Nonbinary codeword-stabilized quantum codes
NASA Astrophysics Data System (ADS)
Chen, Xie; Zeng, Bei; Chuang, Isaac L.
2008-12-01
The codeword-stabilized (CWS) quantum code formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes [see A. Cross , e-print arXiv:0708.1021], but only for binary states. Here we generalize the CWS framework to the nonbinary case (of both prime and nonprime dimensions) and map the search for nonbinary quantum codes to a corresponding search problem for classical nonbinary codes with specific error patterns. We show that while the additivity properties of nonbinary CWS codes are similar to the binary case, the structural properties of the nonbinary codes differ substantially from the binary case, even for prime dimensions. In particular, we identify specific structure patterns of stabilizer groups, based on which efficient constructions might be possible for codes that encode more dimensions than any stabilizer codes of the same length and distance; similar methods cannot be applied in the binary case. Understanding of these structural properties can help prune the search space and facilitate the identification of good nonbinary CWS codes.
Improved Constructions for Nonbinary Quantum BCH Codes
NASA Astrophysics Data System (ADS)
Qian, Jianfa; Zhang, Lina
2017-04-01
In this work, we present two improved constructions for nonbinary quantum BCH codes of lengths n={q4-1}/{2} and n={q4-1}/{q-1}, where q is an odd prime power. Moreover, the constructed quantum BCH codes have parameters better than those obtained from other known constructions.
New nonbinary quantum codes with larger distance constructed from BCH codes over 𝔽q2
NASA Astrophysics Data System (ADS)
Xu, Gen; Li, Ruihu; Fu, Qiang; Ma, Yuena; Guo, Luobin
2017-03-01
This paper concentrates on construction of new nonbinary quantum error-correcting codes (QECCs) from three classes of narrow-sense imprimitive BCH codes over finite field 𝔽q2 (q ≥ 3 is an odd prime power). By a careful analysis on properties of cyclotomic cosets in defining set T of these BCH codes, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing BCH codes is determined to be much larger than the result given according to Aly et al. [S. A. Aly, A. Klappenecker and P. K. Sarvepalli, IEEE Trans. Inf. Theory 53, 1183 (2007)] for each different code length. Thus families of new nonbinary QECCs are constructed, and the newly obtained QECCs have larger distance than those in previous literature.
Cyclic networks of quantum gates
NASA Astrophysics Data System (ADS)
Cabauy, Peter
In this thesis we first give an introduction to the basic aspects of quantum computation followed by an analysis of networks of quantum logic gates where the qubit lines are loops (cyclic). Thus far, investigations into cyclic networks of quantum logic gates have not been examined (as far as we know) by the quantum information community. In our investigations of cyclic quantum networks we have studied simple, one and two qubit systems. The analysis includes: classifying networks into groups, the dynamics of the qubits in a cyclic quantum network, and the perturbation effects of an external qubit acting on a cyclic quantum network. The analysis will be followed by a discussion on quantum algorithms and quantum information processing with cyclic quantum networks, a novel implementation of a cyclic network quantum memory and a discussion of quantum sensors via cyclic quantum networks.
Cyclic groups and quantum logic gates
NASA Astrophysics Data System (ADS)
Pourkia, Arash; Batle, J.; Raymond Ooi, C. H.
2016-10-01
We present a formula for an infinite number of universal quantum logic gates, which are 4 by 4 unitary solutions to the Yang-Baxter (Y-B) equation. We obtain this family from a certain representation of the cyclic group of order n. We then show that this discrete family, parametrized by integers n, is in fact, a small sub-class of a larger continuous family, parametrized by real numbers θ, of universal quantum gates. We discuss the corresponding Yang-Baxterization and related symmetries in the concomitant Hamiltonian.
Quantum Codes From Cyclic Codes Over The Ring R2
NASA Astrophysics Data System (ADS)
Altinel, Alev; Güzeltepe, Murat
2016-10-01
Let R 2 denotes the ring F 2 + μF 2 + υ2 + μυF 2 + wF 2 + μwF 2 + υwF 2 + μυwF2. In this study, we construct quantum codes from cyclic codes over the ring R2, for arbitrary length n, with the restrictions μ2 = 0, υ2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R2 and we give an example of quantum error-correcting codes form cyclic codes over R 2.
Modeling interfacial charge transport of quantum dots using cyclic voltammetry
NASA Astrophysics Data System (ADS)
Tobias, Andrew K.; Jones, Marcus
2011-10-01
Quantum dot applications are numerous and range from photovoltaic devices and lasers, to bio labeling. Complexities in the electronic band structure of quantum dots create the necessity for analysis techniques that can accurately and reproducibly provide their absolute band energies. Cyclic voltammetry (CV) is a novel candidate for these studies and has the potential to become a useful tool in engineering new nanocrystal technology, by providing information necessary for predicting and modeling interfacial charge transfer to and from quantum dots. Advancing from previous reports of nanocrystal CV, a carbon paste electrode was utilized in an attempt to increase measured current by ensuring intimate contact between nanocrystals and the electrode. Our goal was to investigate band energies and model nanocrystal-molecule electron transfer systems.
Advanced GF(3^{2}) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.
Liu, Tao; Lin, Changyu; Djordjevic, Ivan B
2016-06-27
In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(3^{2}) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(2^{3}) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.
Quantum, cyclic, and particle-exchange heat engines
NASA Astrophysics Data System (ADS)
Humphrey, T. E.; Linke, H.
2005-10-01
Differences between the thermodynamic behavior of the three-level amplifier (a quantum heat engine based on a thermally pumped laser) and the classical Carnot cycle are usually attributed to the essentially quantum or discrete nature of the former. Here we provide examples of a number of classical and semiclassical heat engines, such as thermionic, thermoelectric and photovoltaic devices, which all utilize the same thermodynamic mechanism for achieving reversibility as the three-level amplifier, namely isentropic (but non-isothermal) particle transfer between hot and cold reservoirs. This mechanism is distinct from the isothermal heat transfer required to achieve reversibility in cyclic engines such as the Carnot, Otto or Brayton cycles. We point out that some of the qualitative differences previously uncovered between the three-level amplifier and the Carnot cycle may be attributed to the fact that they are not the same ‘type’ of heat engine, rather than to the quantum nature of the three-level amplifier per se.
Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions.
Zhang, Shaoliang; Arabaci, Murat; Yaman, Fatih; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Inada, Yoshihisa; Ogata, Takaaki; Aoki, Yasuhiro
2011-09-26
The performance of rate-0.8 4-ary LDPC code has been studied in a 50 GHz-spaced 40 Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10 dB is obtained at BER of 10(-6). With the aid of time-interleaving polarization multiplexing and MAP detection, 10,560 km transmission over legacy dispersion managed fiber is achieved without any countable errors. The proposed nonbinary quasi-cyclic LDPC code achieves an uncoded BER threshold at 4×10(-2). Potential issues like phase ambiguity and coding length are also discussed when implementing LDPC in current coherent optical systems.
Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila
2017-02-06
Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.
New quantum codes from dual-containing cyclic codes over finite rings
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Zhu, Shixin; Kai, Xiaoshan; Ding, Jian
2016-11-01
Let R=F_{2m}+uF_{2m}+\\cdots +ukF_{2m}, where F_{2m} is the finite field with 2m elements, m is a positive integer, and u is an indeterminate with u^{k+1}=0. In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of 2m-ary quantum codes is obtained via the Gray map and the Calderbank-Shor-Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank-Shor-Steane construction from dual-containing cyclic codes over R.
Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai
2016-04-21
The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.
Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe
NASA Astrophysics Data System (ADS)
Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore
2016-07-01
We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.
NASA Astrophysics Data System (ADS)
Wu, Lian-Ao
1994-12-01
It is shown that the cyclic evolution posed by Aharonov and Anandan [Phys. Rev. Lett. 58, 1593 (1987)] universally exists in any quantum system: cyclic evolution occurs for special initial wave functions, whatever the concrete form of the Hamiltonian. The above results are illustrated and some specific geometric phases are given.
Trans*versing the DMZ: A Non-Binary Autoethnographic Exploration of Gender and Masculinity
ERIC Educational Resources Information Center
Stewart, Dafina-Lazarus
2017-01-01
Using an abductive, critical-poststructuralist autoethnographic approach, I consider the ways in which masculine of centre, non-binary/genderqueer trans* identities transverse the poles of socializing binary gender systems, structures, and norms which inform higher education. In this paper, I assert that non-binary genderqueer identities are…
Where Kinsey, Christ, and Tila Tequila meet: discourse and the sexual (non)-binary.
Callis, April S
2014-01-01
Drawing on 80 interviews and 17 months of participant observation in Lexington, Kentucky, this article details how individuals drew on three areas of national and local discourse to conceptualize sexuality. Media, popular science, and religious discourses can be viewed as portraying sexuality bifocally--as both a binary of heterosexual/homosexual and as a non-binary that encompasses fluidity. However, individuals in Lexington drew on each of these areas of discourse differently. Religion was thought to produce a binary vision of sexuality, whereas popular science accounts were understood as both binary and not. The media was understood as portraying non-binary identities that were not viable, thus strengthening the sexual binary. These differing points of view led identities such as bisexual and queer to lack cultural intelligibility.
NASA Astrophysics Data System (ADS)
Golub, P.; Doroshenko, I.; Pogorelov, V.
2014-05-01
The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange-correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.
Quantum codes from cyclic codes over F3 + μF3 + υF3 + μυ F3
NASA Astrophysics Data System (ADS)
Özen, Mehmet; Tuğba Özzaim, N.; İnce, Halit
2016-10-01
In this paper, it will be argued that structure of cyclic codes over F3 + μF3 + υF3 + μυ F3 where u 2 = 1, v 2 = 1 and uv = vu for arbitrary length n. We define a new Gray map which is a distance preserving map. By using decomposition theory, we find generator polynomials of cyclic codes over F3 + μF3 + υF3 + μυ F3 and obtain the result that cyclic codes over F3 + μF3 + υF3 + μυ F3 are principally generated. Further, using these results we determine the parameters of quantum codes which constructed from cyclic codes over F3 + μF3 + υF3 + μυ F3. We present some of the results of computer search.
Cyclic Polyynes as Examples of the Quantum Mechanical Particle on a Ring
ERIC Educational Resources Information Center
Anderson, Bruce D.
2012-01-01
Many quantum mechanical models are discussed as part of the undergraduate physical chemistry course to help students understand the connection between eigenvalue expressions and spectroscopy. Typical examples covered include the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen atom. This article demonstrates that…
Quantum routing of single photons with a cyclic three-level system.
Zhou, Lan; Yang, Li-Ping; Li, Yong; Sun, C P
2013-09-06
We propose an experimentally accessible single-photon routing scheme using a △-type three-level atom embedded in quantum multichannels composed of coupled-resonator waveguides. Via the on-demand classical field being applied to the atom, the router can extract a single photon from the incident channel, and then redirect it into another. The efficient function of the perfect reflection of the single-photon signal in the incident channel is rooted in the coherent resonance and the existence of photonic bound states.
Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry
Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; Olguin, Marco; Allen, Joshua L.; Henderson, Wesley A.
2015-11-17
The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF_{6} as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC)_{n}(DMC)_{m}–Li+ and (EC)_{n}(DMC)_{m}–LiPF_{6} solvates in the gas-phase and for an implicit solvent (as a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC_{4})–Li+ and (EC)_{3}–LiPF_{6} by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF_{6} mixed solvent electrolyte was studied using the BOMD simulations.
Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry
Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; ...
2015-11-17
The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC)n(DMC)m–Li+ and (EC)n(DMC)m–LiPF6 solvates in the gas-phase and for an implicit solvent (as a function of the solvent dielectricmore » constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC4)–Li+ and (EC)3–LiPF6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF6 mixed solvent electrolyte was studied using the BOMD simulations.« less
Competitive Lithium Solvation of Linear and Cyclic Carbonates from Quantum Chemistry
Borodin, Oleg; Olguin, Marco; Ganesh, P.; Kent, Paul; Allen, Joshua S.; Henderson, Wesley A.
2015-11-17
The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration with ethylene carbonate:dimethyl carbonate (EC:DMC)-LiPF6 as a model system. A slight coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC)n(DMC)m-Li+ and (EC)n(DMC)m-LiPF6 solvates in the gas-phase and for an implicit solvent (as a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC4)-Li+ and (EC)3-LiPF6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the (EC:DMC)LiPF6 mixed solvent electrolyte was studied using the BOMD simulations.
Non-binary Colour Modulation for Display Device Based on Phase Change Materials
Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui
2016-01-01
A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications. PMID:27991523
Binary and nonbinary description of hypointensity for search and retrieval of brain MR images
NASA Astrophysics Data System (ADS)
Unay, Devrim; Chen, Xiaojing; Ercil, Aytul; Cetin, Mujdat; Jasinschi, Radu; van Buchem, Marc A.; Ekin, Ahmet
2009-01-01
Diagnosis accuracy in the medical field, is mainly affected by either lack of sufficient understanding of some diseases or the inter/intra-observer variability of the diagnoses. We believe that mining of large medical databases can help improve the current status of disease understanding and decision making. In a previous study based on binary description of hypointensity in the brain, it was shown that brain iron accumulation shape provides additional information to the shape-insensitive features, such as the total brain iron load, that are commonly used in clinics. This paper proposes a novel, nonbinary description of hypointensity in the brain based on principal component analysis. We compare the complementary and redundant information provided by the two descriptions using Kendall's rank correlation coefficient in order to better understand the individual descriptions of iron accumulation in the brain and obtain a more robust and accurate search and retrieval system.
Non-binary Colour Modulation for Display Device Based on Phase Change Materials.
Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui
2016-12-19
A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.
NASA Astrophysics Data System (ADS)
Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam
2016-09-01
Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.
Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses.
Jacox, Edwin; Weller, Mathias; Tannier, Eric; Scornavacca, Celine
2017-01-10
Gene trees reconstructed from sequence alignments contain poorly supported branches when the phylogenetic signal in the sequences is insufficient to determine them all. When a species tree is available, the signal of gains and losses of genes can be used to correctly resolve the unsupported parts of the gene history. However finding a most parsimonious binary resolution of a non-binary tree obtained by contracting the unsupported branches is NP-hard if transfer events are considered as possible gene scale events, in addition to gene origination, duplication and loss. We propose an exact, parameterized algorithm to solve this problem in single-exponential time, where the parameter is the number of connected branches of the gene tree that show low support from the sequence alignment or, equivalently, the maximum number of children of any node of the gene tree once the low-support branches have been collapsed. This improves on the best known algorithm by an exponential factor. We propose a way to choose among optimal solutions based on the available information. We show the usability of this principle on several simulated and biological datasets. The results are comparable in quality to several other tested methods having similar goals, but our approach provides a lower running time and a guarantee that the produced solution is optimal.
Aseev, Oleg; Perez, Marta A S; Rothlisberger, Ursula; Rizzo, Thomas R
2015-07-02
Collision-induced dissociation (CID) is a key technique used in mass spectrometry-based peptide sequencing. Collisionally activated peptides undergo statistical dissociation, forming a series of backbone fragment ions that reflect their amino acid (AA) sequence. Some of these fragments may experience a "head-to-tail" cyclization, which after proton migration, can lead to the cyclic structure opening in a different place than the initially formed bond. This process leads to AA sequence scrambling that may hinder sequencing of the initial peptide. Here we combine cryogenic ion spectroscopy and ab initio molecular dynamics simulations to isolate and characterize the precise structures of key intermediates in the scrambling process. The most stable peptide fragments show intriguing symmetric cyclic structures in which the proton is situated on a C2 symmetry axis and forms exceptionally short H-bonds (1.20 Å) with two backbone oxygens. Other nonsymmetric cyclic structures also exist, one of which is protonated on the amide nitrogen, where ring opening is likely to occur.
Non-binary coded modulation for FMF-based coherent optical transport networks
NASA Astrophysics Data System (ADS)
Lin, Changyu
The Internet has fundamentally changed the way of modern communication. Current trends indicate that high-capacity demands are not going to be saturated anytime soon. From Shannon's theory, we know that information capacity is a logarithmic function of signal-to-noise ratio (SNR), but a linear function of the number of dimensions. Ideally, we can increase the capacity by increasing the launch power, however, due to the nonlinear characteristics of silica optical fibers that imposes a constraint on the maximum achievable optical-signal-to-noise ratio (OSNR). So there exists a nonlinear capacity limit on the standard single mode fiber (SSMF). In order to satisfy never ending capacity demands, there are several attempts to employ additional degrees of freedom in transmission system, such as few-mode fibers (FMFs), which can dramatically improve the spectral efficiency. On the other hand, for the given physical links and network equipment, an effective solution to relax the OSNR requirement is based on forward error correction (FEC), as the response to the demands of high speed reliable transmission. In this dissertation, we first discuss the model of FMF with nonlinear effects considered. Secondly, we simulate the FMF based OFDM system with various compensation and modulation schemes. Thirdly, we propose tandem-turbo-product nonbinary byte-interleaved coded modulation (BICM) for next-generation high-speed optical transmission systems. Fourthly, we study the Q factor and mutual information as threshold in BICM scheme. Lastly, an experimental study of the limits of nonlinearity compensation with digital signal processing has been conducted.
Chan, Kok Lim; Lee, Andreas Astuti; Yuan, Xiaojun; Krishna, Kotlanka R; Je, Minkyu
2010-01-01
A successive approximation analog-to-digital converter (SAR ADC) with a split-capacitor switching scheme implementing the generalized non-binary redundant SAR algorithm and an energy efficient level shifter is proposed for bio-implanted applications. The generalized non-binary redundant SAR algorithm removes the radix constraint in conventional non-binary redundant SAR algorithm, and the energy efficient level shifter allows optimal power supplies to be chosen independently for the analog and digital blocks. A FOM of 34.7fJ/step has been achieved.
NASA Astrophysics Data System (ADS)
Bera, P. P.
2015-12-01
The instruments on board the CASSINI spacecraft observed large carbonaceous molecules in the upper atmosphere of Titan. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions, including positive and negative ions, especially large anions, are in abundance in the ionosphere of Titan. Barrier-less ion-molecule interactions may play a major role - ions provide electrostatic steering force - in guiding molecules towards each other and initiating reactions. We study these condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. We employ accurate quantum chemical methods to investigate the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules with major ions observed in the upper atmosphere of Titan, e.g. C2H5+ and HCNH+, apart from a whole host of small hydrocarbons. We also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge. We found the molecular building blocks of polycyclic aromatic hydrocarbons such as phenyl cations can form very easily by the combination of smaller hydrocarbons followed by hydrogen loss. We have investigated how nitrogen atoms are incorporated into the carbon ring during growth. Specifically, we explored the mechanisms by which the synthesis of pyrimidine will be feasible in the atmosphere of Titan in conjunction with ion-mobility experiments. Futher, we study the formation process of anions, and study their potential energy surfaces. We have used accurate ab initio coupled cluster theory, Møller-Plesset perturbation theory, density functional theory (DFT), and coupled cluster theory
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J
2015-11-09
This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block.
Guevara-Vela, José Manuel; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Hernández-Trujillo, Jesús; Christiansen, Ove; Francisco, Evelio; Martín Pendás, Angel; Rocha-Rinza, Tomás
2013-10-11
The cooperative effects of hydrogen bonding in small water clusters (H2 O)n (n=3-6) have been studied by using the partition of the electronic energy in accordance with the interacting quantum atoms (IQA) approach. The IQA energy splitting is complemented by a topological analysis of the electron density (ρ(r)) compliant with the quantum theory of atoms-in-molecules (QTAIM) and the calculation of electrostatic interactions by using one- and two-electron integrals, thereby avoiding convergence issues inherent to a multipolar expansion. The results show that the cooperative effects of hydrogen bonding in small water clusters arise from a compromise between: 1) the deformation energy (i.e., the energy necessary to modify the electron density and the configuration of the nuclei of the isolated water molecules to those within the water clusters), and 2) the interaction energy (Eint ) of these contorted molecules in (H2 O)n . Whereas the magnitude of both deformation and interaction energies is enhanced as water molecules are added to the system, the augmentation of the latter becomes dominant when the size of the cluster is increased. In addition, the electrostatic, classic, and exchange components of Eint for a pair of water molecules in the cluster (H2 O)n-1 become more attractive when a new H2 O unit is incorporated to generate the system (H2 O)n with the last-mentioned contribution being consistently the most important part of Eint throughout the hydrogen bonds under consideration. This is opposed to the traditional view, which regards hydrogen bonding in water as an electrostatically driven interaction. Overall, the trends of the delocalization indices, δ(Ω,Ω'), the QTAIM atomic charges, the topology of ρ(r), and the IQA results altogether show how polarization, charge transfer, electrostatics, and covalency contribute to the cooperative effects of hydrogen bonding in small water clusters. It is our hope that the analysis presented in this paper could
Allen, Joshua L.; Borodin, Oleg; Seo, D. M.; Henderson, Wesley A.
2014-12-01
Combined computational/Raman spectroscopic analyses of ethylene carbonate (EC) and propylene carbonate (PC) solvation interactions with lithium salts are reported. It is proposed that previously reported Raman analyses of (EC)n-LiX mixtures have utilized faulty assumptions. In the present studies, density functional theory (DFT) calculations have provided corrections in terms of both the scaling factors for the solvent's Raman band intensity variations and information about band overlap. By accounting for these factors, the solvation numbers obtained from two different EC solvent bands are in excellent agreement with one another. The same analysis for PC, however, was found to be quite challenging. Commercially available PC is a racemic mixture of (S)- and (R)-PC isomers. Based upon the quantum chemistry calculations, each of these solvent isomers may exist as multiple conformers due to a low energy barrier for ring inversion, making deconvolution of the Raman bands daunting and inherently prone to significant error. Thus, Raman spectroscopy is able to accurately determine the extent of the EC...Li+ cation solvation interactions using the provided methodology, but a similar analysis of PC...Li+ cation solvation results in a significant underestimation of the actual solvation numbers.
Ansara, Y Gavriel
2015-10-01
Recent Australian legislative and policy changes can benefit people of trans and/or non-binary experience (e.g. men assigned female with stereotypically 'female' bodies, women assigned male with stereotypically 'male' bodies, and people who identify as genderqueer, agender [having no gender], bi-gender [having two genders] or another gender option). These populations often experience cisgenderism, which previous research defined as 'the ideology that invalidates people's own understanding of their genders and bodies'. Some documented forms of cisgenderism include pathologising (treating people's genders and bodies as disordered) and misgendering (disregarding people's own understanding and classifications of their genders and bodies). This system of classifying people's lived experiences of gender and body invalidation is called the cisgenderism framework. Applying the cisgenderism framework in the ageing and aged care sector can enhance service providers' ability to meet the needs of older people of trans and/or non-binary experience.
ERIC Educational Resources Information Center
Evans, Dennis H.; And Others
1983-01-01
Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)
NASA Astrophysics Data System (ADS)
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
Cyclic transformation of orbital angular momentum modes
NASA Astrophysics Data System (ADS)
Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton
2016-04-01
The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.
Scale invariant density perturbations from cyclic cosmology
NASA Astrophysics Data System (ADS)
Frampton, Paul Howard
2016-04-01
It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.
Plant Cyclic Nucleotide Signalling
Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc
2007-01-01
The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553
Bhattacharjee, Apurba K; Skanchy, David J; Jennings, Barton; Hudson, Thomas H; Brendle, James J; Werbovetz, Karl A
2002-06-01
Several indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin) derivatives exhibited remarkable activity at concentrations below 100 ng/mL when tested against in vitro Leishmania donovani amastigotes. The in vitro toxicity studies indicate that the compounds are fairly well tolerated in both macrophage and neuronal lines. An analysis based on qualitative and quantitative structure-activity relationship studies between in vitro antileishmanial activity and molecular electronic structure of 27 analogues of indolo[2,1-b]quinazoline-6,12-dione is presented here by using a combination of semi-empirical AM1 quantum chemical, cyclic voltammetry and a pharmacophore generation (CATALYST) methods. A modest to good correlation is observed between activity and a few calculated molecular properties such as molecular density, octanol-water partition coefficient, molecular orbital energies, and redox potentials. Electron transfer seems to be a plausible path in the mechanism of action of the compounds. A pharmacophore generated by using the 3-D QSAR of CATALYST produced a fairly accurate predictive model of antileishmanial activity of the tryptanthrins. The validity of the pharmacophore model extends to structurally different class of compounds that could open new frontiers for study. The carbonyl group of the five- and six-membered rings in the indolo[2,1-b]quinazoline-6,12-dione skeleton and the electron transfer ability to the carbonyl atom appear to be crucial for activity.
Designing cyclic universe models.
Khoury, Justin; Steinhardt, Paul J; Turok, Neil
2004-01-23
The phenomenological constraints on the scalar field potential in cyclic models of the Universe are presented. We show that cyclic models require a comparable degree of tuning to that needed for inflationary models. The constraints are reduced to a set of simple design rules including "fast-roll" parameters analogous to the "slow-roll" parameters in inflation.
Cyclic Hematopoiesis: animal models
Jones, J.B.; Lange, R.D.
1983-08-01
The four existing animal models of cyclic hematopoiesis are briefly described. The unusual erythropoietin (Ep) responses of the W/Wv mouse, the Sl/Sld mouse, and cyclic hematopoietic dog are reviewed. The facts reviewed indicate that the bone marrow itself is capable of influencing regulatory events of hematopoiesis.
ERIC Educational Resources Information Center
Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.
2009-01-01
Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…
A Cyclic Universe Numerically Realized
NASA Astrophysics Data System (ADS)
Duhe, William; Biswas, Tirthbar
2013-04-01
A unique way of realizing inflation has been proposed recently in the context of cyclic cosmology where the universe grows by a constant factor in each cycle. This leads to an overall exponential growth over many cycles. In a given cycle such a growth is possible if, for instance, ``heavy particles'' can decay into radiation (photons) leading to an increase in entropy. However, to sustain this mechanism over successive cycles, it is crucial to reproduce the heavy particles back through quantum scattering processes and re-establish thermal equilibrium between all the species. We attempt to prove the viability of a ``multiple bang'' scenario to produce known cosmological data as well as use it to predict fluctuations in the upcoming higher resolution plank telescope data. This paradigm opens doors for new investigations into the principles surrounding the content and origin of the universe.
Long distance quantum communication using quantum error correction
NASA Technical Reports Server (NTRS)
Gingrich, R. M.; Lee, H.; Dowling, J. P.
2004-01-01
We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.
... 2013. Slutsker B, et al. Breaking the cycle: Cognitive behavioral therapy and biofeedback training in a case of cyclic vomiting syndrome. Psychology, Health & Medicine. 2010;15:625. Boles RG. High ...
Whitaker, Charles N.; Zimmermann, Richard E.
1989-01-01
A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.
NASA Astrophysics Data System (ADS)
Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.
2016-08-01
Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.
Cyclic membrane separation process
Bowser, John
2004-04-13
A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.
Cyclic membrane separation process
Nemser, Stuart M.
2005-05-03
A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.
Remesic, Michael; Lee, Yeon Sun; Hruby, Victor J
2016-01-01
For decades the opioid receptors have been an attractive therapeutic target for the treatment of pain. Since the first discovery of enkephalin, approximately a dozen endogenous opioid peptides have been known to produce opioid activity and analgesia, but their therapeutics have been limited mainly due to low blood brain barrier penetration and poor resistance to proteolytic degradation. One versatile approach to overcome these drawbacks is the cyclization of linear peptides to cyclic peptides with constrained topographical structure. Compared to their linear parents, cyclic analogs exhibit better metabolic stability, lower offtarget toxicity, and improved bioavailability. Extensive structure-activity relationship studies have uncovered promising compounds for the treatment of pain as well as further elucidate structural elements required for selective opioid receptor activity. The benefits that come with employing cyclization can be further enhanced through the generation of polycyclic derivatives. Opioid ligands generally have a short peptide chain and thus the realm of polycyclic peptides has yet to be explored. In this review, a brief history of designing ligands for the opioid receptors, including classic linear and cyclic ligands, is discussed along with recent approaches and successes of cyclic peptide ligands for the receptors. Various scaffolds and approaches to improve bioavailability are elaborated and concluded with a discourse towards polycyclic peptides.
Cyclic Voltammetry Experiment.
ERIC Educational Resources Information Center
Van Benschoten, James J.; And Others
1983-01-01
Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…
Newton's cradle versus nonbinary collisions.
Sekimoto, Ken
2010-03-26
Newton's cradle is a classical example of a one-dimensional impact problem. In the early 1980s the naive perception of its behavior was corrected: For example, the impact of a particle does not exactly cause the release of the farthest particle of the target particle train, if the target particles have been just in contact with their own neighbors. It is also known that the naive picture would be correct if the whole process consisted of purely binary collisions. Our systematic study of particle systems with truncated power-law repulsive force shows that the quasibinary collision is recovered in the limit of hard core repulsion, or a very large exponent. In contrast, a discontinuous steplike repulsive force mimicking a hard contact, or a very small exponent, leads to a completely different process: the impacting cluster and the targeted cluster act, respectively, as if they were nondeformable blocks.
Cosmic perturbations through the cyclic ages
Erickson, Joel K.; Gratton, Steven; Steinhardt, Paul J.; Turok, Neil
2007-06-15
We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generated by the quantum fluctuations in the preceding cycle without interference from perturbations or structure generated in earlier cycles and without interfering with structure generated in later cycles; (2) the ekpyrotic phase, an epoch of gentle contraction with equation of state w>>1 preceding the hot big bang, makes the universe homogeneous, isotropic and flat within any given observer's horizon; and (3) although the universe is uniform within each observer's horizon, the structure of the cyclic universe on very large scales is more complex, owing to the effects of superhorizon length perturbations, and cannot be described globally as a Friedmann-Robertson-Walker cosmology. In particular, we show that the ekpyrotic contraction phase is so effective in smoothing, flattening and isotropizing the universe within the horizon that this phase alone suffices to solve the horizon and flatness problems even without an extended period of dark energy domination (a kind of low energy inflation). Instead, the cyclic model rests on a genuinely novel, noninflationary mechanism (ekpyrotic contraction) for resolving the classic cosmological conundrums.
NASA Astrophysics Data System (ADS)
Duhe, William; Biswas, Tirthibir
2014-03-01
We provide a comprehensive numerical study of the Emergent Cyclic Inflation scenario. This is a scenario where instead of traditional monotonic slow roll inflation, the universe expands over numerous short asymmetric cycles due to the production of entropy via interactions among different species. This is one of the very few scenarios of inflation which provides a nonsingular geodesically complete space-time and does not require any ``reheating'' mechanism. A special thanks to Loyola University for an excellent community to help this project grow.
NASA Technical Reports Server (NTRS)
Leese, G. E.
1984-01-01
Torsional fatigue testing and data analysis procedures are described. Since there are no standards governing cyclic torsion testing that are generally accepted on a widespread basis by the technical community, the different approaches that dominate current experimental activity, and the ramifications of each are discussed. Particular attention is given to the theoretical and experimental difficulties that have paced refinement and general acceptance of test procedures. Finally, specific quantities and nomenclature modelled after analagous axial fatigue properties are suggested as an effective way to communicate torsional fatigue results until accepted standards are established.
Cyclic generalized projection MRI.
Sarty, Gordon E
2015-04-01
Progress in the development of portable MRI hinges on the ability to use lightweight magnets that have non-uniform magnetic fields. An image encoding method and mathematical procedure for recovering the image from the NMR signal from non-uniform magnets with closed isomagnetic contours is given. Individual frequencies in an NMR signal from an object in a non-uniform magnetic field give rise to integrals of the object along contours of constant magnetic field: generalized projections. With closed isomagnetic field contours a simple, cyclic, direct reconstruction of the image from the generalized projections is possible when the magnet and RF transmit coil are held fixed relative to the imaged object while the RF receive coil moves. Numerical simulations, using the Shepp and Logan mathematical phantom, were completed to show that the mathematical method works and to illustrate numerical limitations. The method is numerically verified and exact reconstruction demonstrated for discrete mathematical image phantoms. Correct knowledge of the RF receive field is necessary or severe image distortions will result. The cyclic mathematical reconstruction method presented here will be useful for portable MRI schemes that use non-uniform magnets with closed isomagnetic contours along with mechanically or electronically moving the RF receive coils.
[Asthma and cyclic neutropenia].
Salazar Cabrera, A N; Berrón Pérez, R; Ortega Martell, J A; Onuma Takane, E
1996-01-01
We report a male with history of recurrent infections (recurrent oral aphtous disease [ROAD], middle ear infections and pharyngo amigdalitis) every 3 weeks since he was 7 months old. At the age of 3 years cyclic neutropenia was diagnosed with cyclic fall in the total neutrophil count in blood smear every 21 days and prophylactic antimicrobial therapy was indicated. Episodic events every 3 weeks of acute asthma and allergic rhinitis were detected at the age of 6 years old and specific immunotherapy to Bermuda grass was given during 3 years with markedly improvement in his allergic condition but not in the ROAD. He came back until the age of 16 with episodic acute asthma and ROAD. The total neutrophil count failed to 0 every 21 days and surprisingly the total eosinophil count increased up to 2,000 at the same time, with elevation of serum IgE (412 Ul/mL). Specific immunotherapy to D.pt. and Aller.a. and therapy with timomodulin was indicated. After 3 months we observed clinical improvement in the asthmatic condition and the ROAD disappeared, but the total neutrophil count did not improve. We present this case as a rare association between 2 diseases with probably no etiological relationship but may be physiopatological that could help to understand more the pathogenesis of asthma.
Botsford, J L; Harman, J G
1992-01-01
Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth. PMID:1315922
Genetics Home Reference: cyclic neutropenia
... infection, neutrophils release neutrophil elastase. This protein then modifies the function of certain cells and proteins to help fight the infection. ELANE gene mutations that cause cyclic neutropenia lead to an ...
Cyclic Cushing's syndrome: an overview.
Mantero, Franco; Scaroni, Carla M; Albiger, Nora M E
2004-01-01
Cyclic Cushing's syndrome (CS) involves rhythmic fluctuations in ACTH secretion resulting in a cyclic variation of adrenal steroid production. In the majority of cases, cyclic CS is caused by an ACTH-secreting pituitary adenoma, but it can also be due to ectopic ACTH production or an adrenal adenoma. This condition should be strongly suspected in patients with symptoms or signs of hypercortisolism but normal cortisol levels and paradoxical responses to the dexamethasone test, that may reflect an increasing or decreasing endogenous hormone activity. Dynamic tests are best interpreted if they are performed during a sustained period of hypercortisolism. Sometimes, it is necessary to confirm the diagnosis over lengthy periods of observation. Responses to treatment must be closely monitored, interpreted and evaluated with caution because of the potential variations in steroidogenesis. An original case report of a cyclic Cushing's syndrome is presented in this review.
Computer Simulation Of Cyclic Oxidation
NASA Technical Reports Server (NTRS)
Probst, H. B.; Lowell, C. E.
1990-01-01
Computer model developed to simulate cyclic oxidation of metals. With relatively few input parameters, kinetics of cyclic oxidation simulated for wide variety of temperatures, durations of cycles, and total numbers of cycles. Program written in BASICA and run on any IBM-compatible microcomputer. Used in variety of ways to aid experimental research. In minutes, effects of duration of cycle and/or number of cycles on oxidation kinetics of material surveyed.
Cyclic Cushing's syndrome: an overview.
Albiger, Nora Maria Elvira; Scaroni, Carla M; Mantero, Franco
2007-11-01
Cyclic Cushing's syndrome (CS) is a disorder in which glucocorticoid levels are alternately normal and high, the latter occurring in episodes that can last from a few days to several months. It is more common in children than in adults. Cyclic CS may be either of the two different forms of CS (ACTH-dependent or -independent CS). Clinically, it may present with one or many symptoms, depending on the duration of disease activity and the timing of the fluctuations. A serotoninergic influence, cyclic changes in central dopaminergic tone, spontaneous episodic hemorrhage in the tumor, and the action of inflammatory cytokines with antitumor properties are some of the mechanisms suggested to explain the physiopathology of this phenomenon but the exact mechanism remains to be clarified. The cyclic pattern of hypercortisolism can delay the final diagnosis of CS and make it difficult to interpret the results of dynamic tests. Patients may have paradoxical responses to dexamethasone that can reflect increasing or decreasing levels of endogenous activity. Hormone assessments have to be repeated periodically when a diagnosis of CS is suspected. The cyclic pattern can also interfere with medical treatment because patients may show unexpected clinical and biochemical signs of hypocortisolism when cortisol secretion cyclically returns to normal, so an accurate follow-up is mandatory in these patients.
Color visualization of cyclic magnitudes
NASA Astrophysics Data System (ADS)
Restrepo, Alfredo; Estupiñán, Viviana
2014-02-01
We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.
Buffering in cyclic gene networks
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.
2016-06-01
We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.
Cyclic peptide therapeutics: past, present and future.
Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian
2017-02-26
Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future.
Results on Cyclic Signal Processing Systems,
1998-01-01
8] Vaidyanathan, P. P. Multirate systems and filter banks , Prentice Hall, 1993. [9] Vaidyanathan, P. P., and Kirac, A. "Theory of cyclic filter ...91125 Abstract We present a state space description for cyclic LTI sys- tems which find applications in cyclic filter banks and wavelets. We also...in a unified way by using the realization matrix defined by the state space description. 1. INTRODUCTION Cyclic digital filters and filter banks
Cyclic Pursuit in Three Dimensions
2010-12-17
A three-dimensional version of the motion camouflage pursuit 49th IEEE Conference on Decision and Control December 15-17, 2010 Hilton Atlanta Hotel ...show that Θ is a constant value on MCB(a). Proposition 4: Consider a two-particle system operating on MCB(a) according to the closed-loop mutual CB...illustrate various types of trajectories in terms of initial conditions (` and Θ) and parameter values (a+ and a−). In our planar discussion of cyclic
Cyclic Deformation in Metallic Glasses.
Sha, Z D; Qu, S X; Liu, Z S; Wang, T J; Gao, H
2015-10-14
Despite the utmost importance and decades of experimental studies on fatigue in metallic glasses (MGs), there has been so far little or no atomic-level understanding of the mechanisms involved. Here we perform molecular dynamics simulations of tension-compression fatigue in Cu50Zr50 MGs under strain-controlled cyclic loading. It is shown that the shear band (SB) initiation under cyclic loading is distinctly different from that under monotonic loading. Under cyclic loading, SB initiation takes place when aggregates of shear transformation zones (STZs) accumulating at the MG surface reach a critical size comparable to the SB width, and the accumulation of STZs follows a power law with rate depending on the applied strain. It is further shown that almost the entire fatigue life of nanoscale MGs under low cycle fatigue is spent in the SB-initiation stage, similar to that of crystalline materials. Furthermore, a qualitative investigation of the effect of cycling frequency on the fatigue behavior of MGs suggests that higher cycling frequency leads to more cycles to failure. The present study sheds light on the fundamental fatigue mechanisms of MGs that could be useful in developing strategies for their engineering applications.
Plant cyclic nucleotide signalling: facts and fiction.
Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc; Maathuis, Frans Jm
2007-11-01
The presence of the cyclic nucleotides 3',5'-cyclic adenyl monophosphate (cAMP) and 3',5'-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed.
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Fidelity of adiabatic holonomic quantum gates
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir; Rudin, Sergey
2016-05-01
During last few years non-Abelian geometric phases are attracting increasing interest due to possible experimental applications in quantum computation. Here we discuss universal set of holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution. The proposed scheme utilizes ultrafast pulses and provides a possibility to substantially suppress transient population of the ancillary states. Fidelity of the holonomic quantum gates in the presence of dephasing and dissipation is discussed. Example of electron spin qubit system in the InGaN/GaN, GaN/AlN quantum dot is considered in details.
Wyatt, Todd A.
2015-01-01
Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028
Bojowald, Martin
2005-01-01
Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
Advances in targeting cyclic nucleotide phosphodiesterases
Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.
2014-01-01
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066
IR spectra of cyclic hydrogen-bonded complexes of bifunctional nitrogen compounds in solution
NASA Astrophysics Data System (ADS)
Bureiko, S. F.; Kucherov, S. Yu.
2010-12-01
We measured the IR absorption spectra of self-associates and complexes with carboxylic acids of 3,5-dimethylpyrazole (DMP), diphenylformamidine (DPFA), diphenyltriazene (DPT), and diphenylguanidine (DPG) in solutions in a wide range of concentrations and temperatures and calculated spectroscopic, geometric, and energy characteristics of complexes in the quantum-mechanical harmonic and anharmonic 1D and 2D approximations. Spectroscopic data show that, in the case of DMP, cyclic trimers are predominantly formed; DPFA and DPG form cyclic dimers with two NH...N bonds in inert solvents, whereas, upon the complexation of DPT, cyclic structures do not occur, and only open dimers are formed. Upon the interaction of DMP, DPFA, and DPT with weak carboxylic acids (HCOOH, CH3COOH, CH2ClCOOH) in CCl4 or in CH2Cl2, molecular cyclic structures with NH...O=C and OH...N H-bonds are formed, whereas cyclic dimer complexes with stronger acids (CHCl2COOH, CCl3COOH, CF3COOH) predominantly have the structure of hydrogen-bonded ion pairs with proton transfer from the hydroxyl group to the proton-acceptor nitrogen atom. The calculations of the structure and vibrational frequencies using various basis sets of atomic functions confirm the formation of cyclic complexes in accordance with experimental results and, in the case of interaction with strong carboxylic acids, the proton transfer along the OH...N hydrogen bridge.
[Cyclic Cushing's Syndrome - rare or rarely recognized].
Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa
2015-01-01
Cyclic Cushing's syndrome is a type of Cushing's disease which is characterized by alternating periods of increasing and decreasing levels of cortisol in the blood. The diagnostic criteria for cyclic Cushing's syndrome are at least three periods of hypercortisolism alternating with at least two episodes of normal levels of serum cortisol concentration. The epidemiology, signs, symptoms, pathogenesis and treatment of cyclic Cushing's syndrome have been discussed.
Cyclic Imide Dioxime: Formation and Hydrolytic Stability
Kang, S.O.; Vukovic, Sinisa; Custelcean, Radu; Hay, Benjamin
2012-01-01
Poly(acrylamidoximes) play an important role in the uranium extraction from seawater. The present work reports solution studies of simple analogs to address the formation and stability of two binding sites present in these polymers, open-chain amidoximes and cyclic imide dioximes, including: 1) conditions that maximize the formation of the cyclic form, 2) existence of a base-induced conversion from open-chain to cyclic form, and 3) degradation under acid and base conditions.
Synthesis of chiral cyclic amines via Ir-catalyzed enantioselective hydrogenation of cyclic imines.
Zhang, Ying; Kong, Duanyang; Wang, Rui; Hou, Guohua
2017-04-05
A highly enantioselective hydrogenation of cyclic imines for synthesis of chiral cyclic amines has been realized. With the complex of iridium and (R,R)-f-spiroPhos as the catalyst, a range of cyclic 2-aryl imines were smoothly hydrogenated under mild conditions without any additive to provide the corresponding chiral cyclic amines with excellent enantioselectivities of up to 98% ee. Moreover, this method could be successfully applied to the synthesis of (+)-(6S,10bR)-McN-4612-Z.
Revisiting the quantum Szilard engine with fully quantum considerations
Li, Hai; Zou, Jian; Li, Jun-Gang; Shao, Bin; Wu, Lian-Ao
2012-12-15
By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from the bath in the QSZE. Moreover, when the well width L{yields}{infinity} or the temperature of the bath T{yields}{infinity} the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W{sub tot}=k{sub B}Tln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case. - Highlights: Black-Right-Pointing-Pointer For the first time analyze the QSZE by considering energy level shifts. Black-Right-Pointing-Pointer Find different roles played by classical and quantum information in the QSZE. Black-Right-Pointing-Pointer The amount of work extracted depends on the cyclic strategies of the QSZE. Black-Right-Pointing-Pointer Verify that the QSZE will reduce to the CSZE in the classical limits.
Cell reorientation under cyclic stretching
Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin
2014-01-01
Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations – cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391
Cell reorientation under cyclic stretching
NASA Astrophysics Data System (ADS)
Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin
2014-05-01
Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations—cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.
Continuous operation of four-state continuous-variable quantum key distribution system
NASA Astrophysics Data System (ADS)
Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro
2016-10-01
We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.
Cyclic malyl anthocyanins in Dianthus caryophyllus.
Nakayama, M; Koshioka, M; Yoshida, H; Kan, Y; Fukui, Y; Koike, A; Yamaguchi, M
2000-12-01
3,5-Di-O-(beta-glucopyranosyl) pelargonidin 6''-O-4,6'''-O-1-cyclic malate and a previously reported cyanidin equivalent, 3,5-di-O-(beta-glucopyranosyl) cyanidin 6''-O-4,6'''-O-1-cyclic malate were identified from petals of deep pink and red-purple flower cultivars of Dianthus caryophyllus, respectively.
Cyclic metabolites: chemical and biological considerations.
Erve, John C L
2008-02-01
Metabolism of xenobiotics can sometimes generate cyclic metabolites. Such metabolites are usually the result of intramolecular reactions occurring within a primary or secondary metabolite and this chemistry may lead to unexpected structures. Intramolecular chemistry is often driven by nucleophilic groups reacting with electrophilic atoms, often carbon, although radical processes also occur. Conjugation of xenobiotics or their metabolites with endogenous thiols, such as glutathione or cysteine, introduce a reactive amino group that can lead to the formation of cyclic structures. Less common than chemically driven cyclizations are enzymatically mediated ring-closures, although this may reflect our incomplete recognition of enzymatic involvement in this step of cyclic metabolite formation. While some cyclic metabolites are biologically inactive, others are biologically active. Thus, a cyclic metabolite may display desirable pharmacology, or, contribute to toxicology. When a cyclic metabolite is identified, it is important to consider the possibility that it is an artifact, i.e. metabonate, that was formed during processing of the sample, for example, through degradation or by chemical reactions with other components present in the matrix. From a medicinal chemistry perspective, a cyclic metabolite with a different chemical scaffold from the parent structure may lead to a new series of structurally novel, biologically active molecules with the same, or different, pharmacology from the parent. This review will cover a selection of cyclic metabolites from a mechanistic point of view, and when possible, discuss their biological relevance.
Cyclic Linearization and Island Repair in Sluicing
ERIC Educational Resources Information Center
Qiu, Chunan
2009-01-01
Cyclic Linearization is adopted to account for the island repair of Sluicing in English. The extraction of wh-phrase out of certain islands undergoes non-successive-cyclic movement, which yields conflicting ordering statements. The derivation can be rescued by deleting all ordering statements in IP, including those conflicting ones. Two arguments…
Cyclic homology for Hom-associative algebras
NASA Astrophysics Data System (ADS)
Hassanzadeh, Mohammad; Shapiro, Ilya; Sütlü, Serkan
2015-12-01
In the present paper we investigate the noncommutative geometry of a class of algebras, called the Hom-associative algebras, whose associativity is twisted by a homomorphism. We define the Hochschild, cyclic, and periodic cyclic homology and cohomology for this class of algebras generalizing these theories from the associative to the Hom-associative setting.
Enantioselective Conjugate Allylation of Cyclic Enones
Taber, Douglass F.; Gerstenhaber, David A.; Berry, James F.
2011-01-01
Enantioselective organocatalytic 1,2-allylation of a cyclic enone followed by anionic oxy-Cope rearrangement delivered the ketone as a mixture of diastereomers. This appears to be a general method for the net enantioselective conjugate allylation of cyclic enones. PMID:21830779
An order-by-disorder process in the cyclic phase of spin-2 condensate with a weak magnetic field
Zheng, Gong-Ping; Xu, Lei-Kuan; Qin, Shuai-Feng; Jian, Wen-Tian; Liang, J.-Q.
2013-07-15
We present in this paper a model study on the “order-by-disorder” process in the cyclic phase of spin-2 condensate, which forms a family of incommensurable, spiral degenerate ground states. On the basis of the ordering mechanism of entropic splitting, it is demonstrated that the energy corrections resulting from quantum fluctuations of disorder lift the accidental degeneracy of the cyclic configurations and thus lead to an eventual spiral order called the cyclic order. The order-by-disorder phenomenon is then realized even if the magnetic field exists. Finally, we show that our theoretic observations can be verified experimentally by direct detection of the cyclic order in the {sup 87}Rb condensate of a spin-2 manifold with a weak magnetic field. -- Highlights: •A model for the order-by-disorder process in the cyclic phase of spin-2 condensate is presented. •The second-order quantum fluctuations of the mean-field states are studied. •The energy corrections lift the accidental degeneracy of the cyclic configurations. •The order-by-disorder phenomenon is realized even if a magnetic field exists. •The theoretic observations can be verified experimentally for {sup 87}Rb condensate.
Ribosomally encoded cyclic peptide toxins from mushrooms.
Walton, Jonathan D; Luo, Hong; Hallen-Adams, Heather
2012-01-01
The cyclic peptide toxins of poisonous Amanita mushrooms are chemically unique among known natural products. Furthermore, they differ from other fungal cyclic peptides in being synthesized on ribosomes instead of by nonribosomal peptide synthetases. Because of their novel structures and biogenic origins, elucidation of the biosynthetic pathway of the Amanita cyclic peptides presents both challenges and opportunities. In particular, a full understanding of the pathway should lead to the ability to direct synthesis of a large number of novel cyclic peptides based on the Amanita toxin scaffold by genetic engineering of the encoding genes. Here, we highlight some of the principal methods for working with the Amanita cyclic peptides and the known steps in their biosynthesis.
Toward structure prediction of cyclic peptides.
Yu, Hongtao; Lin, Yu-Shan
2015-02-14
Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.
Quantum codes with low weight stabilizers
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Dumer, Ilya; Pryadko, Leonid P.
2012-02-01
We study quantum cyclic stabilizer codes whose stabilizer can be always defined by one or two stabilizer generators. Our main goal is to construct low-weight stabilizer generators that can yield quantum codes with high code rate and simple error correction. To do so, we apply the classical quaternary representation of stabilizer codes and extend our recent study of one-generator cyclic codes [1]. For any stabilizer generator of weight four or five, we formulate a necessary and sufficient condition for its commutativity. We then proceed with a design of additive cyclic codes with such generators. In some cases, we also extend our commutativity condition and code design to generators of weight six. In particular, quantum cyclic codes with stabilizers of weight four are mapped to the generalized toric codes. Here we also extend the notion of toric codes using a translationally invariant generator and periodic boundary conditions on a two dimensional lattice. Some of our numerically constructed codes can be redefined by means of Code Word Stabilized (CWS) representation [1] as quantum versions of repetition codes. We particularly concentrate on codes with a fixed nonzero rate for which the minimum distance asymptotically grows as the blocklength grows.[4pt] [1] arXiv:1108.5490v1
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
Mixed Strategies in cyclic competition
NASA Astrophysics Data System (ADS)
Intoy, Ben; Pleimling, Michel
2015-03-01
Physicists have been using evolutionary game theory to model and simulate cyclically competing species, with applications to lizard mating strategies and competing bacterial strains. However these models assume that each agent plays the same strategy, which is called a pure strategy in game theory, until they are beaten by a better strategy which they immediately adopt. We relax this constraint of an agent playing a single strategy by instead letting the agent pick its strategy randomly from a probability distribution, which is called a mixed strategy in game theory. This scheme is very similar to multiple occupancy models seen in the literature, the major difference being that interactions happen between sites rather than within them. Choosing strategies out of a distribution also has applications to economic/social systems such as the public goods game. We simulate a model of mixed strategy and cylic competition on a one-dimensional lattice with three and four strategies and find interesting spatial and stability properties depending on how discretized the choice of strategy is for the agents. This work is supported by the US National Science Foundation through Grant DMR-1205309.
Asymmetric cyclic evolution in polymerised cosmology
Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl
2009-12-01
The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.
Parallel architectures for computing cyclic convolutions
NASA Technical Reports Server (NTRS)
Yeh, C.-S.; Reed, I. S.; Truong, T. K.
1983-01-01
In the paper two parallel architectural structures are developed to compute one-dimensional cyclic convolutions. The first structure is based on the Chinese remainder theorem and Kung's pipelined array. The second structure is a direct mapping from the mathematical definition of a cyclic convolution to a computational architecture. To compute a d-point cyclic convolution the first structure needs d/2 inner product cells, while the second structure and Kung's linear array require d cells. However, to compute a cyclic convolution, the second structure requires less time than both the first structure and Kung's linear array. Another application of the second structure is to multiply a Toeplitz matrix by a vector. A table is listed to compare these two structures and Kung's linear array. Both structures are simple and regular and are therefore suitable for VLSI implementation.
Cyclic hardening in bundled actin networks.
Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R
2010-01-01
Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.
Colour cyclic code for Brillouin distributed sensors
NASA Astrophysics Data System (ADS)
Le Floch, Sébastien; Sauser, Florian; Llera, Miguel; Rochat, Etienne
2015-09-01
For the first time, a colour cyclic coding (CCC) is theoretically and experimentally demonstrated for Brillouin optical time-domain analysis (BOTDA) distributed sensors. Compared to traditional intensity-modulated cyclic codes, the code presents an additional gain of √2 while keeping the same number of sequences as for a colour coding. A comparison with a standard BOTDA sensor is realized and validates the theoretical coding gain.
Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system
Wang, Z. S.; Liu, G. Q.; Ji, Y. H.
2009-05-15
A scheme is proposed to include both cyclic and noncyclic geometric quantum computations in nuclear-magnetic-resonance system by the invariant theory. By controlling magnetic field and arbitrary parameters in the invariant operator, the phases accumulated in the entangling quantum gates for single- and two-qubit systems are pure geometric phases. Thus, fault tolerance may occur in some critical magnetic field parameters for either cyclic or noncyclic evolution by differently choosing for gate time.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Antimicrobial Cyclic Peptides for Plant Disease Control
Lee, Dong Wan; Kim, Beom Seok
2015-01-01
Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105
Quantum computation for quantum chemistry
NASA Astrophysics Data System (ADS)
Aspuru-Guzik, Alan
2010-03-01
Numerically exact simulation of quantum systems on classical computers is in general, an intractable computational problem. Computational chemists have made progress in the development of approximate methods to tackle complex chemical problems. The downside of these approximate methods is that their failure for certain important cases such as long-range charge transfer states in the case of traditional density functional theory. In 1982, Richard Feynman suggested that a quantum device should be able to simulate quantum systems (in our case, molecules) exactly using quantum computers in a tractable fashion. Our group has been working in the development of quantum chemistry algorithms for quantum devices. In this talk, I will describe how quantum computers can be employed to carry out numerically exact quantum chemistry and chemical reaction dynamics calculations, as well as molecular properties. Finally, I will describe our recent experimental quantum computation of the energy of the hydrogen molecule using an optical quantum computer.
Pfeiffer, P.; Sanz, M.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Effective scenario of loop quantum cosmology.
Ding, You; Ma, Yongge; Yang, Jinsong
2009-02-06
Semiclassical states in isotropic loop quantum cosmology are employed to show that the improved dynamics has the correct classical limit. The effective Hamiltonian for the quantum cosmological model with a massless scalar field is thus obtained, which incorporates also the next to leading order quantum corrections. The possibility that the higher order correction terms may lead to significant departure from the leading order effective scenario is revealed. If the semiclassicality of the model is maintained in the large scale limit, there are great possibilities for a k=0 Friedmann expanding universe to undergo a collapse in the future due to the quantum gravity effect. Thus the quantum bounce and collapse may contribute a cyclic universe in the new scenario.
Measuring Cyclic Error in Laser Heterodyne Interferometers
NASA Technical Reports Server (NTRS)
Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter
2010-01-01
An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-
The envelope-based cyclic periodogram
NASA Astrophysics Data System (ADS)
Borghesani, P.
2015-06-01
Cyclostationary analysis has proven effective in identifying signal components for diagnostic purposes. A key descriptor in this framework is the cyclic power spectrum, traditionally estimated by the averaged cyclic periodogram and the smoothed cyclic periodogram. A lengthy debate about the best estimator finally found a solution in a cornerstone work by Antoni, who proposed a unified form for the two families, thus allowing a detailed statistical study of their properties. Since then, the focus of cyclostationary research has shifted towards algorithms, in terms of computational efficiency and simplicity of implementation. Traditional algorithms have proven computationally inefficient and the sophisticated "cyclostationary" definition of these estimators slowed their spread in the industry. The only attempt to increase the computational efficiency of cyclostationary estimators is represented by the cyclic modulation spectrum. This indicator exploits the relationship between cyclostationarity and envelope analysis. The link with envelope analysis allows a leap in computational efficiency and provides a "way in" for the understanding by industrial engineers. However, the new estimator lies outside the unified form described above and an unbiased version of the indicator has not been proposed. This paper will therefore extend the analysis of envelope-based estimators of the cyclic spectrum, proposing a new approach to include them in the unified form of cyclostationary estimators. This will enable the definition of a new envelope-based algorithm and the detailed analysis of the properties of the cyclic modulation spectrum. The computational efficiency of envelope-based algorithms will be also discussed quantitatively for the first time in comparison with the averaged cyclic periodogram. Finally, the algorithms will be validated with numerical and experimental examples.
Maurice, Donald H; Wilson, Lindsay S; Rampersad, Sarah N; Hubert, Fabien; Truong, Tammy; Kaczmarek, Milosz; Brzezinska, Paulina; Freitag, Silja I; Umana, M Bibiana; Wudwud, Alie
2014-04-01
The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.
Novel pH-Sensitive Cyclic Peptides
Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.
2016-01-01
A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2012-06-01
Fresh from his appearance on the latest Physics World podcast, which examined the enduring popularity of books about quantum mechanics, Robert P Crease surveys the many tour guides to the quantum world.
Zurek, Wojciech H
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; ...
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Singh, Parampreet
2017-01-01
The spatially closed Friedmann-Lemaître-Robertson-Walker model in loop quantum cosmology admits two inequivalent consistent quantizations: one based on expressing the field strength in terms of the holonomies over closed loops and another using a connection operator and open holonomies. Using the effective dynamics, we investigate the phenomenological differences between the two quantizations for the single-fluid and the two-fluid scenarios with various equations of state, including the phantom matter. We show that a striking difference between the two quantizations is the existence of two distinct quantum turnarounds, either bounces or recollapses, in the connection quantization, in contrast to a single distinct quantum bounce or a recollapse in the holonomy quantization. These results generalize an earlier result on the existence of two distinct quantum bounces for stiff matter by Corichi and Karami. However, we find that in certain situations two distinct quantum turnarounds can become virtually indistinguishable. And depending on the initial conditions, a pure quantum cyclic universe can also exist undergoing a quantum bounce and a quantum recollapse. We show that for various equations of states, connection-based quantization leads to super-Planckian values of the energy density and the expansion scalar at quantum turnarounds. Interestingly, we find that very extreme energy densities can also occur for the holonomy quantization, breaching the maximum allowed density in the spatially flat loop quantized model. However, the expansion scalar in all these cases is bounded by a universal value.
Quantum model of light transmission in array waveguide gratings.
Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P
2013-06-17
We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.
1994-08-15
Notre Dame was concerned with a variety of quantum transport in mesoscopic structures. This research was funded by the Air Force Office of Scientific...Research under Grant No. AFOSR-91-0211. The major issues examined included quantum transport in high magnetic fields and modulated channels, Coulomb...lifetimes in quasi-1D structures, quantum transport experiments in metals, the mesoscopic photovoltaic effect, and new techniques for fabricating quantum structures in semiconductors.
Evaluation of homogeneous electrocatalysts by cyclic voltammetry.
Rountree, Eric S; McCarthy, Brian D; Eisenhart, Thomas T; Dempsey, Jillian L
2014-10-06
The pursuit of solar fuels has motivated extensive research on molecular electrocatalysts capable of evolving hydrogen from protic solutions, reducing CO2, and oxidizing water. Determining accurate figures of merit for these catalysts requires the careful and appropriate application of electroanalytical techniques. This Viewpoint first briefly presents the fundamentals of cyclic voltammetry and highlights practical experimental considerations before focusing on the application of cyclic voltammetry for the characterization of electrocatalysts. Key metrics for comparing catalysts, including the overpotential (η), potential for catalysis (E(cat)), observed rate constant (k(obs)), and potential-dependent turnover frequency, are discussed. The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data. The extension of this analysis to more complex electrocatalytic schemes, such as those responsible for H2 evolution and CO2 reduction, is then discussed.
Cyclic Cocycles on Twisted Convolution Algebras
NASA Astrophysics Data System (ADS)
Angel, Eitan
2013-01-01
We give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. For proper étale groupoids, Tu and Xu (Adv Math 207(2):455-483, 2006) provide a map between the periodic cyclic cohomology of a gerbe-twisted convolution algebra and twisted cohomology groups which is similar to the construction of Mathai and Stevenson (Adv Math 200(2):303-335, 2006). When the groupoid is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial techniques to construct a simplicial curvature 3-form representing the class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial curvature 3-form to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.
The nature of solar cyclicity. I
NASA Astrophysics Data System (ADS)
Romanchuk, P. R.
1981-02-01
The report contains a critical survey of work devoted to the study of the nature of solar cyclicity. The inconsistency of the representation of cyclic curves using a frequency spectrum is indicated. The useful contribution of the ideas of Wolf, Newcomb, and Waldmeier to the solution of the problem is noted. Data are cited in favor of the theory of the tidal nature of solar cyclicity developed by the author, which also takes into account the ideas of the above-mentioned authors: the continuous paired and single tidal actions of the planets and the resonance character of this action, thanks to which the approximately 10-year period of action of Jupiter and Saturn is transformed into the 11-year activity cycle.
Cyclic and low temperature effects on microcircuits
NASA Technical Reports Server (NTRS)
Weissflug, V. A.; Sisul, E. V.
1977-01-01
Cyclic temperature and low temperature operating life tests, and pre-/post-life device evaluations were used to determine the degrading effects of thermal environments on microcircuit reliability. Low power transistor-transistor-logic gates and linear devices were included in each test group. Device metallization systems included aluminum metallization/aluminum wire, aluminum metallization/gold wire, and gold metallization/gold wire. Fewer than 2% electrical failures were observed during the cyclic and low temperature life tests and the post-life evaluations revealed approximately 2% bond pull failures. Reconstruction of aluminum die metallization was observed in all devices and the severity of the reconstruction appeared to be directly related to the magnitude of the temperature excursion. All types of bonds except the gold/gold bonds were weakened by exposure to repeated cyclic temperature stress.
SICLOPPS cyclic peptide libraries in drug discovery.
Tavassoli, Ali
2017-02-28
Cyclic peptide libraries have demonstrated significant potential when employed against challenging targets such as protein-protein interactions. While a variety of methods for library generation exist, genetically encoded libraries hold several advantages over their chemically synthesized counterparts; they are more readily accessible and allow straightforward hit deconvolution. One method for the intracellular generation of such libraries is split-intein circular ligation of peptides and proteins (SICLOPPS). Here we detail and discuss the deployment of SICLOPPS libraries for the identification of cyclic peptide inhibitors of a variety of targets.
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-06-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
NASA Astrophysics Data System (ADS)
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Role of cyclic four-spin exchange in doped two-leg ladders
NASA Astrophysics Data System (ADS)
Roux, Guillaume; White, Steve R.; Poilblanc, Didier; Laeuchli, Andreas M.
2005-03-01
The cyclic four-spin exchange has a dramatic effect in undoped 2-leg ladders since it introduces frustration and biquadratic terms. A quantum phase transition is known to happen for K/J = 0.2, in which K is the magnitude of the cyclic exchange term. Here, we report the first investigations of its role on t-J two-leg ladders using Exact Diagonalisation and DMRG computations. We show that the low energy spectrum is very sensitive to K and discuss the robustness of the magnon-hole pair bound state and the recently discovered resonant mode(at finite doping) by studying the low energy triplet spectrum. We also report the evolution of the pairing energy and the Luther-Emery liquid parameter with K. These results are discussed in connection with experiments on superconducting Sr14-xCaxCu24O41 ladder materials.
Strain controlled cyclic tests on miniaturized specimens
NASA Astrophysics Data System (ADS)
Procházka, R.; Džugan, J.
2017-02-01
The paper is dealing with strain controlled cyclic tests using a non-contact strain measurement based on digital image correlation techniques on proportional sizes of conventional specimens. The cyclic behaviour of 34CrNiMo6 high-strength steel was investigated on miniaturized round specimens with diameter of 2mm that were compared with specimens in accordance with ASTM E606 standards. The cycle asymmetry coefficient was R= -1. This application is intended to be used for life time assessment of in service components in future work which enables to carried out a group of mechanical tests from a limited amount of the experimental material. The attention was paid to confirm the suitability of the proposed size miniaturization geometry, testing set up and procedure. The test results obtained enabled to construct Manson-Coffin curves and assess fatigue parameters. The purpose of this study is to present differences between cyclic curves and cyclic parameters which have been evaluated based on conventional and miniaturized specimens.
One pot solution synthesis of cyclic oligodeoxyribonucleotides.
Capobianco, M L; Carcuro, A; Tondelli, L; Garbesi, A; Bonora, G M
1990-01-01
Several cyclic oligodeoxynucleotides with different base composition and size have been prepared from 5',3'-unprotected linear precursors, using a bifunctional phosphorylating reagent. The final deprotected oligomers have been characterized by 1H- and 31P-NMR. The present procedure is particularly useful for millimolar scale syntheses. PMID:2339055
Cyclic nucleotide imaging and cardiovascular disease.
Berisha, Filip; Nikolaev, Viacheslav O
2017-02-16
The universal second messengers cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) play central roles in cardiovascular function and disease. They act in discrete, functionally relevant subcellular microdomains which regulate, for example, calcium cycling and excitation-contraction coupling. Such localized cAMP and cGMP signals have been difficult to measure using conventional biochemical techniques. Recent years have witnessed the advent of live cell imaging techniques which allow visualization of these functionally relevant second messengers with unprecedented spatial and temporal resolution at cellular, subcellular and tissue levels. In this review, we discuss these new imaging techniques and give examples how they are used to visualize cAMP and cGMP in physiological and pathological settings to better understand cardiovascular function and disease. Two primary techniques include the use of Förster resonance energy transfer (FRET) based cyclic nucleotide biosensors and nanoscale scanning ion conductance microscopy (SICM). These methods can provide deep mechanistic insights into compartmentalized cAMP and cGMP signaling.
Planar tetracoordinate carbons in cyclic hydrocarbons.
Perez, Nancy; Heine, Thomas; Barthel, Robert; Seifert, Gotthard; Vela, Alberto; Mendez-Rojas, Miguel Angel; Merino, Gabriel
2005-04-14
[structure: see text] A series of cyclic hydrocarbons containing a planar tetracoordinate carbon atom is proposed. To rationalize the electronic factors contributing to the stability of these molecules, an analysis of the molecular orbitals and the induced magnetic field is presented.
A model for cyclic mechanical reinforcement
Li, Zhenhai; Kong, Fang; Zhu, Cheng
2016-01-01
Mechanical force regulates a broad range of molecular interactions in biology. Three types of counterintuitive mechanical regulation of receptor–ligand dissociation have been described. Catch bonds are strengthened by constant forces, as opposed to slip bonds that are weakened by constant forces. The phenomenon that bonds become stronger with prior application of cyclic forces is termed cyclic mechanical reinforcement (CMR). Slip and catch bonds have respectively been explained by two-state models. However, they assume fast equilibration between internal states and hence are inadequate for CMR. Here we propose a three-state model for CMR where both loading and unloading regulate the transition of bonds among the short-lived, intermediate, and long-lived state. Cyclic forces favor bonds in the long-lived state, hence greatly prolonging their lifetimes. The three-state model explains the force history effect and agrees with the experimental CMR effect of integrin α5β1–fibronectin interaction. This model helps decipher the distinctive ways by which molecular bonds are mechanically strengthened: catch bonds by constant forces and CMR by cyclic forces. The different types of mechanical regulation may enable the cell to fine tune its mechanotransduction via membrane receptors. PMID:27786286
Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.
ERIC Educational Resources Information Center
Wilkinson, Bruce H.
1982-01-01
Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…
Adiabatic holonomic quantum gates for a single qubit
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir S.; Rudin, Sergey
2014-04-01
A universal set of single qubit holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution is discussed. The proposed scheme utilizes ultrafast linearly chirped pulses and provides a possibility to substantially suppress transient population of the ancillary state in a generic three-level system. That provides a possibility to reduce the decoherence effect and achieve a higher fidelity of the quantum gates.
Quantum statistical mechanics in arithmetic topology
NASA Astrophysics Data System (ADS)
Marcolli, Matilde; Xu, Yujie
2017-04-01
This paper provides a construction of a quantum statistical mechanical system associated to knots in the 3-sphere and cyclic branched coverings of the 3-sphere, which is an analog, in the sense of arithmetic topology, of the Bost-Connes system, with knots replacing primes, and cyclic branched coverings of the 3-sphere replacing abelian extensions of the field of rational numbers. The operator algebraic properties of this system differ significantly from the Bost-Connes case, due to the properties of the action of the semigroup of knots on a direct limit of knot groups. The resulting algebra of observables is a noncommutative Bernoulli product. We describe the main properties of the associated quantum statistical mechanical system and of the relevant partition functions, which are obtained from simple knot invariants like genus and crossing number.
Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation
Eckly-Michel, Anita; Martin, Viviane; Lugnier, Claire
1997-01-01
The involvement of cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG) in the effects of cyclic AMP-elevating agents on vascular smooth muscle relaxation, cyclic nucleotide dependent-protein kinase activities and ATP-induced calcium signalling ([Ca2+]i) was studied in rat aorta. Cyclic AMP-elevating agents used were a β-adrenoceptor agonist (isoprenaline), a phosphodiesterase 3 (PDE3) inhibitor (SK&F 94120) and a PDE4 inhibitor (rolipram). In rat intact aorta, the relaxant effect induced by isoprenaline (0.01–0.3 μM) was decreased by a specific inhibitor of PKA, H-89, whereas a specific inhibitor of PKG, Rp-8-Br-cyclic GMPS, was without effect. No significant difference in PKA and PKG activity ratios was detected in aortic rings when isoprenaline 10 μM was used. At the same concentration, isoprenaline did not modify ATP-induced changes in [Ca2+]i in smooth muscle cells. Neither H-89 nor Rp-8-Br-cyclic GMPS modified this response. These findings suggest that PKA is only involved in the relaxant effect induced by low concentrations of isoprenaline (0.01–0.3 μM), whereas for higher concentrations, other mechanisms independent of PKA and PKG are involved. The relaxant effects induced by SK&F 94120 and rolipram were inhibited by Rp-8-Br-cyclic GMPS with no significant effect of H-89. Neither SK&F 94120, nor rolipram at 30 μM significantly modified the activity ratios of PKA and PKG. Rolipram inhibited the ATP-induced transient increase in [Ca2+]i. This decrease was abolished by Rp-8-Br-cyclic GMPS whereas H-89 had no significant effect. These results suggest that PKG is involved in the vascular effects induced by the inhibitors of PDE3 and PDE4. Moreover, since it was previously shown that PDE3 and PDE4 inhibitors only increased cyclic AMP levels with no change in cyclic GMP level, these data also suggest a cross-activation of PKG by cyclic AMP in rat aorta. The combination of 5 μM SK&F 94120 with rolipram markedly
Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves
Chandler, H.D. . School of Mechanical Engineering)
1995-01-01
Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behavior is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behavior is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.
Cyclic Creep of Ultrafine-Grained Pure Cu Under Cyclic Tension Deformation
NASA Astrophysics Data System (ADS)
Wu, Yanjun; Yang, Jingwen; Shen, Xu; Zhu, Rong
2017-02-01
The uniaxial ratcheting behavior of ultrafine-grained pure Cu processed by equal-channel angular pressing (ECAP) was investigated through uniaxial asymmetric cyclic stress-controlled experiments at room temperature. The effects of the mean stress and stress amplitude on the uniaxial ratcheting response and ratcheting life of the ECAP Cu were analyzed. With increasing mean stress or stress amplitude, the ratcheting strain and its rate increased, but the ratcheting life decreased. An approach based on Basquin's method was used to describe the fatigue lifetime of the ECAP pure Cu. Additionally, a power law relationship was adopted to describe the cyclic steady creep rate. Finally, the microscopic and macroscopic fracture features were examined. It was found that at high peak stresses, cyclic creep governs the overall failure process; otherwise, cyclic creep-fatigue interaction is the dominant failure mode.
Quantum games as quantum types
NASA Astrophysics Data System (ADS)
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes
Kondoh, Azusa; Jamison, Timothy F.
2010-01-01
A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646
New Correlations Between Monotonic and Cyclic Properties of Metallic Materials
NASA Astrophysics Data System (ADS)
Zonfrillo, Giovanni
2017-03-01
Knowledge of the cyclic properties of metallic materials is often critical to correctly design structural components. However, cyclic data are not easily available in the literature, while tensile test data are easier to find in specialized sites or vendor catalogs. In this study, the cyclic strength coefficient and the cyclic strain hardening exponent of the Ramberg-Osgood law were evaluated using exclusively data obtained through monotonic tensile tests. The analyses were carried out on a large set of materials. The database used is composed of 338 alloys, mainly iron alloys, but also titanium and aluminum alloys. New subdivisions of the materials were introduced. Several original relations were suggested to correlate static and cyclic strength parameters. The evaluated values of both cyclic strength coefficient and cyclic strain hardening exponent were compared with experimental values coming from cyclic test, obtaining a satisfactory agreement and a higher accuracy if compared with similar relations found in the literature.
NASA Astrophysics Data System (ADS)
Levy, Amikam; Diósi, Lajos; Kosloff, Ronnie
2016-05-01
In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally, the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository, quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one needs a balance between the information gained by measuring the system and the information fed back to the system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine, the external driving, the measurement, and the feedback operations.
NASA Astrophysics Data System (ADS)
Braun, Daniel; Giraud, Olivier; Braun, Peter A.
2010-03-01
We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)
2016-03-24
This included optimizing the MBE growth conditions of a near-surface quantum wells with emission around 1500nm and fabrication of arrays of various...antennas and near-surface quantum-confined structures. This included optimizing the molecular beam epitaxy growth conditions of a near-surface quantum...due to the single process epitaxial growth , increases the interaction. Low densities of indium islands have been shown to increase the
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador
2016-05-01
A major scientific thrust from recent years has been to try to harness quantum phenomena to increase the performance of a wide variety of information processing devices. In particular, quantum radar has emerged as an intriguing theoretical concept that could revolutionize electromagnetic standoff sensing. In this paper we will discuss how the techniques developed for quantum radar could also be used towards the design of novel seismographs able to detect small ground vibrations., We use a hypothetical earthquake warning system in order to compare quantum seismography with traditional seismographic techniques.
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Hiratsuka, T
1982-11-25
The synthesis of fluorescent derivatives of cAMP and cGMP, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding 2'-O-anthraniloyl derivatives of cyclic nucleotides, is here described. 2'-O-(N-Methylanthraniloyl) derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330-350 nm, these derivatives exhibited maximum fluorescence emission at 430-445 nm in aqueous solution with quantum yields of 0.11-0.26. Their fluorescence was sensitive to the polarity of solvent; in N,N-dimethylformamide quantum yields of 0.8-0.95. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield. The derivatives were substrates for beef heart cyclic nucleotide phosphodiesterase, 15-24% as effective as the natural substrate cAMP. When combined with thin layer chromatography techniques, two apparent Km values (3-4 microM and 36-76 microM) for the cAMP derivatives and one value (10-18 microM) for the cGMP derivatives were obtained. The results indicate that these 2'-hydroxyl-modified cAMP and cGMP can be useful fluorescent substrate analogs for cyclic nucleotide phosphodiesterase.
Cyclic soft groups and their applications on groups.
Aktaş, Hacı; Özlü, Serif
2014-01-01
In crisp environment the notions of order of group and cyclic group are well known due to many applications. In this paper, we introduce order of the soft groups, power of the soft sets, power of the soft groups, and cyclic soft group on a group. We also investigate the relationship between cyclic soft groups and classical groups.
Synthesis of cyclic sulfones by ring-closing metathesis.
Yao, Qingwei
2002-02-07
A general and highly efficient synthesis of cyclic sulfones based on ring-closing metathesis has been developed. The synthetic utility of the resulting cyclic sulfones was demonstrated by their participation in stereoselective Diels-Alder reactions and transformation to cyclic dienes by the Ramberg-Bäcklund reaction.
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Cunha, F Q; Teixeira, M M; Ferreira, S H
1999-06-01
1. The objective of the present paper was to evaluate the relevance of neuronal balance of cyclic AMP and cyclic GMP concentration for functional regulation of nociceptor sensitivity during inflammation. 2. Injection of PGE2 (10-100 ng paw-1) evoked a dose-dependent hyperalgesic effect which was mediated via a cyclic AMP-activated protein kinase (PKA) inasmuch as hyperalgesia was blocked by the PKA inhibitor H89. 3. The PDE4 inhibitor rolipram and RP73401, but not PDE3 and PDE5 inhibitors potentiated the hyperalgesic effects of PGE2. The hyperalgesic effect of dopamine was also enhanced by rolipram. Moreover, rolipram significantly potentiated hyperalgesia induced by carrageenan, bradykinin, TNF alpha, IL-1 beta, IL-6 and IL-8. This suggests that neuronal cyclic AMP mediates the prostanoid and sympathetic components of mechanical hyperalgesia. Moreover, in the neuron cyclic AMP is mainly metabolized by PDE4. 4. To examine the role of the NO/cyclic GMP pathway in modulating mechanical hyperalgesia, we tested the effects of the soluble guanylate cyclase inhibitor, ODQ. This substance counteracts the inhibitory effects of the NO donor, SNAP, on the hyperalgesia induced by PGE2. 5. The ODQ potentiated hyperalgesia induced by carrageenan, bradykinin, TNF alpha, IL-1 beta, IL-6 and IL-8. In contrast, ODQ had no significant effect on the hyperalgesia induced by PGE2 and dopamine. This indicates that the hyperalgesic cytokines may activate soluble guanylate cyclase, which down-regulate the ability of these substances to cause hyperalgesia. This event appears not to be mediated by prostaglandin or dopamine. 6. In conclusion, the results presented in this paper confirm an association between (i) hyperalgesia and elevated levels of cyclic AMP as well as (ii) antinociception and elevated levels of cyclic GMP. The intracellular levels of cyclic AMP that enhance hyperalgesia are controlled by the PDE4 isoform and appear to result in activation of protein kinase A whereas the
High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether
NASA Astrophysics Data System (ADS)
Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.
2011-06-01
Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)
Theoretical UV circular dichroism of aliphatic cyclic dipeptides.
Carlson, Kristine L; Lowe, Stephen L; Hoffmann, Mark R; Thomasson, Kathryn A
2005-06-23
Four cyclic dipeptides (piperazine-2,5-diones), cyclo(L-Pro-Gly), cyclo(L-Pro-L-Leu), cyclo(L-Ala-L-Ala), and cyclo(L-Pro-L-Ala), were modeled from crystal structure data. Conformations resulting from energy minimization using molecular mechanics were compared with traditional ab initio and density functional theory geometric optimizations for each dipeptide. In all computational cases, the gas phase was assumed. The pi-pi transition feature of the UV circular dichroic (CD) spectra was predicted for each peptide structure via the classical dipole interaction model. The dipole interaction model predicted CD spectra that qualitatively agreed with experiment when MP2 or DFT geometries were used. By coupling MP2 or DFT geometric optimizations with the classical physics method of the dipole interaction model, significantly better CD spectra were calculated than those using geometries obtained by molecular mechanics. Thus, one can couple quantum mechanical geometries with a classical physics model for calculation of circular dichroism.
Cyclic plasticity and failure of structural components
NASA Technical Reports Server (NTRS)
Kalev, I.
1980-01-01
An analytical approach for low-cycle fatigue prediction is presented. The approach combines a cyclic plasticity model with the finite element method and a damage accumulation criterion for ductile metals. The cyclic plasticity model is based on the concept of the combination of several yield surfaces. The surfaces are related to the material uniaxial stress-strain curve idealized by piecewise linear segments. The damage criterion is based on the Coffin-Manson formulae modified for the mean stress variation effect. It is extended to the multiaxial varying stress-strain field and applied for both the crack initiation and the crack growth processes. The stable slow crack growth rate is approximated by the damage accumulation gradient computed from the cracked finite element models. This procedure requires fatigue testing data of only smooth specimens under constant strain amplitudes. The present approach is illustrated by numerical examples of an aircraft wing stiffened panel subjected to compression, which causes material yielding and residual tension.
Separation of isotopes by cyclical processes
Hamrin, Jr., Charles E.; Weaver, Kenny
1976-11-02
Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.
Cyclic Oxidation Modeling and Life Prediction
NASA Technical Reports Server (NTRS)
Smialek, James L.
2004-01-01
The cyclic oxidation process can be described as an iterative scale growth and spallation sequence by a number of similar models. Model input variable include oxide scale type and growth parameters, spalling geometry, spall constant, and cycle duration. Outputs include net weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. All models and their variations produce a number of similar characteristic features. In general, spalling and material consumption increase to a steady state rate, at which point the retained scale approaches a constant and the rate of weight loss becomes linear. For one model, this regularity was demonstrated as dimensionless, universal expressions, obtained by normalizing the variables by critical performance factors. These insights were enabled through the use of the COSP for Windows cyclic oxidation spalling program.
Cyclic Cushing syndrome: definitions and treatment implications.
Velez, Dennis A; Mayberg, Marc R; Ludlam, William H
2007-01-01
Endogenous Cushing syndrome (CS) results from hypercortisolemia caused by excess adrenocorticotropic hormone production in a pituitary adenoma or ectopic tumor, or by an adrenal tumor that directly produces excess cortisol. The diagnosis can usually be ascertained with a reasonable degree of certainty based on clinical and laboratory findings of hypercortisolism. There are patients, however, in whom the production of excess cortisol exhibits a cyclic or intermittent pattern, and, as a result, the clinical symptoms may be quite complex and varied. In these patients the hypothalamic-pituitary-adrenal axis may be normal between cycles, and dexamethasone suppression testing may produce a paradoxical response. In the present article, the authors provide a definition of cyclic Cushing syndrome, review the causes and its potential pathophysiological mechanisms, and discuss the treatment options based on a review of the available literature.
Asymmetric Redox-Annulation of Cyclic Amines
2015-01-01
Cyclic amines such as 1,2,3,4-tetrahydroisoquinoline undergo regiodivergent annulation reactions with 4-nitrobutyraldehydes. These redox-neutral transformations enable the asymmetric synthesis of highly substituted polycyclic ring systems in just two steps from commercial materials. The utility of this process is illustrated in a rapid synthesis of (−)-protoemetinol. Computational studies provide mechanistic insights and implicate the elimination of acetic acid from an ammonium nitronate intermediate as the rate-determining step. PMID:26348653
Recurrence of cyclic esotropia after surgical correction.
Cahill, M; Walsh, J; McAleer, A
1999-12-01
Cyclic esotropia is a rare form of strabismus in which a convergent squint appears and disappears typically, but not always, in a regular 48-hour cycle. Characteristically, the convergent squint, when present, has a large angle with associated suppression and no binocular function. On normal or "nonsquinting" days, no manifest deviation is detectable (although in some cases there may be an esophoria). Physiologic diplopia is appreciated, whereas fusion and stereopsis are all normal. Amblyopia may occur in up to 20% of cases.
Antitumoral cyclic peptide analogues of chlamydocin.
Bernardi, E; Fauchere, J L; Atassi, G; Viallefont, P; Lazaro, R
1993-01-01
A series of cyclic tetrapeptides bearing the bioactive alkylating group on an epsilon-amino-lysyl function have been examined for their antitumoral activity on L1210 and P388 murine leukemia cell lines. One analogue belonging to the chlamydocin family and bearing a beta-chloroethylnitrosourea group was found to be potent at inhibiting L1210 cell proliferation and had a higher therapeutic index than the reference compound bis-beta-chloroethylnitrosourea (BCNU) on the in vivo P388-induced leukemia model.
Cyclic spectrum based carrier recovery for OQPSK
NASA Astrophysics Data System (ADS)
Peng, Hua; Li, Jing
2011-10-01
A union carrier synchronization scheme of feed-forward frequency offset estimation and PLL for OQPSK signals is discussed in this paper. A feed-forward frequency offset estimator is developed based on the cyclic spectrum of the received signal. In order to suppress channel noise, an improved strategy is proposed. Simulations show that the presented scheme can achieve steady state much more quickly than conventional Costas loop. At the same time, the steady error of the union scheme is also smaller.
Cyclic change in late triassic lacustrine communities.
Olsen, P E; Remington, C L; Cornet, B; Thomson, K S
1978-08-25
A new type of lake and shore assemblage has been found in the Late Triassic age rocks of North Carolina and Virginia (Dan River group). It includes abundant aquatic reptiles, fishes, at least seven orders of insects, crustaceans, and a diverse flora. Cyclic changes in the fauna and flora correlate with sedimentary cycles, which together reflect the repetitive development and extinction of large meromictic lakes.
Cyclic dominance in evolutionary games: a review
Szolnoki, Attila; Mobilia, Mauro; Jiang, Luo-Luo; Szczesny, Bartosz; Rucklidge, Alastair M.; Perc, Matjaž
2014-01-01
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator–prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock–paper–scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg–Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined. PMID:25232048
Cyclic biamperometry at micro-interdigitated electrodes.
Rahimi, Mehdi; Mikkelsen, Susan R
2011-10-01
Cyclic biamperometry was studied as an analytical method for use with commercially available, comb-type, coplanar microinterdigitated electrodes (μIDEs), using the ferri-/ferrocyanide redox couple as a model analyte. The μIDEs studied in this work were made of gold that had been deposited onto a Ti/W adhesion layer on borosilicate glass chips and had 5 and 10 μm bands with equal gap sizes. Close proximity of the two working electrodes, and their interdigitation, resulted in signal amplification by redox cycling. Results were compared with those obtained by cyclic voltammetry, where one of the two IDE electrodes was used as the working electrode and external reference and auxiliary electrodes were used. Amplification factors of almost 20 were achieved due to redox cycling. Attempts to apply cyclic voltammetry to the μIDEs, with one of the combs as the working and the other as the auxiliary electrode, were unsuccessful due to corrosion of the auxiliary electrode comb. Results of this study, and the electrochemically unique feature of biamperometry to probe but not change the net contents of the medium under examination, suggest the applicability of scanning biamperometry at μIDEs to the very small volumes and electrochemical cell dimensions that are now of great interest.
Scale factor duality for conformal cyclic cosmologies
NASA Astrophysics Data System (ADS)
Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.
2016-11-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
NASA Technical Reports Server (NTRS)
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
NASA Technical Reports Server (NTRS)
Lee, H.; Kok, P.; Dowling, J. P.
2002-01-01
This paper addresses the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and a specific quantum logical gate. Based on this equivalence we introduce the quantum Rosetta Stone, and we describe a projective measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity.
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2004-11-01
Financial mathematics is currently almost completely dominated by stochastic calculus. Presenting a completely independent approach, this book applies the mathematical and conceptual formalism of quantum mechanics and quantum field theory (with particular emphasis on the path integral) to the theory of options and to the modeling of interest rates. Many new results, accordingly, emerge from the author's perspective.
Effect on platelet functions of derivatives of cyclic nucleotides.
Pareti, F I; Carrera, D; Mannucci, L; Mannucci, P M
1978-04-30
Derivatives of cyclic nucleotides were evaluated for their ability to inhibit platelet aggregation and the release reaction. Derivatives substituted in position 8 (mainly 8-Br-cyclic GMP) were more active than 3'-5' cyclic AMP, and their relative potency in inhibiting platelet aggregation and 14C-serotonin release was comparable to that of N62-0'-dibutyryl-cyclic AMP. Compounds substituted in position 6 or 2'-0 were not effective. The active compounds, which were also tested for their ability to stimulate platelet adenylate cyclase or to inhibit cyclic AMP phosphodiesterase, did not modify the intracellular levels of cyclic AMP. Since previous animal experiments have shown that these derivatives cause less side effects than cyclic AMP and its dibutyryl derivative in animals, it is suggested that modification of the cyclophosphate molecule might make it possible to find compounds active only on platelet function without interfering with other biological systems.
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
1995-04-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
2006-11-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
Godinho, Rosely Oliveira; Costa-Jr, Valter Luiz
2003-01-01
This report analyses the intracellular and extracellular accumulation of cyclic AMP in primary rat skeletal muscle cultures, after direct and receptor-dependent stimulation of adenylyl cyclase (AC). Isoprenaline, calcitonin gene-related peptide (CGRP) and forskolin induced a transient increase in the intracellular cyclic AMP that peaked 5 min after onset stimulation. Under stimulation with isoprenaline or CGRP, the intracellular cyclic AMP initial rise was followed by an exponential decline, reaching 46 and 52% of peak levels in 10 min, respectively. Conversely, the forskolin-dependent accumulation of intracellular cyclic AMP decreased slowly and linearly, reaching 49% of the peak level in 30 min. The loss of intracellular cyclic AMP from peak levels, induced by direct or receptor-induced activation of AC, was followed by an increase in the extracellular cyclic AMP. This effect was independent on PDEs, since it was obtained in the presence of 3-isobutyl-1-methylxanthine (IBMX). Besides, in isoprenaline treated cells, the beta-adrenoceptor antagonist propranolol reduced both intra- and extracellular accumulation of cyclic AMP, whereas the organic anion transporter inhibitor probenecid reduced exclusively the extracellular accumulation. Together our data show that direct or receptor-dependent activation of skeletal muscle AC results in a transient increase in the intracellular cyclic AMP, despite the continuous presence of the stimulus. The temporal declining of intracellular cyclic AMP was not dependent on the cyclic AMP breakdown but associated to the efflux of cyclic nucleotide to the extracellular compartment, by an active transport since it was prevented by probenecid. PMID:12642402
Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C
2015-03-23
Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.
2010-03-04
1227–1230 (2009). 31. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009). 32. Dür, W., Briegel, H...REVIEWS Quantum computers T. D. Ladd1{, F. Jelezko2, R. Laflamme3,4,5, Y. Nakamura6,7, C. Monroe8,9 & J. L. O’Brien10 Over the past several decades... quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing
Cyclic Nucleotide Signaling in Polycystic Kidney Disease
Wang, Xiaofang; Ward, Christopher J.; Harris, Peter C.; Torres, Vicente E.
2013-01-01
Increased levels of 3’–5’-cyclic adenosine monophosphate (cAMP) stimulate cell proliferation and fluid secretion in polycystic kidney disease (PKD). Since hydrolytic capacity of phosphodiesterases (PDE) far exceeds maximum rate of synthesis by adenylyl cyclases (AC), cellular levels of cAMP are more sensitive to PDE inhibition than to AC activity changes. We have used enzymatic, western blot, immunohistochemistry, PCR and biochemical assays to study activity and expression of PDE families and isoforms and expression of downstream effectors of cAMP signaling in wildtype and PKD rat and mouse kidneys. The results indicate: 1) Species specific differences in PDE expression; higher PDE activity in kidneys from mice compared to rats; higher contribution of PDE1, relative to PDE4 and PDE3, to total PDE activity of kidney lysate and lower PDE1, PDE3 and PDE4 activities in murine cystic compared to wildtype kidneys. 2) Reduced levels of several PDE1, PDE3 and PDE4 proteins despite mRNA upregulation, possibly due to increased protein degradation. 3) Increased cGMP levels in polycystic kidneys, suggesting in vivo downregulation of PDE1 activity. 4) Additive stimulatory effect of cAMP and cGMP on cystogenesis in vitro. 5) Upregulation of cAMP-dependent protein kinase (PKA) subunits Iα and IIβ, PKare, CREB-1 mRNA, and CREM, ATF-1 and ICER proteins in cystic compared to wildtype kidneys. In summary, the results of this study suggest that alterations in cyclic nucleotide catabolism may render the cystic epithelium particularly susceptible to factors acting on Gs coupled receptors, account at least in part for the upregulation of cyclic nucleotide signaling in PKD, and contribute substantially to the progression of this disease. PMID:19924104
Modelling water molecules inside cyclic peptide nanotubes
NASA Astrophysics Data System (ADS)
Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon
2016-03-01
Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.
Universal Behavior of a Cyclic Oxidation Model
NASA Technical Reports Server (NTRS)
Smialek, James L.
2003-01-01
A mathematical model has been generated to represent the iterative, discrete growth and spallation processes associated with cyclic oxidation. Parabolic growth kinetics (k(sub p)) over and a constant spall area (F(sub A)) were assumed, with spalling occurring interfacially at the thickest regions of the scale. Although most models require numerical techniques, the regularity and simplicity of this progression permitted an approximation by algebraic expressions. Normalization could now be performed to reflect all parametric effects, and a universal cyclic oxidation response was generated: W(sub u) = 1/2 {3J(sub u)(sup 1/2)+ J(sub u)(sup 3/2)} where W, is weight change normalized by the maximum and J(sub u) is the cycle number normalized by the number to reach maximum. Similarly, the total amount of metal consumed was represented by a single normalized curve. The factor [(S(sub c)-l)(raised dot)sqrt(F(sub A)k(sub p)DELTAt)] was identified as a general figure of merit, where S(sub c) is the mass ratio of oxide to oxygen and DELTAt is the cycle duration. A cyclic oxidation failure map was constructed, in normalized k(sub p)-F(sub A) space, as defined by the locus of points corresponding to a critical amount of metal consumption in a given time. All three constructions describe behavior for every value of growth rate, spall fraction, and cycle duration by means of single curves, but with two branches corresponding to the times before and after steady state is achieved.
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Quantum thermal machines driven by vacuum forces
NASA Astrophysics Data System (ADS)
Terças, Hugo; Ribeiro, Sofia; Pezzutto, Marco; Omar, Yasser
2017-02-01
We propose a quantum thermal machine composed of two nanomechanical resonators (two membranes suspended over a trench in a substrate) placed a few μ m from each other. The quantum thermodynamical cycle is powered by the Casimir interaction between the resonators and the working fluid is the polariton resulting from the mixture of the flexural (out-of-plane) vibrations. With the help of piezoelectric cells, we select and sweep the polariton frequency cyclically. We calculate the performance of the proposed quantum thermal machines and show that high efficiencies are achieved thanks to (i) the strong coupling between the resonators and (ii) the large difference between the membrane stiffnesses. Our findings can be of particular importance for applications in nanomechanical technologies where a sensitive control of temperature is needed.
Quantum thermal machines driven by vacuum forces.
Terças, Hugo; Ribeiro, Sofia; Pezzutto, Marco; Omar, Yasser
2017-02-01
We propose a quantum thermal machine composed of two nanomechanical resonators (two membranes suspended over a trench in a substrate) placed a few μm from each other. The quantum thermodynamical cycle is powered by the Casimir interaction between the resonators and the working fluid is the polariton resulting from the mixture of the flexural (out-of-plane) vibrations. With the help of piezoelectric cells, we select and sweep the polariton frequency cyclically. We calculate the performance of the proposed quantum thermal machines and show that high efficiencies are achieved thanks to (i) the strong coupling between the resonators and (ii) the large difference between the membrane stiffnesses. Our findings can be of particular importance for applications in nanomechanical technologies where a sensitive control of temperature is needed.
NASA Astrophysics Data System (ADS)
Stapp, Henry P.
2012-05-01
Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows
Quantum technology: the second quantum revolution.
Dowling, Jonathan P; Milburn, Gerard J
2003-08-15
We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.
Quantum correlations and distinguishability of quantum states
NASA Astrophysics Data System (ADS)
Spehner, Dominique
2014-07-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
NASA Astrophysics Data System (ADS)
Commins, Eugene D.
2014-10-01
Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein-Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin 1/2 particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.
Paulsen, Robert; Schwatka, Natalie; Gober, Jennifer; Gilkey, David; Anton, Dan; Gerr, Fred; Rosecrance, John
2015-01-01
This study evaluated the inter-rater reliability of the American Conference of Governmental Industrial Hygienists (ACGIH®) hand activity level (HAL), an observational ergonomic assessment method used to estimate physical exposure to repetitive exertions during task performance. Video recordings of 858 cyclic and non-cyclic appliance manufacturing tasks were assessed by sixteen pairs of raters using the HAL visual-analog scale. A weighted Pearson Product Moment-Correlation Coefficient was used to evaluate the agreement between the HAL scores recorded by each rater pair, and the mean weighted correlation coefficients for cyclic and non-cyclic tasks were calculated. Results indicated that the HAL is a reliable exposure assessment method for cyclic (r̄-barw = 0.69) and non-cyclic work tasks (r̄-barw = 0.68). When the two reliability scores were compared using a two-sample Student's t-test, no significant difference in reliability (p = 0.63) between these work task categories was found. This study demonstrated that the HAL may be a useful measure of exposure to repetitive exertions during cyclic and non-cyclic tasks. Relevance to industry Exposure to hazardous levels of repetitive action during non-cyclic task completion has traditionally been difficult to assess using simple observational techniques. The present study suggests that ergonomists could use the HAL to reliably and easily evaluate exposures associated with some non-cyclic work tasks. PMID:26120222
Hasunuma, K
1983-01-01
Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media. Images PMID:6311798
NASA Astrophysics Data System (ADS)
Hsu, Tzu-Yin Jean
It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore
Radioiodination of Aryl-Alkyl Cyclic Sulfates
Mushti, Chandra; Papisov, Mikhail I.
2015-01-01
Among the currently available positron emitters suitable for Positron Emission Tomography (PET), 124I has the longest physical half-life (4.2 days). The long half-life and well-investigated behavior of iodine in vivo makes 124I very attractive for pharmacological studies. In this communication, we describe a simple yet effective method for the synthesis of novel 124I labeled compounds intended for PET imaging of arylsulfatase activity in vivo. Arylsulfatases have important biological functions, and genetic deficiencies of such functions require pharmacological replacement, the efficacy of which must be properly and non-invasively evaluated. These enzymes, even though their natural substrates are mostly of aliphatic nature, hydrolyze phenolic sulfates to phenol and sulfuric acid. The availability of [124I]iodinated substrates is expected to provide a PET-based method for measuring their activity in vivo. The currently available methods of synthesis of iodinated arylsulfates usually require either introducing of a protected sulfate ester early in the synthesis or introduction of sulfate group at the end of synthesis in a separate step. The described method gives the desired product in one step from an aryl-alkyl cyclic sulfate. When treated with iodide, the source cyclic sulfate opens with substitution of iodide at the alkyl center and gives the desired arylsulfate monoester. PMID:23135631
Effects of cyclic hydraulic pressure on osteocytes.
Liu, Chao; Zhao, Yan; Cheung, Wing-Yee; Gandhi, Ronak; Wang, Liyun; You, Lidan
2010-05-01
Bone is able to adapt its composition and structure in order to suit its mechanical environment. Osteocytes, bone cells embedded in the calcified matrix, are believed to be the mechanosensors and responsible for orchestrating the bone remodeling process. Recent in vitro studies have shown that osteocytes are able to sense and respond to substrate strain and fluid shear. However the capacity of osteocytes to sense cyclic hydraulic pressure (CHP) associated with physiological mechanical loading is not well understood. In this study, we subjected osteocyte-like MLO-Y4 cells to controlled CHP of 68 kPa at 0.5 Hz, and investigated the effects of CHP on intracellular calcium concentration, cytoskeleton organization, mRNA expression of genes related to bone remodeling, and osteocyte apoptosis. We found that osteocytes were able to sense CHP and respond by increased intracellular calcium concentration, altered microtubule organization, a time-dependent increase in COX-2 mRNA level and RANKL/OPG mRNA ratio, and decreased apoptosis. These findings support the hypothesis that loading induced cyclic hydraulic pressure in bone serves as a mechanical stimulus to osteocytes and may play a role in regulating bone remodeling in vivo.
Cyclical components of local rainfall data
NASA Astrophysics Data System (ADS)
Mentz, R. P.; D'Urso, M. A.; Jarma, N. M.; Mentz, G. B.
2000-02-01
This paper reports on the use of a comparatively simple statistical methodology to study local short time series rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some uncertainties affecting this business activity.The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is well known in many areas of application. When series are in the realm of business and economics, the statistical methods popularized by the US Census Bureau US National Bureau of Economic Research are used for seasonal and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the meteorological context, and this is done in this paper for a selection of monthly rainfall time series.Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis described in this paper.
Rf cavity primer for cyclic proton accelerators
Griffin, J.E.
1988-04-01
The purpose of this note is to describe the electrical and mechanical properites of particle accelerator rf cavities in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion will be limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common pratice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.
Rethinking progesterone regulation of female reproductive cyclicity.
Kubota, Kaiyu; Cui, Wei; Dhakal, Pramod; Wolfe, Michael W; Rumi, M A Karim; Vivian, Jay L; Roby, Katherine F; Soares, Michael J
2016-04-12
The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle. We generated two Pgr mutant rat models, using genome editing. In both cases, deletions yielded a null mutation resulting from a nonsense frame-shift and the emergence of a stop codon. Similar to Pgr null mice, Pgr null rats were infertile because of deficits in sexual behavior, ovulation, and uterine endometrial differentiation. However, in contrast to the reported phenotype of female mice with disruptions in Pgr signaling, Pgr null female rats exhibit robust estrous cycles. Cyclic changes in vaginal cytology, uterine histology, serum hormone levels, and wheel running activity were evident in Pgr null female rats, similar to wild-type controls. Furthermore, exogenous progesterone treatment inhibited estrous cycles in wild-type female rats but not in Pgr-null female rats. As previously reported, pharmacologic antagonism supports a role for PGR signaling in the regulation of the ovulatory gonadotropin surge, a result at variance with experimentation using genetic ablation of PGR signaling. To conclude, our findings in the Pgr null rat challenge current assumptions and prompt a reevaluation of the hormonal control of reproductive cyclicity.
Quantum Particles From Quantum Information
NASA Astrophysics Data System (ADS)
Görnitz, T.; Schomäcker, U.
2012-08-01
Many problems in modern physics demonstrate that for a fundamental entity a more general conception than quantum particles or quantum fields are necessary. These concepts cannot explain the phenomena of dark energy or the mind-body-interaction. Instead of any kind of "small elementary building bricks", the Protyposis, an abstract and absolute quantum information, free of special denotation and open for some purport, gives the solution in the search for a fundamental substance. However, as long as at least relativistic particles are not constructed from the Protyposis, such an idea would remain in the range of natural philosophy. Therefore, the construction of relativistic particles without and with rest mass from quantum information is shown.
Automated Search for new Quantum Experiments
NASA Astrophysics Data System (ADS)
Krenn, Mario; Malik, Mehul; Fickler, Robert; Lapkiewicz, Radek; Zeilinger, Anton
2016-03-01
Quantum mechanics predicts a number of, at first sight, counterintuitive phenomena. It therefore remains a question whether our intuition is the best way to find new experiments. Here, we report the development of the computer algorithm Melvin which is able to find new experimental implementations for the creation and manipulation of complex quantum states. Indeed, the discovered experiments extensively use unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger state, to a vast variety of experiments for asymmetrically entangled quantum states—a feature that can only exist when both the number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional transformations are found that perform cyclic operations. Melvin autonomously learns from solutions for simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability to automate the design of a quantum experiment can be applied to many quantum systems and allows the physical realization of quantum states previously thought of only on paper.
Quantum Computing for Quantum Chemistry
2010-09-01
random walks as the decoherence became strong. Recent experiments on photosynthetic light -harvesting complexes observed long-lived excitonic coherences...by the light -harvesting complex. In Environment-assisted quantum walks in energy transfer of photosynthetic complexes, J. Chem. Phys. 129 (2008...a decohered quantum walk. Motivated by the experiments on the Fenna-Matthews-Olson (FMO) light -harvesting complex of green sulfur bacteria, we
Dependence of the Excitability of Pituitary Cells on Cyclic Nucleotides
Stojilkovic, Stanko S.; Kretschmannova, Karla; Tomic, Melanija; Stratakis, Constantine A.
2012-01-01
Cyclic 3′,5′-adenosine monophosphate and cyclic 3′,5′-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. Here, we review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process. PMID:22564128
Introduction to Quantum Simulation
NASA Technical Reports Server (NTRS)
Williams, Colin P.
2005-01-01
This viewgraph presentation addresses the problem of efficiently simulating the evolution of a quantum system. The contents include: 1) Quantum Simulation; 2) Extracting Answers from Quantum Simulations; 3) Quantum Fourier Transform; 4) Eigenvalue Estimation; 5) Fermionic Simulations.
Quantum Transmemetic Intelligence
NASA Astrophysics Data System (ADS)
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Quantum Physics for Beginners.
ERIC Educational Resources Information Center
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Synthesis of N-substituted Cyclic Hydrocarbons, such as Pyrimidine, in The Ionosphere of Titan
NASA Astrophysics Data System (ADS)
Bera, P. P.; Peverati, R.; Head-Gordon, M.; Lee, T. J.
2014-12-01
The instruments on board the CASSINI spacecraft observed large carbonaceous molecules in the upper atmosphere of Titan. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions, including positive and negative ions, are in relative abundance in the ionosphere of Titan. Hence, barrierless ion-molecule interactions may play a major role in guiding molecules towards each other and initiating reactions. We study these condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. By employing accurate quantum chemical methods we have investigated the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules with major ions observed in the upper atmosphere of Titan, e.g. C2H5+ and HCNH+. We have also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge. We have investigated how nitrogen atoms are incorporated into the carbon ring during growth. Specifically, we explored the mechanisms by which the synthesis of pyrimidine will be feasible in the atmosphere of Titan in conjunction with ion-mobility experiments. We have used accurate ab initio coupled cluster theory, Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory quantum chemical methods together with large correlation consistent basis sets in these investigations. We found that a series of hydrocarbons with a specific stoichiometric composition prefers cyclic molecule formation rather than chains. Some of the association products we investigated have large oscillator strengths for charge-transfer type electronic excitations in the
NASA Astrophysics Data System (ADS)
Tsubota, Makoto; Kobayashi, Michikazu; Takeuchi, Hiromitsu
2013-01-01
Quantum hydrodynamics in superfluid helium and atomic Bose-Einstein condensates (BECs) has been recently one of the most important topics in low temperature physics. In these systems, a macroscopic wave function (order parameter) appears because of Bose-Einstein condensation, which creates quantized vortices. Turbulence consisting of quantized vortices is called quantum turbulence (QT). The study of quantized vortices and QT has increased in intensity for two reasons. The first is that recent studies of QT are considerably advanced over older studies, which were chiefly limited to thermal counterflow in 4He, which has no analog with classical traditional turbulence, whereas new studies on QT are focused on a comparison between QT and classical turbulence. The second reason is the realization of atomic BECs in 1995, for which modern optical techniques enable the direct control and visualization of the condensate and can even change the interaction; such direct control is impossible in other quantum condensates like superfluid helium and superconductors. Our group has made many important theoretical and numerical contributions to the field of quantum hydrodynamics of both superfluid helium and atomic BECs. In this article, we review some of the important topics in detail. The topics of quantum hydrodynamics are diverse, so we have not attempted to cover all these topics in this article. We also ensure that the scope of this article does not overlap with our recent review article (arXiv:1004.5458), “Quantized vortices in superfluid helium and atomic Bose-Einstein condensates”, and other review articles.
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
NASA Astrophysics Data System (ADS)
Hsu, Tzu-Yin Jean
It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and
Biologic activity of cyclic and caged phosphates: a review.
Lorke, Dietrich E; Stegmeier-Petroianu, Anka; Petroianu, Georg A
2017-01-01
The recognition in the early 1960s by Morifusa Eto that tri-o-cresyl phosphate (TOCP) is hydroxylated by the cytochrome P450 system to an intermediate that spontaneously cyclizes to a neurotoxic phosphate (saligenin phosphate ester) ignited the interest in this group of compounds. Only the ortho isomer can cyclize and clinically cause Organo Phosphate Induced Delayed Neurotoxicity (OPIDN); the meta and para isomers of tri-cresyl phosphate are not neuropathic because they are unable to form stable cyclic saligenin phosphate esters. This review identifies the diverse biological effects associated with various cyclic and caged phosphates and phosphonates and their possible use. Cyclic compounds that inhibit acetylcholine esterase (AChE), such as salithion, can be employed as pesticides. Others are neurotoxic, most probably because of inhibition of neuropathy target esterase (NTE). Cyclic phosphates that inhibit lipases, the cyclipostins, possibly represent promising therapeutic avenues for the treatment of type 2 diabetes mellitus and/or microbial infections; those compounds inhibiting β-lactamase may prevent bacterial resistance against β-lactam antibiotics. Naturally occurring cyclic phosphates, such as cyclic AMP, cyclic phosphatidic acid and the ryanodine receptor modulator cyclic adenosine diphosphate ribose, play an important physiological role in signal transduction. Moreover, some cyclic phosphates are GABA-antagonists, while others are an essential component of Molybdenum-containing enzymes. Some cyclic phosphates (cyclophosphamide, ifosfamide) are clinically used in tumor therapy, while the coupling of therapeutic agents with other cyclic phosphates (HepDirect® Technology) allows drugs to be targeted to specific organs. Possible clinical applications of these compounds are considered. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Skrbek, L.
2011-12-01
We review physical properties of quantum fluids He II and 3He-B, where quantum turbulence (QT) has been studied experimentally. Basic properties of QT in these working fluids are discussed within the phenomenological two-fluid model introduced by Landau. We consider counterflows in which the normal and superfluid components flow against each other, as well as co-flows in which the direction of the two fluids is the same. We pay special attention to the important case of zero temperature limit, where QT represents an interesting and probably the simplest prototype of three-dimensional turbulence in fluids. Experimental techniques to explore QT such as second sound attenuation, Andreev reflection, NMR, ion propagation are briefly introduced and results of various experiments on so-called Vinen QT and Kolmogorov QT both in He II and 3He are discussed, emphasizing similarities and differences between classical and quantum turbulence.
NASA Astrophysics Data System (ADS)
Sassoli de Bianchi, Massimiliano
2013-09-01
In a letter to Born, Einstein wrote [42]: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one.' I, at any rate, am convinced that He does not throw dice." In this paper we take seriously Einstein's famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell's inequality.
NASA Astrophysics Data System (ADS)
Feng, Chao-Jun; Li, Xin-Zhou
In this paper, we will give a short review on quantum spring, which is a Casimir effect from the helix boundary condition that proposed in our earlier works. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.
Monitoring thermoplastic composites under cyclic bending tests
NASA Astrophysics Data System (ADS)
Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro
2016-05-01
This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.
Cyclic phosphatidic acid - a unique bioactive phospholipid.
Fujiwara, Yuko
2008-09-01
Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including anti-mitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs.
Extinction in four species cyclic competition
NASA Astrophysics Data System (ADS)
Intoy, Ben; Pleimling, Michel
2013-08-01
When four species compete stochastically in a cyclic way, the formation of two teams of mutually neutral partners is observed. In this paper we study through numerical simulations the extinction processes that can take place in this system both in the well mixed case as well as on different types of lattices. The different routes to extinction are revealed by the probability distribution of the domination time, i.e. the time needed for one team to fully occupy the system. If swapping is allowed between neutral partners, then the probability distribution is dominated by very long-lived states where a few very large domains persist, each domain being occupied by a mix of individuals from species that form one of the teams. Many aspects of the possible extinction scenarios are lost when only considering averaged quantities, such as for example the mean domination time.
[Cyclic imine toxin gymnodimine: a review].
Liu, Ren-yan; Liang, Yu-bo
2009-09-01
Gymnodimine (GYM), an algal toxin first detected from New Zealand oysters in 1994, is identified as a cyclic imine toxin and produced by Karenia selliformis, with imino nitrogen attached on loop-coil. Imine is the poisonous functional group of the toxin. GYM has a low oral toxicity, but its acute lethal toxicity of intra-peritoneal injection for mice is very high. Up to now, few reports have been published on the detailed information about the toxicity mechanism of GYM. Based on limited literatures, this paper reviewed the GYM's structure, producer, toxicity mechanism, carrying animals, geological distribution, degradation metabolism, dose-effect relation, and risk evaluation, and proposed the further research directions on algal toxin.
The prognosis of cyclical vomiting syndrome
Dignan, F; Symon, D; AbuArafeh, I; Russell, G
2001-01-01
AIMS—The medium term prognosis of cyclical vomiting syndrome (CVS) was studied to determine the proportion of affected individuals who had gone on to develop headaches fulfilling the International Headache Society criteria for migraine. METHODS—Twenty six (76%) of 34 CVS sufferers identified from the authors' clinical records were traced, and all agreed to participate. Each child was matched to a control, and telephone interviews were conducted using a standardised questionnaire. RESULTS—Thirteen (50%) of the subjects had continuing CVS and/or migraine headaches while the remainder were currently asymptomatic. The prevalence of past or present migraine headaches in subjects (46%) was significantly higher than in the control population (12%). CONCLUSION—Results support the concept that CVS is closely related to migraine. PMID:11124785
COSP - A computer model of cyclic oxidation
NASA Technical Reports Server (NTRS)
Lowell, Carl E.; Barrett, Charles A.; Palmer, Raymond W.; Auping, Judith V.; Probst, Hubert B.
1991-01-01
A computer model useful in predicting the cyclic oxidation behavior of alloys is presented. The model considers the oxygen uptake due to scale formation during the heating cycle and the loss of oxide due to spalling during the cooling cycle. The balance between scale formation and scale loss is modeled and used to predict weight change and metal loss kinetics. A simple uniform spalling model is compared to a more complex random spall site model. In nearly all cases, the simpler uniform spall model gave predictions as accurate as the more complex model. The model has been applied to several nickel-base alloys which, depending upon composition, form Al2O3 or Cr2O3 during oxidation. The model has been validated by several experimental approaches. Versions of the model that run on a personal computer are available.
Planck 2013 results support the cyclic universe
NASA Astrophysics Data System (ADS)
Lehners, Jean-Luc; Steinhardt, Paul J.
2013-06-01
We show that results from the Planck satellite reported in 2013 are consistent with cyclic models of the Universe for natural parameter ranges (i.e. order unity dimensionless coefficients), assuming the standard entropic mechanism for generating curvature perturbations. With improved precision, forthcoming results from Planck and other experiments should be able to test the remaining parameter range and confirm or refute the core predictions, i.e. no observable primordial B-mode polarization and detectable local non-Gaussianity. A new prediction, given the Planck 2013 constraints on the bispectrum, is a sharp constraint on the local trispectrum parameter gNL; namely, the currently best-understood models predict it is negative, with gNL≲-1700.
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Lincoln, Don
2014-10-24
The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.
NASA Astrophysics Data System (ADS)
Sych, Denis; Leuchs, Gerd
2015-12-01
Classical physics allows for the existence of pairs of absolutely identical systems. Pairwise application of identical measurements to each of those systems always leads to exactly alike results irrespectively of the choice of measurements. Here we ask a question how the picture looks like in the quantum domain. Surprisingly, we get a counterintuitive outcome. Pairwise application of identical (but a priori unknown) measurements cannot always lead to exactly alike results. We interpret this as quantum uniqueness—a feature that has no classical analog.
Blind Quantum Signature with Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Blind Quantum Signature with Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Ronghua; Guo, Ying
2016-12-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Electron quantum optics as quantum signal processing
NASA Astrophysics Data System (ADS)
Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.
2017-03-01
The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics interference experiments as analog signal processing converting quantum signals into experimentally observable quantities such as current averages and correlations. This point of view also gives us a procedure to obtain quantum information quantities from electron quantum optics coherences. We illustrate these ideas by discussing two mode entanglement in electron quantum optics. We also sketch how signal processing ideas may open new perspectives for representing electronic coherences in quantum conductors and understand the properties of the underlying many-body electronic state.
Quantum memory for images: A quantum hologram
Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.
2008-02-15
Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve.
Vass, E; Strijowski, U; Wollschläger, K; Mándity, I M; Szilvágyi, G; Jewgiński, M; Gaus, K; Royo, S; Majer, Z; Sewald, N; Hollósi, M
2010-11-01
The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans-2-aminocyclohexane carboxylic acid (Achc) or trans-2-aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three-dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6-31G(d) density functional theory (DFT) level. The good agreement between the structural features derived from the VCD spectra and the NMR-based structures underlines the applicability of VCD in studying the conformation of small cyclic peptides.
Advanced Developments in Cyclic Polymers: Synthesis, Applications, and Perspectives
Zhu, Yinghuai; Hosmane, Narayan S
2015-01-01
Due to the topological effect, cyclic polymers demonstrate different and unique physical and biological properties in comparison with linear counterparts having the same molecular-weight range. With advanced synthetic and analytic technologies, cyclic polymers with different topologies, e.g. multicyclic polymers, have been reported and well characterized. For example, various cyclic DNA and related structures, such as cyclic duplexes, have been prepared conveniently by click chemistry. These types of DNA have increased resistance to enzymatic degradation and have high thermodynamic stability, and thus, have potential therapeutic applications. In addition, cyclic polymers have also been used to prepare organic–inorganic hybrids for applications in catalysis, e.g. catalyst supports. Due to developments in synthetic technology, highly pure cyclic polymers could now be produced in large scale. Therefore, we anticipate discovering more applications in the near future. Despite their promise, cyclic polymers are still less explored than linear polymers like polyolefins and polycarbonates, which are widely used in daily life. Some critical issues, including controlling the molecular weight and finding suitable applications, remain big challenges in the cyclic-polymer field. This review briefly summarizes the commonly used synthetic methodologies and focuses more on the attractive functional materials and their biological properties and potential applications. PMID:26478835
Variation potential influence on photosynthetic cyclic electron flow in pea
Sukhov, Vladimir; Surova, Lyubov; Sherstneva, Oksana; Katicheva, Lyubov; Vodeneev, Vladimir
2015-01-01
Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influence on cyclic electron flow in pea (Pisum sativum L.). VP was induced in pea seedling leaves by local heating and measured in an adjacent, undamaged leaf by extracellular electrodes. CO2 assimilation was measured using a portable gas exchange measuring system. Photosystem I and II parameters were investigated using a measuring system for simultaneous assessment of P700 oxidation and chlorophyll fluorescence. Heating-induced VP reduced CO2 assimilation and electron flow through photosystem II. In response, cyclic electron flow rapidly decreased and subsequently slowly increased. Slow increases in cyclic flow were caused by decreased electron flow through photosystem II, which was mainly connected with VP-induced photosynthetic dark stage inactivation. However, direct influence by VP on photosystem I also participated in activation of cyclic electron flow. Thus, VP, induced by local leaf-heating, activated cyclic electron flow in undamaged leaves. This response was similar to photosynthetic changes observed under the direct action of stressors. Possible mechanisms of VP's influence on cyclic flow were discussed. PMID:25610447
High-Temperature Cyclic Oxidation Data, Volume 1
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Garlick, R. G.; Lowell, C. E.
1984-01-01
This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Lower Confidence Interval Bounds for Coherent Systems with Cyclic Components
1990-09-01
Three lower confidence interval estimation procedures for system reliability of coherent systems with cyclic components are developed and their...failure times and applied to yield a lower confidence interval procedures for the reliability of coherent systems with cyclic and continuously operating components.
MICROWAVE-ASSISTED PREPARATION OF CYCLIC UREAS FROM DIAMINES
Rajender S. Varma* and Yong-Jin Kim
Cyclic ureas are useful intermediates for a variety of pharmaceuticals and pesticides. One of the attractive approaches for the synthesis of cyclic ureas uses condensation of diamines with urea as a carbonyl source under dynamic evacuation. ...
Formation Routes For Pure and N-substituted Cyclic Hydrocarbon Molecules in The Ionosphere of Titan
NASA Astrophysics Data System (ADS)
Bera, P. P.; Peverati, R.; Head-Gordon, M.; Lee, T. J.
2013-12-01
Titan's upper atmosphere contains large carbonaceous molecules as has been observed by the instruments on board the CASSINI spacecraft. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions are in relative abundance in the ionosphere of Titan. Hence, barrierless ion-molecule interactions may play a major role in guiding molecules towards each other and initiating reactions. We study these cold condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. By employing accurate quantum chemical methods we have investigated the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules with major ions observed in the upper atmosphere of Titan, e.g. C2H5+ and HCNH+. We have also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge. Additionally, we have investigated how nitrogen atoms are incorporated into the carbon ring during growth. We have used accurate ab initio coupled cluster theory, Møller-Plesset perturbation theory and density functional theory quantum chemical methods together with large correlation consistent basis sets in these investigations. We also employed time-dependent density functional theory and equations-of-motion coupled cluster theory to compute electronic excitation energies and oscillator strengths of the products of the ion-molecule reactions. We obtained accurate vibrational frequencies under the harmonic approximation and vibrational intensities using the double harmonic approximation for fundamental molecular vibrations. We identified three types of bonding motifs with strong, moderate
Sequencing by Cyclic Ligation and Cleavage (CycLiC) directly on a microarray captured template.
Mir, Kalim U; Qi, Hong; Salata, Oleg; Scozzafava, Giuseppe
2009-01-01
Next generation sequencing methods that can be applied to both the resequencing of whole genomes and to the selective resequencing of specific parts of genomes are needed. We describe (i) a massively scalable biochemistry, Cyclical Ligation and Cleavage (CycLiC) for contiguous base sequencing and (ii) apply it directly to a template captured on a microarray. CycLiC uses four color-coded DNA/RNA chimeric oligonucleotide libraries (OL) to extend a primer, a base at a time, along a template. The cycles comprise the steps: (i) ligation of OLs, (ii) identification of extended base by label detection, and (iii) cleavage to remove label/terminator and undetermined bases. For proof-of-principle, we show that the method conforms to design and that we can read contiguous bases of sequence correctly from a template captured by hybridization from solution to a microarray probe. The method is amenable to massive scale-up, miniaturization and automation. Implementation on a microarray format offers the potential for both selection and sequencing of a large number of genomic regions on a single platform. Because the method uses commonly available reagents it can be developed further by a community of users.
Quantum learning without quantum memory.
Sentís, G; Calsamiglia, J; Muñoz-Tapia, R; Bagan, E
2012-01-01
A quantum learning machine for binary classification of qubit states that does not require quantum memory is introduced and shown to perform with the minimum error rate allowed by quantum mechanics for any size of the training set. This result is shown to be robust under (an arbitrary amount of) noise and under (statistical) variations in the composition of the training set, provided it is large enough. This machine can be used an arbitrary number of times without retraining. Its required classical memory grows only logarithmically with the number of training qubits, while its excess risk decreases as the inverse of this number, and twice as fast as the excess risk of an "estimate-and-discriminate" machine, which estimates the states of the training qubits and classifies the data qubit with a discrimination protocol tailored to the obtained estimates.
Quantum learning without quantum memory
NASA Astrophysics Data System (ADS)
Sentís, G.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.
2012-10-01
A quantum learning machine for binary classification of qubit states that does not require quantum memory is introduced and shown to perform with the minimum error rate allowed by quantum mechanics for any size of the training set. This result is shown to be robust under (an arbitrary amount of) noise and under (statistical) variations in the composition of the training set, provided it is large enough. This machine can be used an arbitrary number of times without retraining. Its required classical memory grows only logarithmically with the number of training qubits, while its excess risk decreases as the inverse of this number, and twice as fast as the excess risk of an ``estimate-and-discriminate'' machine, which estimates the states of the training qubits and classifies the data qubit with a discrimination protocol tailored to the obtained estimates.
Quantum Speedup by Quantum Annealing
NASA Astrophysics Data System (ADS)
Somma, Rolando D.; Nagaj, Daniel; Kieferová, Mária
2012-08-01
We study the glued-trees problem from A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (ACM, San Diego, CA, 2003), p. 59. in the adiabatic model of quantum computing and provide an annealing schedule to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generalizations based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing due to small gaps.
Geometric quantum gates for an electron-spin qubit in a quantum dot
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir; Rudin, Sergey
2012-06-01
A scheme to perform arbitrary unitary operations on a single electron-spin qubit in a quantum dot is proposed. The design is based on the geometrical phase acquired after a cyclic evolution by the qubit state. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses. The analytic expression of the evolution operator for the electron spin in a quantum dot, which provides a clear geometrical interpretation of the qubit dynamics, is obtained. Using parameters of InGAN/GaN, GaN/AlN quantum dots we provide an estimate for the time scale of the qubit rotations and parameters of the external fields. Robustness of the proposed scheme against external noise is also discussed.
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
NASA Astrophysics Data System (ADS)
Tsubota, Makoto
2008-11-01
The present article reviews the recent developments in the physics of quantum turbulence. Quantum turbulence (QT) was discovered in superfluid 4He in the 1950s, and the research has tended toward a new direction since the mid 90s. The similarities and differences between quantum and classical turbulence have become an important area of research. QT is comprised of quantized vortices that are definite topological defects, being expected to yield a model of turbulence that is much simpler than the classical model. The general introduction of the issue and a brief review on classical turbulence are followed by a description of the dynamics of quantized vortices. Then, we discuss the energy spectrum of QT at very low temperatures. At low wavenumbers, the energy is transferred through the Richardson cascade of quantized vortices, and the spectrum obeys the Kolmogorov law, which is the most important statistical law in turbulence; this classical region shows the similarity to conventional turbulence. At higher wavenumbers, the energy is transferred by the Kelvin-wave cascade on each vortex. This quantum regime depends strongly on the nature of each quantized vortex. The possible dissipation mechanism is discussed. Finally, important new experimental studies, which include investigations into temperature-dependent transition to QT, dissipation at very low temperatures, QT created by vibrating structures, and visualization of QT, are reviewed. The present article concludes with a brief look at QT in atomic Bose-Einstein condensates.
Sassoli de Bianchi, Massimiliano
2013-09-15
In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.
NASA Technical Reports Server (NTRS)
Dowling, Jonathan P.
2000-01-01
Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.
Visser, M. )
1991-01-15
This paper presents an application of quantum-mechanical principles to a microscopic variant of the traversable wormholes recently introduced by Morris and Thorne. The analysis, based on the surgical grafting of two Reissner-Nordstroem spacetimes, proceeds by using a minisuperspace model to approximate the geometry of these wormholes. The thin shell'' formalism is applied to this minisuperspace model to extract the effective Lagrangian appropriate to this one-degree-of-freedom system. This effective Lagrangian is then quantized and the wave function for the wormhole is explicitly exhibited. A slightly more general class of wormholes---corresponding to the addition of some dust'' to the wormhole throat---is analyzed by recourse to WKB techniques. In all cases discussed in this paper, the expectation value of the wormhole radius is calculated to be of the order of the Planck length. Accordingly, though these quantum wormholes are of considerable theoretical interest they do not appear to be useful as a means for interstellar travel. The results of this paper may also have a bearing on the question of topological fluctuations in quantum gravity. These calculations serve to suggest that topology-changing effects might in fact be {ital suppressed} by quantum-gravity effects.
NASA Astrophysics Data System (ADS)
Maślanka, K.
A model of reality based on quantum fields, but with a classical treatment of gravity, is inconsistent. Finding a solution has proved extremely difficult, possibly due to the beauty and conceptual simplicity of general relativity. There is a variety of approaches to a consistent theory of quntum gravity. At present, it seems that superstring theory is the most promising candidate.
Paulsen, Robert; Schwatka, Natalie; Gober, Jennifer; Gilkey, David; Anton, Dan; Gerr, Fred; Rosecrance, John
2014-01-01
This study evaluated the inter-rater reliability of the American Conference of Governmental Industrial Hygienists (ACGIH(®)) hand activity level (HAL), an observational ergonomic assessment method used to estimate physical exposure to repetitive exertions during task performance. Video recordings of 858 cyclic and non-cyclic appliance manufacturing tasks were assessed by sixteen pairs of raters using the HAL visual-analog scale. A weighted Pearson Product Moment-Correlation Coefficient was used to evaluate the agreement between the HAL scores recorded by each rater pair, and the mean weighted correlation coefficients for cyclic and non-cyclic tasks were calculated. Results indicated that the HAL is a reliable exposure assessment method for cyclic (r̄-bar w = 0.69) and non-cyclic work tasks (r̄-bar w = 0.68). When the two reliability scores were compared using a two-sample Student's t-test, no significant difference in reliability (p = 0.63) between these work task categories was found. This study demonstrated that the HAL may be a useful measure of exposure to repetitive exertions during cyclic and non-cyclic tasks.
Radiation Effects on Cyclic AMP, Cyclic GMP, and Amino Acid Levels in the CSF of the Primate
1980-11-07
rradiation . An analysis of brain areas obtained by biopsy of irradiated animals showed significant decreases in only the cerebellar cyclic AMP and cyclic...GMP. No appreciablk ¢±anges were found in the CSF amino acid composition. Acc. !-,’r ror UV , . c" l. __ ..:j’od I7 .... ’U r~rd0 /or cpy I NCI
2008-07-02
solution of certain problems for which the communication needs do not dominate. A similar situation prevails in the quantum world. Quantum teleportation and...REPORT Quantum Search and Beyond 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Ten years ago, the quantum search algorithm was designed to provide a way...P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum searching - partial quantum searching, fixed-point quantum
Optimal evolution models for quantum tomography
NASA Astrophysics Data System (ADS)
Czerwiński, Artur
2016-02-01
The research presented in this article concerns the stroboscopic approach to quantum tomography, which is an area of science where quantum physics and linear algebra overlap. In this article we introduce the algebraic structure of the parametric-dependent quantum channels for 2-level and 3-level systems such that the generator of evolution corresponding with the Kraus operators has no degenerate eigenvalues. In such cases the index of cyclicity of the generator is equal to 1, which physically means that there exists one observable the measurement of which performed a sufficient number of times at distinct instants provides enough data to reconstruct the initial density matrix and, consequently, the trajectory of the state. The necessary conditions for the parameters and relations between them are introduced. The results presented in this paper seem to have considerable potential applications in experiments due to the fact that one can perform quantum tomography by conducting only one kind of measurement. Therefore, the analyzed evolution models can be considered optimal in the context of quantum tomography. Finally, we introduce some remarks concerning optimal evolution models in the case of n-dimensional Hilbert space.
Efficient quantum walk on a quantum processor
NASA Astrophysics Data System (ADS)
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-05-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Quantum Secure Dialogue with Quantum Encryption
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2014-09-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-05-05
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Spin Phase Gate Based on Optically Generated Geometric Phases in a Self-Assembled Quantum Dot
2011-01-01
Xiaodong Xu, Bo Sun, and D. G. Steel H. M. Randall Laboratory, The University of Michigan, Ann Arbor, MI 48109 Phone:(734) 764-4469 Fax: (734) 763-9694...during a Cyclic Quantum Evolution”, Phys. Rev. Lett. 58, 1593 (1987) 9. Xiaodong Xu et al, “Fast Spin State Initialization in a Singly Charged InAs-GaAs Quantum Dot by Optical Cooling”, Phys. Rev. Lett. 99, 097401 (2007)
Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.
Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T
1988-01-01
A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508
Reversible cyclic peptide libraries for the discovery of affinity ligands.
Menegatti, Stefano; Ward, Kevin Lawrence; Naik, Amith Dattatray; Kish, William Stanley; Blackburn, Robert Kevin; Carbonell, Ruben Guillermo
2013-10-01
A novel strategy is presented for the identification of cyclic peptide ligands from combinatorial libraries of reversible cyclic depsipeptides. A method for the solid-phase synthesis of individual cyclic depsipeptides and combinatorial libraries of these compounds is proposed, which employs lactic acid (Lact) and the dipeptide ester (Nα-Ac)-Ser(Ala)- as linkers for dilactonization. Upon alkaline treatment of the beads selected by screening a model library, the cyclic depsipeptides are linearized and released from the solid support to the liquid phase, to be sequenced via single-step tandem mass spectrometry (MS/MS). The protocol presented for library synthesis provides for wide structural diversity. Two model sequences, VVWVVK and AAWAAR, were chosen to present different structural examples for depsipeptide libraries and demonstrate the process of sequence determination by mass spectrometry. Further, a case study using the IgG binding cyclic depsipeptide cyclo[(Nα-Ac)-S(A)-RWHYFK-Lact-E] is presented to demonstrate the process of library screening and sequence determination on the selected beads. Finally, a method is shown for synthesis of the irreversible cyclic peptide corresponding to the proposed depsipeptide structure, to make the ligand stable to the aqueous acid and alkaline conditions encountered in affinity chromatographic applications. The cyclic peptide ligand was synthesized on a poly(methacrylate) resin and used for chromatographic binding of the target IgG.
Cyclic Vomiting Syndrome: An Update Illustrated by a Case Report
Hermus, Ingeborg P. M.; Willems, Stacey J. B.; Bogman, Aimée C. C. F.; Janssen, Paddy K. C.; Brabers, Leonie; Schieveld, Jan N. M.
2016-01-01
Objective: This article presents an update on cyclic vomiting syndrome, a potentially exhausting disorder that can occur in children, adolescents, and adults and and has a huge impact on the quality of life. A structured literature search was conducted to explore the current knowledge about antipsychotics in the treatment of cyclic vomiting syndrome. A case report is presented of a 15-year-old boy with refractory cyclic vomiting syndrome (ICD-10 criteria), who finally responded to a unique combination of risperidone and amitriptyline. Data Sources: A literature search of English articles was performed in November 2015 using PubMed and the Cochrane Library with cyclic vomiting syndrome, cyclic vomiting, risperidone, and antipsychotics as key words. All types of publications were included. The publication period covered a span from 1976 to 2014. Study Selection and Data Extraction: In total, 13 articles were found. After screening the title and abstract, only 2 were selected. Results: In the current literature, only the use of chlorpromazine in the treatment of cyclic vomiting syndrome is mentioned. The possible underlying working mechanism of chlorpromazine is not clarified. Conclusions: Antipsychotics are hardly mentioned in the literature with regard to their antiemetic properties. Antipsychotics like risperidone, and its unique combination with amitriptyline, might be an important alternative to achieve a satisfactory treatment result in refractory cases of cyclic vomiting syndrome. PMID:27733950
Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells
Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.
1988-01-01
In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.
Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals.
Sirjean, B; Glaude, P A; Ruiz-Lopèz, M F; Fournet, R
2008-11-20
Whereas many studies have been reported on the reactions of aliphatic hydrocarbons, the chemistry of cyclic hydrocarbons has not been explored extensively. In the present work, a theoretical study of the gas-phase unimolecular decomposition of cyclic alkyl radicals was performed by means of quantum chemical calculations at the CBS-QB3 level of theory. Energy barriers and high-pressure-limit rate constants were calculated systematically. Thermochemical data were obtained from isodesmic reactions, and the contribution of hindered rotors was taken into account. Classical transition state theory was used to calculate rate constants. The effect of tunneling was taken into account in the case of CH bond breaking. Three-parameter Arrhenius expressions were derived in the temperature range of 500-2000 K at atmospheric pressure, and the CC and CH bond breaking reactions were studied for cyclic alkyl radicals with a ring size ranging from three to seven carbon atoms, with and without a lateral alkyl chain. For the ring-opening reactions, the results clearly show an increase of the activation energy as the pi bond is being formed in the ring (endo ring opening) in contrast to the cases in which the pi bond is formed on the side chain (exo ring opening). These results are supported by analyses of the electronic charge density that were performed with Atoms in Molecules (AIM) theory. For all cycloalkyl radicals considered, CH bond breaking exhibits larger activation energies than CC bond breaking, except for cyclopentyl for which the ring-opening and H-loss reactions are competitive over the range of temperatures studied. The theoretical results compare rather well with the experimental data available in the literature. Evans-Polanyi correlations for CC and CH beta-scissions in alkyl and cycloalkyl free radicals were derived. The results highlight two different types of behavior depending on the strain energy in the reactant.
NASA Technical Reports Server (NTRS)
Forward, Robert L.
1999-01-01
In 1983, Ambjorn and Wolfram produced plots of the energy density of the quantum mechanical electromagnetic fluctuations in a volume of vacuum bounded by perfectly conducting walls in the shape of a rectangular cavity of dimensions a(1), a(2), and a(3), as a function of the ratios a(2)/a(1) and a(3)/a(1). Portions of these plots are double-valued, in that they allow rectangular cavities with the same, value of a(2)/a(1), but different values of a(3)/a(1), to have the saint total energy. Using these double-valued regions of the plots, I show that it is possible to define a "Casimir Vacuum Energy Extraction Cycle" which apparently would allow for the endless extraction of energy from the vacuum in the Casimir cavity by cyclic manipulation of the Casimir cavity dimensions.
Quantum decision tree classifier
NASA Astrophysics Data System (ADS)
Lu, Songfeng; Braunstein, Samuel L.
2013-11-01
We study the quantum version of a decision tree classifier to fill the gap between quantum computation and machine learning. The quantum entropy impurity criterion which is used to determine which node should be split is presented in the paper. By using the quantum fidelity measure between two quantum states, we cluster the training data into subclasses so that the quantum decision tree can manipulate quantum states. We also propose algorithms constructing the quantum decision tree and searching for a target class over the tree for a new quantum object.
Cyclic Amplification of Prion Protein Misfolding
Barria, Marcelo A; Gonzalez-Romero, Dennisse; Soto, Claudio
2014-01-01
Protein Misfolfing Cyclic amplification (PMCA) is a technique that take advantage of the nucleation-dependent prion replication process to accelerate the conversion of PrPC into PrPSc in the test tube. PMCA uses ultrasound waves to fragment the PrPSc polymers, increasing the amount of seeds present in the infected sample without affecting their ability to act as conversion nucleus. Over the past 5 years PMCA has became an invaluable technique to study diverse aspects of prions. The PMCA technology has been used by several groups to understand the molecular mechanism of prion replication, the cellular factors involved in prion propagation, the intriguing phenomena of prion strains and species barriers, to detect PrPSc in tissues and biological fluids and to screen for inhibitors against prion replication. In this article we describe a detailed protocol of the PMCA technique, highlighting some of the important technical aspects to obtain a successful and reproducible application of the technology. PMID:22528092
Cyclical vomiting syndrome: Recognition, assessment and management.
Tan, Michelle Ln; Liwanag, Maria Janelle; Quak, Seng Hock
2014-08-08
Cyclical vomiting syndrome (CVS) is a functional, debilitating disorder of childhood frequently leading to hospitalization. Affected children usually experience a stereotypical pattern of vomiting though it may vary between different individuals. The vomiting is intense often bilious, and accompanied by disabling nausea. Identifiable precipitating factors for CVS include psychosocial stressors, infections, lack of sleep and occasionally even food triggers. Often, it may be difficult to distinguish episodes of CVS from other causes of acute abdomen and altered consciousness. Thus, the diagnosis of CVS remains largely one of exclusion. Investigations routinely done during the work-up of a child with suspected CVS include both blood and imaging modalities. Plasma lactate, ammonia, amino acid and acylcarnitine profiles as well as urine organic acid profile are indicated to exclude inborn errors of metabolism. The treatment remains challenging and targeted at prevention or shortening of the attacks and can be considered as abortive, supportive and prophylactic. Use of non-pharmacological therapy is also part of the management of CVS. The prognosis of CVS is variable. More insight into the pathogenesis of this disorder as well as role of non-pharmacological therapy is needed.
Cyclic voltammetry of fast conducting electrocatalytic films.
Costentin, Cyrille; Savéant, Jean-Michel
2015-07-15
In the framework of contemporary energy challenges, cyclic voltammetry is a particularly useful tool for deciphering the kinetics of catalytic films. The case of fast conducting films is analyzed, whether conduction is of the ohmic type or proceeds through rapid electron hopping. The rate-limiting factors are then the diffusion of the substrate in solution and through the film as well as the catalytic reaction itself. The dimensionless combination of the characteristics of these factors allows reducing the number of actual parameters to a maximum of two. The kinetics of the system may then be fully analyzed with the help of a kinetic zone diagram. Observing the variations of the current-potential responses with operational parameters such as film thickness, the potential scan rate and substrate concentration allows a precise assessment of the interplay between these factors and of the values of the rate controlling factors. A series of thought experiments is described in order to render the kinetic analysis more palpable.
The cyclic fatigue behavior of adhesive joints
NASA Astrophysics Data System (ADS)
Kinloch, A. J.; Toh, T.
1995-06-01
In the last six months we have: (1) Concentrated our efforts on the fatigue failure of carbon-fiber PEEK/AFl63 lap joints, and in particular we have started to predict the life time of single-lap joints under cyclic fatigue loading. The analysis is based on data obtained from double cantilever beam (DCB) fracture mechanics tests; (2) Further, we have been successful in measuring the rate of crack growth in lap joints during fatigue fracture using ultrasonic scanning; (3) Preliminary test data on the static fracture of glass-fiber reinforced poly(phenylene sulphide) (PPS)/AF163 joints have also been studied; and (4) A comparison has been made in computing the critical strain energy release rate G(sub c) for the glass-fiber PPS/AF163 joints based on the compliance method, beam theory and corrected beam theory. The last method accounts for large non-linear deflections and the associated crack root rotations along with the necessary corrections for the increase in stiffness introduced by the presence of end blocks.
Copper Regulates Cyclic AMP-Dependent Lipolysis
Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.
2016-01-01
Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565
Cyclic Vomiting Syndrome: A Functional Disorder
Kaul, Kanwar K.
2015-01-01
Cyclic vomiting syndrome (CVS) is a functional disorder characterized by stereotypical episodes of intense vomiting separated by weeks to months. Although it can occur at any age, the most common age at presentation is 3-7 years. There is no gender predominance. The precise pathophysiology of CVS is not known but a strong association with migraine headaches, in the patient as well as the mother indicates that it may represent a mitochondriopathy. Studies have also suggested the role of an underlying autonomic neuropathy involving the sympathetic nervous system in its pathogenesis. CVS has known triggers in many individuals and avoiding these triggers can help prevent the onset of the episodes. It typically presents in four phases: a prodrome, vomiting phase, recovery phase and an asymptomatic phase until the next episode. Complications such as dehydration and hematemesis from Mallory Wise tear of the esophageal mucosa may occur in more severe cases. Blood and urine tests and abdominal imaging may be indicated depending upon the severity of symptoms. Brain magnetic resonance imaging and upper gastrointestinal endoscopy may also be indicated in certain circumstances. Management of an episode after it has started ('abortive treatment') includes keeping the patient in a dark and quiet room, intravenous hydration, ondansetron, sumatriptan, clonidine, and benzodiazepines. Prophylactic treatment includes cyproheptadine, propranolol and amitriptyline. No mortality has been reported as a direct result of CVS and many children outgrow it over time. A subset may develop other functional disorders like irritable bowel syndrome and migraine headaches. PMID:26770896
Collagen network strengthening following cyclic tensile loading.
Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W
2016-02-06
The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling.
Coarsening and biodiversity in cyclically competing species
NASA Astrophysics Data System (ADS)
Intoy, Ben; Pleimling, Michel
2014-03-01
When four species compete stochastically in a cyclic way, the formation of two teams of mutually neutral partners is observed. We study through numerical simulations the extinction processes that can take place in this system both in the well mixed case as well as on different types of lattices. The different routes to extinction are revealed by the probability distribution of the domination time, i.e. the time needed for one team to fully occupy the system. If swapping is allowed between neutral partners, then the probability distribution is dominated by very long-lived states where a few very large domains persist, each domain being occupied by a mix of individuals from species that form one of the teams. Many aspects of the possible extinction scenarios are lost when only considering averaged quantities as for example the mean domination time. We also discuss some results for a model where species, that compete in Rock-Paper-Scissor fashion, have mixed strategies rather than pure strategies. We compare the case with mixed strategy to the pure strategy case and look at similarities and differences. This work is supported by the US National Science Foundation through grant DMR-1205309.
A low-power arcjet cyclic lifetest
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Hardy, Terry L.; Haag, Thomas W.
1987-01-01
A cyclic lifetest of a low power dc arcjet thruster using a hydrogen/nitrogen propellant mixture simulating hydrazine is currently in progress. Over 300 hr of operation have been accumulated to date in 2 hr duty cycles at a power level of about 1.15 kW, approximating that available on commercial communications satellites. A burn-in period was carried out before consistent operation was attained. After this period, the arcjet operated in a very stable fashion from cycle to cycle. At the beginning of each cycle, there was a brief starting transient followed by a rapid rise to a steady-state voltage. The steady-state voltage increased by about 5 V over the first 95 cycles. After this, it increased by only 1 V through the remainder of the test. Thrust measurements taken before the life test and again after the completion of the 144th cycle showed that both thrust, specific impulse, and arc voltage had increased over this period of operation. No life limiting mechanisms were observed during the course of the testing.
Cyclic oxidation evaluation - Approaching application conditions.
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Evans, E. B.
1973-01-01
Review of 1000 to 1200 C cyclic oxidation testing conducted on potential aircraft gas turbine Ni-, Co-, and Fe-base alloys. Furnace and burner rig testing are discussed, and the results are compared for selected alloys. The alloys fall into two groups, depending on their Cr and Al contents. One group forms mainly Cr2O3/chromite spinel scale(s), while the other forms alpha Al2O3/aluminate spinel scale(s). Spalling on thermal cycling leading to increased metal consumption is associated with the appearance of a chromite spinel. In the case of high-velocity burner rig tests this chromite forming tendency is reinforced by Cr2O3 vaporization depleting Cr in the alloy. In both types of tests, specific weight change is used as an indirect indicator of metal attack, since direct metal loss measurements require destructive analysis. An alternative nondestructive metal loss estimating parameter, based on a tentative mass balance gravimetric approach, shows some potential.
Thermophoresis of cyclic oligosaccharides in polar solvents.
Eguchi, Kazuya; Niether, Doreen; Wiegand, Simone; Kita, Rio
2016-09-01
Cyclodextrins are cyclic oligosaccharides which are interesting as drug delivery systems, because they can be used as containers for pharmaceutical substances. We studied the Ludwig-Soret effect of [Formula: see text]-, [Formula: see text]-, [Formula: see text]- and methyl-[Formula: see text]-cyclodextrin in water and formamide by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). In water the Soret coefficient, S T, of [Formula: see text]-, [Formula: see text]- and [Formula: see text]-cyclodextrin increases with increasing temperature and shows a sign change from negative to positive around T = 35 (°) C, while S T of methyl-[Formula: see text]-cyclodextrin is positive in the entire investigated temperature. In formamide S T-values of all cyclodextrins coincide and show a slight decrease with temperature. We discuss the obtained results and relate the S T-values to the different hydrogen bonding capabilities of the cyclodextrins and the used solvents. It turns out that the change of S T with temperature correlates with the partition coefficient, logP, which indicates that more hydrophilic substances show a more pronounced temperature sensitivity of S T. Additionally we obtained a surprising result measuring the refractive index contrast factor with temperature, [Formula: see text] of cyclodextrins in formamide, which might be explained by a complex formation between cyclodextrins and formamide.
Beyond Inflation: A Cyclic Universe Scenario
NASA Astrophysics Data System (ADS)
Turok, Neil; Steinhardt, Paul J.
2005-01-01
Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful `cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe, in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.
Beyond Inflation:. A Cyclic Universe Scenario
NASA Astrophysics Data System (ADS)
Turok, Neil; Steinhardt, Paul J.
2005-08-01
Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful 'cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe [1], in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Quantum gate decomposition algorithms.
Slepoy, Alexander
2006-07-01
Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.
NASA Astrophysics Data System (ADS)
Boixo, Sergio; Somma, Rolando; Barnum, Howard
2008-03-01
We develop a quantum algorithm to solve combinatorial optimization problems through quantum simulation of a classical annealing process. Our algorithm combines techniques from quantum walks and quantum phase estimation, and can be viewed as the quantum analogue of the discrete-time Markov Chain Monte Carlo implementation of classical simulated annealing.
NASA Astrophysics Data System (ADS)
Lo, C. F.; Kiang, D.
2003-12-01
Based upon a modification of Li et al.'s "minimal" quantization rules (Phys. Lett. A306(2002) 73), we investigate the quantum version of the Cournot and Bertrand oligopoly. In the Cournot oligopoly, the profit of each of the N firms at the Nash equilibrium point rises monotonically with the measure of the quantum entanglement. Only at maximal entanglement, however, does the Nash equilibrium point coincide with the Pareto optimal point. In the Bertrand case, the Bertrand Paradox remains for finite entanglement (i.e., the perfectly competitive stage is reached for any N>=2), whereas with maximal entanglement each of the N firms will still have a non-zero shared profit. Hence, the Bertrand Paradox is completely resolved. Furthermore, a perfectly competitive market is reached asymptotically for N → ∞ in both the Cournot and Bertrand oligopoly.
Stapp, H.P.
1988-04-01
It is argued that the validity of the predictions of quantum theory in certain spin-correlation experiments entails a violation of Einstein's locality idea that no causal influence can act outside the forward light cone. First, two preliminary arguments suggesting such a violation are reviewed. They both depend, in intermediate stages, on the idea that the results of certain unperformed experiments are physically determinate. The second argument is entangled also with the problem of the meaning of physical reality. A new argument having neither of these characteristics is constructed. It is based strictly on the orthodox ideas of Bohr and Heisenberg, and has no realistic elements, or other ingredients, that are alien to orthodox quantum thinking.
Lincoln, Don
2016-07-12
The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isnât empty at all â itâs a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs âquantum foam.â In this video, Fermilabâs Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.
Cyclic plasticity models and application in fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1981-01-01
An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.
1998-04-01
information representation and processing technology, although faster than the wheels and gears of the Charles Babbage computation machine, is still in...the same computational complexity class as the Babbage machine, with bits of information represented by entities which obey classical (non-quantum...nuclear double resonances Charles M Bowden and Jonathan P. Dowling Weapons Sciences Directorate, AMSMI-RD-WS-ST Missile Research, Development, and
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
Efficient Quantum Information Processing via Quantum Compressions
NASA Astrophysics Data System (ADS)
Deng, Y.; Luo, M. X.; Ma, S. Y.
2016-01-01
Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the
NASA Astrophysics Data System (ADS)
Hayden, Patrick; Myers, Robert
2017-01-01
Patrick Hayden and Robert Myers describe how the study of “qubits”, quantum bits of information, may hold the key to uniting quantum theory and general relativity into a unified theory of quantum gravity
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary.
Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions
NASA Astrophysics Data System (ADS)
Wessjohann, Ludger A.; Rhoden, Cristiano R. B.; Rivera, Daniel G.; Vercillo, Otilie Eichler
Multicomponent reactions (MCRs) that provide in the final product amides are suitable to produce peptides and peptide-like moieties. The Passerini and Staudinger reactions provide one amide bond, and the Ugi-four-component reaction generates two amides from three or even four (or more) components, respectively. The Ugi-reaction thus is most important to produce peptides and peptoids while the Passerini reaction is useful to generate depsipeptoid moieties. In order to produce cyclic peptides and pseudopeptides, the linear peptidic MCR products have to be cyclized, usually with the help of bifunctional or activatable building blocks. Orthogonal but cyclizable secondary functionalities that need no protection in isonitrile MCRs commonly include alkenes (for ring closing metathesis), azide/alkyne (for Huisgen click reactions) or dienes and enoates (Diels-Alder) etc. If MCR-reactive groups are to be used also for the cyclisation, monoprotected bifunctional building blocks are used and deprotected after the MCR, e.g. for Ugi reactions as Ugi-Deprotection-Cyclisation (UDC). Alternatively one of the former building blocks or functional groups generated by the MCR can be activated. Most commonly these are activated amides (from so-called convertible isonitriles) which can be used e.g. for Ugi-Activation-Cyclisation (UAC) protocols, or most recently for a simultaneous use of both strategies Ugi-Deprotection/Activation-Cyclisation (UDAC). These methods mostly lead to small, medicinally relevant peptide turn mimics. In an opposing strategy, the MCR is rather used as ring-closing reaction, thereby introducing a (di-)peptide moiety. Most recently these processes have been combined to use MCRs for both, linear precursor synthesis and cyclisation. These multiple MCR approaches allow the most efficient and versatile one pot synthesis of macrocyclic pseudopeptides known to date.
Behavior of granular materials under cyclic shear.
Mueggenburg, Nathan W
2005-03-01
The design and development of a parallel plate shear cell for the study of large-scale shear flows in granular materials is presented. The parallel plate geometry allows for shear studies without the effects of curvature found in the more common Couette experiments. A system of independently movable slats creates a well with side walls that deform in response to the motions of grains within the pack. This allows for true parallel plate shear with minimal interference from the containing geometry. The motions of the side walls also allow for a direct measurement of the velocity profile across the granular pack. Results are presented for applying this system to the study of transients in granular shear and for shear-induced crystallization. Initial shear profiles are found to vary from packing to packing, ranging from a linear profile across the entire system to an exponential decay with a width of approximately six bead diameters. As the system is sheared, the velocity profile becomes much sharper, resembling an exponential decay with a width of roughly three bead diameters. Further shearing produces velocity profiles which can no longer be fit to an exponential decay, but are better represented as a Gaussian decay or error function profile. Cyclic shear is found to produce large-scale ordering of the granular pack, which has a profound impact on the shear profile. There exist periods of time in which there is slipping between layers as well as periods of time in which the layered particles lock together resulting in very little relative motion.
Cyclic Segregation State in Vertically Vibrated Binary Granular Mixtures
NASA Astrophysics Data System (ADS)
Shi, Qingfan; Pan, Beicheng; Lu, Changhong; Sun, Gang
2014-01-01
In this paper, the vertically vibrated binary granular mixtures at atmospheric pressure are studied experimentally. We find a nonstationary segregation state, of which the structure changes with time cyclically. The period of the cyclic segregation is measured and its variation with the vibration conditions is shown. The transition between the segregation states is also discussed, and a phase diagram on the plot of frequency against acceleration amplitude is given. In order to observe the effect of air flow in the segregation process, an alternative container with ventilated bottom is designed. Our experiments show that both regions of the Brazil nut segregation state and the cyclic segregation state shrink obviously by use of the latter container and disappear completely if the whole system is placed in vacuum. These results testify that the air pressure plays a positive role in both the Brazil nut effect and cyclic segregation.
Cyclical Cohabitation Among Unmarried Parents in Fragile Families.
Nepomnyaschy, Lenna; Teitler, Julien
2013-10-01
Building on past research suggesting that cohabitation is an ambiguous family form, the authors examined an understudied residential pattern among unmarried parents: cyclical cohabitation, in which parents have multiple cohabitation spells with each other. Using 9 years of panel data from the Fragile Families and Child Wellbeing Study (N = 2,084), they found that 10% of all parents with nonmarital births, and nearly a quarter of those living together when the child is 9 years old, are cyclical cohabitors. Cyclically cohabiting mothers reported more material hardships than mothers in most other relationship patterns but also reported more father involvement with children. On all measures of child well-being, except grade retention, children of cyclically cohabiting parents fared no worse than children of stably cohabiting biological parents and did not differ significantly from any other group.
Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration
Knott, Eric P.; Assi, Mazen; Pearse, Damien D.
2014-01-01
Disruption of axonal integrity during injury to the peripheral nerve system (PNS) sets into motion a cascade of responses that includes inflammation, Schwann cell mobilization, and the degeneration of the nerve fibers distal to the injury site. Yet, the injured PNS differentiates itself from the injured central nervous system (CNS) in its remarkable capacity for self-recovery, which, depending upon the length and type of nerve injury, involves a series of molecular events in both the injured neuron and associated Schwann cells that leads to axon regeneration, remyelination repair, and functional restitution. Herein we discuss the essential function of the second messenger, cyclic adenosine monophosphate (cyclic AMP), in the PNS repair process, highlighting the important role the conditioning lesion paradigm has played in understanding the mechanism(s) by which cyclic AMP exerts its proregenerative action. Furthermore, we review the studies that have therapeutically targeted cyclic AMP to enhance endogenous nerve repair. PMID:25177696
Rapid purification of iodinated ligands for cyclic nucleotide radioimmunoassays
Wilson, S.P.
1988-01-01
The tyrosine methyl esters of succinyl cyclic AMP and succinyl cyclic GMP were iodinated by the chloramine T method and individually applied to C18 cartridges. A solution of 1-propanol/0.1 M sodium acetate pH 4.75 (17.5:82.5) was then pumped onto each cartridge and the eluate collected. A large peak of radioactivity, containing primarily the monoiodo and diiodo derivatives, was eluted. Radioactivity in peak fractions was greater than or equal to 95% the monoiodo derivative and represented 20 to 25% of the starting radioactivity. Contamination by the native cyclic nucleotide analogs was less than 5%. These peak fractions containing primarily monoiodinated products worked well in cyclic nucleotide radioimmunoassays. This fractionation required less than 30 min.
The Cyclical Relationship Approach in Teaching Basic Accounting Principles.
ERIC Educational Resources Information Center
Golen, Steven
1981-01-01
Shows how teachers can provide a more meaningful presentation of various accounting principles by illustrating them through a cyclical relationship approach. Thus, the students see the entire accounting relationship as a result of doing business. (CT)
Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems
NASA Astrophysics Data System (ADS)
Ciufudean, Calin; Filote, Constantin
In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.
2005-07-06
many families of quantum MDS codes. 15. SUBJECT TERMS Quantum Information Science , Quantum Algorithms, Quantum Cryptography 16. SECURITY...separable codes over alphabets of arbitrary size,” a preprint, 2005; to be presented at ERATO conference on quantum information science , Tokyo, Japan...β, γ〉〉 = 1. Due to the Chinese remainder theorem, we have one more equivalent ∗ERATO Conference on Quantum Information Science , 2005 †jkim
Quantum algorithms: an overview
NASA Astrophysics Data System (ADS)
Montanaro, Ashley
2016-01-01
Quantum computers are designed to outperform standard computers by running quantum algorithms. Areas in which quantum algorithms can be applied include cryptography, search and optimisation, simulation of quantum systems and solving large systems of linear equations. Here we briefly survey some known quantum algorithms, with an emphasis on a broad overview of their applications rather than their technical details. We include a discussion of recent developments and near-term applications of quantum algorithms.
Relativistic quantum cryptography
Molotkov, S. N.
2011-03-15
A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.
A computer program for cyclic plasticity and structural fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1980-01-01
A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.
OPERATIONAL AMPLIFIER CIRCUITS FOR CONTROLLED POTENTIAL CYCLIC VOLTAMMETRY, II,
are described, a mechanical or motor driven unit, and an OA integrator network which is more versatile. Cyclic voltammetry appears to have great...Several practical, inexpensive, operational amplifier (OA) circuits are described which are particularly useful in single sweep and cyclic ... voltammetry at stationary electrodes. Specific adaptations of OA’s to electroanalytical instrumentation were made some time ago by Booman and coworkers and
Cyclic voltammetry characterization of metal complex imprinted polymer.
Zeng, Yi Ning; Zheng, Ning; Osborne, Peter G; Li, Yuan Zong; Chang, Wen Bao; Wen, Mei Juan
2002-01-01
Polymer capable of specific binding to Cu(2+)-2, 2'-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu(2+)-2, 2'-dipyridyl complex) was investigated by cyclic voltammetric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The results demonstrated that cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.
Swimming in spacetime: motion by cyclic changes in body shape.
Wisdom, Jack
2003-03-21
Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead to net translation and/or rotation of the body. The amount of translation depends on the intrinsic curvature of the manifold. Presuming spacetime is a curved manifold as portrayed by general relativity, translation in space can be accomplished simply by cyclic changes in the shape of a body, without any external forces.
Observation of the Cyclic Water Hexamer in Solid Parahydrogen
2007-11-02
of-the cyclic -water hexamer, "cyc-(HO)&" expect minimal perturbations t6 the dopant’s structure and via its intfrared (IR) absorption in liquid helium ...red by = 15 cmf from the absorptions of cyclic water clusters in liquid ihelium drolets [P. Nauta and R.E. Miller, Science 287, 293 (2600)]; this...dynamics, and hydrogen -bond (H-bond) interactions with. in- the resulting absence of permanent electric multipoles contrib- creasingg cluster size; one
Microgravity changes in heart structure and cyclic-AMP metabolism
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.
1985-01-01
The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.
Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics
Koopmanschap, Gijs; Ruijter, Eelco
2014-01-01
Summary In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection–cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles
Signal Classification in Fading Channels Using Cyclic Spectral Analysis
2009-07-01
efficient algorithms to detect and classify an OFDM signal based on its cyclic prefix through the use of a simple autocorrelation procedure [21–23...we focus on the case of an OFDM signal transmitted with no cyclic prefix. Therefore, an intermediate stage is needed between the SOF- based ...classifications and the HOCS- based classifications. A simple yet effective method to distinguish OFDM signals from the single carrier signals in question is
Quantum Correlations Evolution Asymmetry in Quantum Channels
NASA Astrophysics Data System (ADS)
Li, Meng; Huang, Yun-Feng; Guo, Guang-Can
2017-03-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. Supported by the National Natural Science Foundation of China under Grant Nos. 61327901, 61490711, 61225025, 11474268, and the Fundamental Research Funds for the Central Universities under Grant No. WK2470000018
Cyclic nucleotide-gated channels in non-sensory organs.
Kraus-Friedmann, N
2000-03-01
Cyclic nucleotide-gated channels represent a class of ion channels activated directly by the binding of either cyclic-GMP or cyclic-AMP. They carry both mono and divalent cations, but select calcium over sodium. In the majority of the cases studied, binding of cyclic nucleotides to the channel results in the opening of the channel and the influx of calcium. As a consequence, cytosolic free calcium levels increase leading to the modifications of calcium-dependent processes. This represents and important link in the chain of events leading to the physiological response. Cyclic nucleotide-gated channels were discovered in sensory cell types, in the retina, and in olfactory cells, and were extensively studied in those cells. However, it is becoming increasingly evident that such channels are present not only in sensory systems, but in most, if not all, cell types where cyclic nucleotides play a role in signal transduction. A hypothesis is presented here which attributes physiological importance to these channels in non-sensory organs. Four examples of such channels in non-sensory cells are discussed in detail: those in the liver, in the heart, in the brain, and in the testis with the emphasis on the possible physiological roles that these channels might have in these organs.
Goulay, Fabien; Trevitt, Adam J.; Meloni, Giovanni; Selby, Talitha M.; Osborn, David L.; Taatjes, Craig A.; Vereecken, Luc; Leone, Stephen R.
2008-12-05
The reactions of the methylidyne radical (CH) with ethylene, acetylene, allene, and methylacetylene are studied at room temperature using tunable vacuum ultraviolet (VUV) photoionization and time-resolved mass spectrometry. The CH radicals are prepared by 248 nm multiphoton photolysis of CHBr3 at 298 K and react with the selected hydrocarbon in a helium gas flow. Analysis of photoionization efficiency versus VUV photon wavelength permits isomer-specific detection of the reaction products and allows estimation of the reaction product branching ratios. The reactions proceed by either CH insertion or addition followed by H atom elimination from the intermediate adduct. In the CH + C2H4 reaction the C3H5 intermediate decays by H atom loss to yield 70(+-8)percent allene, 30(+-8)percent methylacetylene and less than 10percent cyclopropene, in agreement with previous RRKM results. In the CH + acetylene reaction, detection of mainly the cyclic C3H2 isomer is contrary to a previous RRKM calculation that predicted linear triplet propargylene to be 90percent of the total H-atom co-products. High-level CBS-APNO quantum calculations and RRKM calculation for the CH + C2H2 reaction presented in this manuscript predict a higher contribution of the cyclic C3H2 (27.0percent) versus triplet propargylene (63.5percent) than these earlier predictions. Extensive calculations on the C3H3 and C3H2D system combined with experimental isotope ratios for the CD + C2H2 reaction indicate that H-atom assisted isomerization in the present experiments is responsible for the discrepancy between the RRKM calculations and the experimental results. Cyclic isomers are also found to represent 30(+-6)percent of the detected products in the case of CH + methylacetylene, together with 33(+-6)percent 1,2,3-butatriene and 37(+-6)percent vinylacetylene. The CH + allene reaction gives 23(+-5)percent 1,2,3-butatriene and 77(+-5)percent vinylacetylene, whereas cyclic isomers are produced below the detection limit
Nishimura, Takahiro; Ebe, Yusuke; Fujimoto, Hiroto; Hayashi, Tamio
2013-06-18
Asymmetric addition of arylboronates to aryl-substituted cyclic ketimines proceeded in the presence of a rhodium catalyst coordinated with a chiral diene ligand to give high yields of sulfamidates and sulfamides with high enantioselectivity (up to 99% ee).
NASA Astrophysics Data System (ADS)
Mukhanov, V. F.
2016-10-01
In March 2013, following an accurate processing of available measurement data, the Planck Scientific Collaboration published the highest-resolution photograph ever of the early Universe when it was only a few hundred thousand years old. The photograph showed galactic seeds in sufficient detail to test some nontrivial theoretical predictions made more than thirty years ago. Most amazing was that all predictions were confirmed to be remarkably accurate. With no exaggeration, we may consider it established experimentally that quantum physics, which is normally assumed to be relevant on the atomic and subatomic scale, also works on the scale of the entire Universe, determining its structure with all its galaxies, stars, and planets.
Quantum teleportation of optical quantum gates.
Bartlett, Stephen D; Munro, William J
2003-03-21
We show that a universal set of gates for quantum computation with optics can be quantum teleported through the use of EPR entangled states, homodyne detection, and linear optics and squeezing operations conditioned on measurement outcomes. This scheme may be used for fault-tolerant quantum computation in any optical scheme (qubit or continuous-variable). The teleportation of nondeterministic nonlinear gates employed in linear optics quantum computation is discussed.
Cyclic electron flow around photosystem I is enhanced at low pH.
Tongra, Teena; Bharti, Sudhakar; Jajoo, Anjana
2014-10-01
Earlier studies have shown that at low pH (pH 5.5), PS II fluorescence decreases with concomitant increase in PS I fluorescence (Singh-Rawal et al., 2010). In order to shed light on the reasons of the above stated change, spinach leaf discs were treated with buffers of different pH (7.5, 6.5 and 5.5)and decrease in the photochemical quantum yield of PS II,Y(II) and increase in the photochemical quantum yield of PS I,Y(I) was observed. We observed an enhanced protection against over-reduction of PS I acceptor side at low pH (5.5) treated leaves. This was obviously achieved by the rapid build-up of trans-thylakoid pH gradient at low light intensities and was directly associated with a steep increase in non- photochemical quenching of chlorophyll fluorescence and a decrease in the electron transport rate of PS II. Our results suggested a strong stimulation of cyclic electron flow around PS I at pH 5.5 which directly supports protection against over-reduction of the PS I acceptor side.
Quantum Steganography and Quantum Error-Correction
ERIC Educational Resources Information Center
Shaw, Bilal A.
2010-01-01
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…
Quantum Hall effect in quantum electrodynamics
Penin, Alexander A.
2009-03-15
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Brun, Todd A.
2013-09-01
Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and
Quantum Walk Schemes for Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Underwood, Michael S.
Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction
The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment
Fajardo, Alexandra M.; Piazza, Gary A.; Tinsley, Heather N.
2014-01-01
For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers. PMID:24577242
A Material Model for the Cyclic Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Rebelo, Nuno; Zipse, Achim; Schlun, Martin; Dreher, Gael
2011-07-01
The uniaxial behavior of Nitinol in different forms and at different temperatures has been well documented in the literature. Mathematical models for the three-dimensional behavior of this class of materials, covering superelasticity, plasticity, and shape memory effects have been previously developed. Phenomenological models embedded in FEA analysis are part of common practice today in the development of devices made out of Nitinol. In vivo loading of medical devices has cyclic characteristics. There have been some indications in the literature that cyclic loading of Nitinol modifies substantially its behavior. A consortium of several stent manufacturers, Safe Technology and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices, has conducted an extensive experimental study of the modifications in uniaxial behavior of both Nitinol wire and tubing due to cyclic loading. The Abaqus Nitinol material model has been extended to capture some of the phenomena observed and is described in this article. Namely, a preload beyond 6% strain alters the transformation plateaus; if the cyclic load amplitude is large enough, permanent deformations (residual martensite) are observed; the lower plateau increases; and the upper plateau changes. The modifications to the upper plateau are very interesting in the sense that it appears broken: its start stress gets lowered creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. Since quite often the geometry of a device at the point at which it is subjected to cyclic loading is very much dependent on the manufacturing, deployment, and preloading sequence, it is important that analyses be conducted with the original material behavior up to that point, and then with the cyclic behavior thereafter.
Sources of Water to Wells for Transient Cyclic Systems
Reilly, T.E.; Pollock, D.W.
1996-01-01
Many state agencies are currently (1995) developing wellhead protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. The area contributing recharge to a discharging well is the surface area at the water table through which the water flowing to the well entered the ground-water system. In the analyses of ground-water flow systems, steady-state average conditions are commonly used to simplify the problem and make a solution tractable. However, recharge is usually cyclic in nature, with seasonal cycles and longer term climatic cycles. The effect of these cyclic stresses on the area contributing recharge to wells is quantitatively analyzed for a hypothetical alluvial valley aquifer system that is representative of a large class of ground-water systems that are extensively developed for water supply. The analysis shows that, in many cases, these cyclic changes in the recharge rates do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to be an indicator of whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. However, cyclic stresses on systems with ratios less than one do have an effect on the location and size of the areas contributing recharge to wells.
The Behaviour of Reinforced Concrete Subjected to Reversed Cyclic Shear
NASA Astrophysics Data System (ADS)
Ruggiero, David Michael Volpe
Reversed cyclic loading, as may occur during seismic events, can cause sudden and brittle shear failures in reinforced concrete structural members. This thesis presents both experimental and analytical investigations into the behaviour of members subjected to reversed cyclic shear loading, and culminates in the development of a new, rational model to describe this behaviour. In the experimental phase of the research, ten reinforced concrete shell elements were tested under reversed cyclic in-plane shear loads. Data collected by means of several acquisition systems allowed extensive analysis of the experiments, and provided insight into the behaviour of the crack interfaces. In comparison with existing models, such as the Modified Compression Field Theory, it was found that the shear strengths of these reversed cyclically loaded specimens were as much as 25% lower than monotonic predictions. The results of the experimental program informed the development of a new analytical model, the General Crack Component Model (GCCM). The central concept of the GCCM is that the reversed cyclic behaviour of a shear panel depends on the behaviour of multiple crack systems, each with its own constitutive properties. A rigorous framework based on the principles of compatibility and equilibrium was formulated in order to allow for the appropriate combination of the stiffnesses of the three components of the model: concrete, steel, and cracks. The GCCM was validated for reversed cyclic and monotonic loading by comparison with the experimental results as well as data from other researchers. It was shown that the model provides good estimates of the behaviour of reinforced concrete subjected to reversed cyclic loads, and that it can be used as part of a larger structural analysis, ultimately helping engineers to design safer structures and more accurately assess the safety of existing construction.
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
2012-02-01
for constructing quantum gates. In [Miller11b] we detailed the use of multiplexing to simulate quantum teleportation . One alternative to multiplexing...LABORATORY INFORMATION DIRECTORATE QUANTUM INFORMATION SCIENCE FEBRUARY 2012 FINAL TECHNICAL REPORT ROME, NY...YYYY) FEB 2012 2. REPORT TYPE Final Technical Report 3. DATES COVERED (From - To) OCT 2009 – SEP 2011 4. TITLE AND SUBTITLE QUANTUM INFORMATION
Advanced quantum communication systems
NASA Astrophysics Data System (ADS)
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Bohmian quantum mechanics with quantum trajectories
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol
The quantum trajectory method in the hydrodynamical formulation of Madelung-Bohm-Takabayasi quantum mechanics is an example of showing the cognitive importance of scientific illustrations and metaphors, especially, in this case, in computational quantum chemistry and electrical engineering. The method involves several numerical schemes of solving a set of hydrodynamical equations of motion for probability density fluids, based on the propagation of those probability density trajectories. The quantum trajectory method gives rise to, for example, an authentic quantum electron transport theory of motion to, among others, classically-minded applied scientists who probably have less of a commitment to traditional quantum mechanics. They were not the usual audience of quantum mechanics and simply choose to use a non-Copenhagen type interpretation to their advantage. Thus, the metaphysical issues physicists had a trouble with are not the main concern of the scientists. With the advantages of a visual and illustrative trajectory, the quantum theory of motion by Bohm effectively bridges quantum and classical physics, especially, in the mesoscale domain. Without having an abrupt shift in actions and beliefs from the classical to the quantum world, scientists and engineers are able to enjoy human cognitive capacities extended into the quantum mechanical domain.
A quantum-quantum Metropolis algorithm.
Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-17
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.
Uncertainty under quantum measures and quantum memory
NASA Astrophysics Data System (ADS)
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing
2017-04-01
The uncertainty principle restricts potential information one gains about physical properties of the measured particle. However, if the particle is prepared in entanglement with a quantum memory, the corresponding entropic uncertainty relation will vary. Based on the knowledge of correlations between the measured particle and quantum memory, we have investigated the entropic uncertainty relations for two and multiple measurements and generalized the lower bounds on the sum of Shannon entropies without quantum side information to those that allow quantum memory. In particular, we have obtained generalization of Kaniewski-Tomamichel-Wehner's bound for effective measures and majorization bounds for noneffective measures to allow quantum side information. Furthermore, we have derived several strong bounds for the entropic uncertainty relations in the presence of quantum memory for two and multiple measurements. Finally, potential applications of our results to entanglement witnesses are discussed via the entropic uncertainty relation in the absence of quantum memory.
Quantum signatures of chaos or quantum chaos?
NASA Astrophysics Data System (ADS)
Bunakov, V. E.
2016-11-01
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a "quantum signature" of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville-Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Secure quantum signatures using insecure quantum channels
NASA Astrophysics Data System (ADS)
Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika
2016-03-01
Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.
On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers
NASA Astrophysics Data System (ADS)
Geraci, Joseph; Lidar, Daniel A.
2008-05-01
We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCCɛ) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date.
Optimal Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Mantri, Atul; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2013-12-01
Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here, we present general techniques for upper and lower bounding the quantum communication necessary to perform blind quantum computation, and use these techniques to establish concrete bounds for common choices of the client’s quantum capabilities. Our results show that the universal blind quantum computation protocol of Broadbent, Fitzsimons, and Kashefi, comes within a factor of (8)/(3) of optimal when the client is restricted to preparing single qubits. However, we describe a generalization of this protocol which requires exponentially less quantum communication when the client has a more sophisticated device.
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
Randomness: Quantum versus classical
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2016-05-01
Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).
Topological chaos, braiding and bifurcation of almost-cyclic sets
NASA Astrophysics Data System (ADS)
Grover, Piyush; Ross, Shane D.; Stremler, Mark A.; Kumar, Pankaj
2012-12-01
In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.
Topological chaos, braiding and bifurcation of almost-cyclic sets.
Grover, Piyush; Ross, Shane D; Stremler, Mark A; Kumar, Pankaj
2012-12-01
In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.
Cyclic mechanical reinforcement of integrin–ligand interactions
Kong, Fang; Li, Zhenhai; Parks, William M.; Dumbauld, David W.; García, Andrés J.; Mould, A. Paul; Humphries, Martin J.; Zhu, Cheng
2013-01-01
Summary Cells regulate adhesion in response to internally-generated and externally-applied forces. Integrins connect the extracellular matrix to the cytoskeleton and provide cells with mechanical anchorages and signaling platforms. Here we show that cyclic forces applied to a fibronectin–integrin α5β1 bond switch the bond from a short-lived state with 1-s lifetime to a long-lived state with 100-s lifetime. We term this phenomenon “cyclic mechanical reinforcement” as the bond strength remembers the history of force application, accumulates over repeated cycles, but does not require force to be sustained. Cyclic mechanical reinforcement strengthens the fibronectin–integrin α5β1 bond through the RGD binding site of the ligand with the synergy binding site greatly facilitating the process. A flexible integrin hybrid domain is also important for cyclic mechanical reinforcement. Our results reveal a mechanical regulation of receptor–ligand interactions and identify a molecular mechanism for cell adhesion strengthening by cyclic forces. PMID:23416109
Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy
NASA Technical Reports Server (NTRS)
Rao, K. Bhanu Sankara; Castelli, Michael G.; Allen, Gorden P.; Ellis, John R.
1995-01-01
The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle.
Synthesis of cyclic Py-Im polyamide libraries.
Li, Benjamin C; Montgomery, David C; Puckett, James W; Dervan, Peter B
2013-01-04
Cyclic Py-Im polyamides containing two GABA turn units exhibit enhanced DNA binding affinity, but extensive studies of their biological properties have been hindered due to synthetic inaccessibility. A facile modular approach toward cyclic polyamides has been developed via microwave-assisted solid-phase synthesis of hairpin amino acid oligomer intermediates followed by macrocyclization. A focused library of cyclic polyamides 1-7 targeted to the androgen response element (ARE) and the estrogen response element (ERE) were synthesized in 12-17% overall yield. The Fmoc protection strategy also allows for selective modifications on the GABA turn units that have been shown to improve cellular uptake properties. The DNA binding affinities of a library of cyclic polyamides were measured by DNA thermal denaturation assays and compared to the corresponding hairpin polyamides. Fluorescein-labeled cyclic polyamides have been synthesized and imaged via confocal microscopy in A549 and T47D cell lines. The IC(50) values of compounds 1-7 and 9-11 were determined, revealing remarkably varying levels of cytotoxicity.
Influences of cyclic loading on martensite transformation of TRIP steels
NASA Astrophysics Data System (ADS)
Dan, W. J.; Hu, Z. G.; Zhang, W. G.
2013-03-01
While austenite transformation into martensite induces increasing of the crack initiation life and restraining of the growth of fatigue cracks in cyclic-loading processes, TRIP-assisted steels have a better fatigue life than the AHSS (Advance High Strength Steels). As two key parameters in the cyclic loading process, strain amplitude and cyclic frequency are used in a kinetic transformation model to reasonably evaluate the phase transformation from austenite into martensite with the shear-band intersections theory, in which strain amplitude and cyclic frequency are related to the rate of shear-band intersection formation and the driving force of phase transformation. The results revealed that the martensite volume fraction increased and the rate of phase transformation decrease while the number of cycles increased, and the martensite volume fraction was almost constant after the number of cycles was more than 2000 times. Higher strain amplitude promotes martensite transformation and higher cyclic frequency impedes phase transformation, which are interpreted by temperature increment, the driving force of phase transformation and the rate of shearband intersection formation.
Low severity coal liquefaction promoted by cyclic olefins
Curtis, C.W.
1992-01-01
Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350[degrees]C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.
Cyclic beta-glucans of members of the family Rhizobiaceae.
Breedveld, M W; Miller, K J
1994-01-01
Cyclic beta-glucans are low-molecular-weight cell surface carbohydrates that are found almost exclusively in bacteria of the Rhizobiaceae family. These glucans are major cellular constituents, and under certain culture conditions their levels may reach up to 20% of the total cellular dry weight. In Agrobacterium and Rhizobium species, these molecules contain between 17 and 40 glucose residues linked solely by beta-(1,2) glycosidic bonds. In Bradyrhizobium species, the cyclic beta-glucans are smaller (10 to 13 glucose residues) and contain glucose linked by both beta-(1,6) and beta-(1,3) glycosidic bonds. In some rhizobial strains, the cyclic beta-glucans are unsubstituted, whereas in other rhizobia these molecules may become highly substituted with moieties such as sn-1-phosphoglycerol. To date, two genetic loci specifically associated with cyclic beta-glucan biosynthesis have been identified in Rhizobium (ndvA and ndvB) and Agrobacterium (chvA and chvB) species. Mutants with mutations at these loci have been shown to be impaired in their ability to grow in hypoosmotic media, have numerous alterations in their cell surface properties, and are also impaired in their ability to infect plants. The present review will examine the structure and occurrence of the cyclic beta-glucans in a variety of species of the Rhizobiaceae. The possible functions of these unique molecules in the free-living bacteria as well as during plant infection will be discussed. PMID:8078434
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
NASA Astrophysics Data System (ADS)
Durt, Thomas
2014-03-01
We shall present certain experiments aimed at testing the Markovian nature of the quantum statistical distributions and comment their results, which confirmed the standard quantum interpretation. We shall also show how certain sophisticated experiments that were realized in the framework of quantum optics during the last decade in order to test fundamental effects such as quantum non-locality also lead us to eliminate certain (non-Markovian and non-local) alternatives to the standard quantum theory.
McCaskey, Alexander J.
2016-11-18
There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.
Quantum Information, Computation and Communication
NASA Astrophysics Data System (ADS)
Jones, Jonathan A.; Jaksch, Dieter
2012-07-01
Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.
Wang, Shuzhi; Pan, Xiangliang; Zhang, Daoyong
2015-01-01
The knowledge of the effects of Sb(V) on the physiological characteristics of cyanobacteria was still limited. In the present study, responses of photosystem I and II (PSI and PSII), cyclic electron flow (CEF), and interphotosystem electron transport of Microcystis aeruginosa to 5-100 mg/l Sb(V) were synchronously measured using the Dual-PAM-100. 5 mg/l Sb (V) significantly inhibited PSII activity, but had no significant effects on PSI activity. At higher concentrations of Sb(V), the quantum yield and electron transport of PSI were less affected compared to PSII. The ratio of Y(II)/Y(I) significantly decreased with increasing Sb(V) concentration. It decreased from 0.7 for control to 0.4 for 100 mg/l Sb(V)-treated cells, indicating that the change of the distribution of quantum yields between two photosystems and more serious inhibition of PSII under stress of Sb(V) compared to PSI. CEF was activated associated with the inhibition of linear electron flow after exposure to Sb(V). The contribution of Y(CEF) to the quantum yield and activity of PSI increased with increasing Sb(V) concentrations. The cyclic electron transport rate made a significant contribution to electron transport rate of PSI, especially at high Sb(V) concentration (100 mg/l) and high illumination (above 555 μmol photons/m(2)/s). The stimulation of CEF was essential for the higher tolerance of PSI than PSII to Sb(V).
Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules.
Ruiz, Constanza; Monge, Ángeles; Gutiérrez-Puebla, Enrique; Alkorta, Ibon; Elguero, José; Navarrete, Juan T López; Ruiz Delgado, M Carmen; Gómez-Lor, Berta
2016-07-18
We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle-shaped structures. The steric constraints introduced by N-substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed).
Application Of Shakedown Analysis To Cyclic Creep Damage Limits
Carter, Peter; Jetter, Robert I; Sham, Sam
2012-01-01
Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.
Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles
Screen, Hazel R.C. . E-mail: H.R.C.Screen@qmul.ac.uk; Shelton, Julia C.; Bader, Dan L.; Lee, David A.
2005-10-21
Mechanical stimulation has been implicated as an important regulatory factor in tendon homeostasis. In this study, a custom-designed tensile loading system was used to apply controlled mechanical stimulation to isolated tendon fascicles, in order to examine the effects of 5% cyclic tensile strain at 1 Hz on cell proliferation and matrix synthesis. Sample viability and gross structural composition were maintained over a 24 h loading period. Data demonstrated no statistically significant differences in cell proliferation or glycosaminoglycan production, however, collagen synthesis was upregulated with the application of cyclic tensile strain over the 24 h period. Moreover, a greater proportion of the newly synthesised matrix was retained within the sample after loading. These data provide evidence of altered anabolic activity within tendon in response to mechanical stimuli, and suggest the importance of cyclic tensile loading for the maintenance of the collagen hierarchy within tendon.
On the connection between multigrid and cyclic reduction
NASA Technical Reports Server (NTRS)
Merriam, M. L.
1984-01-01
A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.
Cyclic AMP system in muscle tissue during prolonged hypokinesia
NASA Technical Reports Server (NTRS)
Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.
1980-01-01
Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.
Development of a viscoelastic continuum damage model for cyclic loading
NASA Astrophysics Data System (ADS)
Sullivan, R. W.
2008-12-01
A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a time dependent material under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. The spectrum-based model is generalized for any strain rate and any uniaxial load history to formulate the damage function. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to formulate a residual strength model. The methodology presented is demonstrated by comparing the peak values of the computed cyclic strain history as well as the residual strength model predictions to the experimental data of a polymer matrix composite.
Intracellular Production of Cyclic Peptide Libraries with SICLOPPS.
Osher, Eliot L; Tavassoli, Ali
2017-01-01
Cyclic peptides are an important class of molecules that are increasingly viewed as an ideal scaffold for inhibition of protein-protein interactions (PPI). Here we detail an approach that enables the intracellular synthesis of cyclic peptide libraries of around 10(8) members. The method utilizes split intein mediated circular ligation of peptides and proteins (SICLOPPS), taking advantage of split intein splicing to cyclize a library of peptide sequences. SICLOPPS allows the ring size, set residues and number of random residues within a library to be predetermined by the user. SICLOPPS libraries have been combined with a variety of cell-based screens to identify cyclic peptide inhibitors of a variety of enzymes and protein-protein interactions.
Low Severity Coal Liquefaction Promoted by Cyclic Olefins
Christine W. Curtis
1998-04-09
The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.
NASA Astrophysics Data System (ADS)
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge.
Quantum optics, cavity QED, and quantum optomechanics
NASA Astrophysics Data System (ADS)
Meystre, Pierre
2013-05-01
Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.
Molecular structure of cyclic deoxydiadenylic acid at atomic resolution.
Frederick, C A; Coll, M; van der Marel, G A; van Boom, J H; Wang, A H
1988-11-01
The molecular structure of a small cyclic nucleotide, cyclic deoxydiadenylic acid, has been determined by single-crystal X-ray diffraction analysis and refined to an R factor of 7.8% at 1.0-A resolution. The crystals are in the monoclinic space group C2 with unit cell dimensions of a = 24.511 (3) A, b = 24.785 (3) A, c = 13.743 (3) A, and beta = 94.02 (2) degrees. The structure was solved by the direct methods program SHELXS-86. There are 2 independent cyclic d(ApAp) molecules, 2 hydrated magnesium ions, and 26 water molecules in the asymmetric unit of the unit cell. The two cyclic d(ApAp) molecules have similar conformations within their 12-membered sugar-phosphate backbone ring, but they have quite different appearances due to the different glycosyl torsion angles that make one molecule more compact and the other extended and open. Three of the four deoxyribose rings are in the less common C3'-endo conformation. All four phosphate groups have their phosphodiester torsion angles alpha/zeta in the gauche(+)/gauche(+) conformation. One of the cyclic d(ApAp) molecules associates with another symmetry-related molecule to form a self-intercalated dimer that is a stable structure in solution, as observed in NMR studies. Many interesting intermolecular interactions, including base-base stacking, ribose-base stacking, base pairing, base-phosphate hydrogen bonding, and metal ion-phosphate interactions, are found in the crystal lattice. This structure may be relevant for understanding the conformational potentiality of an endogenous biological regulator of cellulose synthesis, cyclic (GpGp).
Irreversibility transition of colloidal polycrystals under cyclic deformation
Jana, Pritam Kumar; Alava, Mikko J.; Zapperi, Stefano
2017-01-01
Cyclically loaded disordered particle systems, such as granular packings and amorphous media, display a non-equilibrium phase transition towards irreversibility. Here, we investigate numerically the cyclic deformation of a colloidal polycrystal with impurities and reveal a transition to irreversible behavior driven by the displacement of dislocations. At the phase transition we observe enhanced particle diffusion, system size effects and broadly distributed strain bursts. In addition to provide an analogy between the deformation of amorphous and polycrystalline materials, our results allow to reinterpret Zener pinning of grain boundaries as a way to prevent the onset of irreversible crystal ordering. PMID:28358018
Controls on Precambrian sea level change and sedimentary cyclicity
NASA Astrophysics Data System (ADS)
Eriksson, P. G.; Catuneanu, O.; Nelson, D. R.; Popa, M.
2005-04-01
Although uniformitarianism applies in a general sense to the controls on relative and global sea level change, some influences thereon were more prominent in the Precambrian. Short-term base level change due to waves and tides may have been enhanced due to possibly more uniform circulation systems on wide, low gradient Precambrian shelves. The lack of evidence for global glacial events in the Precambrian record implies that intraplate stresses and cyclic changes to Earth's geoid were more likely explanations for third-order sea level change than glacio-eustasy. Higher heat flow in the earlier Precambrian may have led to more rapid tectonic plate formation, transport and destruction, along with an increased role for hot spots, aseismic ridges and mantle plumes (superplumes), all of which may have influenced cyclic sedimentation within the ocean basins. A weak cyclicity in the occurrence of plume events has an approximate duration comparable to that of first-order (supercontinental cycle) sea level change. Second-order cyclicity in the Precambrian largely reflects the influences of thermal epeirogeny, changes to mid-ocean ridge volume as well as to ridge growth and decay rates, and cratonic marginal downwarping concomitant with either sediment loading or extensional tectonism. Third-order cycles of sea level change in the Precambrian also reflected cyclic loading/unloading within flexural foreland basin settings, and filling/deflation of magma chambers associated with island arc evolution. The relatively limited number of studies of Precambrian sequence stratigraphy allows some preliminary conclusions to be drawn on duration of the first three orders of cyclicity. Archaean greenstone basins appear to have had first- and second-order cycle durations analogous to Phanerozoic equivalents, supporting steady state tectonics throughout Earth history. In direct contrast, however, preserved basin-fills from Neoarchaean-Palaeoproterozoic cratonic terranes have first- and
Design of an etch-resistant cyclic olefin photoresist
NASA Astrophysics Data System (ADS)
Allen, Robert D.; Opitz, Juliann; Wallow, Thomas I.; Di Pietro, Richard A.; Hofer, Donald C.; Jayaraman, Saikumar; Hullihan, Karen A.; Rhodes, Larry F.; Goodall, Brian L.; Shick, Robert A.
1998-06-01
In the quest for a high performance 193 nm photoresist with robust plasma etching resistance equivalent to or better than the DUV resists of today, we have focused on the use of cyclic olefin polymers. In this paper, we will discuss monomer synthesis, polymerization approaches, polymer properties and early lithographic results of 193 nm photoresists formulated from cyclic olefin polymeric materials made from a metal-catalyzed addition polymerization process. The goal of this work is to produce a 193 nm photoresist with excellent imaging performance and etch resistance exceeding DUV resists, and in fact approaching novolak-based photoresists.
Polymerization of the cyclic pyrophosphates of nucleosides and their analogues
NASA Technical Reports Server (NTRS)
Tohidi, Mahrokh; Orgel, Leslie E.
1990-01-01
When 2-prime-deoxythymidine 3-prime, 5-prime-cyclic diphosphate, or the cyclic pyrophosphates of the acyclic nucleoside analogs II and IV are heated to 65-85 C in the presence of imidazole, oligomers with lengths up to 20-30 are formed in excellent yield. This reaction provides a useful source of oligomers for use as templates in aqueous condensation reactions. In the absence of evidence to the contrary, it is assumed that the oligomers are atactic. The potential significance of this reaction in prebiotic chemistry is discussed.
Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations.
Cressman, Andrew; Togashi, Yuichi; Mikhailov, Alexander S; Kapral, Raymond
2008-05-01
Proteins acting as molecular machines can undergo cyclic internal conformational motions that are coupled to ligand binding and dissociation events. In contrast to their macroscopic counterparts, nanomachines operate in a highly fluctuating environment, which influences their operation. To bridge the gap between detailed microscopic and simple phenomenological descriptions, a mesoscale approach, which combines an elastic network model of a machine with a particle-based mesoscale description of the solvent, is employed. The time scale of the cyclic hinge motions of the machine prototype is strongly affected by hydrodynamical coupling to the solvent.
Thermal cyclic durability testing of ceramic materials for turbine engines
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1986-01-01
The thermal cyclic durability of commercial ceramic materials for turbine engines was under evaluation since 1978. Ceramic materials are exposed to cyclic diesel-fired burner exhaust at either 1204 or 1371 C (2200 or 2500 F) for up to 3500 hours. The test conditions are selected to simulate the environment experienced by the hot flow path components in an automotive gas turbine engine. The silicon nitride and silicon carbide materials tested are the same ceramic materials currently used on the AGT100 and AGT101 ceramic turbine engine program.
Botulinum toxin: a novel treatment for pediatric cyclic esotropia.
Jones, Alistair; Jain, Saurabh
2014-12-01
Cyclic esotropia is a rare entity in which an esotropia presents in a regular 48-96 hour cycle, typically described as a 24-hour period of orthotropia followed by a 24-hour period of esotropia. The underlying mechanism of this phenomenon is unknown. Treatment usually involves surgical correction of the manifest strabismus. We report the case of a 3-year-old girl whose cyclic esotropia was broken following injection of botulinum toxin to both medial rectus muscles. She has remained constantly esophoric for 1 year.
How many molecules are required to measure a cyclic voltammogram?
NASA Astrophysics Data System (ADS)
Cutress, Ian J.; Compton, Richard G.
2011-05-01
The stochastic limit at which fully-reversible cyclic voltammetry can accurately be measured is investigated. Specifically, Monte Carlo GPU simulation is used to study low concentration cyclic voltammetry at a microdisk electrode over a range of scan rates and concentrations, and the results compared to the statistical limit as predicted by finite difference simulation based on Fick's Laws of Diffusion. Both Butler-Volmer and Marcus-Hush electrode kinetics are considered, simulated via random-walk methods, and shown to give identical results in the fast kinetic limit.
Peptide to Peptoid Substitutions Increase Cell Permeability in Cyclic Hexapeptides.
Schwochert, Joshua; Turner, Rushia; Thang, Melissa; Berkeley, Ray F; Ponkey, Alexandra R; Rodriguez, Kelsie M; Leung, Siegfried S F; Khunte, Bhagyashree; Goetz, Gilles; Limberakis, Chris; Kalgutkar, Amit S; Eng, Heather; Shapiro, Michael J; Mathiowetz, Alan M; Price, David A; Liras, Spiros; Jacobson, Matthew P; Lokey, R Scott
2015-06-19
The effect of peptide-to-peptoid substitutions on the passive membrane permeability of an N-methylated cyclic hexapeptide is examined. In general, substitutions maintained permeability but increased conformational heterogeneity. Diversification with nonproteinogenic side chains increased permeability up to 3-fold. Additionally, the conformational impact of peptoid substitutions within a β-turn are explored. Based on these results, the strategic incorporation of peptoid residues into cyclic peptides can maintain or improve cell permeability, while increasing access to diverse side-chain functionality.
New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.
Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi
2012-03-01
Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method.
Cyclical acute renal failure due to bilateral ureteral endometriosis.
Akçay, A; Altun, B; Usalan, C; Ulusoy, S; Erdem, Y; Yasavul, U; Turgan, C; Caglar, S
1999-09-01
Endometriosis is a common disease but ureteral involvement is relatively rare. Ureteric endometriosis is mostly unilateral. Endometriotic ureteral obstruction is a serious event commonly diagnosed late and therefore associated with a major risk of hydronephrotic renal atrophy. We present the cyclical acute renal failure associated with menstruation in a patient who developed severe bilateral ureteral obstruction due to endometriosis. Physicians should be aware of this uncommon but serious manifestation of endometriosis, especially if the clinical presentation is cyclical acute renal dysfunction in a premenopausal woman.
Effect of interferon on concentrations of cyclic nucleotides in cultured cells.
Tovey, M G; Rochette-Egly, C; Castagna, M
1979-01-01
Constant intracellular concentrations of both adenosine 3',5'-cyclic-monophosphate (cyclic AMP) and guanosine 3',5'-cyclic-monophosphate (cyclic GMP) were obtained when leukemia L1210 cells were cultivated under steady-state conditions in the chemostat. In this sensitive and controlled system addition of mouse interferon resulted in a rapid (5-10 min) increase in the intracellular concentration of cyclic GMP, which preceded by several hours an increase in the intracellular concentration of cyclic AMP. In contrast to the effect of interferon, addition of prostaglandin E1 induced a rapid increase in the intracellular concentration of cyclic AMP without markedly affecting the intracellular concentration of cyclic GMP. It is suggested that the rapid effect of interferon on cyclic GMP plays a role in mediating some of the effects of interferon on cells. PMID:226987
Kellenberger, Colleen A; Wilson, Stephen C; Sales-Lee, Jade; Hammond, Ming C
2013-04-03
Cyclic dinucleotides are an important class of signaling molecules that regulate a wide variety of pathogenic responses in bacteria, but tools for monitoring their regulation in vivo are lacking. We have designed RNA-based fluorescent biosensors for cyclic di-GMP and cyclic AMP-GMP by fusing the Spinach aptamer to variants of a natural GEMM-I riboswitch. In live cell imaging experiments, these biosensors demonstrate fluorescence turn-on in response to cyclic dinucleotides, and they were used to confirm in vivo production of cyclic AMP-GMP by the enzyme DncV.
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-15
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Reliable quantum communication over a quantum relay channel
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
NASA Astrophysics Data System (ADS)
Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.
2015-07-01
Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.
Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.
Interfacing external quantum devices to a universal quantum computer.
Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.
Quantum Estimation Methods for Quantum Illumination
NASA Astrophysics Data System (ADS)
Sanz, M.; Las Heras, U.; García-Ripoll, J. J.; Solano, E.; Di Candia, R.
2017-02-01
Quantum illumination consists in shining quantum light on a target region immersed in a bright thermal bath with the aim of detecting the presence of a possible low-reflective object. If the signal is entangled with the receiver, then a suitable choice of the measurement offers a gain with respect to the optimal classical protocol employing coherent states. Here, we tackle this detection problem by using quantum estimation techniques to measure the reflectivity parameter of the object, showing an enhancement in the signal-to-noise ratio up to 3 dB with respect to the classical case when implementing only local measurements. Our approach employs the quantum Fisher information to provide an upper bound for the error probability, supplies the concrete estimator saturating the bound, and extends the quantum illumination protocol to non-Gaussian states. As an example, we show how Schrödinger's cat states may be used for quantum illumination.
Quantum Estimation Methods for Quantum Illumination.
Sanz, M; Las Heras, U; García-Ripoll, J J; Solano, E; Di Candia, R
2017-02-17
Quantum illumination consists in shining quantum light on a target region immersed in a bright thermal bath with the aim of detecting the presence of a possible low-reflective object. If the signal is entangled with the receiver, then a suitable choice of the measurement offers a gain with respect to the optimal classical protocol employing coherent states. Here, we tackle this detection problem by using quantum estimation techniques to measure the reflectivity parameter of the object, showing an enhancement in the signal-to-noise ratio up to 3 dB with respect to the classical case when implementing only local measurements. Our approach employs the quantum Fisher information to provide an upper bound for the error probability, supplies the concrete estimator saturating the bound, and extends the quantum illumination protocol to non-Gaussian states. As an example, we show how Schrödinger's cat states may be used for quantum illumination.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Open Quantum Walks and Dissipative Quantum Computing
NASA Astrophysics Data System (ADS)
Petruccione, Francesco
2012-02-01
Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.
Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi
2014-08-01
Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation.
Quantum interference in thermoelectric molecular junctions: A toy model perspective
Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio
2014-08-21
Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.
NASA Astrophysics Data System (ADS)
Schaden, Martin
2002-12-01
Quantum theory is used to model secondary financial markets. Contrary to stochastic descriptions, the formalism emphasizes the importance of trading in determining the value of a security. All possible realizations of investors holding securities and cash is taken as the basis of the Hilbert space of market states. The temporal evolution of an isolated market is unitary in this space. Linear operators representing basic financial transactions such as cash transfer and the buying or selling of securities are constructed and simple model Hamiltonians that generate the temporal evolution due to cash flows and the trading of securities are proposed. The Hamiltonian describing financial transactions becomes local when the profit/loss from trading is small compared to the turnover. This approximation may describe a highly liquid and efficient stock market. The lognormal probability distribution for the price of a stock with a variance that is proportional to the elapsed time is reproduced for an equilibrium market. The asymptotic volatility of a stock in this case is related to the long-term probability that it is traded.
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs.
Counterfactual quantum cryptography.
Noh, Tae-Gon
2009-12-04
Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.
NASA Astrophysics Data System (ADS)
Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh
2016-09-01
Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.
NASA Astrophysics Data System (ADS)
Azreg-Aïnou, Mustapha
2017-01-01
We present new accretion solutions of a polytropic perfect fluid onto an f(R)-gravity de Sitter-like black hole. We consider two f(R)-gravity models and obtain finite-period cyclic flows oscillating between the event and cosmological horizons as well as semi-cyclic critical flows executing a two-way motion from and back to the same horizon. Besides the generalizations and new solutions presented in this work, a corrigendum to Eur. Phys. J. C (2016) 76:280 is provided.
Quantum Kolmogorov complexity and bounded quantum memory
Miyadera, Takayuki
2011-04-15
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
Work and quantum phase transitions: quantum latency.
Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J
2014-06-01
We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.
Quantum optics. Gravity meets quantum physics
Adams, Bernhard W.
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Quantum Darwinism in Quantum Brownian Motion
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin; Zurek, Wojciech H.
2008-12-01
Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Quantum Darwinism in quantum Brownian motion.
Blume-Kohout, Robin; Zurek, Wojciech H
2008-12-12
Quantum Darwinism--the redundant encoding of information about a decohering system in its environment--was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state--a macroscopic superposition--the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Converting Coherence to Quantum Correlations.
Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile
2016-04-22
Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.
Wang, Shuzhi; Zhang, Daoyong; Pan, Xiangliang
2013-09-01
Cadmium (Cd) shows high toxicity to aquatic microalgae. Many studies showed that Cd inhibited activities of photosystem II (PSII) but the effects of heavy metals on photosystem I (PSI) and cyclic electron flow (CEF) were still controversial and unclear. The effects of CdCl2 on the activities of PSI, PSII and CEF in Chlorella pyrenoidosa was measured simultaneously in the present study. In presence of 200μM of Cd, ultrastructure of some cells was strongly modified. Cd exposure led to decrease of the activities of photosynthetic oxygen evolution and respiration. PSII was more sensitive to Cd treatment than PSI. Cd treatment showed significant inhibition on the photochemical quantum yield and electron transport rate of PSII. Cd increased the quantum yield of non-light-induced non-photochemical fluorescence quenching, indicating the damage of PSII. The activity of PSI showed tolerance to Cd treatment with concentration less than 100μM in the experiment. Linear electron flow (LEF) made significant contribution to the photochemical quantum yield of PSI of the untreated cells, but decreased with increasing Cd concentration. The contribution of CEF to the yield of PSI increased with increasing Cd concentration. The activation of CEF after exposure to Cd played an essential role for the protection of PSI.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Interaction of Cyclic Peptides and Depsipeptides with Calmodulin
1990-04-10
by block number) FIELD GROUP SUB-GROUP cairodulin, cyclosporin A, gramicidin S, valinomycin, enniatin-B, microcystin -LR, phosphodiesterase 19...investigated the ability of other cyclic peptides: microcystin -LR (MLR) and depsipeptides, valinomycin (VLM) and enniatin-B (ENB), to bind dansylated CaM
Cyclic Oxidation Testing and Modelling: A NASA Lewis Perspective
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Nesbitt, J. A.; Barrett, C. A.; Lowell, C. E.
2000-01-01
The Materials Division of the NASA Lewis Research Center has been heavily involved in the cyclic oxidation of high temperature materials for 30 years. Cyclic furnace and burner rig apparati have been developed, refined, and replicated to provide a large scale facility capable of evaluating many materials by a standard technique. Material behavior is characterized by weight change data obtained throughout the test, which has been modelled in a step-wise process of scale growth and spallation. This model and a coupled diffusion model have successfully described cyclic behavior for a number of systems and have provided insights regarding life prediction and variations in the spalling process. Performance ranking and mechanistic studies are discussed primarily for superalloys and coating alloys. Similar cyclic oxidation studies have been performed on steels, intermetallic compounds, thermal barrier coatings, ceramics, and ceramic composites. The most common oxidation test was performed in air at temperatures ranging from 800 deg. to 1600 C, for times up to 10000 h, and for cycle durations of 0.1 to 1000 h. Less controlled, but important, test parameters are the cooling temperature and humidity level. Heating and cooling rates are not likely to affect scale spallation. Broad experience has usually allowed for considerable focus and simplification of these test parameters, while still revealing the principal aspects of material behavior and performance. Extensive testing has been performed to statistically model the compositional effects of experimental alloys and to construct a comprehensive database of complex commercial alloys.
Error estimates of numerical solutions for a cyclic plasticity problem
NASA Astrophysics Data System (ADS)
Han, W.
A cyclic plasticity problem is numerically analyzed in [13], where a sub-optimal order error estimate is shown for a spatially discrete scheme. In this note, we prove an optimal order error estimate for the spatially discrete scheme under the same solution regularity condition. We also derive an error estimate for a fully discrete scheme for solving the plasticity problem.
A Simulation of Counter-Cyclical Intervention: Some Practical Lessons
ERIC Educational Resources Information Center
Grawe, Nathan D.; Watts, Michael, Ed.
2007-01-01
The author introduces a simulation of counter-cyclical interventions that highlights important issues surrounding the practice of government intervention. The simulation provides experiential insight as to why economists have long debated the degree of persistence exhibited by disequilibrating shocks and connects this debate to discussions about…
TANGO-Inspired Design of Anti-Amyloid Cyclic Peptides.
Lu, Xiaomeng; Brickson, Claire R; Murphy, Regina M
2016-09-21
β-Amyloid peptide (Aβ) self-associates into oligomers and fibrils, in a process that is believed to directly lead to neuronal death in Alzheimer's disease. Compounds that bind to Aβ, and inhibit fibrillogenesis and neurotoxicity, are of interest as an anti-Alzheimer therapeutic strategy. Peptides are particularly attractive for this purpose, because they have advantages over small molecules in their ability to disrupt protein-protein interactions, yet they are amenable to tuning of their properties through chemical means, unlike antibodies. Self-complementation and peptide library screening are two strategies that have been employed in the search for peptides that bind to Aβ. We have taken a different approach, by designing Aβ-binding peptides using transthyretin (TTR) as a template. Previously, we demonstrated that a cyclic peptide, with sequence derived from the known Aβ-binding site on TTR, suppressed Aβ aggregation into fibrils and protected neurons against Aβ toxicity. Here, we searched for cyclic peptides with improved efficacy, by employing the algorithm TANGO, designed originally to identify amyloidogenic sequences in proteins. By using TANGO as a guide to predict the effect of sequence modifications on conformation and aggregation, we synthesized a significantly improved cyclic peptide. We demonstrate that the peptide, in binding to Aβ, redirects Aβ toward protease-sensitive, nonfibrillar aggregates. Cyclic peptides designed using this strategy have attractive solubility, specificity, and stability characteristics.
Multigrid and cyclic reduction applied to the Helmholtz equation
NASA Technical Reports Server (NTRS)
Brackenridge, Kenneth
1993-01-01
We consider the Helmholtz equation with a discontinuous complex parameter and inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct method of cyclic reduction (CR) is employed to facilitate the design of improved multigrid (MG) components, resulting in the method of CR-MG. We demonstrate the improved convergence properties of this method.
Cyclical modulation of human ventricular repolarization by respiration
Hanson, Ben; Gill, Jaswinder; Western, David; Gilbey, Michael P.; Bostock, Julian; Boyett, Mark R.; Zhang, Henggui; Coronel, Ruben; Taggart, Peter
2012-01-01
Background: Respiratory modulation of autonomic input to the sinus node results in cyclical modulation of heart rate, known as respiratory sinus arrhythmia (RSA). We hypothesized that the respiratory cycle may also exert cyclical modulation on ventricular repolarization, which may be separately measurable using local endocardial recordings. Methods and Results: The study included 16 subjects with normal ventricles undergoing routine clinical electrophysiological procedures for supraventricular arrhythmias. Unipolar electrograms were recorded from 10 right and 10 left ventricular endocardial sites. Breathing was voluntarily regulated at 5 fixed frequencies (6, 9, 12, 15, and 30 breaths per min) and heart rate was clamped by RV pacing. Activation-recovery intervals (ARI: a surrogate for APD) exhibited significant (p < 0.025) cyclical variation at the respiratory frequency in all subjects; ARI shortened with inspiration and lengthened with expiration. Peak-to-peak ARI variation ranged from 0–26 ms; the spatial pattern varied with subject. Arterial blood pressure also oscillated at the respiratory frequency (p < 0.025) and lagged behind respiration by between 1.5 s and 0.65 s from slowest to fastest breathing rates respectively. Systolic oscillation amplitude was significantly greater than diastolic (14 ± 5 vs. 8 ± 4 mm Hg ± SD, p < 0.001). Conclusions: Observations in humans with healthy ventricles using multiple left and right ventricular endocardial recordings showed that ARI action potential duration (APD) varied cyclically with respiration. PMID:23055983
A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.
ERIC Educational Resources Information Center
Baldwin, Richard P.; And Others
1984-01-01
Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)
Syntheses of Cyclic Guanidine-Containing Natural Products
Ma, Yuyong; De, Saptarshi; Chen, Chuo
2014-01-01
Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products. PMID:25684829
Revisiting the formation of cyclic clusters in liquid ethanol
NASA Astrophysics Data System (ADS)
Balanay, Mannix P.; Kim, Dong Hee; Fan, Haiyan
2016-04-01
The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with 1H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. In liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (˜14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, 1H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.
Experimental and theoretical investigations into the stability of cyclic aminals
Sawatzky, Edgar; Drakopoulos, Antonios; Rölz, Martin; Sotriffer, Christoph; Engels, Bernd
2016-01-01
Background: Cyclic aminals are core features of natural products, drug molecules and important synthetic intermediates. Despite their relevance, systematic investigations into their stability towards hydrolysis depending on the pH value are lacking. Results: A set of cyclic aminals was synthesized and their stability quantified by kinetic measurements. Steric and electronic effects were investigated by choosing appropriate groups. Both molecular mechanics (MM) and density functional theory (DFT) based studies were applied to support and explain the results obtained. Rapid decomposition is observed in acidic aqueous media for all cyclic aminals which occurs as a reversible reaction. Electronic effects do not seem relevant with regard to stability, but the magnitude of the conformational energy of the ring system and pK a values of the N-3 nitrogen atom. Conclusion: Cyclic aminals are stable compounds when not exposed to acidic media and their stability is mainly dependent on the conformational energy of the ring system. Therefore, for the preparation and work-up of these valuable synthetic intermediates and natural products, appropriate conditions have to be chosen and for application as drug molecules their sensitivity towards hydrolysis has to be taken into account. PMID:28144295
SYNERGISTIC DEGRADATION OF DENTIN BY CYCLIC STRESS AND BUFFER AGITATION
Orrego, Santiago; Romberg, Elaine; Arola, Dwayne
2015-01-01
Secondary caries and non-carious lesions develop in regions of stress concentrations and oral fluid movement. The objective of this study was to evaluate the influence of cyclic stress and fluid movement on material loss and subsurface degradation of dentin within an acidic environment. Rectangular specimens of radicular dentin were prepared from caries-free unrestored 3rd molars. Two groups were subjected to cyclic cantilever loading within a lactic acid solution (pH=5) to achieve compressive stresses on the inner (pulpal) or outer sides of the specimens. Two additional groups were evaluated in the same solution, one subjected to movement only (no stress) and the second held stagnant (control: no stress or movement). Exterior material loss profiles and subsurface degradation were quantified on the two sides of the specimens. Results showed that under cyclic stress material loss was significantly greater (p≤0.0005) on the pulpal side than on the outer side and significantly greater (p≤0.05) under compression than tension. However, movement only caused significantly greater material loss (p≤0.0005) than cyclic stress. Subsurface degradation was greatest at the location of highest stress, but was not influenced by stress state or movement. PMID:25637823
Behavior of nonplastic silty soils under cyclic loading.
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.
21 CFR 862.1230 - Cyclic AMP test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...
21 CFR 862.1230 - Cyclic AMP test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...
21 CFR 862.1230 - Cyclic AMP test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...
21 CFR 862.1230 - Cyclic AMP test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...
21 CFR 862.1230 - Cyclic AMP test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...
High-temperature cyclic oxidation data. Part 2: Turbine alloys
NASA Technical Reports Server (NTRS)
Barrett, Charles A.; Garlick, Ralph G.
1989-01-01
Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Serinocyclins A and B, Cyclic Heptapeptides from Metarhizium anisopliae
Technology Transfer Automated Retrieval System (TEKTRAN)
Two new cyclic heptapeptides, serinocyclins A (1) and B (2), were isolated from conidia of the entomopathogenic fungus Metarhizium anisopliae. Structures were elucidated by a combination of mass spectrometric, NMR, and X-ray diffraction techniques. Serinocyclin A (1) contains three serine units, a...
Geometric angles in cyclic evolutions of a classical system
NASA Technical Reports Server (NTRS)
Bhattacharjee, A.; Sen, Tanaji
1988-01-01
A perturbative method, using Lie transforms, is given for calculating the Hannay angle for slow, cyclic evolutions of a classical system, taking into account the finite rate of change of the Hamiltonian. The method is applied to the generalized harmonic oscillator. The classical Aharonov-Anandan angle is also calculated. The interpretational ambiguity in the definitions of geometrical angles is discussed.
Behavior of Nonplastic Silty Soils under Cyclic Loading
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343
The Demographic Composition of Cyclical Variations in Employment.
ERIC Educational Resources Information Center
Clark, Kim B.; Summers, Lawrence H.
This paper analyzes the demographic patterns of cyclical swings in the labor market by decomposing movement in employment into changes in unemployment and participation. The focus is on the interrelations among participation, employment and unemployment, with particular emphasis on the participation rate as a prime determinant of the labor market…
How turbulence regulates biodiversity in systems with cyclic competition
NASA Astrophysics Data System (ADS)
Grošelj, Daniel; Jenko, Frank; Frey, Erwin
2015-03-01
Cyclic, nonhierarchical interactions among biological species represent a general mechanism by which ecosystems are able to maintain high levels of biodiversity. However, species coexistence is often possible only in spatially extended systems with a limited range of dispersal, whereas in well-mixed environments models for cyclic competition often lead to a loss of biodiversity. Here we consider the dispersal of biological species in a fluid environment, where mixing is achieved by a combination of advection and diffusion. In particular, we perform a detailed numerical analysis of a model composed of turbulent advection, diffusive transport, and cyclic interactions among biological species in two spatial dimensions and discuss the circumstances under which biodiversity is maintained when external environmental conditions, such as resource supply, are uniform in space. Cyclic interactions are represented by a model with three competitors, resembling the children's game of rock-paper-scissors, whereas the flow field is obtained from a direct numerical simulation of two-dimensional turbulence with hyperviscosity. It is shown that the space-averaged dynamics undergoes bifurcations as the relative strengths of advection and diffusion compared to biological interactions are varied.
Cyclic pulse coding for fast BOTDA fiber sensors.
Taki, M; Muanenda, Y; Oton, C J; Nannipieri, T; Signorini, A; Di Pasquale, F
2013-08-01
A cyclic pulse coding technique is proposed and experimentally demonstrated for fast implementation of long-range Brillouin optical time-domain analysis (BOTDA). The proposed technique allows for accurate temperature and strain measurements with meter-scale spatial resolution over kilometers of standard single-mode fiber, with subsecond measurement times.
[Effect of cyclic somatostatin on ethanol-induced hypoglycemia].
Piccardo, M G; Marchetti, A M; Breda, E
1979-06-30
The authors examined the activity of the cyclic Somatostatin on Ethanol hypoglycemia. While the peptide is capable of increasing the plasma glucose levels of hypoglicemia starved rats, it does not increase the levels of plasma glucose in normal rats under the action of ethanol perfusion.
Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani
Technology Transfer Automated Retrieval System (TEKTRAN)
Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...
High temperature cyclic oxidation data. Part 1: Turbine alloys
NASA Technical Reports Server (NTRS)
Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.
1989-01-01
Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Yu, L; Lindsey, J S
2001-11-02
Two new cyclic hexameric arrays of porphyrins have been prepared in a rational, convergent manner. The porphyrins in each cyclic hexamer are joined by diphenylethyne linkers affording a wheel-like array with a diameter of approximately 35 A. One array is comprised of five zinc (Zn) porphyrins and one free base (Fb) porphyrin (cyclo-Zn(5)FbU) while the other is comprised of an alternating sequence of two Zn porphyrins and one Fb porphyrin (cyclo-Zn(2)FbZn(2)FbU). The prior synthesis employed a one-flask template-directed process and afforded alternating Zn and Fb porphyrins or all Zn porphyrins. More diverse metalation patterns are attractive for manipulating the flow of excited-state energy in the arrays. The rational synthesis of each array employed three Pd-mediated coupling reactions with four tetraarylporphyrin building blocks bearing diethynyl, diiodo, bromo/iodo, or iodo/ethynyl groups. The final ring closure yielding the cyclic hexamer was achieved by reaction of a porphyrin pentamer + porphyrin monomer or the joining of two porphyrin trimers. In the presence of a tripyridyl template, the yields of the 5 + 1 and 3 + 3 reactions ranged from 10 to 13%. The 5 + 1 reaction in the absence of the template proceeded in 3.5% yield, thereby establishing the structure-directed contribution to cyclic hexamer formation. The 3 + 3 route relied on successive ethyne + iodo/bromo coupling reactions. One template-directed route to cyclo-Zn(2)FbZn(2)FbU employed a magnesium porphyrin, affording cyclo-Zn(2)FbZn(2)MgU from which magnesium was selectively removed. The arrays exhibit absorption spectra that are nearly the sum of the spectra of the component parts, indicating weak electronic coupling. Fluorescence spectroscopy showed that the quantum yield of energy transfer in toluene at room temperature from the Zn porphyrins to the Fb porphyrin(s) was 60% in cyclo-Zn(5)FbU and 90% in cyclo-Zn(2)FbZn(2)FbU. Two dipyridyl-substituted porphyrins, a Zn tetraarylporphyrin and a Fb
Quantum mechanics and quantum information theory
NASA Astrophysics Data System (ADS)
van Camp, Wesley William
The principle aim of this dissertation is to investigate the philosophical application of quantum information theory to interpretational issues regarding the theory of quantum mechanics. Recently, quantum information theory has emerged as a potential source for such an interpretation. The main question with which this dissertation will be concerned is whether or not an information-theoretic interpretation can serve as a conceptually acceptable interpretation of quantum mechanics. It will be argued that some of the more obvious approaches -- that quantum information theory shows us that ultimately the world is made of information, and quantum Bayesianism -- fail as philosophical interpretations of quantum mechanics. However, the information-theoretic approach of Clifton, Bub, and Halvorson introduces Einstein's distinction between principle theories and constructive theories, arguing that quantum mechanics is best understood as an information-theoretic principle theory. While I argue that this particular approach fails, it does offer a viable new philosophical role for information theory. Specifically, an investigation of interpretationally successful principle theories such as Newtonian mechanics, special relativity, and general relativity, shows that the particular principles employed are necessary as constitutive elements of a framework which partially defines the basic explanatory concepts of space, time, and motion. Without such constitutive principles as preconditions for empirical meaning, scientific progress is hampered. It is argued that the philosophical issues in quantum mechanics stem from an analogous conceptual crisis. On the basis of this comparison, the best strategy for resolving these problems is to apply a similar sort of conceptual analysis to quantum mechanics so as to provide an appropriate set of constitutive principles clarifying the conceptual issues at stake. It is further argued that quantum information theory is ideally placed as a novel
Cyclic Boronates Inhibit All Classes of β-Lactamases
Cain, Ricky; Wang, David Y.; Lohans, Christopher T.; Wareham, David W.; Oswin, Henry P.; Mohammed, Jabril; Spencer, James; Fishwick, Colin W. G.; McDonough, Michael A.
2017-01-01
ABSTRACT β-Lactamase-mediated resistance is a growing threat to the continued use of β-lactam antibiotics. The use of the β-lactam-based serine-β-lactamase (SBL) inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-β-lactam inhibitor avibactam has extended the utility of β-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, however, ineffective against the metallo-β-lactamases (MBLs), which catalyze their hydrolysis. To date, there are no clinically available metallo-β-lactamase inhibitors. Coproduction of MBLs and SBLs in resistant infections is thus of major clinical concern. The development of “dual-action” inhibitors, targeting both SBLs and MBLs, is of interest, but this is considered difficult to achieve due to the structural and mechanistic differences between the two enzyme classes. We recently reported evidence that cyclic boronates can inhibit both serine- and metallo-β-lactamases. Here we report that cyclic boronates are able to inhibit all four classes of β-lactamase, including the class A extended spectrum β-lactamase CTX-M-15, the class C enzyme AmpC from Pseudomonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolyzing capabilities. We demonstrate that cyclic boronates can potentiate the use of β-lactams against Gram-negative clinical isolates expressing a variety of β-lactamases. Comparison of a crystal structure of a CTX-M-15:cyclic boronate complex with structures of cyclic boronates complexed with other β-lactamases reveals remarkable conservation of the small-molecule binding mode, supporting our proposal that these molecules work by mimicking the common tetrahedral anionic intermediate present in both serine- and metallo-β-lactamase catalysis. PMID:28115348
Cyclic Mechanical Stress and Trabecular Meshwork Cell Contractility
Ramos, Renata F.; Sumida, Grant M.; Stamer, W. Daniel
2009-01-01
Purpose Ocular pulse decreases outflow facility of perfused anterior segments. However, the mechanism by which conventional outflow tissues respond to cyclic intraocular pressure oscillations is unknown. The purpose of the present study was to examine responses of trabecular meshwork (TM) cells to cyclic biomechanical stress in the presence and absence of compounds known to affect cell contractility. Methods To model flow in the juxtacanalicular region of the TM and to measure changes in transendothelial flow, human TM cell monolayers on permeable filters were perfused at a constant flow rate until reaching a stable baseline pressure and then were exposed to cyclic stress with an average amplitude of 2.7 mm Hg peak to peak at a 1-Hz frequency for 2 hours in the presence or absence of compounds known to affect cell contractility (isoproterenol, Y27632, pilocarpine, and nifedipine). Pressure was recorded continuously. Immunocytochemistry staining was used to determine filamentous actin stress fiber content, whereas Western blot analysis was used to measure the extent of myosin light chain (p-MLC) phosphorylation and ratio of filamentous to globular actin. Results Human TM cells respond to cyclic pressure oscillations by increasing mean intrachamber pressure (decreasing hydraulic conductivity) (126.13% ± 2.4%; P < 0.05), a response blocked in the presence of Y27632, a rho-kinase inhibitor (101.35 ± 0.59; P = 0.234), but not isoproterenol, pilocarpine, or nifedipine. Although mechanical stress appeared to have no effect, Y27632 decreased phosphorylated myosin light chain, filamentous/globular actin ratio, and stress fiber formation in TM cells. Conclusions Human TM cells respond to cyclic mechanical stress by increasing intrachamber pressure. Pulse-mediated effects are blocked by Y27632, implicating a role for Rho-kinase-mediated signaling and cellular contractility in ocular pulse-associated changes in outflow facility. PMID:19339745
Efficient Quantum Pseudorandomness
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał
2016-04-01
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.
Quantum Spread Spectrum Communication
Humble, Travis S
2010-01-01
We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.
Efficient Quantum Pseudorandomness.
Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał
2016-04-29
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.
NASA Astrophysics Data System (ADS)
Jennewein, Thomas; Higgins, Brendon
2013-03-01
Sending satellites equipped with quantum technologies into space will be the first step towards a global quantum-communication network. As Thomas Jennewein and Brendon Higgins explain, these systems will also enable physicists to test fundamental physics in new regimes.
NASA Astrophysics Data System (ADS)
2010-08-01
Can excitons be used to achieve scalable control of quantum light? Steffen Michaelis de Vasconcellos explained to Nature Photonics that the optoelectrical control of exciton qubits in quantum dots offers great promise.
NASA Astrophysics Data System (ADS)
Fiderer, Lukas J.; Kuś, Marek; Braun, Daniel
2016-09-01
We study mechanisms that allow one to synchronize the quantum phase of two qubits relative to a fixed basis. Starting from one qubit in a fixed reference state and the other in an unknown state, we find that, contrary to the impossibility of perfect quantum cloning, the quantum phase can be synchronized perfectly through a joined unitary operation. When both qubits are initially in a pure unknown state, perfect quantum-phase synchronization through unitary operations becomes impossible. In this situation we determine the maximum average quantum-phase synchronization fidelity and the distribution of relative phases and fidelities, and we identify optimal quantum circuits that achieve this maximum fidelity. A subset of these optimal quantum circuits enable perfect quantum-phase synchronization for a class of unknown initial states restricted to the equatorial plane of the Bloch sphere.
Quantum engineering: Diamond envy
NASA Astrophysics Data System (ADS)
Nunn, Joshua
2013-03-01
Nitrogen atoms trapped tens of nanometres apart in diamond can now be linked by quantum entanglement. This ability to produce and control entanglement in solid systems could enable powerful quantum computers.
Quantum dots as active material for quantum cascade lasers: comparison to quantum wells
NASA Astrophysics Data System (ADS)
Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian
2016-03-01
We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Investigating Quantum Modulation States
2016-03-01
INVESTIGATING QUANTUM MODULATION STATES MARCH 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE INVESTIGATING QUANTUM MODULATION STATES 5a. CONTRACT NUMBER IN-HOUSE 5b...NOTES 14. ABSTRACT This effort was primarily concerned with quantum aspects of optical communications. Two quantum communications technologies were
Quantum Information Processing
2007-11-02
preparation, indicating, to our surprise, that standard quantum teleportation is *not* optimal for the transmission of states from Alice to Bob if...1 August 1998-1 August. 2001 4. TITLE AND SUBTITLE Quantum Information Processing 5. FUNDING NUMBERS DAAG55-98-C-0041 6. AUTHOR(S) David P... quantum entanglement in which the transmitted quantum state is known to Alice. Very recently, with A. Winter, a new, more efficient protocol for RSP has
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
1990-07-20
elements of the density matrix . This leads us to a quantum kinetic theory . 3. QUANTUM KINETIC THEORY A quantum kinetic theory is expressed in terms of...the single-particle density matrix p(z, z’), or a mathematically equivalent object such as the Wigner dis- tribution function . The time evolution of p...mod- eled by elementary quantum theory because theform of the density matrix in equilibrium, p oc e- PH, assures us that the electrons actually occupy
Quantum Computing since Democritus
NASA Astrophysics Data System (ADS)
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
Ashton, A R; Polya, G M
1977-07-01
1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.
2016-01-01
Time domain cyclic-selective mapping (TDC-SLM) reduces the peak-to-average power ratio (PAPR) in OFDM systems while the amounts of cyclic shifts are required to recover the transmitted signal in a receiver. One of the critical issues of the SLM scheme is sending the side information (SI) which reduces the throughputs in wireless OFDM systems. The proposed scheme implements delayed correlation and matched filtering (DC-MF) to estimate the amounts of the cyclic shifts in the receiver. In the proposed scheme, the DC-MF is placed after the frequency domain equalization (FDE) to improve the accuracy of cyclic shift estimation. The accuracy rate of the propose scheme reaches 100% at E b/N 0 = 5 dB and the bit error rate (BER) improves by 0.2 dB as compared with the conventional TDC-SLM. The BER performance of the proposed scheme is also better than that of the conventional TDC-SLM even though a nonlinear high power amplifier is assumed. PMID:27752539
Cyclic nucleotide responses and radiation-induced mitotic delay in Physarum polycephalum
Daniel, J.W.; Oleinick, N.L.
1984-02-01
The response of the plasmodial levels of cyclic AMP and cyclic GMP in Physarum polycephalum to several putative phosphodiesterase inhibitors and to ionizing radiation has been measured. Isobutylmethylxanthine (2 mM) induces a rapid transient threefold elevation of cyclic AMP alone, with maximum response in about 10 min and return to the base line in about 30 min. Theophylline (2 mM) induces a rapid, sustained twofold elevation of cyclic GMP only. Caffeine (2mM) and Ro-20-1724 (18 ..mu..M) both elicit a rapid transient rise in cyclic AMP, resembling the isobutylmethylxanthine response, and a slow transient elevation of the cyclic GMP level. Of particular interest is the rapid threefold transient elevation of the cyclic AMP, but not of the cyclic GMP, level by ..gamma.. radiation.
Advanced Quantum Communication Protocols
2005-12-17
theoretically optimal configuration, and compared hyperentangled and multi-pair encoding. Table of Contents: Summary 2 Relativistic Quantum Cryptography ( RQC ...error rates, for 4- and 6-state RQC 4. Intensity pulses to generate uniform time-interval probability distributions 5. Schematic of photon-arrival...Protocols: Scientific Progress and Accomplishments “Relativistic” Quantum Cryptography We have implemented relativistic quantum cryptography ( RQC ) using
Quantum phenomena in superconductors
Clarke, J.
1987-08-01
This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)
Quantum Boolean image denoising
NASA Astrophysics Data System (ADS)
Mastriani, Mario
2015-05-01
A quantum Boolean image processing methodology is presented in this work, with special emphasis in image denoising. A new approach for internal image representation is outlined together with two new interfaces: classical to quantum and quantum to classical. The new quantum Boolean image denoising called quantum Boolean mean filter works with computational basis states (CBS), exclusively. To achieve this, we first decompose the image into its three color components, i.e., red, green and blue. Then, we get the bitplanes for each color, e.g., 8 bits per pixel, i.e., 8 bitplanes per color. From now on, we will work with the bitplane corresponding to the most significant bit (MSB) of each color, exclusive manner. After a classical-to-quantum interface (which includes a classical inverter), we have a quantum Boolean version of the image within the quantum machine. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too. After filtering of the inverted version of MSB (inside quantum machine), the result passes through a quantum-classical interface (which involves another classical inverter) and then proceeds to reassemble each color component and finally the ending filtered image. Finally, we discuss the more appropriate metrics for image denoising in a set of experimental results.
Quantum Griffiths Inequalities
NASA Astrophysics Data System (ADS)
Miyao, Tadahiro
2016-07-01
We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose-Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.
NASA Astrophysics Data System (ADS)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.
Quantum transport in ballistic quantum dots
NASA Astrophysics Data System (ADS)
Ferry, D. K.; Akis, R. A.; Pivin, D. P., Jr.; Bird, J. P.; Holmberg, N.; Badrieh, F.; Vasileska, D.
1998-10-01
Carriers in small 3D quantum boxes take us from unintentional qquantum dots in MOSFETs (arising from the doping fluctuations) tto single-electron quantum dots in semiconductor hheterostructures. In between these two extremes are the realm of oopen, ballistic quantum dots, in which the transport can be quite regular. Several issues must be considered in treating the transport in these dots, among which are: (1) phase coherence within the dot; (2) the transition between semi-classical and fully quantum transport, (3) the role of the contacts, vis-à-vis the fabricated boundaries, and (4) the actual versus internal boundaries. In this paper, we discuss these issues, including the primary observables in experiment, the intrinsic nature of oscillatory behavior in magnetic field and dot size, and the connection to semi-classical transport emphasizing the importance of the filtering by the input (and output) quantum point contacts.
Quantum Approach to Informatics
NASA Astrophysics Data System (ADS)
Stenholm, Stig; Suominen, Kalle-Antti
2005-08-01
An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.
Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?
Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.
2014-04-21
The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The
Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel
S.C. Hodge; J.M. Minicucci; T.F. Trimble
2003-04-30
The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclic amine reaction product with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10570 Cyclic amine reaction product... subject to reporting. (1) The chemical substance identified generically as cyclic amine reaction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclic amine reaction product with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10570 Cyclic amine reaction product... subject to reporting. (1) The chemical substance identified generically as cyclic amine reaction...
Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols
2007-11-20
REPORT NUMBER Institute for Quantum Studies and Department of Physics Texas A&M University College Station, TX 77843- 4242 9. SPONSORING / MONITORING...September 30, 2007 Principal Investigators: Marlan 0. Scully and M. Subail Zubairy Institute for Quantum Studies and Department of Physics Texas A&M...Thus, N has a simple physical meaning: It is the ratio of the delay time of the buffer and the pulse duration and corresponds to the number of
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Quantum Operation Time Reversal
Crooks, Gavin E.
2008-03-25
The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.
Syn- and anti-conformations of 5'-deoxy- and 5'-O-methyl-uridine 2',3'-cyclic monophosphate.
Grabarkiewicz, Tomasz; Hoffmann, Marcin
2006-01-01
Two uridine 2',3'-cyclic monophosphate (cUMP) derivatives, 5'-deoxy (DcUMP) and 5'-O-methyl (McUMP), were studied by means of quantum chemical methods. Aqueous solvent effects were estimated based on the isodensity-surface polarized-continuum model (IPCM). Gas phase calculations revealed only slight energy differences between the syn- and anti-conformers of both compounds: the relative energies of the syn-structure are -0.9 and 0.2 kcal mol(-1) for DcUMP and McUMP, respectively. According to the results from the IPCM calculations, however, both syn-conformers become about 14 kcal mol(-1) more stable in aqueous solution than their corresponding anti-structures. Additionally, the effects of a countercation and protonation on DcUMP were studied, revealing that the syn-structure is also favored over the anti-one for these systems.
Quantum robots plus environments.
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.
Huang, Wei; Yang, Shi-Jian; Zhang, Shi-Bao; Zhang, Jiao-Lin; Cao, Kun-Fang
2012-04-01
Resurrection plants could survive severe drought stress, but the underlying mechanism for protecting their photosynthetic apparatus against drought stress is unclear. Cyclic electron flow (CEF) has been documented as a crucial mechanism for photoprotection in Arabidopsis and tobacco. We hypothesized that CEF plays an important role in protecting photosystem I (PSI) and photosystem II (PSII) against drought stress for resurrection plants. To address this hypothesis, the effects of mild drought stress on light energy distribution in PSII and P700 redox state were examined in a resurrection plant Paraboea rufescens. Cyclic electron flow was not activated below the photosynthetic photon flux density (PPFD) of 400 μmol m⁻² s⁻¹ in leaves without drought stress. However, CEF was activated under low light in leaves with mild drought stress, and the effective quantum yield of PSII significantly decreased. Meanwhile, non-photochemical quenching (NPQ) was significantly stimulated not only under high light but also under low light. Compared with the control, the fraction of overall P700 that cannot be oxidized in a given state (PSI acceptor side limitation) under high light was maintained at low level of 0.1 in leaves with water deficit, indicating that the over-reduction of the PSI acceptor side was prevented by the significant stimulation of CEF. Furthermore, methyl viologen could significantly increase the PSII photo-inhibition induced by high light compared with chloramphenicol. These results suggested that CEF is an important mechanism for protecting PSI and PSII from drought stress in resurrection plants.
Vass, Elemér; Hollósi, Miklós; Forró, Eniko; Fülöp, Ferenc
2006-09-01
A direct enzymatic method for the preparation of cyclic beta-lactams and beta-amino acids was recently developed, involving the Lipolase-catalyzed enantioselective hydrolysis of racemic beta-lactams in an organic solvent. Vibrational circular dichroism (VCD) spectroscopy combined with quantum chemical calculations at ab initio (DFT) level of theory has now been applied to determine the absolute configuration and conformation of a series of cyclic beta-lactams (1-10). The absolute configuration of 8 was derived from X-ray crystallography. Only indirect evidence was available for 1, 2, 5, 6, and 7. The absolute configuration of the new lactams 3, 4, 9, and 10 was not known previously. The VCD analysis indicated the homochirality of the studied lactams. The conformation of the flexible beta-lactams was also predicted from the VCD data. Even in the cases where multiple conformers are allowed, the predominance of one conformer was found, with the exception of 2, being present as a mixture of four conformers. Beta-lactams tend to form H-bonded dimers. The fine structure of the amide I VCD band suggested that only a small population of H-bonded dimers is formed in deuterated chloroform.
Quantum random number generators
NASA Astrophysics Data System (ADS)
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos
2017-01-01
Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. This review discusses the different technologies in quantum random number generation from the early devices based on radioactive decay to the multiple ways to use the quantum states of light to gather entropy from a quantum origin. Randomness extraction and amplification and the notable possibility of generating trusted random numbers even with untrusted hardware using device-independent generation protocols are also discussed.
Superradiant Quantum Heat Engine.
Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E
2015-08-11
Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.
NASA Astrophysics Data System (ADS)
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
NASA Astrophysics Data System (ADS)
Cahill, Reginald T.
2002-10-01
So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.
Superradiant Quantum Heat Engine
Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.
2015-01-01
Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
NASA Astrophysics Data System (ADS)
Longair, Malcolm
2013-01-01
Part I. The Discovery of Quanta: 1. Physics and theoretical physics in 1895; 2. Planck and black-body radiation; 3. Einstein and quanta, 1900-1911; Part II. The Old Quantum Theory: 4. The Bohr model of the hydrogen atom; 5. Sommerfield and Ehrenfest - generalising the Bohr model; 6. Einstein coefficients, Bohr's correspondence principle and the first selection rules; 7. Understanding atomic spectra - additional quantum numbers; 8. Bohr's model of the periodic table and the origin of spin; 9. The wave-particle duality; Part III. The Discovery of Quantum Mechanics; 10. The collapse of the old quantum theory and the seeds of its regeneration; 11. The Heisenberg breakthrough; 12. Matrix mechanics; 13. Dirac's quantum mechanics; 14. Schrödinger and wave mechanics; 15. Reconciling matrix and wave mechanics; 16. Spin and quantum statistics; 17. The interpretation of quantum mechanics; 18. The aftermath; 19. Epilogue; Indices.
Quantum simulation of a quantum stochastic walk
NASA Astrophysics Data System (ADS)
Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.
2017-03-01
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born–Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.
Berla, Bertram M.; Saha, Rajib; Maranas, Costas D.; Pakrasi, Himadri B.
2015-01-01
All cyanobacterial membranes contain diesel-range C15-C19 hydrocarbons at concentrations similar to chlorophyll. Recently, two universal but mutually exclusive hydrocarbon production pathways in cyanobacteria were discovered. We engineered a mutant of Synechocystis sp. PCC 6803 that produces no alkanes, which grew poorly at low temperatures. We analyzed this defect by assessing the redox kinetics of PSI. The mutant exhibited enhanced cyclic electron flow (CEF), especially at low temperature. CEF raises the ATP:NADPH ratio from photosynthesis and balances reductant requirements of biosynthesis with maintaining the redox poise of the electron transport chain. We conducted in silico flux balance analysis and showed that growth rate reaches a distinct maximum for an intermediate value of CEF equivalent to recycling 1 electron in 4 from PSI to the plastoquinone pool. Based on this analysis, we conclude that the lack of membrane alkanes causes higher CEF, perhaps for maintenance of redox poise. In turn, increased CEF reduces growth by forcing the cell to use less energy-efficient pathways, lowering the quantum efficiency of photosynthesis. This study highlights the unique and universal role of medium-chain hydrocarbons in cyanobacterial thylakoid membranes: they regulate redox balance and reductant partitioning in these oxygenic photosynthetic cells under stress. PMID:26459862
NASA Astrophysics Data System (ADS)
Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.
2013-10-01
The recent measurements by Cassini Ion Neutral Mass Spectrometer (INMS) showed the presence of numerous carbocations and shed light on their composition in Titan's upper atmosphere. The present research identifies an important class of ion-molecule reactions proceeding via carbocation collision complexes, and its implications in the chemistry of Titan's thermosphere and ionosphere. An analysis (based on the kinetics and dynamics of the elementary chemical processes identified) of the Cassini measurements reveals the mechanism of formation of the three-membered Huckel aromatic rings-Cyclopropenyl cation and its cyclic methyl derivatives. For carbocations, a nonclassical three-carbon-center two-electron-bond structure is no longer a controversial topic in chemistry literature. Emphasis has been placed on a future coordinated effort of state-of-the-art laboratory experiments, quantum-chemical calculations, and astronomical ALMA and JWST observations including planetary in situ measurements at millimeter and submillimeter wavelengths to elucidate the structure, energetics and dynamics of the compositions of carbocations detected by Cassini cationic mass spectrometry. The carbocation chemistry in Titan's upper atmosphere has a possible bearing on the organic chemistry and aromaticity in the atmosphere of primitive earth.
Recent progress of quantum annealing
Suzuki, Sei
2015-03-10
We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.
Cyclic Plasticity under Shock Loading in an HCP Metal
Prime, Michael B.; Hunter, Abigail; Canfield, Thomas R.; Adams, Chris D.
2012-06-08
Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.
Cyclic peptide oral bioavailability: Lessons from the past.
Wang, Conan K; Craik, David J
2016-11-01
Achieving high oral bioavailability for drugs is a key design objective in drug development. It is not surprising then that with the growing expectation of peptides as future drugs, there has also been an increasing interest in developing oral peptide therapeutics. Brought to the fore are questions such as what makes peptides orally bioavailable and how this can be achieved; questions which have inspired research into the area for decades. Early research in the area focused on linear peptides with more recent literature focusing on cyclic peptides, motivated in part by cyclic peptides like cyclosporine A that have demonstrated drug-like oral bioavailability. In this review, we take a look at research on the oral bioavailability of peptides, focusing on factors that affect passive permeability. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 901-909, 2016.
Application of cyclic fluorocarbon/argon discharges to device patterning
Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; Miyazoe, Hiroyuki; Zhu, Yu; Price, William; Sikorski, Ed S.; Li, Chen; Engelmann, Sebastian U.; Joseph, Eric A.; Oehrlein, Gottlieb S.
2015-11-13
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with this work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.
On the stability of the cyclic O8 molecule
NASA Astrophysics Data System (ADS)
Ochoa-Calle, A. J.; Ramírez-Solís, A.
2014-01-01
We present a refined study of some isomers of the covalently bound O8 molecule at the MP2 and CCSD levels with sequences of correlation-consistent basis sets. The previously known symmetric D4d crown structure is 28 kcal/mol more stable than the structure by Forte et al. (Phys. Lett. A 377 (2013) 801), which is a second order transition state leading to 4O2 (3∑g-) and to another lower-lying unstable cyclic structure. The O8 symmetric crown lies 104 kcal/mol above the 4O2 (3∑g-) fragments and has 1.40 Å O-O bonds, which are shorter than those of the O4 and O6 cyclic species at the MP2/CBS level.
Cyclic creep analysis from elastic finite-element solutions
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hwang, S. Y.
1986-01-01
A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.
Global bifurcations and chaos in externally excited cyclic systems
NASA Astrophysics Data System (ADS)
Yu, Weiqin; Chen, Fangqi
2010-12-01
The global bifurcations in mode interaction of a nonlinear cyclic system subjected to a harmonic excitation are investigated with the case of the primary resonance, the averaged equations representing the evolution of the amplitudes and phases of the interacting normal modes exhibit complex dynamics. The energy-phase method proposed by Haller and Wiggins is employed to analyze the global bifurcations for the cyclic system. The results obtained here indicate that there exist the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the resonant case in both Hamiltonian and dissipative perturbations, which imply that chaotic motions occur for this class of systems. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found and the visualizations of these complicated structures are presented.
Enzymatic Ugi Reaction with Amines and Cyclic Imines.
Żądło-Dobrowolska, Anna; Kłossowski, Szymon; Koszelewski, Dominik; Paprocki, Daniel; Ostaszewski, Ryszard
2016-11-07
The application of the Ugi reaction to the construction of new peptide scaffolds is an important goal of organic chemistry. To date, there are no examples of the Ugi reaction being performed with a cyclic imine and amine simultaneously. The application of 2-substituted cyclic imines in an enzymatic three-component Ugi-type reaction provides an elegant and attractive synthesis of substituted pyrrolidine and piperidine derivatives in up to 60 % yield. Results on studies of the selection of an enzyme, amount of water, and solvent used in a novel three-component Ugi reaction and the limitations thereof are reported herein. The presented methodology exploiting enzyme promiscuity in the multicomponent reaction fulfills the requirements associated with green chemistry. Several methods, such as isotope labeling and enzyme inhibition, were used to probe the possible mechanism of this complex synthesis. This research is the first example of an enzyme-catalyzed Ugi-type reaction with an imine, amine, and isocyanide.
Engine cyclic durability by analysis and material testing
NASA Technical Reports Server (NTRS)
Kaufman, A.; Halford, G. R.
1983-01-01
The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor liner; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods.
Application of cyclic fluorocarbon/argon discharges to device patterning
Metzler, Dominik; Uppireddi, Kishore; Bruce, Robert L.; Miyazoe, Hiroyuki; Zhu, Yu; Price, William; Sikorski, Ed S.; Engelmann, Sebastian U.; Joseph, Eric A.; Li, Chen; Oehrlein, Gottlieb S.
2016-01-15
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with this work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.
Mechanisms of intruder motion in cyclically sheared granular media
NASA Astrophysics Data System (ADS)
Zheng, Hu; Barés, Jonathan; Wang, Dong; Behringer, Robert
2016-11-01
We perform an experimental study showing how an intruder, a Teflon disk that experiences a moderate constant force, F, can advance through a granular material that is subject to quasi-static cyclic shear. The large Teflon disk is embedded in a layer of smaller bidisperse photoelastic disks. The granular medium and disk are contained in a horizontal cell, which is deformed from a square to a parallelogram and back again. The area of the cell remains constant throughout, and the protocol corresponds to cyclical simple shear. We find that the net intruder motion per cycle increases as a power law in Nc. The intruder motion relative to the granular background occurs primarily following strain reversals. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Study of quinones reactions with wine nucleophiles by cyclic voltammetry.
Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S
2016-11-15
Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed.
Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys
NASA Technical Reports Server (NTRS)
Shahani, V.; Popp, H. G.
1978-01-01
An evaluation of the cyclic behavior of three aircraft engine turbine disk materials was conducted to compare their relative crack initiation and crack propagation resistance. The disk alloys investigated were Inconel 718, hot isostatically pressed and forged powder metallurgy Rene '95, and as-hot-isostatically pressed Rene '95. The objective was to compare the hot isostatically pressed powder metallurgy alloy forms with conventionally processed superalloys as represented by Inconel 718. Cyclic behavior was evaluated at 650 C both under continuously cycling and a fifteen minute tensile hold time cycle to simulate engine conditions. Analysis of the test data were made to evaluate the strain range partitioning and energy exhaustion concepts for predicting hold time effects on low cycle fatigue.
Matrix cracking in laminated composites under monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Allen, David H.; Lee, Jong-Won
1991-01-01
An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.
Application of cyclic fluorocarbon/argon discharges to device patterning
Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...
2015-11-13
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
Effect of beam quality on tilt measurement using cyclic interferometer
NASA Astrophysics Data System (ADS)
Pretheesh Kumar, V. C.; Ganesan, A. R.; Joenathan, C.; Somasundaram, U.
2016-08-01
Accurate measurement of angles is extremely important in various metrological applications. Interferometry has always been an excellent technique for accurate measurements. Several methods have been proposed for accurate tilt measurement using interferometric techniques. Almost all of them use the Michelson configuration which is extremely sensitive to environmental vibrations and turbulences. We know that a cyclic interferometer is extremely stable. Even though it is not sensitive to displacement changes, it is twice sensitive to tilt compared to that of a Michelson interferometer. We have enhanced the sensitivity to measure tilt using multiple reflections in a cyclic interferometer. Since the input beam is collimated, we have studied the effect of aberration of the input beam on the accuracy of tilt measurement. Experimental results on this study are presented in this paper.
Low severity coal liquefaction promoted by cyclic olefins
Curtis, C.W.
1991-01-01
The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new mater's graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter's work is a compilation of the material which we have found to data involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.
Cyclic olefins as new hydrogen donor compounds for coal liquefaction
Bedell, M.W.; Curtis, C.W. )
1990-01-01
A new set of hydrogen donor compounds, cyclic olefins (CLO), has been evaluated to determine their effectiveness as hydrogen donors to coal. These cyclic olefins are hydroaromatic species which do not contain aromatic rings. The efficacy of these donors has been compared to conventional hydroaromatics. The CLO's under study are 1,4,5,8-tetrahydronaphthalene, also known as isotetralin, and 1,4,5,8,9,10-hexahydroanthracene. In this paper, the thermal and catalytic reactivity of the CLO's under nitrogen and hydrogen at coal liquefaction temperature is discussed. Results for the reactions of the CLO's and their conventional hydroaromatic analogues, e.g. tetralin, 9,10-dihydroanthracene, and octahydroanthracene, with Western Kentucky No. 9 coal are discussed.
Low severity coal liquefaction promoted by cyclic olefins
Curtis, C.W.
1991-01-01
The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new master's graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter's work is a compilation of the material which we have found to date involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.
Fukuoka, M; Shuto, S; Minakawa, N; Ueno, Y; Matsuda, A
1999-01-01
An efficient synthesis of cyclic IDP-carbocyclic-ribose, as a stable mimic for cyclic ADP-ribose, was achieved. 8-Bromo-N1-carbocyclic-ribosylinosine derivative 10, prepared from N1-(2,4-dinitrophenyl)inosine derivative 5 and an optically active carbocyclic amine 6, was converted to 8-bromo-N1-carbocyclic-ribosylinosine bisphosphate derivative 15. Treatment of 15 with I2 in the presence of molecular sieves in pyridine gave the desired cyclic product 16 quantitatively, which was deprotected and reductively debrominated to give the target cyclic IDP-carbocyclic-ribose (3).
Quantum Information and Computing
NASA Astrophysics Data System (ADS)
Accardi, L.; Ohya, Masanori; Watanabe, N.
2006-03-01
Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An
Quantum coherence and quantum phase transitions
Li, Yan-Chao; Lin, Hai-Qing
2016-01-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057
Quantum gravitational contributions to quantum electrodynamics.
Toms, David J
2010-11-04
Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. However, that claim has been very controversial and the matter has not been settled. Here I report an analysis (free from the earlier controversies) demonstrating that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the electric charge vanishing at high energies, a result known as asymptotic freedom.
Enhanced catalyst stability for cyclic co methanation operations
Risch, Alan P.; Rabo, Jule A.
1983-01-01
Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.
A dislocation density based constitutive model for cyclic deformation
Estrin, Y.; Braasch, H.; Brechet, Y.
1996-10-01
A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.
Adjustable-Length Strut Withstands Large Cyclic Loads
NASA Technical Reports Server (NTRS)
Carner, Fred P.
1995-01-01
Adjustable-length strut designed for installation in structure subjected to large cyclic loads. Partly resembles large turnbuckle: includes oppositely threaded eyebolts engaging correspondingly threaded holes at opposite ends of shaft, and shaft turned to adjust length. However, unlike in turnbuckle, length setting not fixed by use of simple jam nuts: instead, length setting fixed by use of more complex threaded-end flanges partly resembling jam nuts but function somewhat differently.
Plasticity model for metals under cyclic large-strain loading
NASA Astrophysics Data System (ADS)
Greshnov, V. M.; Puchkova, I. V.
2010-03-01
This paper deals with mathematical modeling of one of the effective technologies of plastic metal forming — multistep cold metal forging. Experimental results are given on the plastic behavior of metals under cyclic loading at large strains accumulated for one cycle. Based on the experimental data obtained, a plasticity model is developed and shown to be effective in testing and improving the technology of forging a nut blank by using a computer-aided engineering analysis system.
Area, Diagonals, and Circumcircle of a Cyclic Quadrilateral
ERIC Educational Resources Information Center
Ayoub, Ayoub B.
2006-01-01
In the seventh century, around 650 A.D., the Indian mathematician Brahmagupta came up with a remarkable formula expressing the area E of a cyclic quadrilateral in terms of the lengths a, b, c, d of its sides. In his formula E = [square root](s-a)(s-b)(s-c)(s-d), s stands for the semiperimeter 1/2(a+b+c+d). The fact that Brahmagupta's formula is…
Synthesis and biological evaluation of cyclic endomorphin-2 analogs.
Perlikowska, Renata; do-Rego, Jean Claude; Cravezic, Aurore; Fichna, Jakub; Wyrebska, Anna; Toth, Geza; Janecka, Anna
2010-02-01
In our previous paper we reported synthesis and biological activity of two cyclic analogs of endomorphin-2 (EM-2): Tyr-c(Lys-Phe-Phe-Asp)-NH(2) and Tyr-c(Asp-Phe-Phe-Lys)-NH(2), achieved by making an amid bond between Lys and Asp side-chains. The first analog did not bind to the mu-opioid receptor, the affinity of the second one was very low. In the present study, we describe the synthesis of four novel cyclic analogs of similar structure, but with d-amino acids in position 2 (D-Lys or D-Asp). All new analogs displayed high affinity for the mu-opioid receptor, were much more stable than EM-2 in rat brain homogenate and showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) administration. Analgesic effect of the most potent cyclic analog, Tyr-c(D-Lys-Phe-Phe-Asp)NH(2) was much stronger and longer lasting than that of EM-2. This analog elicited analgesia also after peripheral administration and this effect was reversed by concomitant i.c.v. injection of the mu-opioid antagonist, beta-funaltrexamine, which indicated that antinociception was mediated by the mu-opioid receptor in the brain. Central action of the cyclic analog gives evidence that it was able to cross the blood-brain barrier, most likely due to the increased lipophilicity. Our results demonstrate that cyclization might be a promising strategy to enhance bioavailability of peptides and may serve a role in the development of novel endomorphin analogs with increased therapeutic potential.
Elastoplastic state of spherical shells with cyclically symmetric circular holes
NASA Astrophysics Data System (ADS)
Storozhuk, E. A.; Chernyshenko, I. S.; Rudenko, I. B.
2012-09-01
The elastoplastic state of thin spherical shells with cyclically symmetric circular holes is considered. A numerical procedure for solving such nonlinear problems is proposed. The distribution of stresses, strains, and displacements over their concentration zones is studied. The stress-strain state of shells with four holes made of a plastic material and subjected to internal pressure of given intensity is analyzed. The numerical results are presented in the form of graphs and tables