional sliding inclusions

    NASA Astrophysics Data System (ADS)

    Huang, Jin H.; Furuhashi, R.; Mura, T.

    1993-02-01

    S OLUTIONS ARE presented in closed form by using an averaging method for inclusions sliding along an interface due to uniform eigenstrains precribed in the inclusions. The associated stress fields are also analytically determined. A parameter s is introduced to indicate the relative magnitude of sliding compared with the extreme cases of perfect bonding and perfect sliding. When the parameter s becomes zero, the present solution coincides with Eshelby's solution which is the perfectly bonded case. In contrast, when the parameter s is unity, the solution agrees with Volterra's solution (M URA and F URUHASHI, 1984, J. appl. Mech.51, 308] for the perfect sliding case. Because of non-uniform elastic fields caused by sliding along the interface, the well-known Eshelby tensor is modified for the sliding inclusions. Moreover, based on the Mori-Tanaka theory (M ORI and T ANAKA, 1973, Acta Metall.21, 571), an overall stress-strain relation is established to characterize the sliding effect on the overall elastic moduli.

  18. Studies on water treeing and chemiluminescence on irradiated polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notingher, P.V.; Ciuprina, F.; Radu, I.

    The effect of {gamma}-radiations on the growth kinetics of water trees is examined using the CNRS laboratory model in LDPE samples of different origins. The effect of radiations on the material is studied from crosslinking degree measurements, IRTF spectroscopy and chemiluminescence. Correlations between the non-uniformity of the degradation and the growth of water trees are observed.

  19. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils

    PubMed Central

    Boyes, Richard G.; Gunter, Jeff L.; Frost, Chris; Janke, Andrew L.; Yeatman, Thomas; Hill, Derek L.G.; Bernstein, Matt A.; Thompson, Paul M.; Weiner, Michael W.; Schuff, Norbert; Alexander, Gene E.; Killiany, Ronald J.; DeCarli, Charles; Jack, Clifford R.; Fox, Nick C.

    2008-01-01

    Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n = 18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d = 50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p < 0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391

  20. Dressing Diversity: Politics of Difference and the Case of School Uniforms

    ERIC Educational Resources Information Center

    Deane, Samantha

    2015-01-01

    Through an analysis of school uniform policies and theories of social justice, Samantha Deane argues that school uniforms and their foregoing policies assume that confronting strangers--an imperative of living in a democratic polity--is something that requires seeing sameness instead of recognizing difference. Imbuing schooling with a directive…

  1. Freeform lens generation for quasi-far-field successive illumination targets

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Thibault, Simon

    2018-07-01

    A predefined mapping to tailor one or more freeform surfaces is employed to build a freeform illumination system. The emergent rays from the light source corresponding to the prescribed target mesh for a pre-determined lighting distance are mapped by a point-to-point algorithm with respect to the freeform optics, which involves limiting design flexibility. To tackle the problem of design limitation and find the optimum design results, a freeform lens is exploited to produce the desired rectangular illumination distribution at successive target planes at quasi-far-field lighting distances. It is generated using numerical solutions to find out an initial starting point, and an appropriate approach to obtain variables for parameterization of the freeform surface is introduced. The relative standard deviation, which is a useful figure of merit for the analysis, is set up as merit function with respect to illumination non-uniformity at the successive sampled target planes. Therefore, the irradiance distribution in terms of the specific lighting distance range can be ensured by the proposed scheme. A design example of a freeform illumination system, composed of a spherical surface and a freeform surface, is given to produce desired irradiance distribution within the lighting distance range. An optical performance with low non-uniformity and high efficiency is achieved. Compared with the conventional approach, the uniformity of the sampled targets is dramatically enhanced; meanwhile, a design result with a large tolerance of LED size is offered.

  2. Understanding Customers: The Jobs to Be Done Theory Applied in the Context of a Rural Food Pantry.

    PubMed

    Vaterlaus, J Mitchell; Cottle, Natalie Martineau; Patten, Emily Vaterlaus; Gibbons, Robyn

    2018-04-28

    Food insecurity, and particularly rural food insecurity, has unique challenges associated with it. Understanding the customer or patron needs is increasingly important in resolving this national concern. The Jobs to Be Done Theory posits that when considering customers, it is beneficial to move past demographic profiling and focus on what the customer wants to accomplish by using a particular product or service. This qualitative study aimed to determine customers' jobs to be done at a rural food pantry. In addition, it seeks to demonstrate the application of contemporary management theory to dietetics practice. A case study approach was used in this study. Case study data collection procedures included six male and six female food pantry patrons in Montana completing in-depth, audio-recorded interviews and surveys. Each person's interview and survey were constructed into individual case descriptions; the case descriptions were analyzed using uniform categories determined by researchers. To identify themes in the holistic case, word tables were created for each uniform category and assessed for key themes representing patrons' experiences. The key themes that emerged were the customer in context, customers' food relief needs, connecting with customers, and barriers to utilization. The application of Jobs to Be Done Theory to rural food pantry customers demonstrates that demographic segmentation does not capture the social, emotional, and functional dimensions for this sample. Investigation of customer experiences, circumstances, and obstacles is important for improving dietetics services. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Prescribed performance distributed consensus control for nonlinear multi-agent systems with unknown dead-zone input

    NASA Astrophysics Data System (ADS)

    Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang

    2018-05-01

    In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  4. Correcting for surface topography in X-ray fluorescence imaging

    PubMed Central

    Geil, E. C.; Thorne, R. E.

    2014-01-01

    Samples with non-planar surfaces present challenges for X-ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet. PMID:25343805

  5. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1987-01-01

    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.

  6. Single image non-uniformity correction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Jian, Xian-zhong; Lu, Rui-zhi; Guo, Qiang; Wang, Gui-pu

    2016-05-01

    A non-uniformity correction (NUC) method for an infrared focal plane array imaging system was proposed. The algorithm, based on compressive sensing (CS) of single image, overcame the disadvantages of "ghost artifacts" and bulk calculating costs in traditional NUC algorithms. A point-sampling matrix was designed to validate the measurements of CS on the time domain. The measurements were corrected using the midway infrared equalization algorithm, and the missing pixels were solved with the regularized orthogonal matching pursuit algorithm. Experimental results showed that the proposed method can reconstruct the entire image with only 25% pixels. A small difference was found between the correction results using 100% pixels and the reconstruction results using 40% pixels. Evaluation of the proposed method on the basis of the root-mean-square error, peak signal-to-noise ratio, and roughness index (ρ) proved the method to be robust and highly applicable.

  7. CONNJUR Workflow Builder: A software integration environment for spectral reconstruction

    PubMed Central

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert; Martyn, Timothy O.; Ellis, Heidi J.C.; Gryk, Michael R.

    2015-01-01

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses. PMID:26066803

  8. CONNJUR Workflow Builder: a software integration environment for spectral reconstruction.

    PubMed

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert; Martyn, Timothy O; Ellis, Heidi J C; Gryk, Michael R

    2015-07-01

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses.

  9. On-axis non-linear effects with programmable Dammann lenses under femtosecond illumination.

    PubMed

    Pérez Vizcaíno, Jorge; Mendoza-Yero, Omel; Borrego-Varillas, Rocío; Mínguez-Vega, Gladys; Vázquez de Aldana, Javier R; Láncis, Jesús

    2013-05-15

    We demonstrate the utilization of Dammann lenses codified onto a spatial light modulator (SLM) for triggering non-linear effects. With continuous wave illumination Dammann lenses are binary phase optical elements that generate a set of equal intensity foci. We theoretically calculate the influence of ultrashort pulse illumination on the uniformity of the generated pattern, which is affected by chromatic aberration for pulses with temporal widths lower than 100 fs. The simulations also indicate that acceptable uniformity can be achieved for pulses of several fs by shortening the distance among foci which can be easily modified with the SLM. Multifocal second-harmonic generation (SHG) and on-axis multiple filamentation are produced and actively controlled in β-BaB2O4 (BBO) and fused silica samples, respectively, with an amplified Ti: Sapphire femtosecond laser of 30 fs pulse duration. Experimental results are in very good agreement with theoretical calculations.

  10. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.

    PubMed

    Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze

    2016-06-08

    This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.

  11. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.

    PubMed

    Tsai, Sung-Lin; Hong, Jhih-Lin; Chen, Ming-Kun; Jang, Ling-Sheng

    2011-06-01

    This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rotating gravity currents. Part 1. Energy loss theory

    NASA Astrophysics Data System (ADS)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  13. Quantitative surface topography determination by Nomarski reflection microscopy I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessor, D.L.; Hartman, J.S.; Gordon, R.L.

    1979-02-01

    The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less

  14. Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays

    NASA Astrophysics Data System (ADS)

    Beecken, B. P.; Fossum, E. R.

    1996-07-01

    Standard statistical theory is used to calculate how the accuracy of a conversion-gain measurement depends on the number of samples. During the development of a theoretical basis for this calculation, a model is developed that predicts how the noise levels from different elements of an ideal detector array are distributed. The model can also be used to determine what dependence the accuracy of measured noise has on the size of the sample. These features have been confirmed by experiment, thus enhancing the credibility of the method for calculating the uncertainty of a measured conversion gain. detector-array uniformity, charge coupled device, active pixel sensor.

  15. Identification of Hot Moments and Hot Spots for Real-Time Adaptive Control of Multi-scale Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Minsker, B. S.

    2012-12-01

    Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.

  16. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.

    PubMed

    Patts, Justin R; Barone, Teresa L

    2017-05-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over "off-the-shelf" sampling cassettes.

  17. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section

    PubMed Central

    Patts, Justin R.; Barone, Teresa L.

    2017-01-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over “off-the-shelf” sampling cassettes. PMID:27792474

  18. Determination of the microbolometric FPA's responsivity with imaging system's radiometric considerations

    NASA Astrophysics Data System (ADS)

    Gogler, Slawomir; Bieszczad, Grzegorz; Krupinski, Michal

    2013-10-01

    Thermal imagers and used therein infrared array sensors are subject to calibration procedure and evaluation of their voltage sensitivity on incident radiation during manufacturing process. The calibration procedure is especially important in so-called radiometric cameras, where accurate radiometric quantities, given in physical units, are of concern. Even though non-radiometric cameras are not expected to stand up to such elevated standards, it is still important, that the image faithfully represents temperature variations across the scene. Detectors used in thermal camera are illuminated by infrared radiation transmitted through an infrared transmitting optical system. Often an optical system, when exposed to uniform Lambertian source forms a non-uniform irradiation distribution in its image plane. In order to be able to carry out an accurate non-uniformity correction it is essential to correctly predict irradiation distribution from a uniform source. In the article a non-uniformity correction method has been presented, that takes into account optical system's radiometry. Predictions of the irradiation distribution have been confronted with measured irradiance values. Presented radiometric model allows fast and accurate non-uniformity correction to be carried out.

  19. Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.

    PubMed

    Liu, Tao; Lin, Changyu; Djordjevic, Ivan B

    2016-06-27

    In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.

  20. Uniform field loop-gap resonator and rectangular TEU02 for aqueous sample EPR at 94 GHz

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Sarna, Tadeusz; Mett, Richard R.; Hyde, James S.

    2017-09-01

    In this work we present the design and implementation of two uniform-field resonators: a seven-loop-six-gap loop-gap resonator (LGR) and a rectangular TEU02 cavity resonator. Each resonator has uniform-field-producing end-sections. These resonators have been designed for electron paramagnetic resonance (EPR) of aqueous samples at 94 GHz. The LGR geometry employs low-loss Rexolite end-sections to improve the field homogeneity over a 3 mm sample region-of-interest from near-cosine distribution to 90% uniform. The LGR was designed to accommodate large degassable Polytetrafluorethylen (PTFE) tubes (0.81 mm O.D.; 0.25 mm I.D.) for aqueous samples. Additionally, field modulation slots are designed for uniform 100 kHz field modulation incident at the sample. Experiments using a point sample of lithium phthalocyanine (LiPC) were performed to measure both the uniformity of the microwave magnetic field and 100 kHz field modulation, and confirm simulations. The rectangular TEU02 cavity resonator employs over-sized end-sections with sample shielding to provide an 87% uniform field for a 0.1 × 2 × 6 mm3 sample geometry. An evanescent slotted window was designed for light access to irradiate 90% of the sample volume. A novel dual-slot iris was used to minimize microwave magnetic field perturbations and maintain cross-sectional uniformity. Practical EPR experiments using the application of light irradiated rose bengal (4,5,6,7-tetrachloro-2‧,4‧,5‧,7‧-tetraiodofluorescein) were performed in the TEU02 cavity. The implementation of these geometries providing a practical designs for uniform field resonators that continue resonator advancements towards quantitative EPR spectroscopy.

  1. Origin and heterogeneity of pore sizes in the Mount Simon Sandstone and Eau Claire Formation: Implications for multiphase fluid flow

    DOE PAGES

    Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; ...

    2016-01-01

    The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO 2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibitmore » highly variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO 2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO 2 storage and CAES.« less

  2. Influence of the magnetic field profile on ITER conductor testing

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Ilyin, Y.; ten Kate, H. H. J.

    2006-08-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally soldered wire, averaging the transverse conduit surface potentials initiated in the joints.

  3. A gradient field defeats the inherent repulsion between magnetic nanorods

    PubMed Central

    Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.

    2014-01-01

    When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550

  4. Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Bian, L. G.; Chen, Z. G.; Sparrow, M.; Zhang, J. H.

    2006-05-01

    This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (C-T) and water vapor (C-q) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.

  5. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    NASA Astrophysics Data System (ADS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-02-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.

  6. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  7. Method and apparatus for adjustably induced biaxial strain

    DOEpatents

    Vestel, Michael J.; Oshatz, Daryl Patrick

    2006-05-16

    An apparatus comprising a shape memory alloy is configured as a ring shaped sample holder for a transmission electron microscope and imparts uniform biaxial strain on a thin film mounted within. The sample holder responds to a change in temperature by changing the inner diameter, which imparts biaxial strain. In other embodiments, the sample holder is configured to change the inner diameter and change the strain on a thin film reversibly and repeatedly. In further embodiments, the sample holder is non circular. In still further embodiments, the apparatus is configured as a prime mover of a reversible radial actuator. Methods for making and using the apparatus are included in other embodiments.

  8. A novel scene-based non-uniformity correction method for SWIR push-broom hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Hu, Bin-Lin; Hao, Shi-Jing; Sun, De-Xin; Liu, Yin-Nian

    2017-09-01

    A novel scene-based non-uniformity correction (NUC) method for short-wavelength infrared (SWIR) push-broom hyperspectral sensors is proposed and evaluated. This method relies on the assumption that for each band there will be ground objects with similar reflectance to form uniform regions when a sufficient number of scanning lines are acquired. The uniform regions are extracted automatically through a sorting algorithm, and are used to compute the corresponding NUC coefficients. SWIR hyperspectral data from airborne experiment are used to verify and evaluate the proposed method, and results show that stripes in the scenes have been well corrected without any significant information loss, and the non-uniformity is less than 0.5%. In addition, the proposed method is compared to two other regular methods, and they are evaluated based on their adaptability to the various scenes, non-uniformity, roughness and spectral fidelity. It turns out that the proposed method shows strong adaptability, high accuracy and efficiency.

  9. 3D TOCSY-HSQC NMR for metabolic flux analysis using non-uniform sampling

    DOE PAGES

    Reardon, Patrick N.; Marean-Reardon, Carrie L.; Bukovec, Melanie A.; ...

    2016-02-05

    13C-Metabolic Flux Analysis ( 13C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific 13C enrichment information obtained using NMR spectroscopy is a valuable input for 13C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for 13C-MFA frequently hinder assignment and quantitation of site-specific 13C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for 13C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in 13C-MFA experiments. Our data show that the NUSmore » experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the 13C chemical shift obtained in the experiment. In addition, the experiment reports 13C-labeling information that reveals the position specific labeling of subsets of isotopomers. As a result, the information provided by this technique will enable more accurate estimation of metabolic fluxes in larger metabolic networks.« less

  10. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities.

  11. C4'/H4' selective, non-uniformly sampled 4D HC(P)CH experiment for sequential assignments of (13)C-labeled RNAs.

    PubMed

    Saxena, Saurabh; Stanek, Jan; Cevec, Mirko; Plavec, Janez; Koźmiński, Wiktor

    2014-11-01

    A through bond, C4'/H4' selective, "out and stay" type 4D HC(P)CH experiment is introduced which provides sequential connectivity via H4'(i)-C4'(i)-C4'(i-1)-H4'(i-1) correlations. The (31)P dimension (used in the conventional 3D HCP experiment) is replaced with evolution of better dispersed C4' dimension. The experiment fully utilizes (13)C-labeling of RNA by inclusion of two C4' evolution periods. An additional evolution of H4' is included to further enhance peak resolution. Band selective (13)C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the of C4'-C3' and C4'-C5' homonuclear couplings. For reasonable resolution, non-uniform sampling is employed in all indirect dimensions. To reduce sensitivity losses, multiple quantum coherences are preserved during shared-time evolution and coherence transfer delays. In the experiment the intra-nucleotide peaks are suppressed whereas inter-nucleotide peaks are enhanced to reduce the ambiguities. The performance of the experiment is verified on a fully (13)C, (15)N-labeled 34-nt hairpin RNA comprising typical structure elements.

  12. Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach

    NASA Astrophysics Data System (ADS)

    Norouzzadeh, A.; Ansari, R.; Rouhi, H.

    2017-05-01

    Differential form of Eringen's nonlocal elasticity theory is widely employed to capture the small-scale effects on the behavior of nanostructures. However, paradoxical results are obtained via the differential nonlocal constitutive relations in some cases such as in the vibration and bending analysis of cantilevers, and recourse must be made to the integral (original) form of Eringen's theory. Motivated by this consideration, a novel nonlocal formulation is developed herein based on the original formulation of Eringen's theory to study the buckling behavior of nanobeams. The governing equations are derived according to the Timoshenko beam theory, and are represented in a suitable vector-matrix form which is applicable to the finite-element analysis. In addition, an isogeometric analysis (IGA) is conducted for the solution of buckling problem. Construction of exact geometry using non-uniform rational B-splines and easy implementation of geometry refinement tools are the main advantages of IGA. A comparison study is performed between the predictions of integral and differential nonlocal models for nanobeams under different kinds of end conditions.

  13. Probing Structural Perturbation in a Bent Molecular Crystal with Synchrotron Infrared Microspectroscopy and Periodic Density Functional Theory Calculations.

    PubMed

    Pejov, Ljupčo; Panda, Manas K; Moriwaki, Taro; Naumov, Panče

    2017-02-15

    The range of unit cell orientations generated at the kink of a bent single crystal poses unsurmountable challenges with diffraction analysis and limits the insight into the molecular-scale mechanism of bending. On a plastically bent crystal of hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared spectroscopy using synchrotron radiation can be applied in conjunction with periodic density functional theory calculations to predict spectral changes or to extract information on structural changes that occur as a consequence of bending. The approach reproduces well the observed trends, such as the wall effects, and provides estimations of the vibrational shifts, unit cell deformations, and intramolecular parameters. Generally, expansion of the lattice induces red-shift while compression induces larger blue-shift of the characteristic ν(C-C) and ν(C-Cl) modes. Uniform or non-uniform expansion or contraction of the unit cell of 0.1 Å results in shifts of several cm -1 , whereas deformation of the cell of 0.5° at the unique angle causes shifts of <0.5 cm -1 . Since this approach does not include parameters related to the actual stimulus by which the deformation has been induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals.

  14. Simulating Charge Transport in Solid Oxide Mixed Ionic and Electronic Conductors: Nernst-Planck Theory vs Modified Fick's Law

    DOE PAGES

    Jin, Xinfang; White, Ralph E.; Huang, Kevin

    2016-10-04

    With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less

  15. Thermoelastic Damping in Cone Microcantilever Resonator

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with continuous or discontinuous variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators, such as tapered microbeam, torsion microbeam and stepped microbeam. Thermoelastic damping (TED), which is verified as a fundamental energy lost mechanism for microresonators, is calculated by the Zener’s model and Lifshits and Roukes’s (LR) model in general. However, for non-uniform microbeam resonators, these two classical models are not suitable in some cases. On the basis of Zener’s theory, a TED model for cone microcantilever with rectangular cross-section has been derived in this study. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the proposed model is able to predict TED value for cone microcantilever. In addition, TED in cone microcantilever is nearly same as TED in wedge microcantilever. The results show that quality factors (Q-factors) of cone microcantilever and wedge microcantilever are larger than Q-factor of uniform microbeam at low frequencies. The Debye peak value of a uniform microcantilever is equal to 0.5Δ E , while those of cone microcantilever and wedge microcantilever are about 0.438ΔE and 0.428ΔE, respectively.

  16. Thermal balance of the atmospheres of Jupiter and Uranus

    NASA Technical Reports Server (NTRS)

    Friedson, A. J.; Ingersoll, A. P.

    1986-01-01

    Two-dimensional, radiative-convective-dynamical models of the visible atmospheres of Jupiter and Uranus are presented. Zonally-averaged temperatures and heat fluxes are calculated numerically as functions of pressure and latitude. In addition to radiative heat fluxes, the dynamical heat flux due to large-scale baroclinic eddies is included and is parametrized using a mixing length theory which gives heat fluxes similar to those of Stone. The results for Jupiter indicate that the internal heat flow is non-uniform in latitude and nearly balances the net radiative flux leaving the atmosphere. The thermal emission is found to be uniform in latitude in agreement with Pioneer and Voyager observations. Baroclinic eddies are calculated to transport only a small amount of the meridional heat flow necessary to account for the uniformity of thermal emission with latitude. The bulk of the meridional heat transfer is found to occur very deep in the stable interior of Jupiter as originally proposed by Ingersoll and Porco. The relative importance of baroclinic eddies vs. internal heat flow in the thermal balance of Uranus depends on the ratio of emitted thermal power to absorbed solar power. The thermal balance of Uranus is compared to that of Jupiter for different values of this ratio.

  17. Modal element method for potential flow in non-uniform ducts: Combining closed form analysis with CFD

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Baumeister, Joseph F.

    1994-01-01

    An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.

  18. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Zheng, X; Liu, H

    Purpose: This study is to evaluate the feasibility of simultaneously integrated boost (SIB) to hypoxic subvolume (HTV) in nasopharyngeal carcinomas under the guidance of 18F-Fluoromisonidazole (FMISO) PET/CT using a novel non-uniform volumetric modulated arc therapy (VMAT)technique. Methods: Eight nasopharyngeal carcinoma patients treated with conventional uniform VMAT were retrospectively analyzed. For each treatment, actual conventional uniform VMAT plan with two or more arcs (2–2.5 arcs, totally rotating angle < 1000o) was designed with dose boost to hopxic subvolume (total dose, 84Gy) in the gross tumor volme (GTV) under the guidance of 18F- FMISO PET/CT. Based on the same dataset, experimental singlemore » arc non-uniform VAMT plans were generated with the same dose prescription using customized software tools. Dosimetric parameters, quality assurance and the efficiency of the treatment delivery were compared between the uniform and non-uniform VMAT plans. Results: To develop the non-uniform VMAT technique, a specific optimization model was successfully established. Both techniques generate high-quality plans with pass rate (>98%) with the 3mm, 3% criterion. HTV received dose of 84.1±0.75Gy and 84.1±1.2Gy from uniform and non-uniform VMAT plans, respectively. In terms of target coverage and dose homogeneity, there was no significant statistical difference between actual and experimental plans for each case. However, for critical organs at risk (OAR), including the parotids, oral cavity and larynx, dosimetric difference was significant with better dose sparing form experimental plans. Regarding plan implementation efficiency, the average machine time was 3.5 minutes for the actual VMAT plans and 3.7 minutes for the experimental nonuniform VMAT plans (p>0.050). Conclusion: Compared to conventional VMAT technique, the proposed non-uniform VMAT technique has the potential to produce efficient and safe treatment plans, especially in cases with complicated anatomical structures and demanding dose boost to subvolumes.« less

  20. The conformal characters

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2018-04-01

    We revisit the study of the multiplets of the conformal algebra in any dimension. The theory of highest weight representations is reviewed in the context of the Bernstein-Gelfand-Gelfand category of modules. The Kazhdan-Lusztig polynomials code the relation between the Verma modules and the irreducible modules in the category and are the key to the characters of the conformal multiplets (whether finite dimensional, infinite dimensional, unitary or non-unitary). We discuss the representation theory and review in full generality which representations are unitarizable. The mathematical theory that allows for both the general treatment of characters and the full analysis of unitarity is made accessible. A good understanding of the mathematics of conformal multiplets renders the treatment of all highest weight representations in any dimension uniform, and provides an overarching comprehension of case-by-case results. Unitary highest weight representations and their characters are classified and computed in terms of data associated to cosets of the Weyl group of the conformal algebra. An executive summary is provided, as well as look-up tables up to and including rank four.

  1. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  2. On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed Through Non-uniform Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Aldering, Gregory; Biederman, Moriah; Herger, Brendan

    2018-01-01

    For Type Ia supernovae (SNe Ia) observed through a non-uniform interstellar medium (ISM) in its host galaxy, we investigate whether the non-uniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (>~ 10 pc) will translate to much smaller fluctuations on the scales of a SN photosphere. Therefore the typical amplitude of time variation due to non-uniform ISM, of absorption equivalent widths and of extinction, would be small. As a result, we conclude that non-uniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.

  3. Detecting oscillatory patterns and time lags from proxy records with non-uniform sampling: Some pitfalls and possible solutions

    NASA Astrophysics Data System (ADS)

    Donner, Reik

    2013-04-01

    Time series analysis offers a rich toolbox for deciphering information from high-resolution geological and geomorphological archives and linking the thus obtained results to distinct climate and environmental processes. Specifically, on various time-scales from inter-annual to multi-millenial, underlying driving forces exhibit more or less periodic oscillations, the detection of which in proxy records often allows linking them to specific mechanisms by which the corresponding drivers may have affected the archive under study. A persistent problem in geomorphology is that available records do not present a clear signal of the variability of environmental conditions, but exhibit considerable uncertainties of both the measured proxy variables and the associated age model. Particularly, time-scale uncertainty as well as the heterogeneity of sampling in the time domain are source of severe conceptual problems that may lead to false conclusions about the presence or absence of oscillatory patterns and their mutual phasing in different archives. In my presentation, I will discuss how one can cope with non-uniformly sampled proxy records to detect and quantify oscillatory patterns in one or more data sets. For this purpose, correlation analysis is reformulated using kernel estimates which are found superior to classical estimators based on interpolation or Fourier transform techniques. In order to characterize non-stationary or noisy periodicities and their relative phasing between different records, an extension of continuous wavelet transform is utilized. The performance of both methods is illustrated for different case studies. An extension to explicitly considering time-scale uncertainties by means of Bayesian techniques is briefly outlined.

  4. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  5. Bifurcation Analysis and Optimal Harvesting of a Delayed Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Tchinda Mouofo, P.; Djidjou Demasse, R.; Tewa, J. J.; Aziz-Alaoui, M. A.

    A delay predator-prey model is formulated with continuous threshold prey harvesting and Holling response function of type III. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. The positive invariance of the non-negative orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is investigated and the existence of some local bifurcations is established: saddle-node bifurcation, Hopf bifurcation. We use optimal control theory to provide the correct approach to natural resource management. Results are also obtained for optimal harvesting. Numerical simulations are given to illustrate the results.

  6. Inverse Opal Scaffolds and Their Biomedical Applications.

    PubMed

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 3D homogeneity study in PMMA layers using a Fourier domain OCT system

    NASA Astrophysics Data System (ADS)

    Briones-R., Manuel de J.; Torre-Ibarra, Manuel H. De La; Tavera, Cesar G.; Luna H., Juan M.; Mendoza-Santoyo, Fernando

    2016-11-01

    Micro-metallic particles embedded in polymers are now widely used in several industrial applications in order to modify the mechanical properties of the bulk. A uniform distribution of these particles inside the polymers is highly desired for instance, when a biological backscattering is simulated or a bio-framework is designed. A 3D Fourier domain optical coherence tomography system to detect the polymer's internal homogeneity is proposed. This optical system has a 2D camera sensor array that records a fringe pattern used to reconstruct with a single shot the tomographic image of the sample. The system gathers the full 3D tomographic and optical phase information during a controlled deformation by means of a motion linear stage. This stage avoids the use of expensive tilting stages, which in addition are commonly controlled by piezo drivers. As proof of principle, a series of different deformations were proposed to detect the uniform or non-uniform internal deposition of copper micro particles. The results are presented as images coming from the 3D tomographic micro reconstruction of the samples, and the 3D optical phase information that identifies the in-homogeneity regions within the Poly methyl methacrylate (PMMA) volume.

  8. Analysis of Error Propagation Within Hierarchical Air Combat Models

    DTIC Science & Technology

    2016-06-01

    Model Simulation MANA Map Aware Non-Uniform Automata MCET Mine Warfare Capabilities and Effectiveness Tool MOE measure of effectiveness MOP measure of...model for a two-versus-two air engagement between jet fighters in the stochastic, agent-based Map Aware Non- uniform Automata (MANA) simulation...Master’s thesis, Naval Postgraduate School, Monterey, CA. McIntosh, G. C. (2009). MANA-V (Map aware non-uniform automata – Vector) supplementary manual

  9. Does partial titin degradation affect sarcomere length non-uniformities and force in active and passive myofibrils?

    PubMed

    Joumaa, Venus; Bertrand, Fanny; Liu, Shuyue; Poscente, Sophia; Herzog, Walter

    2018-05-16

    The aim of this study was to determine the role of titin in preventing the development of sarcomere length non-uniformities following activation and after active and passive stretch, by determining the effect of partial titin degradation on sarcomere length non-uniformities and force in passive and active myofibrils. Selective partial titin degradation was performed using a low dose of trypsin. Myofibrils were set at a sarcomere length of 2.4 µm and then passively stretched to sarcomere lengths of 3.4 µm and 4.4 µm. In the active condition, myofibrils were set at a sarcomere length of 2.8µm, activated and actively stretched by 1 µm/sarcomere. The extent of sarcomere length non-uniformities was calculated for each sarcomere as the absolute difference between sarcomere length and the mean sarcomere length of the myofibril. Our main finding is that partial titin degradation does not increase sarcomere length non-uniformities after passive stretch and activation compared to when titin is intact, but increases the extent of sarcomere length non-uniformities after active stretch. Furthermore, when titin was partially degraded, active and passive stresses were substantially reduced. These results suggest that titin plays a crucial role in actively stretched myofibrils and is likely involved in active and passive force production.

  10. A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx

    PubMed Central

    Sumets, P. P.; Cater, J. E.; Long, D. S.; Clarke, R. J.

    2015-01-01

    We describe a new boundary-integral representation for biphasic mixture theory, which allows us to efficiently solve certain elastohydrodynamic–mobility problems using boundary element methods. We apply this formulation to model the motion of a rigid particle through a microtube which has non-uniform wall shape, is filled with a viscous Newtonian fluid, and is lined with a thin poroelastic layer. This is relevant to scenarios such as the transport of small rigid cells (such as neutrophils) through microvessels that are lined with an endothelial glycocalyx layer (EGL). In this context, we examine the impact of geometry upon some recently reported phenomena, including the creation of viscous eddies, fluid flux into the EGL, as well as the role of the EGL in transmitting mechanical signals to the underlying endothelial cells. PMID:26345494

  11. Response of moderately thick laminated cross-ply composite shells subjected to random excitation

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaak; Cederbaum, Gabriel; Librescu, Liviu

    1989-01-01

    This study deals with the dynamic response of transverse shear deformable laminated shells subjected to random excitation. The analysis encompasses the following problems: (1) the dynamic response of circular cylindrical shells of finite length excited by an axisymmetric uniform ring loading, stationary in time, and (2) the response of spherical and cylindrical panels subjected to stationary random loadings with uniform spatial distribution. The associated equations governing the structural theory of shells are derived upon discarding the classical Love-Kirchhoff (L-K) assumptions. In this sense, the theory is formulated in the framework of the first-order transverse shear deformation theory (FSDT).

  12. Balance Theory Revisited: Relationship Issue Relevance Affects Imbalance-Induced Tension in Workplace Relationships.

    PubMed

    Reid, Chelsea A; Davis, Jody L; Pollack, Jeffrey M; Coughlan, Richard S

    2017-08-18

    The present work applies and extends balance theory by examining the role of relevance of issue to the relationship in balance theory processes within the context of workplace relationships. In Experiment 1, a sample of working adults (N = 81) reported greater job tension when self-supervisor dissimilarity involved a relationship-relevant (vs. non-relationship) ethical dilemma. In Experiment 2, a sample of working students (N = 185) who perceived greater self-supervisor dissimilarity about workplace (vs. family) ethics reported greater job tension, and in turn, less job satisfaction and organizational commitment. Perceiving dissimilarity with a work supervisor in attitudes about relationship-relevant issues may negatively affect outcomes at work. Importantly, these experiments demonstrated that not all dissimilarity is likely to yield negative outcomes; only relationship-relevant (vs. non-relevant) dissimilarity was a catalyst for imbalance-induced tension.

  13. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography.

    PubMed

    Li, Chen; Zeitler, J Axel; Dong, Yue; Shen, Yao-Chun

    2014-01-01

    Full-field optical coherence tomography (FF-OCT) using a conventional light-emitting diode and a complementary metal-oxide semiconductor camera has been developed for characterising coatings on small pellet samples. A set of en-face images covering an area of 700 × 700 μm(2) was taken over a depth range of 166 μm. The three-dimensional structural information, such as the coating thickness and uniformity, was subsequently obtained by analysis of the recorded en-face images. Drug-loaded pharmaceutical sustained-release pellets with two coating layers and of a sub-millimetre diameter were studied to demonstrate the usefulness of the developed system. We have shown that both coatings can be clearly resolved and the thickness was determined to be 40 and 50 μm for the outer and inner coating layers, respectively. It was also found that the outer coating layer is relatively uniform, whereas the inner coating layer has many particle-like features. X-ray computed microtomography measurements carried out on the same pellet sample confirmed all these findings. The presented FF-OCT approach is inexpensive and has better spatial resolution compared with other non-destructive analysis techniques such as terahertz pulsed imaging, and is thus considered advantageous for the quantitative analysis of thin coatings on small pellet samples. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. An integral formulation for wave propagation on weakly non-uniform potential flows

    NASA Astrophysics Data System (ADS)

    Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel

    2016-12-01

    An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.

  15. Full field vertical scanning in short coherence digital holographic microscope.

    PubMed

    Monemahghdoust, Zahra; Montfort, Frederic; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2013-05-20

    In Digital holography Microscopes (DHM) implemented in the so-called "off axis" configuration, the object and reference wave fronts are not co-planar but form an angle of a few degrees. This results into two main drawbacks. First, the contrast of the interference is not uniform spatially when the light source has low coherence. The interference contrast is optimal along a line, but decreases when moving away from it, resulting in a lower image quality. Second, the non-coplanarity between the coherence plane of both wavefronts impacts the coherence vertical scanning measurement mode: when the optical path difference between the signal and the reference beam is changed, the region of maximum interference contrast shifts laterally in the plane of the objective. This results in more complex calculations to extract the topography of the sample and requires scanning over a much larger vertical range, leading to a longer measurement time. We have previously shown that by placing a volume diffractive optical element (VDOE) in the reference arm, the wavefront can be made coplanar with the object wavefront and the image plane of the microscope objective, resulting in a uniform and optimal interferogram. In this paper, we demonstrate a vertical scanning speed improvement by an order of magnitude. Noise in the phase and intensity images caused by scattering and non-uniform diffraction in the VDOE is analyzed quantitatively. Five VDOEs were fabricated with an identical procedure. We observe that VDOEs introduce a small intensity non-uniformity in the reference beam which results in a 20% noise increase in the extracted phase image as compared to the noise in extracted phase image when the VDOE is removed. However, the VDOE has no impact on the temporal noise measured from extracted phase images.

  16. TU-CD-207-02: Quantification of Breast Lesion Compositions Using Low-Dose Spectral Mammography: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Ding, H; Sennung, D

    2015-06-15

    Purpose: To investigate the feasibility of measuring breast lesion composition with spectral mammography using physical phantoms and bovine tissue. Methods: Phantom images were acquired with a spectral mammography system with a silicon-strip based photon-counting detector. Plastic water and adipose-equivalent phantoms were used to calibrate the system for dual-energy material decomposition. The calibration phantom was constructed in range of 2–8 cm thickness and water densities in the range of 0% to 100%. A non-linear rational fitting function was used to calibrate the imaging system. The phantom studies were performed with uniform background phantom and non-uniform background phantom. The breast lesion phantomsmore » (2 cm in diameter and 0.5 cm in thickness) were made with water densities ranging from 0 to 100%. The lesion phantoms were placed in different positions and depths on the phantoms to investigate the accuracy of the measurement under various conditions. The plastic water content of the lesion was measured by subtracting the total decomposed plastic water signal from a surrounding 2.5 mm thick border outside the lesion. In addition, bovine tissue samples composed of 80 % lean were imaged as background for the simulated lesion phantoms. Results: The thickness of measured and known water contents was compared. The rootmean-square (RMS) errors in water thickness measurements were 0.01 cm for the uniform background phantom, 0.04 cm for non-uniform background phantom, and 0.03 cm for 80% lean bovine tissue background. Conclusion: The results indicate that the proposed technique using spectral mammography can be used to accurately characterize breast lesion compositions.« less

  17. Regular and chaotic dynamics of non-spherical bodies. Zeldovich's pancakes and emission of very long gravitational waves

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-10-01

    > In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.

  18. Quality assessment of internet pharmaceutical products using traditional and non-traditional analytical techniques.

    PubMed

    Westenberger, Benjamin J; Ellison, Christopher D; Fussner, Andrew S; Jenney, Susan; Kolinski, Richard E; Lipe, Terra G; Lyon, Robbe C; Moore, Terry W; Revelle, Larry K; Smith, Anjanette P; Spencer, John A; Story, Kimberly D; Toler, Duckhee Y; Wokovich, Anna M; Buhse, Lucinda F

    2005-12-08

    This work investigated the use of non-traditional analytical methods to evaluate the quality of a variety of pharmaceutical products purchased via internet sites from foreign sources and compared the results with those obtained from conventional quality assurance methods. Traditional analytical techniques employing HPLC for potency, content uniformity, chromatographic purity and drug release profiles were used to evaluate the quality of five selected drug products (fluoxetine hydrochloride, levothyroxine sodium, metformin hydrochloride, phenytoin sodium, and warfarin sodium). Non-traditional techniques, such as near infrared spectroscopy (NIR), NIR imaging and thermogravimetric analysis (TGA), were employed to verify the results and investigate their potential as alternative testing methods. Two of 20 samples failed USP monographs for quality attributes. The additional analytical methods found 11 of 20 samples had different formulations when compared to the U.S. product. Seven of the 20 samples arrived in questionable containers, and 19 of 20 had incomplete labeling. Only 1 of the 20 samples had final packaging similar to the U.S. products. The non-traditional techniques complemented the traditional techniques used and highlighted additional quality issues for the products tested. For example, these methods detected suspect manufacturing issues (such as blending), which were not evident from traditional testing alone.

  19. Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, M.; Gurovich, V. Tz.; Krasik, Ya. E.

    2013-11-15

    The results of two-dimensional hydrodynamic simulations of the dynamics and stability of azimuthal non-uniformities in converging shock waves generated by an underwater explosion of a cylindrical wire array and their effect on the cumulation of energy in the vicinity of the converging axis are presented. It has been shown that in spite of the fact that such non-uniformities are always weakly unstable, for a broad range of experimentally relevant regimes these non-uniformities remain small and do not significantly affect the cumulation of energy. Only the non-uniformities with wavelengths comparable to the distance from the axis of convergence exhibit substantial growthmore » that considerably attenuates the energy cumulation.« less

  20. Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles.

    PubMed

    Fatoyinbo, Henry O; Hughes, Michael P; Martin, Stacey P; Pashby, Paul; Labeed, Fatima H

    2007-01-01

    Isolation of pathogenic bacteria from non-biological material of similar size is a vital sample preparation step in the identification of such organisms, particularly in the context of detecting bio-terrorist attacks. However, many detection methods are impeded by particulate contamination from the environment such as those from engine exhausts. In this paper we use dielectrophoresis--the induced motion of particles in non-uniform fields--to successfully remove over 99% of diesel particulates acquired from environmental samples, whilst letting bacterial spores of B. subtilis pass through the chamber largely unimpeded. We believe that such a device has tremendous potential as a precursor to a range of detection methods, improving the signal-to-noise ratio and ultimately improving detection rates.

  1. Design-based Sample and Probability Law-Assumed Sample: Their Role in Scientific Investigation.

    ERIC Educational Resources Information Center

    Ojeda, Mario Miguel; Sahai, Hardeo

    2002-01-01

    Discusses some key statistical concepts in probabilistic and non-probabilistic sampling to provide an overview for understanding the inference process. Suggests a statistical model constituting the basis of statistical inference and provides a brief review of the finite population descriptive inference and a quota sampling inferential theory.…

  2. Ensemble theory for slightly deformable granular matter.

    PubMed

    Tejada, Ignacio G

    2014-09-01

    Given a granular system of slightly deformable particles, it is possible to obtain different static and jammed packings subjected to the same macroscopic constraints. These microstates can be compared in a mathematical space defined by the components of the force-moment tensor (i.e. the product of the equivalent stress by the volume of the Voronoi cell). In order to explain the statistical distributions observed there, an athermal ensemble theory can be used. This work proposes a formalism (based on developments of the original theory of Edwards and collaborators) that considers both the internal and the external constraints of the problem. The former give the density of states of the points of this space, and the latter give their statistical weight. The internal constraints are those caused by the intrinsic features of the system (e.g. size distribution, friction, cohesion). They, together with the force-balance condition, determine which the possible local states of equilibrium of a particle are. Under the principle of equal a priori probabilities, and when no other constraints are imposed, it can be assumed that particles are equally likely to be found in any one of these local states of equilibrium. Then a flat sampling over all these local states turns into a non-uniform distribution in the force-moment space that can be represented with density of states functions. Although these functions can be measured, some of their features are explored in this paper. The external constraints are those macroscopic quantities that define the ensemble and are fixed by the protocol. The force-moment, the volume, the elastic potential energy and the stress are some examples of quantities that can be expressed as functions of the force-moment. The associated ensembles are included in the formalism presented here.

  3. Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2005-12-01

    Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.

  4. Calculation of flexoelectric deformations of finite-size bodies

    NASA Astrophysics Data System (ADS)

    Yurkov, A. S.

    2015-03-01

    The previously developed approximate theory of flexoelectric deformations of finite-size bodies has been considered as applied to three special cases: a uniformly polarized ball, a uniformly polarized circular rod, and a uniformly polarized thin circular plate of an isotropic material. For these cases simple algebraic formulas have been derived. In the case of the ball, the solution is compared with the previously obtained exact solution.

  5. Analytical approach to Eigen-emittance evolution in storage rings

    NASA Astrophysics Data System (ADS)

    Nash, Boaz

    This dissertation develops the subject of beam evolution in storage rings with nearly uncoupled symplectic linear dynamics. Linear coupling and dissipative/diffusive processes are treated perturbatively. The beam distribution is assumed Gaussian and a function of the invariants. The development requires two pieces: the global invariants and the local stochastic processes which change the emittances, or averages of the invariants. A map based perturbation theory is described, providing explicit expressions for the invariants near each linear resonance, where small perturbations can have a large effect. Emittance evolution is determined by the damping and diffusion coefficients. The discussion is divided into the cases of uniform and non-uniform stochasticity, synchrotron radiation an example of the former and intrabeam scattering the latter. For the uniform case, the beam dynamics is captured by a global diffusion coefficent and damping decrement for each eigen-invariant. Explicit expressions for these quantities near coupling resonances are given. In many cases, they are simply related to the uncoupled values. Near a sum resonance, it is found that one of the damping decrements becomes negative, indicating an anti-damping instability. The formalism is applied to a number of examples, including synchrobetatron coupling caused by a crab cavity, a case of current interest where there is concern about operation near half integer betatron tune. In the non-uniform case, the moment evolution is computed directly, which is illustrated through the example of intrabeam scattering. Our approach to intrabeam scattering damping and diffusion has the advantage of not requiring a loosely-defined Coulomb Logarithm. It is found that in some situations there is a small difference between our results and the standard approaches such as Bjorken-Mtingwa, which is illustrated by comparison of the two approaches and with a measurement of Au evolution in RHIC. Finally, in combining IBS with the global invariants some general statements about IBS equilibrium can be made. Specifically, it is emphasized that no such equilibrium is possible in a non-smooth lattice, even below transition. Near enough to a synchrobetatron coupling resonance, it is found that even for a smooth ring, no IBS equilibrium occurs.

  6. Laboratory theory and methods for sediment analysis

    USGS Publications Warehouse

    Guy, Harold P.

    1969-01-01

    The diverse character of fluvial sediments makes the choice of laboratory analysis somewhat arbitrary and the pressing of sediment samples difficult. This report presents some theories and methods used by the Water Resources Division for analysis of fluvial sediments to determine the concentration of suspended-sediment samples and the particle-size distribution of both suspended-sediment and bed-material samples. Other analyses related to these determinations may include particle shape, mineral content, and specific gravity, the organic matter and dissolved solids of samples, and the specific weight of soils. The merits and techniques of both the evaporation and filtration methods for concentration analysis are discussed. Methods used for particle-size analysis of suspended-sediment samples may include the sieve pipet, the VA tube-pipet, or the BW tube-VA tube depending on the equipment available, the concentration and approximate size of sediment in the sample, and the settling medium used. The choice of method for most bed-material samples is usually limited to procedures suitable for sand or to some type of visual analysis for large sizes. Several tested forms are presented to help insure a well-ordered system in the laboratory to handle the samples, to help determine the kind of analysis required for each, to conduct the required processes, and to assist in the required computations. Use of the manual should further 'standardize' methods of fluvial sediment analysis among the many laboratories and thereby help to achieve uniformity and precision of the data.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xinfang; White, Ralph E.; Huang, Kevin

    With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less

  8. Wave Propagation inside Random Media

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaojun

    This thesis presents results of studies of wave scattering within and transmission through random and periodic systems. The main focus is on energy profiles inside quasi-1D and 1D random media. The connection between transport and the states of the medium is manifested in the equivalence of the dimensionless conductance, g, and the Thouless number which is the ratio of the average linewidth and spacing of energy levels. This equivalence and theories regarding the energy profiles inside random media are based on the assumption that LDOS is uniform throughout the samples. We have conducted microwave measurements of the longitudinal energy profiles within disordered samples contained in a copper tube supporting multiple waveguide channels with an antenna moving along a slit on the tube. These measurements allow us to determine the local density of states (LDOS) at a location which is the sum of energy from all incoming channels on both sides. For diffusive samples, the LDOS is uniform and the energy profile decays linearly as expected. However, for localized samples, we find that the LDOS drops sharply towards the middle of the sample and the energy profile does not follow the result of the local diffusion theory where the LDOS is assumed to be uniform. We analyze the field spectra into quasi-normal modes and found that the mode linewidth and the number of modes saturates as the sample length increases. Thus the Thouless number saturates while the dimensionless conductance g continues to fall with increasing length, indicating that the modes are localized near the boundaries. This is in contrast to the general believing that g and Thouless number follow the same scaling behavior. Previous measurements show that single parameter scaling (SPS) still holds in the same sample where the LDOS is suppressed te{shi2014microwave}. We explore the extension of SPS to the interior of the sample by analyzing statistics of the logrithm of the energy density ln W(x) and found that =-x/l where l is the transport mean free path. The result does not depend on the sample length, which is counterintuitive yet remarkably simple. More supprisingly, the linear fall-off of energy profile holds for totally disordered random 1D layered samples in simulations where the LDOS is uniform as well as for single mode random waveguide experiments and 1D nearly periodic samples where the LDOS is suppressed in the middle of the sample. The generalization of the transmission matrix to the interior of quasi-1D random samples, which is defined as the field matrix, and its eigenvalues statistics are also discussed. The maximum energy deposition at a location is not the intensity of the first transmission eigenchannel but the eigenvalue of the first energy density eigenchannels at that cross section, which can be much greater than the average value. The contrast, which is the ratio of the intensity at the focused point to the background intensity, in optimal focusing is determined by the participation number of the energy density eigenvalues and its inverse gives the variance of the energy density at that cross section in a single configuration. We have also studied topological states in photonic structures. We have demonstrated robust propagation of electromagnetic waves along reconfigurable pathways within a topological photonic metacrystal. Since the wave is confined within the domain wall, which is the boundary between two distinct topological insulating systems, we can freely steer the wave by reconstructing the photonic structure. Other topics, such as speckle pattern evolutions and the effects of boundary conditions on the statistics of transmission eigenvalues and energy profiles are also discussed.

  9. 32 CFR Appendix B to Part 104 - Sample Employer Notification of Uniformed Service

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Sample Employer Notification of Uniformed Service B Appendix B to Part 104 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... MEMBERS AND FORMER SERVICE MEMBERS OF THE UNIFORMED SERVICES Pt. 104, App. B Appendix B to Part 104—Sample...

  10. 32 CFR Appendix B to Part 104 - Sample Employer Notification of Uniformed Service

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Sample Employer Notification of Uniformed Service B Appendix B to Part 104 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... MEMBERS AND FORMER SERVICE MEMBERS OF THE UNIFORMED SERVICES Pt. 104, App. B Appendix B to Part 104—Sample...

  11. Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Harel, Elad

    2018-05-01

    A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.

  12. Restoration of MRI data for intensity non-uniformities using local high order intensity statistics

    PubMed Central

    Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert

    2008-01-01

    MRI at high magnetic fields (>3.0 T) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to non-biological intensity non-uniformities across the image. They can complicate further image analysis such as registration and tissue segmentation. Existing methods for intensity uniformity restoration have been optimized for 1.5 T, but they are less effective for 3.0 T MRI, and not at all satisfactory for higher fields. Also, many of the existing restoration algorithms require a brain template or use a prior atlas, which can restrict their practicalities. In this study an effective intensity uniformity restoration algorithm has been developed based on non-parametric statistics of high order local intensity co-occurrences. These statistics are restored with a non-stationary Wiener filter. The algorithm also assumes a smooth non-uniformity and is stable. It does not require a prior atlas and is robust to variations in anatomy. In geriatric brain imaging it is robust to variations such as enlarged ventricles and low contrast to noise ratio. The co-occurrence statistics improve robustness to whole head images with pronounced non-uniformities present in high field acquisitions. Its significantly improved performance and lower time requirements have been demonstrated by comparing it to the very commonly used N3 algorithm on BrainWeb MR simulator images as well as on real 4 T human head images. PMID:18621568

  13. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples; providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter (OM) estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  14. Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories

    NASA Astrophysics Data System (ADS)

    Tolouee, Azar; Alirezaie, Javad; Babyn, Paul

    2015-11-01

    In dynamic cardiac cine Magnetic Resonance Imaging (MRI), the spatiotemporal resolution is limited by the low imaging speed. Compressed sensing (CS) theory has been applied to improve the imaging speed and thus the spatiotemporal resolution. The purpose of this paper is to improve CS reconstruction of under sampled data by exploiting spatiotemporal sparsity and efficient spiral trajectories. We extend k-t sparse algorithm to spiral trajectories to achieve high spatio temporal resolutions in cardiac cine imaging. We have exploited spatiotemporal sparsity of cardiac cine MRI by applying a 2D + time wavelet-Fourier transform. For efficient coverage of k-space, we have used a modified version of multi shot (interleaved) spirals trajectories. In order to reduce incoherent aliasing artifact, we use different random undersampling pattern for each temporal frame. Finally, we have used nonuniform fast Fourier transform (NUFFT) algorithm to reconstruct the image from the non-uniformly acquired samples. The proposed approach was tested in simulated and cardiac cine MRI data. Results show that higher acceleration factors with improved image quality can be obtained with the proposed approach in comparison to the existing state-of-the-art method. The flexibility of the introduced method should allow it to be used not only for the challenging case of cardiac imaging, but also for other patient motion where the patient moves or breathes during acquisition.

  15. Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm.

    PubMed

    Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar

    2018-01-31

    Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point's received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner.

  16. Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm

    PubMed Central

    Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar

    2018-01-01

    Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point’s received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner. PMID:29385042

  17. Method and apparatus for calibrating a tiled display

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Jen (Inventor); Johnson, Michael J. (Inventor); Chandrasekhar, Rajesh (Inventor)

    2001-01-01

    A display system that can be calibrated and re-calibrated with a minimal amount of manual intervention. To accomplish this, one or more cameras are provided to capture an image of the display screen. The resulting captured image is processed to identify any non-desirable characteristics, including visible artifacts such as seams, bands, rings, etc. Once the non-desirable characteristics are identified, an appropriate transformation function is determined. The transformation function is used to pre-warp the input video signal that is provided to the display such that the non-desirable characteristics are reduced or eliminated from the display. The transformation function preferably compensates for spatial non-uniformity, color non-uniformity, luminance non-uniformity, and other visible artifacts.

  18. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  19. An improved non-uniformity correction algorithm and its GPU parallel implementation

    NASA Astrophysics Data System (ADS)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui

    2018-05-01

    The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.

  20. Fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres

    NASA Astrophysics Data System (ADS)

    Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki

    2017-08-01

    This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.

  1. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  2. Equilibrium theory of cylindrical discharges with special application to helicons

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Chen, Francis F.

    2011-11-01

    Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature Te and neutral density nn. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform Te and nn, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.

  3. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  4. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  5. A new splitting scheme to the discrete Boltzmann equation for non-ideal gases on non-uniform meshes

    NASA Astrophysics Data System (ADS)

    Patel, Saumil; Lee, Taehun

    2016-12-01

    We present a novel numerical procedure for solving the discrete Boltzmann equations (DBE) on non-uniform meshes. Our scheme is based on the Strang splitting method where we seek to investigate two-phase flow applications. In this note, we investigate the onset of parasitic currents which arise in many computational two-phase algorithms. To the best of our knowledge, the results presented in this work show, for the first time, a spectral element discontinuous Galerkin (SEDG) discretization of a discrete Boltzmann equation which successfully eliminates parasitic currents on non-uniform meshes. With the hope that this technique can be used for applications in complex geometries, calculations are performed on non-uniform mesh distributions by using high-order (spectral), body-fitting quadrilateral elements. Validation and verification of our work is carried out by comparing results against the classical 2D Young-Laplace law problem for a static drop.

  6. Vertical Distribution of Radiation Stress for Non-linear Shoaling Waves

    NASA Astrophysics Data System (ADS)

    Webb, B. M.; Slinn, D. N.

    2004-12-01

    The flux of momentum directed shoreward by an incident wave field, commonly referred to as the radiation stress, plays a significant role in nearshore circulation and, therefore, has a profound impact on the transport of pollutants, biota, and sediment in nearshore systems. Having received much attention since the seminal work of Longuet-Higgins and Stewart in the early 1960's, use of the radiation stress concept continues to be refined and evidence of its utility is widespread in literature pertaining to coastal and ocean science. A number of investigations, both numerical and analytical in nature, have used the concept of the radiation stress to derive appropriate forcing mechanisms that initiate cross-shore and longshore circulation, but typically in a depth-averaged sense due to a lack of information concerning the vertical distribution of the wave stresses. While depth-averaged nearshore circulation models are still widely used today, advancements in technology have permitted the adaptation of three-dimensional (3D) modeling techniques to study flow properties of complex nearshore circulation systems. It has been shown that the resulting circulation in these 3D models is very sensitive to the vertical distribution of the nearshore forcing, which have often been implemented as either depth-uniform or depth-linear distributions. Recently, analytical expressions describing the vertical structure of radiation stress components have appeared in the literature (see Mellor, 2003; Xia et al., 2004) but do not fully describe the magnitude and structure in the region bound by the trough and crest of non-linear, propagating waves. Utilizing a three-dimensional, non-linear, numerical model that resolves the time-dependent free surface, we present mean flow properties resulting from a simulation of Visser's (1984, 1991) laboratory experiment on uniform longshore currents. More specifically, we provide information regarding the vertical distribution of radiation stress components (Sxx and Sxy) resulting from obliquely incident, non-linear shoaling waves. Vertical profiles of the radiation stress components predicted by the numerical model are compared with published analytical solutions, expressions given by linear theory, and observations from an investigation employing second-order cnoidal wave theory.

  7. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.

    PubMed

    Kalathil, Shaeen; Elias, Elizabeth

    2015-11-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.

  8. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space

    PubMed Central

    Kalathil, Shaeen; Elias, Elizabeth

    2014-01-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921

  9. Electroluminescence from InGaN/GaN multi-quantum-wells nanorods light-emitting diodes positioned by non-uniform electric fields.

    PubMed

    Park, Hyunik; Kim, Byung-Jae; Kim, Jihyun

    2012-11-05

    We report that the nanorod light-emitting diodes (LEDs) with InGaN/GaN multi-quantum-wells (MQWs) emitted bright electroluminescence (EL) after they were positioned and aligned by non-uniform electric fields. Firstly, thin film LED structures with MQWs on sapphire substrate were coated with SiO(2) nanospheres, followed by inductively-coupled plasma etch to create nanorod-shapes with MQWs, which were transferred to the pre-patterned SiO(2)/Si wafer. This method allowed us to obtain nanorod LEDs with uniform length, diameter and qualities. Dielectrophoretic force created by non-uniform electric field was very effective at positioning the processed nanorods on the pre-patterned contacts. After aligned by non-uniform electric field, we observed bright EL from many nanorods, which had both cases (p-GaN/MQWs/n-GaN or n-GaN/MQWs/p-GaN). Therefore, bright ELs at different locations were observed under the various bias conditions.

  10. Performance of intraclass correlation coefficient (ICC) as a reliability index under various distributions in scale reliability studies.

    PubMed

    Mehta, Shraddha; Bastero-Caballero, Rowena F; Sun, Yijun; Zhu, Ray; Murphy, Diane K; Hardas, Bhushan; Koch, Gary

    2018-04-29

    Many published scale validation studies determine inter-rater reliability using the intra-class correlation coefficient (ICC). However, the use of this statistic must consider its advantages, limitations, and applicability. This paper evaluates how interaction of subject distribution, sample size, and levels of rater disagreement affects ICC and provides an approach for obtaining relevant ICC estimates under suboptimal conditions. Simulation results suggest that for a fixed number of subjects, ICC from the convex distribution is smaller than ICC for the uniform distribution, which in turn is smaller than ICC for the concave distribution. The variance component estimates also show that the dissimilarity of ICC among distributions is attributed to the study design (ie, distribution of subjects) component of subject variability and not the scale quality component of rater error variability. The dependency of ICC on the distribution of subjects makes it difficult to compare results across reliability studies. Hence, it is proposed that reliability studies should be designed using a uniform distribution of subjects because of the standardization it provides for representing objective disagreement. In the absence of uniform distribution, a sampling method is proposed to reduce the non-uniformity. In addition, as expected, high levels of disagreement result in low ICC, and when the type of distribution is fixed, any increase in the number of subjects beyond a moderately large specification such as n = 80 does not have a major impact on ICC. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Dielectrophoresis device and method having non-uniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B [Livermore, CA; Fintschenko, Yolanda [Livermore, CA; Simmons, Blake [San Francisco, CA

    2008-09-02

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  12. Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity.

    PubMed

    Hausman, Debra S; Cambron, R Thomas; Sakr, Adel

    2005-07-14

    On-line Raman spectroscopy was used to evaluate the effect of blending time on low dose, 1%, blend uniformity of azimilide dihydrochloride. An 8 qt blender was used for the experiments and instrumented with a Raman probe through the I-bar port. The blender was slowed to 6.75 rpm to better illustrate the blending process (normal speed is 25 rpm). Uniformity was reached after 20 min of blending at 6.75 rpm (135 revolutions or 5.4 min at 25 rpm). On-line Raman analysis of blend uniformity provided more benefits than traditional thief sampling and off-line analysis. On-line Raman spectroscopy enabled generating data rich blend profiles, due to the ability to collect a large number of samples during the blending process (sampling every 20s). In addition, the Raman blend profile was rapidly generated, compared to the lengthy time to complete a blend profile with thief sampling and off-line analysis. The on-line Raman blend uniformity results were also significantly correlated (p-value < 0.05) to the HPLC uniformity results of thief samples.

  13. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo responsemore » non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.« less

  14. Method and apparatus for subsurface exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2002-01-01

    A subsurface explorer (SSX) for exploring beneath the terrestrial surface of planetary bodies such as the Earth, Mars, or comets. This exploration activity utilizes appropriate sensors and instrument to evaluate the composition, structure, mineralogy and possibly biology of the subsurface medium, as well as perhaps the ability to return samples of that medium back to the surface. The vehicle comprises an elongated skin or body having a front end and a rear end, with a nose piece at the front end for imparting force to composition material of the planetary body. Force is provided by a hammer mechanism to the back side of a nose piece from within the body of the vehicle. In the preferred embodiment, a motor spins an intermediate shaft having two non-uniform threads along with a hammer which engages these threads with two conical rollers. A brake assembly halts the rotation of the intermediate shaft, causing the conical roller to spin down the non-uniform thread to rapidly and efficiently convert the rotational kinetic energy of the hammer into translational energy.

  15. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Liu, Jing; Sheng, Jiangkun; Xue, Yuan

    2016-03-01

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a 60Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.

  16. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  17. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.

  18. Leveraging ecological theory to guide natural product discovery.

    PubMed

    Smanski, Michael J; Schlatter, Daniel C; Kinkel, Linda L

    2016-03-01

    Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random 'fishing expeditions' for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.

  19. Kinetic approach to relativistic dissipation

    NASA Astrophysics Data System (ADS)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  20. Theory of Stochastic Laplacian Growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2017-07-01

    We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.

  1. Feature-Based Binding and Phase Theory

    ERIC Educational Resources Information Center

    Antonenko, Andrei

    2012-01-01

    Current theories of binding cannot provide a uniform account for many facts associated with the distribution of anaphors, such as long-distance binding effects and the subject-orientation of monomorphemic anaphors. Further, traditional binding theory is incompatible with minimalist assumptions. In this dissertation I propose an analysis of…

  2. Modeling open nanophotonic systems using the Fourier modal method: generalization to 3D Cartesian coordinates.

    PubMed

    Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2017-09-01

    Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.

  3. Dual-wavelength photo-Hall effect spectroscopy of deep levels in high resistive CdZnTe with negative differential photoconductivity

    NASA Astrophysics Data System (ADS)

    Musiienko, A.; Grill, R.; Moravec, P.; Korcsmáros, G.; Rejhon, M.; Pekárek, J.; Elhadidy, H.; Šedivý, L.; Vasylchenko, I.

    2018-04-01

    Photo-Hall effect spectroscopy was used in the study of deep levels in high resistive CdZnTe. The monochromator excitation in the photon energy range 0.65-1.77 eV was complemented by a laser diode high-intensity excitation at selected photon energies. A single sample characterized by multiple unusual features like negative differential photoconductivity and anomalous depression of electron mobility was chosen for the detailed study involving measurements at both the steady and dynamic regimes. We revealed that the Hall mobility and photoconductivity can be both enhanced and suppressed by an additional illumination at certain photon energies. The anomalous mobility decrease was explained by an excitation of the inhomogeneously distributed deep level at the energy Ev + 1.0 eV, thus enhancing potential non-uniformities. The appearance of negative differential photoconductivity was interpreted by an intensified electron occupancy of that level by a direct valence band-to-level excitation. Modified Shockley-Read-Hall theory was used for fitting experimental results by a model comprising five deep levels. Properties of the deep levels and their impact on the device performance were deduced.

  4. Effect of Thermal Gradient on Vibration of Non-uniform Visco-elastic Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Khanna, Anupam; Kaur, Narinder

    2016-04-01

    Here, a theoretical model is presented to analyze the effect of bilinear temperature variations on vibration of non-homogeneous visco-elastic rectangular plate with non-uniform thickness. Non-uniformity in thickness of the plate is assumed linear in one direction. Since plate's material is considered as non-homogeneous, authors characterized non-homogeneity in poisson ratio and density of the plate's material exponentially in x-direction. Plate is supposed to be clamped at the ends. Deflection for first two modes of vibration is calculated by using Rayleigh-Ritz technique and tabulated for various values of plate's parameters i.e. taper constant, aspect ratio, non-homogeneity constants and thermal gradient. Comparison of present findings with existing literature is also provided in tabular and graphical manner.

  5. Blind identification of the kinetic parameters in three-compartment models

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri Y.; Di Bella, Edward V. R.

    2004-03-01

    Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.

  6. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  7. Extended micro objects as dark matter particles

    NASA Astrophysics Data System (ADS)

    Belotsky, K.; Rubin, S.; Svadkovsky, I.

    2017-05-01

    Models of various forms of composite dark matter (DM) predicted by particle theory and the DM constituents formed by gravity that are not reduced to new elementary particle candidates are discussed. Main attention is paid to a gravitational origin of the DM. The influence of extended mass spectrum of primordial black holes on observational limits is considered. It is shown that non-uniformly deformed extra space can be considered as point-like masses which possess only gravitational interaction with each other and with the ordinary particles. The recently discussed six-dimensional stable wormholes could contribute to the DM. The contribution of dark atoms is also considered.

  8. Simple estimation of induced electric fields in nervous system tissues for human exposure to non-uniform electric fields at power frequency

    NASA Astrophysics Data System (ADS)

    Tarao, Hiroo; Miyamoto, Hironobu; Korpinen, Leena; Hayashi, Noriyuki; Isaka, Katsuo

    2016-06-01

    Most results regarding induced current in the human body related to electric field dosimetry have been calculated under uniform field conditions. We have found in previous work that a contact current is a more suitable way to evaluate induced electric fields, even in the case of exposure to non-uniform fields. If the relationship between induced currents and external non-uniform fields can be understood, induced electric fields in nervous system tissues may be able to be estimated from measurements of ambient non-uniform fields. In the present paper, we numerically calculated the induced electric fields and currents in a human model by considering non-uniform fields based on distortion by a cubic conductor under an unperturbed electric field of 1 kV m-1 at 60 Hz. We investigated the relationship between a non-uniform external electric field with no human present and the induced current through the neck, and the relationship between the current through the neck and the induced electric fields in nervous system tissues such as the brain, heart, and spinal cord. The results showed that the current through the neck can be formulated by means of an external electric field at the central position of the human head, and the distance between the conductor and the human model. As expected, there is a strong correlation between the current through the neck and the induced electric fields in the nervous system tissues. The combination of these relationships indicates that induced electric fields in these tissues can be estimated solely by measurements of the external field at a point and the distance from the conductor.

  9. MC3: Multi-core Markov-chain Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan

    2016-10-01

    MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

  10. Unidirectional magnetoresistance in magnetic thin films with non-uniform thickness

    NASA Astrophysics Data System (ADS)

    Jia, M. W.; Zhou, C.; Zeng, F. L.; Wu, Y. Z.

    2018-05-01

    The magnetoresistance (MR) of Co film and Co/Pt bilayers was studied systematically as a function of Co and Pt thickness at room temperature. In the samples with the wedge shape, we found the unidirectional MR which has the characteristics of R (Mz )≠R (-Mz ) with the magnetization normal to the film. The measured unidirectional MR is attributed to the differential anomalous Hall resistance due to the thickness difference at the electrodes for the longitudinal resistance measurements. The unidirectional MR effect in the Co/Pt bilayers can be greatly suppressed by a non-magnetic Cu inserting layer.

  11. Electric field computation and measurements in the electroporation of inhomogeneous samples

    NASA Astrophysics Data System (ADS)

    Bernardis, Alessia; Bullo, Marco; Campana, Luca Giovanni; Di Barba, Paolo; Dughiero, Fabrizio; Forzan, Michele; Mognaschi, Maria Evelina; Sgarbossa, Paolo; Sieni, Elisabetta

    2017-12-01

    In clinical treatments of a class of tumors, e.g. skin tumors, the drug uptake of tumor tissue is helped by means of a pulsed electric field, which permeabilizes the cell membranes. This technique, which is called electroporation, exploits the conductivity of the tissues: however, the tumor tissue could be characterized by inhomogeneous areas, eventually causing a non-uniform distribution of current. In this paper, the authors propose a field model to predict the effect of tissue inhomogeneity, which can affect the current density distribution. In particular, finite-element simulations, considering non-linear conductivity against field relationship, are developed. Measurements on a set of samples subject to controlled inhomogeneity make it possible to assess the numerical model in view of identifying the equivalent resistance between pairs of electrodes.

  12. Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A.

    2014-02-28

    This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field anglemore » dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.« less

  13. The Theory of Quantized Fields. III

    DOE R&D Accomplishments Database

    Schwinger, J.

    1953-05-01

    In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.

  14. Study of a magnetorheological fluid submitted to a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Fonseca, H. A.; Gonzalez, E.; Restrepo, J.

    2017-12-01

    In this work, the rheological and hyperfine properties of a magnetorheological fluid (MRF) under the action of a uniform external magnetic field are analysed. Powders of native mineral magnetite of micrometric particle size, after a pulverization process, form the solute of these fluids. The sizes of these samples are selected by sieving in order to obtain sizes of around 20µm and 45µm. The powders are characterized by means of Mössbauer spectroscopy to analyse their stoichiometry giving rise to a non-stoichiometric magnetite Fe2.96O4 in addition to a hematite component. Result of viscosity and shear stress in the low-speed regime were analysed using the Hershel Buckley method. In particular, the case of surface tension it decreases with the application of a uniform magnetic flux density, which is understood in terms of a phase separation due to the formation of mesoscopic structures, thus decreasing the cohesion force and increasing the adhesion force.

  15. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    NASA Astrophysics Data System (ADS)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  16. Improved calibration-based non-uniformity correction method for uncooled infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao

    2017-08-01

    With the latest improvements of microbolometer focal plane arrays (FPA), uncooled infrared (IR) cameras are becoming the most widely used devices in thermography, especially in handheld devices. However the influences derived from changing ambient condition and the non-uniform response of the sensors make it more difficult to correct the nonuniformity of uncooled infrared camera. In this paper, based on the infrared radiation characteristic in the TEC-less uncooled infrared camera, a novel model was proposed for calibration-based non-uniformity correction (NUC). In this model, we introduce the FPA temperature, together with the responses of microbolometer under different ambient temperature to calculate the correction parameters. Based on the proposed model, we can work out the correction parameters with the calibration measurements under controlled ambient condition and uniform blackbody. All correction parameters can be determined after the calibration process and then be used to correct the non-uniformity of the infrared camera in real time. This paper presents the detail of the compensation procedure and the performance of the proposed calibration-based non-uniformity correction method. And our method was evaluated on realistic IR images obtained by a 384x288 pixels uncooled long wave infrared (LWIR) camera operated under changed ambient condition. The results show that our method can exclude the influence caused by the changed ambient condition, and ensure that the infrared camera has a stable performance.

  17. Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ulutas, Ergin

    2013-01-01

    The numerical simulations of recent tsunami caused by 11 March 2011 off-shore Pacific coast of Tohoku-Oki earthquake (Mw 9.0) using diverse co-seismic source models have been performed. Co-seismic source models proposed by various observational agencies and scholars are further used to elucidate the effects of uniform and non-uniform slip models on tsunami generation and propagation stages. Non-linear shallow water equations are solved with a finite difference scheme, using a computational grid with different cell sizes over GEBCO30 bathymetry data. Overall results obtained and reported by various tsunami simulation models are compared together with the available real-time kinematic global positioning system (RTK-GPS) buoys, cabled deep ocean-bottom pressure gauges (OBPG), and Deep-ocean Assessment and Reporting of Tsunami (DART) buoys. The purpose of this study is to provide a brief overview of major differences between point-source and finite-fault methodologies on generation and simulation of tsunamis. Tests of the assumptions of uniform and non-uniform slip models designate that the average uniform slip models may be used for the tsunami simulations off-shore, and far from the source region. Nevertheless, the heterogeneities of the slip distribution within the fault plane are substantial for the wave amplitude in the near field which should be investigated further.

  18. Modulus spectroscopy of grain-grain boundary binary system

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-Fei; Song, Jiang; Li, Sheng-Tao; Wang, Hui

    2015-02-01

    Understanding various polarization mechanisms in complex dielectric systems and specifying their physical origins are key issues in dielectric physics. In this paper, four different methods for representing dielectric properties were analyzed and compared. Depending on the details of the system under study, i.e., uniform or non-uniform, it was suggested that different representing approaches should be used to obtain more valuable information. Especially, for the grain-grain boundary binary non-uniform system, its dielectric response was analyzed in detail in terms of modulus spectroscopy (MS). Furthermore, it was found that through MS, the dielectric responses between uniform and non-uniform systems, grain and grain boundary, Maxwell-Wagner polarization and intrinsic polarization can be distinguished. Finally, with the proposed model, the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were studied. The colossal dielectric constant of CCTO at low frequency was attributed to the pseudo relaxation process of grain.

  19. An Analysis of Non-Uniform Stress States in Finite Thin Film/Substrate System: The Need of Full-Field Curvature Measurements

    ERIC Educational Resources Information Center

    Ngo, Duc Minh

    2009-01-01

    Current methodologies used for the inference of thin film stresses through curvatures are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. In this dissertation, we extend these methodologies to non-uniform stress and curvature states for the single layer of thin film or…

  20. A cross-sectional investigation of the quality of selected medicines in Cambodia in 2010

    PubMed Central

    2014-01-01

    Background Access to good-quality medicines in many countries is largely hindered by the rampant circulation of spurious/falsely labeled/falsified/counterfeit (SFFC) and substandard medicines. In 2006, the Ministry of Health of Cambodia, in collaboration with Kanazawa University, Japan, initiated a project to combat SFFC medicines. Methods To assess the quality of medicines and prevalence of SFFC medicines among selected products, a cross-sectional survey was carried out in Cambodia. Cefixime, omeprazole, co-trimoxazole, clarithromycin, and sildenafil were selected as candidate medicines. These medicines were purchased from private community drug outlets in the capital, Phnom Penh, and Svay Rieng and Kandal provinces through a stratified random sampling scheme in July 2010. Results In total, 325 medicine samples were collected from 111 drug outlets. Non-licensed outlets were more commonly encountered in rural than in urban areas (p < 0.01). Of all the samples, 93.5% were registered and 80% were foreign products. Samples without registration numbers were found more frequently among foreign-manufactured products than in domestic ones (p < 0.01). According to pharmacopeial analytical results, 14.5%, 4.6%, and 24.6% of the samples were unacceptable in quantity, content uniformity, and dissolution test, respectively. All the ultimately unacceptable samples in the content uniformity tests were of foreign origin. Following authenticity investigations conducted with the respective manufacturers and medicine regulatory authorities, an unregistered product of cefixime collected from a pharmacy was confirmed as an SFFC medicine. However, the sample was acceptable in quantity, content uniformity, and dissolution test. Conclusions The results of this survey indicate that medicine counterfeiting is not limited to essential medicines in Cambodia: newer-generation medicines are also targeted. Concerted efforts by both domestic and foreign manufacturers, wholesalers, retailers, and regulatory authorities should help improve the quality of medicines. PMID:24593851

  1. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  2. Piezoelectric effect in non-uniform strained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ilina, M. V.; Blinov, Yu F.; Ilin, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-10-01

    The piezoelectric effect in non-uniform strained carbon nanotubes (CNTs) has been studied. It is shown that the magnitude of strained CNTs surface potential depends on a strain value. It is established that the resistance of CNT also depends on the strain and internal electric field, which leads to the hysteresis in the current-voltage characteristics. Analysis of experimental studies of the non-uniform strained CNT with a diameter of 92 nm and a height of 2.1 μm allowed us to estimate the piezoelectric coefficient 0.107 ± 0.032 C/m2.

  3. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  4. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  5. Intersecting solitons, amoeba, and tropical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi

    2008-11-15

    We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortexmore » charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.« less

  6. In-plane vibration of FG micro/nano-mass sensor based on nonlocal theory under various thermal loading via differential transformation method

    NASA Astrophysics Data System (ADS)

    Rahmani, O.; Mohammadi Niaei, A.; Hosseini, S. A. H.; Shojaei, M.

    2017-01-01

    In the present study, free vibration model of a cantilever functionally graded (FG) nanobeam with an attached mass at tip and under various thermal loading and two types of material distribution is introduced. The vibration performance is considered using nonlocal Euler-Bernoulli beam theory. Two types of thermal loading, namely, uniform and nonlinear temperature rises through the thickness direction are considered. Thermo-mechanical properties of FG nano mass sensor are supposed to vary smoothly and continuously throughout the thickness based on power-law and Mori Tanaka distributions of material properties. Eringen non-local elasticity theory is exploited to describe the size dependency of FG nanobeam. The governing equations of the system with both axial and transverse displacements are derived based on Hamilton's principle and solved utilizing the differential transformation method (DTM) to find the non-dimensional natural frequencies. The results have good agreements with those discussing in the literature. After validation of the present model, the effect of various parameters such as mass and position of the attached nano particle, FG power-law exponent, thermal load type, material distribution type and nonlocal parameter on the frequency of nano sensor are studied. It is shown that the present model produces results of high accuracy, and it can be used as a benchmark in future studies of the free vibration of FG Nano-Mass Sensors.

  7. Increasing sensitivity in the measurement of heart rate variability: the method of non-stationary RR time-frequency analysis.

    PubMed

    Melkonian, D; Korner, A; Meares, R; Bahramali, H

    2012-10-01

    A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge

    2016-08-15

    An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Topographical optimization of structures for use in musical instruments and other applications

    NASA Astrophysics Data System (ADS)

    Kirkland, William Brandon

    Mallet percussion instruments such as the xylophone, marimba, and vibraphone have been produced and tuned since their inception by arduously grinding the keys to achieve harmonic ratios between their 1st, 2 nd, and 3rd transverse modes. In consideration of this, it would be preferable to have defined mathematical models such that the keys of these instruments can be produced quickly and reliably. Additionally, physical modeling of these keys or beams provides a useful application of non-uniform beam vibrations as studied by Euler-Bernoulli and Timoshenko beam theories. This thesis work presents a literature review of previous studies regarding mallet percussion instrument design and optimization of non-uniform keys. The progression of previous research from strictly mathematical approaches to finite element methods is shown, ultimately arriving at the most current optimization techniques used by other authors. However, previous research varies slightly in the relative degree of accuracy to which a non-uniform beam can be modeled. Typically, accuracies are shown in literature as 1% to 2% error. While this seems attractive, musical tolerances require 0.25% error and beams are otherwise unsuitable. This research seeks to build on and add to the previous field research by optimizing beam topology and machining keys within tolerances that no further tuning is required. The optimization methods relied on finite element analysis and used harmonic modal frequencies as constraints rather than arguments of an error function to be optimized. Instead, the beam mass was minimized while the modal frequency constraints were required to be satisfied within 0.25% tolerance. The final optimized and machined keys of an A4 vibraphone were shown to be accurate within the required musical tolerances, with strong resonance at the designed frequencies. The findings solidify a systematic method for designing musical structures for accuracy and repeatability upon manufacture.

  10. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks.

    PubMed

    Megchelenbrink, Wout; Huynen, Martijn; Marchiori, Elena

    2014-01-01

    Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction's flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.

  11. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  12. Gravitational Influences on Flame Propagation Through Non-Uniform, Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Marchese, Anthony; Hovermann, Fred

    2003-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized recently and in previous Microgravity Workshop papers, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our recent findings on gravitational effects on layered combustion along a floor, in which the fuel concentration gradient exists normal to the direction of flame spread. In an effort to understand the mechanism by which the flames spread faster in microgravity (and much faster, in laboratory coordinates, than the laminar burning velocity for uniform mixtures), we have begun making pressure measurements across the spreading flame front that are described here. Earlier researchers, testing in 1g, claimed that hydrostatic pressure differences could account for the rapid spread rates. Additionally, we present the development of a new apparatus to study flame spread in free (i.e., far from walls), non-homogeneous fuel layers formed in a flow tunnel behind an airfoil that has been tested in normal gravity.

  13. Open-orbit theory of photoionization microscopy on nonhydrogenic atoms

    NASA Astrophysics Data System (ADS)

    Liu, F. L.; Zhao, L. B.

    2017-04-01

    Semiclassical open-orbit theory (OOT), previously developed to study photoionization of hydrogenic atoms in a uniform electric field [L. B. Zhao and J. B. Delos, Phys. Rev. A 81, 053417 (2010), 10.1103/PhysRevA.81.053417], has been generalized to describe the propagation of outgoing electron waves to macroscopic distances from a nonhydrogenic atomic source. The generalized OOT has been applied to calculate spatial distributions of electron probability densities and current densities, produced due to photoionization for lithium in a uniform electric field. The obtained results are compared with those from the fully quantum-mechanical coupled-channel theory (CCT). The excellent agreement between the CCT and OOT confirms the reliability of the generalized OOT. Comparison is also made with theoretical calculations from the wave-packet propagation technique and the recent photoionization microscopy experiment. The existing difference between theory and experiment is discussed.

  14. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  15. Research on Creep Relaxation Non-uniformity and Effect on Performance of Combined Rotor

    NASA Astrophysics Data System (ADS)

    Liu, Qingya; He, Jingfei; Zhao, Lijia

    2017-11-01

    The combined rotor of gas turbine is connected by a certain number of rod bolts. It works in the high temperature environment for a long time, and the rod bolts will creep and relax. Under the influence of elastic interaction, the loss of pretightening force of rod bolts at different positions is non-uniform, which will cause the connection of the combined rotor to be out of tune. In this paper, the creep relaxation non-uniformity model for a class F heavy duty gas turbine is established. On the basis of this, the performance degradation and structural strength change of combined rotor resulting from creep relaxation non-uniformity of rod bolts are studied. The results show that the ratio of preload mistuning increases with time and then converges, and there is a threshold inflection point in about seven thousand hours.

  16. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGES

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  17. English Non-Uniformity: A Non-Adult Form of Ethnic English.

    ERIC Educational Resources Information Center

    Stout, Steven Owen

    The paper examines interpretive aspects of English non-uniformity among fifth and sixth grade Native Americans at Laguna Elementary School, Laguna, New Mexico. Speaker assessments of instances of uninflected "be" are ordered to form an implicational scale. The variability in the students' assessment pattern is compared to previous inter-ethnic…

  18. CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraldsdóttir, Hulda S.; Cousins, Ben; Thiele, Ines

    In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. Wemore » apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.« less

  19. CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models

    DOE PAGES

    Haraldsdóttir, Hulda S.; Cousins, Ben; Thiele, Ines; ...

    2017-01-31

    In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. Wemore » apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.« less

  20. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  1. The Development of the Ducted Fan Noise Propagation and Radiation Code CDUCT-LaRC

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, F.; Pope, D. Stuart; Vatsa, Veer

    2003-01-01

    The development of the ducted fan noise propagation and radiation code CDUCT-LaRC at NASA Langley Research Center is described. This code calculates the propagation and radiation of given acoustic modes ahead of the fan face or aft of the exhaust guide vanes in the inlet or exhaust ducts, respectively. This paper gives a description of the modules comprising CDUCT-LaRC. The grid generation module provides automatic creation of numerical grids for complex (non-axisymmetric) geometries that include single or multiple pylons. Files for performing automatic inviscid mean flow calculations are also generated within this module. The duct propagation is based on the parabolic approximation theory of R. P. Dougherty. This theory allows the handling of complex internal geometries and the ability to study the effect of non-uniform (i.e. circumferentially and axially segmented) liners. Finally, the duct radiation module is based on the Ffowcs Williams-Hawkings (FW-H) equation with a penetrable data surface. Refraction of sound through the shear layer between the external flow and bypass duct flow is included. Results for benchmark annular ducts, as well as other geometries with pylons, are presented and compared with available analytical data.

  2. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating

    2018-06-01

    The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.

  3. Constraints on galaxy formation theories

    NASA Technical Reports Server (NTRS)

    Szalay, A. S.

    1986-01-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.

  4. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting.

    PubMed

    Dung, Van Than; Tjahjowidodo, Tegoeh

    2017-01-01

    B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE) area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the sampled data. The most challenging task in these cases is in the identification of the number of knots and their respective locations in non-uniform space in the most efficient computational cost. This paper presents a new strategy for fitting any forms of curve by B-spline functions via local algorithm. A new two-step method for fast knot calculation is proposed. In the first step, the data is split using a bisecting method with predetermined allowable error to obtain coarse knots. Secondly, the knots are optimized, for both locations and continuity levels, by employing a non-linear least squares technique. The B-spline function is, therefore, obtained by solving the ordinary least squares problem. The performance of the proposed method is validated by using various numerical experimental data, with and without simulated noise, which were generated by a B-spline function and deterministic parametric functions. This paper also discusses the benchmarking of the proposed method to the existing methods in literature. The proposed method is shown to be able to reconstruct B-spline functions from sampled data within acceptable tolerance. It is also shown that, the proposed method can be applied for fitting any types of curves ranging from smooth ones to discontinuous ones. In addition, the method does not require excessive computational cost, which allows it to be used in automatic reverse engineering applications.

  5. Testing of next-generation nonlinear calibration based non-uniformity correction techniques using SWIR devices

    NASA Astrophysics Data System (ADS)

    Lovejoy, McKenna R.; Wickert, Mark A.

    2017-05-01

    A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.

  6. Eshelby's problem of non-elliptical inclusions

    NASA Astrophysics Data System (ADS)

    Zou, Wennan; He, Qichang; Huang, Mojia; Zheng, Quanshui

    2010-03-01

    The Eshelby problem consists in determining the strain field of an infinite linearly elastic homogeneous medium due to a uniform eigenstrain prescribed over a subdomain, called inclusion, of the medium. The salient feature of Eshelby's solution for an ellipsoidal inclusion is that the strain tensor field inside the latter is uniform. This uniformity has the important consequence that the solution to the fundamental problem of determination of the strain field in an infinite linearly elastic homogeneous medium containing an embedded ellipsoidal inhomogeneity and subjected to remote uniform loading can be readily deduced from Eshelby's solution for an ellipsoidal inclusion upon imposing appropriate uniform eigenstrains. Based on this result, most of the existing micromechanics schemes dedicated to estimating the effective properties of inhomogeneous materials have been nevertheless applied to a number of materials of practical interest where inhomogeneities are in reality non-ellipsoidal. Aiming to examine the validity of the ellipsoidal approximation of inhomogeneities underlying various micromechanics schemes, we first derive a new boundary integral expression for calculating Eshelby's tensor field (ETF) in the context of two-dimensional isotropic elasticity. The simple and compact structure of the new boundary integral expression leads us to obtain the explicit expressions of ETF and its average for a wide variety of non-elliptical inclusions including arbitrary polygonal ones and those characterized by the finite Laurent series. In light of these new analytical results, we show that: (i) the elliptical approximation to the average of ETF is valid for a convex non-elliptical inclusion but becomes inacceptable for a non-convex non-elliptical inclusion; (ii) in general, the Eshelby tensor field inside a non-elliptical inclusion is quite non-uniform and cannot be replaced by its average; (iii) the substitution of the generalized Eshelby tensor involved in various micromechanics schemes by the average Eshelby tensor for non-elliptical inhomogeneities is in general inadmissible.

  7. Profile-likelihood Confidence Intervals in Item Response Theory Models.

    PubMed

    Chalmers, R Philip; Pek, Jolynn; Liu, Yang

    2017-01-01

    Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.

  8. Decision Processes in Discrimination: Fundamental Misrepresentations of Signal Detection Theory

    NASA Technical Reports Server (NTRS)

    Balakrishnan, J. D.

    1998-01-01

    In the first part of this article, I describe a new approach to studying decision making in discrimination tasks that does not depend on the technical assumptions of signal detection theory (e.g., normality of the encoding distributions). Applying these new distribution-free tests to data from three experiments, I show that base rate and payoff manipulations had substantial effects on the participants' encoding distributions but no effect on their decision rules, which were uniformly unbiased in equal and unequal base rate conditions and in symmetric and asymmetric payoff conditions. In the second part of the article, I show that this seemingly paradoxical result is readily explained by the sequential sampling models of discrimination. I then propose a new, "model-free" test for response bias that seems to more properly identify both the nature and direction of the biases induced by the classical bias manipulations.

  9. Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons

    NASA Astrophysics Data System (ADS)

    Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-04-01

    Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.

  10. Denjoy minimal sets and Birkhoff periodic orbits for non-exact monotone twist maps

    NASA Astrophysics Data System (ADS)

    Qin, Wen-Xin; Wang, Ya-Nan

    2018-06-01

    A non-exact monotone twist map φbarF is a composition of an exact monotone twist map φ bar with a generating function H and a vertical translation VF with VF ((x , y)) = (x , y - F). We show in this paper that for each ω ∈ R, there exists a critical value Fd (ω) ≥ 0 depending on H and ω such that for 0 ≤ F ≤Fd (ω), the non-exact twist map φbarF has an invariant Denjoy minimal set with irrational rotation number ω lying on a Lipschitz graph, or Birkhoff (p , q)-periodic orbits for rational ω = p / q. Like the Aubry-Mather theory, we also construct heteroclinic orbits connecting Birkhoff periodic orbits, and show that quasi-periodic orbits in these Denjoy minimal sets can be approximated by periodic orbits. In particular, we demonstrate that at the critical value F =Fd (ω), the Denjoy minimal set is not uniformly hyperbolic and can be approximated by smooth curves.

  11. On uniformly valid high-frequency far-field asymptotic solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.

    1986-01-01

    An asymptotic, large wave number approximation for the Helmholtz equation is derived. The theory is an extension of the geometric acoustic theory, and provides corrections to that theory in the form of multiplicative functions which satisfy parabolic equations. A simple example is used both to illustrate failure of the geometric theory for large propagation distances, and to show the improvement obtained by use of the new theory.

  12. Frequency position modulation using multi-spectral projections

    NASA Astrophysics Data System (ADS)

    Goodman, Joel; Bertoncini, Crystal; Moore, Michael; Nousain, Bryan; Cowart, Gregory

    2012-10-01

    In this paper we present an approach to harness multi-spectral projections (MSPs) to carefully shape and locate tones in the spectrum, enabling a new and robust modulation in which a signal's discrete frequency support is used to represent symbols. This method, called Frequency Position Modulation (FPM), is an innovative extension to MT-FSK and OFDM and can be non-uniformly spread over many GHz of instantaneous bandwidth (IBW), resulting in a communications system that is difficult to intercept and jam. The FPM symbols are recovered using adaptive projections that in part employ an analog polynomial nonlinearity paired with an analog-to-digital converter (ADC) sampling at a rate at that is only a fraction of the IBW of the signal. MSPs also facilitate using commercial of-the-shelf (COTS) ADCs with uniform-sampling, standing in sharp contrast to random linear projections by random sampling, which requires a full Nyquist rate sample-and-hold. Our novel communication system concept provides an order of magnitude improvement in processing gain over conventional LPI/LPD communications (e.g., FH- or DS-CDMA) and facilitates the ability to operate in interference laden environments where conventional compressed sensing receivers would fail. We quantitatively analyze the bit error rate (BER) and processing gain (PG) for a maximum likelihood based FPM demodulator and demonstrate its performance in interference laden conditions.

  13. Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng

    2016-04-15

    In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less

  14. Motivating and Inhibiting Factors in Online Gambling Behaviour: A Grounded Theory Study

    ERIC Educational Resources Information Center

    McCormack, Abby; Griffiths, Mark D.

    2012-01-01

    To date, there has been very little empirical research examining why people gamble online or--just as importantly--why they do not gamble online. A grounded theory study examining the motivating and inhibiting factors in online gambling was carried out. The sample comprised 15 online gamblers, 14 offline gamblers, and 11 non-gamblers, and resulted…

  15. Simulations of the National Ignition Facility Opacity Sample

    NASA Astrophysics Data System (ADS)

    Martin, M. E.; London, R. A.; Heeter, R. F.; Dodd, E. S.; Devolder, B. G.; Opachich, Y. P.; Liedahl, D. A.; Perry, T. S.

    2017-10-01

    A platform to study the opacity of high temperature materials at the National Ignition Facility has been developed. Experiments to study the opacity of materials relevant to inertial confinement fusion and stellar astrophysics are being conducted. The initial NIF experiments are focused on reaching the same plasma conditions (T >150 eV and Ne >= 7 ×1021 cm-3) , for iron, as those achieved in previous experiments at Sandia National Laboratories' (SNL) Z-facility which have shown discrepancies between opacity theory and experiment. We developed a methodology, using 1D HYDRA simulations, to study the effects of tamper thickness on the conditions of iron-magnesium samples. We heat the sample using an x-ray drive from 2D LASNEX hohlraum simulations. We also use this methodology to predict sample uniformity and expansion for comparison with experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  16. Fast, exact k-space sample density compensation for trajectories composed of rotationally symmetric segments, and the SNR-optimized image reconstruction from non-Cartesian samples.

    PubMed

    Mitsouras, Dimitris; Mulkern, Robert V; Rybicki, Frank J

    2008-08-01

    A recently developed method for exact density compensation of non uniformly arranged samples relies on the analytically known cross-correlations of Fourier basis functions corresponding to the traced k-space trajectory. This method produces a linear system whose solution represents compensated samples that normalize the contribution of each independent element of information that can be expressed by the underlying trajectory. Unfortunately, linear system-based density compensation approaches quickly become computationally demanding with increasing number of samples (i.e., image resolution). Here, it is shown that when a trajectory is composed of rotationally symmetric interleaves, such as spiral and PROPELLER trajectories, this cross-correlations method leads to a highly simplified system of equations. Specifically, it is shown that the system matrix is circulant block-Toeplitz so that the linear system is easily block-diagonalized. The method is described and demonstrated for 32-way interleaved spiral trajectories designed for 256 image matrices; samples are compensated non iteratively in a few seconds by solving the small independent block-diagonalized linear systems in parallel. Because the method is exact and considers all the interactions between all acquired samples, up to a 10% reduction in reconstruction error concurrently with an up to 30% increase in signal to noise ratio are achieved compared to standard density compensation methods. (c) 2008 Wiley-Liss, Inc.

  17. Risk of co-occuring psychopathology: testing a prediction of expectancy theory.

    PubMed

    Capron, Daniel W; Norr, Aaron M; Schmidt, Norman B

    2013-01-01

    Despite the high impact of anxiety sensitivity (AS; a fear of anxiety related sensations) research, almost no research attention has been paid to its parent theory, Reiss' expectancy theory (ET). ET has gone largely unexamined to this point, including the prediction that AS is a better predictor of number of fears than current anxiety. To test Reiss' prediction, we used a large (N = 317) clinical sample of anxiety outpatients. Specifically, we examined whether elevated AS predicted number of comorbid anxiety and non-anxiety disorder diagnoses in this sample. Consistent with ET, findings indicated that AS predicted number of comorbid anxiety disorder diagnoses above and beyond current anxiety symptoms. Also, AS did not predict the number of comorbid non-anxiety diagnoses when current anxiety symptoms were accounted for. These findings represent an important examination of a prediction of Reiss' ET and are consistent with the idea that AS may be a useful transdiagnostic treatment target. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Design of a Mach-15 Total-Enthalpy Nozzle With Non-uniform Inflow Using Rotational MOC

    NASA Technical Reports Server (NTRS)

    Gaffney, Richard L., Jr.

    2004-01-01

    A new computer program to design nozzles with non-uniform inflow has been developed using the rotational method of characteristics (MOC). This program has been used to design a nozzle for the NASA's HYPULSE shock-expansion tunnel for use in scramjet engine tests at a Mach-15 flight-enthalpy condition. The nozzle has an area ratio of 9.5:1 that expands the inflow from Mach 6 along the centerline to Mach 8.7. Although the density and Mach number vary radially at the exit due to the non-uniformities of the inflow, the MOC procedure produces exit flow that is parallel and has uniform static pressure. The design has been verified with CFD which compares favorably with the MOC solution.

  19. The application of diffusion theory to the analysis of hydrogen desorption data at 25 deg C

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data (coulombs of H2 desorbed versus time) has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, are studied in this work. For the nickel base alloys, it is found that the hydrogen distributions after electrolytic charging conforms closely to those which would be predicted by diffusion theory. For Waspaloy samples charged at 5,000 psi, it is found that the hydrogen distributions are essentially the same as those obtained by electrolytic charging. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, are essentially uniform in nature, which would not be predicted by diffusion theory. A possible explanation has been proposed. Finally, it is found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the fast hydrogen is not due to surface and sub-surface hydride formation, as was originally proposed.

  20. Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1982-01-01

    A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  1. Impact of deformed extreme-ultraviolet pellicle in terms of CD uniformity

    NASA Astrophysics Data System (ADS)

    Kim, In-Seon; Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun

    2015-07-01

    The usage of the extreme ultraviolet (EUV) pellicle is regarded as the solution for defect control since it can protect the mask from airborne debris. However some obstacles disrupt real-application of the pellicle such as structural weakness, thermal damage and so on. For these reasons, flawless fabrication of the pellicle is impossible. In this paper, we discuss the influence of deformed pellicle in terms of non-uniform intensity distribution and critical dimension (CD) uniformity. It was found that non-uniform intensity distribution is proportional to local tilt angle of pellicle and CD variation was linearly proportional to transmission difference. When we consider the 16 nm line and space pattern with dipole illumination (σc=0.8, σr=0.1, NA=0.33), the transmission difference (max-min) of 0.7 % causes 0.1 nm CD uniformity. Influence of gravity caused deflection to the aerial image is small enough to ignore. CD uniformity is less than 0.1 nm even for the current gap of 2 mm between mask and pellicle. However, heat caused EUV pellicle wrinkle might cause serious image distortion because a wrinkle of EUV pellicle causes a transmission loss variation as well as CD non-uniformity. In conclusion, local angle of a wrinkle, not a period or an amplitude of a wrinkle is a main factor to CD uniformity, and local angle of less than ~270 mrad is needed to achieve 0.1 nm CD uniformity with 16 nm L/S pattern.

  2. Spectral bidirectional reflectance distribution function measurements on well-defined textured surfaces: direct observation of shadowing, masking, inter-reflection, and transparency effects.

    PubMed

    Wilen, Larry; Dasgupta, Bivash R

    2011-11-01

    We present results for the bidirectional reflectance distribution function (BRDF) for samples of uniform rectangular and triangular grooves constructed from polydimethylsilicone replicas. The measurements are performed with the detector in the plane of incidence, but with varying groove orientations with respect to that plane. The samples are opaque in some cases and semitransparent in others. By measuring the BRDF for colored samples over a wide spectral range, we explicitly probe the effect of sample albedo, which is important for inter-reflections. For the opaque samples, we compare the results with exact theoretical results either taken from the literature (for the triangular geometry) or worked out here (for the rectangular geometry). For both geometries, we also extend the theoretical results to finite length grooves. There is generally very good agreement between theory and the experiment. Shadowing, masking, and inter-reflection are clearly observed, as well as effects that may be due to polarization and asperity scattering. For semitransparent samples, we observe the effect of increasing transparency on the BRDF.

  3. Normal incidence X-ray mirror for chemical microanalysis

    DOEpatents

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  4. Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venezian, G.; Bretschneider, C.L.

    1980-08-01

    This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less

  5. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2017-12-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  6. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2018-07-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  7. The NUONCE engine for LEO networks

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Estabrook, Polly

    1995-01-01

    Typical LEO networks use constellations which provide a uniform coverage. However, the demand for telecom service is dynamic and unevenly distributed around the world. We examine a more efficient and cost effective design by matching the satellite coverage with the cyclical demand for service around the world. Our approach is to use a non-uniform satellite distribution for the network. We have named this constellation design NUONCE for Non Uniform Optimal Network Communications Engine.

  8. Human thermal sensation and comfort in a non-uniform environment with personalized heating.

    PubMed

    Deng, Qihong; Wang, Runhuai; Li, Yuguo; Miao, Yufeng; Zhao, Jinping

    2017-02-01

    Thermal comfort in traditionally uniform environment is apparent and can be improved by increasing energy expenses. To save energy, non-uniform environment implemented by personalized conditioning system attracts considerable attention, but human response in such environment is unclear. To investigate regional- and whole-body thermal sensation and comfort in a cool environment with personalized heating. In total 36 subjects (17 males and 19 females) including children, adults and the elderly, were involved in our experiment. Each subject was first asked to sit on a seat in an 18°C chamber (uniform environment) for 40min and then sit on a heating seat in a 16°C chamber (non-uniform environment) for another 40min after 10min break. Subjects' regional- and whole-body thermal sensation and comfort were surveyed by questionnaire and their skin temperatures were measured by wireless sensors. We statistically analyzed subjects' thermal sensation and comfort and their skin temperatures in different age and gender groups and compared them between the uniform and non-uniform environments. Overall thermal sensation and comfort votes were respectively neutral and just comfortable in 16°C chamber with personalized heating, which were significantly higher than those in 18°C chamber without heating (p<0.01). The effect of personalized heating on improving thermal sensation and comfort was consistent in subjects of different age and gender. However, adults and the females were more sensitive to the effect of personalized heating and felt cooler and less comfort than children/elderly and the males respectively. Variations of the regional thermal sensation/comfort across human body were consistent with those of skin temperature. Personalized heating significantly improved human thermal sensation and comfort in non-uniform cooler environment, probably due to the fact that it increased skin temperature. However, the link between thermal sensation/comfort and variations of skin temperature is rather complex and warrant further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A general formula for computing maximum proportion correct scores in various psychophysical paradigms with arbitrary probability distributions of stimulus observations.

    PubMed

    Dai, Huanping; Micheyl, Christophe

    2015-05-01

    Proportion correct (Pc) is a fundamental measure of task performance in psychophysics. The maximum Pc score that can be achieved by an optimal (maximum-likelihood) observer in a given task is of both theoretical and practical importance, because it sets an upper limit on human performance. Within the framework of signal detection theory, analytical solutions for computing the maximum Pc score have been established for several common experimental paradigms under the assumption of Gaussian additive internal noise. However, as the scope of applications of psychophysical signal detection theory expands, the need is growing for psychophysicists to compute maximum Pc scores for situations involving non-Gaussian (internal or stimulus-induced) noise. In this article, we provide a general formula for computing the maximum Pc in various psychophysical experimental paradigms for arbitrary probability distributions of sensory activity. Moreover, easy-to-use MATLAB code implementing the formula is provided. Practical applications of the formula are illustrated, and its accuracy is evaluated, for two paradigms and two types of probability distributions (uniform and Gaussian). The results demonstrate that Pc scores computed using the formula remain accurate even for continuous probability distributions, as long as the conversion from continuous probability density functions to discrete probability mass functions is supported by a sufficiently high sampling resolution. We hope that the exposition in this article, and the freely available MATLAB code, facilitates calculations of maximum performance for a wider range of experimental situations, as well as explorations of the impact of different assumptions concerning internal-noise distributions on maximum performance in psychophysical experiments.

  10. Evaluation of dripper clogging using magnetic water in drip irrigation

    NASA Astrophysics Data System (ADS)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  11. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency

    PubMed Central

    An, Ran; Massa, Katherine

    2014-01-01

    AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position. PMID:25553200

  12. Maritime Tactical Command and Control Analysis of Alternatives

    DTIC Science & Technology

    2016-01-01

    JIIM joint, interagency, intergovernmental, and multinational LCC life-cycle cost MANA Map Aware Non-Uniform Automata MDA milestone decision authority...Map Aware Non-Uniform Automata (MANA), a combat and C4I, surveillance, and reconnaissance model developed by the New Zealand Defence Technology

  13. Appropriate time scales for nonlinear analyses of deterministic jump systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya

    2011-06-01

    In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.

  14. Descriptive sensory analysis of marinated and non-marinated wooden breast fillet portions.

    PubMed

    Maxwell, A D; Bowker, B C; Zhuang, H; Chatterjee, D; Adhikari, K

    2018-05-14

    The wooden breast (WB) myopathy influences muscle composition and texture characteristics in broiler breast meat. It is unknown if marination reduces the negative influence of WB on meat sensory quality or if WB effects are uniform throughout the Pectoralis major. The objective of this study was to determine the effects of marination on the sensory attributes and instrumental shear force measurements of the ventral (skin-side) and dorsal (bone-side) portions of normal and severe WB meat. Sixty butterfly fillets (30 normal and 30 severe WB) were selected from the deboning line of a commercial processing plant. Individual fillets were portioned into ventral and dorsal halves. Portions from one side of each butterfly were used as non-marinated controls, and portions from the other side were vacuum-tumble marinated (16 rpm, -0.6 atm, 4°C, 20 min) with 20% (wt/wt) marinade to meat ratio. Marinade was formulated to target a concentration of 0.75% (w/v) salt and 0.45% (w/v) sodium tripolyphosphate in the final product. Descriptive sensory analysis (9 trained panelists) was conducted to evaluate visual, texture, and flavor attributes (0-15 point scale) of breast portions along with Warner-Bratzler shear force. Significant interaction effects between WB and marination were not observed for the sensory attributes. Greater springiness, cohesiveness, hardness, fibrousness, and chewiness scores were observed in WB samples (P < 0.001). Marination decreased cohesiveness, hardness, and chewiness (P < 0.05) and increased juiciness (P = 0.002). The effects of WB on sensory texture attributes were more apparent in the ventral portions of the breast fillets. Flavor attributes (salty and brothy) increased (P < 0.001) with marination. In non-marinated samples, shear force was similar between normal and WB samples. In marinated samples, however, shear force was greater (P < 0.001) in WB samples. Data suggest that the WB effect on meat sensory quality is not uniform throughout the Pectoralis major and that WB-related differences in cooked meat sensory texture attributes are lessened but not eliminated by vacuum-tumbling marination.

  15. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.

  16. A kinetic theory treatment of heat transfer in plane Poiseuille flow with uniform pressure

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1992-01-01

    Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary boundaries) is revisited where the Lees two-steam method with the Enskog equation of change is applied. Single particle velocity distribution functions are chosen, which preserve the essential physical features of this flow with arbitrary but uniform plate temperatures and gas pressure. Lower moments are shown to lead to expressions for the parameter functions, molecular number densities, and temperatures which are entirely in agreement with those obtained in the analysis of Lees for compressible plane Couette flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifications result, which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat flux, as well as density, are completely determined for the whole range of Knudson numbers from free molecular flow to the continuum regime, when the pressure level is specified.

  17. The splenic syndrome in individuals with sickle cell trait.

    PubMed

    Goodman, Jessica; Hassell, Kathryn; Irwin, David; Witkowski, Ewa H; Nuss, Rachelle

    2014-12-01

    The medical records of 25 individuals with sickle cell trait and altitude-associated splenic infarct, reported to two Colorado physicians, were reviewed. Electrospray mass spectroscopy was performed on blood samples from a cohort of 10 of the individuals to rapidly confirm beta hemoglobin phenotype. Only males were identified with a 1.4:1 ratio of non-African Americans to African Americans, and 44% of African Americans and 85% of non-African Americans were unaware they had sickle cell trait. Left upper quadrant pain and an elevated bilirubin were nearly uniformly present. Either abdominal CT or ultrasound was confirmatory. Conservative treatment at a lower altitude generally resulted in a favorable outcome.

  18. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  19. Electrophoretic sample insertion. [device for uniformly distributing samples in flow path

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R. (Inventor)

    1974-01-01

    Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.

  20. [Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].

    PubMed

    Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang

    2014-03-01

    In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.

  1. 2D barrier in a superconducting niobium square

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joya, Miryam R., E-mail: mrinconj@unal.edu.co; Barba-ortega, J., E-mail: jjbarbao@unal.edu.co; Sardella, Edson, E-mail: edsonsdl@gmail.com

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  2. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals

    PubMed Central

    Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G.

    2016-01-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors’ previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp–p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat. PMID:27382478

  3. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals.

    PubMed

    Guven, Onur; Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G

    2016-06-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors' previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp-p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat.

  4. The random energy model in a magnetic field and joint source channel coding

    NASA Astrophysics Data System (ADS)

    Merhav, Neri

    2008-09-01

    We demonstrate that there is an intimate relationship between the magnetic properties of Derrida’s random energy model (REM) of spin glasses and the problem of joint source-channel coding in Information Theory. In particular, typical patterns of erroneously decoded messages in the coding problem have “magnetization” properties that are analogous to those of the REM in certain phases, where the non-uniformity of the distribution of the source in the coding problem plays the role of an external magnetic field applied to the REM. We also relate the ensemble performance (random coding exponents) of joint source-channel codes to the free energy of the REM in its different phases.

  5. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  6. Theory of Fiber Optical Bragg Grating: Revisited

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  7. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.

  8. Segmentation of thalamus from MR images via task-driven dictionary learning

    NASA Astrophysics Data System (ADS)

    Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D.; Prince, Jerry L.

    2016-03-01

    Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is pro- posed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation overstate-of-the-art atlas-based thalamus segmentation algorithms.

  9. Segmentation of Thalamus from MR images via Task-Driven Dictionary Learning.

    PubMed

    Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D; Prince, Jerry L

    2016-02-27

    Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is proposed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation over state-of-the-art atlas-based thalamus segmentation algorithms.

  10. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Tao; Kang, Wei; Wang, Jianxiang, E-mail: jxwang@pku.edu.cn

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence ofmore » the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.« less

  11. Post-Detonation Energy Release from TNT-Aluminum Explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Anderson, John; Yoshinaka, Akio

    2007-06-01

    Detonation and post-detonation energy release from TNT and TNT-aluminum composite have been experimentally studied in an air-filled chamber, 26 m^3 in volume and 3 m in diameter. While TNT has a high oxygen deficiency, experiments with 1.1 kg to 4 kg charges yield energy releases reaching only 86% of theoretical equilibrium values, possibly due to the non-uniform mixing between the detonation products and air. In order to improve mixing and further increase afterburning energy, large mass fractions of large aluminum particles are combined with TNT. The effect of particle distribution is also investigated in two composite configurations, whereby the aluminum particles are uniformly mixed in cast TNT or arranged in a shell surrounding a TNT cylinder. It is shown that the TNT-aluminum composite outperforms pure TNT, while improved performance is achieved for the shell configuration due to enhanced spatial mixing of hot fuels with oxidizing gases. Comparisons with the equilibrium theory and a liquid-based aluminized composite explosive (with an oxygen deficiency less than that of TNT) are conducted to further explore the mixing and afterburning mechanism.

  12. An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays

    DTIC Science & Technology

    2006-03-01

    Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two

  13. Graphene Calisthenics: Straintronics of Graphene with Light-Reactive Azobenzene Polymer

    NASA Astrophysics Data System (ADS)

    Meaker, Kacey; Cao, Peigen; Huo, Mandy; Crommie, Michael

    2014-03-01

    Although a promising target for next-generation electronics, graphene's lack of a band gap is a severe hindrance. There are many ways of opening a gap, and one controllable way is through application of specific non-uniform strains which can produce extremely large pseudomagnetic fields. This effect was predicted and verified experimentally, but so far there have been few methods developed that reliably control the size, location, separation and amount of strain in graphene. We have used a layer of light-reactive azobenzene polymer beneath the graphene to produce strained monolayer graphene with light exposure. Using Raman spectroscopy, we have measured a shift of up to 20 cm-1 in the 2D peak when the graphene and polymer sample was exposed to 532 nm laser illumination indicating that the graphene is undergoing a strain from deformation of the azobenzene layer below. AFM topographic measurements and COMSOL simulations were used to verify this assertion. Use of polymeric materials to reliably strain graphene in non-uniform ways could result in controllable production of large pseudomagnetic fields in graphene and more control over graphene's low-energy charge carriers.

  14. Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow

    USGS Publications Warehouse

    Zou, S.; Xia, J.; Koussis, Antonis D.

    1996-01-01

    Analytical solutions are obtained by the Fourier transform technique for the one-, two-, and three-dimensional transport of a conservative solute injected instantaneously in a uniform groundwater flow. These solutions account for dispersive non-linearity caused by the heterogeneity of the hydraulic properties of aquifer systems and can be used as building blocks to construct solutions by convolution (principle of superposition) for source conditions other than slug injection. The dispersivity is assumed to vary parabolically with time and is thus constant for the entire system at any given time. Two approaches for estimating time-dependent dispersion parameters are developed for two-dimensional plumes. They both require minimal field tracer test data and, therefore, represent useful tools for assessing real-world aquifer contamination sites. The first approach requires mapped plume-area measurements at two specific times after the tracer injection. The second approach requires concentration-versus-time data from two sampling wells through which the plume passes. Detailed examples and comparisons with other procedures show that the methods presented herein are sufficiently accurate and easier to use than other available methods.

  15. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms.

    PubMed

    Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin

    2018-03-23

    Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Sampling large random knots in a confined space

    NASA Astrophysics Data System (ADS)

    Arsuaga, J.; Blackstone, T.; Diao, Y.; Hinson, K.; Karadayi, E.; Saito, M.

    2007-09-01

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e^{n^2}) . We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n2). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.

  17. Dual-Electrode CMUT With Non-Uniform Membranes for High Electromechanical Coupling Coefficient and High Bandwidth Operation

    PubMed Central

    Guldiken, Rasim O.; Zahorian, Jaime; Yamaner, F. Y.; Degertekin, F. L.

    2010-01-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k2) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane. PMID:19574135

  18. An non-uniformity voltage model for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  19. Characterization and Processing of Non-Uniformities in Back-Illuminated CCDs

    NASA Astrophysics Data System (ADS)

    Lemm, Alia D.; Della-Rose, Devin J.; Maddocks, Sally

    2018-01-01

    In astronomical photometry, Charged Coupled Device (CCD) detectors are used to achieve high precision photometry and must be properly calibrated to correct for noise and pixel non-uniformities. Uncalibrated images may contain bias offset, dark current, bias structure and uneven illumination. In addition, standard data reduction is often not sufficient to “normalize” imagery to single-digit millimagnitude (mmag) precision. We are investigating an apparent non-uniformity, or interference pattern, in a back-illuminated sensor, the Alta U-47, attached to a DFM Engineering 41-cm Ritchey-Chrétien f/8 telescope. Based on the amplitude of this effect, we estimate that instrument magnitude peak-to-valley deviations of 50 mmag or more may result. Our initial testing strongly suggests that reflected skylight from high pressure sodium city lights may be the cause of this interference pattern. Our research goals are twofold: to fully characterize this non-uniformity and to determine the best method to remove this interference pattern from our reduced CCD images.

  20. An efficient shutter-less non-uniformity correction method for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Huang, Xiyan; Sui, Xiubao; Zhao, Yao

    2017-02-01

    The non-uniformity response in infrared focal plane array (IRFPA) detectors has a bad effect on images with fixed pattern noise. At present, it is common to use shutter to prevent from radiation of target and to update the parameters of non-uniformity correction in the infrared imaging system. The use of shutter causes "freezing" image. And inevitably, there exists the problems of the instability and reliability of system, power consumption, and concealment of infrared detection. In this paper, we present an efficient shutter-less non-uniformity correction (NUC) method for infrared focal plane arrays. The infrared imaging system can use the data gaining in thermostat to calculate the incident infrared radiation by shell real-timely. And the primary output of detector except the shell radiation can be corrected by the gain coefficient. This method has been tested in real infrared imaging system, reaching high correction level, reducing fixed pattern noise, adapting wide temperature range.

  1. The Italian Job?: Comparing Theory of Mind Performance in British and Italian Children

    ERIC Educational Resources Information Center

    Lecce, Serena; Hughes, Claire

    2010-01-01

    Cross-cultural research on theory of mind is relatively recent and largely restricted to comparisons of children from Western versus non-Western samples; much less is known about variation within Western cultures. This study compared 5- to 6-year-olds from Britain and Italy (matched for age, verbal age, gender, and maternal education; N=140), on…

  2. Theory of mind development in Chinese children: a meta-analysis of false-belief understanding across cultures and languages.

    PubMed

    Liu, David; Wellman, Henry M; Tardif, Twila; Sabbagh, Mark A

    2008-03-01

    Theory of mind is claimed to develop universally among humans across cultures with vastly different folk psychologies. However, in the attempt to test and confirm a claim of universality, individual studies have been limited by small sample sizes, sample specificities, and an overwhelming focus on Anglo- European children. The current meta-analysis of children's false-belief performance provides the most comprehensive examination to date of theory-of-mind development in a population of non-Western children speaking non-Indo-European languages (i.e., Mandarin and Cantonese). The meta-analysis consisted of 196 Chinese conditions (127 from mainland China and 69 from Hong Kong), representing responses from more than 3,000 children, compared with 155 similar North American conditions (83 conditions from the United States and 72 conditions from Canada). The findings show parallel developmental trajectories of false-belief understanding for children in China and North America coupled with significant differences in the timing of development across communities-children's false-belief performance varied across different locales by as much as 2 or more years. These data support the importance of both universal trajectories and specific experiential factors in the development of theory of mind.

  3. The Radial Temperature Gradient in the Gleeble® Hot-Torsion Test and Its Effect on the Interpretation of Plastic-Flow Behavior

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Mahaffey, D. W.; Levkulich, N. C.; Senkov, O. N.

    2017-11-01

    The radial temperature gradient developed via direct-resistance heating of round-bar hot-torsion specimens in a Gleeble® machine and its effect on the interpretation of plastic-flow behavior were established using a suite of experimental, analytical, and numerical-simulation tools. Observations of the microstructure variation developed within a γ'-strengthened nickel-base superalloy were used to infer the temperature gradient as well as differences between the temperature at the outer diameter and that indicated by thermocouples welded to the surface. At temperatures of the order of 1375 K (1102 °C), the radial variation of temperature was typically 20 K ( 20 °C). Such variations were in agreement with an analytical heat-conduction model based on the balance of input thermal energy and radiation heat loss at the free surface. Using a constitutive model for LSHR, the effect of the radial temperature gradient on plastic flow during hot torsion was assessed via numerical integration of the torque as a function of radial position for such cases as well as that corresponding to a uniformly-heated sample. These calculations revealed that the torque generated in the non-uniform case is almost identical to that developed in a sample uniformly preheated to a temperature corresponding to that experienced at a fractional radial location of 0.8 in the former case.

  4. Gedanken densities and exact constraints in density functional theory.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  5. A quasi-molecular dynamics simulation study on the effect of particles collisions in pulsed-laser desorption

    NASA Astrophysics Data System (ADS)

    Xinyu-Tan; Duanming-Zhang; Shengqin-Feng; Li, Zhi-hua; Li, Guan; Li, Li; Dan, Liu

    2006-05-01

    The dynamics characteristic and effect of atoms and particulates ejected from the surface generated by nanosecond pulsed-laser ablation are very important. In this work, based on the consideration of the inelasticity and non-uniformity of the plasma particles thermally desorbed from a plane surface into vacuum induced by nanosecond laser ablation, the one-dimensional particles flow is studied on the basis of a quasi-molecular dynamics (QMD) simulation. It is assumed that atoms and particulates ejected from the surface of a target have a Maxwell velocity distribution corresponding to the surface temperature. Particles collisions in the ablation plume. The particles mass is continuous and satisfies fractal theory distribution. Meanwhile, the particles are inelastic. Our results show that inelasticity and non-uniformity strongly affect the dynamics behavior of the particles flow. Along with the decrease of restitution coefficient e and increase of fractional dimension D, velocity distributions of plasma particles system all deviate from the initial Gaussian distribution. The increasing of dissipation energy ΔE leads to density distribution clusterized and closed up to the center mass. Predictions of the particles action based on the proposed fractal and inelasticity model are found to be in agreement with the experimental observation. This verifies the validity of the present model for the dynamics behavior of pulsed-laser-induced particles flow.

  6. Simulation of Mach Probes in Non-Uniform Magnetized Plasmas: the Influence of a Background Density Gradient

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.

    2013-10-01

    Mach probes can be used to measure transverse flow in magnetized plasmas, but what they actually measure in strongly non-uniform plasmas has not been definitively established. A fluid treatment in previous work has suggested that the diamagnetic drifts associated with background density and temperature gradients affect transverse flow measurements, but detailed computational study is required to validate and elaborate on those results; it is really a kinetic problem, since the probe deforms and introduces voids in the ion and electron distribution functions. A new code, the Plasma-Object Simulator with Iterated Trajectories (POSIT) has been developed to self-consistently compute the steady-state six-dimensional ion and electron distribution functions in the perturbed plasma. Particle trajectories are integrated backwards in time to the domain boundary, where arbitrary background distribution functions can be specified. This allows POSIT to compute the ion and electron density at each node of its unstructured mesh, update the potential based on those densities, and then iterate until convergence. POSIT is used to study the impact of a background density gradient on transverse Mach probe measurements, and the results compared to the previous fluid theory. C.B. Haakonsen was supported in part by NSF/DOE Grant No. DE-FG02-06ER54512, and in part by an SCGF award administered by ORISE under DOE Contract No. DE-AC05-06OR23100.

  7. On the Accretion Rates of SW Sextantis Nova-like Variables

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald-Louis; Sion, Edward M.

    2009-06-01

    We present accretion rates for selected samples of nova-like variables having IUE archival spectra and distances uniformly determined using an infrared method by Knigge. A comparison with accretion rates derived independently with a multiparametric optimization modeling approach by Puebla et al. is carried out. The accretion rates of SW Sextantis nova-like systems are compared with the accretion rates of non-SW Sextantis systems in the Puebla et al. sample and in our sample, which was selected in the orbital period range of three to four and a half hours, with all systems having distances using the method of Knigge. Based upon the two independent modeling approaches, we find no significant difference between the accretion rates of SW Sextantis systems and non-SW Sextantis nova-like systems insofar as optically thick disk models are appropriate. We find little evidence to suggest that the SW Sex stars have higher accretion rates than other nova-like cataclysmic variables (CVs) above the period gap within the same range of orbital periods.

  8. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  9. From SED HI concept to Pleiades FM detection unit measurements

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex

    2017-11-01

    The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.

  10. Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek; Lezcano, Andy; Preston, Heather L.

    2016-10-01

    In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.

  11. A Comparison of Uniform DIF Effect Size Estimators under the MIMIC and Rasch Models

    ERIC Educational Resources Information Center

    Jin, Ying; Myers, Nicholas D.; Ahn, Soyeon; Penfield, Randall D.

    2013-01-01

    The Rasch model, a member of a larger group of models within item response theory, is widely used in empirical studies. Detection of uniform differential item functioning (DIF) within the Rasch model typically employs null hypothesis testing with a concomitant consideration of effect size (e.g., signed area [SA]). Parametric equivalence between…

  12. Algorithms to eliminate the influence of non-uniform intensity distributions on wavefront reconstruction by quadri-wave lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-jun; Dong, Li-zhi; Wang, Shuai; Yang, Ping; Xu, Bing

    2017-11-01

    In quadri-wave lateral shearing interferometry (QWLSI), when the intensity distribution of the incident light wave is non-uniform, part of the information of the intensity distribution will couple with the wavefront derivatives to cause wavefront reconstruction errors. In this paper, we propose two algorithms to reduce the influence of a non-uniform intensity distribution on wavefront reconstruction. Our simulation results demonstrate that the reconstructed amplitude distribution (RAD) algorithm can effectively reduce the influence of the intensity distribution on the wavefront reconstruction and that the collected amplitude distribution (CAD) algorithm can almost eliminate it.

  13. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Ustinov, M. V.

    1997-01-01

    Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory.

  14. Semiconductor laser insert with uniform illumination for use in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Charamisinau, Ivan; Happawana, Gemunu; Evans, Gary; Rosen, Arye; Hsi, Richard A.; Bour, David

    2005-08-01

    A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient's body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.

  15. HOTCFGM-1D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Through-Thickness Functionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    1998-01-01

    The objective of this three-year project was to develop and deliver to NASA Lewis one-dimensional and two-dimensional higher-order theories, and related computer codes, for the analysis, optimization and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, blisk blades). To satisfy this objective, a quasi one-dimensional version of the higher-order theory, HOTCFGM-1D, and four computer codes based on this theory, for the analysis, design and optimization of cylindrical structural components functionally graded in the radial direction were developed. The theory is applicable to thin multi-phased composite shell/cylinders subjected to macroscopically axisymmetric thermomechanical and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial and circumferential directions, and arbitrarily distributed in the radial direction, thereby allowing functional grading of the internal reinforcement in this direction.

  16. Radar Doppler Processing with Nonuniform Sampling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  17. An Efficient MCMC Algorithm to Sample Binary Matrices with Fixed Marginals

    ERIC Educational Resources Information Center

    Verhelst, Norman D.

    2008-01-01

    Uniform sampling of binary matrices with fixed margins is known as a difficult problem. Two classes of algorithms to sample from a distribution not too different from the uniform are studied in the literature: importance sampling and Markov chain Monte Carlo (MCMC). Existing MCMC algorithms converge slowly, require a long burn-in period and yield…

  18. A short note on the maximal point-biserial correlation under non-normality.

    PubMed

    Cheng, Ying; Liu, Haiyan

    2016-11-01

    The aim of this paper is to derive the maximal point-biserial correlation under non-normality. Several widely used non-normal distributions are considered, namely the uniform distribution, t-distribution, exponential distribution, and a mixture of two normal distributions. Results show that the maximal point-biserial correlation, depending on the non-normal continuous variable underlying the binary manifest variable, may not be a function of p (the probability that the dichotomous variable takes the value 1), can be symmetric or non-symmetric around p = .5, and may still lie in the range from -1.0 to 1.0. Therefore researchers should exercise caution when they interpret their sample point-biserial correlation coefficients based on popular beliefs that the maximal point-biserial correlation is always smaller than 1, and that the size of the correlation is always further restricted as p deviates from .5. © 2016 The British Psychological Society.

  19. An Evaluation of Performance Characteristics of Primary Display Devices.

    PubMed

    Ekpo, Ernest U; McEntee, Mark F

    2016-04-01

    The aim of this study was to complete a full evaluation of the new EIZO RX850 liquid crystal display and compare it to two currently used medical displays in Australia (EIZO GS510 and Barco MDCG 5121). The American Association of Physicists in Medicine (AAPM) Task Group 18 Quality Control test pattern was used to assess the performance of three high-resolution primary medical displays: EIZO RX850, EIZO GS510, and Barco MDCG 5121. A Konica Minolta spectroradiometer (CS-2000) was used to assess luminance response, non-uniformity, veiling glare, and color uniformity. Qualitative evaluation of noise was also performed. Seven breast lesions were displayed on each monitor and photographed with a calibrated 5.5-MP Olympus E-1 digital SLR camera. ImageJ software was used to sample pixel information from each lesion and surrounding background to calculate their conspicuity index on each of the displays. All monitor fulfilled all AAPM acceptance criteria. The performance characteristics for EIZO RX850, Barco MDCG 5121, and EIZO GS510 respectively were as follows: maximum luminance (490, 500.5, and 413 cd/m(2)), minimum luminance (0.724, 1.170, and 0.92 cd/m(2)), contrast ratio (675:1, 428:1, 449:1), just-noticeable difference index (635, 622, 609), non-uniformity (20, 5.92, and 8.5 %), veiling glare (GR = 2465.6, 720.4, 1249.8), and color uniformity (Δu'v' = +0.003, +0.002, +0.002). All monitors demonstrated low noise levels. The conspicuity index (χ) of the lesions was slightly higher in the EIZO RX850 display. All medical displays fulfilled AAPM performance criteria, and performance characteristics of EIZO RX850 are equal to or better than those of the Barco MDCG 5121 and EIZO GS510 displays.

  20. Magneto-transport properties of a two-dimensional electron gas under lateral periodic modulation

    NASA Astrophysics Data System (ADS)

    Shi, Qinwei

    Several physical systems related to two-dimensional electron gas (2DEG) subjected to an electric or a magnetic modulation at various strength have been theoretically studied. In Chapter 3, a quantum transport theory is developed for the calculation of magnetoresistance rhoxx in a 2DEG subjected to strong one-dimensional periodic potential and at low uniform magnetic field (the Weiss oscillations regime). The theory is based on the exact diagonalization of the Hamiltonian and the constant relaxation time approximation. The theoretical predictions are in good agreement with the experimental results. The discrepancy between the classical calculation and the experiment is removed in our quantum treatment. In particular, the quenching of the Weiss oscillations is understood in this framework. In Chapter 4, the non-perturbative method for electric modulated system (EMS) is used to calculate the magnetoresistance rhoxx for a magnetic modulated system (MMS), which is a 2DEG subjected to strong one-dimensional periodic magnetic modulation and at low uniform magnetic field. As the amplitude of magnetic modulation increases we first find a quenching of the low fields oscillations. This is similar to the quenching of the Weiss oscillations in the EMS case. As the strength of the magnetic modulation increases further, a new series of oscillations appears in our calculation. The temperature dependence of these new oscillations shows that the basic mechanism of these oscillations is similar to Weiss oscillations, and the origin can be identified with the extra term in the Hamiltonian for the MMS case. In Chapter 5, a self-consistent quantum transport theory is developed to calculate magnetocoductivities in a 2DEG subjected to strong one-dimensional periodic potential and at high uniform magnetic field (SdH oscillation regime). The theory is based on the self-consistent Born approximation (SCBA) for the randomly distributed short-range impurities together with an exact diagonalization of the Hamiltonian. Quantum oscillations of magneto conductivities as a function of the amplitude of electric modulation are calculated and the basic mechanism behind these oscillations is discussed. In chapter 6, a tight-binding model is used to discuss the energy spectrum of 2DEG subjected to a strong two-dimensional magnetic modulation and a uniform magnetic field corresponding to a rational value of magnetic flux per unit cell f=pqf0. Some symmetries broken in the case of one-dimensional magnetic modulation are recovered in the two-dimensional case. Furthermore, when q is even, the magnetic Bloch band is broken into q subbands; while for odd q, the magnetic Bloch band is broken into 2 q subbands. This has interesting implication on the magnetotransport properties as one changes f . Our energy spectrum is similar but more complex than the Hofstadter's butterfly. Some suggestions to observe the new fractal energy spectrum are made.

  1. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-02-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.

  2. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    1999-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  3. Water-waves on linear shear currents. A comparison of experimental and numerical results.

    NASA Astrophysics Data System (ADS)

    Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian

    2016-04-01

    Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.

  4. Non-autonomous equations with unpredictable solutions

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2018-06-01

    To make research of chaos more amenable to investigating differential and discrete equations, we introduce the concepts of an unpredictable function and sequence. The topology of uniform convergence on compact sets is applied to define unpredictable functions [1,2]. The unpredictable sequence is defined as a specific unpredictable function on the set of integers. The definitions are convenient to be verified as solutions of differential and discrete equations. The topology is metrizable and easy for applications with integral operators. To demonstrate the effectiveness of the approach, the existence and uniqueness of the unpredictable solution for a delay differential equation are proved as well as for quasilinear discrete systems. As a corollary of the theorem, a similar assertion for a quasilinear ordinary differential equation is formulated. The results are demonstrated numerically, and an application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.

  5. A scrutiny of the premise of the Rice-Ramsperger-Kassel-Marcus theory in isomerization reaction of an Ar7-type molecule

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo; Seko, Chihiro

    1996-12-01

    The validity of the physical premise of the Rice-Ramsperger-Kassel-Marcus (RRKM) theory is investigated in terms of the classical dynamics of isomerization reaction in Ar7-like molecules (clusters). The passage times of classical trajectories through the potential basins of isomers in the structural transitions are examined. In the high energy region corresponding to the so-called liquidlike phase, remarkable uniformity of the average passage times has been found. That is, the average passage time is characterized only by a basin through which a trajectory is currently passing and, hence, does not depend on the next visiting basins. This behavior is out of accord with the ordinary chemical law in that the ``reaction rates'' do not seem to depend on the height of the individual potential barriers. We ascribe this seemingly strange uniformity to the strong mixing (chaos) lying behind the rate process. That is, as soon as a classical path enters a basin, it gets involved into a chaotic zone in which many paths having different channels are entangled among each other, and effectively (in the statistical sense) loses its memory about which basin it came from and where it should visit next time. This model is verified by confirming that the populations of the lifetime of transition from one basin to others are expressed in exponential functions, which should have very similar exponents to each other in each passing-through basin. The inverse of the exponent is essentially proportional to the average passage time, and consequently brings about the uniformity. These populations set a foundation for the multichannel generalization of the RRKM theory. Two cases of the non-RRKM behaviors have been studied. One is a nonstatistical behavior in the low energy region such as the so-called coexistence phase. The other is the short-time behavior. It is well established [M. Berblinger and C. Schlier, J. Chem. Phys. 101, 4750 (1994)] that in a relatively simple and small system such as H+3, the so-called direct paths, which lead to dissociation before the phase-space mixing is completed, increase the probability of short-time passage. In contrast, we have found in our Ar7-like molecules that trajectories of short passage time are fewer than expected by the statistical theory. It is conceived that somewhat a long time in the initial stage of the isomerization is spent by a trajectory to find its ways out to the next basins.

  6. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction can be measured, from which the bubble phase pressure gradient can be obtained and compared to theory and numerical simulations. The presence of bounding walls further complicates the experiments, since the detailed interactions of the bubbles with bounding walls is not well understood, especially in the presence of gravity, where the momentum and energy exchange depends on the inclination of the wall.

  7. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Sung, Chih-Jen

    2003-01-01

    A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform Hz/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under conditions investigated.

  8. Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2015-01-01

    An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.

  9. Cavitation effects in ultrasonic cleaning baths

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1995-01-01

    In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.

  10. Development of common metrics for donation attitude, subjective norm, perceived behavioral control, and intention for the blood donation context.

    PubMed

    France, Janis L; Kowalsky, Jennifer M; France, Christopher R; McGlone, Sarah T; Himawan, Lina K; Kessler, Debra A; Shaz, Beth H

    2014-03-01

    The Theory of Planned Behavior has been widely used in blood donation research, but the lack of uniform, psychometrically sound measures makes it difficult to draw firm conclusions or compare results across studies. Accordingly, the goal of this study was to develop such measures of donation attitude, subjective norm, perceived behavioral control, and intention. Exploratory and confirmatory factor analyses (CFAs) were conducted on survey responses collected from college students (n = 1080). The resulting scales were then administered to an independent sample of experienced donors (n = 433) for additional CFAs and to test whether the Theory of Planned Behavior model provided a good fit to the data. CFAs conducted on both samples support the use of six-item scales, with two factors each, to measure donation attitude, subjective norm, and perceived behavioral control and a single-factor three-item scale to measure donation intention. Further, structural equation modeling of these measures revealed that the Theory of Planned Behavior provided a strong fit to the data (comparative fit index, 0.976; root mean square error of approximation, 0.041; standardized root mean square residual, 0.055) and accounted for 73.7% of the variance in donation intention. The present findings confirm the applicability of the Theory of Planned Behavior to the blood donation context and more importantly provide psychometric support for the future use of four brief measures of donation attitude, subjective norm, perceived behavioral control, and intention. © 2013 American Association of Blood Banks.

  11. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  12. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  13. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    PubMed Central

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-01-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746

  14. Motivation for Staying in College: Differences Between LEP (Limited English Proficiency) and Non-LEP Hispanic Community College Students

    ERIC Educational Resources Information Center

    Fong, Carlton J.; Krause, Jaimie M.; Acee, Taylor W.; Weinstein, Claire Ellen

    2016-01-01

    The study investigated motivational differences and higher education outcomes between limited English proficiency (LEP) Hispanic students compared with non-LEP Hispanic students. With a sample of 668 Hispanic community college students, we measured various forms of achievement motivation informed by self-determination theory, grade point average…

  15. Discrete element method (DEM) simulations of stratified sampling during solid dosage form manufacturing.

    PubMed

    Hancock, Bruno C; Ketterhagen, William R

    2011-10-14

    Discrete element model (DEM) simulations of the discharge of powders from hoppers under gravity were analyzed to provide estimates of dosage form content uniformity during the manufacture of solid dosage forms (tablets and capsules). For a system that exhibits moderate segregation the effects of sample size, number, and location within the batch were determined. The various sampling approaches were compared to current best-practices for sampling described in the Product Quality Research Institute (PQRI) Blend Uniformity Working Group (BUWG) guidelines. Sampling uniformly across the discharge process gave the most accurate results with respect to identifying segregation trends. Sigmoidal sampling (as recommended in the PQRI BUWG guidelines) tended to overestimate potential segregation issues, whereas truncated sampling (common in industrial practice) tended to underestimate them. The size of the sample had a major effect on the absolute potency RSD. The number of sampling locations (10 vs. 20) had very little effect on the trends in the data, and the number of samples analyzed at each location (1 vs. 3 vs. 7) had only a small effect for the sampling conditions examined. The results of this work provide greater understanding of the effect of different sampling approaches on the measured content uniformity of real dosage forms, and can help to guide the choice of appropriate sampling protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Zuo, Chao; Idir, Mourad

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  17. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGES

    Huang, Lei; Zuo, Chao; Idir, Mourad; ...

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  18. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples.

    PubMed

    Chen, Yuen Y; Wood, Andrew W

    2009-10-01

    We have applied a non-contact method for studying the temperature changes produced by radiofrequency (RF) radiation specifically to small biological samples. A temperature-dependent fluorescent dye, Rhodamine B, as imaged by laser scanning confocal microscopy (LSCM) was used to do this. The results were calibrated against real-time temperature measurements from fiber optic probes, with a calibration factor of 3.4% intensity change degrees C(-1) and a reproducibility of +/-6%. This non-contact method provided two-dimensional and three-dimensional images of temperature change and distributions in biological samples, at a spatial resolution of a few micrometers and with an estimated absolute precision of around 1.5 degrees C, with a differential precision of 0.4 degree C. Temperature rise within tissue was found to be non-uniform. Estimates of specific absorption rate (SAR) from absorbed power measurements were greater than those estimated from rate of temperature rise, measured at 1 min intervals, probably because this interval is too long to permit accurate estimation of initial temperature rise following start of RF exposure. Future experiments will aim to explore this.

  19. Assessment of averaging spatially correlated noise for 3-D radial imaging.

    PubMed

    Stobbe, Robert W; Beaulieu, Christian

    2011-07-01

    Any measurement of signal intensity obtained from an image will be corrupted by noise. If the measurement is from one voxel, an error bound associated with noise can be assigned if the standard deviation of noise in the image is known. If voxels are averaged together within a region of interest (ROI) and the image noise is uncorrelated, the error bound associated with noise will be reduced in proportion to the square root of the number of voxels in the ROI. However, when 3-D-radial images are created the image noise will be spatially correlated. In this paper, an equation is derived and verified with simulated noise for the computation of noise averaging when image noise is correlated, facilitating the assessment of noise characteristics for different 3-D-radial imaging methodologies. It is already known that if the radial evolution of projections are altered such that constant sampling density is produced in k-space, the signal-to-noise ratio (SNR) inefficiency of standard radial imaging (SR) can effectively be eliminated (assuming a uniform transfer function is desired). However, it is shown in this paper that the low-frequency noise power reduction of SR will produce beneficial (anti-) correlation of noise and enhanced noise averaging characteristics. If an ROI contains only one voxel a radial evolution altered uniform k-space sampling technique such as twisted projection imaging (TPI) will produce an error bound ~35% less with respect to noise than SR, however, for an ROI containing 16 voxels the SR methodology will facilitate an error bound ~20% less than TPI. If a filtering transfer function is desired, it is shown that designing sampling density to create the filter shape has both SNR and noise correlation advantages over sampling k-space uniformly. In this context SR is also beneficial. Two sets of 48 images produced from a saline phantom with sodium MRI at 4.7T are used to experimentally measure noise averaging characteristics of radial imaging and good agreement with theory is obtained.

  20. Vertical Structure of Heat and Momentum Transport in the Urban Surface Layer

    NASA Astrophysics Data System (ADS)

    Hrisko, J.; Ramamurthy, P.

    2017-12-01

    Vertical transport of heat and momentum during convective periods is investigated in the urban surface layer using eddy covariance measurements at 5 levels. The Obukhov length is used to divide the dataset into distinct stability regimes: weakly unstable, unstable and very unstable. Our preliminary analysis indicates critical differences in the transport of heat and momentum as the instability increases. Particularly, during periods of increased instability the vertical heat flux deviates from surface layer similarity theory. Further analysis of primary quadrant sweeps and ejections also indicate deviations from the theory, alluding that ejections dominate during convective periods for heat transport, but equally contribute with sweeps for momentum transport. The transport efficiencies of momentum at all 5 levels uniformly decreases as the instability increases, in stark contrast the heat transport efficiencies increase non-linearly as the instability increases. Collectively, these results demonstrate the breakdown of similarity theory during convective periods, and reaffirm that revised and improved methods for characterizing heat and momentum transport in urban areas is needed. These implications could ultimately advance weather prediction and estimation of scalar transport for urban areas susceptible to weather hazards and large amounts of pollution.

  1. Application of Viscoelastic Fracture Model and Non-uniform Crack Initiation at Clinically Relevant Notches in Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare M.

    2012-01-01

    The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers. PMID:23127638

  2. Collective alignment of nanorods in thin Newtonian films

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Burtovyy, Ruslan; Townsend, James; Owens, Jeffery; Luzinov, Igor; Kornev, Konstantin

    2013-11-01

    We provide a complete analytical description of the alignment kinetics of magnetic nanorods in magnetic field. Nickel nanorods were formed by template electrochemical deposition in alumina membranes from a dispersion in a water-glycerol mixture. To ensure uniformity of the dispersion, the surface of the nickel nanorods was covered with polyvinylpyrrolidone (PVP). A 40-70 nm coating prevented aggregation of nanoroda. These modifications allowed us to control alignment of the nanorods in a magnetic field and test the proposed theory. An orientational distribution function of nanorods was introduced. We demonstrated that the 0.04% volume fraction of nanorods in the glycerol-water mixture behaves as a system of non-interacting particles. However, the kinetics of alignment of a nanorod assembly does not follow the predictions of the single-nanorod theory. The distribution function theory explains the kinetics of alignment of a nanorod assembly and shows the significance of the initial distribution of nanorods in the film. It can be used to develop an experimental protocol for controlled ordering of magnetic nanorods in thin films. This work was supported by the Air Force Office of Scientific Research, Grant numbers FA9550-12-1-0459 and FA8650-09-D-507 5900.

  3. The uniformity and imaging properties of some new ceramic scintillators

    NASA Astrophysics Data System (ADS)

    Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford

    2012-10-01

    Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.

  4. Acoustic and Seismic Dispersion in Complex Fluids and Solids

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2017-04-01

    The first part of the present paper is the continuation of a previous work [3] on the effects of higher spatial gradients and temporal relaxation on stress and heat flux in complex fluids. In particular, the general linear theory is applied to acoustic dispersion, extending a simpler model proposed by Davis and Brenner [2]. The theory is applied to a linearized version of the Chapman-Enskog fluid [1] valid to terms of Burnett order and including Maxwell-Cataneo relaxation of stress and heat flux on relaxation time scales τ. For this model, the dispersion relation k(ω) giving spatial wave number k as function of temporal frequency ω is a cubic in k2, in contrast to the quadratic in k2 given by the classical model and the recently proposed modification [2]. The cubic terms are shown to be important only for ωτ = O(1) where Maxwell-Cataneo relaxation is also important. As a second part of the present work, it is shown how the above model can also be applied to isotropic solids, where both shear and pressure waves are important. Finally, consideration is given to hyperstress in micro- polar continua, including both graded and micro-morphic varieties. [1]S. Chapman and T. Cowling. The mathematical theory of non-uniform gases. Cambridge University Press, [Cambridge, UK], 1960. [2]A. M.J. Davis and H. Brenner. Thermal and viscous effects on sound waves: revised classical theory. J. Acoust. Soc. Am., 132(5):2963-9, 2012. [3] J.D. Goddard. On material velocities and non-locality in the thermo-mechanics of continua. Int. J. Eng. Sci., 48(11):1279-88, 2010.

  5. Low-threshold field emission in planar cathodes with nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.

    2016-12-01

    Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.

  6. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields and step-and-shoot intensity levels). Simulated random and systematic errors in the pO2-related images reduced the TCP for the non-uniform dose prescription. In conclusion, improved tumour control of hypoxic tumours by dose redistribution may be expected following hypoxia imaging, tumour control predictions, inverse treatment planning and IMRT.

  7. Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation.

    PubMed

    Crajé, Céline; Santello, Marco; Gordon, Andrew M

    2013-01-01

    Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.

  8. Backwater control on riffle pool hydraulics, fish habitat quality, and sediment transport regime in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Pasternack, Gregory B.; Bounrisavong, Michael K.; Parikh, Kaushal K.

    2008-07-01

    SummaryThe importance of channel non-uniformity to natural hydrogeomorphic and ecological processes in gravel-bed rivers is becoming increasingly known, but its use in channel rehabilitation lags behind. Many projects still use methods that assume steady, uniform flow and simple channel geometries. One aspect of channel non-uniformity that has not been considered much is its role in controlling backwater conditions and thus potentially influencing patterns of physical habitat and channel stability in sequences of riffles and pools. In this study, 2D hydrodynamic models of two non-uniform pool-riffle-pool configurations were used to systematically explore the effects of four different downstream water surface elevations at three different discharges (24 total simulations) on riffle-pool ecohydraulics. Downstream water surface elevations tested included backwater, uniform, accelerating, and critical conditions, which are naturally set by downstream riffle-crest morphology but may also be re-engineered artificially. Discharges included a fish-spawning low flow, summer fish-attraction flow, and a peak snowmelt pulse. It was found that the occurrence of a significant area of high-quality fish spawning habitat at low flow depends on riffles being imposed upon by backwater conditions, which also delay the onset of full bed mobility on riffles during floods. The assumption of steady, uniform flow was found to be inappropriate for gravel-bed rivers, since their non-uniformity controls spatial patterns of habitat and sediment transport. Also, model results indicated that a "reverse domino" mechanism can explain catastrophic failure and re-organization of a sequence of riffles based on the water surface elevation response to scour on downstream riffles, which then increases scour on upstream riffles.

  9. Phases and stability of non-uniform black strings

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Luna, Raimon; Martínez, Marina; Suzuki, Ryotaku; Tanabe, Kentaro

    2018-05-01

    We construct solutions of non-uniform black strings in dimensions from D ≈ 9 all the way up to D = ∞, and investigate their thermodynamics and dynamical stability. Our approach employs the large- D perturbative expansion beyond the leading order, including corrections up to 1 /D 4. Combining both analytical techniques and relatively simple numerical solution of ODEs, we map out the ranges of parameters in which non-uniform black strings exist in each dimension and compute their thermodynamics and quasinormal modes with accuracy. We establish with very good precision the existence of Sorkin's critical dimension and we prove that not only the thermodynamic stability, but also the dynamic stability of the solutions changes at it.

  10. Flexoelectric effect in functionally graded materials: A numerical study

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Kiran, Raj; Kumar, Rajeev; Chandra Jain, Satish; Vaish, Rahul

    2018-04-01

    The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs's modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.

  11. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    NASA Astrophysics Data System (ADS)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  12. An improved Monte-Carlo model of the Varian EPID separating support arm and rear-housing backscatter

    NASA Astrophysics Data System (ADS)

    Monville, M. E.; Kuncic, Z.; Greer, P. B.

    2014-03-01

    Previous investigators of EPID dosimetric properties have ascribed the backscatter, that contaminates dosimetric EPID images, to its supporting arm. Accordingly, Monte-Carlo (MC) EPID models have approximated the backscatter signal from the layers under the detector and the robotic support arm using either uniform or non-uniform solid water slabs, or through convolutions with back-scatter kernels. The aim of this work is to improve the existent MC models by measuring and modelling the separate backscatter contributions of the robotic arm and the rear plastic housing of the EPID. The EPID plastic housing is non-uniform with a 11.9 cm wide indented section that runs across the cross-plane direction in the superior half of the EPID which is 1.75 cm closer to the EPID sensitive layer than the rest of the housing. The thickness of the plastic housing is 0.5 cm. Experiments were performed with and without the housing present by removing all components of the EPID from the housing. The robotic support arm was not present for these measurements. A MC model of the linear accelerator and the EPID was modified to include the rear-housing indentation and results compared to the measurement. The rear housing was found to contribute a maximum of 3% additional signal. The rear housing contribution to the image is non-uniform in the in-plane direction with 2% asymmetry across the central 20 cm of an image irradiating the entire detector. The MC model was able to reproduce this non-uniform contribution. The EPID rear housing contributes a non-uniform backscatter component to the EPID image, which has not been previously characterized. This has been incorporated into an improved MC model of the EPID.

  13. CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models.

    PubMed

    Haraldsdóttir, Hulda S; Cousins, Ben; Thiele, Ines; Fleming, Ronan M T; Vempala, Santosh

    2017-06-01

    In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. We apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks. https://github.com/opencobra/cobratoolbox . ronan.mt.fleming@gmail.com or vempala@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  14. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  15. “Doing Our Part” (Taking Responsibility): A Grounded Theory of the Process of Adherence to Oral Chemotherapy in Children and Adolescents with Acute Lymphoblastic Leukemia

    PubMed Central

    Landier, Wendy; Hughes, Cynthia B.; Calvillo, Evelyn R.; Anderson, Nancy L.R.; Briseño-Toomey, Deborah; Dominguez, Leticia; Martinez, Alex M.; Hanby, Cara; Bhatia, Smita

    2011-01-01

    Children and adolescents with acute lymphoblastic leukemia (A.L.L.) receive treatment that relies on daily self- or parent/caregiver-administered oral chemotherapy for approximately two years. Despite the fact that pediatric A.L.L. is uniformly fatal without adequate treatment, non-adherence to oral chemotherapy has been observed in up to one-third of patients. Little is known about the reasons for non-adherence in these patients. This study employed Straussian grounded theory methodology to develop and validate a model to explain the process of adherence to oral chemotherapy in children and adolescents with A.L.L. Thirty-eight semi-structured interviews (with 17 patients and 21 parents/caregivers) and four focused group discussions were conducted. Three stages were identified in the process of adherence: (1) Recognizing the Threat, (2) Taking Control, and (3) Managing for the Duration. Doing Our Part was identified as the core theme explaining the process of adherence, and involves the parent (or patient) taking responsibility for assuring that medications are taken as prescribed. Understanding the association between taking oral chemotherapy and control/cure of leukemia (Making the Connection) appeared to mediate adherence behaviors. PMID:21653911

  16. Non-equilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting suspensions

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Zia, Roseanna

    In our recently developed non-equilibrium Stokes-Einstein relation, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here, we generalize our theory for systems of hydrodynamically interacting colloids, via active microrheology, where motion of a Brownian probe through the medium reveals rheological properties. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, the first normal stress difference and the osmotic pressure scale as Pe4 and Pe2 respectively when probe forcing is weak, and uniformly as Pe for strong probe forcing. As hydrodynamics become important, interparticle forces give way to lubrication interactions. Hydrodynamic coupling leads to a new low-Pe scaling of the first normal stress difference and the osmotic pressure as Pe2, and high-Pe scaling as Peδ, where 0.799 <= δ <= 1 as hydrodynamics vary from strong to weak. For the entire range of the strength of hydrodynamic interactions and probe forcing, the new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. We further draw a connection between the stress and the energy storage in a suspension, and the entropic nature of such storage is identified.

  17. Prospects and fundamental limitations of room temperature, non-avalanche, semiconductor photon-counting sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Jiaju; Zhang, Yang; Wang, Xiaoxin; Ying, Lei; Masoodian, Saleh; Wang, Zhiyuan; Starkey, Dakota A.; Deng, Wei; Kumar, Rahul; Wu, Yang; Ghetmiri, Seyed Amir; Yu, Zongfu; Yu, Shui-Qing; Salamo, Gregory J.; Fossum, Eric R.; Liu, Jifeng

    2017-05-01

    This research investigates the fundamental limits and trade-space of quantum semiconductor photodetectors using the Schrödinger equation and the laws of thermodynamics.We envision that, to optimize the metrics of single photon detection, it is critical to maximize the optical absorption in the minimal volume and minimize the carrier transit process simultaneously. Integration of photon management with quantum charge transport/redistribution upon optical excitation can be engineered to maximize the quantum efficiency (QE) and data rate and minimize timing jitter at the same time. Due to the ultra-low capacitance of these quantum devices, even a single photoelectron transfer can induce a notable change in the voltage, enabling non-avalanche single photon detection at room temperature as has been recently demonstrated in Si quanta image sensors (QIS). In this research, uniform III-V quantum dots (QDs) and Si QIS are used as model systems to test the theory experimentally. Based on the fundamental understanding, we also propose proof-of-concept, photon-managed quantum capacitance photodetectors. Built upon the concepts of QIS and single electron transistor (SET), this novel device structure provides a model system to synergistically test the fundamental limits and tradespace predicted by the theory for semiconductor detectors. This project is sponsored under DARPA/ARO's DETECT Program: Fundamental Limits of Quantum Semiconductor Photodetectors.

  18. Using the theory of planned behavior to understand caregivers' intention to serve sugar-sweetened beverages to non-Hispanic black preschoolers.

    PubMed

    Tipton, Julia A

    2014-01-01

    The purpose of this correlational study was to determine the ability the Theory of Planned Behavior (TPB) to explain caregivers' intention to serve sugar-sweetened beverages to non-Hispanic black preschoolers. A sample of 165 caregivers of non-Hispanic black children preschoolers completed a written questionnaire. Multiple regression with path analysis confirmed the relationships of attitude and subjective norm, but not perceived behavioral control (PBC),with intention. After removing PBC, the model accounted for 45.1% of variance in intention. Nurses and other health care professionals can use these findings to tailor behaviorally-based obesity prevention programs at the individual, family, and community-based levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The effects of selective schooling and self-concept on adolescents' academic aspiration: an examination of Dweck's self-theory.

    PubMed

    Ahmavaara, Anni; Houston, Diane M

    2007-09-01

    Dweck has emphasized the role of pupils' implicit theories about intellectual ability in explaining variations in their engagement, persistence and achievement. She has also highlighted the role of confidence in one's intelligence as a factor influencing educational attainment. The aim of this paper is to develop a model of achievement aspiration in adolescence and to compare young people who are educated at a selective grammar school with those who attend a non-selective 'secondary modern' school. The sample consisted of 856 English secondary school pupils in years 7 and 10 from two selective and two non-selective secondary schools. Questionnaires were completed in schools. The findings are consistent with the model, showing that achievement aspiration is predicted directly by gender, school type and type of intelligence theory. Importantly, school type also affects aspirations indirectly, with effects being mediated by confidence in one's own intelligence and perceived academic performance. Intelligence theory also affects aspirations indirectly with effects being mediated by perceived academic performance, confidence and self-esteem. Additionally, intelligence theory has a stronger effect on aspirations in the selective schools than in the non-selective schools. The findings provide substantial support for Dweck's self-theory, showing that implicit theories are related to aspirations. However, the way in which theory of intelligence relates to age and gender suggests there may be important cross-cultural or contextual differences not addressed by Dweck's theory. Further research should also investigate the causal paths between aspirations, implicit theories of intelligence and the impact of school selection.

  20. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

Top