Science.gov

Sample records for nonclassical mhc class

  1. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant

    PubMed Central

    Dirscherl, Hayley; Yoder, Jeffrey A.

    2015-01-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ∼30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanyx mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idellus). PMID:26254596

  2. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant.

    PubMed

    Dirscherl, Hayley; Yoder, Jeffrey A

    2015-09-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here, we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ~30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanax mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idella). PMID:26254596

  3. Modo-UG, a marsupial nonclassical MHC class I locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found...

  4. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus).

    PubMed

    Zeng, Q-Q; Zhong, G-H; He, K; Sun, D-D; Wan, Q-H

    2016-02-01

    Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.

  5. Characterization of a divergent non-classical MHC class I gene in sharks.

    PubMed

    Wang, Carren; Perera, Thushara V; Ford, Heide L; Dascher, Christopher C

    2003-04-01

    Sharks are the most ancient group of vertebrates known to possess members of the major histocompatibility complex (MHC) gene family. For this reason, sharks provide a unique opportunity to gain insight into the evolution of the vertebrate immune system through comparative analysis. Two genes encoding proteins related to the MHC class I gene family were isolated from splenic cDNA derived from spiny dogfish shark ( Squalus acanthias). The genes have been designated MhcSqac-UAA*01 and MhcSqac-UAA*NC1. Comparative analysis demonstrates that the Sqac-UAA*01 protein sequence clusters with classical MHC class I of several shark species and has structural elements common to most classical MHC class I molecules. In contrast, Sqac-UAA*NC1 is highly divergent from all vertebrate classical MHC class I proteins, including the Sqac-UAA *01 sequence and those of other shark species. Although Sqac-UAA*NC1 is clearly related to the MHC class I gene family, no orthologous genes from other species were identified due to the high degree of sequence divergence. In fact, the Sqac NC1 protein sequence is the most divergent MHC class-I-like protein identified thus far in any shark species. This high degree of divergence is similar in magnitude to some of the MHC class-I-related genes found in mammals, such as MICA or CD1. These data support the existence of a class of highly divergent non-classical MHC class I genes in the most primitive vertebrates known to possess homologues of the MHC and other components of the adaptive immune system.

  6. ERAAP Shapes the Peptidome Associated with Classical and Nonclassical MHC Class I Molecules.

    PubMed

    Nagarajan, Niranjana A; de Verteuil, Danielle A; Sriranganadane, Dev; Yahyaoui, Wafaa; Thibault, Pierre; Perreault, Claude; Shastri, Nilabh

    2016-08-15

    The peptide repertoire presented by classical as well as nonclassical MHC class I (MHC I) molecules is altered in the absence of the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). To characterize the extent of these changes, peptides from cells lacking ERAAP were eluted from the cell surface and analyzed by high-throughput mass spectrometry. We found that most peptides found in wild-type (WT) cells were retained in the absence of ERAAP. In contrast, a subset of "ERAAP-edited" peptides was lost in WT cells, and ERAAP-deficient cells presented a unique "unedited" repertoire. A substantial fraction of MHC-associated peptides from ERAAP-deficient cells contained N-terminal extensions and had a different molecular composition than did those from WT cells. We found that the number and immunogenicity of peptides associated with nonclassical MHC I was increased in the absence of ERAAP. Conversely, only peptides presented by classical MHC I were immunogenic in ERAAP-sufficient cells. Finally, MHC I peptides were also derived from different intracellular sources in ERAAP-deficient cells. PMID:27371725

  7. Spatial-Temporal Expression of Non-classical MHC Class I Molecules in the C57 Mouse Brain.

    PubMed

    Liu, Jiane; Shen, Yuqing; Li, Mingli; Lv, Dan; Zhang, Aifeng; Peng, Yaqin; Miao, Fengqin; Zhang, Jianqiong

    2015-07-01

    Recent studies clearly demonstrate major histocompatibility complex (MHC) class I expression in the brain plays an important functional role in neural development and plasticity. A previous study from our laboratory demonstrated the temporal and spatial expression patterns of classical MHC class I molecules in the brain of C57 mice. Studies regarding non-classical MHC class I molecules remain limited. Here we examine the expression of non-classical MHC class I molecules in mouse central nervous system (CNS) during embryonic and postnatal developmental stages using in situ hybridization and immunofluorescence. We find non-classical MHC class I molecules, M3/T22/Q1, are expressed in the cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum during embryonic developmental stages. During the postnatal period from P0 to adult, non-classical MHC class I mRNAs are detected in olfactory bulb, hippocampus, cerebellum and some nerve nuclei. Overall, the expression patterns of non-classical MHC class I molecules are similar to those of classical MHC class I molecules in the developing mouse brain. In addition, non-classical MHC class I molecules are present in the H2-K(b) and H2-D(b) double knock-out mice where their expression levels are greatly increased within the same locations as compared to wild type mice. The elucidation and discovery of the expression profile of MHC class I molecules during development is important for supporting an enhanced understanding of their physiological and potential pathological roles within the CNS.

  8. Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species.

    PubMed

    Goyos, Ana; Sowa, Jessica; Ohta, Yuko; Robert, Jacques

    2011-01-01

    Nonclassical MHC class Ib (class Ib) genes are heterogeneous genes encoding molecules that are structurally similar to classical MHC class Ia molecules but with limited tissue distribution and polymorphism. Mammalian class Ib genes have diverse and often uncharacterized functions, and because of their rapid rate of evolution, class Ib phylogeny is difficult to establish. We have conducted an extensive genomic, molecular, and phylogenetic characterization of class Ib genes in two Xenopodinae amphibian species of different genera that diverged from a common ancestor as long ago as primates and rodents (∼65 million years). In contrast with the unsteadiness of mammalian class Ib genes, our results reveal an unusual degree of conservation of most Xenopodinae class Ib gene lineages, including a novel monogenic lineage represented by the divergent Xenopus laevis XNC10 gene and its unequivocal Silurana (Xenopus) tropicalis orthologue, SNC10. The preferential expression of this gene lineage by thymocytes themselves from the onset of thymic organogenesis is consistent with a specialized role of class Ib in early T cell development and suggests such a function is conserved in all tetrapods. PMID:21115732

  9. Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians.

    PubMed

    Edholm, Eva-Stina; Albertorio Saez, Liz-Marie; Gill, Ann L; Gill, Steven R; Grayfer, Leon; Haynes, Nikesha; Myers, Jason R; Robert, Jacques

    2013-08-27

    Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8(-)/CD4(-) iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.

  10. Transcription of non-classic major histocompatibility complex (MHC) class I in the bovine placenta throughout gestation and after Brucella abortus infection.

    PubMed

    Dos Santos, Larissa Sarmento; da Silva Mol, Juliana Pinto; de Macedo, Auricélio Alves; Silva, Ana Patrícia Carvalho; Dos Santos Ribeiro, Diego Luiz; Santos, Renato Lima; da Paixão, Tatiane Alves; de Carvalho Neta, Alcina Vieira

    2015-10-15

    Transcription of non-classical major histocompatibility complex class I (MHC-I) was assessed in the bovine placenta throughout gestation. Additionally, the effect of Brucella abortus infection on expression of non-classical MHC-I was also evaluated using a chorioallantoic membrane explant model of infection. The non-classical MHC-I genes MICB and NC3 had higher levels of transcription in the intercotyledonary region when compared to the placentome, which had higher levels of transcription at the second trimester of gestation. NC1 and classical MHC-I had very low levels of transcription throughout gestation. Trophoblastic cells of B. abortus-infected chorioallantoic membrane explants had an increase in transcription of non-classical MHC-I at 4h post infection. Therefore, this study provides an analysis of non-classical MHC-I transcription at different stages of gestation and different placental tissues, and during B. abortus infection. These findings provide additional knowledge on immune regulation in placental tissues, a known immune-privileged site.

  11. Evolution of nonclassical MHC-dependent invariant T cells

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-01-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets. PMID:25117267

  12. Nonclassical antigen-processing pathways are required for MHC class II-restricted direct tumor recognition by NY-ESO-1-specific CD4(+) T cells.

    PubMed

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel; Old, Lloyd J; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2014-04-01

    Tumor antigen-specific CD4(+) T cells that directly recognize cancer cells are important for orchestrating antitumor immune responses at the local tumor sites. However, the mechanisms of direct MHC class II (MHC-II) presentation of intracellular tumor antigen by cancer cells are poorly understood. We found that two functionally distinct subsets of CD4(+) T cells were expanded after HLA-DPB1*04 (DP04)-binding NY-ESO-1157-170 peptide vaccination in patients with ovarian cancer. Although both subsets recognized exogenous NY-ESO-1 protein pulsed on DP04(+) target cells, only one type recognized target cells with intracellular expression of NY-ESO-1. The tumor-recognizing CD4(+) T cells more efficiently recognized the short 8-9-mer peptides than the non-tumor-recognizing CD4(+) T cells. In addition to endosomal/lysosomal proteases that are typically involved in MHC-II antigen presentation, several pathways in the MHC class I presentation pathways, such as the proteasomal degradation and transporter-associated with antigen-processing-mediated peptide transport, were also involved in the presentation of intracellular NY-ESO-1 on MHC-II. The presentation was inhibited significantly by primaquine, a small molecule that inhibits endosomal recycling, consistent with findings that pharmacologic inhibition of new protein synthesis enhances antigen presentation. Together, our data demonstrate that cancer cells selectively present peptides from intracellular tumor antigens on MHC-II by multiple nonclassical antigen-processing pathways. Harnessing the direct tumor-recognizing ability of CD4(+) T cells could be a promising strategy to enhance antitumor immune responses in the immunosuppressive tumor microenvironment.

  13. Unusual evolutionary conservation and further species-specific adaptations of a large family of Nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae

    PubMed Central

    Edholm, Eva-Stina; Goyos, Ana; Taran, Joseph; De Jesús Andino, Francisco; Ohta, Yuko; Robert, Jacques

    2014-01-01

    Nonclassical MHC class Ib (class Ib) genes are a family of highly diverse and rapidly evolving genes wherein gene numbers, organization and expression markedly differ even among closely related species rendering class Ib phylogeny difficult to establish. Whereas among mammals there are few unambiguous class Ib gene orthologs, different amphibian species belonging to the anuran subfamily Xenopodinae exhibit an unusually high degree of conservation among multiple class Ib gene lineages. Comparative genomic analysis of class Ib gene loci of two divergent (~65 million years) Xenopodinae subfamily members X. laevis (allotetraploid) and X. tropicalis (diploid) shows that both species possess a large cluster of class Ib genes denoted as Xenopus/Silurana nonclassical (XNC/SNC). Our study reveals two distinct phylogenetic patterns among these genes: some gene lineages display a high degree of flexibility, as demonstrated by species-specific expansion and contractions, whereas other class Ib gene lineages have been maintained as monogenic subfamilies with very few changes in their nucleotide sequence across divergent species. In this second category, we further investigated the XNC/SNC10 gene lineage that in X. laevis is required for the development of a distinct semi-invariant T cell population. We report compelling evidence of the remarkable high degree of conservation of this gene lineage that is present in all 12 species of the Xenopodinae examined, including species with different degrees of ploidy ranging from 2, 4, 8 to 12N. This suggests that the critical role of XNC10 during early T cell development is conserved in amphibians. PMID:24771209

  14. Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae.

    PubMed

    Edholm, Eva-Stina; Goyos, Ana; Taran, Joseph; De Jesús Andino, Francisco; Ohta, Yuko; Robert, Jacques

    2014-06-01

    Nonclassical MHC class Ib (class Ib) genes are a family of highly diverse and rapidly evolving genes wherein gene numbers, organization, and expression markedly differ even among closely related species rendering class Ib phylogeny difficult to establish. Whereas among mammals there are few unambiguous class Ib gene orthologs, different amphibian species belonging to the anuran subfamily Xenopodinae exhibit an unusually high degree of conservation among multiple class Ib gene lineages. Comparative genomic analysis of class Ib gene loci of two divergent (~65 million years) Xenopodinae subfamily members Xenopus laevis (allotetraploid) and Xenopus tropicalis (diploid) shows that both species possess a large cluster of class Ib genes denoted as Xenopus/Silurana nonclassical (XNC/SNC). Our study reveals two distinct phylogenetic patterns among these genes: some gene lineages display a high degree of flexibility, as demonstrated by species-specific expansion and contractions, whereas other class Ib gene lineages have been maintained as monogenic subfamilies with very few changes in their nucleotide sequence across divergent species. In this second category, we further investigated the XNC/SNC10 gene lineage that in X. laevis is required for the development of a distinct semi-invariant T cell population. We report compelling evidence of the remarkable high degree of conservation of this gene lineage that is present in all 12 species of the Xenopodinae examined, including species with different degrees of ploidy ranging from 2, 4, 8 to 12 N. This suggests that the critical role of XNC10 during early T cell development is conserved in amphibians.

  15. Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver?

    PubMed Central

    Halenius, Anne; Gerke, Carolin; Hengel, Hartmut

    2015-01-01

    Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system. PMID:25418469

  16. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  17. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  18. HLA-F and MHC Class I Open Conformers Are Ligands for NK Cell Ig-like Receptors

    PubMed Central

    Goodridge, Jodie P.; Burian, Aura; Lee, Ni

    2013-01-01

    Killer Ig-like receptors (KIRs) are innate immune receptors expressed by NK and T cells classically associated with the detection of missing self through loss of their respective MHC ligand. Some KIR specificities for allelic classical class I MHC (MHC-I) have been described, whereas other KIR receptor–ligand relationships, including those associated with nonclassical MHC-I, have yet to be clearly defined. We report in this article that KIR3DL2 and KIR2DS4 and the nonclassical Ag HLA-F, expressed as a free form devoid of peptide, physically and functionally interact. These interactions extend to include classical MHC-I open conformers as ligands, defining new relationships between KIR receptors and MHC-I. The data collectively suggest a broader, previously unrecognized interaction between MHC-I open conformers—including prototypical HLA-F—and KIR receptors, acting in an immunoregulatory capacity centered on the inflammatory response. PMID:24018270

  19. The MHC class I genes of zebrafish.

    PubMed

    Dirscherl, Hayley; McConnell, Sean C; Yoder, Jeffrey A; de Jong, Jill L O

    2014-09-01

    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.

  20. Quality control of MHC class I maturation.

    PubMed

    Paulsson, Kajsa M; Wang, Ping

    2004-01-01

    Assembly of MHC class I molecules in the ER is regulated by the so-called loading complex (LC). This multiprotein complex is of definite importance for class I maturation, but its exact organization and order of assembly are not known. Evidence implies that the quality of peptides loaded onto class I molecules is controlled at multiple stages during MHC class I assembly. We recently found that tapasin, an important component of the LC, interacts with COPI-coated vesicles. Biochemical studies suggested that the tapa-sin-COPI interaction regulates the retrograde transport of immature MHC class I molecules from the Golgi network back to the ER. Also other findings now propose that in addition to the peptide-loading control, the quality control of MHC class I antigen presentation includes the restriction of export of suboptimally loaded MHC class I molecules to the cell surface. In this review, we use recent studies of tapasin to examine the efficiency of TAP, the LC constitution, ER quality control of class I assembly, and peptide optimization. The concepts of MHC class I recycling and ER retention are also discussed. PMID:14718384

  1. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection

    PubMed Central

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-01-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  2. Subtle Changes in Peptide Conformation Profoundly Affect Recognition of the Non-Classical MHC Class I Molecule HLA-E by the CD94-NKG2 Natural Killer Cell Receptors

    SciTech Connect

    Hoare, Hilary L; Sullivan, Lucy C; Clements, Craig S; Ely, Lauren K; Beddoe, Travis; Henderson, Kate N; Lin, Jie; Reid, Hugh H; Brooks, Andrew G; Rossjohn, Jamie

    2008-03-31

    Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides, namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-Å resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.

  3. Cohesin regulates MHC class II genes through interactions with MHC class II insulators.

    PubMed

    Majumder, Parimal; Boss, Jeremy M

    2011-10-15

    Cohesin is a multiprotein, ringed complex that is most well-known for its role in stabilizing the association of sister chromatids between S phase and M. More recently, cohesin was found to be associated with transcriptional insulators, elements that are associated with the organization of chromatin into regulatory domains. The human MHC class II (MHC-II) locus contains 10 intergenic elements, termed MHC-II insulators, which bind the transcriptional insulator protein CCCTC-binding factor. MHC-II insulators interact with each other, forming a base architecture of discrete loops and potential regulatory domains. When MHC-II genes are expressed, their proximal promoter regulatory regions reorganize to the foci established by the interacting MHC-II insulators. MHC-II insulators also bind cohesin, but the functional role of cohesin in regulating this system is not known. In this article, we show that the binding of cohesin to MHC-II insulators occurred irrespective of MHC-II expression but was required for optimal expression of the HLA-DR and HLA-DQ genes. In a DNA-dependent manner, cohesin subunits interacted with CCCTC-binding factor and the MHC-II-specific transcription factors regulatory factor X and CIITA. Intriguingly, cohesin subunits were important for DNA looping interactions between the HLA-DRA promoter region and a 5' MHC-II insulator but were not required for interactions between the MHC-II insulators themselves. This latter observation introduces cohesin as a regulator of MHC-II expression by initiating or stabilizing MHC-II promoter regulatory element interactions with the MHC-II insulator elements, events that are required for maximal MHC-II transcription.

  4. Disparate MHC class II haplotypes in myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Muhallab, Saad; Dahlman, Ingrid; Wallström, Erik

    2005-04-01

    The major histocompatibility complex (MHC) regulates multiple sclerosis (MS) and its model experimental autoimmune encephalomyelitis (EAE). We created four new intra-MHC recombinant rat strains, between the MHC haplotypes RT1(n) (BN) and RT1(l) (LEW) on the LEW background, to define disease regulation and localization within the MHC. Immunization with recombinant myelin oligodendrocyte glycoprotein (a.a.1-125; MOG)/IFA induced EAE in strains expressing the MHC class II allele RT1.B(n), whereas strains expressing the RT1.B(l) were resistant. In myelin basic protein peptide (MBP(GP)63-88)/CFA-induced EAE, RT1.B(l) expressing strains were susceptible whereas strains expressing the RT1.B(n) were resistant. High levels of antigen-specific IFN-gamma secreting lymphoid cells and antigen-specific serum IgG antibodies were only recorded in rats with an MHC class II allele that permitted MOG- or MBP-EAE, respectively. Genetically, we localized the MHC regulation of the investigated EAE models to the central part of the MHC, containing the MHC class II (RT1.B/D) and the centromeric parts of the MHC class III. No influences were evident from the classical MHC class I (RT1.A), the telomeric parts of the MHC class III or the non-classical MHC class I (RT1.C/E/M) in contrast to previous reports. The MHC class II haplotype-specific regulation of EAE induced with two different CNS antigens demonstrates a strikingly specific MHC-association even within the same target organ. PMID:15748954

  5. Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca

    PubMed Central

    2010-01-01

    Background Major Histocompatibility Complex (MHC) has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes) hosts. Findings Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain). Taking the pied flycatcher Ficedula hypoleuca as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles). The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species. Conclusions Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci. PMID:20815923

  6. MHC and Evolution in Teleosts

    PubMed Central

    Grimholt, Unni

    2016-01-01

    Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions. PMID:26797646

  7. Leukocyte Ig-Like Receptors – A Model for MHC Class I Disease Associations

    PubMed Central

    Hudson, Laura Emily; Allen, Rachel Louise

    2016-01-01

    MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system. PMID:27504110

  8. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  9. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal. PMID:20821315

  10. Blocking MHC class II on human endothelium mitigates acute rejection

    PubMed Central

    Abrahimi, Parwiz; Qin, Lingfeng; Chang, William G.; Bothwell, Alfred L.M.; Tellides, George; Saltzman, W. Mark; Pober, Jordan S.

    2016-01-01

    Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules. PMID:26900601

  11. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    PubMed

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. PMID:27473990

  12. MHC class I antigen presentation: learning from viral evasion strategies.

    PubMed

    Hansen, Ted H; Bouvier, Marlene

    2009-07-01

    The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.

  13. Viral immune evasion: Lessons in MHC class I antigen presentation.

    PubMed

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  14. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  15. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism.

    PubMed

    Hammond, John A; Guethlein, Lisbeth A; Norman, Paul J; Parham, Peter

    2012-12-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals' classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  16. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism

    PubMed Central

    Norman, Paul J.; Parham, Peter

    2012-01-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  17. Sequence and mRNA expression of nonclassical SLA class I genes SLA-7 and SLA-8.

    PubMed

    Crew, Mark D; Phanavanh, Bounleut; Garcia-Borges, Carmen N

    2004-05-01

    Given the prominent position of pig endothelial cells in pig-to-human xenotransplantation and the role of classical and nonclassical MHC class I proteins in T and NK cell recognition, the expression of pig MHC (SLA) class I genes in a pig aortic endothelial cell line (AOC cells) was examined. Using a primer corresponding to a highly conserved region of exon 4, RT-PCR analysis of SLA class I expression in AOC cells revealed not only expression of the classical SLA class I ( SLA-1, -2, and -3) genes, but also SLA class I transcripts corresponding to SLA nonclassical class I (class Ib) genes SLA-6 and SLA-8. Further analysis of SLA class Ib expression in porcine aortic endothelial cells using SLA class I gene-specific primers confirmed SLA-6 and SLA-8 expression and also demonstrated expression of SLA-7. While SLA-6 has been relatively well characterized, no data regarding bona fide SLA-7 and SLA-8 transcripts have been reported. Therefore, cDNAs containing the complete open reading frames of SLA-6, -7, and -8 were obtained. Compared to an SLA-1 protein sequence, the predicted SLA-7 and -8 protein sequences exhibited most sequence divergence in alpha1, alpha2, and cytoplasmic domains. Expression of SLA-6, -7, and -8 was examined by RT-PCR using RNA prepared from a variety of tissues. SLA-6 transcripts were detected in every tissue examined. Except for brain, SLA-8 transcripts were similarly widespread. SLA-7 exhibited more limited tissue distribution.

  18. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    SciTech Connect

    Crew, M.D.; Bates, L.M.

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  19. Mice lacking all conventional MHC class II genes

    PubMed Central

    Madsen, Lars; Labrecque, Nathalie; Engberg, Jan; Dierich, Andrée; Svejgaard, Arne; Benoist, Christophe; Mathis, Diane; Fugger, Lars

    1999-01-01

    MHC class II (MHC-II) molecules play a central role in the selection of the T cell repertoire, in the establishment and regulation of the adaptive immune response, and in autoimmune deviation. We have generated knockout mice lacking all four of the classical murine MHC-II genes (MHCIIΔ/Δ mice), via a large (80-kilobase) deletion of the entire class II region that was engineered by homologous recombination and Cre recombinase-mediated excision. These mice feature immune system perturbations like those of Aα and Aβ knockout animals, notably a dearth of CD4+ lymphocytes in the thymus and spleen. No new anatomical or physiological abnormalities were observed in MHCIIΔ/Δ mice. Because these animals are devoid of all classical MHC-II chains, even unpaired chains, they make excellent recipients for MHC-II transgenes from other species, avoiding the problem of interspecies cross-pairing of MHC-II chains. Therefore, they should be invaluable for engineering “humanized” mouse models of human MHC-II-associated autoimmune disorders. PMID:10468609

  20. Evolution of innate-like T cells and their selection by MHC class I-like molecules.

    PubMed

    Edholm, Eva-Stina; Banach, Maureen; Robert, Jacques

    2016-08-01

    Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system.

  1. Evolution of innate-like T cells and their selection by MHC class I-like molecules.

    PubMed

    Edholm, Eva-Stina; Banach, Maureen; Robert, Jacques

    2016-08-01

    Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system. PMID:27368412

  2. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  3. NLRC5: a key regulator of MHC class I-dependent immune responses.

    PubMed

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  4. Nonclassical MHC-restricted invariant Vα6 T cells are critical for efficient early innate anti-viral immunity in the amphibian X. laevis1

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; De Jesús, Francisco; Robert, Jacques

    2015-01-01

    Nonclassical MHC class Ib (class Ib)-restricted invariant T (iT) cell subsets are attracting interest because of their potential to regulate immune responses against various pathogens. The biological relevance and evolutionary conservation of iT cells has recently been strengthened by the identification of iT cells (iVα6) restricted by the class Ib molecule XNC10 in the amphibian Xenopus laevis. These iVα6 T cells are functionally similar to mammalian CD1d-restricted iNKT cells. Using the amphibian pathogen frog virus 3 (FV3) in combination with XNC10 tetramers and RNAi loss-of-function by transgenesis, we show that XNC10-restricted iVα6 T cells are critical for early antiviral immunity in adult X. laevis. Within hours following intraperitoneal FV3 infection, iVα6 T cells were specifically recruited from the spleen into the peritoneum. XNC10-deficiency and concomitant lack of iVα6 T cells resulted in less effective antiviral and macrophage antimicrobial responses, which lead to impaired viral clearance, increased viral dissemination and more pronounced FV3-induced kidney damage. Together, these findings imply that X. laevis XNC10-restricted iVα6 T cells play important roles in the early anti-FV3 response and that, as has been suggested for mammalian iNKT cells, they may serve as immune regulators polarizing macrophage effector functions towards more effective antiviral states. PMID:26062996

  5. In vitro digestion with proteases producing MHC class II ligands.

    PubMed

    Tohmé, Mira; Maschalidi, Sophia; Manoury, Bénédicte

    2013-01-01

    Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4(+) T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important, for example, for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of technics (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands. PMID:23329510

  6. Prediction of binding to MHC class I molecules.

    PubMed

    Adams, H P; Koziol, J A

    1995-09-25

    The binding of antigenic peptide sequences to major histocompatibility complex (MHC) molecules is a prerequisite for stimulation of cytotoxic T cell responses. Neural networks are here used to predict the binding capacity of polypeptides to MHC class I molecules encoded by the gene HLA-A*0201. Given a large database of 552 nonamers and 486 decamers and their known binding capacities, the neural networks achieve a predictive hit rate of 0.78 for classifying peptides which might induce an immune response (good or intermediate binders) vs. those which cannot (weak or non-binders). The neural nets also depict specific motifs for different binding capacities. This approach is in principle applicable to all MHC class I and II molecules, given a suitable set of known binding capacities. The trained networks can then be used to perform a systematic search through all pathogen or tumor antigen protein sequences for potential cytotoxic T lymphocyte epitopes.

  7. MHC class II DR allelic diversity in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  8. Sequence analysis of MHC class I alpha 2 domain exon variants in one diploid and two haploid Atlantic salmon pedigrees.

    PubMed

    Grimholt, U; Olsaker, I; Lingaas, F; Lie, O

    1997-12-01

    Genetic diversity in the second domain exon of Atlantic salmon (Salmo salar) major histocompatibility complex (Mhc) class I was investigated in two dams and nine of their haploid offspring by means of polymerase chain reaction (PCR) and DNA sequence analysis. A similar study was also performed on nine diploid offspring from one of these dams. The complex segregation patterns and sequence similarities between variants make definitive allele, haplotype and locus assignments difficult. There are, however, indications of six Mhc-Sasa class I loci and a fairly well-defined haplotype of four variants. One non-polymorphic variant present in most specimens could be a salmon analogue to the human non-classical loci. PMID:9589580

  9. Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; van der Wiel, Marit K H; Blokhuis, Jeroen H; Mulder, Arend; Guethlein, Lisbeth A; Doxiadis, Gaby G M; Claas, Frans H J; Parham, Peter; Bontrop, Ronald E

    2016-01-15

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented in this article. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by killer cell Ig-like receptor. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I Abs, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  10. Peptide Immunization Elicits Polyomavirus-Specific MHC Class Ib-Restricted CD8 T Cells in MHC Class Ia Allogeneic Mice

    PubMed Central

    Hofstetter, Amelia R.; Evavold, Brian D.

    2013-01-01

    Abstract Unlike the polymorphic MHC class Ia molecules, MHC class Ib molecules are oligomorphic or nonpolymorphic. We recently discovered a protective CD8 T cell response to mouse polyomavirus (MPyV) in H-2b haplotype mice that is restricted by H2-Q9, a member of the Qa-2 MHC class Ib family. Here, we demonstrate that immunization with a peptide corresponding to a virus capsid-derived peptide presented by Q9 also elicits MHC class Ib-restricted MPyV-specific CD8 T cells in mice of H-2s and H-2g7 strains. These findings support the concept that immunization with a single MHC class Ib-restricted peptide can expand CD8 T cells in MHC class Ia allogeneic hosts. PMID:23374150

  11. Neurons Preferentially Respond to Self-MHC Class I Allele Products Regardless of Peptide Presented

    PubMed Central

    Escande-Beillard, Nathalie; Washburn, Lorraine; Zekzer, Dan; Wu, Zhongqi-Phyllis; Eitan, Shoshy; Ivkovic, Sonja; Lu, Yuxin; Dang, Hoa; Middleton, Blake; Bilousova, Tina V.; Yoshimura, Yoshitaka; Evans, Christopher J.; Joyce, Sebastian; Tian, Jide; Kaufman, Daniel L.

    2010-01-01

    Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that picomolar levels of a recombinant self-MHC I molecule inhibited neurite outgrowth. We then assessed the neurobiological activity of a panel of recombinant soluble MHC Is, consisting of different MHC I heavy chains with a defined self- or nonself-peptide presented, on cultured embryonic retinas from mice with different MHC I haplotypes. We observed that self-MHC I allele products had greater inhibitory neuroactivity than nonself-MHC I molecules, regardless of the nature of the peptide presented, a pattern akin to MHC I recognition by some innate immune system receptors. However, self-MHC I molecules had no effect on retinas from MHC I-deficient mice. These observations suggest that neuronal recognition of MHC I may be coordinated with the inherited MHC I alleles, as occurs in the innate immune system. Consistent with this notion, we show that MHC I and MHC I receptors are coexpressed by precursor cells at the earliest stages of retina development, which could enable such coordination. PMID:20018625

  12. Differential transcript profiles of MHC class Ib(Qa-1, Qa-2, and Qa-10) and Aire genes during the ontogeny of thymus and other tissues.

    PubMed

    Melo-Lima, Breno Luiz; Evangelista, Adriane Feijó; de Magalhães, Danielle Aparecida Rosa; Passos, Geraldo Aleixo; Moreau, Philippe; Donadi, Eduardo Antonio

    2014-01-01

    Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8(+) and NK cell inhibitory receptors. During thymic education, the Aire gene imposes the expression of thousands of tissue-related antigens in the thymic medulla, permitting the negative selection events. Aiming to characterize the transcriptional profiles of nonclassical MHC class I genes in spatial-temporal association with the Aire expression, we evaluated the gene expression of H2-Q7(Qa-2), H2-T23(Qa-1), H2-Q10(Qa-10), and Aire during fetal and postnatal development of thymus and other tissues. In the thymus, H2-Q7(Qa-2) transcripts were detected at high levels throughout development and were positively correlated with Aire expression during fetal ages. H2-Q7(Qa-2) and H2-T23(Qa-1) showed distinct expression patterns with gradual increasing levels according to age in most tissues analyzed. H2-Q10(Qa-10) was preferentially expressed by the liver. The Aire transcriptional profile showed increased levels during the fetal period and was detectable in postnatal ages in the thymus. Overall, nonclassical MHC class I genes started to be expressed early during the ontogeny. Their levels varied according to age, tissue, and mouse strain analyzed. This differential expression may contribute to the distinct patterns of mouse susceptibility/resistance to infectious and noninfectious disorders.

  13. MHC in a monogamous lizard--Characterization of class I MHC genes in the Australian skink Tiliqua rugosa.

    PubMed

    Ansari, Talat Hojat; Bertozzi, Terry; Miller, Robert D; Gardner, Michael G

    2015-12-01

    The major histocompatibility complex (MHC) is a highly variable region of vertebrate genomes that encodes cellular proteins involved in the immune response. In addition to the benefits of MHC research in understanding the genetic basis of host resistance to disease, the MHC is an ideal candidate for studying genetic diversity under strong natural selection. However, the MHC of many non-model vertebrate taxa are poorly characterized, hindering an understanding of disease resistance and its application to conservation genetics in these groups. Squamates (lizards and snakes) remain particularly underrepresented despite their being the most diverse order of non-avian sauropsids. We characterized MHC class I sequence diversity from an Australian skink, the sleepy lizard (Tiliqua rugosa), using both cDNA and genomic sequence data and also present genomic class I sequences from the related skinks Tiliqua adelaidensis and Egernia stokesii. Phylogenetic analysis of Tiliqua and other published sqamate MHC class I sequences suggest that MHC diverged very early in Tiliqua compared with the other studied squamates. We identified at least 4 classical MHC class I loci in T. rugosa and also shared polymorphism among T. rugosa, T. adelaidensis and E. stokesii in the sequences encoding peptide-binding α1 and α2 domains.

  14. MHC Class II haplotypes of Colombian Amerindian tribes.

    PubMed

    Yunis, Juan J; Yunis, Edmond J; Yunis, Emilio

    2013-07-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  15. MHC Class II haplotypes of Colombian Amerindian tribes

    PubMed Central

    Yunis, Juan J.; Yunis, Edmond J.; Yunis, Emilio

    2013-01-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America. PMID:23885196

  16. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    SciTech Connect

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-12-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional /sup 51/Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.

  17. Structural prediction of peptides bound to MHC class I.

    PubMed

    Fagerberg, Theres; Cerottini, Jean-Charles; Michielin, Olivier

    2006-02-17

    An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.

  18. TAPBPR and tapasin binding to MHC class I is mutually exclusive

    PubMed Central

    Hermann, Clemens; Strittmatter, Lisa M; Deane, Janet E; Boyle, Louise H

    2013-01-01

    The loading of peptide antigens onto MHC class I molecules is a highly controlled process in which the MHC class I dedicated chaperone tapasin is a key player. We recently identified a tapasin related molecule, TAPBPR, as an additional component in the MHC class I antigen presentation pathway. Here we show that the amino acid residues important for tapasin to interact with MHC class I are highly conserved on TAPBPR. We identify specific residues in the N-terminal and C-terminal domains of TAPBPR involved in associating with MHC class I. Furthermore, we demonstrate that residues on MHC class I crucial for its association with tapasin, such as T134, are also essential for its interaction with TAPBPR. Taken together, the data indicate that TAPBPR and tapasin bind in a similar orientation to the same face of MHC class I. In the absence of tapasin, the association of MHC class I with TAPBPR is increased. However, in the absence of TAPBPR, the interaction between MHC class I and tapasin does not increase. In light of our findings, previous data determining the function of tapasin in the MHC class I antigen processing and presentation pathway must be re-evaluated. PMID:24163410

  19. Nucleotide sequencing analysis of the swine 433-kb genomic segment located between the non-classical and classical SLA class I gene clusters.

    PubMed

    Shigenari, Atsuko; Ando, Asako; Renard, Christine; Chardon, Patrick; Shiina, Takashi; Kulski, Jerzy K; Yasue, Hiroshi; Inoko, Hidetoshi

    2004-01-01

    Genome analysis of the swine leukocyte antigen ( SLA) region is needed to obtain information on the MHC genomic sequence similarities and differences between the swine and human, given the possible use of swine organs for xenotransplantation. Here, the genomic sequences of a 433-kb segment located between the non-classical and classical SLA class I gene clusters were determined and analyzed for gene organization and contents of repetitive sequences. The genomic organization and diversity of this swine non-class I gene region was compared with the orthologous region of the human leukocyte antigen ( HLA) complex. The length of the fully sequenced SLA genomic segment was 433 kb compared with 595 kb in the corresponding HLA class I region. This 162-kb difference in size between the swine and human genomic segments can be explained by indel activity, and the greater variety and density of repetitive sequences within the human MHC. Twenty-one swine genes with strong sequence similarity to the corresponding human genes were identified, with the gene order from the centromere to telomere of HCR - SPR1 - SEEK1 - CDSN - STG - DPCR1 - KIAA1885 - TFIIH - DDR - IER3 - FLOT1 - TUBB - KIAA0170 - NRM - KIAA1949 - DDX16 - FLJ13158 - MRPS18B - FB19 - ABCFI - CAT56. The human SEEK1 and DPCR1 genes are pseudogenes in swine. We conclude that the swine non-class I gene region that we have sequenced is highly conserved and therefore homologous to the corresponding region located between the HLA-C and HLA-E genes in the human.

  20. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    PubMed

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-01

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016. PMID:27087581

  1. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.

    PubMed

    Bordner, Andrew J

    2010-01-01

    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC

  2. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.

  3. Balancing selection on MHC class I in wild brown trout Salmo trutta.

    PubMed

    O'Farrell, B; Dennis, C; Benzie, J A; McGinnity, P; Carlsson, J; de Eyto, E; Coughlan, J P; Igoe, F; Meehan, R; Cross, T F

    2012-09-01

    Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated.

  4. MHC class I immune evasion in MCMV infection.

    PubMed

    Doom, Carmen M; Hill, Ann B

    2008-06-01

    Murine cytomegalovirus (MCMV) is a well-studied model of natural beta-herpesvirus infection. However, many questions remain regarding its control by and evasion of the immune response it generates. CD8 and CD4 T cells have both unique and redundant roles in control of the virus that differ based on the immunocompetence of the infected mice. MCMV encodes major histocompatibility complex (MHC) class I immune evasion genes that can have an impact in vitro, but their role in infection of immunocompetent mice has been difficult to identify. This review addresses the evidence for their in vivo function and suggests why they may be evolutionarily conserved.

  5. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. PMID:25913367

  6. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.

  7. Co-evolution of MHC class I and variable NK cell receptors in placental mammals

    PubMed Central

    Guethlein, Lisbeth A.; Norman, Paul J.; Hilton, Hugo G.; Parham, Peter

    2015-01-01

    Summary Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer-cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines a stepwise co-evolution of MHC class I and KIRs is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C, drove further elaboration of MHC-C-specific KIRs, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. PMID:26284483

  8. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo H G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.

  9. Characterization and phylogenetic relationship of prosimian MHC class I genes.

    PubMed

    Flügge, Perris; Zimmermann, Elke; Hughes, Austin L; Günther, Eberhard; Walter, Lutz

    2002-12-01

    MHC class I cDNA sequences from the most divergent primate group of extant primates compared to human, the suborder Strepsirrhini (prosimians), are described. The sequences are derived from the gray mouse lemur (Microcebus murinus) and the ring-tailed lemur (Lemur catta), which are members of the malagasy Lemuriformes, as well as from the pygmy slow loris (Nycticebus pygmaeus), a prosimian from East Asia. The M. murinus sequences have been analyzed in detail. Analysis of the expression level, G/C content, and synonymous vs. nonsynonymous substitution rates in the peptide-binding region codons suggests that these cDNA clones represent classical class I (class Ia) genes. According to Southern blot analysis, the genome of the gray mouse lemur might contain about 10 class I genes. In gene tree analysis, the strepsirrhine class Ia genes described here cluster significantly separately from the known class I genes of Catarrhini (humans, apes, Old World monkeys) and Platyrrhini (New World monkeys) species, suggesting that the class I loci of Simiiformes arose by gene duplications which occurred after the divergence of prosimians. PMID:12486535

  10. Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota).

    PubMed

    Kuduk, K; Johanet, A; Allainé, D; Cohas, A; Radwan, J

    2012-08-01

    The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.

  11. MHC Class II Association with Lipid Rafts on the Antigen Presenting Cell Surface

    PubMed Central

    Anderson, Howard A.; Roche, Paul A.

    2014-01-01

    MHC class II (MHC-II) molecules function by binding peptides derived from either self-or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. PMID:25261705

  12. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    PubMed

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  13. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  14. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  15. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  16. Rheumatoid Rescue of Misfolded Cellular Proteins by MHC Class II Molecules: A New Hypothesis for Autoimmune Diseases.

    PubMed

    Arase, Hisashi

    2016-01-01

    Misfolded proteins localized in the endoplasmic reticulum are degraded promptly and thus are not transported outside cells. However, misfolded proteins in the endoplasmic reticulum are rescued from protein degradation upon association with major histocompatibility complex (MHC) class II molecules and are transported to the cell surface by MHC class II molecules without being processed to peptides. Studies on the misfolded proteins rescued by MHC class II molecules have revealed that misfolded proteins associated with MHC class II molecules are specific targets for autoantibodies produced in autoimmune diseases. Furthermore, a strong correlation has been observed between autoantibody binding to misfolded proteins associated with MHC class II molecules and the autoimmune disease susceptibility conferred by each MHC class II allele. These new insights into MHC class II molecules suggest that misfolded proteins rescued from protein degradation by MHC class II molecules are recognized as "neo-self" antigens by immune system and are involved in autoimmune diseases as autoantibody targets.

  17. High Levels of MeCP2 Depress MHC Class I Expression in Neuronal Cells

    PubMed Central

    Miralvès, Julie; Magdeleine, Eddy; Kaddoum, Lara; Brun, Hélène; Peries, Sophie; Joly, Etienne

    2007-01-01

    Background The expression of MHC class I genes is repressed in mature neurons. The molecular basis of this regulation is poorly understood, but the genes are particularly rich in CpG islands. MeCP2 is a transcriptional repressor that binds to methylated CpG dinucleotides; mutations in this protein also cause the neurodevelopmental disease called Rett syndrome. Because MHC class I molecules play a role in neuronal connectivity, we hypothesised that MeCP2 might repress MHC class I expression in the CNS and that this might play a role in the pathology of Rett syndrome. Methodology We show here that transiently transfected cells expressing high levels of MeCP2 specifically downregulate cell-surface expression of MHC class I molecules in the neuronal cell line N2A and they prevent the induction of MHC class I expression in response to interferon in these cells, supporting our first hypothesis. Surprisingly, however, overexpression of the mutated forms of MeCP2 that cause Rett syndrome had a similar effect on MHC class I expression as the wild-type protein. Immunohistological analyses of brain slices from MECP2 knockout mice (the MeCP2tm1.1Bird strain) demonstrated a small but reproducible increase in MHC class I when compared to their wild type littermates, but we found no difference in MHC class I expression in primary cultures of mixed glial cells (mainly neurons and astrocytes) from the knockout and wild-type mice. Conclusion These data suggest that high levels of MeCP2, such as those found in mature neurons, may contribute to the repression of MHC expression, but we find no evidence that MeCP2 regulation of MHC class I is important for the pathogenesis of Rett syndrome. PMID:18159237

  18. NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module.

    PubMed

    Ludigs, Kristina; Seguín-Estévez, Queralt; Lemeille, Sylvain; Ferrero, Isabel; Rota, Giorgia; Chelbi, Sonia; Mattmann, Chantal; MacDonald, H Robson; Reith, Walter; Guarda, Greta

    2015-03-01

    MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic

  19. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C.

    PubMed

    Sullivan, Lucy C; Berry, Richard; Sosnin, Natasha; Widjaja, Jacqueline M L; Deuss, Felix A; Balaji, Gautham R; LaGruta, Nicole L; Mirams, Michiko; Trapani, Joseph A; Rossjohn, Jamie; Brooks, Andrew G; Andrews, Daniel M

    2016-09-01

    Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules. PMID:27385590

  20. TNF-α Induces Macroautophagy and Regulates MHC Class II Expression in Human Skeletal Muscle Cells*

    PubMed Central

    Keller, Christian W.; Fokken, Claudia; Turville, Stuart G.; Lünemann, Anna; Schmidt, Jens; Münz, Christian; Lünemann, Jan D.

    2011-01-01

    Macroautophagy, a homeostatic process that shuttles cytoplasmic constituents into endosomal and lysosomal compartments, has recently been shown to deliver antigens for presentation on major histocompatibility complex (MHC) class II molecules. Skeletal muscle fibers show a high level of constitutive macroautophagy and express MHC class II molecules upon immune activation. We found that tumor necrosis factor-α (TNF-α), a monokine overexpressed in inflammatory myopathies, led to a marked up-regulation of macroautophagy in skeletal myocytes. Furthermore, TNF-α augmented surface expression of MHC class II molecules in interferon-γ (IFN-γ)-treated myoblasts. The synergistic effect of TNF-α and IFN-γ on the induction of MHC class II surface expression was not reflected by higher intracellular human leukocyte antigen (HLA)-DR levels and was reversed by macroautophagy inhibition, suggesting that TNF-α facilitates antigen processing via macroautophagy for more efficient MHC class II loading. Muscle biopsies from patients with sporadic inclusion body myositis, a well defined myopathy with chronic inflammation, showed that over 20% of fibers that contained autophagosomes costained for MHC class II molecules and that more than 40% of double-positive muscle fibers had contact with CD4+ and CD8+ immune cells. These findings establish a mechanism through which TNF-α regulates both macroautophagy and MHC class II expression and suggest that macroautophagy-mediated antigen presentation contributes to the immunological environment of the inflamed human skeletal muscle. PMID:20980264

  1. Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K; Arora, Karunesh; Brooks, Charles L; Raghavan, Malini

    2015-10-13

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin-substrate interactions and as key determinants of PLC dynamics.

  2. Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes

    PubMed Central

    Bordner, Andrew J.

    2010-01-01

    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632–0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I

  3. Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population.

    PubMed

    Aldridge, Brian M; Bowen, Lizabeth; Smith, Brett R; Antonelis, George A; Gulland, Frances; Stott, Jeffrey L

    2006-04-01

    The Hawaiian monk seal population has experienced precipitous declines in the last 50 years. In this study, we provide evidence that individuals from remaining endangered population exhibit alarming uniformity in class I major histocompatibility (MHC) genes. The peripheral blood leukocyte-derived mRNA of six captive animals rescued from a stranding incident on the French frigate shoals in the Hawaiian archipelago was used to characterize genes in the monk seal class I MHC gene family, from which techniques for genotyping the broader population were designed using degenerate primers designed for the three major established human MHC class I loci (HLA-A, HLA-B, and HLA-C), and by sequencing multiple clones, six unique full-length classical MHC class I gene transcripts were identified among the six animals, three of which were only found in single individuals. Since The low degree of sequence variation between these transcripts and the similarity of genotype between individuals provided preliminary evidence for low class I MHC variability in the population. The sequence information from the class I transcripts from these six animals was used to design several primer sets for examining the extent of MHC variability in the remaining population using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). Several DGGE assays, each one amplifying subtly different class I MHC gene combinations, were designed to compare exons encoding the highly polymorphic domains of the putative peptide-binding region of MHC class I. In combination, these assays failed to show interindividual variability at any of the class I MHC gene loci examined in either the six captive seals or in 80 free-ranging animals ( approximately 6.7% of the estimated population) representing all six major subpopulations of Hawaiian monk seal.

  4. The cytoplasmic and the transmembrane domains are not sufficient for class I MHC signal transduction.

    PubMed

    Gur, H; Geppert, T D; Wacholtz, M C; Lipsky, P E

    1999-02-01

    Class I MHC molecules deliver activation signals to T cells. To analyze the role of the cytoplasmic and the transmembrane (TM) domains of class I MHC molecules in T cell activation, Jurkat cells were transfected with genes for truncated class I MHC molecules which had only four intracytoplasmic amino acids and no potential phosphorylation sites or native molecules or both. Cross-linking either the native or the truncated molecules induced IL-2 production even under limiting stimulation conditions of low engagement of the stimulating mAb. Moreover, direct comparison of transfected truncated and native class I MHC molecules expressed on the same cell revealed significant stimulation induced by cross-linking the truncated molecules, despite low expression. In addition, truncated class I MHC molecules were as able to synergize with CD3, CD2, or CD28 initiated IL-2 production as native molecules. In further experiments, hybrid constructs made of the extracellular portion of the murine CD8 alpha chain and of the TM and the intracytoplasmic domains of H-2Kk class I MHC molecule were transfected into Jurkat T cells. The expression of the transfected hybrid molecules was comparable to that of the native HLA-B7 molecules. Cross-linking the intact monomorphic HLA-A,B,C epitope or the polymorphic HLA-B7 epitope induced IL-2 production upon costimulation with PMA. In contrast, cross-linking the hybrid molecules generated neither an increase in intracellular calcium concentration ([Ca2+]i) nor stimulated IL-2 production. By contrast, cross-linking intact murine class I MHC molecules induced [Ca2+]i, signal and IL-2 production in transfected Jurkat cells. The data therefore indicate that unlike many other signaling molecules, signaling via class I MHC molecules does not involve the cytoplasmic and the TM portions of the molecule, but rather class I MHC signal transduction is likely to be mediated by the extracellular domain of the molecule.

  5. Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population.

    PubMed

    Aldridge, Brian M; Bowen, Lizabeth; Smith, Brett R; Antonelis, George A; Gulland, Frances; Stott, Jeffrey L

    2006-04-01

    The Hawaiian monk seal population has experienced precipitous declines in the last 50 years. In this study, we provide evidence that individuals from remaining endangered population exhibit alarming uniformity in class I major histocompatibility (MHC) genes. The peripheral blood leukocyte-derived mRNA of six captive animals rescued from a stranding incident on the French frigate shoals in the Hawaiian archipelago was used to characterize genes in the monk seal class I MHC gene family, from which techniques for genotyping the broader population were designed using degenerate primers designed for the three major established human MHC class I loci (HLA-A, HLA-B, and HLA-C), and by sequencing multiple clones, six unique full-length classical MHC class I gene transcripts were identified among the six animals, three of which were only found in single individuals. Since The low degree of sequence variation between these transcripts and the similarity of genotype between individuals provided preliminary evidence for low class I MHC variability in the population. The sequence information from the class I transcripts from these six animals was used to design several primer sets for examining the extent of MHC variability in the remaining population using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). Several DGGE assays, each one amplifying subtly different class I MHC gene combinations, were designed to compare exons encoding the highly polymorphic domains of the putative peptide-binding region of MHC class I. In combination, these assays failed to show interindividual variability at any of the class I MHC gene loci examined in either the six captive seals or in 80 free-ranging animals ( approximately 6.7% of the estimated population) representing all six major subpopulations of Hawaiian monk seal. PMID:16528500

  6. Balancing selection on MHC class I in wild brown trout Salmo trutta.

    PubMed

    O'Farrell, B; Dennis, C; Benzie, J A; McGinnity, P; Carlsson, J; de Eyto, E; Coughlan, J P; Igoe, F; Meehan, R; Cross, T F

    2012-09-01

    Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated. PMID:22957875

  7. NK cell inhibitory receptor Ly-49C residues involved in MHC class I binding.

    PubMed

    Sundbäck, Jonas; Achour, Adnane; Michaëlsson, Jakob; Lindström, Hannah; Kärre, Klas

    2002-01-15

    Mouse NK cells express Ly-49 receptors specific for classical MHC class I molecules. Several of the Ly-49 receptors have been characterized in terms of function and ligand specificity. However, the only Ly-49 receptor-ligand interaction previously described in detail is that between Ly-49A and H-2D(d), as studied by point mutations in the ligand and the crystal structure of the co-complex of these molecules. It is not known whether other Ly-49 receptors bind MHC class I in a similar manner as Ly-49A. Here we have studied the effect of mutations in Ly-49C on binding to the MHC class I molecules H-2K(b), H-2D(b), and H-2D(d). The MHC class I molecules were used as soluble tetramers to stain transiently transfected 293T cells expressing the mutated Ly-49C receptors. Three of nine mutations in Ly-49C led to loss of MHC class I binding. The three Ly-49C mutations that affected MHC binding correspond to Ly-49A residues that are in contact or close to H-2D(d) in the co-crystal, demonstrating that MHC class I binding by Ly-49C is dependent on residues in the same area as that used by Ly-49A for ligand contacts.

  8. Interspecific hybridization increases MHC class II diversity in two sister species of newts.

    PubMed

    Nadachowska-Brzyska, Krystyna; Zieliński, Piotr; Radwan, Jacek; Babik, Wiesław

    2012-02-01

    Our understanding of the evolutionary mechanisms generating variation within the highly polymorphic major histocompatibility complex (MHC) genes remains incomplete. Assessing MHC variation across multiple populations, of recent and ancient divergence, may facilitate understanding of geographical and temporal aspects of variation. Here, we applied 454 sequencing to perform a large-scale, comprehensive analysis of MHC class II in the closely related, hybridizing newts, Lissotriton vulgaris (Lv) and Lissotriton montandoni (Lm). Our study revealed an extensive (299 alleles) geographically structured polymorphism. Populations at the southern margin of the Lv distribution, inhabited by old and distinct lineages (southern Lv), exhibited moderate MHC variation and strong population structure, indicating little gene flow or extensive local adaptation. Lissotriton vulgaris in central Europe and the northern Balkans (northern Lv) and almost all Lm populations had a high MHC variation. A much higher proportion of MHC alleles was shared between Lm and northern Lv than between Lm and southern Lv. Strikingly, the average pairwise F(ST) between northern Lv and Lm was significantly lower than between northern and southern Lv for MHC, but not for microsatellites. Thus, high MHC variation in Lm and northern Lv may result from gene flow between species. We hypothesize that the interspecific exchange of MHC genes may be facilitated by frequency-dependent selection. A marginally significant correlation between the MHC and microsatellite allelic richness indicates that demographic factors may have contributed to the present-day pattern of MHC variation, but unequivocal signatures of adaptive evolution in MHC class II sequences emphasize the role of selection on a longer timescale.

  9. Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants.

    PubMed

    Lillie, Mette; Cui, Jian; Shine, Richard; Belov, Katherine

    2016-07-01

    The cane toad has gained notoriety for its invasion across the Australian landscape, with significant impacts on the native Australian fauna. The invasion has accelerated over time, with invading cane toads adapted for highly dispersive traits. This, however, has come at the cost of the immune system, with lower investment in some immune functions. To investigate the cane toad's immunogenetics, we characterized four major histocompatibility complex (MHC) class IIA and three MHC class IIB loci. Preliminary observations suggest very low allelic diversity at all loci. We also observed various splice isoforms. One isoform seen at one class IIA and two class IIB loci was missing exon 2, which is essential to peptide binding and presentation. The other isoform, observed at a class IIA locus, is likely to be a soluble MHC product. These results may suggest a significant role of alternative splicing of MHC loci in the Australian cane toad. PMID:27233954

  10. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites. PMID:20521040

  11. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.

  12. Specificity of Amyloid Precursor-like Protein 2 Interactions with MHC Class I Molecules

    PubMed Central

    Tuli, Amit; Sharma, Mahak; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2008-01-01

    The ubiquitously expressed amyloid precursor-like protein 2 (APLP2) has been previously found to regulate cell surface expression of the MHC class I molecule Kd and bind strongly to Kd. In the study reported here, we demonstrated that APLP2 binds, in varied degrees, to several other mouse MHC class I allotypes, and that the ability of APLP2 to affect cell surface expression of an MHC class I molecule is not limited to Kd. Ld, like Kd, was found associated with APLP2 in the Golgi, but Kd was also associated with APLP2 within intracellular vesicular structures. We also investigated the effect of β2m on APLP2/MHC interaction, and found that human β2m transfection increased the association of APLP2 with mouse MHC class I molecules, likely by affecting H2 class I heavy chain conformation. APLP2 was demonstrated to bind specifically to the conformation of Ld having folded outer domains, consistent with our previous results with Kd and indicating APLP2 interacts with the α1α2 region on each of these H2 class I molecules. Furthermore, we observed that binding to APLP2 involved the MHC α3/transmembrane/cytoplasmic region, suggesting that conserved as well as polymorphic regions of the H2 class I molecule may participate in interaction with APLP2. In summary, we demonstrated that APLP2′s binding, co-localization pattern, and functional impact vary among H2 class I molecules, and that APLP2/MHC association is influenced by multiple domains of the MHC class I heavy chain and by β2m’s effects on the conformation of the heavy chain. PMID:18452037

  13. MHC class II exacerbates demyelination in vivo independently of T cells.

    PubMed

    Hiremath, Meenaxi M; Chen, Vivian S; Suzuki, Kinuko; Ting, Jenny P Y; Matsushima, Glenn K

    2008-10-15

    We have shown previously the importance of MHC class II for central nervous system remyelination; however, the function of MHC class II during cuprizone-induced demyelination has not been examined. Here, we show that I-A(beta)-/- mice exhibit significantly reduced inflammation and demyelination. RAG-1(1/1) mice are indistinguishable from controls, indicating T cells may not play a role. The role of MHC class II depends on an intact cytoplasmic tail that leads to the production of IL-1beta, TNF-alpha, and nitric oxide, and oligodendrocyte apoptosis. Thus, the function of MHC class II cytoplasmic tail appears to increase microglial proliferation and activation that exacerbates demyelination. PMID:18805594

  14. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes.

    PubMed

    Kropshofer, H; Spindeldreher, S; Röhn, T A; Platania, N; Grygar, C; Daniel, N; Wölpl, A; Langen, H; Horejsi, V; Vogt, A B

    2002-01-01

    Complexes of peptide and major histocompatibility complex (MHC) class II are expressed on the surface of antigen-presenting cells but their molecular organization is unknown. Here we show that subsets of MHC class II molecules localize to membrane microdomains together with tetraspan proteins, the peptide editor HLA-DM and the costimulator CD86. Tetraspan microdomains differ from other membrane areas such as lipid rafts, as they enrich MHC class II molecules carrying a selected set of peptide antigens. Antigen-presenting cells deficient in tetraspan microdomains have a reduced capacity to activate CD4+ T cells. Thus, the organization of uniformly loaded peptide-MHC class II complexes in tetraspan domains may be a very early event that determines both the composition of the immunological synapse and the quality of the subsequent T helper cell response.

  15. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. PMID:24447175

  16. Human MHC class I antigens are associated with a 90-kDa cell surface protein.

    PubMed

    Ferm, M T; Grönberg, A

    1991-08-01

    Human MHC class I proteins are expressed on almost all nucleated cells as a heavy chain (about 45 kDa) non-covalently associated with beta 2-microglobulin (12 kDa). In this report we show that MHC class I (MHC-I) proteins can also be associated with a 90-kDa protein in the cell membrane. Surface-radiolabelled cells were treated with dithiobis succinimidyl propionate (DSP) in order to preserve multimer protein complexes during cell lysis. The lysates were immunoprecipitated and analysed by SDS-PAGE and autoradiography. Immunoprecipitation of human MHC-I proteins co-precipitated another protein of about 90 kDa in molecular weight-p90. p90 was coprecipitated from all the MHC-I expressing cells tested: U937, Raji, Molt-4 and IFN-gamma treated K562, but not from untreated, MHC-I negative K562. A 90-kDa protein was also co-precipitated with MHC-I from fresh peripheral blood mononuclear cells (PBMC). Furthermore, p90 was coprecipitated by different MoAbs to the MHC-I heavy chain or beta 2-microglobulin, but not by control antibodies. Two additional co-precipitating proteins at 34 kDa and 28 kDa were seen in MHC-I precipitates from Raji cells. Our results suggest that MHC-I proteins and the 90-kDa protein are associated in the cell membrane, probably by a close but weak, non-covalent interaction. Two additional cell surface proteins at 34 kDa and 28 kDa seem to be MHC-I associated on Raji Burkitt's lymphoma cells.

  17. Evidence for multiple MHC class II β loci in New Zealand's critically endangered kakapo, Strigops habroptilus.

    PubMed

    Knafler, Gabrielle J; Fidler, Andrew; Jamieson, Ian G; Robertson, Bruce C

    2014-02-01

    Immunologically important genes of the major histocompatibility complex (MHC) have been characterized in a number of avian species with the general finding of considerable variation in size and structural organization among organisms. A range of nonpasserines which represent early-diverging Neoave lineages have been described as having only one MHC class II β locus potentially leading to the conclusion that this is the ancestral condition. Here, we examine the monotypic, early-diverging, critically endangered kakapo, Strigops habroptilus, for allelic variation at MHC class II β exon 2, as part of species' recovery efforts. We found two to four confirmed sequence variants per individual indicating the presence of more than one MHC class II β locus. Given the kakapo's basal evolutionary status, evidence for multiple MHC class II β loci seems to counter the proposed mono-locus history of modern birds. However, MHC gene duplication, maintenance, and loss among and within bird species may confound avian relationships making it difficult to elucidate the ancestral state. This study adds essential data for disentangling the course of MHC structural evolution in birds.

  18. MHC class II antigen presentation pathway in murine tumours: tumour evasion from immunosurveillance?

    PubMed Central

    Walter, W; Lingnau, K; Schmitt, E; Loos, M; Maeurer, M J

    2000-01-01

    Qualitative differences in the MHC class II antigen processing and presentation pathway may be instrumental in shaping the CD4+ T cell response directed against tumour cells. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M, a heterodimeric MHC class II-like molecule. In contrast to the HLA-DM region in humans, the β-chain locus is duplicated in mouse, with the H2-Mb1 (Mb1β-chain distal to H2-Mb2 (Mb2) and the H2-Ma (Ma) α-chain gene). Here, we show that murine MHC class II and H2-M genes are coordinately regulated in murine tumour cell lines by T helper cell 1 (IFN-γ) and T helper cell 2 (IL-4 or IL-10) cytokines in the presence of the MHC class II-specific transactivator CIITA as determined by mRNA expression and Western blot analysis. Furthermore, Mαβ1 and Mαβ2 heterodimers are differentially expressed in murine tumour cell lines of different histology. Both H2-M isoforms promote equally processing and presentation of native protein antigens to H2-Ad- and H2-Ed-restricted CD4+ T cells. Murine tumour cell lines could be divided into three groups: constitutive MHC class II and CIITA expression; inducible MHC class II and CIITA expression upon IFN-γ-treatment; and lack of constitutive and IFN-γ-inducible MHC class II and CIITA expression. These differences may impact on CD4+ T cell recognition of cancer cells in murine tumour models. © 2000 Cancer Research Campaign PMID:11027433

  19. Maintenance of MHC Class IIB diversity in a recently established songbird population

    PubMed Central

    Whittaker, Danielle J.; Dapper, Amy L.; Peterson, Mark P.; Atwell, Jonathan W.; Ketterson, Ellen D.

    2012-01-01

    We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations. PMID:22685370

  20. Maintenance of MHC Class IIB diversity in a recently established songbird population.

    PubMed

    Whittaker, Danielle J; Dapper, Amy L; Peterson, Mark P; Atwell, Jonathan W; Ketterson, Ellen D

    2012-03-01

    We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations.

  1. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis.

    PubMed

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P; Stenner, Melanie D; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W; Yates, Robin M; Shi, Yan

    2015-02-01

    Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.

  2. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  3. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules.

    PubMed

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these "non-traditional" class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  4. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst

    PubMed Central

    Hermann, Clemens; van Hateren, Andy; Trautwein, Nico; Neerincx, Andreas; Duriez, Patrick J; Stevanović, Stefan; Trowsdale, John; Deane, Janet E; Elliott, Tim; Boyle, Louise H

    2015-01-01

    Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system. DOI: http://dx.doi.org/10.7554/eLife.09617.001 PMID:26439010

  5. High-throughput engineering and analysis of peptide binding to class II MHC.

    PubMed

    Jiang, Wei; Boder, Eric T

    2010-07-27

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity.

  6. Use of MHC class II tetramers to investigate CD4+ T cell responses: problems and solutions.

    PubMed

    Cecconi, Virginia; Moro, Monica; Del Mare, Sara; Dellabona, Paolo; Casorati, Giulia

    2008-11-01

    MHC-class I tetramers technology enabled the characterization of peptide-specific T cells at the single cell level in a variety of studies. Several laboratories have also developed MHC-class II multimers to characterize Ag-specific CD4+ T cells. However, the generation and use of MHC-class II multimers seems more problematic than that of MHC-I multimers. We have generated HLA-DR*1101 tetramers in a versatile empty form, which can be loaded after purification with peptides of interest. We discuss the impact of critical biological and structural parameters for the optimal staining of Ag-specific CD4+ T cells using HLA-DR*1101 tetramers, such as: (i) activation state of CD4+ T cells; (ii) membrane trafficking in the target CD4+ T cells; (iii) binding characteristics of the loaded CD4 epitope. Our data indicate that reorganization of TCR on the plasma membrane upon CD4+ T cell activation, as well as an homogenous binding frame of the CD4 epitopes to the soluble HLA-DR monomer, are critical for a stable TCR/MHC-class II tetramer interaction. These factors, together with the low frequencies and affinities of specific CD4+ T cells, explain the need for in vitro expansion or ex vivo enrichment of specific T cells for the optimal visualization with MHC-class II tetramers. PMID:18612991

  7. Essential glycan-dependent interactions optimize MHC class I peptide loading

    PubMed Central

    Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter

    2011-01-01

    In this study we sought to better understand the role of the glycoprotein quality control machinery in the assembly of MHC class I molecules with high-affinity peptides. The lectin-like chaperone calreticulin (CRT) and the thiol oxidoreductase ERp57 participate in the final step of this process as part of the peptide-loading complex (PLC). We provide evidence for an MHC class I/CRT intermediate before PLC engagement and examine the nature of that chaperone interaction in detail. To investigate the mechanism of peptide loading and roles of individual components, we reconstituted a PLC subcomplex, excluding the Transporter Associated with Antigen Processing, from purified, recombinant proteins. ERp57 disulfide linked to the class I-specific chaperone tapasin and CRT were the minimal PLC components required for MHC class I association and peptide loading. Mutations disrupting the interaction of CRT with ERp57 or the class I glycan completely eliminated PLC activity in vitro. By using the purified system, we also provide direct evidence for a role for UDP-glucose:glycoprotein glucosyltransferase 1 in MHC class I assembly. The recombinant Drosophila enzyme reglucosylated MHC class I molecules associated with suboptimal ligands and allowed PLC reengagement and high-affinity peptide exchange. Collectively, the data indicate that CRT in the PLC enhances weak tapasin/class I interactions in a manner that is glycan-dependent and regulated by UDP-glucose:glycoprotein glucosyltransferase 1. PMID:21383180

  8. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays

    PubMed Central

    Justesen, Sune; Harndahl, Mikkel; Lamberth, Kasper; Nielsen, Lise-Lotte B; Buus, Søren

    2009-01-01

    Background Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. Results We generated α and β MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the β chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both α and β chains are polymorphic, illustrating the advantages of producing the two chains separately. Conclusion We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools. PMID:19416502

  9. No evidence for MHC class I-based disassortative mating in a wild population of great tits.

    PubMed

    Sepil, I; Radersma, R; Santure, A W; De Cauwer, I; Slate, J; Sheldon, B C

    2015-03-01

    Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types. PMID:25661713

  10. The effect of transfected MHC class I genes on sensitivity to natural killer cells.

    PubMed Central

    Holscher, M; Givan, A L; Brooks, C G

    1991-01-01

    To test the hypothesis that major histocompatibility complex (MHC) molecules protect target cells from lysis by natural killer cells (NKC), we transfected the MHC- B16 melanoma line F10 with the class I genes encoding Dd, Kb, and Kk. Only low levels of Dd expression could be obtained and there was no protection against NKC. By contrast, Kb and Kk transfectants were obtained which displayed significant resistance to NKC, and with the latter transfectants resistance was clearly related to the level of transgene expression. Various mutants of the F10 line with altered patterns of MHC expression were also obtained. These mutant lines provided evidence that (i) the Db molecule is also capable of inducing resistance to NKC and (ii) high MHC class I expression does not by itself guarantee lowered susceptibility to NKC. PMID:1904402

  11. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    PubMed Central

    Xu, Ying; Sette, Alessandro; Bourne, Philip E.; Lund, Ole; Ponomarenko, Julia; Nielsen, Morten; Peters, Bjoern

    2010-01-01

    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results. PMID:20174654

  12. Multiple divergent haplotypes express completely distinct sets of class I MHC genes in zebrafish.

    PubMed

    McConnell, Sean C; Restaino, Anthony C; de Jong, Jill L O

    2014-03-01

    The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation. PMID:24291825

  13. Evolution of MHC class I genes in the European badger (Meles meles)

    PubMed Central

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately. PMID:22957169

  14. Nonclassical T Cells and Their Antigens in Tuberculosis

    PubMed Central

    De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia

    2014-01-01

    T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739

  15. Innate lymphoid cells and the MHC.

    PubMed

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible.

  16. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells.

    PubMed

    Fang, Mingming; Xia, Jun; Wu, Xiaoyan; Kong, Hui; Wang, Hong; Xie, Weiping; Xu, Yong

    2013-08-01

    Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.

  17. Evolution of MHC class II E beta diversity within the genus Peromyscus.

    PubMed Central

    Richman, Adam D; Herrera, L Gerardo; Nash, Deanna

    2003-01-01

    Progress in understanding the evolution of variation at the MHC has been slowed by an inability to assess the relative roles of mutation vs. intragenic recombination in contributing to observed polymorphism. Recent theoretical advances now permit a quantitative treatment of the problem, with the result that the amount of recombination is at least an order of magnitude greater than that of mutation in the history of class II genes. We suggest that this insight allows progress in evaluating the importance of other factors affecting the evolution of the MHC. We investigated the evolution of MHC class II E beta sequence diversity in the genus Peromyscus. We find evidence for extensive recombination in the history of these sequences. Nevertheless, it appears that intragenic recombination alone is insufficient to account for evolution of MHC diversity in Peromyscus. Significant differences in silent variation among subgenera arose over a relatively short period of time, with little subsequent change. We argue that these observations are consistent with the effects of historical population bottleneck(s). Population restrictions may explain general features of MHC evolution, including the large amount of recombination in the history of MHC genes, because intragenic recombination may efficiently regenerate allelic polymorphism following a population constriction. PMID:12750340

  18. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species. PMID:21607694

  19. Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA)

    PubMed Central

    2011-01-01

    Background The Major Histocompatibility Complex (MHC) is a cluster of genes involved in the vertebrate immune system and includes loci with an extraordinary number of alleles. Due to the complex evolution of MHC genes, alleles from different loci within the same MHC class can be very similar and therefore difficult to assign to separate loci. Consequently, single locus amplification of MHC genes is hard to carry out in species with recently duplicated genes in the same MHC class, and multiple MHC loci have to be genotyped simultaneously. Since amplified alleles have the same length, accurate genotyping is difficult. Reference Strand-Mediated Conformational Analysis (RSCA), which is increasingly used in studies of natural populations with multiple MHC genes, is a genotyping method capable to provide high resolution and accuracy in such cases. Findings We adapted the RSCA method to genotype multiple MHC class II B (BLB) genes in black grouse (Tetrao tetrix), a non-model galliform bird species, using a 96-Capillary Array Electrophoresis, the MegaBACE™ 1000 DNA Analysing System (GE Healthcare). In this study we used fluorescently labelled reference strands from both black grouse and hazel grouse and observed good agreement between RSCA and cloning/sequencing since 71 alleles were observed by cloning/sequencing and 76 alleles by RSCA among the 24 individuals included in the comparison. At the individual level however, there was a trend towards more alleles scored with RSCA (1-6 per individual) than cloning/sequencing (1-4 per individual). In 63% of the pair-wise comparison, the identical allele was scored in RSCA as in cloning/sequencing. Nine out of 24 individuals had the same number of alleles in RSCA as in cloning/sequencing. Our RSCA protocol allows a faster RSCA genotyping than presented in many other RSCA studies. Conclusions In this study, we have developed the RSCA typing method further to work on a 96-Capillary Array Electrophoresis (MegaBACE™ 1000). Our

  20. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks.

    PubMed

    Fleming-Canepa, Ximena; Jensen, Shawna M; Mesa, Christine M; Diaz-Satizabal, Laura; Roth, Alexa J; Parks-Dely, Julie A; Moon, Debra A; Wong, Janet P; Evseev, Danyel; Gossen, Desolie A; Tetrault, David G; Magor, Katharine E

    2016-08-01

    MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species. PMID:27342841

  1. Enhanced induction of thyroid cell MHC class II antigen expression in rats highly responsive to thyroglobulin.

    PubMed

    Lahat, N; Hirose, W; Davies, T F

    1989-04-01

    Initial experiments demonstrated that the degree of autoantibody and proliferative T cell responses to syngeneic rat thyroglobulin differed markedly between Buffalo (high responder) and Fisher (low responder) rats after classical immunization schedules. While varying immune responsiveness may be due to qualitative and quantitative T and B cell differences, the role of thyroid cell MHC class II antigens may be pivotal to the onset of autoimmune thyroiditis in such animal models. We, therefore, examined the induction of MHC class II antigens in thyroid monolayers derived from Buffalo and Fisher rats treated with methimazole (0.1% in their water) for 4 weeks to induce mild thyroid hyperplasia. After thyroidectomy, thyroid cell monolayers were prepared and exposed to recombinant rat gamma-interferon (gamma IF; 10-1000 U/ml) for 1-7 days in the presence and absence of TSH (1 mU/ml). Both Buffalo and Fisher thyroid monolayers responded to gamma IF with MHC class II antigen expression when assessed by laser flow cytometry using MRC OX-6 monoclonal anti-RT1.B. In both types of culture, TSH enhanced MHC class II antigen expression in the presence of gamma IF to the same degree. However, there was a consistently earlier and greater degree of MHC class II antigen expression in Buffalo thyroid monolayers compared to Fisher monolayers, a phenomenon not explicable on the basis of fibroblast contamination as assessed by cytokeratin staining. These data demonstrate that end-organ sensitivity to MHC class II antigen expression may be important in the pathogenesis of autoimmune thyroid disease.

  2. The β2-microglobulin-free heterodimerization of rhesus monkey MHC class I A with its normally spliced variant reduces the ubiquitin-dependent degradation of MHC class I A.

    PubMed

    Dai, Zheng-Xi; Zhang, Gao-Hong; Zhang, Xi-He; Xia, Hou-Jun; Li, Shao-You; Zheng, Yong-Tang

    2012-03-01

    The MHC class I (MHC I) molecules play a pivotal role in the regulation of immune responses by presenting antigenic peptides to CTLs and by regulating cytolytic activities of NK cells. In this article, we show that MHC I A in rhesus macaques can be alternatively spliced, generating a novel MHC I A isoform (termed "MHC I A-sv1") devoid of α(3) domain. Despite the absence of β2-microglobulin (β2m), the MHC I A-sv1 proteins reached the cell surface of K562-transfected cells as endoglycosidase H-sensitive glycoproteins that could form disulfide-bonded homodimers. Cycloheximide-based protein chase experiments showed that the MHC I A-sv1 proteins were more stable than the full-length MHC I A in transiently or stably transfected cell lines. Of particular interest, our studies demonstrated that MHC I A-sv1 could form β2m-free heterodimers with its full-length protein in mammalian cells. The formation of heterodimers was accompanied by a reduction in full-length MHC I A ubiquitination and consequent stabilization of the protein. Taken together, these results demonstrated that MHC I A-sv1 and MHC I A can form a novel heterodimeric complex as a result of the displacement of β2m and illustrated the relevance of regulated MHC I A protein degradation in the β2m-free heterodimerization-dependent control, which may have some implications for the MHC I A splice variant in the fine tuning of classical MHC I A/TCR and MHC I A/killer cell Ig-like receptor interactions.

  3. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    SciTech Connect

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.; Townend, D.C.; Dawkins, R.L. ||

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  4. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells.

    PubMed

    Haspot, F; Li, H W; Lucas, C L; Fehr, T; Beyaz, S; Sykes, M

    2014-01-01

    Avoidance of long-term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low-toxicity, nonimmunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC-mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti-CD154 and T cell-depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of preexisting alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC Class I-deficient and Class I/Class II-deficient marrow in a CD8 T cell-dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC Class I-deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC Class I-deficient donor cells in association with rejection. These data implicate a novel CD8 T cell-dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a T cell receptor-independent manner, of Class I-deficient donor cells.

  5. Donor MHC class II antigen is essential for induction of transplantation tolerance by bone marrow cells.

    PubMed

    Umemura, A; Monaco, A P; Maki, T

    2000-05-01

    Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance. PMID:10779744

  6. Single-Molecule Motions of MHC Class II Rely on Bound Peptides

    PubMed Central

    Kozono, Haruo; Matsushita, Yufuku; Ogawa, Naoki; Kozono, Yuko; Miyabe, Toshihiro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Okimoto, Noriaki; Taiji, Makoto; Kanagawa, Osami; Sasaki, Yuji C.

    2015-01-01

    The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells. PMID:25606683

  7. Viral MHC class I-like molecule allows evasion of NK cell effector responses in vivo.

    PubMed

    Pyzik, Michal; Dumaine, Anne; Dumaine, Anne A; Charbonneau, Benoît; Fodil-Cornu, Nassima; Jonjic, Stipan; Vidal, Silvia M

    2014-12-15

    The outcome of mouse CMV (MCMV) infection varies among different inbred mouse strains depending on NK cell effector functions governed through recognition receptor triggering. NK cells from different mouse strains possess diverse repertoires of activating or inhibitory Ly49 receptors, which share some of their polymorphic MHC class I (MHC-I) ligands. By examining the NK cell response to MCMV infection in novel BALB substrains congenic for different MHC (or H-2 in mice) haplotypes, we show that recognition of viral MHC-I-like protein m157 by inhibitory Ly49C receptor allows escape from NK cell control of viral replication. Dominant inhibition by Ly49C bound to self-H-2(b) encoded MHC-I molecules masks this effect, which only becomes apparent in distinct H-2 haplotypes, such as H-2(f). The recognition of m157-expressing cells by Ly49C resulted in both decreased NK cell killing in vitro and reduced rejection in vivo. Further, control of infection with m157-deletant (Δm157) MCMV was improved in mice carrying H-2 molecules unrecognized by Ly49C but allowing expansion of NK cell effectors expressing activating Ly49L receptors. Hence, our study is the first, to our knowledge, to demonstrate that MHC-I mimicry strategies used by MCMV to avoid NK cell control are biologically relevant during in vivo viral infection. Of value for human studies is that only a few genetic assortments conditional on the repertoires of viral MHC-I-like proteins/host NK receptors/MHC haplotypes should allow efficient protection against CMV infection.

  8. Sequence, expression, and polymorphism of the Peromyscus leucopus Mhc class Ib gene, M4.

    PubMed

    Crew, Mark D; Bates, Linda M

    2003-05-01

    The H2 M region harbors about 20 class I genes or gene fragments the function of which are largely obscure. The rat Mhc ( RT1) appears to contain several orthologs of H2 M region genes although orthologs in more distantly related species have yet to be clearly identified. In this report, the sequence of a genomic clone containing a Peromyscus leucopus Mhc ( Pele) class I gene is presented and based on sequence similarity was found to be the Pele ortholog of H2-M4. Unlike H2-M4, which is a pseudogene, PeleM4 appeared to be an intact Mhc class Ib gene. Appropriately splice PeleM4 mRNA transcripts were detected in the liver, lung, and thymus. Polymorphism of PeleM4 was examined by sequencing exon 2 and 3 of the PeleM4 gene from seven different Pele haplotypes and six PeleM4 alleles were identified. These results suggest that the existence of some H2 M region class Ib genes predates the divergence of Peromyscus and Mus genera which occurred 40-60 million years ago and provide an example of unique pathways in the evolution of Mhc class Ib genes.

  9. Spectrum of MHC Class II Variability in Darwin’s Finches and Their Close Relatives

    PubMed Central

    Sato, Akie; Tichy, Herbert; Grant, Peter R.; Grant, B. Rosemary; Sato, Tetsuji; O’hUigin, Colm

    2011-01-01

    The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin’s finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura

  10. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway.

    PubMed

    Apostolopoulos, V; Pietersz, G A; Gordon, S; Martinez-Pomares, L; McKenzie, I F

    2000-06-01

    Antigens such as MUC1 coupled to oxidized mannan lead to rapid and efficient MHC class I presentation to CD8+ cells and a preferential T1 response; after reduction there is class II presentation and a T2 immune response. We now show that the selective advantage of the oxidized mannan-MUC1 is due to the presence of aldehydes and not Schiff bases, and that oxidized mannan-MUC1 binds to the mannose and not scavenger receptors and is internalized and presented by MHC class I molecules 1,000 times more efficiently than when reduced. After internalization there is rapid access to the class I pathway via endosomes but not lysosomes, proteasomal processing and transport to the endoplasmic reticulum, Golgi apparatus and cell surface. Aldehydes cause rapid entry into the class I pathway, and can therefore direct the subsequent immune response.

  11. Reversion of a transcriptionally defective MHC class II-negative human B-cell mutant.

    PubMed Central

    Ombra, M N; Perfetto, C; Autiero, M; Anzisi, A M; Pasquinelli, R; Maffei, A; Del Pozzo, G; Guardiola, J

    1993-01-01

    RJ2.2.5, a mutant derived from the human B-lymphoma cell, Raji, is unable to express the MHC class II genes because of a recessive transcriptional defect attributed to the lack of an activator function. We report the isolation of a RJ2.2.5 revertant, namely AR, in which the expression of the mRNAs encoded by these genes is restored. Comparison of the binding of nuclear extracts or of partially purified nuclear preparations from the wild-type, the mutant and the revertant cells to a conserved MHC class II promoter element, the X-box, showed no alteration in the mobility of the complexes thus formed. However, in extracts from RJ2.2.5, and other MHC class II negative cell lines, such as HeLa, the amount of complex observed was significantly higher than in wild-type Raji cells. Furthermore, the binding activity exhibited by the AR revertant was lower than that of the RJ2.2.5 and higher than that of Raji. The use of specific monoclonal antibodies indicated that in all cases c-Jun and c-Fos or antigenically related proteins were required for binding. An inverse correlation between the level of DNA-protein complex formed and the level of MHC class II gene mRNA expressed in the three cell lines was apparent, suggesting that overexpression of a DNA binding factor forming complexes with class II promoter elements may cause repression of MHC class II transcription. A model which reconciles the previously ascertained recessivity of the phenotype of the mutation carried by RJ2.2.5 with the findings reported here is discussed. Images PMID:8441650

  12. MHC class II molecules, cathepsins, and La/SSB proteins in lacrimal acinar cell endomembranes.

    PubMed

    Yang, T; Zeng, H; Zhang, J; Okamoto, C T; Warren, D W; Wood, R L; Bachmann, M; Mircheff, A K

    1999-11-01

    Sjögren's syndrome is a chronic autoimmune disease affecting the lacrimal glands and other epithelia. It has been suggested that acinar cells of the lacrimal glands provoke local autoimmune responses, leading to Sjögren's syndrome when they begin expressing major histocompatibility complex (MHC) class II molecules. We used isopycnic centrifugation and phase partitioning to resolve compartments that participate in traffic between the basolateral membranes and the endomembrane system to test the hypothesis that MHC class II molecules enter compartments that contain potential autoantigens, i.e., La/SSB, and enzymes capable of proteolytically processing autoantigen, i.e., cathepsins B and D. A series of compartments identified as secretory vesicle membranes, prelysosomes, and microdomains of the trans-Golgi network involved in traffic to the basolateral membrane, to the secretory vesicles, and to the prelysosomes were all prominent loci of MHC class II molecules, La/SSB, and cathepsins B and D. These observations support the thesis that lacrimal gland acinar cells that have been induced to express MHC class II molecules function as autoantigen processing and presenting cells.

  13. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation

    PubMed Central

    Duraes, Fernanda V.; Niven, Jennifer; Dubrot, Juan; Hugues, Stéphanie; Gannagé, Monique

    2015-01-01

    Although autophagy is a process that has been studied for several years its link with antigen presentation and T cell immunity has only recently emerged. Autophagy, which means “self-eating,” is important to maintain cell homeostasis and refers to a collection of mechanisms that delivers intracellular material for degradation into lysosomes. Among them, macroautophagy pathway has many implications in different biological processes, including innate and adaptive immunity. In particular, macroautophagy can provide a substantial source of intracellular antigens for loading onto MHC class II molecules using the alternative MHC class II pathway. Through autophagosomes, endogenous self-antigens as well as antigens derived from intracellular pathogens can be delivered to MHC class II compartment and presented to CD4+ T cells. The pathway will, therefore, impact both peripheral T cell tolerance and the pathogen specific immune response. This review will describe the contribution of autophagy to intracellular presentation of endogenous self- or pathogen-derived antigens via MHC class II and its consequences on CD4+ T cell responses. PMID:26441964

  14. An MHC Class I Immune Evasion Gene of Marek's Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s Disease Virus (MDV) is a widespread pathogen of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to MHC class I down-regulation (Virology 282:198–205 (2001)), but the gene(s)involved have not been identified. Here we demonstrate tha...

  15. AN MHC class I immune evasion gene of Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  16. Characterization of anti-channel catfish MHC class II monoclonal antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study characterizes four monoclonal antibodies (mAb) developed against the major histocompatibility complex (MHC) class II beta chain of the channel catfish, Ictalurus punctatus. Immunoprecipitations using catfish clonal B cells revealed that each of these mAbs immunoselected proteins of appro...

  17. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules, which are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating cytotoxic lymphocytes (CTLs). The polymorp...

  18. Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?

    PubMed

    Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G

    2015-11-01

    This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements.

  19. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  20. Hepatitis C Virus Attenuates Interferon-Induced MHC Class I Expression and Decreases CD8+ T-Cell Effector Functions

    PubMed Central

    Kang, Wonseok; Sung, Pil Soo; Park, Su-Hyung; Yoon, Sarah; Chang, Dong-Yeop; Kim, Seungtaek; Han, Kwang Hyub; Kim, Ja Kyung; Rehermann, Barbara; Chwae, Yong-Joon; Shin, Eui-Cheol

    2015-01-01

    BACKGROUND & AIMS MHC class I-restricted CD8+ T cells are required for clearance of hepatitis C virus (HCV) infection. MHC class I expression is upregulated by type I and II interferons (IFNs). However, little is known about the effects of HCV infection on IFN-induced expression of MHC class I. METHODS We used the HCV cell culture system (HCVcc) with the genotype 2a Japanese Fulminant Hepatitis-1 strain to investigate IFN-induced expression of MHC class I and its regulatory mechanisms. HCVcc-infected Huh-7.5 cells were analyzed by flow cytometry, metabolic labeling, immunoprecipitation, and immunoblotting analyses. Protein kinase R (PKR) was knocked-down with lentiviruses that express small hairpin (sh)RNAs. The functional effects of MHC class I regulation by HCV were demonstrated in co-culture studies, using HCV-specific CD8+ T cells. RESULTS Although the baseline level of MHC class I was not affected by HCV infection, IFN-induced expression of MHC class I was notably attenuated in HCV-infected cells. This was associated with replicating HCV RNA, not with viral protein. HCV infection reduced IFN-induced synthesis of MHC class I protein and induced phosphorylation of PKR and eIF2α. IFN-induced MHC class I expression was restored by shRNA-mediated knockdown of PKR in HCV-infected cells. Co-culture of HCV-specific CD8+ T cells and HCV-infected cells that expressed HLA-A2 demonstrated that HCV infection reduced the effector functions of HCV-specific CD8+ T cells; these functions were restored by shRNA-mediated knockdown of PKR. CONCLUSIONS IFN-induced expression of MHC class I is attenuated in HCV-infected cells by activation of PKR, which reduces the effector functions of HCV-specific CD8+ T cells. This appears to be an important mechanism by which HCV circumvents antiviral adaptive immune responses. PMID:24486950

  1. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses. PMID:26454477

  2. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    PubMed

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  3. Horse cDNA clones encoding two MHC class I genes

    SciTech Connect

    Barbis, D.P.; Maher, J.K.; Stanek, J.; Klaunberg, B.A.; Antczak, D.F.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  4. Transcriptional control of MHC class II gene expression during differentiation from B cells to plasma cells.

    PubMed

    Dellabona, P; Latron, F; Maffei, A; Scarpellino, L; Accolla, R S

    1989-04-15

    In this study we investigated the molecular mechanisms responsible for the extinction of the constitutive MHC class II gene expression of human B cells on somatic cell hybridization with murine plasmocytoma cells. We found that this event is due to trans-acting suppressor functions of mouse origin pre-existing in the plasmocytoma cells and acting at transcriptional level. Transcription of the entire family of human class II genes is suppressed, including genes as DO beta for which a distinct regulation of expression in B cells had been previously demonstrated. Suppression appears specific for class II genes because in the hybrids expression of MHC class I genes of mouse is unaffected and of human only partially reduced. Interestingly, also murine invariant chain gene is expressed in both parental plasmocytoma and hybrid cells although at reduced amounts as compared to a murine class II positive B cell line. The class II negative phenotype of hybrid cells and parental plasmocytoma cells is highly stable and unaffected by treatment with protein synthesis inhibitors, suggesting that the transcriptional suppressor function is not mediated by rapid, labile turning-over proteins. Possible mechanisms responsible for transcriptional regulation of MHC class II gene expression during terminal differentiation of B cells to plasma cells are discussed. PMID:2495328

  5. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining

    PubMed Central

    2013-01-01

    Background MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. Results The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. Conclusions Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths. PMID:23368521

  6. Heparan Sulfate Proteoglycans Promote Telomerase Internalization and MHC Class II Presentation on Dendritic Cells.

    PubMed

    Galaine, Jeanne; Kellermann, Guillaume; Guillaume, Yves; Boidot, Romain; Picard, Emilie; Loyon, Romain; Queiroz, Lise; Boullerot, Laura; Beziaud, Laurent; Jary, Marine; Mansi, Laura; André, Claire; Lethier, Lydie; Ségal-Bendirdjian, Evelyne; Borg, Christophe; Godet, Yann; Adotévi, Olivier

    2016-09-01

    Telomerase is a prototype-shared tumor Ag and represents an attractive target for anticancer immunotherapy. We have previously described promiscuous and immunogenic HLA-DR-restricted peptides derived from human telomerase reverse transcriptase (hTERT) and referred as universal cancer peptide (UCP). In nonsmall cell lung cancer, the presence of spontaneous UCP-specific CD4 T cell responses increases the survival of chemotherapy-responding patients. However, the precise mechanisms of hTERT's uptake, processing, and presentation on MHC-II molecules to stimulate CD4 T cells are poorly understood. In this work, by using well-characterized UCP-specific CD4 T cell clones, we showed that hTERT processing and presentation on MHC-II involve both classical endolysosomal and nonclassical cytosolic pathways. Furthermore, to our knowledge, we demonstrated for the first time that hTERT's internalization by dendritic cells requires its interaction with surface heparan sulfate proteoglycans. Altogether, our findings provide a novel mechanism of tumor-specific CD4 T cell activation and will be useful for the development of novel cancer immunotherapies that harness CD4 T cells. PMID:27481844

  7. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism.

    PubMed

    Eimes, John A; Townsend, Andrea K; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  8. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism

    PubMed Central

    Townsend, Andrea K.; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  9. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, L.; Aldridge, B.M.; Miles, A.K.; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide-binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters. ?? 2006 Blackwell Munksgaard.

  10. Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae (Danio rerio).

    PubMed

    Hinz, Cornelia; Gebhardt, Katharina; Hartmann, Alexander K; Sigman, Lauren; Gerlach, Gabriele

    2012-01-01

    Kin recognition can drive kin selection and the evolution of social behaviour. In zebrafish (Danio rerio, Hamilton 1822), kin recognition is based on olfactory and visual imprinting processes. If larvae are exposed to visual and chemical cues of kin at day 5 and 6 post fertilization they will recognize kin throughout life, while exposure to non-kin fails to trigger any recognition. Chemical imprinting signals are transcribed by polymorphic genes of the major histocompatibility complex (MHC) code; however, the underlying mechanism for visual imprinting remains unclear. Here we provide evidence for the existence of family-specific differences in morphometry and pigmentation pattern of six day old zebrafish larvae. While rump, tail and body pigmentation were dependent on relatedness, iris pigmentation and morphometry were also influenced by MHC class II genotype. Our study revealed that the MHC not only influences the chemical signature of individuals, but also their visual appearance. PMID:23251449

  11. Large-scale MHC class II genotyping of a wild lemur population by next generation sequencing.

    PubMed

    Huchard, Elise; Albrecht, Christina; Schliehe-Diecks, Susanne; Baniel, Alice; Roos, Christian; Kappeler, Peter M; Peter, Peter M Kappeler; Brameier, Markus

    2012-12-01

    The critical role of major histocompatibility complex (MHC) genes in disease resistance, along with their putative function in sexual selection, reproduction and chemical ecology, make them an important genetic system in evolutionary ecology. Studying selective pressures acting on MHC genes in the wild nevertheless requires population-wide genotyping, which has long been challenging because of their extensive polymorphism. Here, we report on large-scale genotyping of the MHC class II loci of the grey mouse lemur (Microcebus murinus) from a wild population in western Madagascar. The second exons from MHC-DRB and -DQB of 772 and 672 individuals were sequenced, respectively, using a 454 sequencing platform, generating more than 800,000 reads. Sequence analysis, through a stepwise variant validation procedure, allowed reliable typing of more than 600 individuals. The quality of our genotyping was evaluated through three independent methods, namely genotyping the same individuals by both cloning and 454 sequencing, running duplicates, and comparing parent-offspring dyads; each displaying very high accuracy. A total of 61 (including 20 new) and 60 (including 53 new) alleles were detected at DRB and DQB genes, respectively. Both loci were non-duplicated, in tight linkage disequilibrium and in Hardy-Weinberg equilibrium, despite the fact that sequence analysis revealed clear evidence of historical selection. Our results highlight the potential of 454 sequencing technology in attempts to investigate patterns of selection shaping MHC variation in contemporary populations. The power of this approach will nevertheless be conditional upon strict quality control of the genotyping data.

  12. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

    PubMed Central

    Bataille, Arnaud; Cashins, Scott D.; Grogan, Laura; Skerratt, Lee F.; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A.; Macris, Amy; Harlow, Peter S.; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-01-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  13. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  14. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  15. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  16. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  17. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. PMID:27137083

  18. Intracellular Assembly and Trafficking of MHC Class I Molecules

    PubMed Central

    Donaldson, Julie G.; Williams, David B.

    2009-01-01

    The presentation of antigenic peptides by class I molecules of the major histocompatibility complex begins in the endoplasmic reticulum where the coordinated action of molecular chaperones, folding enzymes and class I-specific factors ensure that class I molecules are loaded with high affinity peptide ligands that will survive prolonged display at the cell surface. Once assembled, class I molecules are released from the quality control machinery of the ER for export to the plasma membrane where they undergo dynamic endocytic cycling and turnover. We review recent progress in our understanding of class I assembly, anterograde transport and endocytosis and highlight some of the events targeted by viruses as a means to evade detection by cytotoxic T cells and natural killer cells. PMID:19761542

  19. Transport and quality control of MHC class I molecules in the early secretory pathway.

    PubMed

    Springer, Sebastian

    2015-06-01

    Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.

  20. The first step of peptide selection in antigen presentation by MHC class I molecules

    PubMed Central

    Garstka, Malgorzata A.; Fish, Alexander; Celie, Patrick H. N.; Joosten, Robbie P.; Janssen, George M. C.; Berlin, Ilana; Hoppes, Rieuwert; Stadnik, Magda; Janssen, Lennert; Ovaa, Huib; van Veelen, Peter A.; Perrakis, Anastassis; Neefjes, Jacques

    2015-01-01

    MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2Kb considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2Kb in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2Kb–peptide complexes suggest that a conformational adaptation of H-2Kb drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire. PMID:25605945

  1. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals.

    PubMed

    Boudinot, Pierre; Mondot, Stanislas; Jouneau, Luc; Teyton, Luc; Lefranc, Marie-Paule; Lantz, Olivier

    2016-05-24

    Whereas major histocompatibility class-1 (MH1) proteins present peptides to T cells displaying a large T-cell receptor (TR) repertoire, MH1Like proteins, such as CD1D and MR1, present glycolipids and microbial riboflavin precursor derivatives, respectively, to T cells expressing invariant TR-α (iTRA) chains. The groove of such MH1Like, as well as iTRA chains used by mucosal-associated invariant T (MAIT) and natural killer T (NKT) cells, respectively, may result from a coevolution under particular selection pressures. Herein, we investigated the evolutionary patterns of the iTRA of MAIT and NKT cells and restricting MH1Like proteins: MR1 appeared 170 Mya and is highly conserved across mammals, evolving more slowly than other MH1Like. It has been pseudogenized or independently lost three times in carnivores, the armadillo, and lagomorphs. The corresponding TRAV1 gene also evolved slowly and harbors highly conserved complementarity determining regions 1 and 2. TRAV1 is absent exclusively from species in which MR1 is lacking, suggesting that its loss released the purifying selection on MR1. In the rabbit, which has very few NKT and no MAIT cells, a previously unrecognized iTRA was identified by sequencing leukocyte RNA. This iTRA uses TRAV41, which is highly conserved across several groups of mammals. A rabbit MH1Like gene was found that appeared with mammals and is highly conserved. It was independently lost in a few groups in which MR1 is present, like primates and Muridae, illustrating compensatory emergences of new MH1Like/Invariant T-cell combinations during evolution. Deciphering their role is warranted to search similar effector functions in humans. PMID:27170188

  2. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.

    PubMed

    Rasmussen, Michael; Fenoy, Emilio; Harndahl, Mikkel; Kristensen, Anne Bregnballe; Nielsen, Ida Kallehauge; Nielsen, Morten; Buus, Søren

    2016-08-15

    Binding of peptides to MHC class I (MHC-I) molecules is the most selective event in the processing and presentation of Ags to CTL, and insights into the mechanisms that govern peptide-MHC-I binding should facilitate our understanding of CTL biology. Peptide-MHC-I interactions have traditionally been quantified by the strength of the interaction, that is, the binding affinity, yet it has been shown that the stability of the peptide-MHC-I complex is a better correlate of immunogenicity compared with binding affinity. In this study, we have experimentally analyzed peptide-MHC-I complex stability of a large panel of human MHC-I allotypes and generated a body of data sufficient to develop a neural network-based pan-specific predictor of peptide-MHC-I complex stability. Integrating the neural network predictors of peptide-MHC-I complex stability with state-of-the-art predictors of peptide-MHC-I binding is shown to significantly improve the prediction of CTL epitopes. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCstabpan. PMID:27402703

  3. Diversification of porcine MHC class II genes: evidence for selective advantage.

    PubMed

    Luetkemeier, Erin S; Malhi, Ripan S; Beever, Jonathan E; Schook, Lawrence B

    2009-02-01

    The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene PsiDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (PsiDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (PsiDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (PsiDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d (N) (DQB 1.476, DRB1 1.724, and PsiDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred.

  4. Diversification of porcine MHC class II genes: evidence for selective advantage.

    PubMed

    Luetkemeier, Erin S; Malhi, Ripan S; Beever, Jonathan E; Schook, Lawrence B

    2009-02-01

    The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene PsiDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (PsiDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (PsiDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (PsiDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d (N) (DQB 1.476, DRB1 1.724, and PsiDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. PMID:19142631

  5. MHC class Ib-restricted CTL provide protection against primary and secondary Listeria monocytogenes infection.

    PubMed

    Seaman, M S; Wang, C R; Forman, J

    2000-11-01

    Infection of B6 mice with the intracellular pathogen Listeria monocytogenes (LM) results in the activation of CD8(+) T cells that respond to Ag presented by both MHC class Ia and class Ib molecules. Enzyme-linked immunospot analysis reveals that these CTL populations expand and contract at different times following a primary sublethal LM infection. Between days 4 and 6 postinfection, class Ib-restricted CTL exhibit a rapid proliferative response that is primarily H2-M3 restricted. The peak response of class Ia-restricted CD8(+) T cells occurs a few days later, after the majority of bacteria have been cleared. Although class Ia-restricted CTL exhibit a vigorous recall response to secondary LM infection, we observe limited expansion of class Ib-restricted memory CTL, even in MHC class Ia-deficient mice (B6.K(b-/-)D(b-/-)). Despite this lack of enhanced expansion in vivo, class Ib-restricted memory CTL retain the ability to proliferate and expand when provided with Ag in vitro. Furthermore, we demonstrate that in vivo depletion of CD8(+) T cells in LM-immune B6.K(b-/-)D(b-/-) mice severely impairs memory protection. Together, these data demonstrate that class Ib-restricted CTL play an important role in clearing a primary LM infection and generate a memory population capable of providing significant protection against subsequent infection.

  6. Down-regulation of MHC class I expression in human neuronal stem cells using viral stealth mechanism.

    PubMed

    Lee, Eun Mi; Kim, Jae Young; Cho, Bum Rae; Chung, Woo Kyung; Yoon, Byung-Woo; Kim, Seung U; Lee, Byeong Chun; Hwang, Woo Suk; Moon, Shin-Yong; Lee, Jung Sang; Ahn, Curie

    2005-01-28

    Due to their unique capacity for self-renewal in addition to their ability to differentiate into cells of all neuronal lineages, neuronal stem cells (NSCs) are promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. However, there are few studies on immune rejection, which is one of the main problems facing successful stem cell therapy. In order to determine if human NSC might be rejected after transplantation the MHC expression level was examined in the HB1.F3 cell line, which has previously been shown to exhibit NSC properties. The results showed low expression levels of the MHC class I molecules on the surfaces of these cells. A dramatic increase in the MHC class I expression level was observed when the cells were treated with IFN-gamma, TNF-alpha, and IL-1beta, alone or in combination. The maximum induction of MHC class I protein expression was observed at above 20ng/ml IFN-gamma 48h after the treatment. The apparent additive effects of TNF-alpha and IL-1beta in combination on the maximum induction of MHC class I expression exerted by IFN-gamma treatment were not observed. The MHC class I levels elevated by IFN-gamma were sustained for 72h after withdrawing the IFN-gamma. Therefore, this study introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce the MHC class I expression level on the cell surface after infection, into HB1.F3 cells. The cells transfected with the hCMV US2, US3, US6 or US11 genes showed 20-50% reduction in the MHC class I expression level compared with the mock-transfected cells. These results suggest that NSC expresses high levels of the MHC class I proteins, and unless they are modified, might be rejected upon transplantation. In addition, the various viral stealth mechanisms can be exploited for stem cell transplantation.

  7. Vaccinia Virus A35R Inhibits MHC Class II Antigen Presentation

    PubMed Central

    Rehm, Kristina E.; Connor, Ramsey F.; Jones, Gwendolyn J.B.; Yimbu, Kenneth; Roper, Rachel L.

    2009-01-01

    The Vaccinia virus gene A35R (Copenhagen designation) is highly conserved in mammalian-tropic poxviruses and is an important virulence factor, but its function was unknown. We show herein that A35 does not affect viral infectivity, apoptosis induction, or replication; however, we found that A35 significantly inhibited MHC class II-restricted antigen presentation, immune priming of T lymphocytes, and subsequent chemokine and cytokine synthesis. A35 localized to endosomes and reduced the amount of a model antigenic peptide displayed in the cleft of class II MHC. In addition, A35 decreased VV specific T cell responses in vivo. Thus, this is the first report identifying a function for the A35 protein in virulence as well as the first report identifying a VV gene that inhibits peptide antigen presentation. PMID:19954808

  8. MHC class II B diversity in blue tits: a preliminary study

    PubMed Central

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136

  9. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA.

    PubMed

    Chan, Wing Fuk; Parks-Dely, Julie A; Magor, Brad G; Magor, Katharine E

    2016-08-15

    In many nonmammalian vertebrates, the genomic organization of the MHC class I region leads to biased expression of a single classical MHC class I gene coevolving with TAP transporters, whereas class I genes are poorly expressed. This contrasts to the three codominantly expressed classical MHC class I genes in humans and mice. In a sequenced haplotype from White Pekin duck, Anas platyrhynchos, there is one predominantly expressed MHC class I, UAA, although they have five MHC class I genes in the complex, arranged TAP1-TAP2-UAA-UBA-UCA-UDA-UEA The UAA gene, situated proximal to the TAP2 gene, is expressed at levels 10-fold greater than that of another expressed gene, UDA. Three duck MHC class I genes (UBA, UCA, and UEA) are predicted to be partially or completely inactivated by promoter defects, introduction of in-frame stop codon, or the lack of a polyadenylation signal. In this study, we confirm that UBA, UCA, and UEA are indeed inactivated through genetic defects at the promoter, whereas UAA and UDA have functionally equivalent promoters. To examine promoter accessibility, we performed bisulfite sequencing and show that none of the MHC class I promoters are inactivated by methylation. We determine that UDA is differentially regulated through its 3' untranslated region. Namely, expression of UDA is downregulated by let-7 microRNA, whereas the predominantly expressed MHC class I UAA is not. Regulation of UDA by let-7 microRNA suggests that the lower expression level is maintained for its function in immunity. PMID:27430716

  10. Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Dijkstra, Johannes Martinus; Kiryu, Ikunari; Yoshiura, Yasutoshi; Kumánovics, Attila; Kohara, Masakazu; Hayashi, Nobuhiro; Ototake, Mitsuru

    2006-04-01

    As part of an ongoing elucidation of rainbow trout major histocompatibility complex (MHC) class I, the polymorphism of two MHC class Ib loci was analyzed. These loci, Onmy-UCA and Onmy-UDA, are situated head-to-tail and share more than 89% nucleotide identity in their open reading frames. They share 80% identity with some trout Ia alleles. The deduced amino acid sequences suggest that the UCA and UDA molecules are transported to endosomal compartments and may bind peptides in their binding groove. Our survey revealed seven UCA and eight UDA alleles. Similarity indices overlap when comparing within and between UCA and UDA alleles and some cross-locus motif variation is observed. In most trout both UCA and UDA transcripts were found. However, there probably is functional redundancy, because some trout lacked transcription of one of the two loci. Furthermore, for some UCA and UDA alleles, splicing deficiencies, early stop codons, and upstream start codons were found, which may interfere with efficient protein expression. The present study is the first extensive report on MHC class Ib polymorphism assigned to locus in ectotherm species.

  11. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    PubMed

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  12. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection

    PubMed Central

    English, Luc; Chemali, Magali; Duron, Johanne; Rondeau, Christiane; Laplante, Annie; Gingras, Diane; Alexander, Diane; Leib, David; Norbury, Christopher; Lippé, Roger; Desjardins, Michel

    2013-01-01

    Viral proteins are usually processed by the ‘classical’ major histocompatibility complex (MHC) class I presentation pathway. Here we showed that although macrophages infected with herpes simplex virus type 1 (HSV-1) initially stimulated CD8+ T cells by this pathway, a second pathway involving a vacuolar compartment was triggered later during infection. Morphological and functional analyses indicated that distinct forms of autophagy facilitated the presentation of HSV-1 antigens on MHC class I molecules. One form of autophagy involved a previously unknown type of autophagosome that originated from the nuclear envelope. Whereas interferon-γ stimulated classical MHC class I presentation, fever-like hyperthermia and the pyrogenic cytokine interleukin 1β activated autophagy and the vacuolar processing of viral peptides. Viral peptides in autophagosomes were further processed by the proteasome, which suggests a complex interaction between the vacuolar and MHC class I presentation pathways. PMID:19305394

  13. Intracellular recycling and cross-presentation by MHC class I molecules.

    PubMed

    van Endert, Peter

    2016-07-01

    Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8(+) T-cell priming by dendritic cells.

  14. DPA1*02012: A DPA1*0201-related Mhc class II allele in West Africa

    SciTech Connect

    Meyer, C.G.; May, J.; Spauke, D.; Schnittger, L.

    1994-12-31

    DNA techniques such as sequence-specific oligonucleotide probe (SSOP) hybridizations, restriction-fragment length polymorphism (RFLP) analyses, and DNA sequencing have greatly supported the characterization of Mhc class II allelic polymorphism. Here the authors describe a DPA 1 allele which has been identified in two male individuals from Liberia and Benin, West Africa, during a survey study on Mhc class II associations with the different manifestations after infection with Onchocerca volvulus. 4 refs., 1 fig.

  15. Antibody-Mediated Rejection of Single Class I MHC-Disparate Cardiac Allografts

    PubMed Central

    Hattori, Yusuke; Bucy, R. Pat; Kubota, Yoshinobu; Baldwin, William M.; Fairchild, Robert L.

    2012-01-01

    Murine CCR5−/− recipients produce high titers of antibody to complete MHC-mismatched heart and renal allografts. To study mechanisms of class I MHC antibody-mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild-type C57BL/6 (H-2b) and B6.CCR5−/− recipients. Donor-specific antibody titers in CCR5−/− recipients were 30-fold higher than in wild-type recipients. B6.Kd allografts survived longer than 60 days in wild-type recipients whereas CCR5−/− recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils, and macrophages and C4d deposition in the graft capillaries. B6.Kd allografts were rejected by CD8−/−/CCR5−/−, but not μMT−/−/CCR5−/−, recipients indicating the need for antibody but not CD8 T cells. Grafts retrieved at day 10 from CCR5−/− and CD8−/−/CCR5−/− recipients and from RAG-1−/− allograft recipients injected with anti-Kd antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of anti-donor class I MHC antibody can mediate allograft rejection, that donor-reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity. PMID:22578247

  16. Cell-Extrinsic MHC Class I Molecule Engagement Augments Human NK Cell Education Programmed by Cell-Intrinsic MHC Class I.

    PubMed

    Boudreau, Jeanette E; Liu, Xiao-Rong; Zhao, Zeguo; Zhang, Aaron; Shultz, Leonard D; Greiner, Dale L; Dupont, Bo; Hsu, Katharine C

    2016-08-16

    The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by "self" MHC class I molecules in a process called "education." In humans, interactions between inhibitory killer immunoglobulin-like receptors (KIR) and human MHC (HLA) mediate NK cell education. In HLA-B(∗)27:05(+) transgenic mice and in patients undergoing HLA-mismatched hematopoietic cell transplantation (HCT), NK cells derived from human CD34(+) stem cells were educated by HLA from both donor hematopoietic cells and host stromal cells. Furthermore, mature human KIR3DL1(+) NK cells gained reactivity after adoptive transfer to HLA-B(∗)27:05(+) mice or bone marrow chimeric mice where HLA-B(∗)27:05 was restricted to either the hematopoietic or stromal compartment. Silencing of HLA in primary NK cells diminished NK cell reactivity, while acquisition of HLA from neighboring cells increased NK cell reactivity. Altogether, these findings reveal roles for cell-extrinsic HLA in driving NK cell reactivity upward, and cell-intrinsic HLA in maintaining NK cell education.

  17. Selective immunosuppression by administration of major histocompatibility complex (MHC) class II-binding peptides. I. Evidence for in vivo MHC blockade preventing T cell activation

    PubMed Central

    1992-01-01

    Draining lymph node cells (LNC) from mice immunized with hen egg white lysozyme (HEL) display at their surface antigen-MHC complexes able to stimulate, in the absence of any further antigen addition, HEL peptide- specific, class II-restricted T cell hybridomas. Chloroquine addition to these LNC cultures fails to inhibit antigen presentation, indicating that antigenic complexes of class II molecules and HEL peptides are formed in vivo. MHC class II restriction of antigen presentation by LNC from HEL-primed mice was verified by the use of anti-class II monoclonal antibodies. Coinjection of HEL and the I-Ak-binding peptide HEL 112-129 in mice of H-2k haplotype inhibits the ability of LNC to stimulate I-Ak-restricted, HEL 46-61-specific T cell hybridomas. Similar results are obtained in mice coinjected with the HEL peptides 46-61 and 112-129. Inhibition of T hybridoma activation can also be observed using as antigen-presenting cells irradiated, T cell-depleted LNC from mice coinjected with HEL 46-61 and HEL 112-129, ruling out the possible role of either specific or nonspecific suppressor T cells. Inhibition of T cell proliferation is associated with MHC-specific inhibition of antigen presentation and with occupancy by the competitor of class II binding sites, as measured by activation of peptide- specific T cell hybridomas. These results demonstrate that administration of MHC class II binding peptide competitors selectively inhibits antigen presentation to class II-restricted T cells, indicating competitive blockade of class II molecules in vivo. PMID:1569402

  18. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes.

    PubMed

    Hannier, S; Triebel, F

    1999-11-01

    Previous studies indicated that signaling through lymphocyte activation gene-3 (LAG-3), a MHC class II ligand, induced by multivalent anti-receptor antibodies led to unresponsiveness to TCR stimulation. Here, lateral distribution of the LAG-3 molecules and its topological relationship (mutual proximity) to the TCR, CD8, CD4, and MHC class I and II molecules were studied in the plasma membrane of activated human T cells in co-capping experiments and conventional fluorescence microscopy. Following TCR engagement by either TCR-specific mAb or MHC-peptide complex recognition in T-B cell conjugates, LAG-3 was found to be specifically associated with the CD3-TCR complex. Similarly, following CD8 engagement LAG-3 and CD8 were co-distributed on the cell surface while only a low percentage of CD4-capped cells displayed LAG-3 co-caps. In addition, LAG-3 was found to be associated with MHC class II (i.e. DR, DP and DQ) and partially with MHC class I molecules. The supramolecular assemblies described here between LAG-3, CD3, CD8 and MHC class II molecules may result from an organization in raft microdomains, a phenomenon known to regulate early events of T cell activation.

  19. Immunotoxin Against a Donor MHC Class II Molecule Induces Indefinite Survival of Murine Kidney Allografts

    PubMed Central

    Brown, K.; Nowocin, A. K.; Meader, L.; Edwards, L. A.; Smith, R. A.

    2016-01-01

    Rejection of donor organs depends on the trafficking of donor passenger leukocytes to the secondary lymphoid organs of the recipient to elicit an immune response via the direct antigen presentation pathway. Therefore, the depletion of passenger leukocytes may be clinically applicable as a strategy to improve graft survival. Because major histocompatibility complex (MHC) class II+ cells are most efficient at inducing immune responses, selective depletion of this population from donor grafts may dampen the alloimmune response and prolong graft survival. In a fully MHC mismatched mouse kidney allograft model, we describe the synthesis of an immunotoxin, consisting of the F(ab′)2 fragment of a monoclonal antibody against the donor MHC class II molecule I‐Ak conjugated with the plant‐derived ribosomal inactivating protein gelonin. This anti–I‐Ak gelonin immunotoxin depletes I‐Ak expressing cells specifically in vitro and in vivo. When given to recipients of kidney allografts, it resulted in indefinite graft survival with normal graft function, presence of Foxp3+ cells within donor grafts, diminished donor‐specific antibody formation, and delayed rejection of subsequent donor‐type skin grafts. Strategies aimed at the donor arm of the immune system using agents such as immunotoxins may be a useful adjuvant to existing recipient‐orientated immunosuppression. PMID:26799449

  20. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

    PubMed Central

    Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507

  1. Structure and function of the non-classical major histocompatibility complex molecule MR1.

    PubMed

    Krovi, S Harsha; Gapin, Laurent

    2016-08-01

    Polymorphic major histocompatibility complex (MHC) molecules play a central role in the vertebrate adaptive immune system. By presenting short peptides derived from pathogen-derived proteins, these "classical" MHC molecules can alert the T cell branch of the immune system of infected cells and clear the pathogen. There exist other "non-classical" MHC molecules, which while similar in structure to classical MHC proteins, are contrasted by their limited polymorphism. While the functions of many class Ib MHC molecules have still to be elucidated, the nature and diversity of antigens (if any) that some of them might present to the immune system is expected to be more restricted and might function as another approach to distinguish self from non-self. The MHC-related 1 (MR1) molecule is a member of this family of non-classical MHC proteins. It was recently shown to present unique antigens in the form of vitamin metabolites found in certain microbes. MR1 is strongly conserved genetically, structurally, and functionally through mammalian evolution, indicating its necessity in ensuring an effective immune system for members of this class. Although MR1 will be celebrating 21 years this year since its discovery, most of our understanding of how this molecule functions has only been uncovered in the past decade. Herein, we discuss where MR1 is expressed, how it selectively is able to bind to its appropriate antigens and how it, then, is able to specifically activate a distinct population of T cells.

  2. Structure and function of the non-classical major histocompatibility complex molecule MR1.

    PubMed

    Krovi, S Harsha; Gapin, Laurent

    2016-08-01

    Polymorphic major histocompatibility complex (MHC) molecules play a central role in the vertebrate adaptive immune system. By presenting short peptides derived from pathogen-derived proteins, these "classical" MHC molecules can alert the T cell branch of the immune system of infected cells and clear the pathogen. There exist other "non-classical" MHC molecules, which while similar in structure to classical MHC proteins, are contrasted by their limited polymorphism. While the functions of many class Ib MHC molecules have still to be elucidated, the nature and diversity of antigens (if any) that some of them might present to the immune system is expected to be more restricted and might function as another approach to distinguish self from non-self. The MHC-related 1 (MR1) molecule is a member of this family of non-classical MHC proteins. It was recently shown to present unique antigens in the form of vitamin metabolites found in certain microbes. MR1 is strongly conserved genetically, structurally, and functionally through mammalian evolution, indicating its necessity in ensuring an effective immune system for members of this class. Although MR1 will be celebrating 21 years this year since its discovery, most of our understanding of how this molecule functions has only been uncovered in the past decade. Herein, we discuss where MR1 is expressed, how it selectively is able to bind to its appropriate antigens and how it, then, is able to specifically activate a distinct population of T cells. PMID:27448212

  3. MHC class I molecules are enriched in caveolae but do not enter with simian virus 40.

    PubMed

    Anderson, H A; Chen, Y; Norkin, L C

    1998-06-01

    Simian virus 40 (SV40) binds to MHC class I molecules anywhere on the cell surface and then enters through caveolae. The fate of class I molecules after SV40 binding is not known. Sensitivity of 125I-surface-labelled class I molecules to papain cleavage was used to distinguish internalized class I molecules from class I molecules remaining at the cell surface. Whereas the caveolae-enriched membrane microdomain was found to also be enriched for class I molecules, no internalized papain-resistant 125I-surface-labelled class I molecules could be detected at any time in either control cells or in cells preadsorbed with saturating amounts of SV40. Instead, 125I-surface-labelled class I molecules, as well as preadsorbed 125I-labelled anti-class I antibodies, accumulated in the medium, coincident with the turnover of class I molecules at the cell surface. The class I heavy chains that accumulated in the medium were truncated and their release was specifically prevented by the metalloprotease inhibitor 1,10-phenanthroline. Thus, whereas class I molecules mediate SV40 binding, they do not appear to mediate SV40 entry.

  4. NK Cell Responsiveness is Tuned Commensurate with the Number of Inhibitory Receptors for Self MHC Class I: the Rheostat Model

    PubMed Central

    Joncker, Nathalie T.; Fernandez, Nadine C.; Treiner, Emmanuel; Vivier, Eric; Raulet, David H.

    2010-01-01

    Inhibitory receptors that engage self-MHC class I molecules enable NK cells to detect disease-associated loss of MHC class I on surrounding cells. Previous studies showed that some NK cells lack all receptors for self-MHC class I, yet fail to exhibit autoimmunity because they are generally hyporesponsive to stimulation. We asked whether NK cells exist in only two states, responsive and hyporesponsive, corresponding to cells that express or fail to express inhibitory receptors for self-MHC class I. The alternative model is that NK cells vary continuously in their responsiveness, based on variations in the number of different inhibitory and stimulatory receptors they express, which is known to vary. Here we show in the murine system that NK cell responsiveness increases quantitatively with each added self MHC-specific inhibitory receptor. Genetic analysis demonstrated that interactions of each of the receptors with self-MHC class I were necessary to observe augmented responsiveness. These findings suggest that NK cell responsiveness is comparable to a rheostat: it is tuned to an optimal set point depending on the inhibitory and stimulatory interactions encountered in the normal environment, so as to ensure self-tolerance and yet optimize sensitivity to changes in normal cells. PMID:19342631

  5. Anti-coreceptor antibodies profoundly affect staining with peptide-MHC class I and class II tetramers.

    PubMed

    Wooldridge, Linda; Scriba, Thomas J; Milicic, Anita; Laugel, Bruno; Gostick, Emma; Price, David A; Phillips, Rodney E; Sewell, Andrew K

    2006-07-01

    The T cell coreceptors CD8 and CD4 bind to invariable regions of peptide-MHC class I (pMHCI) and class II (pMHCII) molecules, respectively, and facilitate antigen recognition by a number of mechanisms. It is established that some antibodies (Ab) specific for the CD8 molecule, which stabilizes TCR/pMHCI interactions, can alter the binding of pMHCI tetramers to cell surface TCR. In contrast, the extremely weak pMHCII/CD4 interaction does not stabilize TCR/pMHCII interactions or contribute to cognate tetramer binding; consequently, it is assumed that anti-CD4 Ab do not affect pMHCII binding. Here, we used a panel of point-mutated HLA A2 molecules with a range of affinities for CD8 spanning over three orders of magnitude to demonstrate that anti-CD8 Ab-mediated inhibition of pMHCI tetramer binding and cognate T cell activation correlates directly with the strength of the pMHCI/CD8 interaction. Further, some anti-CD4 Ab were found to block pMHCII tetramer binding; these effects were also paralleled in T cell activation assays. In sum, these data challenge the assertion that anti-coreceptor Ab exert their effects on T cell activation and pMHC binding solely by blocking pMHC/coreceptor interactions.

  6. The opossum MHC genomic region revisited.

    PubMed

    Krasnec, Katina V; Sharp, Alana R; Williams, Tracey L; Miller, Robert D

    2015-04-01

    The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.

  7. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation.

    PubMed

    Blander, J Magarian

    2016-07-01

    MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.

  8. EBP1 protein modulates the expression of human MHC class II molecules in non-hematopoietic cancer cells

    PubMed Central

    PISAPIA, LAURA; BARBA, PASQUALE; CORTESE, ANGELA; CICATIELLO, VALERIA; MORELI, FRANCO; DEL POZZO, GIOVANNA

    2015-01-01

    Many solid tumours including melanoma, glioblastoma, and breast carcinomas express MHC class II molecules (MHC II). The surface expression of these molecules confers to non-hematopoietic tumour cells the role of non-professional antigen presenting cells and the ability to potentially stimulate tumour-specific CD4+ T cell response. We studied EBP1, an ErbB3 binding protein, and the effects of p48 and p42 isoforms on the MHC II expression in U87 glioblastoma, M14 melanoma and MCF7 mammary carcinoma cell lines. We found that overexpression of p48 increases MHC II transcription in U87 and M14, through upregulation of CIITA transactivator and STAT1 phosphorylation. In addition, p48 protein influences MHC II expression by increasing mRNA stability. In melanoma and glioblastoma cell lines, p48 isoform functions as oncogene promoting tumour growth, while p42 isoform, that does not affect MHC II expression, acts as a tumour suppressor by blocking cell growth and inducing apoptosis. In contrast, p48 seems to act as tumour suppressor in breast carcinoma inhibiting proliferation, favouring apoptosis, and inducing a slight increase of MHC II expression similar to p42. Our data highlight the tissue specificity function of EBP1 isoforms and demonstrate that only the oncogene p48 activates MHC II expression in human solid tumours, via STAT1 phosphorylation, in order to affect tumour progression by triggering specific immune response. PMID:26081906

  9. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  10. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  11. Polymorphisms at MHC class II DRB1 exon 2 locus in Pyrenean chamois (Rupicapra pyrenaica pyrenaica).

    PubMed

    Cavallero, Serena; Marco, Ignasi; Lavín, Santiago; D'Amelio, Stefano; López-Olvera, Jorge R

    2012-07-01

    Chamois (Rupicapra spp.) are mountain ungulates from Southern and Central Europe and the Near East. A newly reported border disease virus (BDV) has affected the easternmost populations of Pyrenean chamois, leading to a dramatic population decrease that may drive to genetic variability loss. The Major Histocompatibility Complex (MHC) is a sensitive marker for genetic variation of populations: polymorphism on the MHC genes is affected both by pathogens and population dynamics and it is ecologically relevant, as depending on host-pathogen relationships and life history features. In the present study MHC class II DRB1 exon 2 variation was investigated in 81 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) belonging to four populations. Haplotype analysis, population genetics statistics and network analysis were carried out, in order to analyze variability, phylogeography and genealogy, and the effects of geography and demographic trend. Twenty-nine haplotypes were identified, 26 of them newly described, with high Gene diversity (Gd). The variability observed in the easternmost populations of Pyrenean chamois showed a higher genetic diversity than that previously reported for other populations of Pyrenean and Cantabrian chamois (Rupicapra pyrenaica parva). The most frequent allele was RupyDRB*15, previously undetected, which seems to play a significant role in genotyping the variability, suggesting a possible effect of positive selection. PMID:22425496

  12. The MHC class II cofactor, HLA-DM, interacts with immunoglobulin in B cells

    PubMed Central

    Ayyangar, Sashi; Jiang, Wei; Rajasekaran, Narendiran; Spura, Armin; Hessell, Ann J.; Madec, Anne-Marie; Mellins, Elizabeth D.

    2014-01-01

    B cells internalize extracellular antigen into endosomes using the immunoglobulin (Ig) component of the B cell receptor. In endosomes, antigen-derived peptides are loaded onto MHC class II proteins (MHC-II). How these pathways intersect remains unclear. We find that HLA-DM (DM), a catalyst for MHC-II peptide loading, co-precipitates with Ig in lysates from human tonsillar B cells and B cell lines. The molecules in the Ig/DM complexes have mature glycans, and the complexes co-localize with endosomal markers in intact cells. A larger fraction of Ig precipitates with DM after BCR crosslinking, implying that complexes can form when DM meets endocytosed Ig. In vitro, in the endosomal pH range, soluble HLA-DM (sDM) directly binds the Ig Fab domain, and increases levels of free antigen released from immune complexes. Together, these results argue that DM and Ig intersect in the endocytic pathway of B cells with potential functional consequences. PMID:25098292

  13. How did variable NK-cell receptors and MHC class I ligands influence immunity, reproduction and human evolution?

    PubMed Central

    Parham, Peter; Moffett, Ashley

    2014-01-01

    Preface Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, where they have progressively co-evolved with MHC class I molecules. The emergence of MHC-C in hominids drove the evolution of a system of MHC-C receptors that is most elaborate in chimpanzees. In contrast, the human system appears to have been subject to different and competing selection pressures that have acted on its immunological and reproductive functions. We suggest that this compromise facilitated development of the bigger brains that enabled archaic and modern humans to migrate out-of-Africa and populate other continents. PMID:23334245

  14. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells.

    PubMed

    Setterblad, Niclas; Roucard, Corinne; Bocaccio, Claire; Abastado, Jean-Pierre; Charron, Dominique; Mooney, Nuala

    2003-07-01

    Dendritic cells (DCs) are the most potent antigen presenting cells. Major histocompatibility complex (MHC) class II molecule expression changes with maturation; immature DCs concentrate MHC class II molecules intracellularly, whereas maturation increases surface expression of MHC class II and costimulatory molecules to optimize antigen presentation. Signal transduction via MHC class II molecules localized in lipid microdomains has been described in B lymphocytes and in the THP-1 monocyte cell line. We have characterized MHC class II molecules throughout human DC maturation with particular attention to their localization in lipid-rich microdomains. Only immature DCs expressed empty MHC class II molecules, and maturation increased the level of peptide-bound heterodimers. Ligand binding to surface human leukocyte antigen (HLA)-DR induced rapid internalization in immature DCs. The proportion of cell-surface detergent-insoluble glycosphingolipid-enriched microdomain-clustered HLA-DR was higher in immature DCs despite the higher surface expression of HLA-DR in mature DCs. Constituents of HLA-DR containing microdomains included the src kinase Lyn and the cytoskeletal protein tubulin in immature DCs. Maturation modified the composition of the HLA-DR-containing microdomains to include protein kinase C (PKC)-delta, Lyn, and the cytoskeletal protein actin, accompanied by the loss of tubulin. Signaling via HLA-DR redistributed HLA-DR and -DM and PKC-delta as well as enriching the actin content of mature DC microdomains. The increased expression of HLA-DR as a result of DC maturation was therefore accompanied by modification of the spatial organization of HLA-DR. Such regulation could contribute to the distinct responses induced by ligand binding to MHC class II molecules in immature versus mature DCs.

  15. Targeting tumor-associated antigens to the MHC class I presentation pathway.

    PubMed

    Gross, G; Margalit, A

    2007-06-01

    There is little doubt that cytotoxic T lymphocytes (CTLs) can kill tumor cells in-vivo. However, most CTL-inducing immunization protocols examined so far in cancer patients have yielded only limited clinical benefits, underscoring the urge to improve current approaches for the effective induction of tumor-reactive CTLs. The tumor side of the immunological frontline is armed with large masses, high mutability and an arsenal of immune evasion and suppression mechanisms. Accordingly, the confronting CTLs should come in large numbers, recognize an assortment of MHC class I (MHC-I) bound tumor-associated peptides and be brought into action under effective immunostimulatory conditions. Naïve CTLs are activated to become effector cells in secondary lymphoid organs, following their productive encounter with MHC-I-bound peptides at the surface of dendritic cells (DCs). Therefore, many cancer vaccines under development focus on the optimization of peptide presentation by DCs at this critical stage. The elucidation of discrete steps and the subsequent identification of inherent bottlenecks in the MHC-I antigen presentation pathway have fueled elaborate efforts to enhance vaccine efficacy by the rational targeting of proteins or peptides, formulated into these vaccines, to this pathway. Protein- and gene-based strategies are accordingly devised to deliver tumor-associated peptides to selected cellular compartments, which are essential for the generation of functional CTL ligands. Many of these strategies target the conventional, endogenous route, while others harness the unique pathways that enable DCs to present exogenous antigens, known as cross-presentation. Here we dissect the intricate machinery that produces CTL ligands and examine how knowledge-based cancer vaccines can target the sequence of workstations, biochemical utensils and molecular intermediates comprising this production line.

  16. Nucleocytoplasmic shuttling and CRM1-dependent MHC class I peptide presentation of human cytomegalovirus pp65.

    PubMed

    Frankenberg, Nadine; Lischka, Peter; Pepperl-Klindworth, Sandra; Stamminger, Thomas; Plachter, Bodo

    2012-11-01

    The phosphoprotein 65 (pp65) of human cytomegalovirus is a prominent target of the antiviral CD8 T lymphocyte response. This study focused on investigating the properties of pp65 that render it a privileged antigen. It was found that pp65 was metabolically stable. The tegument protein was introduced into MHC class I presentation following its delivery via non-replicating dense bodies. No ubiquitination was found on particle-associated pp65. Proof was obtained that pp65 was a nucleocytoplasmic shuttle protein, using heterokaryon analyses. Based on this finding, inhibition experiments showed that presentation of particle-derived pp65 by HLA-A2 was sensitive to the impairment of the CRM1-mediated nuclear export pathway. The data support the idea that particle-derived pp65 can serve as a nuclear reservoir for proteasomal processing and MHC class I presentation, following its CRM1-dependent nuclear export. The presentation of pp65-derived peptides was also impaired by CRM1-inhibition following de novo synthesis of the tegument protein. However, pp65 protein levels were also reduced when blocking CRM1-mediated export after transient expression. This indicated that pp65 expression rather than direct interference with its own nuclear export was responsible for its reduced presentation in this case. The functionality of CRM1-mediated nuclear export is thus important for the presentation of pp65-derived peptides in the context of MHC class I on organ cells, both after exogenous uptake and after de novo synthesis of the tegument protein, but different mechanisms may account for either case.

  17. Murine neuroblastoma vaccines produced by retroviral transfer of MHC class II genes.

    PubMed

    Hock, R A; Reynolds, B D; Tucker-McClung, C L; Heuer, J G

    1996-01-01

    Malignant tumors express tumor-related antigens, but effective antitumor immunity does not occur in the primary host. One hypothesis is that there is insufficient stimulation of T-cell responses due to ineffective antigen presentation. An approach to overcome these deficiencies is to modify tumor cells to express major histocompatibility complex (MHC) class II genes and thus facilitate the presentation of antigens directly by tumor cells. Our experiments with a murine neuroblastoma cell line (neuro-2a) transduced with DR (xenogeneic), 1-Ab (allogeneic), or 1-Ak (syngeneic) MHC class II genes support this notion. The relative potencies of the modified neuro-2a to induce immunity to unmodified neuro-2a were neuro-2a/DR > neuro-2a/1-Ab > neuro-2a/1-Ak. Modified neuro-2a also could stimulate naive splenocyte proliferation in vitro. The relative magnitude of the proliferative responses seen after stimulation with modified tumor cells was neuro-2a/DR > neuro-2a/1-Ab > neuro-2a/1-Ak > unmodified neuro-2a. Hence, the tumor cell-induced splenocyte proliferative responses observed in vitro correlate with the effectiveness of the tumor cell vaccines to induce antitumor immunity in vivo. These data show that the expression of exogenous MHC class II on tumor cells is a potent stimulus for specific antitumor immunity. Because of the correlation of the in vivo and in vitro immune responses to modified tumor cells, the tumor-induced lymphocyte proliferation assay may be useful in evaluating tumor cell vaccines produced by additional genetic modifications of tumor cells.

  18. Construction of bioactive chimeric MHC class I tetramer by expression and purification of human-murine chimeric MHC heavy chain and beta(2)m as a fusion protein in Escherichia coli.

    PubMed

    Ren, Ding; Wang, Fang; He, Xiaowen; Jiang, Lei; Li, Dean; Ying, He; Sun, Shuhan

    2006-12-01

    Major histocompatibility (MHC) class I tetramers are used in the quantitative analysis of epitope peptide-specific CD8+ T-cells. An MHC class I tetramer was composed of 4 MHC class I complexes and a fluorescently labeled streptavidin (SA) molecule. Each MHC class I complex consists of an MHC heavy chain, a beta(2)-microglobulin (beta(2)m) molecule and a synthetic epitope peptide. In most previous studies, an MHC class I complex was formed in the refolding buffer with an expressed MHC heavy chain molecule and beta(2)m, respectively. This procedure inevitably resulted in the disadvantages of forming unwanted multimers and self-refolding products, and the purification of each kind of monomer was time-consuming. In the present study, the genes of a human/murine chimeric MHC heavy chain (HLA-A2 alpha1, HLA-A2 alpha2 and MHC-H2D alpha3) and beta(2)m were tandem-cloned into plasmid pET17b and expressed as a fusion protein. The recombinant fusion protein was refolded with each of the three HLA-A2 restricted peptides (HBc18-27 FLPSDFFPSI, HBx52-60 HLSLRGLPV, and HBx92-100 VLHKRTLGL) and thus three chimeric MHC class I complexes were obtained. Biotinylation was performed, and its level of efficiency was observed via a band-shift assay in non-reducing polyacrylamide gel electrophoresis (PAGE). Such chimeric MHC class I tetramers showed a sensitive binding activity in monitoring HLA/A2 restrictive cytotoxic T lymphocytes (CTLs) in immunized HLA/A*0201 transgenic mice. PMID:17046278

  19. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors

    PubMed Central

    Antón, Luis C.; Yewdell, Jonathan W.

    2014-01-01

    MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors. PMID:24532645

  20. Role of PU.1 in MHC Class II Expression via CIITA Transcription in Plasmacytoid Dendritic Cells.

    PubMed

    Miura, Ryosuke; Kasakura, Kazumi; Nakano, Nobuhiro; Hara, Mutsuko; Maeda, Keiko; Okumura, Ko; Ogawa, Hideoki; Yashiro, Takuya; Nishiyama, Chiharu

    2016-01-01

    The cofactor CIITA is a master regulator of MHC class II expression and several transcription factors regulating the cell type-specific expression of CIITA have been identified. Although the MHC class II expression in plasmacytoid dendritic cells (pDCs) is also mediated by CIITA, the transcription factors involved in the CIITA expression in pDCs are largely unknown. In the present study, we analyzed the role of a hematopoietic lineage-specific transcription factor, PU.1, in CIITA transcription in pDCs. The introduction of PU.1 siRNA into mouse pDCs and a human pDC cell line, CAL-1, reduced the mRNA levels of MHC class II and CIITA. When the binding of PU.1 to the 3rd promoter of CIITA (pIII) in CAL-1 and mouse pDCs was analyzed by a chromatin immunoprecipitation assay, a significant amount of PU.1 binding to the pIII was detected, which was definitely decreased in PU.1 siRNA-transfected cells. Reporter assays showed that PU.1 knockdown reduced the pIII promoter activity and that three Ets-motifs in the human pIII promoter were candidates of cis-enhancing elements. By electrophoretic mobility shift assays, it was confirmed that two Ets-motifs, GGAA (-181/-178) and AGAA (-114/-111), among three candidates, were directly bound with PU.1. When mouse pDCs and CAL-1 cells were stimulated by GM-CSF, mRNA levels of PU.1, pIII-driven CIITA, total CIITA, MHC class II, and the amount of PU.1 binding to pIII were significantly increased. The GM-CSF-mediated up-regulation of these mRNAs was canceled in PU.1 siRNA-introduced cells. Taking these results together, we conclude that PU.1 transactivates the pIII through direct binding to Ets-motifs in the promoter in pDCs.

  1. MHC Class II Binding Prediction—A Little Help from a Friend

    PubMed Central

    Dimitrov, Ivan; Garnev, Panayot; Flower, Darren R.; Doytchinova, Irini

    2010-01-01

    Vaccines are the greatest single instrument of prophylaxis against infectious diseases, with immeasurable benefits to human wellbeing. The accurate and reliable prediction of peptide-MHC binding is fundamental to the robust identification of T-cell epitopes and thus the successful design of peptide- and protein-based vaccines. The prediction of MHC class II peptide binding has hitherto proved recalcitrant and refractory. Here we illustrate the utility of existing computational tools for in silico prediction of peptides binding to class II MHCs. Most of the methods, tested in the present study, detect more than the half of the true binders in the top 5% of all possible nonamers generated from one protein. This number increases in the top 10% and 15% and then does not change significantly. For the top 15% the identified binders approach 86%. In terms of lab work this means 85% less expenditure on materials, labour and time. We show that while existing caveats are well founded, nonetheless use of computational models of class II binding can still offer viable help to the work of the immunologist and vaccinologist. PMID:20508817

  2. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    PubMed Central

    Nejentsev, Sergey; Howson, Joanna M. M.; Walker, Neil M.; Szeszko, Jeffrey; Field, Sarah F.; Stevens, Helen E.; Reynolds, Pamela; Hardy, Matthew; King, Erna; Masters, Jennifer; Hulme, John; Maier, Lisa M.; Smyth, Deborah; Bailey, Rebecca; Cooper, Jason D.; Ribas, Gloria; Campbell, R. Duncan; Clayton, David G.; Todd, John A.

    2009-01-01

    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4-11. Owing to the region’s extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression—to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios>1.5; Pcombined=2.01×10-19 and 2.35×10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies4-8,10-16, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. PMID:18004301

  3. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution.

    PubMed

    Lyons, Amanda C; Hoostal, Matthew J; Bouzat, Juan L

    2015-08-01

    The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.

  4. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina).

    PubMed

    Lian, Xiao-Dong; Zhang, Xi-He; Dai, Zheng-Xi; Zheng, Yong-Tang

    2016-04-01

    The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model.

  5. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina).

    PubMed

    Lian, Xiao-Dong; Zhang, Xi-He; Dai, Zheng-Xi; Zheng, Yong-Tang

    2016-04-01

    The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model. PMID:26782049

  6. Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of gammadelta T cells.

    PubMed

    Lafarge, Xavier; Pitard, Vincent; Ravet, Sophie; Roumanes, David; Halary, Franck; Dromer, Claire; Vivier, Eric; Paul, Pascale; Moreau, Jean-François; Déchanet-Merville, Julie

    2005-06-01

    NK cell receptors for MHC class I molecules (MHC-NKR) can be expressed by T cell subsets. The restricted repertoire and phenotypic characteristics of MHC-NKR(+) T cells indicate that expression of MHC-NKR is acquired upon antigenic challenge and might promote expansion of T cells. Previous studies performed on in vitro generated alphabeta T cell clones concluded that MHC-NKR expression was not a clonal attribute. Here, we examined a massive monoclonal expansion of a non-leukemic gammadelta T cell population found in the peripheral blood of a lung-transplanted patient who suffered from a cytomegalovirus infection. Despite their monoclonality, these T cells displayed a heterogeneous and stable in vivo Ig- and lectin-like MHC-NKR phenotype. Twenty percent of the cells displayed a CD94(+)NKG2A(+) phenotype, and 10% were labeled with an anti-CD158b1/b2/j monoclonal antibody. A CD158b/j(+) gammadelta T cell clone derived in vitro from patient's peripheral blood lymphocytes was shown to express the activating form CD158j (KIR2DS2), which once cross-linked stimulated the clone cytolytic function and costimulated the TCR-induced production of cytokines, independently of the killer-activating receptor-associated protein (KARAP). In conclusion, heterogeneity of MHC-NKR expression confers a functional intraclonal diversity that may participate to induction of specific gammadelta T cell effector functions or proliferation upon pathogen challenge.

  7. MHC class II DRB diversity, selection pattern and population structure in a neotropical bat species, Noctilio albiventris

    PubMed Central

    Schad, J; Dechmann, D K N; Voigt, C C; Sommer, S

    2011-01-01

    Genes of the major histocompatibility complex (MHC) have a crucial role in the immune response of vertebrates, alter the individual odour and are involved in shaping mating preferences. Pathogen-mediated selection, sexual selection and maternal–fetal interactions have been proposed as the main drivers of frequently observed high levels of polymorphism in functionally important parts of the MHC. Bats constitute the second largest mammalian order and have recently emerged as important vectors of infectious diseases. In addition, Chiroptera are interesting study subjects in evolutionary ecology in the context of olfactory communication, mate choice and associated fitness benefits. Thus, it is surprising that they belong to the least studied mammalian taxa in terms of their MHC diversity. In this study, we investigated the variability in the functionally important MHC class II gene DRB, evidence for selection and population structure in the group-living lesser bulldog bat, Noctilio albiventris, in Panama. We found a single expressed, polymorphic Noal-DRB gene. The substitution pattern of the nucleotide sequences of the 18 detected alleles provided evidence for positive selection acting above the evolutionary history of the species in shaping MHC diversity. Roosting colonies were not genetically differentiated but females showed lower levels of heterozygosity than males, which might be a sign that the sexes differ in the selection pressures acting on the MHC. This study provides the prerequisites for further investigations of the role of the individual MHC constitution in parasite resistance, olfactory communication and mate choice in N. albiventris and other bats. PMID:21245894

  8. The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface

    PubMed Central

    Unternaehrer, Julia J.; Chow, Amy; Pypaert, Marc; Inaba, Kayo; Mellman, Ira

    2007-01-01

    We have found that MHC class II (MHC II) molecules exhibit a distinctive organization on the dendritic cell (DC) plasma membrane. Both in DC lysates and on the surface of living cells, I-A and I-E molecules engaged in lateral interactions not observed on other antigen-presenting cells such as B blasts. Because DCs and B blasts express MHC II at comparable surface densities, the interaction was not due to simple mass action. Instead, it reflected the selective expression of the tetraspanin CD9 at the DC surface. I-A and I-E molecules coprecipitated with each other and with CD9. The association of heterologous MHC II molecules was abrogated in DCs from CD9−/− mice. Conversely, expression of exogenous CD9 in B cells induced MHC II interactions. CD9 is thus necessary for the association of heterologous MHC II, a specialization that would facilitate the formation of MHC II multimers expected to enhance T cell receptor stimulation by DCs. PMID:17190803

  9. Polarisation of equine pregnancy outcome associated with a maternal MHC class I allele: Preliminary evidence.

    PubMed

    Kydd, J H; Case, R; Winton, C; MacRae, S; Sharp, E; Ricketts, S L; Rash, N; Newton, J R

    2016-05-30

    Identification of risk factors which are associated with severe clinical signs can assist in the management of disease outbreaks and indicate future research areas. Pregnancy loss during late gestation in the mare compromises welfare, reduces fecundity and has financial implications for horse owners. This retrospective study focussed on the identification of risk factors associated with pregnancy loss among 46 Thoroughbred mares on a single British stud farm, with some but not all losses involving equid herpesvirus-1 (EHV-1) infection. In a sub-group of 30 mares, association between pregnancy loss and the presence of five common Thoroughbred horse haplotypes of the equine Major Histocompatibility Complex (MHC) was assessed. This involved development of sequence specific, reverse transcriptase polymerase chain reactions and in several mares, measurement of cytotoxic T lymphocyte activity. Of the 46 mares, 10 suffered late gestation pregnancy loss or neonatal foal death, five of which were EHV-1 positive. Maternal factors including age, parity, number of EHV-1 specific vaccinations and the number of days between final vaccination and foaling or abortion were not significantly associated with pregnancy loss. In contrast, a statistically significant association between the presence of the MHC class I B2 allele and pregnancy loss was identified, regardless of the fetus/foal's EHV-1 status (p=0.002). In conclusion, this study demonstrated a significantly positive association between pregnancy loss in Thoroughbred mares and a specific MHC class I allele in the mother. This association requires independent validation and further investigation of the mechanism by which the mare's genetic background contributes to pregnancy outcome. PMID:27139027

  10. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent.

    PubMed

    Whelan, J A; Dunbar, P R; Price, D A; Purbhoo, M A; Lechner, F; Ogg, G S; Griffiths, G; Phillips, R E; Cerundolo, V; Sewell, A K

    1999-10-15

    Tetrameric peptide-MHC class I complexes ("tetramers") are proving invaluable as reagents for characterizing immune responses involving CTLs. However, because the TCR can exhibit a degree of promiscuity for binding peptide-MHC class I ligands, there is potential for cross-reactivity. Recent reports showing that the TCR/peptide-MHC interaction is dramatically dependent upon temperature led us to investigate the effects of incubation temperature on tetramer staining. We find that tetramers rapidly stain CTLs with high intensity at 37 degrees C. We examine the fine specificity of tetramer staining using a well-characterized set of natural epitope variants. Peptide variants that elicit little or no functional cellular response from CTLs can stain these cells at 4 degrees C but not at 37 degrees C when incorporated into tetramers. These results suggest that some studies reporting tetramer incubations at 4 degrees C could detect cross-reactive populations of CTLs with minimal avidity for the tetramer peptide, especially in the tetramer-low population. For identifying specific CTLs among polyclonal cell populations such as PBLs, incubation with tetramers at 37 degrees C improves the staining intensity of specific CTLs, resulting in improved separation of tetramer-high CD8+ cells. Confocal microscopy reveals that tetramers incubated at 37 degrees C can be rapidly internalized by specific CTLs into vesicles that overlap with the early endocytic compartment. This TCR-specific internalization suggests that coupling of tetramers or analogues with toxins, which are activated only after receptor internalization, may create immunotoxins capable of killing CTLs of single specificities.

  11. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    PubMed

    La Rocca, Rosanna; Tallerico, Rossana; Talib Hassan, Almosawy; Das, Gobind; Lakshmikanth, Tadepally; Tadepally, Lakshmikanth; Matteucci, Marco; Liberale, Carlo; Mesuraca, Maria; Scumaci, Domenica; Gentile, Francesco; Cojoc, Gheorghe; Perozziello, Gerardo; Ammendolia, Antonio; Gallo, Adriana; Kärre, Klas; Cuda, Giovanni; Candeloro, Patrizio; Di Fabrizio, Enzo; Carbone, Ennio

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1), indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  12. Transcription variants of SLA-7, a swine non classical MHC class I gene.

    PubMed

    Hu, Rui; Lemonnier, Gaëtan; Bourneuf, Emmanuelle; Vincent-Naulleau, Silvia; Rogel-Gaillard, Claire

    2011-06-03

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation.

  13. MHC class I cross-presentation by dendritic cells counteracts viral immune evasion.

    PubMed

    Nopora, Katrin; Bernhard, Caroline A; Ried, Christine; Castello, Alejandro A; Murphy, Kenneth M; Marconi, Peggy; Koszinowski, Ulrich; Brocker, Thomas

    2012-01-01

    DCs very potently activate CD8(+) T cells specific for viral peptides bound to MHC class I molecules. However, many viruses have evolved immune evasion mechanisms, which inactivate infected DCs and might reduce priming of T cells. Then MHC class I cross-presentation of exogenous viral Ag by non-infected DCs may become crucial to assure CD8(+) T cell responses. Although many vital functions of infected DCs are inhibited in vitro by many different viruses, the contributions of cross-presentation to T cell immunity when confronted with viral immune inactivation in vivo has not been demonstrated up to now, and remains controversial. Here we show that priming of Herpes Simplex Virus (HSV)-, but not murine cytomegalovirus (mCMV)-specific CD8(+) T cells was severely reduced in mice with a DC-specific cross-presentation deficiency. In contrast, while CD8(+) T cell responses to mutant HSV, which lacks crucial inhibitory genes, also depended on CD8α(+) DCs, they were independent of cross-presentation. Therefore HSV-specific CTL-responses entirely depend on the CD8α(+) DC subset, which present via direct or cross-presentation mechanisms depending on the immune evasion equipment of virus. Our data establish the contribution of cross-presentation to counteract viral immune evasion mechanisms in some, but not all viruses.

  14. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    PubMed Central

    Talib Hassan, Almosawy; Das, Gobind; Tadepally, Lakshmikanth; Matteucci, Marco; Liberale, Carlo; Mesuraca, Maria; Scumaci, Domenica; Gentile, Francesco; Cojoc, Gheorghe; Perozziello, Gerardo; Ammendolia, Antonio; Gallo, Adriana; Kärre, Klas; Cuda, Giovanni; Candeloro, Patrizio; Di Fabrizio, Enzo; Carbone, Ennio

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition. PMID:25541692

  15. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    SciTech Connect

    Back, J.; Malchiodi, E; Cho, S; Scarpellino, L; Schneider, P; Kerzic, M; Mariuzza, R; Held, W

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.

  16. DNA Vaccine that Targets Hemagglutinin to MHC Class II Molecules Rapidly Induces Antibody-Mediated Protection against Influenza

    PubMed Central

    Mjaaland, Siri; Roux, Kenneth H.; Fredriksen, Agnete Brunsvik

    2013-01-01

    New influenza A viruses with pandemic potential periodically emerge due to viral genomic reassortment. In the face of pandemic threats, production of conventional egg-based vaccines is time consuming and of limited capacity. We have developed in this study a novel DNA vaccine in which viral hemagglutinin (HA) is bivalently targeted to MHC class II (MHC II) molecules on APCs. Following DNA vaccination, transfected cells secreted vaccine proteins that bound MHC II on APCs and initiated adaptive immune responses. A single DNA immunization induced within 8 d protective levels of strain-specific Abs and also cross-reactive T cells. During the Mexican flu pandemic, a targeted DNA vaccine (HA from A/California/07/2009) was generated within 3 wk after the HA sequences were published online. These results suggest that MHC II–targeted DNA vaccines could play a role in situations of pandemic threats. The vaccine principle should be extendable to other infectious diseases. PMID:23956431

  17. Anti-MHC Class I Antibody Activation of Proliferation and Survival Signaling in Murine Cardiac Allografts1

    PubMed Central

    Jindra, Peter T.; Hsueh, Aileen; Hong, Longshen; Gjertson, David; Shen, Xiu-Da; Gao, Feng; Dang, Julie; Mischel, Paul S.; Baldwin, William M.; Fishbein, Michael C.; Kupiec-Weglinski, Jerzy W.; Reed, Elaine F.

    2013-01-01

    Anti-MHC class I alloantibodies have been implicated in the process of acute and chronic rejection because these Abs can bind to endothelial cells and transduce signals leading to the activation of cell survival and proliferation pathways. To characterize the role of the MHC class I-signaling pathway in the pathogenesis of Ab-mediated rejection, we developed a mouse vascularized heterotopic cardiac allograft model in which B6.RAG1 KO hosts (H-2Kb/Db) received a fully MHC-incompatible BALB/c (H-2Kd/Dd) heart transplant and were passively transfused with anti-donor MHC class I Ab. We demonstrate that cardiac allografts of mice treated with anti-MHC class I Abs show characteristic features of Ab-mediated rejection including microvascular changes accompanied by C4d deposition. Phosphoproteomic analysis of signaling molecules involved in the MHC class I cell proliferation and survival pathways were elevated in anti-class I-treated mice compared with the isotype control-treated group. Pairwise correlations, hierarchical clustering, and multidimensional scaling algorithms were used to dissect the class I-signaling pathway in vivo. Treatment with anti-H-2Kd Ab was highly correlated with the activation of Akt and p70S6Kinase (S6K). When measuring distance as a marker of interrelatedness, multidimensional scaling analysis revealed a close association between members of the mammalian target of rapamycin pathway including mammalian target of rapamycin, S6K, and S6 ribosomal protein. These results provide the first analysis of the interrelationships between these signaling molecules in vivo that reflects our knowledge of the signaling pathway derived from in vitro experiments. PMID:18250428

  18. A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules

    PubMed Central

    Zhang, Wei; Wearsch, Pamela A.; Zhu, Yajuan; Leonhardt, Ralf M.; Cresswell, Peter

    2011-01-01

    UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) serves as a folding sensor in the calnexin/calreticulin glycoprotein quality control cycle. UGT1 recognizes disordered or hydrophobic patches near asparagine-linked nonglucosylated glycans in partially misfolded glycoproteins and reglucosylates them, returning folding intermediates to the cycle. In this study, we examine the contribution of the UGT1-regulated quality control mechanism to MHC I antigen presentation. Using UGT1-deficient mouse embryonic fibroblasts reconstituted or not with UGT1, we show that, although formation of the peptide loading complex is unaffected by the absence of UGT1, the surface level of MHC class I molecules is reduced, MHC class I maturation and assembly are delayed, and peptide selection is impaired. Most strikingly, we show using purified soluble components that UGT1 preferentially recognizes and reglucosylates MHC class I molecules associated with a suboptimal peptide. Our data suggest that, in addition to the extensively studied tapasin-mediated quality control mechanism, UGT1 adds a new level of control in the MHC class I antigen presentation pathway. PMID:21383159

  19. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    PubMed

    Ballingall, Keith T; Rocchi, Mara S; McKeever, Declan J; Wright, Frank

    2010-01-01

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  20. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    PubMed

    Ballingall, Keith T; Rocchi, Mara S; McKeever, Declan J; Wright, Frank

    2010-06-30

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  1. Effect of decreasing the affinity of the class II-associated invariant chain peptide on the MHC class II peptide repertoire in the presence or absence of H-2M.

    PubMed

    Honey, Karen; Forbush, Katherine; Jensen, Peter E; Rudensky, Alexander Y

    2004-04-01

    The class II-associated invariant chain peptide (CLIP) region of the invariant chain (Ii) directly influences MHC class II presentation by occupying the MHC class II peptide-binding groove, thereby preventing premature loading of peptides. Different MHC class II alleles exhibit distinct affinities for CLIP, and a low affinity interaction has been associated with decreased dependence upon H-2M and increased susceptibility to rheumatoid arthritis, suggesting that decreased CLIP affinity alters the MHC class II-bound peptide repertoire, thereby promoting autoimmunity. To examine the role of CLIP affinity in determining the MHC class II peptide repertoire, we generated transgenic mice expressing either wild-type human Ii or human Ii containing a CLIP region of low affinity for MHC class II. Our data indicate that although degradation intermediates of Ii containing a CLIP region with decreased affinity for MHC class II do not remain associated with I-A(b), this does not substantially alter the peptide repertoire bound by MHC class II or increase autoimmune susceptibility in the mice. This implies that the affinity of the CLIP:MHC class II interaction is not a strong contributory factor in determining the probability of developing autoimmunity. In contrast, in the absence of H-2M, MHC class II peptide repertoire diversity is enhanced by decreasing the affinity of CLIP for MHC class II, although MHC class II cell surface expression is reduced. Thus, we show clearly, in vivo, the critical chaperone function of H-2M, which preserves MHC class II molecules for high affinity peptide binding upon dissociation of Ii degradation intermediates. PMID:15034026

  2. Simian virus 40 infection via MHC class I molecules and caveolae.

    PubMed

    Norkin, L C

    1999-04-01

    MHC class I molecules are a necessary component of the cell surface receptor for simian virus 40 (SV40). After binding to class I molecules, SV40 enters cells via a unique endocytic pathway that involves caveolae, rather than clathrin-coated pits. This pathway is dependent on a transmembrane signal that SV40 transmits from the cell surface. Furthermore, it delivers SV40 to the endoplasmic reticulum, rather than to the endosomal/lysosomal compartment, which is the usual target for endocytic traffic. The glycosphingolipid and cholesterol-enriched plasma membrane domains that contain caveolae are also enriched for class I molecules, relative to whole plasma membrane. Nevertheless, although class I molecules bind SV40, they do not enter with SV40, nor do they enter spontaneously into uninfected SV40 host cells. Instead, they are shed from the cell surface by the activity of a metalloprotease. These results imply the existence of a putative secondary receptor for SV40 that might mediate SV40 entry. It is not yet clear whether class I molecules are active in transmitting the SV40 signal. Monoclonal antibodies against class I molecules also induce a signal in the SV40 host cells. However, the antibody-induced signal is mediated by mitogen-activated protein kinase (MAP kinase), whereas the SV40 signal is independent of MAP kinase.

  3. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae)

    PubMed Central

    Alcaide, Miguel; Muñoz, Joaquin; Martínez-de la Puente, Josué; Soriguer, Ramón; Figuerola, Jordi

    2014-01-01

    The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird. PMID:24683452

  4. Common chimpanzees have greater diversity than humans at two of the three highly polymorphic MHC class I genes.

    PubMed

    Adams, E J; Cooper, S; Thomson, G; Parham, P

    2000-05-01

    MHC class I polymorphism improves the defense of vertebrate species against viruses and other intracellular pathogens. To see how polymorphism at the same class I genes can evolve in different species we compared the MHC-A, MHC-B, and MHC-C loci of common chimpanzees and humans. Diversity in 23 Patr-A, 32 Patr-B, and 18 Patr-C alleles obtained from study of 48 chimpanzees was compared to diversity in 66 HLA-A, 149 HLA-B, and 41 HLA-C alleles obtained from a study of over 1 million humans. At each locus, alleles group hierarchically into families and then lineages. No alleles or families are shared by the two species, commonality being seen only at the lineage level. The overall nucleotide sequence diversity of MHC class I is estimated to be greater for modern chimpanzees than humans. Considering the numbers of lineages, families, and alleles, Patr-B and Patr-C have greater diversity than the HLA-B and HLA-C, respectively. In contrast, Patr-A has less polymorphism than HLA-A, due to the absence of A2 lineage alleles. The results are consistent with ancestral humans having passed through a narrower population bottleneck than chimpanzees, and with pathogen-mediated selection having favored either preservation of A2 lineage alleles on the human line and/or their extinction on the chimpanzee line. PMID:10866107

  5. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region.

    PubMed

    Kauppi, Liisa; Sajantila, Antti; Jeffreys, Alec J

    2003-01-01

    Recombination, demographic history, drift and selection influence the extent of linkage disequilibrium (LD) in the human genome, but their relative contributions remain unclear. To investigate the effect of meiotic recombination versus population history on LD, three populations with different demographic histories (UK north Europeans, Saami and Zimbabweans) were genotyped for high-frequency single-nucleotide polymorphisms (SNPs) across a 75 kb DNA segment of the MHC class II region. This region spans three well-characterized recombination hotspots and a 60 kb long LD block. Despite a high level of underlying haplotype diversity and considerable divergence in haplotype composition between populations, all three populations showed very similar patterns of LD. Surprisingly, the entire 60 kb LD block was present even in Africans, although it was relatively difficult to detect owing to a systematic deficiency of high frequency SNPs. In contrast, DNA within recombination hotspots did not show this low nucleotide diversity in Africans. Thus, while population history has some influence on LD, our findings suggest that recombination hotspots play a major global role in shaping LD patterns as well as helping to maintain localized SNP diversity in this region of the MHC.

  6. High levels of MHC class II allelic diversity in lake trout from Lake Superior

    USGS Publications Warehouse

    Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.

    2000-01-01

    Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.

  7. New polymorphic microsatellite markers in the human MHC class II region.

    PubMed

    Matsuzaka, Y; Makino, S; Nakajima, K; Tomizawa, M; Oka, A; Kimura, M; Bahram, S; Tamiya, G; Inoko, H

    2000-12-01

    The human major histocompatibility complex (MHC) class II region spans approximately 1.1 Mb and presently contains over 30 functional genes Susceptibility loci to numerous diseases, mainly of autoimmune nature are known to map to the this region, as assessed by associations with particular HLA class II alleles. However, it has been difficult to precisely localize these susceptibility loci to a single gene, for example DQB1 or DRB1, due to the tight linkage disequilibrium observed in the HLA class II region. To facilitate disease mapping within this region, we have analyzed 2 to approximately 5 bases short tandem repeats (microsatellites) in this same region. A total of 494 microsatellites were identified from the genomic sequence of the HLA class II region. These consist of 158 di-, 65 tri-, 163 tetra-, and 108 pent-nucleotide repeats, out of which four were located within the coding sequence of expressed genes (Daxx, BING1, RXRB and COL11A2). Twenty-two repeats were selected as polymorphic markers due to their high (average) number of alleles (8.9) as well as their high polymorphic content value (PIC) (0.58). These novel polymorphic microsatellites will provide useful genetic markers in HLA-related research, such as genetic mapping of HLA class II-associated diseases, transplantation matching, population genetics, identification of recombination hot spots as well as linkage disequilibrium studies.

  8. Porcine MHC classical class I genes are coordinately expressed in superantigen-activated mononuclear cells.

    PubMed

    Kametani, Yoshie; Ohshima, Shino; Kita, Yuki F; Shimada, Shin; Kamiguchi, Hiroshi; Shiina, Takashi; Inoko, Hidetoshi; Kulski, Jerzy K; Ando, Asako

    2012-08-15

    The expression of the major histocompatibility complex (MHC) classical class I genes is important for the adaptive immune response to target virus-infected cells and cancer cells. The up-regulation of the MHC is achieved by hormonal/cytokine signals including IFN-γ-inducible elements. The swine leukocyte antigen (SLA), the MHC class I region of pigs, consists of the duplicated classical class I genes, SLA-1, SLA-2 and SLA-3, but the molecular mechanisms involved in their up-regulation after T cell stimulation have not been fully elucidated. In order to better understand some of the putative regulatory mechanisms of SLA class I gene expression in activated T cells, we examined the coordinated expression of the SLA classical class I, IFN-γ and interferon regulatory factor-1 (IRF-1) genes in the peripheral blood mononuclear cells (PBMCs) of SLA homozygous Clawn miniature swine stimulated for 72 h with either IFN-γ or an enterotoxin produced by Staphylococcus aureus. This enterotoxin, toxic shock syndrome-1 (TSST-1), is known to act as a superantigen (sAG) to activate the T cells in various vertebrate species. We showed by using mAbs and flow cytometry that the CD4(+)CD25(+) cell number of swine PBMCs was also increased by TSST-1 and to a lesser degree by IFN-γ. Time course analyses of the expression of the IFN-γ, IRF-1 and the three classical class I genes, SLA-1, SLA-2, and SLA-3, in PBMCs by quantitative real-time PCR revealed a transitory response to TSST-1 or IFN-γ stimulation. The IFN-γ mRNA levels in the PBMCs were continuously up-regulated over the first 48 h by TSST-1 or IFN-γ. In contrast, SLA class I expression moderately increased at 24h and then decreased to a baseline level or less at 72 h of IFN-γ or TSST-1 stimulation. The three classical SLA class I genes showed similar expression kinetics, although SLA-3 mRNA level was consistently lower than those of SLA-1 and -2. The expression of IRF-1, a modulator of SLA expression, showed similar

  9. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.

    PubMed

    Insaidoo, Francis K; Zajicek, Jaroslav; Baker, Brian M

    2009-10-20

    T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism.

  10. MHC Class IIB Exon 2 Polymorphism in the Grey Partridge (Perdix perdix) Is Shaped by Selection, Recombination and Gene Conversion

    PubMed Central

    Bryjová, Anna; Albrecht, Tomáš; Bryja, Josef

    2013-01-01

    Among bird species, the most studied major histocompatibility complex (MHC) is the chicken MHC. Although the number of studies on MHC in free-ranging species is increasing, the knowledge on MHC variation in species closely related to chicken is required to understand the peculiarities of bird MHC evolution. Here we describe the variation of MHC class IIB (MHCIIB) exon 2 in a population of the Grey partridge (Perdix perdix), a species of high conservation concern throughout Europe and an emerging galliform model in studies of sexual selection. We found 12 alleles in 108 individuals, but in comparison to other birds surprisingly many sites show signatures of historical positive selection. Individuals displayed between two to four alleles both on genomic and complementary DNA, suggesting the presence of two functional MHCIIB loci. Recombination and gene conversion appear to be involved in generating MHCIIB diversity in the Grey partridge; two recombination breakpoints and several gene conversion events were detected. In phylogenetic analysis of galliform MHCIIB, the Grey partridge alleles do not cluster together, but are scattered through the tree instead. Thus, our results indicate that the Grey partridge MHCIIB is comparable to most other galliforms in terms of copy number and population polymorphism. PMID:23935938

  11. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.

    PubMed

    Insaidoo, Francis K; Zajicek, Jaroslav; Baker, Brian M

    2009-10-20

    T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism. PMID:19772349

  12. New class of generalized photon-added coherent states and some of their non-classical properties

    NASA Astrophysics Data System (ADS)

    Mojaveri, B.; Dehghani, A.; Mahmoodi, S.

    2014-08-01

    In this paper, we construct a new class of generalized photon added coherent states (GPACSs), |z,m{{\\rangle }_{r}} by excitations on a newly introduced family of generalized coherent states (GCSs) |z{{\\rangle }_{r}} (A Dehghani and B Mojaveri 2012 J. Phys. A: Math. Theor. 45 095304), obtained via generalized hypergeometric type displacement operators acting on the vacuum state of the simple harmonic oscillator. We show that these states realize resolution of the identity property through positive definite measures on the complex plane. Meanwhile, we demonstrate that the introduced states can also be interpreted as nonlinear coherent states (NLCSs), with a spacial nonlinearity function. Finally, some of their non-classical features as well as their quantum statistical properties are compared with Agarwal's photon-added coherent states (PACSs), \\left| z,m \\right\\rangle .

  13. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.

    PubMed

    Grødeland, Gunnveig; Bogen, Bjarne

    2015-06-01

    There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.

  14. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets

    PubMed Central

    Gutiérrez-Martínez, Enric; Planès, Remi; Anselmi, Giorgio; Reynolds, Matthew; Menezes, Shinelle; Adiko, Aimé Cézaire; Saveanu, Loredana; Guermonprez, Pierre

    2015-01-01

    Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets. PMID:26236315

  15. Quantitating MHC class II trafficking in primary dendritic cells using imaging flow cytometry

    PubMed Central

    Hennies, Cassandra M.; Lehn, Maria A.; Janssen, Edith M.

    2015-01-01

    Presentation of antigenic peptides in MHC class II (MHCII) on dendritic cells (DCs) is the first step in the activation of antigen-specific CD4+T cells. The expression of surface MHCII-peptide complexes is tightly regulated as the frequency of MHCII-peptide complexes can affect the magnitude, as well as the phenotype of the ensuing CD4+T cell response. The surface MHCII-peptide levels are determined by the balance between expression of newly generated complexes, complex internalization, and their subsequent re-emergence or degradation. However, the molecular mechanisms that underpin these processes are still poorly understood. Here we describe a multispectral imaging flow cytometry assay to visualize MHCII trafficking that can be used as a tool to dissect the molecular mechanisms that regulate MHCII homeostasis in primary mouse and human DCs. PMID:25967952

  16. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation

    PubMed Central

    Loschko, Jakob; Schreiber, Heidi A.; Rieke, Gereon J.; Esterházy, Daria; Meredith, Matthew M.; Pedicord, Virginia A.; Yao, Kai-Hui; Caballero, Silvia; Pamer, Eric G.; Mucida, Daniel

    2016-01-01

    Conventional dendritic cells (cDCs) play an essential role in host immunity by initiating adaptive T cell responses and by serving as innate immune sensors. Although both innate and adaptive functions of cDCs are well documented, their relative importance in maintaining immune homeostasis is poorly understood. To examine the significance of cDC-initiated adaptive immunity in maintaining homeostasis, independent of their innate activities, we generated a cDC-specific Cre mouse and crossed it to a floxed MHC class II (MHCII) mouse. Absence of MHCII on cDCs resulted in chronic intestinal inflammation that was alleviated by antibiotic treatment and entirely averted under germ-free conditions. Uncoupling innate and adaptive functions of cDCs revealed that innate immune functions of cDCs are insufficient to maintain homeostasis and antigen presentation by cDCs is essential for a mutualistic relationship between the host and intestinal bacteria. PMID:27001748

  17. Mutant MHC class II epitopes drive therapeutic immune responses to cancer

    PubMed Central

    Kreiter, Sebastian; Vormehr, Mathias; van de Roemer, Niels; Diken, Mustafa; Löwer, Martin; Diekmann, Jan; Boegel, Sebastian; Schrörs, Barbara; Vascotto, Fulvia; Castle, John C.; Tadmor, Arbel D.; Schoenberger, Stephen P.; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient’s tumour possesses a unique set of mutations (‘the mutanome’) that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient’s individual tumour-specific mutations1. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4+ T cells. Vaccination with such CD4+ immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4+ T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo

  18. Imbalanced MHC class II molecule expression at surface of murine B cell lymphomas

    PubMed Central

    1986-01-01

    To study the role of class II MHC expression in mouse lymphomagenesis, we examined the cell surface expression of I-A/E antigens on 24 spontaneous or murine leukemia virus (MuLV)-induced mouse B10.A (I-Ak, I-Ek) B cell lymphomas. Two primary B10.A B cell lymphomas were observed with strong I-Ek expression but with only minimal cell surface I-Ak expression. Both tumors are readily transplantable in syngeneic mice, with maintenance of their I-A-, I-E+ phenotype. Strikingly, one I- A-, I-E+ B cell lymphoma contains a (11; 17) translocation with a breakpoint on chromosome 17 that is localized within or very close to the H-2 complex. DNA of both tumors contains normal restriction enzyme fragments of the A alpha and A beta genes. Northern blot analyses indicated that one I-A-, I-E+ tumor strongly expressed A alpha, E alpha, and E beta mRNAs but possessed only a weak expression of A beta mRNA. The other B cell lymphoma showed A beta, E alpha, and E beta mRNA expression but only minimal A alpha mRNA expression. In 11 primary B10.A B cell lymphomas with a normal I-A+, I-E+ phenotype, no imbalances in A alpha/A beta mRNA levels were observed. The implications of these findings for the role of class II MHC expression in mouse B cell lymphoma-genesis are discussed. PMID:3486245

  19. Cloning and characterization of a new swine MHC (SLA) class II DQB allele.

    PubMed

    Hosokawa, T; Tanioka, Y; Tanigawa, M; Matsumoto, Y; Onodera, T; Matsumoto, Y

    1998-06-01

    Major histocompatibility complex (MHC) of pigs is known as swine leukocyte antigen (SLA). The cDNA encoding a new allele of SLA class II DQ beta-chain was successfully isolated from a CSK miniature pig (derived from Göttingen strain) and characterized by sequence analyses. SLA-DQB cDNA fragment encoding beta 2-domain was amplified by reverse transcriptase-polymerase chain reaction using the sequences preserved in a various vertebrates as primers. Using non-radioisotope technique with the PCR product as a probe, cDNA clone G01 was isolated from a spleen cDNA library, and nucleotide sequence of this clone was determined. This clone encompassed a whole SLA-DQ beta-chain coding region, containing a total length of 1161 nucleotides with an open reading frame (ORF) of 786 nucleotides, 5' untranslated region of 15 nucleotides, and 3' untranslated region of 360 nucleotides ending with a canonical polyadenylation signal, followed by a poly A tail. Sequence comparisons of the ORF of this clone with those of known SLA-DQB genes confirmed that this clone is a new allele (SLA-DQB*G01). Phylogenetic analysis of the nucleotide sequences of swine, human, and murine MHC class II genes indicated that SLA-DQB was more similar to HLA-DQB1 than H-2A beta. Comparison of the nucleotide and deduced amino acid sequences among SLA-DQB alleles showed that the SLA-DQ beta-chain polymorphism was found almost in beta 1-domain which contains the antigenic peptide binding sites.

  20. NXS2 murine neuroblastomas express increased levels of MHC class I antigens upon recurrence following NK-dependent immunotherapy.

    PubMed

    Neal, Zane C; Imboden, Michael; Rakhmilevich, Alexander L; Kim, Kyung-Mann; Hank, Jacquelyn A; Surfus, Jean; Dixon, John R; Lode, Holger N; Reisfeld, Ralph A; Gillies, Stephen D; Sondel, Paul M

    2004-01-01

    We evaluated recurrent NXS2 neuroblastoma tumors that developed following NK- or T-cell-mediated immunotherapy in tumor-bearing mice. Recurrent tumors developed following an NK-dependent antitumor response using a suboptimal dose of hu14.18-IL2, a humanized IL-2 immunocytokine targeted to the GD(2)-ganglioside. This treatment initially induced complete resolution of measurable tumor in the majority of mice, followed, however, by delayed tumor recurrence in some mice. These recurrent NXS2 tumors revealed markedly enhanced (> fivefold) MHC class I antigen expression when compared with NXS2 tumors growing in PBS-treated control mice. A similar level of enhanced MHC class I antigen-expression could be induced on NXS2 cells in vitro by culturing with interferon gamma, and was associated with reduced susceptibility to both NK-cell-mediated tumor cell lysis and antibody-dependent cellular cytotoxicity in vitro. In contrast, Flt3-ligand treatment of NXS2-bearing mice induced a protective T-cell-dependent antitumor memory response. Recurrent NXS2 tumors that developed following Flt3-L therapy revealed a decreased expression of MHC class I antigens. While NXS2 tumors are susceptible to in vivo destruction following either hu14.18-IL2 or Flt3-ligand immunotherapies, these results suggest that some tumor cells may be selected to survive and progress by expressing either higher or lower levels of MHC class I antigen in order to resist either NK- or T-cell-mediated antitumor responses, respectively.

  1. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element.

    PubMed

    Cohen, Helit; Parekh, Palak; Sercan, Zeynep; Kotekar, Aparna; Weissman, Jocelyn D; Singer, Dinah S

    2009-08-26

    Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.

  2. Possible assortment of a1 and a2 region gene segments in human MHC class I molecules.

    PubMed

    Johnson, G; Wu, T T

    1998-06-01

    Using pair-wise comparison of aligned nucleotide sequences of distinct and complete human MHC class I molecules, we have constructed triangular tables to study the similarities and differences of various a1 (exon 2) and a2 (exon 3) region sequences. There are two HLA-A (A*6901 and A*6601) and 13 HLA-B (B*4201, B*8101, B*4102, B*4801, B*4007, B*4001, B*4802, Dw53, B*4406, B*4402, B*3901, B*1514 and B*3702) sequences that have identical a1 sequences with other known MHC class I molecules, while their a2 sequences are the same as those of different ones. Of these 15, A*6901, B*4001 and B*4802 have previously been suggested as the results of recombination between A*6801 and A*0201, B*4101 and B*8101, and B*4801 and B*3501, respectively. However, many other sequences can also be used to generate them by recombination. Furthermore, their reciprocal products have never been identified. Thus, gene conversion has subsequently been suggested as an alternative. Another possible genetic mechanism for generating these nucleotide sequence similarities can be assortment, or that some gene segments can be duplicated or multiplicated to be used in different human MHC class I molecules. Interestingly, this genetic mechanism is probably absent for the generation of different mouse MHC class I molecules.

  3. MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis.

    PubMed

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-04-01

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the α1 and β1 domains that form the antigen-binding site (ABS) for the presentation of peptides. The MHC thus plays an important role in pathogen defense. European badgers (Meles meles) are a good species in which to study the MHC, as they harbor a variety of pathogens. We present the first characterization of MHC class II genes, isolated from genomic DNA (gDNA) and complementary DNA (cDNA), in the European badger. Examination of seven individuals revealed four DRB, two DQB, two DQA, and two DRA putatively functional gDNA sequences. All of these sequences, except DRA, exhibited high variability in exon 2; DRB had the highest variability. The ABS codons demonstrated high variability, due potentially to balancing selection, while non-ABS codons had lower variability. Positively selected sites were detected in DRB and DQA. Phylogenetic analysis demonstrated trans-species polymorphism of class II genes. Comparison with cDNA from whole blood revealed that only DRB had a transcription pattern reflecting the alleles that were present in the gDNA, while the other three genes had disparities between gDNA and cDNA. Only one sequence was transcribed, even though two gDNA sequences were present, from each of both DQB and DRA. Our characterization of badger MHC sequences forms a basis for further studies of MHC variability, mate choice, and pathogen resistance in this, and other, species. PMID:22038175

  4. Clones of T cells discriminate between native and deglycosylated forms of MHC class II antigen in allostimulation.

    PubMed

    Culley, D; Waldron-Edward, D; Manjunath, P; Mamer, O A; Abikar, K; Rode, H; Gordon, J

    1993-07-01

    The aim of this study was to clarify the role of the oligosaccharide side chains of MHC Class II antigens in allostimulation. The approach was to cleave the oligosaccharides from protein by subjecting plasma membranes (PM) of the Daudi cell line to chemical deglycosylation yielding deglycosylated (dgl) proteins and a supernatant fraction containing plasma membrane oligosaccharides (dgl sup). MHC Class II antigens affinity purified from the native and the dgl PM were inserted into the plasma membrane of peripheral blood leukocytes (PBL) used as stimulators in a mixed leukocyte reaction (MLR). Cells used as stimulators and as responders were from the same donor. Both native and to a lesser extent the dgl antigen could elicit a proliferative as well as a cytolytic (CML) response. A comparable reduction in the CML reaction was also obtained when native antigen was used to elicit effector cells, but the target was stripped of N-linked oligosaccharides by pretreatment with tunicamycin (TM). Five clones of responding cells raised against the native antigen were studied. Two gave proliferative reactions of equal magnitude to native and to dgl antigen alike, while three responded only to the native form. These three clones did not lyse TM-treated target cells. Inhibition experiments of CML were performed with either the dgl sup containing Daudi PM oligosaccharides or with an anti MHC-Class II MoAb. CML reactivity of the three clones which responded to native antigen was blocked by the dgl sup but not by the anti-MHC antibody. Conversely, the reaction of the two clones reactive to both forms of antigen was only inhibited by the anti-MHC antibody using intact or TM-treated targets. Accordingly, in terms of the latter set of clones oligosaccharide side chains of MHC may not be required for allostimulation. Data obtained with the set of three clones suggest that oligosaccharides could act as target of cytotoxic T cells.

  5. Pulse-chase analysis for studies of MHC class II biosynthesis, maturation, and peptide loading

    PubMed Central

    Hou, Tieying; Rinderknecht, Cornelia H; Hadjinicolaou, Andreas V; Busch, Robert; Mellins, Elizabeth

    2014-01-01

    Pulse-chase analysis is a commonly used technique for studying the synthesis, processing and transport of proteins. Cultured cells expressing proteins of interest are allowed to take up radioactively labeled amino acids for a brief interval (“pulse”), during which all newly synthesized proteins incorporate the label. The cells are then returned to non-radioactive culture medium for various times (“chase”), during which proteins may undergo conformational changes, trafficking, or degradation. Proteins of interest are isolated (usually by immunoprecipitation) and resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the fate of radiolabeled molecules is examined by autoradiography. This chapter describes a pulse-chase protocol suitable for studies of major histocompatibility complex (MHC) class II biosynthesis and maturation. We discuss how results are affected by the recognition by certain anti-class II antibodies of distinct class II conformations associated with particular biosynthetic states. Our protocol can be adapted to follow the fate of many other endogenously synthesized proteins, including viral or transfected gene products, in cultured cells. PMID:23329504

  6. Ligation of MHC class I and class II molecules can lead to heterologous desensitization of signal transduction pathways that regulate homotypic adhesion in human lymphocytes.

    PubMed

    Wagner, N; Engel, P; Vega, M; Tedder, T F

    1994-06-01

    Engagement of lymphocyte MHC class I and class II Ags activates an array of intracellular signal transduction pathways that up-regulates the activity of cell-surface adhesion receptors, resulting in homotypic cell-cell aggregation. In this study, engagement of MHC class I and class II molecules with specific mAbs was shown to also inhibit lymphocyte homotypic adhesion. Two mAbs reactive with class II Ag, homotypic adhesion blocking mAb (HAB)-2, and HAB-3, and one mAb reactive with class I Ag, HAB-4, were generated that inhibited homotypic adhesion of activated lymphocytes and B and T cell lines at concentrations as low as 0.1 microgram/ml. Binding of these mAbs resulted in heterologous desensitization of other surface signal transduction molecules as homotypic adhesion induced through class I, class II, CD19, CD20, CD39, CD40, Leu-13, and PMA was also inhibited. The spontaneous adhesion exhibited by some cell lines was also abrogated by binding of these mAbs. Abs that either induced, blocked, or had no effect on adhesion bound to distinct epitopes on class I, whereas the anti-class II mAbs recognized either distinct or overlapping epitopes. Thus, engagement of distinct epitopes on MHC molecules can result in homologous or heterologous desensitization of cell-surface signaling molecules. The induction or inhibition of homotypic adhesion through class I molecules did not require the presence of the cytoplasmic domain, as deletion of this portion of the class I molecule had no effect. In contrast, the transmembrane region was essential for signal transduction as the mAbs binding to a chimeric molecule in which the transmembrane and cytoplasmic domains of class I were exchanged with those of the HB15 molecule did not induce or inhibit homotypic adhesion. Although this report is the first demonstration that homotypic adhesion can be influenced in a negative manner through MHC molecules, these findings demonstrate a considerable level of cross-talk between MHC molecules

  7. Outer membrane proteins preferentially load MHC class II peptides: Implications for as a Chlamydia trachomatis T cell vaccine

    PubMed Central

    Karunakaran, Karuna P.; Yu, Hong; Jiang, Xiaozhou; Chan, Queenie; Moon, Kyung-Mee; Foster, Leonard J.; Brunham, Robert C.

    2015-01-01

    CD4 T cell immune responses such as interferon-γ and tumor necrosis factor-α secretion are necessary for Chlamydia immunity. We used an immunoproteomic approach in which Chlamydia trachomatis and Chlamydia muridarum-derived peptides presented by MHC class II molecules on the surface of infected dendritic cells (DCs) were identified by tandem mass spectrometry using bone marrow derived DCs (BMDCs) from mice of different MHC background. We first compared the C. muridarum immunoproteome in C3H mice to that previously identified in C57BL/6 mice. Fourteen MHC class II binding peptides from 11 Chlamydia proteins were identified from C3H infected BMDCs. Two C. muridarum proteins overlapped between C3H and C57B/6 mice and both were polymorphic membrane proteins (Pmps) which presented distinct class II binding peptides. Next we studied DCs from C57BL/6 mice infected with the human strain, C. trachomatis serovar D. Sixty MHC class II binding peptides derived from 27 C. trachomatis proteins were identified. Nine proteins were orthologous T cell antigens between C. trachomatis and C. muridarum and 2 of the nine were Pmps which generated MHC class II binding epitopes at distinct sequences within the proteins. As determined by antigen specific splenocyte responses outer membrane proteins PmpF, -G and -H and the major outer membrane protein (MOMP) were antigenic in mice previously infected with C. muridarum or C. trachomatis. Furthermore a recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with MOMP formulated with a Th1 polarizing adjuvant significantly accelerated (p < 0.001) clearance in the C57BL/6 mice C. trachomatis transcervical infection model. We conclude that Chlamydia outer membrane proteins are important T cell antigens useful in the development of a C. trachomatis subunit vaccine. PMID:25738816

  8. Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies

    NASA Astrophysics Data System (ADS)

    Ohnishi, Koji

    1984-12-01

    Domain structures of class I and class II MHC products were analyzed from a viewpoint of amino acid and nucleotide sequence homologies. Alignment statistics revealed that class I (transplantation) antigen H chains consist of four mutually homologous domains, and that class II (HLA-DR) antigen β and α chains are both composed of three mutually homologous ones. The N-terminal three and two domains of class I and class II (both β and α) gene products, respectively, all of which being ˜90 residues long, were concluded to be homologous to β2-microglobulin (β2M). The membraneembedded C-terminal shorter domains of these MHC products were also found to be homologous to one another and to the third domain of class I H chains. Class I H chains were found to be more closely related to class II α chains than to class II β chains. Based on these findings, an exon duplication history from a common ancestral gene encoding a β2M-like primodial protein of one-domain-length up to the contemporary MHC products was proposed.

  9. The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules

    PubMed Central

    Joly, Etienne; Rouillon, Virginie

    2006-01-01

    Background Whether MHC molecules undergo concerted evolution or not has been the subject of a long-standing debate. Results By comparing sequences of eight functional homologues of HLA-E from primates and rodents with those of MHC class Ia molecules from the same eight species, we find that different portions of MHC class I molecules undergo different patterns of evolution. By focusing our analyses sequentially on these various portions, we have obtained clear evidence for concerted evolution of MHC class I molecules, suggesting the occurrence of extensive interallelic and intergenic exchanges. Intra-species homogenisation of sequences is particularly noticeable at the level of exon 4, which codes for the α3 domain, but our results suggest that homogenisation also concerns certain residues of the α1–α2 codomain that lie outside the antigen recognition site. Conclusion A model is presented in which Darwinian selective pressures due to pathogens could, at the same time, favour diversification of MHC class Ia molecules and promote concerted evolution of separate loci by spreading advantageous motifs arising by mutations in individual MHC molecules to other alleles and to other loci of the MHC region. This would also allow MHC molecules to co-evolve with the proteins with which they interact to fulfil their functions of antigen presentation and regulation of NK cell activity. One of the raisons d'être of the MHC may therefore be to favour at the same time both diversification of MHC class Ia molecules and homogenisation of the whole pool of MHC class I molecules (Ia and Ib) involved in antigen presentation. Reviewers This article was reviewed by Stephan Beck, Lutz Walter and Pierre Pontarotti. PMID:16542007

  10. GPS-MBA: computational analysis of MHC class II epitopes in type 1 diabetes.

    PubMed

    Cai, Ruikun; Liu, Zexian; Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-A(g7) in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-A(g7) and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-A(g7) and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-A(g7) and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org.

  11. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    PubMed

    Kasper, Katherine J; Zeppa, Joseph J; Wakabayashi, Adrienne T; Xu, Stacey X; Mazzuca, Delfina M; Welch, Ian; Baroja, Miren L; Kotb, Malak; Cairns, Ewa; Cleary, P Patrick; Haeryfar, S M Mansour; McCormick, John K

    2014-05-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  12. Structural mechanism of ER retrieval of MHC class I by cowpox.

    PubMed

    McCoy, William H; Wang, Xiaoli; Yokoyama, Wayne M; Hansen, Ted H; Fremont, Daved H

    2012-01-01

    One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation.

  13. Structural Mechanism of ER Retrieval of MHC Class I by Cowpox

    PubMed Central

    McCoy, William H.; Wang, Xiaoli; Yokoyama, Wayne M.; Hansen, Ted H.; Fremont, Daved H.

    2012-01-01

    One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation. PMID:23209377

  14. Transcriptional regulation of MHC class I gene expression in rat oligodendrocytes.

    PubMed Central

    Mavria, G; Hall, K T; Jones, R A; Blair, G E

    1998-01-01

    MHC class I molecules are normally expressed at very low levels in the brain and their up-regulation in response to cytokines and viral infections has been associated with a number of neurological disorders. Here we demonstrate that the down-regulation of surface class I molecules in differentiated primary rat oligodendrocytes was accompanied by reduced steady-state levels of class I heavy-chain mRNA. Transient expression assays were performed in oligodendrocytes and fibroblasts, using a mouse H-2Kb class I promoter chloramphenicol acetyltransferase plasmid termed pH2KCAT (which contained 5'-flanking sequences from -2033 to +5 bp of the H-2Kb gene relative to the transcriptional start site at +1 bp). These assays showed that H-2Kb promoter activity was reduced in oligodendrocytes but not in class I-expressing fibroblasts. H-2Kb promoter activity was up-regulated in oligodendrocytes co-transfected with a plasmid expression vector encoding the transcriptional activator tax of human T-cell leukaemia virus type I, showing that down-regulation of promoter activity was reversible. Deletion mutant analysis of the H-2Kb promoter revealed the presence of negative regulatory elements that were functional in oligodendrocytes at -1.61 to -1.07 kb and -242 to -190 bp. Deletion of sequences in pH2KCAT encompassing the downstream element totally abolished promoter activity in both oligodendrocytes and fibroblasts, whereas a deletion within the upstream negative regulatory element increased promoter activity specifically in oligodendrocytes. The upstream negative regulatory element also down-regulated a linked heterologous herpes simplex virus thymidine kinase promoter in oligodendrocytes, but not in fibroblasts. Gel retardation assays using overlapping DNA probes that spanned the entire -1.61 to -1.07 kb region revealed the presence of a number of DNA-binding activities that were present in oligodendrocyte, but not in fibroblast nuclear extracts. PMID:9461504

  15. Alternative donor SCT for the treatment of MHC class II deficiency.

    PubMed

    Small, T N; Qasim, W; Friedrich, W; Chiesa, R; Bleesing, J J; Scurlock, A; Veys, P; Sparber-Sauer, M

    2013-02-01

    MHC Class II deficiency is a rare primary immunodeficiency disease characterized by absent HLA Class II expression resulting in CD4 lymphopenia, lack of Ag-specific responses and recurrent infection. Without successful allogeneic SCT, most children succumb to infection within the first decade of life. To date, alternative donor transplants for this disorder have been inferior to SCT for other forms of combined immunodeficiency disease due to an increased incidence of graft rejection, GVHD and death from infections generally acquired before haematopoietic cell transplantation. This study details the transplant outcome of 16 affected children consecutively transplanted at four centers since 1990, 8 of whom required mechanical ventilation pretransplant. Stem cells were derived from an HLA-mismatched family member (n=10), an HLA-matched unrelated adult donor (n=4), or an unrelated cord blood donor (n=2). Graft failure occurred in five children, all of whom underwent a second SCT. Six patients developed acute GVHD although no patient developed chronic GVHD after primary transplantation. CD4 T-cell reconstitution remained below the normal range for age, suggesting defective thymopoiesis after allo-SCT. Nonetheless, 69% of children survive without GVHD at a median follow-up of 5.7 years, indicating improved outcomes compared with previous studies. PMID:23000650

  16. Molecular polymorphism and expression analysis of MHC class II B gene from red sea bream (Chrysophrys major).

    PubMed

    Chen, Song-Lin; Zhang, Yu-Xi; Xu, Mei-Yu; Ji, Xiang-Shan; Yu, Guo-Cai; Dong, Cheng-Fang

    2006-01-01

    MHC class II (major histocompatibility complex class II) plays an important role in the immune response of vertebrates. Its function is to present antigenic peptides to the T-cell receptor. In order to study the function and molecular polymorphism of class II B gene in fish, we have isolated cDNAs encoding class II B from spleen cDNA library of red sea bream (Chrysophrys major) by using EST sequencing, and examined genomic organization, molecular polymorphism and expression of red sea bream class II B gene. As in other vertebrates, five exons and four introns were identified in red sea bream class II B gene. Seven class II B alleles were identified from seven individuals of red sea bream. The deduced amino acid sequence of red sea bream MHC class II B 1(Chma-DAB*0101) had 87.1, 85.1, 87.1, 90.4, 87.1, 90.8% identity with those of red sea bream class II B 2, 3, 4, 5, 6, 7(Chma-DAB*0201-Chma-DAB*0701), respectively, and had 75.2, 74.5, 55.9, 55.1, 34.3 and 30.4% identity with those of striped sea bass, cichlid, rainbow trout, Atlantic salmon, mouse and human, respectively. Four different class II B alleles were observed in a single individual and two different 3' untranslated region (3' UTR) sequences from this individual may infer the existence of two loci at least. Semi-quantitative RT-PCR demonstrated that high expression was detected in liver, head kidney, kidney, intestine, gill, stomach, hear and spleen, low expression in muscle and blood. Challenge of red sea bream with the pathogenic bacteria, Vibrio anguillarum, resulted in a significant decrease in the expression of MHC class II B mRNA from 5 to 72 h after infection in liver, spleen, head kidney and intestine, followed by a recovery to normal level after 96 h.

  17. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin.

    PubMed

    Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S

    2013-03-01

    In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species.

  18. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin.

    PubMed

    Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S

    2013-03-01

    In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species. PMID:23116964

  19. A single nomenclature and associated database for alleles at the MHC class II DRB1 locus of sheep: IPD-MHC-OLA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of standardised nomenclatures with associated databases containing reference sequences for alleles at polymorphic loci within the Major Histocompatibility Complex (MHC) has been facilitated by the development of the Immuno Polymorphism Database (IPD-MHC). Recently, included within I...

  20. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes

    PubMed Central

    Büning, Jürgen; von Smolinski, Dorthe; Tafazzoli, Kianush; Zimmer, Klaus-Peter; Strobel, Stephan; Apostolaki, Maria; Kollias, George; Heath, Joan K; Ludwig, Diether; Gebert, Andreas

    2008-01-01

    In normal conditions intestinal epithelial cells (IECs) constitutively stimulate regulatory CD4+ T cells. However, in Crohn's disease (CD), this major histocompatibility complex (MHC) class II-restricted antigen presentation results in stimulation of proinflammatory CD4+ T cells. We hypothesized that these alternative functions might be mediated by differential sorting and processing of antigens into distinct MHC II-enriched compartments (MIICs). Accordingly, we analysed the endocytic pathways of lumenally applied ovalbumin (OVA) in IECs of the jejunum and ileum of wild-type (WT) and TNFΔARE/WT mice that develop a CD-resembling ileitis. Using quantitative reverse transcription polymerase chain reaction, we found that messenger RNA levels of interferon-γ, tumour necrosis factor-α, interleukin-17 and interleukin-10 were significantly up-regulated in the inflamed ileum of TNFΔARE/WT mice, confirming CD-like inflammation. Fluorescence and immunoelectron microscopy revealed the presence of MHC II and invariant chain throughout the late endocytic compartments, with most molecules concentrated in the multivesicular bodies (MVB). OVA was targeted into MVB and, in contrast to other MIICs, accumulated in these structures within 120 min of exposure. The IEC-specific A33 antigen localized to internal vesicles of MVB and A33/class II-bearing exosomes were identified in intercellular spaces. Remarkably, the expression pattern of MHC II/invariant chain molecules and the trafficking of OVA were independent of mucosal inflammation and the specific region in the small intestine. MVB seem to be principally responsible for class II-associated antigen processing in IECs and to constitute the origin of MHC II-loaded exosomes. The distinctive functions of IECs in antigen presentation to CD4+ T cells might arise as a result of differential processing within the MVB identified here. PMID:18710406

  1. Molecular requirements for MHC class II alpha-chain engagement and allelic discrimination by the bacterial superantigen streptococcal pyrogenic exotoxin C.

    PubMed

    Kasper, Katherine J; Xi, Wang; Rahman, A K M Nur-Ur; Nooh, Mohammed M; Kotb, Malak; Sundberg, Eric J; Madrenas, Joaquín; McCormick, John K

    2008-09-01

    Superantigens (SAgs) are microbial toxins that bind to both TCR beta-chain variable domains (Vbetas) and MHC class II molecules, resulting in the activation of T cells in a Vbeta-specific manner. It is now well established that different isoforms of MHC II molecules can play a significant role in the immune response to bacterial SAgs. In this work, using directed mutational studies in conjunction with functional analyses, we provide a complete functional map of the low-affinity MHC II alpha-chain binding interface of the SAg streptococcal pyrogenic exotoxin C (SpeC) and identify a functional epitope in the beta-barrel domain that is required for the activation of T cells. Using cell lines that exclusively express individual MHC II isoforms, our studies provide a molecular basis for the selectivity of SpeC-MHC II recognition, and provide one mechanism by how SAgs are capable of distinguishing between different MHC II alleles.

  2. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  3. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles.

    SciTech Connect

    Sieker, Florian; Springer, Sebastian; Zacharias, Martin W.

    2007-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. MHC class I molecules load antigenic peptides in the endoplasmic reticulum and present them at the cell surface. Efficiency of peptide loading depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading, whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Comparative unrestrained molecular dynamics simulations on the 1/2 peptide binding domains performed in the presence of bound peptides resulted in structures in close agreement with experiments for both alleles. In the absence of peptides, allele-specific conformational changes occurred in the first segment of the 2-helix that flanks the peptide C-terminal binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a shift toward an altered F-pocket structure deviating significantly from the bound form was observed. Subsequent free energy simulations on induced F-pocket opening in B*4402 confirmed a conformation that deviated significantly from the bound structure. For B*4405, a free energy minimum close to the bound structure was found. The simulations suggest that B*4405 has a greater tendency to adopt a peptide receptive conformation in the absence of peptide, allowing tapasin-independent peptide loading. A possible role of tapasin could be the stabilization of a peptide-receptive class I conformation for HLA-B*4402 and other tapasin-dependent alleles.

  4. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism.

    PubMed

    Shiina, Takashi; Yamada, Yukiho; Aarnink, Alice; Suzuki, Shingo; Masuya, Anri; Ito, Sayaka; Ido, Daisuke; Yamanaka, Hisashi; Iwatani, Chizuru; Tsuchiya, Hideaki; Ishigaki, Hirohito; Itoh, Yasushi; Ogasawara, Kazumasa; Kulski, Jerzy K; Blancher, Antoine

    2015-10-01

    Although the low polymorphism of the major histocompatibility complex (MHC) transplantation genes in the Filipino cynomolgus macaque (Macaca fascicularis) is expected to have important implications in the selection and breeding of animals for medical research, detailed polymorphism information is still lacking for many of the duplicated class I genes. To better elucidate the degree and types of MHC polymorphisms and haplotypes in the Filipino macaque population, we genotyped 127 unrelated animals by the Sanger sequencing method and high-resolution pyrosequencing and identified 112 different alleles, 28 at cynomolgus macaque MHC (Mafa)-A, 54 at Mafa-B, 12 at Mafa-I, 11 at Mafa-E, and seven at Mafa-F alleles, of which 56 were newly described. Of them, the newly discovered Mafa-A8*01:01 lineage allele had low nucleotide similarities (<86%) with primate MHC class I genes, and it was also conserved in the Vietnamese and Indonesian populations. In addition, haplotype estimations revealed 17 Mafa-A, 23 Mafa-B, and 12 Mafa-E haplotypes integrated with 84 Mafa-class I haplotypes and Mafa-F alleles. Of these, the two Mafa-class I haplotypes, F/A/E/B-Hp1 and F/A/E/B-Hp2, had the highest haplotype frequencies at 10.6 and 10.2%, respectively. This suggests that large scale genetic screening of the Filipino macaque population would identify these and other high-frequency Mafa-class I haplotypes that could be used as MHC control animals for the benefit of biomedical research.

  5. Pivotal roles of CD8+ T cells restricted by MHC class I–like molecules in autoimmune diseases

    PubMed Central

    Das, Gobardhan; Das, Jyoti; Eynott, Paul; Zhang, Yingyu; Bothwell, Alfred L.M.; Kaer, Luc Van; Shi, Yufang

    2006-01-01

    Unlike T cells restricted by major histocompatibility complex (MHC) class Ia or class II molecules, T cells restricted by MHC class I–like molecules demonstrate properties of both innate and adaptive immunity and are therefore considered innate-like lymphocytes (ILLs). ILLs are believed to have immunoregulatory functions, but their roles in autoimmunity and defense against infections remain elusive. To study the properties of ILLs, we generated mice expressing only MHC class I–like molecules by crossing CIITA−/− with Kb−/−Db−/− mice. Surprisingly, these mice developed a lymphoproliferative syndrome and autoimmunity, most notably inflammatory bowel disease (IBD) and insulitis. The CD8+ ILLs in these mice exhibit a constitutively activated phenotype, and depletion of these cells abolished the autoimmune disorders. In addition, adoptive transfer of CD8+ ILLs from Kb−/−Db−/−CIITA−/− mice to Rag-1−/−pfn−/− mice also resulted in IBD and insulitis. These findings provide direct evidence that CD8+ ILLs are sufficient to initiate and mediate autoimmune diseases. PMID:17088432

  6. T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner.

    PubMed

    Boes, Marianne; Bertho, Nicolas; Cerny, Jan; Op den Brouw, Marjolein; Kirchhausen, Tomas; Ploegh, Hidde

    2003-10-15

    Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.

  7. Transport of Streptococcus pneumoniae Capsular Polysaccharide in MHC Class II Tubules

    PubMed Central

    Stephen, Tom Li; Fabri, Mario; Groneck, Laura; Röhn, Till A; Hafke, Helena; Robinson, Nirmal; Rietdorf, Jens; Schrama, David; Becker, Jürgen C; Plum, Georg; Krönke, Martin; Kropshofer, Harald; Kalka-Moll, Wiltrud M

    2007-01-01

    Bacterial capsular polysaccharides are virulence factors and are considered T cell–independent antigens. However, the capsular polysaccharide Sp1 from Streptococcus pneumoniae serotype 1 has been shown to activate CD4+ T cells in a major histocompatibility complex (MHC) class II–dependent manner. The mechanism of carbohydrate presentation to CD4+ T cells is unknown. We show in live murine dendritic cells (DCs) that Sp1 translocates from lysosomal compartments to the plasma membrane in MHCII-positive tubules. Sp1 cell surface presentation results in reduction of self-peptide presentation without alteration of the MHCII self peptide repertoire. In DM-deficient mice, retrograde transport of Sp1/MHCII complexes resulting in T cell–dependent immune responses to the polysaccharide in vitro and in vivo is significantly reduced. The results demonstrate the capacity of a bacterial capsular polysaccharide antigen to use DC tubules as a vehicle for its transport as an MHCII/saccharide complex to the cell surface for the induction of T cell activation. Furthermore, retrograde transport requires the functional role of DM in self peptide–carbohydrate exchange. These observations open new opportunities for the design of vaccines against microbial encapsulated pathogens. PMID:17367207

  8. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display

    PubMed Central

    Wen, Fei; Sethi, Dhruv K.; Wucherpfennig, Kai W.; Zhao, Huimin

    2011-01-01

    Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2–MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs. PMID:21752831

  9. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells.

    PubMed

    Franciszkiewicz, Katarzyna; Salou, Marion; Legoux, Francois; Zhou, Qian; Cui, Yue; Bessoles, Stéphanie; Lantz, Olivier

    2016-07-01

    The MHC-related 1, MR1, molecule presents a new class of microbial antigens (derivatives of the riboflavin [Vitamin B2] biosynthesis pathway) to mucosal-associated invariant T (MAIT) cells. This raises many questions regarding antigens loading and intracellular trafficking of the MR1/ligand complexes. The MR1/MAIT field is also important because MAIT cells are very abundant in humans and their frequency is modified in many infectious and non-infectious diseases. Both MR1 and the invariant TCRα chain expressed by MAIT cells are strikingly conserved among species, indicating important functions. Riboflavin is synthesized by plants and most bacteria and yeasts but not animals, and its precursor derivatives activating MAIT cells are short-lived unless bound to MR1. The recognition of MR1 loaded with these compounds is therefore an exquisite manner to detect invasive bacteria. Herein, we provide an historical perspective of the field before describing the main characteristics of MR1, its ligands, and the few available data regarding its cellular biology. We then summarize the current knowledge of MAIT cell differentiation and discuss the definition of MAIT cells in comparison to related subsets. Finally, we describe the phenotype and effector activities of MAIT cells. PMID:27319347

  10. Translational diffusion of individual class II MHC membrane proteins in cells.

    PubMed Central

    Vrljic, Marija; Nishimura, Stefanie Y; Brasselet, Sophie; Moerner, W E; McConnell, Harden M

    2002-01-01

    Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells. PMID:12414700

  11. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla.

    PubMed

    Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M

    2009-11-01

    Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.

  12. Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands

    PubMed Central

    Dolan, Brian P.; Bennink, Jack R.

    2012-01-01

    It has been 15 years since we proposed the defective ribosomal product (DRiP) hypothesis to explain the rapid presentation of viral peptides by MHC class I molecules on the surface of infected cells. Here, we review the evidence for the contribution of DRiPs to antigen processing, pointing to the uncertainties regarding the physical nature of DRiPs, and emphasizing recent findings suggesting that peptide generation is a specialized process involving compartmentalized translation. PMID:21416150

  13. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  14. P2X7 receptor activation impairs exogenous MHC class I oligopeptides presentation in antigen presenting cells.

    PubMed

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8(+) T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5'-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8(+) T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8(+) T cell immunity.

  15. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation.

    PubMed

    Wang, Ce; Li, Ping; Liu, Lanlan; Pan, Hong; Li, Hongchang; Cai, Lintao; Ma, Yifan

    2016-02-01

    MHC class I (MHC I) antigen presentation of exogenous antigens (so called "cross presentation") is a central mechanism of CD8(+) cytotoxic T lymphocyte (CTL) responses essential for successful vaccine-based cancer immunotherapy. The present study constructed amphiphilic pH-sensitive galactosyl dextran-retinal (GDR) nanogels for cancer vaccine delivery, in which dextran was conjugated with all-trans retinal (a metabolite of vitamin A) through a pH-sensitive hydrazone bond, followed by galactosylation to acquire dendritic cell (DC)-targeting ability. Our results showed that pH-sensitive GDR nanogel was a self-adjuvanted vaccine carrier that not only promoted DC maturation through activating retinoic acid receptor (RAR) signaling, but also facilitated antigen uptake and cytosolic antigen release in DCs. Furthermore, pH-sensitive GDR nanogel effectively augmented MHC I antigen presentation and evoked potent anti-cancer immune responses in vivo. More importantly, we first reported that nanoparticle-triggered lysosome rupture could directly induce ROS production in DCs, which was found to be essential for augmenting proteasome activity and downstream MHC I antigen presentation. Hence, DC-targeted pH-sensitive GDR nanogels could be a potent delivery system for cancer vaccine development. Triggering lyososomal rupture in DCs with pH-sensitive nanoparticles might be a plausible strategy to elevate intracellular ROS production for promoting antigen cross presentation, thereby improving cancer vaccine efficacy. PMID:26702587

  16. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation.

    PubMed

    Wang, Ce; Li, Ping; Liu, Lanlan; Pan, Hong; Li, Hongchang; Cai, Lintao; Ma, Yifan

    2016-02-01

    MHC class I (MHC I) antigen presentation of exogenous antigens (so called "cross presentation") is a central mechanism of CD8(+) cytotoxic T lymphocyte (CTL) responses essential for successful vaccine-based cancer immunotherapy. The present study constructed amphiphilic pH-sensitive galactosyl dextran-retinal (GDR) nanogels for cancer vaccine delivery, in which dextran was conjugated with all-trans retinal (a metabolite of vitamin A) through a pH-sensitive hydrazone bond, followed by galactosylation to acquire dendritic cell (DC)-targeting ability. Our results showed that pH-sensitive GDR nanogel was a self-adjuvanted vaccine carrier that not only promoted DC maturation through activating retinoic acid receptor (RAR) signaling, but also facilitated antigen uptake and cytosolic antigen release in DCs. Furthermore, pH-sensitive GDR nanogel effectively augmented MHC I antigen presentation and evoked potent anti-cancer immune responses in vivo. More importantly, we first reported that nanoparticle-triggered lysosome rupture could directly induce ROS production in DCs, which was found to be essential for augmenting proteasome activity and downstream MHC I antigen presentation. Hence, DC-targeted pH-sensitive GDR nanogels could be a potent delivery system for cancer vaccine development. Triggering lyososomal rupture in DCs with pH-sensitive nanoparticles might be a plausible strategy to elevate intracellular ROS production for promoting antigen cross presentation, thereby improving cancer vaccine efficacy.

  17. T cell requirements for the rejection of renal allografts bearing an isolated class I MHC disparity

    PubMed Central

    1990-01-01

    This study has examined the cellular and humoral responses underlying the rejection of rat renal allografts bearing an isolated RT1Aa class I MHC disparity. RT1Aa disparate kidneys were rejected promptly by high responder RT1u but not by low responder RT1c recipients (median survival time 10 d and greater than 100 d, respectively). The magnitude and phenotype of the cellular infiltrate were similar in rejecting and nonrejecting RT1Aa disparate kidneys. Paradoxically, graft infiltrating cells and spleen cells from RT1u recipients showed minimal ability to lyse donor strain lymphoblasts in vitro, whereas effector cells from RT1c recipients showed modest levels of cytotoxicity. Injection of RT1u rats with MRC OX8 mAb was highly effective at selectively depleting CD8+ cells from graft recipients but had no effect in prolonging the survival of RT1Aa disparate grafts despite the complete absence of CD8+ cells from the graft infiltrate, which included numerous CD4+ T cells and macrophages. RT1u, but not RT1c, recipients mounted a strong alloantibody response against RT1Aa disparate kidneys. Immune serum obtained from RT1u recipients that had rejected a RT1Aa disparate graft was able, when injected into cyclosporin-treated RT1u recipients, to restore their ability to reject a RT1Aa, but not a third-party RT1c, kidney. These results suggest that CD8+ cells in general and CD8+ cytotoxic effector cells in particular are unnecessary for the rapid rejection of RT1Aa class I disparate kidney grafts by high responder RT1u recipients. By implication, CD4+ T cells alone are sufficient to cause prompt rejection of such grafts and they may do so by providing T cell help for the generation of alloantibody. PMID:2258695

  18. Allelic diversity at class II DRB1 and DQB loci of the pig MHC (SLA).

    PubMed

    Kanai, T H; Tanioka, Y; Tanigawa, M; Matsumoto, Y; Ueda, S; Onodera, T; Matsumoto, Y

    1999-12-01

    The loci encoding the beta chain of the pig major histocompatibility complex (MHC) class II antigens, SLA-DR and -DQ, have been known to exhibit a remarkable degree of allelic polymorphism. Here, to understand the generation of SLA class II polymorphism, 25 SLA-DRB1 and 24 SLA-DQB genes including newly identified 12 SLA-DRB1 and 7 SLA-DQB genes obtained from miniature pigs were analyzed based on the nucleotide and deduced amino acid sequences. Most of the allelic diversity was attributed to the variable sequences which encode a beta1 domain consisting of a beta-pleated sheet followed by an a helix. In the beta1 domain coding region, there were four GC-rich sequences, which have been considered to involve the intra-exon sequence exchange also in other gene evolutions. The first and second GC-rich sequences were alpha-like sequences, which have been shown to be a putative recombination signal, and were stably conserved among SLA-DRB1 and DQB genes. These alpha-like sequences identified in SLA-DRB1 and SLA-DQB were found to encode the first turning point of the beta-pleated sheet and the boundary between the beta-pleated sheet and the alpha helix. Analysis of clustered sequence variation also suggested intra-exon gene conversions in which the alpha-like sequences act as putative breakpoints. In addition to point mutations and selection mechanism, intra-exon gene conversions must be an important mechanism in the generation of allelic polymorphism at the SLA-DRB1 and SLA-DQB.

  19. Insights into MHC class I peptide loading from the structure of the Tapasin-ERp57 thiol oxidoreductase heterodimer

    SciTech Connect

    Dong, G.; Wearsch, P.A.; Peaper, D.R.; Cresswell, P.; Reinisch, K.M.

    2009-03-02

    Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 {angstrom} resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.

  20. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation.

    PubMed

    Ding, Yuanyuan; Guo, Zhenhong; Liu, Yiqi; Li, Xia; Zhang, Qian; Xu, Xiongfei; Gu, Yan; Zhang, Yi; Zhao, Dezhi; Cao, Xuetao

    2016-10-01

    CD8α(+) dendritic cells (DCs) are specialized at cross-presenting extracellular antigens on major histocompatibility complex (MHC) class I molecules to initiate cytotoxic T lymphocyte (CTL) responses; however, details of the mechanisms that regulate cross-presentation remain unknown. We found lower expression of the lectin family member Siglec-G in CD8α(+) DCs, and Siglec-G deficient (Siglecg(-/-)) mice generated more antigen-specific CTLs to inhibit intracellular bacterial infection and tumor growth. MHC class I-peptide complexes were more abundant on Siglecg(-/-) CD8α(+) DCs than on Siglecg(+/+) CD8α(+) DCs. Mechanistically, phagosome-expressed Siglec-G recruited the phosphatase SHP-1, which dephosphorylated the NADPH oxidase component p47(phox) and inhibited the activation of NOX2 on phagosomes. This resulted in excessive hydrolysis of exogenous antigens, which led to diminished formation of MHC class I-peptide complexes for cross-presentation. Therefore, Siglec-G inhibited DC cross-presentation by impairing such complex formation, and our results add insight into the regulation of cross-presentation in adaptive immunity. PMID:27548433

  1. MHC class I and class II phenotype, gene, and haplotype frequencies in Greeks using molecular typing data.

    PubMed

    Papassavas, E C; Spyropoulou-Vlachou, M; Papassavas, A C; Schipper, R F; Doxiadis, I N; Stavropoulos-Giokas, C

    2000-06-01

    In the present study, DNA typing for HLA-A, C, B, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, and DPB1 was performed for 246 healthy, unrelated Greek volunteers of 20-59 years of age. Phenotype, genotype frequencies, Hardy-Weinberg equilibrium fit, and 3-locus haplotype frequencies for HLA-A, C, B, HLA-A, B, DRB1, HLA-DRB1, DQA1, DQB1, and HLA-DRB1, DQB1, DPB1 were calculated. Furthermore, linkage disequilibrium, deltas, relative deltas and p-values for significance of the deltas were defined. The population studied is in Hardy-Weinberg equilibrium, and many MHC haplotypes are in linkage disequilibrium. The most frequent specificities were HLA-A*02 (phenotype frequency = 44.3%) followed by HLA-A*24 (27.2%), HLA-B*51 (28.5%), HLA-B*18 (26.8%) and HLA-B*35 (26.4%) and HLA-Cw*04 (30.1%) and HLA-Cw*12 (26.8%). The most frequent MHC class II alleles were HLA-DRB1*1104 (34.1%), HLA-DQB1*0301 (54.5%) and HLA-DPB1*0401 with a phenotype frequency of 59.8%. The most prominent HLA-A, C, B haplotypes were HLA-A*24, Cw*04, B*35, and HLA-A*02, Cw*04, B*35, each of them observed in 21/246 individuals. The most frequent HLA-A, B, DRB1 haplotype was HLA-A*02, B*18, DRB1*1104 seen in 20/246 individuals, while the haplotype HLA-DRB1*1104, DQB1*0301, DPB1*0401 was found in 49/246 individuals. Finally, the haplotype DRB1*1104, DQA1*0501, DQB1*0301 was observed in 83/246 individuals. These results can be used for the estimation of the probability of finding a suitable haplotypically identical related or unrelated stem cell donor for patients of Greek ancestry. In addition, they can be used for HLA and disease association studies, genetic distance studies in the Balkan and Mediterranean area, paternity cases, and matching probability calculations for the optimal allocation of kidneys in Greece.

  2. Epstein-Barr virus infection of CR2-transfected epithelial cells reveals the presence of MHC class II on the virion.

    PubMed

    Knox, P G; Young, L S

    1995-10-20

    Epithelial cell lines transfected with the Epstein-Barr virus (EBV) receptor CR2 are susceptible to infection by EBV. Following infection with certain EBV strains we found that these cells became positive for MHC class II. The class II was confirmed as being of viral and not target cell origin by immunostaining with HLA-specific monoclonal antibodies. Electron microscopic immunogold staining confirmed the presence of MHC class II on the surface of the virion. While some MHC class I was also found on the EB virion, other cell surface molecules were absent. Dual color immunofluorescence and confocal microscopy analysis demonstrated colocalization of class II with EBV-encoded structural proteins (MA and VCA) in infected epithelial cells. However, preincubation of EBV with antibodies against either MHC class I or MHC class II failed to affect either EBV binding or EBV infection. The presence of MHC on the surface of the EB virion may be a consequence of the intracellular pathways through which productive virus exits from the cell and may influence the target cell tropism of EBV. PMID:7483258

  3. Transcription analysis, physical mapping, and molecular characterization of a nonclassical human leukocyte antigen class I gene.

    PubMed Central

    Chorney, M J; Sawada, I; Gillespie, G A; Srivastava, R; Pan, J; Weissman, S M

    1990-01-01

    The human major histocompatibility complex contains approximately 20 class I genes, pseudogenes, and gene fragments. These include the genes for the three major transplantation antigens, HLA-A, HLA-B, and HLA-C, as well as a number of other genes or pseudogenes of unknown biological significance. Most of the latter have C + G-rich sequences in their 5' ends that are unmethylated in the B-lymphoblastoid cell line 3.1.0. We investigated one of these genes, HLA-H, in more detail. The gene is, overall, strongly homologous in sequence to HLA-A but differs in several potentially significant ways, including changes in conserved promoter sequences, a single-base deletion producing a translation termination codon in exon 4, and a region of sequence divergence downstream of the transcribed portion of the gene. Nevertheless, mouse L cells transfected with the gene accumulated small amounts of apparently full-length polyadenylated RNA. A portion of this RNA begins at the transcription site predicted by analogy to certain class I cDNA clones, while another portion appears to begin shortly upstream. L cells transfected with a hybrid gene containing the first three exons of HLA-H and the last five exons of HLA-B27 accumulated full-length HLA transcripts at the same level as cells transfected with an HLA-B27 gene; both levels are at least 15- to 20-fold higher than that directed by HLA-H alone. In addition, we isolated a cDNA clone for HLA-H that contains a portion of intron 3 attached to a normally spliced sequence comprising exons 4 through 8. These results suggest that low levels of translatable mRNA for the truncated class I heavy chain encoded by HLA-H are produced under physiologic circumstances and that sequences 3' of intron 3 decrease the levels of stable transcripts. Images PMID:2294403

  4. Association of HLA-A and Non-Classical HLA Class I Alleles

    PubMed Central

    Carlini, Federico; Ferreira, Virginia; Buhler, Stéphane; Tous, Audrey; Eliaou, Jean-François; René, Céline; Chiaroni, Jacques; Picard, Christophe; Di Cristofaro, Julie

    2016-01-01

    The HLA-A locus is surrounded by HLA class Ib genes: HLA-E, HLA-H, HLA-G and HLA-F. HLA class Ib molecules are involved in immuno-modulation with a central role for HLA-G and HLA-E, an emerging role for HLA-F and a yet unknown function for HLA-H. Thus, the principal objective of this study was to describe the main allelic associations between HLA-A and HLA-H, -G, -F and -E. Therefore, HLA-A, -E, -G, -H and -F coding polymorphisms, as well as HLA-G UnTranslated Region haplotypes (referred to as HLA-G UTRs), were explored in 191 voluntary blood donors. Allelic frequencies, Global Linkage Disequilibrium (GLD), Linkage Disequilibrium (LD) for specific pairs of alleles and two-loci haplotype frequencies were estimated. We showed that HLA-A, HLA-H, HLA-F, HLA-G and HLA-G UTRs were all in highly significant pairwise GLD, in contrast to HLA-E. Moreover, HLA-A displayed restricted associations with HLA-G UTR and HLA-H. We also confirmed several associations that were previously found to have a negative impact on transplantation outcome. In summary, our results suggest complex functional and clinical implications of the HLA-A genetic region. PMID:27701438

  5. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule.

    PubMed

    Wynne, James W; Woon, Amanda P; Dudek, Nadine L; Croft, Nathan P; Ng, Justin H J; Baker, Michelle L; Wang, Lin-Fa; Purcell, Anthony W

    2016-06-01

    Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses. PMID:27183594

  6. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    PubMed

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish. PMID:26693717

  7. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    PubMed Central

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  8. Promoter accessibility within the environment of the MHC is affected in class II-deficient combined immunodeficiency.

    PubMed Central

    Kara, C J; Glimcher, L H

    1993-01-01

    Class II-deficient combined immunodeficiency (CID) is a hereditary disease resulting in abrogation of transcription of the class II genes of the major histocompatibility complex, due to a defect in a trans-acting regulatory factor. Cell lines from certain CID patients lack factor binding at multiple sites in class II promoters in vivo. A mutation in one of the promoter binding proteins could explain this 'bare' phenotype only if these factors bind cooperatively or in a temporal hierarchy. Alternatively, the mutation could affect the configuration of the promoter within the MHC locus. Here, we provide evidence that the factor(s) defective in class II-deficient CID controls the accessibility of class II promoters within the environment of the MHC. The in vivo occupancy of wild type and mutated class II promoter constructs was examined in stable transfectants of normal and CID-derived cell lines. The CID promoter phenotype could not be reproduced in a normal cell line by eliminating binding at any one promoter element, suggesting that these factors bind independently, both spatially and temporally. In contrast, promoter occupancy was partially restored in two CID lines at a randomly integrated wild type promoter, implying that the promoter is inaccessible to factors in its native environment, but accessible when moved to another location in the genome. Images PMID:8428578

  9. Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations.

    PubMed

    Takeshima, S-N; Giovambattista, G; Okimoto, N; Matsumoto, Y; Rogberg-Muñoz, A; Acosta, T J; Onuma, M; Aida, Y

    2015-12-01

    Holstein cattle dominate the global milk production industry because of their outstanding milk production, however, this breed is susceptible to tropical endemic pathogens and suffers from heat stress and thus fewer Holstein populations are raised in tropical areas. The bovine major histocompatibility complex (BoLA)-DRB3 class II gene is used as a marker for disease and immunological traits, and its polymorphism has been studied extensively in Holstein cattle from temperate and cold regions. We studied the genetic diversity of the BoLA-DRB3 gene in South American Holstein populations to determine whether tropical populations have diverged from those bred in temperate and cold regions by selection and/or crossbreeding with local native breeds. We specifically studied Exon 2 of this gene from 855 South American Holstein individuals by a polymerase chain reaction (PCR) sequence-based typing method. We found a high degree of gene diversity at the allelic (Na > 20 and He > 0.87) and molecular (π > 0.080) levels, but a low degree of population structure (FST = 0.009215). A principal components analysis and tree showed that the Bolivian subtropical population had the largest genetic divergence compared with Holsteins bred in temperate or cold regions, and that this population was closely related to Bolivian Creole cattle. Our results suggest that Holstein genetic divergence can be explained by selection and/or gene introgression from local germplasms. This is the first examination of BoLA-DRB3 in Holsteins adapted to tropical environments, and contributes to an ongoing effort to catalog bovine MHC allele frequencies by breed and location.

  10. Premalignant quiescent melanocytic nevi do not express the MHC class I chain-related protein A.

    PubMed

    Fuertes, Mercedes B; Rossi, Lucas E; Peralta, Carlos M; Cabrera, Hugo N; Allevato, Miguel A; Zwirner, Norberto W

    2011-01-01

    The MHC class I chain-related protein A (MICA) is an inducible molecule almost not expressed by normal cells but strongly up-regulated in tumor cells. MICA-expressing cells are recognized by natural killer (NK) cells, CD8+ abTCR and gdTCR T lymphocytes through the NKG2D receptor. Engagement of NKG2D by MICA triggers IFN-g secretion and cytotoxicity against malignant cells. Although most solid tumors express MICA and this molecule is a target during immune surveillance against tumors, it has been observed that high grade tumors from different histotypes express low amounts of cell surface MICA due to a metalloprotease-induced shedding. Also, melanomas develop after a complex process of neotransformation of normal melanocytes. However, the expression of MICA in premalignant stages (primary human quiescent melanocytic nevi) remains unknown. Here, we assessed expression of MICA by flow cytometry using cell suspensions from 15 primary nevi isolated from 11 patients. When collected material was abundant, cell lysates were prepared and MICA expression was also analyzed by Western blot. We observed that MICA was undetectable in the 15 primary nevi (intradermic, junction, mixed, lentigo and congenital samples) as well as in normal skin, benign lesions (seborrheic keratosis), premalignant lesions (actinic keratosis) and benign basocellular cancer. Conversely, a primary recently diagnosed melanoma showed intense cell surface MICA. We conclude that the onset of MICA expression is a tightly regulated process that occurs after melanocytes trespass the stage of malignant transformation. Thus, analysis of MICA expression in tissue sections of skin samples may constitute a useful marker to differentiate between benign and malignant nevi.

  11. Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina.

    PubMed

    Hauswaldt, J Susanne; Stuckas, H; Pfautsch, S; Tiedemann, R

    2007-06-01

    While the anuran Xenopus comprises one of the best characterized nonmammalian taxa regarding the major histocompatibility complex (MHC), the organization of this gene complex has never been studied in other anurans, and information on amphibian MHC (other than Xenopus) is generally very scarce. Here, we describe the characterization of the first MHC class II B cDNA sequences from a nonmodel anuran species, the European fire-bellied toad (Bombina bombina). We isolated two transcript sequences differing substantially in amino acid composition and length within the beta2 domain. To investigate the variability of the peptide binding region in this species, we sequenced a 158-bp large fragment from wild B. bombina (n = 20) and identified eight distinct alleles. All substitutions but one were nonsynonymous, and many of the highly polymorphic sites corresponded with amino acid positions known to be involved in antigen binding. The level of variation we found in B. bombina was similar compared to that previously found in a comparable sample of a wild urodelan species, Ambystoma tigrinum, and to that found in Xenopus laevis. Based on the cDNA data and the individual's allelic diversity, we conclude that Bombina possesses at least two class II B loci. With our new beta1 primers, we were able to generate sequences in other species of anurans. We provide here a first phylogenetic analysis of this gene in amphibians.

  12. Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A

    PubMed Central

    2006-01-01

    The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocompatibility Class II (MHC II) DRA gene in a way independent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that correlate with DRA transcription after TSA treatment. We found that a dramatic increase in promoter linked histone acetylation is followed by an increase in Histone H3 lysine 4 methylation and a decrease of lysine 9 methylation. Fluorescence recovery after photobleaching (FRAP) experiments showed that TSA increases the mobility of HDAC while decreasing the mobility of the class II enhanceosome factor RFX5. These data, in combination with ChIP experiments, indicate that the TSA-mediated induction of DRA transcription involves HDAC relocation and enhanceosome stabilization. In order to gain a genome-wide view of the genes responding to inhibition of deacetylases, we compared the transcriptome of B cells before and after TSA treatment using Affymetrix microarrays. This analysis showed that in addition to the DRA gene, the entire MHC II family and the adjacent histone cluster that are located in chromosome 6p21-22 locus are strongly induced by TSA. A complex pattern of gene reprogramming by TSA involves immune recognition, antiviral, apoptotic and inflammatory pathways and extends the rationale for using Histone Deacetylase Inhibitors (HDACi) to modulate the immune response. PMID:16452299

  13. Diversified Anchoring Features the Peptide Presentation of DLA-88*50801: First Structural Insight into Domestic Dog MHC Class I.

    PubMed

    Xiao, Jin; Xiang, Wangzhen; Chai, Yan; Haywood, Joel; Qi, Jianxun; Ba, Limin; Qi, Peng; Wang, Ming; Liu, Jun; Gao, George F

    2016-09-15

    Canines represent a crucial animal model for studying human diseases and organ transplantation, as well as the evolution of domestic animals. MHCs, with a central role in cellular immunity, are commonly used in the study of dog population genetics and genome evolution. However, the molecular basis for the peptide presentation of dog MHC remains largely unknown. In this study, peptide presentation by canine MHC class I DLA-88*50801 was structurally determined, revealing diversified anchoring modes of the binding peptides. Flexible and large pockets composed of both hydrophobic and hydrophilic residues can accommodate pathogen-derived peptides with diverse anchor residues, as confirmed by thermostability measurements. Furthermore, DLA-88*50801 contains an unusual α2 helix with a large coil in the TCR contact region. These results further our understanding of canine T cell immunity through peptide presentation of MHC class I and shed light on the molecular basis for vaccine development for canine infectious diseases, for example, canine distemper virus. PMID:27511732

  14. Genetic variation and balancing selection at MHC class II exon 2 in cultured stocks and wild populations of orange-spotted grouper (Epinephelus coioides).

    PubMed

    Meng, Z N; Yang, S; Fan, B; Wang, L; Lin, H R

    2012-11-12

    Major histocompatibility complex (MHC) molecules play vital roles in triggering adaptive immune responses and are considered the most variable molecules in vertebrates. Recently, many studies have focused on the polymorphism and evolution mode of MHC in both model and non-model organisms. Here, we analyzed the MHC class II exon 2-encoding β chain in comparison with the mitochondrial Cytb gene and our previously published microsatellite data set in three cultured stocks and four wild populations of the orange-spotted grouper (Epinephelus coioides) in order to investigate its genetic variation and mechanism of evolution. We detected one to four alleles in one individual, suggesting that at least two loci exist in the orange-spotted grouper, as well as a particularly high level of allelic diversity at the MHC loci. Furthermore, the cultured stocks exhibited reduced allelic diversity compared to the wild counterparts. We found evidence of balancing selection at MHC class II exon 2, and codon sites under positive selection were largely correspondent to the protein-binding region. In addition, MHC class II exon 2 revealed significant differences between population differentiation patterns from the neutral mitochondrial Cytb and microsatellites, which may indicate local adaptation at MHC loci in orange-spotted grouper originating from the South China Sea and Southeast Asia.

  15. Evolution of Mhc Class i Complex Region with Special Reference to Fragmentary Line Sequences

    NASA Astrophysics Data System (ADS)

    Tateno, Yoshio; Fukami-Kobayashi, Kaoru; Inoko, Hidetoshi

    2008-03-01

    We reviewed the origin and evolution of the two pairs of immune genes, (MHC-B and MHC-C) and (MICA and MICB) in man, chimpanzee and rhesus monkey based mainly on our previous work. Since those genes were well known to have been subject to strong natural selection in evolution, they themselves were not suitable for our study. We thus took another approach to use fragmented and nonfunctional LINEs that had coevolved with the two pairs in the same genomic fragments. Our results showed that MHC-B and MHC-C duplicated about 22 Mry (million years) ago, and MICA and MICB duplicated about 14 Myr ago. Interestingly, rhesus monkey was found not to have either pair but many repeats similar to MHC-B. Therefore, we estimated the divergence time of the monkey, and found that it diverged out from a common ancestor of man and chimpanzee about 30 Myr ago. The divergence time was consistent with the duplication times of the two pairs of immune genes. Based on our results we would predict that orangutan and gorilla also have the two pairs, because the both primate species are considered to have diverged less than 14 Myr ago.

  16. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRbeta motif and NF-kappaB cytoplasmic sequestration.

    PubMed

    Li, Hui; Zhan, Tailan; Li, Chang; Liu, Mugen; Wang, Qing K

    2009-10-16

    Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXRbeta binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-alpha-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-kappaB. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-alpha (which can activate NF-kappaB directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated. PMID:19665994

  17. MHC class I BFIV gene polymorphisms in four Chinese native chicken breeds.

    PubMed

    Dai, Yin; Liu, Xue-Lan; Tang, Qing-Feng; Hu, Xiao-Miao; Shen, Xue-Huai; Zhang, Dan-Jun

    2016-09-01

    The major histocompatibility complex (MHC) includes the most polymorphic genes in vertebrates, and balancing selection has been proposed as a main evolutionary force. Here we present one of the first data sets examining the genetic characteristics of chicken MHC I BFIV molecules in four Chinese native breeds, sourced from different regions in China. In all, 89 BFIV alleles were isolated from 102 individuals sampled, and 13 repeated alleles were observed. No significant correlation was found between genetic differentiation and geographical distance in the phylogenetic tree. BFIV genes exhibited a high level of nucleotide polymorphisms, and most of the polymorphic sites were located in the peptide-binding region (PBR) encoded in exons 2 and 3. A comparison of the three-dimensional structures of PBRs in chicken BFIV and human HLA-A molecules revealed evident structural and functional similarities. The results suggested that MHC I molecules had similar structural features in different species. PMID:27168230

  18. Recent advances in viral evasion of the MHC Class I processing pathway.

    PubMed

    Schuren, Anouk Bc; Costa, Ana I; Wiertz, Emmanuel Jhj

    2016-06-01

    T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.

  19. Heligmosomoides polygyrus infection is associated with lower MHC class II gene expression in Apodemus flavicollis: indication for immune suppression?

    PubMed

    Axtner, Jan; Sommer, Simone

    2011-12-01

    Due to their key role in recognizing foreign antigens and triggering the subsequent immune response the genes of the major histocompatibility complex (MHC) provide a potential target for parasites to attack in order to evade detection and expulsion from the host. A diminished MHC gene expression results in less activated T cells and might serve as a gateway for pathogens and parasites. Some parasites are suspected to be immune suppressors and promote co-infections of other parasites even in other parts of the body. In our study we found indications that the gut dwelling nematode Heligmosomoides polygyrus might exert a systemic immunosuppressive effect in yellow-necked mice (Apodemus flavicollis). The amount of hepatic MHC class II DRB gene RNA transcripts in infected mice was negatively associated with infection intensity with H. polygyrus. The hepatic expression of immunosuppressive cytokines, such as transforming growth factor β and interleukin 10 was not associated with H. polygyrus infection. We did not find direct positive associations of H. polygyrus with other helminth species. But the prevalence and infection intensity of the nematodes Syphacia stroma and Trichuris muris were higher in multiple infected individuals. Furthermore, our data indicated antagonistic effects in the helminth community of A. flavicollis as cestode infection correlated negatively with H. polygyrus and helminth species richness. Our study shows that expression analyses of immune relevant genes can also be performed in wildlife, opening new aspects and possibilities for future ecological and evolutionary research. PMID:21983561

  20. Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume's pheasant, Syrmaticus humiae.

    PubMed

    Chen, Weicai; Bei, Yongjian; Li, Hanhua

    2015-01-01

    Major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB) exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae), which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS) was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  1. Vaccine-induced antibodies linked to bovine neonatal pancytopenia (BNP) recognize cattle major histocompatibility complex class I (MHC I).

    PubMed

    Deutskens, Fabian; Lamp, Benjamin; Riedel, Christiane M; Wentz, Eveline; Lochnit, Günter; Doll, Klaus; Thiel, Heinz-Jürgen; Rümenapf, Till

    2011-01-01

    A mysterious disease affecting calves, named bovine neonatal pancytopenia (BNP), emerged in 2007 in several European countries. Epidemiological studies revealed a connection between BNP and vaccination with an inactivated vaccine against bovine virus diarrhea (BVD). Alloantibodies reacting with blood leukocytes of calves were detected in serum and colostrum of dams, which have given birth to calves affected by BNP. To understand the linkage between vaccination and the development of alloantibodies, we determined the antigens reacting with these alloantibodies. Immunoprecipitation of surface proteins from bovine leukocytes and kidney cells using sera from dams with a confirmed case of BNP in their gestation history reacted with two dominant protein species of 44 and 12 kDa. These proteins were not detected by sera from dams, free of BVDV and not vaccinated against BVD, and from sera of animals vaccinated with a different inactivated BVD vaccine. The 44 kDa protein was identified by mass spectrometry analysis as MHC I, the other as β-2-microglobulin. The presence of major histocompatibility complex class I (MHC I) in the vaccine was confirmed by Western blot using a MHC I specific monoclonal antibody. A model of BNP pathogenesis is proposed. PMID:21878124

  2. Structural Basis for the Presentation of Tumor-Associated MHC Class II-Restricted Phosphopeptides to CD4+ T Cells

    SciTech Connect

    Li, Y.; Depontieu, F; Sidney, J; Salay, T; Engelhard, V; Hunt, D; Sette, A; Topalian, S; Mariuzza, R

    2010-01-01

    Dysregulated protein phosphorylation is a hallmark of malignant transformation. Transformation can generate major histocompatibility complex (MHC)-bound phosphopeptides that are differentially displayed on tumor cells for specific recognition by T cells. To understand how phosphorylation alters the antigenic identity of self-peptides and how MHC class II molecules present phosphopeptides for CD4{sup +} T-cell recognition, we determined the crystal structure of a phosphopeptide derived from melanoma antigen recognized by T cells-1 (pMART-1), selectively expressed by human melanomas, in complex with HLA-DR1. The structure revealed that the phosphate moiety attached to the serine residue at position P5 of pMART-1 is available for direct interactions with T-cell receptor (TCR) and that the peptide N-terminus adopts an unusual conformation orienting it toward TCR. This structure, combined with measurements of peptide affinity for HLA-DR1 and of peptide-MHC recognition by pMART-1-specific T cells, suggests that TCR recognition is focused on the N-terminal portion of pMART-1. This recognition mode appears to be distinct from that of foreign antigen complexes but is remarkably reminiscent of the way autoreactive TCRs engage self- or altered self-peptides, consistent with the tolerogenic nature of tumor-host immune interactions.

  3. Mature proteins derived from Epstein-Barr virus fail to feed into the MHC class I antigenic pool.

    PubMed

    Fiebiger, Benjamin M; Moosmann, Andreas; Behrends, Uta; Mautner, Josef

    2012-12-01

    The immediate presentation of peptide epitopes on MHC class I (MHC I) after antigen expression has led to the concept that MHC I ligands are mostly derived from defective ribosomal products (DRiPs), a subset of newly synthesized proteins that are rapidly degraded by the proteasome. Whether and to what extent mature proteins contribute to the antigenic pool, however, has remained elusive. Here, we developed a conditional antigen expression system that allows studying antigen presentation from mature proteins by inducing their rapid proteasomal degradation in the absence of further antigen synthesis. Target cells in which expression of two Epstein-Barr virus (EBV) antigens was induced were rapidly recognized by antigen-specific CD8(+) T cells in a time- and dosage-dependent manner, demonstrating that antigen presentation was linked to antigen synthesis. By contrast, T cells failed to recognize target cells containing large amounts of mature protein even after induction of their rapid proteasomal degradation. Thus, the presentation of these antigens proved to be strictly dependent on protein synthesis whereas mature proteins failed to furnish the antigenic pool. These results have implications for the design of immunotherapeutic strategies that aim at targeting proteins with increased half-lives and are hence overexpressed in tumors.

  4. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leach's storm-petrel.

    PubMed

    Dearborn, Donald C; Gager, Andrea B; Gilmour, Morgan E; McArthur, Andrew G; Hinerfeld, Douglas A; Mauck, Robert A

    2015-02-01

    The major histocompatibility complex (Mhc) is subject to pathogen-mediated balancing selection and can link natural selection with mate choice. We characterized two Mhc class II B loci in Leach's storm-petrel, Oceanodroma leucorhoa, focusing on exon 2 which encodes the portion of the protein that binds pathogen peptides. We amplified and sequenced exon 2 with locus-specific nested PCR and Illumina MiSeq using individually barcoded primers. Repeat genotyping of 78 single-locus genotypes produced identical results in 77 cases (98.7%). Sequencing of messenger RNA (mRNA) from three birds confirmed expression of both loci, consistent with the observed absence of stop codons or frameshifts in all alleles. In 48 birds, we found 9 and 12 alleles at the two loci, respectively, and all 21 alleles translated to unique amino acid sequences. Unlike many studies of duplicated Mhc genes, alleles of the two loci clustered into monophyletic groups. Consistent with this phylogenetic result, interlocus gene conversion appears to have affected only two short fragments of the exon. As predicted under a paradigm of pathogen-mediated selection, comparison of synonymous and non-synonymous substitution rates found evidence of a history of positive selection at putative peptide binding sites. Overall, the results suggest that the gene duplication event leading to these two loci is not recent and that point mutations and positive selection on the peptide binding sites may be the predominant forces acting on these genes. Characterization of these loci sets the stage for population-level work on the evolutionary ecology of Mhc in this species. PMID:25416539

  5. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    PubMed Central

    2012-01-01

    Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian

  6. The major histocompatibility complex in monotremes: an analysis of the evolution of Mhc class I genes across all three mammalian subclasses.

    PubMed

    Miska, Katarzyna B; Harrison, Gavan A; Hellman, Lars; Miller, Robert D

    2002-09-01

    We report the isolation and characterization of cDNA clones of expressed, functional major histocompatibility complex class-I ( Mhc-I) genes from two species of monotremes: the duck-billed platypus and the short-beaked echidna. The cDNA clones were isolated from libraries constructed from spleen RNA, clearly establishing their expression in at least this one peripheral lymphoid organ. From the presence of conserved amino acid residues, it appears the expressed sequences encode molecules that likely function as classical Mhc-I. These clones were isolated using monotreme Mhc-I processed pseudogenes as probes. These processed pseudogenes were isolated from genomic DNA and, based on their structure, are likely independently derived in the platypus and echidna. When all the monotreme sequences were included in phylogenetic analyses, we found no apparent orthologous relationships between the platypus and echidna Mhc-I. Analyses that included a large number of Mhc-I sequences from other taxa support a separate monotreme Mhc-I clade, basal to a therian Mhc-I clade that is comprised of sequences from marsupial and placental mammals. The phylogenies also support the hypothesis that Mhc-I genes of placental mammals, marsupials, and monotremes are derived from three separate lineages of Mhc-I genes, best explained by two rounds of duplications and deletions. The first round would have occurred prior to the divergence of monotremes and therians, and the second prior to the divergence of marsupials and placental mammals. The sequences described here represent the first reported functional monotreme Mhc-I, as well as the first processed pseudogenes of any type from monotremes.

  7. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations.

    PubMed

    Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B

    2015-10-01

    Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern.

  8. Conserved 33-kb haplotype in the MHC class III region regulates chronic arthritis.

    PubMed

    Yau, Anthony C Y; Tuncel, Jonatan; Haag, Sabrina; Norin, Ulrika; Houtman, Miranda; Padyukov, Leonid; Holmdahl, Rikard

    2016-06-28

    Genome-wide association studies have revealed many genetic loci associated with complex autoimmune diseases. In rheumatoid arthritis (RA), the MHC gene HLA-DRB1 is the strongest candidate predicting disease development. It has been suggested that other immune-regulating genes in the MHC contribute to the disease risk, but this contribution has been difficult to show because of the strong linkage disequilibrium within the MHC. We isolated genomic regions in the form of congenic fragments in rats to test whether there are additional susceptibility loci in the MHC. By both congenic mapping in inbred strains and SNP typing in wild rats, we identified a conserved, 33-kb large haplotype Ltab-Ncr3 in the MHC-III region, which regulates the onset, severity, and chronicity of arthritis. The Ltab-Ncr3 haplotype consists of five polymorphic immunoregulatory genes: Lta (lymphotoxin-α), Tnf, Ltb (lymphotoxin-β), Lst1 (leukocyte-specific transcript 1), and Ncr3 (natural cytotoxicity-triggering receptor 3). Significant correlation in the expression of the Ltab-Ncr3 genes suggests that interaction of these genes may be important in keeping these genes clustered together as a conserved haplotype. We studied the arthritis association and the spliceo-transcriptome of four different Ltab-Ncr3 haplotypes and showed that higher Ltb and Ncr3 expression, lower Lst1 expression, and the expression of a shorter splice variant of Lst1 correlate with reduced arthritis severity in rats. Interestingly, patients with mild RA also showed higher NCR3 expression and lower LST1 expression than patients with severe RA. These data demonstrate the importance of a conserved haplotype in the regulation of complex diseases such as arthritis. PMID:27303036

  9. MHC restriction of synovial fluid lymphocyte responses to the triggering organism in reactive arthritis. Absence of a class I-restricted response.

    PubMed Central

    Hassell, A B; Pilling, D; Reynolds, D; Life, P F; Bacon, P A; Gaston, J S

    1992-01-01

    Synovial fluid mononuclear cells (SFMC) from patients with reactive arthritis (ReA) show marked proliferative responses to preparations of the organism triggering the arthritis. Initial studies with MHC-specific MoAbs have indicated that a significant element of these proliferative responses is mediated by class II MHC-restricted CD4+ T cells. It is imperative to establish the presence or absence of a class I-restricted response, for two reasons. Firstly, the association of ReA with the MHC class I molecule, HLA B27, raises the possibility of there being a B27-restricted response to the triggering organism. Secondly, a number of the organisms associated with ReA are intracellular pathogens, whose antigens might be expected to be presented by class I MHC molecules. In an effort to identify a class I MHC-restricted pathogen-specific response in the SFMC of ReA patients, we have assessed the proliferative responses of SFMC depleted of CD4+ T cells. Responses were grossly diminished by CD4+ T cell depletion. We also investigated Chlamydia-specific cytotoxicity in the SFMC of patients with sexually acquired ReA in a system using productive chlamydial infection to produce both targets and effectors. Significant antigen specific cytotoxicity was not seen. These experiments do not provide evidence to support the existence of pathogen-specific responses by CD8+, class I-restricted synovial fluid T cells in ReA. PMID:1606728

  10. NK cells infiltrating a MHC class I-deficient lung adenocarcinoma display impaired cytotoxic activity toward autologous tumor cells associated with altered NK cell-triggering receptors.

    PubMed

    Le Maux Chansac, Béatrice; Moretta, Alessandro; Vergnon, Isabelle; Opolon, Paule; Lécluse, Yann; Grunenwald, Dominique; Kubin, Marek; Soria, Jean-Charles; Chouaib, Salem; Mami-Chouaib, Fathia

    2005-11-01

    NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.

  11. The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway.

    PubMed

    Janßen, Linda; Ramnarayan, Venkat Raman; Aboelmagd, Mohamed; Iliopoulou, Maro; Hein, Zeynep; Majoul, Irina; Fritzsche, Susanne; Halenius, Anne; Springer, Sebastian

    2016-01-01

    In the presence of the murine cytomegalovirus (mCMV) gp40 (m152) protein, murine major histocompatibility complex (MHC) class I molecules do not reach the cell surface but are retained in an early compartment of the secretory pathway. We find that gp40 does not impair the folding or high-affinity peptide binding of the class I molecules but binds to them, leading to their retention in the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi, most likely by retrieval from the cis-Golgi to the ER. We identify a sequence in gp40 that is required for both its own retention in the early secretory pathway and for that of class I molecules.

  12. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  13. CD4+CD25− T cells transduced to express MHC class I-restricted epitope specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model

    PubMed Central

    Chhabra, Arvind; Yang, Lili; Wang, Pin; Comin-Anduix, Begoña; Das, Raja; Chakraborty, Nitya G.; Ray, Swagatam; Mehrotra, Shikhar; Yang, Haiguang; Hardee, Cinnamon L.; Hollis, Roger; Dorsky, David I.; Koya, Richard; Kohn, Donald B.; Ribas, Antoni; Economou, James S.; Baltimore, David; Mukherji, Bijay

    2009-01-01

    Cytolytic T cell-centric active specific and adoptive immunotherapeutic approaches might benefit from the simultaneous engagement of CD4+ T cells. Considering the difficulties in simultaneously engaging CD4+ and CD8+ T cells in tumor immunotherapy -- especially in an antigen specific manner -- “redirecting” CD4+ T cells to MHC class I-restricted epitopes through engineered expression of MHC class I-restricted epitope specific T cell receptors (TCR) in CD4+ T cells has emerged as a strategic consideration. Such TCR engineered CD4+ T cells have been shown to be capable of synthesizing cytokines as well as lysing target cells. We have carried out a critical examination of functional characteristics of CD4+ T cells engineered to express the α and β chains of a high functional avidity TCR specific for the melanoma epitope, MART-127–35 (M1), as a prototypic human tumor antigen system. We found that unpolarized CD4+CD25− T cells engineered to express the M1 TCR selectively synthesize Th1 cytokines and exhibit a potent antigen-specific lytic granule exocytosis-mediated cytolytic effector function of comparable efficacy to that of CD8+ CTL. Such TCR engineered CD4+ T cells, therefore, might be useful in clinical immunotherapy. PMID:18606658

  14. Combining molecular evolution and environmental genomics to unravel adaptive processes of MHC class IIB diversity in European minnows (Phoxinus phoxinus)

    PubMed Central

    Collin, Helene; Burri, Reto; Comtesse, Fabien; Fumagalli, Luca

    2013-01-01

    Abstract Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context. Using next-generation sequencing, the present manuscript identifies the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of a cyprinid fish: the European minnow (Phoxinus phoxinus). We highlight that the relative importance of neutral

  15. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    PubMed

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  16. Coevolution of MHC genes (LMP/TAP/class Ia; NKT-class Ib; NKp30-B7H6): Lessons from cold-blooded vertebrates

    PubMed Central

    Ohta, Yuko; Flajnik, Martin F.

    2015-01-01

    Summary Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  17. Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates.

    PubMed

    Ohta, Yuko; Flajnik, Martin F

    2015-09-01

    Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  18. Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules.

    PubMed

    Saraav, Iti; Pandey, Kirti; Sharma, Monika; Singh, Swati; Dutta, Prasun; Bhardwaj, Anshu; Sharma, Sadhna

    2016-10-01

    Limited efficacy of Bacillus Calmette-Guérin vaccine has raised the need to explore other immunogenic candidates to develop an effective vaccine against Mycobacterium tuberculosis (Mtb). Both CD4+ and CD8+ T cells play a critical role in host immunity to Mtb. Infection of macrophages with Mtb results in upregulation of mymA operon genes thereby suggesting their importance as immune targets. In the present study, after exclusion of self-peptides mymA operon proteins of Mtb were analyzed in silico for the presence of Human Leukocyte Antigen (HLA) Class I and Class II binding peptides using Bioinformatics and molecular analysis section, NetMHC 3.4, ProPred and Immune epitope database software. Out of 56 promiscuous epitopes obtained, 41 epitopes were predicted to be antigenic for MHC Class I. In MHC Class II, out of 336 promiscuous epitopes obtained, 142 epitopes were predicted to be antigenic. The comparative bioinformatics analysis of mymA operon proteins found Rv3083 to be the best vaccine candidate. Molecular docking was performed with the most antigenic peptides of Rv3083 (LASGAASVV with alleles HLA-B51:01, HAATSGTLI with HLA-A02, IVTATGLNI and EKIHYGLKVNTA with HLA-DRB1_01:01) to study the structural basis for recognition of peptides by various HLA molecules. The software binding prediction was validated by the obtained molecular docking score of peptide-HLA complex. These peptides can be further investigated for their immunological relevance in patients of tuberculosis using major histocompatibility complex tetramer approach. PMID:27389362

  19. Induction of tolerance against the arthritogenic antigen with type-II collagen peptide-linked soluble MHC class II molecules

    PubMed Central

    Park, Yoon-Kyung; Jung, Sundo; Park, Se-Ho

    2016-01-01

    In murine collagen-induced arthritis (CIA), self-reactive T cells can recognize peptide antigens derived from type-II collagen (CII). Activation of T cells is an important mediator of autoimmune diseases. Thus, T cells have become a focal point of study to treat autoimmune diseases. In this study, we evaluated the efficacy of recombinant MHC class II molecules in the regulation of antigen-specific T cells by using a self peptide derived from CII (CII260-274; IAGFKGEQGPKGEPG) linked to mouseI-Aq in a murine CIA model. We found that recombinant I-Aq/CII260-274 molecules could be recognized by CII-specific T cells and inhibit the same T cells in vitro. Furthermore, the development of CIA in mice was successfully prevented by in vivo injection of recombinant I-Aq/CII260-274 molecules. Thus, treatment with recombinant soluble MHC class II molecules in complex with an immunodominant self-peptide might offer a potential therapeutic for chronic inflammation in autoimmune disease such as rheumatoid arthritis. [BMB Reports 2016; 49(6): 331-336 PMID:26779996

  20. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    PubMed

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  1. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  2. The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes.

    PubMed

    Rodriguez-Nunez, Ivan; Wcisel, Dustin J; Litman, Ronda T; Litman, Gary W; Yoder, Jeffrey A

    2016-04-01

    Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor.

  3. The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes.

    PubMed

    Rodriguez-Nunez, Ivan; Wcisel, Dustin J; Litman, Ronda T; Litman, Gary W; Yoder, Jeffrey A

    2016-04-01

    Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor. PMID:26801775

  4. Cytolytic T cells recognize a chimeric MHC class I antigen expressed in influenza A infected transgenic mice.

    PubMed Central

    Jefferies, W A; Rüther, U; Wagner, E F; Kvist, S

    1988-01-01

    A chimeric H-2Kd/Kk gene, called pC31, contains the extracellular alpha 1 domain of Kd origin whereas the rest of the molecule is of Kk origin. Disruption of the syngeneic alpha 1-alpha 2 structure results in a total abrogation of the function of the C31 protein as a restriction element for H-2Kd and Kk restricted T cells during virus infection. In an attempt to obtain information on the functional polymorphism of MHC class I antigens as restriction elements, we have introduced the pC31 gene into the germ line of C3H/He mice (H-2k). The pC31 gene was transcribed in all tissues examined and the expression pattern paralleled the endogenous H-2Kk gene. However, the mRNA for the transgene was approximately 10-times more abundant, which was reflected in an elevated expression of the C31 protein in transgenic splenocytes. Most of the C31 antigen was found intracellularly. The C31 antigen could condition transgenic cytotoxic T lymphocytes in a specific manner during influenza A virus infection and functioned as the restricting element during T cell lysis of the infected cells. These results suggest that entire exons may be exchanged between MHC class I genes and that this exchange can generate novel and functional restriction elements. Images PMID:2850165

  5. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers

    PubMed Central

    Meyer, Abbie L.; Trollmo, Christina; Crawford, Frances; Marrack, Philippa; Steere, Allen C.; Huber, Brigitte T.; Kappler, John; Hafler, David A.

    2000-01-01

    We characterized antigen-specific CD4+ T cells in six patients with treatment-resistant Lyme arthritis, using an HLA-DRB1*0401 major histocompatibility complex (MHC) class II tetramer covalently loaded with OspA164–175, an immunodominant epitope of Borrelia burgdorferi. Direct analysis of OspA-tetramer binding CD4+ cells in patients expressing the HLA-DRB1*0401 allele revealed frequencies of between <0.005 and 0.1% in peripheral blood (n = 6), and between <0.005 and 3.1% in synovial fluid (n = 3). OspA-tetramer+CD4+ cells were directly cloned at 1 cell per well and expanded by mitogen and IL-2 on allogeneic feeder cells. As measured by [3H]thymidine incorporation, 95% of 168 T cell clones from synovial fluid binding the OspA-tetramer were antigen-reactive. Clones generated from peripheral blood revealed a different pattern of responsiveness when compared with clones generated from synovial fluid, as measured by proliferation, IFN-γ, and IL-13 secretion. These clones, selected on the basis of their peptide binding, also responded to whole protein, but with a different cytokine profile. Our studies demonstrate that MHC class II tetramers can be used in humans to directly identify, isolate, and characterize antigen-reactive T cells from an inflammatory compartment. PMID:11005833

  6. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules.

    PubMed

    Berkers, Celia R; de Jong, Annemieke; Schuurman, Karianne G; Linnemann, Carsten; Meiring, Hugo D; Janssen, Lennert; Neefjes, Jacques J; Schumacher, Ton N M; Rodenko, Boris; Ovaa, Huib

    2015-11-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I-restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags.

  7. Increased susceptibility to Strongyloides venezuelensis infection is related to the parasite load and absence of major histocompatibility complex (MHC) class II molecules.

    PubMed

    Rodrigues, Rosângela Maria; Cardoso, Cristina Ribeiro; Gonçalves, Ana Lúcia Ribeiro; Silva, Neide Maria; Massa, Virgínia; Alves, Ronaldo; Ueta, Marlene Tiduko; Silva, João Santana; Costa-Cruz, Julia Maria

    2013-11-01

    In human and murine models strongyloidiasis induce a Th2 type response. In the current study we investigated the role of different loads of Strongyloides venezuelensis in the immune response raised against the parasite and the participation of the major histocompatibility complex (MHC) class II molecule in the disease outcome in face of the different parasite burden. The C57BL/6 wild type (WT) and MHC II(-/-) mice were individually inoculated by subcutaneous injection with 500 or 3000 S. venezuelensis L3. The MHC II(-/-) mice infected with 3000L3 were more susceptible to S. venezuelensis infection when compared with WT groups, in which the parasite was completely eliminated. The production of Th2 cytokines and specific IgG1 or IgE antibodies against parasite were significantly lowered in MHC II(-/-) infected mice with different larvae inoculums. The infection of MHC II(-/-) mice with S. venezuelensis induced slight inflammatory alterations in the small intestine, and these lesions were lower when compared with WT mice, irrespective of the parasite load utilized to infect animals. Finally, we concluded that MHC class II molecules are essential in the immune response against S. venezuelensis mainly when infection occurs with high parasite inoculum.

  8. Structural Basis for the Recognition of Mutant Self by a Tumor-Specific, MHC Class II-Restricted T Cell Receptor

    SciTech Connect

    Deng,L.; Langley, R.; Brown, P.; Xu, G.; Teng, L.; Wang, Q.; Gonzales, M.; Callender, G.; Nishimura, M.; et al.

    2007-01-01

    Structural studies of complexes of T cell receptor (TCR) and peptide-major histocompatibility complex (MHC) have focused on TCRs specific for foreign antigens or native self. An unexplored category of TCRs includes those specific for self determinants bearing alterations resulting from disease, notably cancer. We determined here the structure of a human melanoma-specific TCR (E8) bound to the MHC molecule HLA-DR1 and an epitope from mutant triosephosphate isomerase. The structure had features intermediate between 'anti-foreign' and autoimmune TCR-peptide-MHC class II complexes that may reflect the hybrid nature of altered self. E8 manifested very low affinity for mutant triosephosphate isomerase-HLA-DR1 despite the highly tumor-reactive properties of E8 cells. A second TCR (G4) had even lower affinity but underwent peptide-specific formation of dimers, suggesting this as a mechanism for enhancing low-affinity TCR-peptide-MHC interactions for T cell activation.

  9. Molecular cloning, expression pattern, and 3D structural analysis of the MHC class IIB gene in the Chinese longsnout catfish (Leiocassis longirostris).

    PubMed

    Shen, Tong; Xu, Shixia; Yang, Mei; Pang, Shuying; Yang, Guang

    2011-05-15

    Major histocompatibility complex (MHC) class I and class II molecules encode glycoproteins which mediate the specificity of the vertebrate adaptive immune response. In this study, MHC class IIB gene from the Chinese longsnout catfish (Leiocassis longirostris) was cloned and sequenced, which encoded a predicted protein of 248 amino acids (28.06 kDa) containing a signal peptide, a beta 1 domain, a beta 2 domain, a connecting peptide, a transmembrane region, and a cytoplasmic tail. Using PCR with primers designed from known fish MHC class IIB sequences followed by elongation of the 5' and 3' ends using rapid amplification of cDNA ends (RACE), the full-length cDNA of longsnout catfish MHC class IIB was identified to be 1293 bp, consisting of a 26 bp 5'-terminal untranslated region (UTR), a 520 bp 3'-UTR, and a 747 bp open reading frame (ORF) bearing characteristics of the immunoglobulin C-type 1 (IGc1) family. The deduced amino acid sequences of the Chinese longsnout catfish MHC class IIB gene had 58-75% identity with those of other fishes. Six class IIB alleles were identified from five individuals. At most two different alleles observed in each individual may infer the existence of a single locus of class IIB gene in the Chinese longsnout catfish genome. An extensive study of polymorphism was examined in 60 individuals. A total of 11 haplotypes of exon 2 were detected in the sampled Chinese longsnout catfish. The rates of nonsynonymous substitutions (d(N)) occurred at a higher frequency than that of synonymous substitutions (d(S)), suggesting the polymorphism of exon 2 seemed to be maintained by the balancing selection. By using long PCR technique, the genomic sequence was further identified to be 2345 bp in length, which contained six exons and five introns. Interestingly, a 98 bp intron 5 cut the 3'-UTR into two parts. Real-time quantitative RT-PCR demonstrated high expression of MHC IIB in gills, spleen, head kidney, and intestine, moderate expression in liver and

  10. A Novel HURRAH Protocol Reveals High Numbers of Monomorphic MHC Class II Loci and Two Asymmetric Multi-Locus Haplotypes in the Père David's Deer

    PubMed Central

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-01

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075

  11. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance.

    PubMed

    York, Ian A; Brehm, Michael A; Zendzian, Sophia; Towne, Charles F; Rock, Kenneth L

    2006-06-13

    CD8(+) T cells respond to short peptides bound to MHC class I molecules. Although most antigenic proteins contain many sequences that could bind to MHC class I, few of these peptides actually stimulate CD8(+) T cell responses. Moreover, the T cell responses that are generated often follow a very reproducible hierarchy to different peptides for reasons that are poorly understood. We find that the loss of a single enzyme, endoplasmic reticulum aminopeptidase 1 (ERAP1), in the antigen-processing pathway results in a marked shift in the hierarchy of immunodominance in viral infections, even when the responding T cells have the same T cell receptor repertoire. In mice, ERAP1 is the major enzyme that trims precursor peptides in the endoplasmic reticulum and, in this process, can generate or destroy antigenic peptides. Consequently, when ERAP1 is lost, the immune response to some viral peptides is reduced, to others increased, and to yet others unchanged. Therefore, many epitopes must be initially generated as precursors that are normally trimmed by ERAP1 before binding to MHC class I, whereas others are normally degraded by ERAP1 to lengths that are too short to bind to MHC class I. Moreover, peptide trimming and the resulting abundance of peptide-MHC complexes are dominant factors in establishing immunodominance.

  12. Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression.

    PubMed

    Mottok, Anja; Woolcock, Bruce; Chan, Fong Chun; Tong, King Mong; Chong, Lauren; Farinha, Pedro; Telenius, Adèle; Chavez, Elizabeth; Ramchandani, Suvan; Drake, Marie; Boyle, Merrill; Ben-Neriah, Susana; Scott, David W; Rimsza, Lisa M; Siebert, Reiner; Gascoyne, Randy D; Steidl, Christian

    2015-11-17

    Primary mediastinal large B cell lymphoma (PMBCL) is an aggressive non-Hodgkin's lymphoma, predominantly affecting young patients. We analyzed 45 primary PMBCL tumor biopsies and 3 PMBCL-derived cell lines for the presence of genetic alterations involving the major histocompatibility complex (MHC) class II transactivator CIITA and found frequent aberrations consisting of structural genomic rearrangements, missense, nonsense, and frame-shift mutations (53% of primary tumor biopsies and all cell lines). We also detected intron 1 mutations in 47% of the cases, and detailed sequence analysis strongly suggests AID-mediated aberrant somatic hypermutation as the mutational mechanism. Furthermore, we demonstrate that genomic lesions in CIITA result in decreased protein expression and reduction of MHC class II surface expression, creating an immune privilege phenotype in PMBCL. In summary, we establish CIITA alterations as a common mechanism of immune escape through reduction of MHC class II expression in PMBCL, with potential implications for future treatments targeting microenvironment-related biology.

  13. Activated human T cells accomplish MHC class II expression through T cell-specific occupation of class II transactivator promoter III.

    PubMed

    Holling, Tjadine M; van der Stoep, Nienke; Quinten, Edwin; van den Elsen, Peter J

    2002-01-15

    Activated human T cells express HLA-DR, HLA-DQ, and HLA-DP on their surface, but the regulation and functioning of MHC class II molecules in T lymphocytes are poorly understood. Because the MHC class II transactivator (CIITA) is essential for MHC class II expression, we have investigated transcriptional activation of CIITA in activated T cells. In this study, we show that in human activated CD4(+) T cells, CIITA promoter III (CIITA-PIII) drives the expression of CIITA. The in vivo genomic footprint analysis revealed activated T cell-specific occupation of CIITA-PIII. Subsequent EMSA analysis of several promoter regions showed differences in banding pattern among activated T cells, naive T cells, primary B cells, and Raji B cells. Activating response element (ARE)-1 is shown to interact with the acute myeloid leukemia 2 transcription factor in nuclear extracts derived from both T and B cells. Interestingly, the acute myeloid leukemia 3 transcription factor was bound in nuclear extracts of T cells only. The ARE-2 sequence is able to bind CREB/activating transcription factor family members in both T and B cells. In addition, a yet unidentified Ets family member was found to interact with site C in activated T cells, whereas in B cells site C was bound by PU.1 and Pip/IFN regulatory factor 4/IFN consensus sequence binding protein for activated T cells. In Jurkat T cells, both ARE-1 and ARE-2 are crucial for CIITA-PIII activity, similar to Raji B cells. The differential banding pattern in in vivo genomic footprinting and transcription factor binding at the ARE-1 and site C between T cells and B cells probably reflects differences in CIITA-PIII activation pathways employed by these cell types. PMID:11777970

  14. Immune complexes (IC) down-regulate the basal and interferon-γ-induced expression of MHC Class II on human monocytes

    PubMed Central

    Barrionuevo, P; Beigier-Bompadre, M; De La Barrera, S; Alves-Rosa, M F; Fernandez, G; Palermo, M S; Isturiz, M A

    2001-01-01

    The interaction of Fc receptors for IgG (FcγRs) on monocytes/macrophages with immune complexes (IC) triggers regulatory and effector functions. Previous studies have shown that FcγR–IC interactions inhibit the IFN-γ-induced expression of MHC class II in murine macrophages. However, the mechanism(s) responsible for these effects have not been elucidated. In addition, whether this IC-dependent effect also occurs in human cells is not known. Taking into account the fact that IC and IFN-γ are frequently found in infections and autoimmune disorders, together with the crucial role MHC class II molecules play in the regulation of immune response, we explored the effect and mechanism of IC-induced MHC class II down-regulation in human peripheral blood mononuclear cells (PBMC). This effect was studied either in the presence or absence of IFN-γ. We demonstrate that IC exert a drastic inhibition of basal and IFN-γ-induced expression of MHC class II on human monocytes. This effect was mediated through the interaction of IC with both FcγRI and FcγRII. Moreover, similar results were obtained using supernatants from IC-treated PBMC. The IC-induced down-regulation of MHC class II is abrogated by pepstatin and phosphoramidon, supporting the role of aspartic protease(s) and metalloprotease(s) in this process. In parallel with MHC class II expression, antigen presentation was markedly inhibited in the presence of IC. PMID:11529917

  15. Differences in non-MHC restricted cytotoxic activities of human peripheral blood lymphocytes after transfusion with allogeneic leukocytes or platelets possessing class I and/or class II MHC molecules.

    PubMed

    Pócsik, E; Mihalik, R; Réti, M; Gyódi, E; Pálóczi, K; Mayer, K; Kassai, M; Herold, M; Huber, C; Petrányi, G G

    1990-12-01

    MHC-unrestricted cytotoxic activity of peripheral blood lymphocytes (PBL) from 4-6 healthy donors was investigated before and after transfusion with allogeneic leukocytes or platelets. Natural killer and lectin-dependent cellular cytotoxicity (LDCC) of PBL was tested against K562 and Raji target cells in a 4-h and 16-h 51Cr-release assay, respectively. After allotransfusion with leukocytes, we found increased cytotoxic activity of each donor's PBL against all the three targets on day 3 or 7. The highest non-specific cytotoxic activity was detected against the relatively NK resistant Raji target cells. The increase of cytotoxic activity was lowest against the LDCC target (PHA-treated Raji) cells. On the contrary, no changes in cytotoxic activity against any targets were observed after allotransfusion with platelets (possessing class I HLA antigens but no HLA class II molecules). Our results suggest that HLA class II molecules, presumably by inducing immune responses, are essential for activation/generation of non-specific killing of tumor targets after leukocyte transfusion. Thrombocytes, known to be less immunogenic than leukocytes, are not effective in in vivo enhancing of non-specific cytotoxicity. Cellular activation of PBL following leukocyte allotransfusion was confirmed by detection of elevated serum neopterin and beta-2-microglobulin levels on day 3. This was not the case after platelet allotransfusion. In addition, the expression of ICAM-1 antigen (as a molecule involved directly in MHC-unrestricted cytotoxicity) was also found to be increased in two donors' PBL on day 3 after leukocyte transfusion in contrast to transfusion with platelets.

  16. A Genome-Wide Screen for Machinery Involved in Downregulation of MHC Class I by HIV-1 Nef

    PubMed Central

    Choma, Maja K.; Lumb, Jennifer; Kozik, Patrycja; Robinson, Margaret S.

    2015-01-01

    The HIV-1-encoded protein, Nef, plays a key role in the development of AIDS. One of Nef’s functions is to keep MHC class I off the surface of infected cells, a process that requires the host proteins clathrin and AP-1. To identify other proteins involved in this pathway, we carried out a genome-wide siRNA library screen on HeLa cells co-expressing HLA-A2 and an inducible form of Nef. Out of 21,121 siRNA pools, 100 were selected for further analysis, based on their ability to either inhibit or enhance downregulation of MHC-I by Nef. When cells were treated with the same siRNA pools as those used in the screen, 79% produced a similar phenotype. However, when the cells were treated with different siRNA reagents targeting the same genes, only 16% produced a similar phenotype. This indicates that most of the hits found in the original screen are likely to have been off-target, an important concern that is often not taken into account in siRNA screening studies. Nevertheless, we identified novel host factors involved in Nef-induced downregulation of MHC-I, including four genes, MIIP, CAMSAP3, SLC6A3, and KCTD19, where multiple reagents produced a strong inhibitory effect on Nef activity. Other hits slightly below our very high stringency cutoff point may also deserve further study. Thus, our dataset is a valuable resource for scientists investigating the pathogenesis of HIV. PMID:26466362

  17. Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells.

    PubMed

    Held, Gerhard; Neumann, Frank; Sturm, Christine; Kaestner, Lars; Dauth, Nina; de Bruijn, Diederik R; Renner, Christoph; Lipp, Peter; Pfreundschuh, Michael

    2008-10-15

    SSX2 is a member of the family of cancer/testis antigens. The SSX2 derived peptide SSX2(103-111) has been shown to be presented to cytotoxic T-lymphocytes (CTL) by Major-Histocompatibility (MHC) Class-I complexes after endogenous processing, more precisely by the allele HLA-A*0201. The HLA-A*0201- and SSX2-positive melanoma cell line SK-Mel-37 but not Me275 had been shown to elicit reactivity in SSX2(103-111) specific cytotoxic T-lymphocytes. To analyze the correlation between SSX2(103-111) presentation and T-cell stimulation, we intended to visualize presentation of SSX2(103-111) in these melanoma cell lines. Fab-antibodies were established from a human phage library with specificity for SSX2(103-111)/HLA-A*0201 complexes (but non-reactive with HLA-A*0201 or SSX2(103-111) alone) and used to visualize the presentation of SSX2(103-111) in the context of HLA-A*0201 by fluorescence microscopy. Presentation of SSX2(103-111) the context of HLA-A*0201 was demonstrated for the majority of SK-Mel-37, but for only a small fraction (<1%) of Me275 as indicated by a clear membrane-staining pattern in fluorescence microscopy. The presentation of SSX2(103-111) on SK-Mel37 and Me275, but not the expression of the SSX2 protein correlated with the capability of these cells to stimulate cells of an SSX2(103-111)-specific T-cell clone. MHC-peptide specific antibodies are a valuable tool for the analysis of antigenic peptides in the context of MHC-I molecules and for the structural definition of immunodominant epitopes. PMID:18688854

  18. Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking.

    PubMed

    Mangasarian, A; Piguet, V; Wang, J K; Chen, Y L; Trono, D

    1999-03-01

    The Nef protein of primate lentiviruses triggers the accelerated endocytosis of CD4 and of class I major histocompatibility complex (MHC-I), thereby down-modulating the cell surface expression of these receptors. Nef acts as a connector between the CD4 cytoplasmic tail and intracellular sorting pathways both in the Golgi and at the plasma membrane, triggering the de novo formation of CD4-specific clathrin-coated pits (CCP). The downstream partners of Nef in this event are the adapter protein complex (AP) of CCP and possibly a subunit of the vacuolar ATPase. Whether Nef-induced MHC-I down-regulation stems from a similar mechanism is unknown. By comparing human immunodeficiency virus type 1 (HIV-1) Nef mutants for their ability to affect either CD4 or MHC-I expression, both in transient-transfection assays and in the context of HIV-1 infection, it was determined that Nef-induced CD4 and MHC-I down-regulation constitute genetically and functionally separate properties. Mutations affecting only CD4 regulation mapped to residues previously shown to mediate the binding of Nef to this receptor, such as W57 and L58, as well as to an AP-recruiting dileucine motif and to an acidic dipeptide in the C-terminal region of the protein. In contrast, mutation of residues in an alpha-helical region in the proximal portion of Nef and amino acid substitutions in a proline-based SH3 domain-binding motif selectively affected MHC-I down-modulation. Although both the N-terminal alpha-helix and the proline-rich region of Nef have been implicated in recruiting Src family protein kinases, the inhibitor herbimycin A did not block MHC-I down-regulation, suggesting that the latter process is not mediated through an activation of this family of tyrosine kinases. PMID:9971776

  19. Narrow Groove and Restricted Anchors of MHC Class I Molecule BF2*0401 Plus Peptide Transporter Restriction can Explain Disease Susceptibility of B4 Chickens

    PubMed Central

    Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F.

    2016-01-01

    The major histocompatibility complex (MHC) has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to co-evolution with the polymorphic transporters associated with antigen presentation (TAPs), which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to cytotoxic T lymphocytes (CTL), explaining the MHC-determined resistance of B21 chickens to Marek's disease. Here, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively-charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP transporter and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes. PMID:23041567

  20. Methylation status and transcriptional expression of the MHC class I loci in human trophoblast cells from term placenta

    SciTech Connect

    Guillaudeux, T.; Rodriguez, A.M.; Girr, M.

    1995-04-01

    Of the various molecular regulatory mechanisms that may be used by human trophoblast cells to down-regulate expression of HLA class I genes, we chose to investigate the methylation of DNA, generally associated with inhibition of transcription. We analyzed the methylation status of different HLA class I loci in villous and extravillous cytotrophoblast cells and in vitro-differentiated syncytiotrophoblast, purified from human term placenta, as well as in the human trophoblast-derived JAR and JEG-3 cell lines. We then compared methylation status and transcriptional activity. An inverse relationship was established between JAR and JEG-3: HLA-A, -B, and -G are methylated and repressed in JAR, whereas in JEG-3, HLA-A is methylated and repressed but HLA-B and -G are partially methylated and transcribed. HLA-E is unmethylated and transcribed in both cell lines. Apart from HLA-E, which is always unmethylated and transcribed, no such relationship exists for the other class I loci in trophoblast cells. Whereas nonclassical HLA-G and classical HLA-A and -B class I genes are undermethylated in both cytotrophoblast and syncytiotrophoblast, they are clearly transcribed in the former but minimally transcribed in the latter subpopulation. Thus, the down-regulation of class I gene expression in the in vitro-differentiated synctiotrophoblast is unlikely to be caused by DNA methylation. Furthermore, there is no detectable expression of any class I molecule at the cell surface of either trophoblast cell subpopulation, suggesting a negative control on translation and/or on the secretory pathway to the plasma membrane. 50 refs., 11 figs., 1 tab.

  1. Characterization of expressed class II MHC sequences in the banner-tailed kangaroo rat (Dipodomys spectabilis) reveals multiple DRB loci.

    PubMed

    Busch, Joseph D; Waser, Peter M; DeWoody, J Andrew

    2008-11-01

    Genes of the major histocompatibility complex (MHC) are exceptionally polymorphic due to the combined effects of natural and sexual selection. Most research in wild populations has focused on the second exon of a single class II locus (DRB), but complete gene sequences can provide an illuminating backdrop for studies of intragenic selection, recombination, and organization. To this end, we characterized class II loci in the banner-tailed kangaroo rat (Dipodomys spectabilis). Seven DRB-like sequences (provisionally named MhcDisp-DRB*01 through *07) were isolated from spleen cDNA and most likely comprise > or =5 loci; this multiformity is quite unlike the situation in muroid rodents such as Mus, Rattus, and Peromyscus. In silico translation revealed the presence of important structural residues for glycosylation sites, salt bonds, and CD4+ T-cell recognition. Amino-acid distances varied widely among the seven sequences (2-34%). Nuclear DNA sequences from the Disp-DRB*07 locus (approximately 10 kb) revealed a conventional exon/intron structure as well as a number of microsatellites and short interspersed nuclear elements (B4, Alu, and IDL-Geo subfamilies). Rates of nucleotide substitution at Disp-DRB*07 are similar in both exons and introns (pi = 0.015 and 0.012, respectively), which suggests relaxed selection and may indicate that this locus is an expressed pseudogene. Finally, we performed BLASTn searches against Dipodomys ordii genomic sequences (unassembled reads) and find 90-97% nucleotide similarity between the two kangaroo rat species. Collectively, these data suggest that class II diversity in heteromyid rodents is based on polylocism and departs from the muroid architecture.

  2. Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity

    PubMed Central

    Khalili, Jahan S.; Whittington, Mayra; Zhang, Minying; Overwijk, Willem; Lizée, Gregory

    2011-01-01

    Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy. PMID:21860662

  3. Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3.

    PubMed

    Deng, Lu; Langley, Ries J; Wang, Qian; Topalian, Suzanne L; Mariuzza, Roy A

    2012-09-11

    The conserved diagonal docking mode observed in structures of T-cell receptors (TCRs) bound to peptide-MHC ligands is believed to reflect coevolution of TCR and MHC genes. This coevolution is supported by the conservation of certain interactions between the germ-line-encoded complementarity-determining region (CDR)1 and CDR2 loops of TCR and MHC. However, the rules governing these interactions are not straightforward, even when the same variable (V) region recognizes the same MHC molecule. Here, we demonstrate that the somatically generated CDR3 loops can markedly alter evolutionarily selected contacts between TCR and MHC ("CDR3 editing"). To understand CDR3 editing at the atomic level, we determined the structure of a human melanoma-specific TCR (G4) bound to the MHC class II molecule HLA-DR1 and an epitope from mutant triose phosphate isomerase (mutTPI). A comparison of the G4-mutTPI-DR1 complex with a complex involving a TCR (E8) that uses the same Vα region to recognize the same mutTPI-DR1 ligand as G4 revealed that CDR1α adopts markedly different conformations in the two TCRs, resulting in an almost entirely different set of contacts with MHC. Based on the structures of unbound G4 and E8, the distinct conformations of CDR1α in these TCRs are not induced by binding to mutTPI-DR1 but result from differences in the length and sequence of CDR3α that are transmitted to CDR1α. The editing of germ-line-encoded TCR-MHC interactions by CDR3 demonstrates that these interactions possess sufficient intrinsic flexibility to accommodate large structural variations in CDR3 and, consequently, in the TCR-binding site.

  4. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1

    SciTech Connect

    Mullen, M.; Haan, K.M.; Longnecker, R.; Jardetzky, T.

    2010-03-08

    Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms a large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.

  5. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression

    PubMed Central

    Nelson, P. Austin; Sage, Jennifer R.; Wood, Suzanne C.; Davenport, Christopher M.; Anagnostaras, Stephan G.; Boulanger, Lisa M.

    2013-01-01

    Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain. PMID:23959708

  6. Lacking prognostic significance of beta 2-microglobulin, MHC class I and class II antigen expression in breast carcinomas.

    PubMed Central

    Wintzer, H. O.; Benzing, M.; von Kleist, S.

    1990-01-01

    To evaluate the impact of MHC antigen expression on the survival of patients with cancer, 77 human breast carcinomas were investigated for the expression of beta 2-microglobulin (beta 2m), HLA-A,B,C and HLA-DR. Thirty-one benign breast tumours were stained for comparison. The results for the carcinomas were related to the survival data of the cancer patients. The expression of beta 2m, HLA-A,B,C and HLA-DR was significantly lower in malignant tumours compared to the benign lesions. Whereas all benign tumours were positive for beta 2m and HLA-A,B,C and 28/31 positive for HLA-DR the following positivity rates were found in carcinomas: 74/77 for beta 2m, 57/77 for HLA-A,B,C and 10/77 for HLA-DR. The follow-up (median 45 months) of 66 cancer patients for overall survival and of 65 patients for disease-free survival revealed no influence of beta 2m, HLA-A,B,C or HLA-DR expression on the prognosis of this cancer. In conclusion, experimental data indicating the importance of MHC antigens in anti-tumour responses are not confirmed by the analysis of cancer patient survival data. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2201398

  7. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic

    PubMed Central

    2011-01-01

    Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651

  8. Identification and quantitation of MHC class II-bound peptides from mouse spleen dendritic cells by immunoprecipitation and mass spectrometry analysis

    PubMed Central

    Bozzacco, Leonia; Yu, Haiqiang

    2014-01-01

    Summary Advances in immunology and immune therapies require knowledge of antigenic peptide sequences that are presented on MHC class II and class I molecules of antigen presenting cells. The most specialized antigen presenting cells are dendritic cells (DCs). In the past, the small number of DCs that can be isolated from mouse spleen prevented direct analysis of the MHC II peptide repertoire presented by DCs. Here we describe a protocol that integrates immunological methods (in vivo enrichment of mouse spleen DCs by Flt3L treatment and immunoprecipation of MHC II-peptide complexes), mass spectrometry analysis and peptide synthesis (LC-MS/MS and quantitation analysis for non tryptic peptides) to identify and quantitate the endogenous peptides that are bound to MHC II molecules on DCs. The described method produces quantitative data that are reproducible and reliable enough to cover a wide range of peptide copy numbers. We propose the application of this method in future studies to quantitatively investigate the MHC II repertoire on DCs presented during viral infections or different immunizations in vaccine development research. PMID:23963941

  9. A role for lipid bodies in the cross-presentation of phagocytozed antigens by MHC class I in dendritic cells

    PubMed Central

    Bougneres, Laurence; Helft, Julie; Tiwari, Sangeeta; Vargas, Pablo; Chang, Benny Hung-Junn; Chan, Lawrence; Campisi, Laura; Lauvau, Gregoire; Hugues, Stephanie; Kumar, Pradeep; Kamphorst, Alice O.; Dumenil, Ana-Maria Lennon; Nussenzweig, Michel; MacMicking, John D.; Amigorena, Sebastian; Guermonprez, Pierre

    2009-01-01

    Summary Dendritic cells (DCs) have the striking ability to cross-present exogenous antigens in association with MHC class I to CD8+ T cells. However, the intracellular pathways underlying cross-presentation remain ill-defined. Current models involve cytosolic proteolysis of antigens by the proteasome and TAP-dependent import into Endoplasmic Reticulum (ER) or phagosomal lumen. Here, we show that DCs express an ER-resident 47kDa immune-related GTPase, Irgm3. Irgm3 resides on ER and lipid body (LB) membranes where it binds the LB coat component ADRP. Genetic removal of either Irgm3 or ADRP leads to defects in LB formation in DCs and severely impairs cross-presentation of phagocytozed antigens to CD8+ but not antigen presentation to CD4+ T cells. We thus define a new role for LB organelles in regulating cross-presentation of exogenous antigens to CD8+ T lymphocytes in DCs. PMID:19699172

  10. Direct activation of human dendritic cells by particle-bound but not soluble MHC class II ligand.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Dähne, Lars; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-01-01

    Dendritic cells (DCs) are key activators of cellular immune responses through their capacity to induce naïve T cells and sustained effector T cell responses. This capacity is a function of their superior efficiency of antigen presentation via MHC class I and class II molecules, and the expression of co-stimulatory cell surface molecules and cytokines. Maturation of DCs is induced by microbial factors via pattern recognition receptors such as Toll-like receptors, pro-inflammatory cytokines or cognate interaction with CD4(+) T cells. Here we show that, unexpectedly, the PanDR helper T cell epitope PADRE, a generic T helper cell antigen presented by a large fraction of HLA-DR alleles, when delivered in particle-bound form induced maturation of human DCs. The DCs that received the particle-bound PADRE displayed all features of fully mature DCs, such as high expression of the co-stimulatory molecules CD80, CD86, CD83, the MHC-II molecule HLA-DR, secretion of high levels of the biologically active IL-12 (IL-12p70) and induction of vigorous proliferation of naïve CD4(+) T cells. Furthermore, the maturation of DCs induced by particle-bound PADRE was shown to involve sphingosine kinase, calcium signaling from internal sources and downstream signaling through the MAP kinase and the p72syk pathways, and finally activation of the transcription factor NF-κB. Based on our findings, we propose that particle-bound PADRE may be used as a DC activator in DC-based vaccines.

  11. Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus).

    PubMed

    Kikkawa, Eri F; Tsuda, Tomi T; Sumiyama, Daisuke; Naruse, Taeko K; Fukuda, Michio; Kurita, Masanori; Wilson, Rory P; LeMaho, Yvon; Miller, Gary D; Tsuda, Michio; Murata, Koichi; Kulski, Jerzy K; Inoko, Hidetoshi

    2009-05-01

    The Major Histocompatibility Complex (Mhc) class II DRB locus of vertebrates is highly polymorphic and some alleles may be shared between closely related species as a result of balancing selection in association with resistance to parasites. In this study, we developed a new set of PCR primers to amplify, clone, and sequence overlapping portions of the Mhc class II DRB-like gene from the 5'UTR end to intron 3, including exons 1, 2, and 3 and introns 1 and 2 in four species (20 Humboldt, six African, five Magellanic, and three Galapagos penguins) of penguin from the genus Spheniscus (Sphe). Analysis of gene sequence variation by the neighbor-joining method of 21 Sphe sequences and 20 previously published sequences from four other penguin species revealed overlapping clades within the Sphe species, but species-specific clades for the other penguin species. The overlap of the DRB-like gene sequence variants between the four Sphe species suggests that, despite their allopatric distribution, the Sphe species are closely related and that some shared DRB1 alleles may have undergone a trans-species inheritance because of balancing selection and/or recent rapid speciation. The new primers and PCR assays that we have developed for the identification of the DRB1 DNA and protein sequence variations appear to be useful for the characterization of the molecular evolution of the gene in closely related Penguin species and might be helpful for the assessment of the genetic health and the management of the conservation and captivity of these endangered species.

  12. Expression and purification of human MHC class I-related chain molecule B-α1 domain.

    PubMed

    Wang, Shufen; Xiang, Zemin; Wang, Ya; Xu, Huanhuan; Zhang, Dengyang; Wang, Xuanjun; Sheng, Jun

    2016-07-01

    Major histocompatibility complex (MHC) class I-related chain A/B (MICA/B) is a type of stress-induced molecule that plays an important role in tumor surveillance. MICA/B shares a similar structure with MHC class I molecules, but MICA/B contains a closed cleft, not an open one, in its N-terminal alpha1 domain. The alpha 1 domain was believed to have no roles in antigen presentation, because the closed cleft provides limited space for binding with known molecules, and the cleft of MICA/B have been reported no known functions. To study the possible function of the cleft located in human MICA/B's alpha 1 domain, we attempted to express the human MICB-α1 (hMICB-α1) domain allele protein, which is approximately 20.5 kDa, by utilizing an Escherichia coli (E. coli) secretory pathway. Protein expression was accomplished through the phosphate-limited inducible promoter. After purification using ammonium sulfate precipitation, phenyl hydrophobic Sepharose, SP Sepharose and HisTrap affinity Sepharose, recombinant human MICB-α1 (rhMICB-α1) was obtained with 94.3% purity. The binding capacity of rhMICB-α1 with natural killer group 2, member D (NKG2D) was evaluated in vitro. The results demonstrated that rhMICB-α1 can be prepared through the E. coli secretory pathway. Purified rhMICB-α1 protein was able to functionally bind with NKG2D. This method can be further used to obtain functionally active rhMICB-α1 protein, which can served as the basis for further studies of the possible function of the MICB cleft. PMID:27036081

  13. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma

    PubMed Central

    Cycon, Kelly A; Mulvaney, Kathleen; Rimsza, Lisa M; Persky, Daniel; Murphy, Shawn P

    2013-01-01

    Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA− GCB cells compared with CIITA+ B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA− or CIITAlow GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy. PMID:23789844

  14. MHC class I-like genes in cattle, MHCLA, with similarity to genes encoding NK cell stimulatory ligands.

    PubMed

    Larson, Joshua H; Rebeiz, Mark J; Stiening, Chad M; Windish, Ryan L; Beever, Jonathan E; Lewin, Harris A

    2003-04-01

    A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.

  15. HLA-DMA polymorphisms differentially affect MHC class II peptide loading.

    PubMed

    Álvaro-Benito, Miguel; Wieczorek, Marek; Sticht, Jana; Kipar, Claudia; Freund, Christian

    2015-01-15

    During the adaptive immune response, MHCII proteins display antigenic peptides on the cell surface of APCs for CD4(+) T cell surveillance. HLA-DM, a nonclassical MHCII protein, acts as a peptide exchange catalyst for MHCII, editing the peptide repertoire. Although they map to the same gene locus, MHCII proteins exhibit a high degree of polymorphism, whereas only low variability has been observed for HLA-DM. As HLA-DM activity directly favors immunodominant peptide presentation, polymorphisms in HLA-DM (DMA or DMB chain) might well be a contributing risk factor for autoimmunity and immune disorders. Our systematic comparison of DMA*0103/DMB*0101 (DMA-G155A and DMA-R184H) with DMA*0101/DMB*0101 in terms of catalyzed peptide exchange and dissociation, as well as direct interaction with several HLA-DR/peptide complexes, reveals an attenuated catalytic activity of DMA*0103/DMB*0101. The G155A substitution dominates the catalytic behavior of DMA*0103/DMB*0101 by decreasing peptide release velocity. Preloaded peptide-MHCII complexes exhibit ∼2-fold increase in half-life in the presence of DMA*0103/DMB*0101 when compared with DMA*0101/DMB*0101. We show that this effect leads to a greater persistence of autoimmunity-related Ags in the presence of high-affinity competitor peptide. Our study therefore reveals that HLA-DM polymorphic residues have a considerable impact on HLA-DM catalytic activity.

  16. Enzyme immunoassay detection of induction of MHC class I expression by synthetic peptides from the E6 and E7 regions of human papillomavirus type 16.

    PubMed

    Dillner, J

    1994-01-01

    Viral antigens are presented to cytotoxic T cells (CTL) in the form of endogenously processed peptides bound to major histocompatibility complex (MHC) class I molecules. A variety of different methods for measuring the ability of peptides to bind to MHC class I have been described. Several of these methods use the murine lymphoma mutant cell line RMA-S, which has a peptide loading defect resulting in a low expression of surface class I molecules that can be upregulated if a synthetic binding peptide with class I binding ability is added to the culture medium. In order to be able to screen for peptides with MHC class I binding ability, we developed an enzyme immunoassay for quantitation of MHC class I expression on RMA-S cells. 107 synthetic peptides derived from the E6 and E7 regions of human papillomavirus type 16 were screened for ability to upregulate class I expression of Kb or Db alleles. At a concentration of about 300 microM, 9/107 peptides were found to restore expression of Db to equal or greater levels than found in the RMA-S parental cell line RMA, while 35/107 peptides were able to partially restore Db expression. For Kb, 16/107 peptides were able to restore expression and 40/107 peptides induced partial upregulation. Titration experiments showed that upregulation of class I expression by these peptides was dependent on a high peptide concentration, since consistent upregulation could in no case be detected at concentrations below 10 microM. The class I binding peptides identified in the present study may be useful in the study of the CTL response to HPV in mouse model systems. The enzyme immunoassay used could facilitate the rapid search for class I binding peptides.

  17. Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1.

    PubMed

    Lin, Jiun-Han; Lin, Ju-Yin; Chou, Ya-Ching; Chen, Mei-Ru; Yeh, Te-Huei; Lin, Chung-Wu; Lin, Sue-Jane; Tsai, Ching-Hwa

    2015-04-01

    Oncogenic Epstein-Barr virus (EBV) uses various approaches to escape host immune responses and persist in B cells. Such persistent infections may provide the opportunity for this virus to initiate tumor formation. Using EBV-immortalized lymphoblastoid cell lines (LCLs) as a model, we found that the expression of major histocompatibility complex (MHC) class II and CD74 in B cells is repressed after EBV infection. Class II transactivator (CIITA) is the master regulator of MHC class II-related genes. As expected, CIITA was downregulated in LCLs. We showed that downregulation of CIITA is caused by EBV latent membrane protein 2A (LMP2A) and driven by the CIITA-PIII promoter. Furthermore, we demonstrated that LMP2A-mediated E47 and PU.1 reduction resulted in CIITA suppression. Mechanistically, the LMP2A immunoreceptor tyrosine-based activation motif was critical for the repression of E47 and PU.1 promoter activity via Syk, Src, and the phosphatidylinositol 3-kinase/Akt pathway. Elimination of LMP2A in LCLs using a shLMP2A approach showed that the expression levels of E47, PU.1, CIITA, MHC class II, and CD74 are reversed. These data indicated that the LMP2A may reduce MHC class II expression through interference with the E47/PU.1-CIITA pathway. Finally, we demonstrated that MHC class II may be detected in tonsils and EBV-negative Hodgkin disease but not in EBV-associated posttransplant lymphoproliferative disease and Hodgkin disease.

  18. Predominant Occupation of the Class I MHC Molecule H-2Kwm7 with a Single Self-peptide Suggests a Mechanism for its Diabetes-protective Effect

    SciTech Connect

    Brims, D.; Qian, J; Jarchum, I; Mikesh, L; Palmieri, E; Ramagopal, U; Malashkevich, V; Chaparro, R; Lund, T; et. al.

    2010-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic {beta} cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD{sup 4+} and CD{sup 8+} T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K{sup wm7}, which exerts a diabetes-protective effect in NOD mice. We have found that H-2K{sup wm7} molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K{sup wm7} to support T1D development could be due, at least in part, to the failure of peptides from critical {beta}-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD{sup 8+} T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.

  19. Human MHC Class I-restricted high avidity CD4(+) T cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo.

    PubMed

    Xue, Shao-An; Gao, Liquan; Ahmadi, Maryam; Ghorashian, Sara; Barros, Rafael D; Pospori, Constandina; Holler, Angelika; Wright, Graham; Thomas, Sharyn; Topp, Max; Morris, Emma C; Stauss, Hans J

    2013-01-01

    In this study, we generated human MHC Class I-restricted CD4(+) T cells specific for Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two herpesviridae associated with lymphoma, nasopharyngeal carcinoma and medulloblastoma, respectively. Retroviral transfer of virus-specific, HLA-A2-restricted TCR-coding genes generated CD4(+) T cells that recognized HLA-A2/peptide multimers and produced cytokines when stimulated with MHC Class II-deficient cells presenting the relevant viral peptides in the context of HLA-A2. Peptide titration revealed that CD4(+) T cells had a 10-fold lower avidity than CD8(+) T cells expressing the same TCR. The impaired avidity of CD4(+) T cells was corrected by simultaneously transferring TCR- and CD8-coding genes. The CD8 co-receptor did not alter the cytokine signature of CD4(+) T cells, which remained distinct from that of CD8(+) T cells. Using the xenogeneic NOD/SCID mouse model, we demonstrated that human CD4(+) T cells expressing a specific TCR and CD8 can confer efficient protection against the growth of tumors expressing the EBV or CMV antigens recognized by the TCR. In summary, we describe a robust approach for generating therapeutic CD4(+) T cells capable of providing MHC Class I-restricted immunity against MHC Class II-negative tumors in vivo.

  20. Songbird genomics: analysis of 45 kb upstream of a polymorphic Mhc class II gene in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Gasper, J S; Shiina, T; Inoko, H; Edwards, S V

    2001-07-01

    Here we present the sequence of a 45 kb cosmid containing a previously characterized poly-morphic Mhc class II B gene (Agph-DAB1) from the red-winged blackbird (Agelaius phoeniceus). We compared it with a previously sequenced cosmid from this species, revealing two regions of 7.5 kb and 13.0 kb that averaged greater than 97% similarity to each another, indicating a very recent shared duplication. We found 12 retroelements, including two chicken repeat 1 (CR1) elements, constituting 6.4% of the sequence and indicating a lower frequency of retroelements than that found in mammalian genomic DNA. Agph-DAB3, a new class II B gene discovered in the cosmid, showed a low rate of polymorphism and may be functional. In addition, we found a Mhc class II B gene fragment and three genes likely to be functional (encoding activin receptor type II, a zinc finger, and a putative gamma-filamin). Phylogenetic analysis of exon 2 alleles of all three known blackbird Mhc genes indicated strong clustering of alleles by locus, implying that large amounts of interlocus gene conversion have not occurred since these genes have been diverging. Despite this, interspecific comparisons indicate that all three blackbird Mhc genes diverged from one another less than 35 million years ago and are subject to concerted evolution in the long term. Comparison of blackbird and chicken Mhc promoter regions revealed songbird promoter elements for the first time. The high gene density of this cosmid confirms similar findings for the chicken Mhc, but the segment duplications and diversity of retroelements resembles mammalian sequences.

  1. Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure.

    PubMed

    Herdegen, M; Babik, W; Radwan, J

    2014-11-01

    Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre-eminent system for the study of selective pressures that arise from host-pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population-genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.

  2. Lack of MHC class I antigens and tumour aggressiveness of the squamous cell carcinoma of the larynx.

    PubMed Central

    Esteban, F.; Concha, A.; Delgado, M.; Pérez-Ayala, M.; Ruiz-Cabello, F.; Garrido, F.

    1990-01-01

    A series of 60 primary laryngeal and hypopharyngeal tumours, 24 lymph node metastases and normal tissue were evaluated in frozen sections for the expression of MHC class I antigens, using monoclonal antibodies and the APAAP technique. We found 13 tumours presenting total HLA-ABC loss, five with selective loss of HLA-A antigens and one with absence of HLA-B antigens. These losses were statistically associated with clinical and pathological parameters, such as T stage, degree of differentiation, scores according to the Jakobsson and Glanz grading systems and degree of leukocytic infiltration. Our results lead us to the following conclusions: (a) HLA class I losses were found in a group of tumours showing greater aggressiveness and worse prognosis; (b) these alterations in expression were not associated with an increased metastatic potential. Thus, the absence of HLA molecules in laryngeal tumours is related to greater local aggressiveness, and the loss of class I antigens seems to constitute an adaptive tumour mechanism to avoid the different anatomical and immunological barriers within the larynx. Images Figure 1 Figure 2 PMID:2257212

  3. Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.

    PubMed

    Chiu, Bau-Lin; Li, Chia-Hsuan; Chang, Chien-Chung

    2013-10-11

    Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

  4. Sequence analysis of the promoter regions of the classical class I gene RT1.A and two other class I genes of the rat MHC

    SciTech Connect

    Lambracht, D.; Wonigeit, K.

    1995-04-01

    Major histocompatibility complex (MHC) class I molecules present peptides to CD8+ T cells and thus play key role in immunosurveillance by T-cell-mediated mechanisms. Their expression depends on complex control mechanisms at two major levels: (1) regulation of transcription mediated through the promoter region and additional regulatory elements of the individual class I gene, and (2) availability of appropriate peptides in the endoplasmic reticulum required to stabilize the ternary complex consisting of class I {alpha} chain, {beta}{sub 2}-microglobulin ({beta}{sub 2}m), and peptide. In addition, differences in the ability of different {alpha} chains to bind {beta}{sub 2}m can influence the transport to and turnover within the cell membrane. We have now analyzed the promoter regions of class I genes of the LEW rat strain carrying the RT1{sup 1} haplotype. The analysis of three class I genes in this region has led to the identification of characteristic regulatory sequences. 20 refs., 2 figs.

  5. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation

    SciTech Connect

    Kwun, Hyun Jin; Ramos da Silva, Suzane; Qin Huilian; Ferris, Robert L.; Tan Rusung; Chang Yuan; Moore, Patrick S.

    2011-04-10

    KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER. By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.

  6. MHC class-I associated phosphopeptides are the targets of memory-like immunity in leukemia

    PubMed Central

    Cobbold, Mark; De La Peña, Hugo; Norris, Andrew; Polefrone, Joy; Qian, Jie; English, A. Michelle; Cummings, Kara; Penny, Sarah; Turner, James E.; Cottine, Jennifer; Abelin, Jennifer G; Malaker, Stacy A; Zarling, Angela L; Huang, Hsing-Wen; Goodyear, Oliver; Freeman, Sylvie; Shabanowitz, Jeffrey; Pratt, Guy; Craddock, Charles; Williams, Michael E; Hunt, Donald F; Engelhard, Victor H

    2014-01-01

    Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.. PMID:24048523

  7. MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ–independent fashion and during development

    PubMed Central

    Vagaska, B.; New, S. E. P.; Alvarez-Gonzalez, C.; D’Acquisto, F.; Gomez, S. G.; Bulstrode, N. W.; Madrigal, A.; Ferretti, P.

    2016-01-01

    Expression of major histocompatibility antigens class-2 (MHC-II) under non-inflammatory conditions is not usually associated with the nervous system. Comparative analysis of immunogenicity of human embryonic/fetal brain-derived neural stem cells (hNSCs) and human mesenchymal stem cells with neurogenic potential from umbilical cord (UC-MSCs) and paediatric adipose tissue (ADSCs), while highlighting differences in their immunogenicity, led us to discover subsets of neural cells co-expressing the neural marker SOX2 and MHC-II antigen in vivo during human CNS development. MHC-II proteins in hNSCs are functional, and differently regulated upon differentiation along different lineages. Mimicking an inflammatory response using the inflammatory cytokine IFNγ induced MHC-II up-regulation in both astrocytes and hNSCs, but not in UC-MSCs and ADSCs, either undifferentiated or differentiated, though IFNγ receptor expression was comparable. Together, hypoimmunogenicity of both UC-MSCs and ADSCs supports their suitability for allogeneic therapy, while significant immunogenicity of hNSCs and their progeny may at least in part underlie negative effects reported in some patients following embryonic neural cell grafts. Crucially, we show for the first time that MHC-II expression in developing human brains is not restricted to microglia as previously suggested, but is present in discrete subsets of neural progenitors and appears to be regulated independently of inflammatory stimuli. PMID:27080443

  8. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb?

    PubMed Central

    Paus, R.; Slominski, A.; Czarnetzki, B. M.

    1993-01-01

    The etiology of alopecia areata (AA), a putative autoimmune disease characterized by sudden hair loss, has remained obscure. It is not understood, how the characteristic inflammatory infiltrate that selectively attacks anagen hair follicles in AA is generated. We hypothesize that this reflects an unexplored form of autoimmunity, a cytotoxic T cell attack on rhythmically synthesized autoantigens normally sequestered by a lack or very low level of MHC class I (MHC I)-expression, and suggest the following mechanism of AA pathogenesis: Microtrauma, neurogenic inflammation, or microbial antigens cause a localized breakdown of MHC I-"negativity" in the proximal anagen hair bulb via proinflammatory cytokines. This exposes autoantigens derived from melanogenesis-related proteins (MRP-DP), which are only generated during anagen, and triggers two successive waves of autoimmune responses: CD8+ cytotoxic T cells initiate AA after recognizing MRP-DP abnormally presented by MHC I molecules on hair matrix melanocytes and/or keratinocytes; a secondary attack, carried by CD4+ T cells and antigen presenting cells, is then mounted against MHC class II--presented additional autoantigens exposed by damaged melanocytes and keratinocytes. The latter causes most of the follicular damage, and extrafollicular disease, and depends greatly on the immunogenetic background of affected individuals. This unifying hypothesis explains the clinical heterogeneity and all salient features of AA, and argues that only the unlikely coincidence of multiple predisposing events triggers AA. The suppression of MHC I--expression and synthesis of MRP in the hair bulb, and the "tolerization" of MRP-DP autoreactive CD8+ T cells may be promising strategies for treating AA. PMID:7716973

  9. Structural Illumination of Equine MHC Class I Molecules Highlights Unconventional Epitope Presentation Manner That Is Evolved in Equine Leukocyte Antigen Alleles.

    PubMed

    Yao, Shugang; Liu, Jun; Qi, Jianxun; Chen, Rong; Zhang, Nianzhi; Liu, Yanjie; Wang, Junya; Wu, Yanan; Gao, George Fu; Xia, Chun

    2016-02-15

    MHC class I (MHC I)-restricted virus-specific CTLs are implicated as critical components in the control of this naturally occurring lentivirus and in the protective immune response to the successfully applied attenuated equine infectious anemia virus vaccine in the horse. Nevertheless, the structural basis for how the equine MHC I presents epitope peptides remains unknown. In this study, we investigated the binding of several equine infectious anemia virus-derived epitope peptides by the ability to refold recombinant molecules and by thermal stability, and then by determining the x-ray structure of five peptide-MHC I complexes: equine MHC class I allele (Eqca)-N*00602/Env-RW12, Eqca-N*00602/Gag-GW12, Eqca-N*00602/Rev-QW11, Eqca-N*00602/Gag-CF9, and Eqca-N*00601/Gag-GW12. Although Eqca-N*00601 and Eqca-N*00602 differ by a single amino acid, Eqca-N*00601 exhibited a drastically different peptide presentation when binding a similar CTL epitope, Gag-GW12; the result makes the previously reported function clear to be non-cross-recognition between these two alleles. The structures plus Eqca-N*00602 complexed with a 9-mer peptide are particularly noteworthy in that we illuminated differences in apparent flexibility in the center of the epitope peptides for the complexes with Gag-GW12 as compared with Env-RW12, and a strict selection of epitope peptides with normal length. The featured preferences and unconventional presentations of long peptides by equine MHC I molecules provide structural bases to explain the exceptional anti-lentivirus immunity in the horse. We think that the beneficial reference points could serve as an initial platform for other human or animal lentiviruses. PMID:26764037

  10. Molecular characterization of three Mhc class II B haplotypes in the ring-necked pheasant.

    PubMed

    Wittzell, H; von Schantz, T; Zoorob, R; Auffray, C

    1994-01-01

    We investigated the class II B genes in a free-ranging population of the ring-necked pheasant Phasianus colchicus by a combination of restriction fragment length polymorphism (RFLP), polymerase chain reaction (PCR), and DNA sequencing. Special attention was paid to the variation in the second exon, which encodes the peptide-binding beta 1-domain. The population was introduced, but it still exhibited major histocompatibility complex polymorphism with at least three segregating class II B haplotypes and consequently six genotypes. We found two class II B genes associated with each haplotype. The class II B genes of birds had until then only been molecularly characterized in the domestic chicken. The pheasant genes were highly variable, although one of the amplified sequences was found in two different haplotypes. Taken together, the most polymorphic positions (residues 37 and 38) were not identical in any of the predicted protein sequences, but all except one of the motifs had already been found in the domestic chicken. Structurally important features in mammalian class II B genes were generally conserved also in the pheasant sequences, but the loss of a potential salt bridge constituent (Arg72) in several sequences may suggest a slightly different structure of the adjacent parts of the peptide-binding groove. The pheasant genes are most closely related to the so called B-LBII family in the chicken, indicating that this represents a major line of development among avian class II B genes.

  11. An MHC class II restriction bias to I-A in CD4 T cell responses is altered to I-E in DM-deficient mice

    PubMed Central

    Menges, Paula R.; Jenks, Scott A.; Bikoff, Elizabeth K.; Friedmann, David R.; Knowlden, Zackery A. G.; Sant, Andrea J.

    2010-01-01

    The MHC-encoded cofactor DM, catalyzes endosomal loading of peptides onto MHC class II molecules. Despite evidence from in vitro experiments that DM acts to selectively edit the repertoire of class II:peptide complexes, the consequence of DM expression in vivo, or a predictive pattern of DM activity in the specificity of CD4 T cell responses has remained unresolved. Therefore, to characterize DM function in vivo we utilized wild type (WT) or DM-deficient (DM−/−) mice of the H-2d MHC haplotype and tested the hypothesis that DM promotes narrowing of the repertoire of class II:peptide complexes displayed by APC, leading to a correspondingly selective CD4 T cell response. Surprisingly, our results indicated that DM−/− mice do not exhibit a broadened CD4 T cell response relative to WT mice, but rather shift their immunodominance pattern to new peptides, a pattern associated with a change in class II isotype-restriction. Specifically, we found that CD4 T cell responses in WT mice were primarily restricted to the I-A class II molecule, while DM−/− mice recognize peptides in the context of I-E. The observed shift in isotype-restriction appeared to be due in part to a modification in the peripheral CD4 T cell repertoire available for peptide recognition. PMID:18209058

  12. Drift Rather than Selection Dominates MHC Class II Allelic Diversity Patterns at the Biogeographical Range Scale in Natterjack Toads Bufo calamita

    PubMed Central

    Zeisset, Inga; Beebee, Trevor J. C.

    2014-01-01

    Study of major histocompatibility complex (MHC) loci has gained great popularity in recent years, partly due to their function in protecting vertebrates from infections. This is of particular interest in amphibians on account of major threats many species face from emergent diseases such as chytridiomycosis. In this study we compare levels of diversity in an expressed MHC class II locus with neutral genetic diversity at microsatellite loci in natterjack toad (Bufo (Epidalea) calamita) populations across the whole of the species’ biogeographical range. Variation at both classes of loci was high in the glacial refugium areas (REF) and much lower in postglacial expansion areas (PGE), especially in range edge populations. Although there was clear evidence that the MHC locus was influenced by positive selection in the past, congruence with the neutral markers suggested that historical demographic events were the main force shaping MHC variation in the PGE area. Both neutral and adaptive genetic variation declined with distance from glacial refugia. Nevertheless, there were also some indications from differential isolation by distance and allele abundance patterns that weak effects of selection have been superimposed on the main drift effect in the PGE zone. PMID:24937211

  13. Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication

    PubMed Central

    Kiemnec-Tyburczy, K M; Richmond, J Q; Savage, A E; Lips, K R; Zamudio, K R

    2012-01-01

    Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2–4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages. PMID:22549517

  14. Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Edwards, S V; Gasper, J; March, M

    1998-03-01

    To further our understanding of the evolution of avian Mhc genes at the genomic level, we screened a cosmid library made from a red-winged blackbird (Agelaius phoeniceus) with a blackbird cDNA probe and subcloned from one of the Mhc-containing cosmids a gene which we designate Agph-DAB1. The structure of the gene is similar to that found for chicken class II B genes, except that the introns are surprisingly large, ranging from 98 to over 600 bp, making this the longest avian class II B gene to date. Using primers targeted toward the introns flanking the peptide-binding region (PBR), we amplified the entirety of the second exon and determined nucleotide sequences of 41 PCR products from eight individual blackbirds. The 10 sequence types found, among which were two probable pseudogene sequences, exhibit the classic hallmarks for evolution of PBRs, namely, an excess of nonsynonymous over synonymous substitutions and evidence of gene conversion events in polymorphic subdomains. Despite these patterns and our use of intron primers, the distribution of sequences among individuals suggests that more than one locus was amplified in most individuals, and the bushlike tree of sequences provides little information as to locus-specific clusters. These results imply a complex history of gene conversion, recent duplication, or possibly, concerted evolution among multiple loci, although Agph-DAB1, the first genomic Mhc sequence from a bird other than chicken, provides important clues in the quest for locus-specific Mhc primers in birds.

  15. HLA-G and MHC Class II Protein Expression in Diffuse Large B-Cell Lymphoma.

    PubMed

    Jesionek-Kupnicka, Dorota; Bojo, Marcin; Prochorec-Sobieszek, Monika; Szumera-Ciećkiewicz, Anna; Jabłońska, Joanna; Kalinka-Warzocha, Ewa; Kordek, Radzisław; Młynarski, Wojciech; Robak, Tadeusz; Warzocha, Krzysztof; Lech-Maranda, Ewa

    2016-06-01

    The expression of human leukocyte antigen-G (HLA-G) and HLA class II protein was studied by immunohistochemical staining of lymph nodes from 148 patients with diffuse large B-cell lymphoma (DLBCL) and related to the clinical course of the disease. Negative HLA-G expression was associated with a lower probability of achieving a complete remission (p = 0.04). Patients with negative HLA-G expression tended towards a lower 3-year overall survival (OS) rate compared to those with positive expression of HLA-G (p = 0.08). When restricting the analysis to patients receiving chemotherapy with rituximab, the estimated 3-year OS rate of patients with positive HLA-G expression was 73.3 % compared with 47.5 % (p = 0.03) in those with negative expression. Patients with negative HLA class II expression presented a lower 3-year OS rate compared to subjects with positive expression (p = 0.04). The loss of HLA class II expression (p = 0.05) and belonging to the intermediate high/high IPI risk group (p = 0.001) independently increased the risk of death. HLA class II expression also retained its prognostic value in patients receiving rituximab; the 3-year OS rate was 65.3 % in patients with positive HLA class II expression versus 29.6 % (p = 0.04) in subjects that had loss of HLA class II expression. To our knowledge, for the first time, the expression of HLA-G protein in DLBCL and its association with the clinical course of the disease was demonstrated. Moreover, the link between losing HLA class II protein expression and poor survival of patients treated with immunochemotherapy was confirmed.

  16. A Distinctive Cytoplasmic Tail Contributes to Low Surface Expression and Intracellular Retention of the Patr-AL MHC class I molecule1

    PubMed Central

    Goyos, Ana; Guethlein, Lisbeth A.; Horowitz, Amir; Hilton, Hugo G.; Gleimer, Michael; Brodsky, Frances M.; Parham, Peter

    2015-01-01

    Chimpanzees have orthologs of the six, fixed, functional human MHC class I genes. But in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T-cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different as shown using specific monoclonal and polyclonal antibodies made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules. PMID:26371256

  17. The diabetogenic mouse MHC class II molecule I-A[subscript g7] is endowed with a switch that modulates TCR affinity

    SciTech Connect

    Yoshida, Kenji; Corper, Adam L.; Herro, Rana; Jabri, Bana; Wilson, Ian A.; Teyton, Luc

    2011-11-16

    Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-A{sub g7}, typically have a small, uncharged amino acid residue at position 57 of their {beta} chain ({beta}57); this results in the absence of a salt bridge between {beta}57 and Arg{alpha}76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Arg{alpha}76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3{beta}. The crystal structure of one such TCR in complex with I-A{sub g7} bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 {angstrom}) electrostatic interactions existed among Arg{alpha}76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue {beta}57 of the I-Ag7 and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.

  18. The diabetogenic mouse MHC class II molecule I-A[superscript g7] is endowed with a switch that modulates TCR affinity

    SciTech Connect

    Yoshida, Kenji; Corper, Adam L.; Herro, Rana; Jabri, Bana; Wilson, Ian A.; Teyton, Luc

    2010-07-22

    Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-A{sup g7}, typically have a small, uncharged amino acid residue at position 57 of their {beta} chain ({beta}57); this results in the absence of a salt bridge between {beta}57 and Arg{alpha}76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Arg{alpha}76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3{beta}. The crystal structure of one such TCR in complex with I-Ag7 bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 {angstrom}) electrostatic interactions existed among Arg{alpha}76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue {beta}57 of the I-A{sup g7} and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.

  19. Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions.

    PubMed

    Godkin, A J; Smith, K J; Willis, A; Tejada-Simon, M V; Zhang, J; Elliott, T; Hill, A V

    2001-06-01

    MHC class II heterodimers bind peptides 12-20 aa in length. The peptide flanking residues (PFRs) of these ligands extend from a central binding core consisting of nine amino acids. Increasing evidence suggests that the PFRs can alter the immunogenicity of T cell epitopes. We have previously noted that eluted peptide pool sequence data derived from an MHC class II Ag reflect patterns of enrichment not only in the core binding region but also in the PFRS: We sought to distinguish whether these enrichments reflect cellular processes or direct MHC-peptide interactions. Using the multiple sclerosis-associated allele HLA-DR2, pool sequence data from naturally processed ligands were compared with the patterns of enrichment obtained by binding semicombinatorial peptide libraries to empty HLA-DR2 molecules. Naturally processed ligands revealed patterns of enrichment reflecting both the binding motif of HLA-DR2 (position (P)1, aliphatic; P4, bulky hydrophobic; and P6, polar) as well as the nonbound flanking regions, including acidic residues at the N terminus and basic residues at the C terminus. These PFR enrichments were independent of MHC-peptide interactions. Further studies revealed similar patterns in nine other HLA alleles, with the C-terminal basic residues being as highly conserved as the previously described N-terminal prolines of MHC class II ligands. There is evidence that addition of C-terminal basic PFRs to known peptide epitopes is able to enhance both processing as well as T cell activation. Recognition of these allele-transcending patterns in the PFRs may prove useful in epitope identification and vaccine design.

  20. Mass spectral data for 64 eluted peptides and structural modeling define peptide binding preferences for class I alleles in two chicken MHC-B haplotypes associated with opposite responses to Marek's disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex haplotypes are known to influence disease resistance in the chicken. The MHC-B*21 haplotype is especially associated with resistance to the T-cell lymphomas that form following infection with the highly oncogenic Marek’s herpesvirus. Since only a single MHC class I ...

  1. Class I gene contraction within the HLA-A subregion of the human MHC

    SciTech Connect

    Venditti, C.P.; Chorney, M.J. )

    1992-12-01

    Individuals expressing either the HLA-A24 or the HLA-A23 histocompatibility antigens have been found to possess an HLA-A class I subregion approximately 50 kb smaller in size than those studied from individuals expressing other HLA-A haplotypes. This originally manifested itself as a haplotype-associated size variation in the NotI and MluI megabase fragments observed on pulsed-field electrophoresis gels after blotting and probing with HLA-A subregion-specific genomic probes. The contracted region falls between the HLA-A and the HLA-G class I genes and specifically includes the novel HLA-A-related pseudogene, HLA-H, as well as the adjacent deteriorated class I pseudogene, 7.0 p. The intactness of locus D6S128, defined by probe pMC6.7 located telomeric to the HLA-H gene, demonstrates that the distal rearrangement point falls within a 20-kb stretch of DNA separating HLA-H from pMC6.7. This extends a previous report regarding variation in class I gene number within the human major histocompatibility complex and precisely localizes the genomic residence of sequences that may define a recombination hot spot. Because the size variation maps to a recombinogenic area, its characterization may ultimately reveal important biological information relevant to the events that shaped the organization of the human HLA class I multigene family. 54 refs., 7 figs.

  2. DMA and DMB are the only genes in the class II region of the human MHC needed for class II-associated antigen processing

    SciTech Connect

    Ceman, S.; Rudersdorf, R.A.; Petersen, J.M.

    1995-03-15

    Previous studies have shown that homozygous mutations between the LMP2 and DNA loci in the human MHC cause class II molecules to be abnormally conformed and unstable in the presence of SDS at low temperature, and impede class II-associated Ag processing and presentation. These abnormalities result from impaired ability to form intracellular class II/peptide complexes that predominate in normal cells. We show in this work that this defect results from deficient expression of either the DMA or the DMB gene. Human B-LCL.174 (DR3) cells, which have a deletion of all known expressible genes in the class II region, express transgene-encoded HLA-DR3, but have the abnormalities. Transfer of cosmid HA14, which contains the DMA and DMB genes, into .174 (DR3) cells restored normal DR3 conformation, stability in 0.4% SDS at 0{degrees}, and ability to process and present tetanus toxoid, but only when both DMA and DMB mRNAs were present. The requirement for both genetic expressions in engendering normal phenotypes was confirmed by transferring the cloned genes into .174 (DR3) cells separately or together. Because normal phenotypes were fully restored in transferent cells expressing DMA plus DMB, other genes in the {approximately} 1-mb homozygous class II region deletion in .174 (DR3) cells either do not participate in or are dispensable for apparently normal production of intracellular class II/peptide complexes. The properties of DM-deficient EBV-transformed B lymphoblastoid cell lines (LCLs) suggest ways of identifying humans in whom DM deficiency contributes to congenital immunodeficiency and malignancy. 67 refs., 5 figs., 1 tab.

  3. Genomic analysis of Ovis aries (Ovar)MHC Class IIa loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the genomic organization of the Ovis aries (Ovar) major histocompatibility complex class IIa region is essential for future functional studies related to antigen presentation. In this study, a bacterial artificial chromosome (BAC) library of genomic DNA from peripheral blood leukocytes ...

  4. Extraembryonic expression of the human MHC class I gene HLA-G in transgenic mice

    SciTech Connect

    Schmidt, C.M.; Ehlenfeldt, R.G.; Athanasiou, M.C.; Duvick, L.A.; Orr, H.T. ); Hubert, H.

    1993-09-01

    Trophoblast, the only fetal tissue in direct contact with maternal cells, fails to express the polymorphic HLA class I molecules HLA-A and -B, but does express the nonpolymorphic class I molecule HLA-G. It is thought that HLA-G may provide some of the functions of a class I molecule without stimulating maternal immune rejection of the fetal semiallograft. As a first step in identifying the cis-acting DNA regulatory elements involved in the control of class I expression by extraembryonic tissue, several types of transgenic mice were produced. Two HLA-G genomic fragments were used, 5.7 and 6.0 kb in length. These include the entire HLA-G coding region, 1 kb of 3' flanking sequence, and 1.2 or 1.4 kb of 5' flanking sequence, respectively. A hybrid transgene, HLA-A2/G, was produced by replacing the 5' flanking sequence, first exon, and early first intron of HLA-G with the corresponding elements of HLA-A. Comparison of transgene mRNA expression patterns seen in HLA-A2/G and HLA-G transgenic mice suggests that 5' flanking sequences are largely responsible for the differing patterns of expression typical of the classical class I and HLA-G genes. Studies comparing the extraembryonic HLA-G expression levels of founder embryos transgenic for either the 5.7 - or 6.0-kb HLA-G transgene showed that the 6.0-kb transgene directed HLA-G expression far more efficiently than did the 5.7-kb HLA-G transgene, producing extraembryoinc HLA-G mRNA levels similar to those seen in human extraembryoinic tissues. The results of these studies suggest that the 250-bp fragment present at the extreme 5' end of the 6.0-kb HLA-G transgene and absent from the 5.7-kb HLA-G transgene contains an important positive regulatory element. This 250-bp fragment lies further upstream than any of the previously documented class I regulatory regions and may function as a locus control region.

  5. Lack of association of bovine MHC class I alleles with carcass and reproductive traits.

    PubMed

    Arriëns, M A; Hofer, A; Obexer-Ruff, G; Lazary, S

    1996-12-01

    The present study was carried out to examine whether a relationship between bovine major histocompatibility complex (BoLA) class I alleles and carcass traits or reproductive performance exists in Braunvieh and Fleckvieh AI (artificial insemination) bulls. The influence of BoLA class I (BoLA-A) alleles on deregressed breeding values for net growth rate, carcass index and thigh volume was assessed in Braunvieh crosses and Fleckvieh bulls with a gene substitution model. The reproductive traits: non-return rate and interval between first and last insemination of daughters (female fertility), as well as non-return rate of inseminated cows (male fertility), were only investigated in Fleckvieh animals. No influence of the BoLA-A region on the traits evaluated could be demonstrated. An improper, i.e. less restrictive analysis would have led to spurious results.

  6. Enhanced immunogenicity of CTL antigens through mutation of the CD8 binding MHC class I invariant region.

    PubMed

    Wooldridge, Linda; Lissina, Anna; Vernazza, Jonathan; Gostick, Emma; Laugel, Bruno; Hutchinson, Sarah L; Mirza, Fareed; Dunbar, P Rod; Boulter, Jonathan M; Glick, Meir; Cerundolo, Vincenzo; van den Berg, Hugo A; Price, David A; Sewell, Andrew K

    2007-05-01

    CD8(+) cytotoxic T lymphocytes (CTL) are key determinants of immunity to intracellular pathogens and neoplastic cells. Recognition of specific antigens in the form of peptide-MHC class I complexes (pMHCI) presented on the target cell surface is mediated by T cell receptor (TCR) engagement. The CD8 coreceptor binds to invariant domains of pMHCI and facilitates antigen recognition. Here, we investigate the biological effects of a Q115E substitution in the alpha2 domain of human leukocyte antigen (HLA)-A*0201 that enhances CD8 binding by approximately 50% without altering TCR/pMHCI interactions. Soluble and cell surface-expressed forms of Q115E HLA-A*0201 exhibit enhanced recognition by CTL without loss of specificity. These CD8-enhanced antigens induce greater CD3 zeta chain phosphorylation in cognate CTL leading to substantial increases in cytokine production, proliferation and priming of naive T cells. This effect provides a fundamental new mechanism with which to enhance cellular immunity to specific T cell antigens.

  7. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers

    PubMed Central

    Day, Cheryl L.; Seth, Nilufer P.; Lucas, Michaela; Appel, Heiner; Gauthier, Laurent; Lauer, Georg M.; Robbins, Gregory K.; Szczepiorkowski, Zbigniew M.; Casson, Deborah R.; Chung, Raymond T.; Bell, Shannon; Harcourt, Gillian; Walker, Bruce D.; Klenerman, Paul; Wucherpfennig, Kai W.

    2003-01-01

    Containment of hepatitis C virus (HCV) and other chronic human viral infections is associated with persistence of virus-specific CD4 T cells, but ex vivo characterization of circulating CD4 T cells has not been achieved. To further define the phenotype and function of these cells, we developed a novel approach for the generation of tetrameric forms of MHC class II/peptide complexes that is based on the cellular peptide-exchange mechanism. HLA-DR molecules were expressed as precursors with a covalently linked CLIP peptide, which could be efficiently exchanged with viral peptides following linker cleavage. In subjects who spontaneously resolved HCV viremia, but not in those with chronic progressive infection, HCV tetramer–labeled cells could be isolated by magnetic bead capture despite very low frequencies (1:1,200 to 1:111,000) among circulating CD4 T cells. These T cells expressed a set of surface receptors (CCR7+CD45RA–CD27+) indicative of a surveillance function for secondary lymphoid structures and had undergone significant in vivo selection since they utilized a restricted Vβ repertoire. These studies demonstrate a relationship between clinical outcome and the presence of circulating CD4 T cells directed against this virus. Moreover, they show that rare populations of memory CD4 T cells can be studied ex vivo in human diseases. PMID:12975468

  8. Crystal structure of a Gammadelta T-cell Receptor Specific for the Human MHC class I Homolog MICA

    SciTech Connect

    B Xu; J Pizarro; M Holmes; C McBeth; V Groh; T Spies; R Strong

    2011-12-31

    {gamma}{delta} T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human {gamma}{delta} T cells of the V{sub {delta}}1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive V{sub {delta}}1 {gamma}{delta} T-cell receptor (TCR) showed expected overall structural homology to antibodies, {alpha}{beta}, and other {gamma}{delta} TCRs, but complementary determining region conformations and conservation of V{sub {delta}}1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on {gamma}{delta} T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of {gamma}{delta} T-cell/target cell interfaces.

  9. Modified human beta 2-microglobulin (desLys(58)) displays decreased affinity for the heavy chain of MHC class I and induces nitric oxide production and apoptosis.

    PubMed

    Wang, M; Harhaji, L; Lamberth, K; Harndahl, M; Buus, S; Heegaard, N H H; Claesson, M H; Nissen, M H

    2009-03-01

    Beta2-microglobulin (beta2m) is the light chain of major histocompatibility complex class I (MHC-I) molecules, and is a prerequisite for the binding of peptides to the heavy chain and their presentation to CD8+ T cells. beta2m can be modified in vivo and in vitro by proteolytic cleavage by complement C1 and subsequent carboxypeptidase B-like activity--processes that lead to the generation of desLys(58) beta2m (dbeta2m). This work aims to study the effect of dbeta2m on peptide binding to MHC-I, the influence of dbeta2m on the binding of beta2m to the MHC-I heavy chain and the biological activity of dbeta2m. Both beta2m and dbeta2m are able to support the generation of MHC-I/peptide complexes at 18 degrees C, but complexes formed in the presence of dbeta2m destabilize at 37 degrees C. Moreover, a 250 times higher concentration of dbeta2m than of beta2m is needed to displace MHC-I associated beta2m from the cell surface. In addition, only beta2m is able to restore MHC-I/peptide complex formation on acid-treated cells whereas dbeta2m appears to bind preferentially to denatured MHC-I heavy chains. In cell cultures, exogenously added dbeta2m, but not beta2m, induces apoptotic cell death in monocytic leukaemic cell lines but spares other kinds of leukaemic cells. Additionally, the presence of dbeta2m, and to a lesser extent beta2m, enhances IFN-gamma-induced NO production by monocytic leukaemic cells. In conclusion, these data show that dbeta2m is not able to support the formation of a stable tri-molecular MHC-I complex at physiological temperature and that dbeta2m exerts other biological functions compared to beta2m when bound to cells.

  10. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    PubMed

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined. PMID:25567924

  11. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    PubMed

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined.

  12. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics.

    PubMed

    Tollenaere, C; Bryja, J; Galan, M; Cadet, P; Deter, J; Chaval, Y; Berthier, K; Ribas Salvador, A; Voutilainen, L; Laakkonen, J; Henttonen, H; Cosson, J-F; Charbonnel, N

    2008-09-01

    We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system. PMID:18624885

  13. Amyloid Precursor-like Protein 2 Increases the Endocytosis, Instability, and Turnover of the H2-Kd MHC Class I Molecule1

    PubMed Central

    Tuli, Amit; Sharma, Mahak; McIlhaney, Mary M.; Talmadge, James E.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2008-01-01

    The defense against the invasion of viruses and tumors relies on the presentation of viral and tumor-derived peptides to cytotoxic T lymphocytes by cell surface major histocompatibility complex (MHC) class I molecules. Previously, we showed that the ubiquitously expressed protein amyloid precursor-like protein 2 (APLP2) associates with the folded form of the MHC class I molecule Kd. In the current study, APLP2 was found to associate with folded Kd molecules following their endocytosis and to increase the amount of endocytosed Kd. In addition, increased expression of APLP2 was shown to decrease Kd surface expression and thermostability. Correspondingly, Kd thermostability and surface expression were increased by down-regulation of APLP2 expression. Overall, these data suggest that APLP2 modulates the stability and endocytosis of Kd molecules. PMID:18641335

  14. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics.

    PubMed

    Tollenaere, C; Bryja, J; Galan, M; Cadet, P; Deter, J; Chaval, Y; Berthier, K; Ribas Salvador, A; Voutilainen, L; Laakkonen, J; Henttonen, H; Cosson, J-F; Charbonnel, N

    2008-09-01

    We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.

  15. De novo-developed antibodies to donor MHC antigens lead to dysregulation of microRNAs and induction of MHC class II.

    PubMed

    Xu, Zhongping; Nayak, Deepak K; Benshoff, Nicholas; Hachem, Ramsey; Gelman, Andrew E; Mohanakumar, Thalachallour

    2015-06-15

    Immune responses to HLA and development of anti-donor HLA (DSA) were shown to play a role in chronic rejection following transplantation. We hypothesized that Abs to MHC change microRNAs (miRNAs), leading to chronic lung allograft rejection. Microarray analysis was performed in a murine model of anti-MHC-induced obliterative airway disease (OAD), a correlate of obliterative bronchiolitis. A unique profile of dysregulated miRNAs was detected in OAD mice on days 7 and 15 after Ab administration compared with control. Sixty-seven miRNAs were increased and 42 miRNAs were decreased in OAD mice on day 7. In addition, 15 miRNAs were overexpressed and 16 miRNAs were underexpressed in OAD mice on day 15. The expression of miR-16 and miR-195 was significantly decreased in lungs of OAD mice, as assessed by quantitative RT-PCR and in situ hybridization, with increases in H-2 Aa and H-2 Dma mRNA levels. Significant reductions in miR-16 and miR-195 levels were also noted in lung transplant (LTx) patients with DSA compared with LTx patients without DSA. Bioinformatic TargetScan and reporter assays identified the binding of miR-16 and miR-195 to the 3'-untranslated region of regulatory factor X 5. Quantitative PCR and immunohistochemistry indicated posttranscriptional increases in regulatory factor X 5 mRNA and protein expression in OAD mice, as well as in LTx recipients with DSA, which was associated with increased expression of HLA-DPA1, HLA-DQA1, and HLA-DRA mRNA. Therefore, our results demonstrated that miRNAs induced by alloimmunity may play important roles in chronic rejection after LTx. PMID:25941328

  16. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  17. Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity.

    PubMed

    Chen, Lili; Reyes-Vargas, Eduardo; Dai, Hu; Escobar, Hernando; Rudd, Brant; Fairbanks, Jared; Ho, Alexander; Cusick, Mathew F; Kumánovics, Attila; Delgado, Julio; He, Xiao; Jensen, Peter E

    2014-08-01

    The mouse MHC class Ib gene H2-T11 is 95% identical at the DNA level to H2-T23, which encodes Qa-1, one of the most studied MHC class Ib molecules. H2-T11 mRNA was observed to be expressed widely in tissues of C57BL/6 mice, with the highest levels in thymus. To circumvent the availability of a specific mAb, cells were transduced with cDNA encoding T11 with a substituted α3 domain. Hybrid T11D3 protein was expressed at high levels similar to control T23D3 molecules on the surface of both TAP(+) and TAP(-) cells. Soluble T11D3 was generated by folding in vitro with Qa-1 determinant modifier, the dominant peptide presented by Qa-1. The circular dichroism spectrum of this protein was similar to that of other MHC class I molecules, and it was observed to bind labeled Qa-1 determinant modifier peptide with rapid kinetics. By contrast to the Qa-1 control, T11 tetramers did not react with cells expressing CD94/NKG2A, supporting the conclusion that T11 cannot replace Qa-1 as a ligand for NK cell inhibitory receptors. T11 also failed to substitute for Qa-1 in the presentation of insulin to a Qa-1-restricted T cell hybridoma. Despite divergent function, T11 was observed to share peptide-loading specificity with Qa-1. Direct analysis by tandem mass spectrometry of peptides eluted from T11D3 and T23D3 isolated from Hela cells demonstrated a diversity of peptides with a clear motif that was shared between the two molecules. Thus, T11 is a paralog of T23 encoding an MHC class Ib molecule that shares peptide-binding specificity with Qa-1 but differs in function. PMID:24958902

  18. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ

    PubMed Central

    Mumberg, Dominik; Monach, Paul A.; Wanderling, Sherry; Philip, Mary; Toledano, Alicia Y.; Schreiber, Robert D.; Schreiber, Hans

    1999-01-01

    CD4+ T cells can eliminate tumor cells in vivo in the absence of CD8+ T cells. We have CD4+ T cells specific for a MHC class II-restricted, tumor-specific peptide derived from a mutant ribosomal protein expressed by the UV light-induced tumor 6132A-PRO. By using neutralizing mAb specific for murine IFN-γ and adoptive transfer of CD4+ T cells into severe combined immunodeficient mice, we show that anti-IFN-γ treatment abolishes the CD4+ T cell-mediated rejection of the tumor cells in vivo. The tumor cells were MHC class II negative, and IFN-γ did not induce MHC class II expression in vitro. Therefore, the tumor-specific antigenic peptide must be presented by host cells and not the tumor cells. Tumor cells transduced to secrete IFN-γ had a markedly reduced growth rate in severe combined immunodeficient mice, but IFN-γ did not inhibit the growth of the tumor cells in vitro. Furthermore, tumor cells stably expressing a dominant-negative truncated form of the murine IFN-γ receptor α chain, and therefore insensitive to IFN-γ, nevertheless were rejected by the adoptively transferred CD4+ T cells. Thus, host cells, and not tumor cells, seem to be the target of IFN-γ. Together, these results show that CD4+ T cells can eliminate IFN-γ-insensitive, MHC class II-negative cancer cells by an indirect mechanism that depends on IFN-γ. PMID:10411927

  19. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California.

    PubMed

    Moreno-Santillán, Diana D; Lacey, Eileen A; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures. PMID:26761201

  20. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California.

    PubMed

    Moreno-Santillán, Diana D; Lacey, Eileen A; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.

  1. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica.

    PubMed

    Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R

    2015-12-01

    Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship.

  2. CD4 and MHC class I down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates

    PubMed Central

    Gray, Lachlan R.; Gabuzda, Dana; Cowley, Daniel; Ellett, Anne; Chiavaroli, Lisa; Wesselingh, Steven L.; Churchill, Melissa J.; Gorry, Paul R.

    2015-01-01

    HIV-1 nef undergoes adaptive evolution in the CNS, reflecting altered requirements for HIV-1 replication in macrophages/microglia and brain-specific immune selection pressures. The role of Nef in HIV-1 neurotropism and the pathogenesis of HIV-associated dementia (HAD) is unclear. In this study, we characterized 82 nef alleles cloned from brain, CSF, spinal cord and blood/lymphoid tissue-derived HIV-1 isolates from 7 subjects with HAD. CNS isolate-derived nef alleles were genetically compartmentalized and had reduced sequence diversity compared to those from lymphoid tissue isolates. Defective nef alleles predominated in a brain-derived isolate from one of the 7 subjects (MACS2-br). The ability of Nef to down-modulate CD4 and MHC class 1 (MHC-1) was generally conserved among nef alleles from both CNS and lymphoid tissues. However, the potency of CD4 and MHC-1 down-modulation was variable, which was associated with sequence alterations known to influence these Nef functions. These results suggest that CD4 and MHC-1 down-modulation are highly conserved functions among nef alleles from CNS- and lymphoid tissue-derived HIV-1 isolates that may contribute to viral replication and escape from immune surveillance in the CNS. PMID:21165790

  3. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California

    PubMed Central

    Moreno-Santillán, Diana D.; Lacey, Eileen A.; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures. PMID:26761201

  4. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica.

    PubMed

    Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R

    2015-12-01

    Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. PMID:26593752

  5. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes

    PubMed Central

    Sarter, Kerstin; Leimgruber, Elisa; Gobet, Florian; Agrawal, Vishal; Dunand-Sauthier, Isabelle; Barras, Emmanuèle; Mastelic-Gavillet, Béatris; Kamath, Arun; Fontannaz, Paola; Guéry, Leslie; Duraes, Fernanda do Valle; Lippens, Carla; Ravn, Ulla; Santiago-Raber, Marie-Laure; Magistrelli, Giovanni; Fischer, Nicolas; Siegrist, Claire-Anne; Hugues, Stéphanie

    2016-01-01

    Evidence has recently emerged that butyrophilins, which are members of the extended B7 family of co-stimulatory molecules, have diverse functions in the immune system. We found that the human and mouse genes encoding butyrophilin-2A2 (BTN2A2) are regulated by the class II trans-activator and regulatory factor X, two transcription factors dedicated to major histocompatibility complex class II expression, suggesting a role in T cell immunity. To address this, we generated Btn2a2-deficient mice. Btn2a2−/− mice exhibited enhanced effector CD4+ and CD8+ T cell responses, impaired CD4+ regulatory T cell induction, potentiated antitumor responses, and exacerbated experimental autoimmune encephalomyelitis. Altered immune responses were attributed to Btn2a2 deficiency in antigen-presenting cells rather than T cells or nonhematopoietic cells. These results provide the first genetic evidence that BTN2A2 is a co-inhibitory molecule that modulates T cell–mediated immunity. PMID:26809444

  6. MHC class I antigen presentation of DRiP-derived peptides from a model antigen is not dependent on the AAA ATPase p97.

    PubMed

    Palmer, Amy L; Dolan, Brian P

    2013-01-01

    CD8(+) T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8(+) T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.

  7. Cellular components of the immune barrier in the spinal meninges and dorsal root ganglia of the normal rat: immunohistochemical (MHC class II) and electron-microscopic observations.

    PubMed

    Braun, J S; Kaissling, B; Le Hir, M; Zenker, W

    1993-08-01

    This report deals with the distribution, morphology and specific topical relationships of bone-marrow-derived cells (free cells) in the spinal meninges and dorsal root ganglia of the normal rat. The morphology of these cells has been studied by transmission and scanning electron microscopy. Cells expressing the major histocompatibility complex (MHC) class II gene product have been recognized by immunofluorescence. At the level of the transmission electron microscope, free cells are found in all layers of the meninges. Many of them display characteristic ultrastructural features of macrophages, whereas others show a highly vacuolated cytoplasm and are endowed with many processes. These elements lack a conspicuous lysosomal system and might represent dendritic cells. Scanning electron microscopy has revealed that free cells contact the cerebrospinal fluid via abundant cytoplasmic processes that cross the cell layers of the pia mater and of the arachnoid. Cells expressing the MHC class II antigen are also found in all layers of the meninges. They are particularly abundant in the layers immediately adjacent to the subarachnoid space, in the neighbourhood of dural vessels, along the spinal roots and in the dural funnels. In addition to the meninges, strong immunoreactivity for MHC class II antigen is observed in the dorsal root ganglia. The ultrastructural and immunohistochemical findings of this study suggest the existence of a well-developed system of immunological surveillance of the subarachnoid space and of the dorsal root ganglia.

  8. Genome-wide association study identifies SNPs in the MHC class II loci that are associated with self-reported history of whooping cough

    PubMed Central

    McMahon, George; Ring, Susan M.; Davey-Smith, George; Timpson, Nicholas J.

    2015-01-01

    Whooping cough is currently seeing resurgence in countries despite high vaccine coverage. There is considerable variation in subject-specific response to infection and vaccine efficacy, but little is known about the role of human genetics. We carried out a case–control genome-wide association study of adult or parent-reported history of whooping cough in two cohorts from the UK: the ALSPAC cohort and the 1958 British Birth Cohort (815/758 cases and 6341/4308 controls, respectively). We also imputed HLA alleles using dense SNP data in the MHC region and carried out gene-based and gene-set tests of association and estimated the amount of additive genetic variation explained by common SNPs. We observed a novel association at SNPs in the MHC class II region in both cohorts [lead SNP rs9271768 after meta-analysis, odds ratio [95% confidence intervals (CIs)] 1.47 (1.35, 1.6), P-value 1.21E − 18]. Multiple strong associations were also observed at alleles at the HLA class II loci. The majority of these associations were explained by the lead SNP rs9271768. Gene-based and gene-set tests and estimates of explainable common genetic variation could not establish the presence of additional associations in our sample. Genetic variation at the MHC class II region plays a role in susceptibility to whooping cough. These findings provide additional perspective on mechanisms of whooping cough infection and vaccine efficacy. PMID:26231221

  9. Genome-wide association study identifies SNPs in the MHC class II loci that are associated with self-reported history of whooping cough.

    PubMed

    McMahon, George; Ring, Susan M; Davey-Smith, George; Timpson, Nicholas J

    2015-10-15

    Whooping cough is currently seeing resurgence in countries despite high vaccine coverage. There is considerable variation in subject-specific response to infection and vaccine efficacy, but little is known about the role of human genetics. We carried out a case-control genome-wide association study of adult or parent-reported history of whooping cough in two cohorts from the UK: the ALSPAC cohort and the 1958 British Birth Cohort (815/758 cases and 6341/4308 controls, respectively). We also imputed HLA alleles using dense SNP data in the MHC region and carried out gene-based and gene-set tests of association and estimated the amount of additive genetic variation explained by common SNPs. We observed a novel association at SNPs in the MHC class II region in both cohorts [lead SNP rs9271768 after meta-analysis, odds ratio [95% confidence intervals (CIs)] 1.47 (1.35, 1.6), P-value 1.21E - 18]. Multiple strong associations were also observed at alleles at the HLA class II loci. The majority of these associations were explained by the lead SNP rs9271768. Gene-based and gene-set tests and estimates of explainable common genetic variation could not establish the presence of additional associations in our sample. Genetic variation at the MHC class II region plays a role in susceptibility to whooping cough. These findings provide additional perspective on mechanisms of whooping cough infection and vaccine efficacy.

  10. Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells.

    PubMed

    Lee, Young-Hee; Im, Sun-A; Kim, Ji-Wan; Lee, Chong-Kil

    2016-08-01

    DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-K(b) complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses. PMID:27574502

  11. Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells

    PubMed Central

    Lee, Young-Hee; Im, Sun-A; Kim, Ji-Wan

    2016-01-01

    DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses. PMID:27574502

  12. Linkage relationships and haplotype polymorphism among cichlid Mhc class II B loci.

    PubMed Central

    Málaga-Trillo, E; Zaleska-Rutczynska, Z; McAndrew, B; Vincek, V; Figueroa, F; Sültmann, H; Klein, J

    1998-01-01

    The species flocks of cichlid fishes in the Great East African Lakes are paradigms of adaptive radiation and hence, of great interest to evolutionary biologists. Phylogenetic studies of these fishes have, however, been hampered by the lack of suitable polymorphic markers. The genes of the major histocompatibility complex hold the promise to provide, through their extensive polymorphism, a large number of such markers, but their use has been hampered by the complexity of the genetic system and the lack of definition of the individual loci. In this study we take the first substantial step to alleviate this problem. Using a combination of methods, including the typing of single sperm cells, gyno- or androgenetic individuals, and haploid embryos, as well as sequencing of class II B restriction fragments isolated from gels for Southern blots, we identify the previously characterized homology groups as distinct loci. At least 17 polymorphic class II B loci, all of which are presumably transcribed, have been found among the different species studied. Most of these loci are shared across the various cichlid species and genera. The number of loci per haplotype varies from individual to individual, ranging from 1 to 13. A total of 21 distinct haplotypes differing in the number of loci they carry has thus far been identified. All the polymorphic loci are part of the same cluster in which, however, distances between at least some of the loci (as indicated by recombination frequencies) are relatively large. Both the individual loci and the haplotypes can now be used to study phylogenetic relationships among the members of the species flocks and the mode in which speciation occurs during adaptive radiation. PMID:9649539

  13. Isolation over 35 years in a heated biotest basin causes selection on MHC class IIß genes in the European perch (Perca fluviatilis L.)

    PubMed Central

    Björklund, Mats; Aho, Teija; Behrmann-Godel, Jasminca

    2015-01-01

    Genes that play key roles in host immunity such as the major histocompatibility complex (MHC) in vertebrates are expected to be major targets of selection. It is well known that environmental conditions can have an effect on host–parasite interactions and may thus influence the selection on MHC. We analyzed MHC class IIß variability over 35 years in a population of perch (Perca fluviatilis) from the Baltic Sea that was split into two populations separated from each other. One population was subjected to heating from cooling water of a nuclear power plant and was isolated from the surrounding environment in an artificial lake, while the other population was not subjected to any change in water temperature (control). The isolated population experienced a change of the allelic composition and a decrease in allelic richness of MHC genes compared to the control population. The two most common MHC alleles showed cyclic patterns indicating ongoing parasite–host coevolution in both populations, but the alleles that showed a cyclic behavior differed between the two populations. No such patterns were observed at alleles from nine microsatellite loci, and no genetic differentiation was found between populations. We found no indications for a genetic bottleneck in the isolated population during the 35 years. Additionally, differences in parasitism of the current perch populations suggest that a change of the parasite communities has occurred over the isolation period, although the evidence in form of in-depth knowledge of the change of the parasite community over time is lacking. Our results are consistent with the hypothesis of a selective sweep imposed by a change in the parasite community. PMID:25897384

  14. Isolation over 35 years in a heated biotest basin causes selection on MHC class IIß genes in the European perch (Perca fluviatilis L.).

    PubMed

    Björklund, Mats; Aho, Teija; Behrmann-Godel, Jasminca

    2015-04-01

    Genes that play key roles in host immunity such as the major histocompatibility complex (MHC) in vertebrates are expected to be major targets of selection. It is well known that environmental conditions can have an effect on host-parasite interactions and may thus influence the selection on MHC. We analyzed MHC class IIß variability over 35 years in a population of perch (Perca fluviatilis) from the Baltic Sea that was split into two populations separated from each other. One population was subjected to heating from cooling water of a nuclear power plant and was isolated from the surrounding environment in an artificial lake, while the other population was not subjected to any change in water temperature (control). The isolated population experienced a change of the allelic composition and a decrease in allelic richness of MHC genes compared to the control population. The two most common MHC alleles showed cyclic patterns indicating ongoing parasite-host coevolution in both populations, but the alleles that showed a cyclic behavior differed between the two populations. No such patterns were observed at alleles from nine microsatellite loci, and no genetic differentiation was found between populations. We found no indications for a genetic bottleneck in the isolated population during the 35 years. Additionally, differences in parasitism of the current perch populations suggest that a change of the parasite communities has occurred over the isolation period, although the evidence in form of in-depth knowledge of the change of the parasite community over time is lacking. Our results are consistent with the hypothesis of a selective sweep imposed by a change in the parasite community. PMID:25897384

  15. CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation.

    PubMed

    Clatza, Abigail; Bonifaz, Laura C; Vignali, Dario A A; Moreno, José

    2003-12-15

    Ligation of CD40 on B cells increases their ability to present Ag and to activate MHC class II (MHC-II)-restricted T cells. How this occurs is not entirely clear. In this study we demonstrate that CD40 ligation on Ag-presenting B cells (APC) for a short period between 30 min and 3 h has a rapid, augmenting effect on the ability of a B cell line and normal B cells to activate T cells. This is not due to alterations in Ag processing or to an increase in surface expression of CD80, CD86, ICAM-1, or MHC-II. This effect is particularly evident with naive, resting T lymphocytes and appears to be more pronounced under limiting Ag concentrations. Shortly after CD40 ligation on a B cell line, MHC-II and CD80 progressively accumulated in cholesterol-enriched microdomains on the cell surface, which correlated with an initial enhancement in their Ag presentation ability. Moreover, CD40 ligation induced a second, late, more sustained enhancement of Ag presentation, which correlates with a significant increase in CD80 expression by APC. Thus, CD40 signaling enhances the efficiency with which APC activate T cells by at least two related, but distinct, mechanisms: an early stage characterized by aggregation of MHC-II and CD80 clusters, and a late stage in which a significant increase in CD80 expression is observed. These results raise the possibility that one important role of CD40 is to contribute to the formation of the immunological synapse on the APC side.

  16. MHC class I A region diversity and polymorphism in macaque species

    PubMed Central

    de Vos-Rouweler, Annemiek J. M.; Heijmans, Corrine M. C.; de Groot, Natasja G.; Doxiadis, Gaby G. M.; Bontrop, Ronald E.

    2007-01-01

    The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing. Electronic supplementary material The online version of this article (doi:10.1007/s00251-007-0201-2) contains supplementary material, which is available to authorized users. PMID:17334754

  17. Antigen presentation by liposomes bearing class II MHC and membrane IL-1.

    PubMed Central

    Bakouche, O.; Lachman, L. B.

    1990-01-01

    Liposomes containing membrane IL-1, Iak, and the antigen conalbumin were evaluated as "synthetic antigen presenting cells." The role of these three molecules in macrophage-T cell interaction was studied by testing their ability to induce the proliferation of a T-cell clone specific to conalbumin (the D10 cell line) or immune spleen cells sensitized three times in vivo with conalbumin. In the latter case, splenic macrophages were eliminated by adherence and a lysomotropic agent. The antigen conalbumin was presented on the surface of the liposomes as native undigested protein. When the liposomes presented native conalbumin, Iak, and membrane IL-1, significant proliferation occurred, but if the liposomes lacked membrane IL-1, the proliferation of the T-cell clone and the spleen cells reached only about 60 percent of the previous signal. Native conalbumin and class II antigen alone were required for T-cell activation, while membrane IL-1 only amplified the response. When the liposomes were made with only Iak and membrane IL-1, lacking conalbumin, there was no proliferation of antigen-specific target cells. These results indicated that in this synthetic system, membrane IL-1 increases the magnitude of the response but is not essential for the proliferative response of antigen-specific T cells. PMID:2399741

  18. ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling

    PubMed Central

    Graham, Daniel B.; Akilesh, Holly M.; Gmyrek, Grzegorz B.; Piccio, Laura; Gilfillan, Susan; Sim, Julia; Belizaire, Roger; Carrero, Javier A.; Wang, Yinan; Blaufuss, Gregory S.; Sandoval, Gabriel; Fujikawa, Keiko; Cross, Anne H.; Russell, John H.; Cella, Marina

    2010-01-01

    Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)–containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming. PMID:20634378

  19. MHC class II diversity of koala (Phascolarctos cinereus) populations across their range.

    PubMed

    Lau, Q; Jaratlerdsiri, W; Griffith, J E; Gongora, J; Higgins, D P

    2014-10-01

    Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity.

  20. MHC Class I Limits Hippocampal Synapse Density by Inhibiting Neuronal Insulin Receptor Signaling

    PubMed Central

    Dixon-Salazar, Tracy J.; Fourgeaud, Lawrence; Tyler, Carolyn M.; Poole, Julianna R.; Park, Joseph J.

    2014-01-01

    Proteins of the major histocompatibility complex class I (MHCI) negatively regulate synapse density in the developing vertebrate brain (Glynn et al., 2011; Elmer et al., 2013; Lee et al., 2014), but the underlying mechanisms remain largely unknown. Here we identify a novel MHCI signaling pathway that involves the inhibition of a known synapse-promoting factor, the insulin receptor. Dominant-negative insulin receptor constructs decrease synapse density in the developing Xenopus visual system (Chiu et al., 2008), and insulin receptor activation increases dendritic spine density in mouse hippocampal neurons in vitro (Lee et al., 2011). We find that genetically reducing cell surface MHCI levels increases synapse density selectively in regions of the hippocampus where insulin receptors are expressed, and occludes the neuronal insulin response by de-repressing insulin receptor signaling. Pharmacologically inhibiting insulin receptor signaling in MHCI-deficient animals rescues synapse density, identifying insulin receptor signaling as a critical mediator of the tonic inhibitory effects of endogenous MHCI on synapse number. Insulin receptors co-immunoprecipitate MHCI from hippocampal lysates, and MHCI unmasks a cytoplasmic epitope of the insulin receptor that mediates downstream signaling. These results identify an important role for an MHCI–insulin receptor signaling pathway in circuit patterning in the developing brain, and suggest that changes in MHCI expression could unexpectedly regulate neuronal insulin sensitivity in the aging and diseased brain. PMID:25164678

  1. MHC class I protects motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis (ALS)

    PubMed Central

    Braun, Lyndsey; Meyer, Kathrin; Frakes, Ashley E.; Ferraiuolo, Laura; Likhite, Shibi; Bevan, Adam K.; Foust, Kevin D.; McConnell, Michael J.; Walker, Christopher M.; Kaspar, Brian K.

    2016-01-01

    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic towards motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of motor neurons to cell death remains unclear. Here, we report that astrocytes derived from mice bearing ALS mutations and from individuals with ALS reduce expression of major histocompatibility complex class I (MHCI) on MNs. Reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MN against astrocyte toxicity. A single MHCI molecule, HLA-F, protects MNs from ALS astrocyte-mediated toxicity, while knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, an inhibitory receptor that recognizes MHCI, on astrocytes results in enhanced MN death. These data indicate that in ALS upon loss of MHCI expression MNs become vulnerable to astrocyte-mediated toxicity. PMID:26928464

  2. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide.

    PubMed

    Boder, Eric T; Bill, Jerome R; Nields, Andrew W; Marrack, Philippa C; Kappler, John W

    2005-11-20

    Microbial protein display technologies have enabled directed molecular evolution of binding and stability properties in numerous protein systems. In particular, dramatic improvements to antibody binding affinity and kinetics have been accomplished using these tools in recent years. Examples of successful application of display technologies to other immunological proteins have been limited to date. Herein, we describe the expression of human class II major histocompatibility complex allele (MHCII) HLA-DR4 on the surface of Saccharomyces cerevisiae as a noncovalently associated heterodimer. The yeast-displayed MHCII is fully native as assessed by binding of conformationally specific monoclonal antibodies; failure of antibodies specific for empty HLA-DR4 to bind yeast-displayed protein indicates antigenic peptide is bound. This report represents the first example of a noncovalent protein dimer displayed on yeast and of successful display of wild-type MHCII. Results further point to the potential for using yeast surface display for engineering and analyzing the antigen binding properties of MHCII.

  3. MHC class II diversity of koala (Phascolarctos cinereus) populations across their range

    PubMed Central

    Lau, Q; Jaratlerdsiri, W; Griffith, J E; Gongora, J; Higgins, D P

    2014-01-01

    Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity. PMID:24690756

  4. Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injections of lipopolysaccharide.

    PubMed Central

    Xu, J; Ling, E A

    1994-01-01

    The effects of bacterial lipopolysaccharide (LPS) on the expression of surface antigens including major histocompatibility complex (MHC) and complement type 3 (CR3) receptors on microglial cells in the corpus callosum in postnatal rat brain were investigated. When LPS was injected intravenously (i.v.) in 1-d-old rats, the immunostaining of callosal amoeboid microglial cells with OX-18 directed against MHC class I antigen was enhanced 24 h after the injection in comparison with the controls. The expression of MHC class II (Ia) antigen on the same cell type as shown by its immunoreactivity with OX-6 was also elicited especially after 2 intraperitoneal (i.p.) injections of LPS. Thus 7 d after a single i.p. injection of LPS into 1-d-old rats, only a few OX-6 positive cells showing a moderate staining reaction were observed in the corpus callosum. The immunoreactivity diminished 14 d after the injection. However, in rats receiving 2 successive i.p. injections of LPS at 1 and 4 d of age and killed 7 d after the 1st injection, a significant number of intensely stained OX-6 positive amoeboid microglial cells were observed in the corpus callosum. The expression of MHC class II antigens induced by 2 injections of LPS was sustained at least until d 14 when the callosal ramified microglial cells, known to be derived from gradual metamorphic transformation of amoeboid microglia, still exhibited intense immunoreactivity with OX-6. The effect of LPS on the expression of CR3 on amoeboid microglial cells was not obvious after a single injection, but the immunoreactivity with OX-42 was also augmented in rats given 2 i.p. administration of LPS into rats at 1 an 4 d of age. It is concluded from this study that the expression of MHC class I and class II antigens on amoeboid microglial cells in corpus callosum was upregulated and induced respectively after i.v. or i.p. injection of LPS into early postnatal rats. Although relatively fewer in number when compared with OX-18 and OX-42

  5. Sequence diversity between class I MHC loci of African native and introduced Bos taurus cattle in Theileria parva endemic regions: in silico peptide binding prediction identifies distinct functional clusters.

    PubMed

    Obara, Isaiah; Nielsen, Morten; Jeschek, Marie; Nijhof, Ard; Mazzoni, Camila J; Svitek, Nicholas; Steinaa, Lucilla; Awino, Elias; Olds, Cassandra; Jabbar, Ahmed; Clausen, Peter-Henning; Bishop, Richard P

    2016-05-01

    There is strong evidence that the immunity induced by live vaccination for control of the protozoan parasite Theileria parva is mediated by class I MHC-restricted CD8(+) T cells directed against the schizont stage of the parasite that infects bovine lymphocytes. The functional competency of class I MHC genes is dependent on the presence of codons specifying certain critical amino acid residues that line the peptide binding groove. Compared with European Bos taurus in which class I MHC allelic polymorphisms have been examined extensively, published data on class I MHC transcripts in African taurines in T. parva endemic areas is very limited. We utilized the multiplexing capabilities of 454 pyrosequencing to make an initial assessment of class I MHC allelic diversity in a population of Ankole cattle. We also typed a population of exotic Holstein cattle from an African ranch for class I MHC and investigated the extent, if any, that their peptide-binding motifs overlapped with those of Ankole cattle. We report the identification of 18 novel allelic sequences in Ankole cattle and provide evidence of positive selection for sequence diversity, including in residues that predominantly interact with peptides. In silico functional analysis resulted in peptide binding specificities that were largely distinct between the two breeds. We also demonstrate that CD8(+) T cells derived from Ankole cattle that are seropositive for T. parva do not recognize vaccine candidate antigens originally identified in Holstein and Boran (Bos indicus) cattle breeds. PMID:26852329

  6. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: A molecular dynamics simulation study

    SciTech Connect

    Sieker, Florian; Straatsma, TP; Springer, Sebastian; Zacharias, Martin W

    2008-08-01

    Efficiency of peptide loading to MHC class I molecules in the endoplasmatic reticulum depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Molecular dynamics (MD) simulations on induced peptide termini dissociation from the α1/α2 peptide binding domains have been performed to characterize free energy changes and associated structural changes in the two alleles. A smooth free energy change along the distance dissociation coordinate was obtained for N terminus dissociation. A different shape and magnitude of the calculated free energy change and was obtained for induced peptide C terminus dissociation in case of the tapasin independent allele B*4405 compared to B*4402. Structural changes during C terminus dissociation occurred mainly in the first segment of the α2-1 helix that flanks the peptide C-terminus binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a stable shift towards an altered open F-pocket structure deviating significantly from the bound form was observed. In contrast, B*4405 showed only a transient opening of the F-pocket followed by relaxation towards a structure close to the bound form upon C terminus dissociation. The greater tendency for peptide-receptive conformation in the absence of peptide combined with a more long-range character of the interactions with the peptide C terminus facilitates peptide binding to B*4405 and could be responsible for the tapasin independence of this allele. A possible role of tapasin in case of HLA-B*4402 and other tapasin-dependent alleles could be the stabilization of a peptide receptive class I

  7. Allergen-specific MHC class II tetramer+ cells are detectable in allergic, but not in nonallergic, individuals.

    PubMed

    Macaubas, Claudia; Wahlstrom, Jan; Galvão da Silva, Ana Paula; Forsthuber, Thomas G; Sønderstrup, Grete; Kwok, William W; DeKruyff, Rosemarie H; Umetsu, Dale T

    2006-04-15

    Allergen-specific cells are present in very low frequency in peripheral blood of humans, and differ in function in allergic and nonallergic individuals. We report in this study that soluble class II MHC tetramers can be used to directly identify and study such allergen epitope-specific CD4+ T cells in humans. We identified the major antigenic epitope of rye grass allergen Lol p 1 in HLA-DRB1*0401 individuals using HLA-DR*0401 transgenic mice and peripheral blood cells from HLA-DR*0401 individuals. Using DRB1*0401 tetramers loaded with this major epitope of Lol p 1, we detected allergen-specific CD4+ T cells in the peripheral blood of DRB1*0401 rye grass allergic individuals after ex vivo expansion with allergen. These tetramer-positive cells produced IL-4, but little IFN-gamma. In contrast, we were unable to detect rye grass tetramer-positive cells in cultures from HLA-DR*0401 nonallergic individuals, even after expansion with IL-2. Thus, our results suggest that rye grass allergen-specific T cells in DR*0401 nonallergic subjects are present at very low levels (e.g., because of deletion or suppression), differ in a fundamental way in their requirement for ex vivo expansion (e.g., they may be anergic), or use TCRs distinct from those of allergic individuals. Thus, analysis using DRB1*0401 tetramers loaded with a major epitope of Lol p 1 indicates that allergen-specific CD4+ T cells in nonallergic individuals are distinct from those in allergic subjects.

  8. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags. PMID:26856698

  9. Mamu-A*01/K{sup b} transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    SciTech Connect

    Li Jinliang; Srivastava, Tumul; Rawal, Ravindra; Manuel, Edwin; Isbell, Donna; Tsark, Walter; La Rosa, Corinna; Wang Zhongde; Li Zhongqi; Barry, Peter A.; Hagen, Katharine D.; Longmate, Jeffrey; Diamond, Don J.

    2009-04-25

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (alpha1 and alpha2 Mamu-A*01 domains) and murine (alpha3, transmembrane, and cytoplasmic H-2K{sup b} domains) MHC Class I molecules were derived by transgenesis of the H-2K{sup b}D{sup b} double MHC Class I knockout strain. After immunization of Mamu-A*01/K{sup b} Tg mice with rVV-SIVGag-Pol, the mice generated CD8{sup +} T-cell IFN-gamma responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/K{sup b} Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  10. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule.

    SciTech Connect

    Wang, J.-H.; Meijers, R.; Xiong, Y.; Liu, J.-H.; Sakihama, T.; Zhang, R.-G.; Joachimiak, A.; Reinherz, E. L.; Biosciences Division; Dana-Farber Cancer Inst.; Harvard Medical School

    2001-09-11

    The structural basis of the interaction between the CD4 coreceptor and a class II major histocompatibility complex (MHC) is described. The crystal structure of a complex containing the human CD4 N-terminal two-domain fragment and the murine I-A{sup k }class II MHC molecule with associated peptide (pMHCII) shows that only the 'top corner' of the CD4 molecule directly contacts pMHCII. The CD4 Phe-43 side chain extends into a hydrophobic concavity formed by MHC residues from both {alpha}2 and {beta}2 domains. A ternary model of the CD4-pMHCII-T-cell receptor (TCR) reveals that the complex appears V-shaped with the membrane-proximal pMHCII at the apex. This configuration excludes a direct TCR-CD4 interaction and suggests how TCR and CD4 signaling is coordinated around the antigenic pMHCII complex. Human CD4 binds to HIV gp120 in a manner strikingly similar to the way in which CD4 interacts with pMHCII. Additional contacts between gp120 and CD4 give the CD4-gp120 complex a greater affinity. Thus, ligation of the viral envelope glycoprotein to CD4 occludes the pMHCII-binding site on CD4, contributing to immunodeficiency.

  11. HLA-F complex without peptide binds to MHC class I protein in the open conformer form1

    PubMed Central

    Goodridge, Jodie P.; Burian, Aura; Lee, Ni; Geraghty, Daniel E.

    2013-01-01

    HLA-F has very low levels of polymorphism in humans and is highly conserved among primates suggesting a conserved function in the immune response. In this study we probed the structure of HLA-F on the surface of B-LCLs and activated lymphocytes by direct measurement of peptide binding of native HLA-F. Our findings suggested that HLA-F is expressed independently of bound peptide, at least with respect to peptide complexity profiles similar to those of either HLA-E or classical MHC-I. As a further probe of native HLA-F structure, we used a number of complementary approaches to explore the interactions of HLA-F with other molecules, at the cell surface, intracellularly, and in direct physical biochemical measurements. This analysis demonstrated that HLA-F surface expression was coincident with MHC-I heavy chain (HC) expression and was down regulated upon perturbation of MHC-I HC structure. It was further possible to directly demonstrate that MHC-I would only interact with HLA-F when in the form of open conformer free of peptide and not as trimeric complex. This interaction was directly observed by co-immunoprecipitation and by surface plasmon resonance and indirectly on the surface of cells through coincident tetramer and MHC-I HC co-localization. Together these data suggest that HLA-F is expressed independent of peptide and that a physical interaction specific to MHC-I HC plays a role in the function of MHC-I HC expression in activated lymphocytes. PMID:20483783

  12. Ultra-deep Illumina sequencing accurately identifies MHC class IIb alleles and provides evidence for copy number variation in the guppy (Poecilia reticulata).

    PubMed

    Lighten, Jackie; van Oosterhout, Cock; Paterson, Ian G; McMullan, Mark; Bentzen, Paul

    2014-07-01

    We address the bioinformatic issue of accurately separating amplified genes of the major histocompatibility complex (MHC) from artefacts generated during high-throughput sequencing workflows. We fit observed ultra-deep sequencing depths (hundreds to thousands of sequences per amplicon) of allelic variants to expectations from genetic models of copy number variation (CNV). We provide a simple, accurate and repeatable method for genotyping multigene families, evaluating our method via analyses of 209 b of MHC class IIb exon 2 in guppies (Poecilia reticulata). Genotype repeatability for resequenced individuals (N = 49) was high (100%) within the same sequencing run. However, repeatability dropped to 83.7% between independent runs, either because of lower mean amplicon sequencing depth in the initial run or random PCR effects. This highlights the importance of fully independent replicates. Significant improvements in genotyping accuracy were made by greatly reducing type I genotyping error (i.e. accepting an artefact as a true allele), which may occur when using low-depth allele validation thresholds used by previous methods. Only a small amount (4.9%) of type II error (i.e. rejecting a genuine allele as an artefact) was detected through fully independent sequencing runs. We observed 1-6 alleles per individual, and evidence of sharing of alleles across loci. Variation in the total number of MHC class II loci among individuals, both among and within populations was also observed, and some genotypes appeared to be partially hemizygous; total allelic dosage added up to an odd number of allelic copies. Collectively, observations provide evidence of MHC CNV and its complex basis in natural populations.

  13. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas

    PubMed Central

    Brown, P J; Wong, K K; Felce, S L; Lyne, L; Spearman, H; Soilleux, E J; Pedersen, L M; Møller, M B; Green, T M; Gascoyne, D M; Banham, A H

    2016-01-01

    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco–Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients. PMID:26500140

  14. The UL41-encoded virion host shutoff (vhs) protein and vhs-independent mechanisms are responsible for down-regulation of MHC class I molecules by bovine herpesvirus 1.

    PubMed

    Koppers-Lalic, D; Rijsewijk, F A; Verschuren, S B; van Gaans-Van den Brink, J A; Neisig, A; Ressing, M E; Neefjes, J; Wiertz, E J

    2001-09-01

    The virion host shutoff (vhs) protein of alphaherpesviruses causes a rapid shutoff of host cell protein synthesis. We constructed a bovine herpesvirus 1 (BHV1) deletion mutant in which the putative vhs gene, UL41, has been disrupted. Whereas protein synthesis is inhibited within 3 h after infection with wild-type BHV1, no inhibition was observed after infection with the BHV1(vhs-) deletion mutant. These results indicate that the BHV1 UL41 gene product is both necessary and sufficient for shutoff of host cell protein synthesis at early times post-infection. Using the vhs deletion mutant, we investigated the mechanism of BHV1-induced down-regulation of MHC class I cell surface expression. In contrast to BHV1 wild-type infection, the BHV1(vhs-) mutant allows detection of MHC class I molecules at much later time-points after infection. This illustrates the role the vhs protein plays in MHC class I down-regulation. However, even after infection with BHV1(vhs-), MHC class I cell surface expression is impaired. In BHV1(vhs-)-infected cells, MHC class I molecules are retained within the endoplasmic reticulum (ER). Moreover, the transporter associated with antigen presentation (TAP) is still blocked. Temporal control of viral protein expression using chemical inhibitors shows that viral protein(s) expressed within the early phase of BHV1 infection are responsible for ER retention of MHC class I molecules. These results indicate that multiple mechanisms are responsible for down-regulation of MHC class I molecules in BHV1-infected cells.

  15. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.

    PubMed

    Murakami, Masaaki; Hirano, Toshio

    2011-01-01

    It is commonly thought that autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases (Marrack et al., 2001; Mathis and Benoist, 2004). In several cases, however, even for diseases associated with class II major histocompatibility complex (MHC) alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established (Mocci et al., 2000; Skapenko et al., 2005). Rheumatoid arthritis (RA) and arthritis in F759 knock-in mice (F759 mice) are such examples (Atsumi et al., 2002; Brennan et al., 2002; Falgarone et al., 2009). These include associations with class II MHC and CD4 molecules; increased numbers of memory/activated CD4+ T cells; and improved outcomes in response to suppressions and/or deficiencies in class II MHC molecules, CD4+ T cells, and the T cell survival cytokine IL-7. Regarding the development of arthritis in F759 mice, it is not only the immune system, but also non-immune tissue that are involved, indicating that the importance of their interactions (Sawa et al., 2006, 2009; Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Furthermore, we have shown that local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice (Murakami et al., 2011). For example, local microbleeding-mediated CCL20 expression induce such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s) such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non-hematopoietic cells in the joint (Murakami et al., 2011). We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier for

  16. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma.

    PubMed

    Lorenzi, Silvia; Forloni, Matteo; Cifaldi, Loredana; Antonucci, Chiara; Citti, Arianna; Boldrini, Renata; Pezzullo, Marco; Castellano, Aurora; Russo, Vincenzo; van der Bruggen, Pierre; Giacomini, Patrizio; Locatelli, Franco; Fruci, Doriana

    2012-01-01

    Neuroblastoma (NB), the most common solid extracranial cancer of childhood, displays a remarkable low expression of Major Histocompatibility Complex class I (MHC-I) and Antigen Processing Machinery (APM) molecules, including Endoplasmic Reticulum (ER) Aminopeptidases, and poorly presents tumor antigens to Cytotoxic T Lymphocytes (CTL). We have previously shown that this is due to low expression of the transcription factor NF-kB p65. Herein, we show that not only NF-kB p65, but also the Interferon Regulatory Factor 1 (IRF1) and certain APM components are low in a subset of NB cell lines with aggressive features. Whereas single transfection with either IRF1, or NF-kB p65 is ineffective, co-transfection results in strong synergy and substantial reversion of the MHC-I/APM-low phenotype in all NB cell lines tested. Accordingly, linked immunohistochemistry expression patterns between nuclear IRF1 and p65 on the one hand, and MHC-I on the other hand, were observed in vivo. Absence and presence of the three molecules neatly segregated between high-grade and low-grade NB, respectively. Finally, APM reconstitution by double IRF1/p65 transfection rendered a NB cell line susceptible to killing by anti MAGE-A3 CTLs, lytic efficiency comparable to those seen upon IFN-γ treatment. This is the first demonstration that a complex immune escape phenotype can be rescued by reconstitution of a limited number of master regulatory genes. These findings provide molecular insight into defective MHC-I expression in NB cells and provide the rational for T cell-based immunotherapy in NB variants refractory to conventional therapy.

  17. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors.

    PubMed

    Fišerová, Anna; Richter, Jan; Čapková, Katarína; Bieblová, Jana; Mikyšková, Romana; Reiniš, Milan; Indrová, Marie

    2016-08-01

    To elucidate the immunological mechanisms critical for tumor progression, we bred novel mouse strains, different in the NKC and H-2D domains. We used inbreeding to generate hybrids of Balb/c and C57BL/6 of stable H-2Db+d-NK1.1neg and H-2Db-d+NK1.1high phenotypes. We analyzed the growth of three established MHC class I-deficient tumor cell lines: TC-1/A9 tumor (HPV-associated) and B16F10 melanoma, both syngeneic to C57BL/6, and the MCB8 (3-methycholanthrene-induced tumor) syngeneic to Balb/c. Furthermore, we induced colorectal carcinoma by azoxymethane-DSS treatment to test the susceptibility to chemically-induced primary cancer. We found that the novel strains spontaneously regressed the tumor transplants syngeneic to both Balb/c (MCB8) and C57BL/6 (B16F10 and TC-1/A9) mice. The H2-Db+d-NK1.1neg, but not the H2-Db-d+NK1.1high strain was also highly resistant to chemically-induced colorectal cancer in comparison to the parental mice. The immune changes during TC-1/A9 cancer development involved an increase of the NK cell distribution in the peripheral blood and spleen along with higher expression of NKG2D activation antigen; this was in correlation with the time-dependent rise of cytotoxic activity in comparison to C57BL/6 mice. The TC-1/A9 cancer regression was accompanied by higher proportion of B cells in the spleen and B220+/CD86+ activated antigen-presenting B cells distributed in the lymphoid organs, as well as in the periphery. The changes in the T-cell population were represented mainly by the prevalence of T helper cells reflected by grown CD4/CD8 ratio, most prominent in the b+d-NK1.1neg strain. The results of the present study imply usefulness of the two novel mouse strains as an experimental model for further studies of tumor resistance mechanisms. PMID:27279019

  18. Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth

    PubMed Central

    Pečnerová, Patrícia; Díez-del-Molino, David; Vartanyan, Sergey; Dalén, Love

    2016-01-01

    According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage. PMID:27143688

  19. Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth.

    PubMed

    Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love

    2016-05-04

    According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.

  20. Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth.

    PubMed

    Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love

    2016-01-01

    According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage. PMID:27143688

  1. Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth

    NASA Astrophysics Data System (ADS)

    Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love

    2016-05-01

    According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.

  2. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys

    PubMed Central

    Lugo, Juan S.; Cadavid, Luis F.

    2015-01-01

    The MHC class I (MHC-I) region in New World monkeys (Platyrrhini) has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10) and –B (15) loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i) MHC-I genes has expanded differentially among Platyrrhini species, ii) Callitrichinae (tamarins and marmosets) MHC-B loci have limited or tissue-specific expression, iii) MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv) the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding. PMID:26121030

  3. MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo.

    PubMed

    Cavalli, Giulio; Hayashi, Masahiro; Jin, Ying; Yorgov, Daniel; Santorico, Stephanie A; Holcomb, Cherie; Rastrou, Melinda; Erlich, Henry; Tengesdal, Isak W; Dagna, Lorenzo; Neff, C Preston; Palmer, Brent E; Spritz, Richard A; Dinarello, Charles A

    2016-02-01

    Genetic risk for autoimmunity in HLA genes is most often attributed to structural specificity resulting in presentation of self-antigens. Autoimmune vitiligo is strongly associated with the MHC class II region. Here, we fine-map vitiligo MHC class II genetic risk to three SNPs only 47 bp apart, located within a predicted super-enhancer in an intergenic region between HLA-DRB1 and HLA-DQA1, localized by a genome-wide association study of 2,853 Caucasian vitiligo patients. The super-enhancer corresponds to an expression quantitative trait locus for expression of HLA-DR and HLA-DQ RNA; we observed elevated surface expression of HLA-DR (P = 0.008) and HLA-DQ (P = 0.02) on monocytes from healthy subjects homozygous for the high-risk SNP haplotype. Unexpectedly, pathogen-stimulated peripheral blood mononuclear cells from subjects homozygous for the high-risk super-enhancer haplotype exhibited greater increase in production of IFN-γ and IL-1β than cells from subjects homozygous for the low-risk haplotype. Specifically, production of IFN-γ on stimulation of dectin-1, mannose, and Toll-like receptors with Candida albicans and Staphylococcus epidermidis was 2.5- and 2.9-fold higher in high-risk subjects than in low-risk subjects, respectively (P = 0.007 and P = 0.01). Similarly, production of IL-1β was fivefold higher in high-risk subjects than in low-risk subjects (P = 0.02). Increased production of immunostimulatory cytokines in subjects carrying the high-risk haplotype may act as an "adjuvant" during the presentation of autoantigens, tying together genetic variation in the MHC with the development of autoimmunity. This study demonstrates that for risk of autoimmune vitiligo, expression level of HLA class II molecules is as or more important than antigen specificity.

  4. Proteomic screening identifies calreticulin as a