Science.gov

Sample records for noncoding repeat expansions

  1. Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells

    PubMed Central

    Yanovsky-Dagan, Shira; Mor-Shaked, Hagar; Eiges, Rachel

    2015-01-01

    Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations. PMID:26131313

  2. Influence of Friedreich Ataxia GAA Noncoding Repeat Expansions on Pre-mRNA Processing

    PubMed Central

    Baralle, Marco; Pastor, Tibor; Bussani, Erica; Pagani, Franco

    2008-01-01

    The intronic GAA repeat expansion in the frataxin (FXN) gene causes the hereditary neurodegenerative disorder Friedreich ataxia. Although it is generally believed that GAA repeats block transcription elongation, direct proof in eukaryotic systems is lacking. We tested in hybrid minigenes the effect of GAA and TTC repeats on nascent transcription and pre-mRNA processing. Unexpectedly, disease-causing GAA100 repeats did not affect transcriptional elongation in a nuclear HeLa Run On assay, nor did they affect pre-mRNA transcript abundance. However, they did result in a complex defect in pre-mRNA processing. The insertion of GAA but not TTC repeats downstream of reporter exons resulted in their partial or complete exclusion from the mature mRNAs and in the generation of a variety of aberrant splicing products. This effect of GAA repeats was observed to be position and context dependent; their insertion at different distances from the reporter exons had a variable effect on splice-site selection. In addition, GAA repeats bind to a multitude of different splicing factors and induced the accumulation of an upstream pre-mRNA splicing intermediate, which is not turned over into mature mRNA. When embedded in the homologous frataxin minigene system, the GAA repeats did not affect the pre-mRNA transcript abundance but did significantly reduce the splicing efficiency of the first intron. These data indicate an association between GAA noncoding repeats and aberrant pre-mRNA processing because binding of transcribed GAA repeats to a multitude of trans-acting splicing factors can interfere with normal turnover of intronic RNA and thus lead to its degradation and a lower abundance of mature mRNA. PMID:18597733

  3. DNA Triplet Repeat Expansion and Mismatch Repair

    PubMed Central

    Iyer, Ravi R.; Pluciennik, Anna; Napierala, Marek; Wells, Robert D.

    2016-01-01

    DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway. PMID:25580529

  4. Therapeutics development for triplet repeat expansion diseases.

    PubMed

    Di Prospero, Nicholas A; Fischbeck, Kenneth H

    2005-10-01

    The underlying genetic mutations for many inherited neurodegenerative disorders have been identified in recent years. One frequent type of mutation is trinucleotide repeat expansion. Depending on the location of the repeat expansion, the mutation might result in a loss of function of the disease gene, a toxic gain of function or both. Disease gene identification has led to the development of model systems for investigating disease mechanisms and evaluating treatments. Examination of experimental findings reveals similarities in disease mechanisms as well as possibilities for treatment.

  5. Impact of Noncoding Satellite Repeats on Pancreatic Cancer Metastasis

    DTIC Science & Technology

    2014-09-01

    TCF7L2 fusion. Nat Genet 43, 964-968 (2011). 22. Jiang, J., Birchler, J.A., Parrott, W.A. & Dawe, R.K. A molecular view of plant centromeres. Trends...these highly specific and abundant transcripts as novel biomarkers for early detection. Keywords cancer genetics , satellite repeats, metastasis...goals of the project and we are planning to focus on two major questions based on our new findings. The modified aims are as follows for this

  6. Impact of Noncoding Satellite Repeats on Pancreatic Cancer Metastasis

    DTIC Science & Technology

    2015-11-01

    transcripts as novel biomarkers for early detection. 2. KEYWORDS cancer genetics , satellite repeats, metastasis, circulating tumor cell, pancreatic cancer...to formally evaluate effects on CTCs in the future using the pancreatic genetically engineered mouse model, which was outside the scope of this...bCenter for Biomedical Informatics, Harvard Medical School, Boston, MA 02115; cDivision of Genetics , Brigham and Women’s Hospital, Boston, MA 02115

  7. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures.

    PubMed

    McFarland, Karen N; Liu, Jilin; Landrian, Ivette; Zeng, Desmond; Raskin, Salmo; Moscovich, Mariana; Gatto, Emilia M; Ochoa, Adriana; Teive, Hélio A G; Rasmussen, Astrid; Ashizawa, Tetsuo

    2014-03-01

    Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant neurodegenerative disorder, is the result of a non-coding, pentanucleotide repeat expansion within intron 9 of the Ataxin 10 gene. SCA10 patients present with pure cerebellar ataxia; yet, some families also have a high incidence of epilepsy. SCA10 expansions containing penta- and heptanucleotide interruption motifs, termed "ATCCT interruptions," experience large contractions during germline transmission, particularly in paternal lineages. At the same time, these alleles confer an earlier age at onset which contradicts traditional rules of genetic anticipation in repeat expansions. Previously, ATCCT interruptions have been associated with a higher prevalence of epileptic seizures in one Mexican-American SCA10 family. In a large cohort of SCA10 families, we analyzed whether ATCCT interruptions confer a greater risk for developing seizures in these families. Notably, we find that the presence of repeat interruptions within the SCA10 expansion confers a 6.3-fold increase in the risk of an SCA10 patient developing epilepsy (6.2-fold when considering patients of Mexican ancestry only) and a 13.7-fold increase in having a positive family history of epilepsy (10.5-fold when considering patients of Mexican ancestry only). We conclude that the presence of repeat interruptions in SCA10 repeat expansion indicates a significant risk for the epilepsy phenotype and should be considered during genetic counseling.

  8. Correia Repeat Enclosed Elements and Non-Coding RNAs in the Neisseria Species

    PubMed Central

    Roberts, Sabrina B.; Spencer-Smith, Russell; Shah, Mahwish; Nebel, Jean-Christophe; Cook, Richard T.; Snyder, Lori A. S.

    2016-01-01

    Neisseria gonorrhoeae is capable of causing gonorrhoea and more complex diseases in the human host. Neisseria meningitidis is a closely related pathogen that shares many of the same genomic features and virulence factors, but causes the life threatening diseases meningococcal meningitis and septicaemia. The importance of non-coding RNAs in gene regulation has become increasingly evident having been demonstrated to be involved in regulons responsible for iron acquisition, antigenic variation, and virulence. Neisseria spp. contain an IS-like element, the Correia Repeat Enclosed Element, which has been predicted to be mobile within the genomes or to have been in the past. This repeat, present in over 100 copies in the genome, has the ability to alter gene expression and regulation in several ways. We reveal here that Correia Repeat Enclosed Elements tend to be near non-coding RNAs in the Neisseria spp., especially N. gonorrhoeae. These results suggest that Correia Repeat Enclosed Elements may have disrupted ancestral regulatory networks not just through their influence on regulatory proteins but also for non-coding RNAs. PMID:27681925

  9. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.

    PubMed

    DeJesus-Hernandez, Mariely; Mackenzie, Ian R; Boeve, Bradley F; Boxer, Adam L; Baker, Matt; Rutherford, Nicola J; Nicholson, Alexandra M; Finch, NiCole A; Flynn, Heather; Adamson, Jennifer; Kouri, Naomi; Wojtas, Aleksandra; Sengdy, Pheth; Hsiung, Ging-Yuek R; Karydas, Anna; Seeley, William W; Josephs, Keith A; Coppola, Giovanni; Geschwind, Daniel H; Wszolek, Zbigniew K; Feldman, Howard; Knopman, David S; Petersen, Ronald C; Miller, Bruce L; Dickson, Dennis W; Boylan, Kevin B; Graff-Radford, Neill R; Rademakers, Rosa

    2011-10-20

    Several families have been reported with autosomal-dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here, we report an expansion of a noncoding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43-based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (23.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.

  10. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport.

    PubMed

    Freibaum, Brian D; Lu, Yubing; Lopez-Gonzalez, Rodrigo; Kim, Nam Chul; Almeida, Sandra; Lee, Kyung-Ha; Badders, Nisha; Valentine, Marc; Miller, Bruce L; Wong, Philip C; Petrucelli, Leonard; Kim, Hong Joo; Gao, Fen-Biao; Taylor, J Paul

    2015-09-03

    The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.

  11. Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy.

    PubMed

    Rudnicki, Dobrila D; Margolis, Russell L

    2003-08-22

    Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative disorders falling into three groups. Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a CAG repeat expansion that encodes polyglutamine. Convergent lines of evidence demonstrate that neurodegeneration in these diseases is a consequence of the neurotoxic effects of abnormally long stretches of glutamines. How polyglutamine induces neurodegeneration, and why neurodegeneration occurs in only select neuronal populations, remains a matter of intense investigation. SCA6 is caused by a CAG repeat expansion in CACNA1A, a gene that encodes a subunit of the P/Q-type calcium channel. The threshold length at which the repeat causes disease is much shorter than in the other polyglutamine diseases, and neurodegeneration may arise from expansion-induced change of function in the calcium channel. Huntington's disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation into these diseases is still at an early stage, but it is now reasonable to hypothesise that the net effect of each expansion is to alter gene expression. The different pathogenic mechanisms in these three groups of diseases have important implications for the development of rational therapeutics.

  12. The Repeat Expansion Diseases: the dark side of DNA repair?

    PubMed Central

    Zhao, Xiao-Nan; Usdin, Karen

    2015-01-01

    DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199

  13. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal

    PubMed Central

    Beaver, Jill M.; Lai, Yanhao; Rolle, Shantell J.; Liu, Yuan

    2017-01-01

    DNA base lesions and base excision repair (BER) within trinucleotide repeat (TNR) tracts modulate repeat instability through the coordination among the key BER enzymes DNA polymerase β, flap endonuclease 1 (FEN1) and DNA ligase I (LIG I). However, it remains unknown whether BER cofactors can also alter TNR stability. In this study, we discovered that proliferating cell nuclear antigen (PCNA), a cofactor of BER, promoted CAG repeat deletion and removal of a CAG repeat hairpin during BER in a duplex CAG repeat tract and CAG hairpin loop, respectively. We showed that PCNA stimulated LIG I activity on a nick across a small template loop during BER in a duplex (CAG)20 repeat tract promoting small repeat deletions. Surprisingly, we found that during BER in a hairpin loop, PCNA promoted reannealing of the upstream flap of a double-flap intermediate, thereby facilitating the formation of a downstream flap and stimulating FEN1 cleavage activity and hairpin removal. Our results indicate that PCNA plays a critical role in preventing CAG repeat expansions by modulating the structures of dynamic DNA via cooperation with BER enzymes. We provide the first evidence that PCNA prevents CAG repeat expansions during BER by promoting CAG repeat deletion and removal of a TNR hairpin. PMID:27793507

  14. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    PubMed

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)(exp)) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)(exp). In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)(exp) and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)(exp) in its natural context.

  15. Repeat expansion disease: Progress and puzzles in disease pathogenesis

    PubMed Central

    La Spada, Albert R.; Taylor, J. Paul

    2015-01-01

    Repeat expansion mutations cause at least 22 inherited neurological diseases. The complexity of repeat disease genetics and pathobiology has revealed unexpected shared themes and mechanistic pathways among the diseases, for example, RNA toxicity. Also, investigation of the polyglutamine diseases has identified post-translational modification as a key step in the pathogenic cascade, and has shown that the autophagy pathway plays an important role in the degradation of misfolded proteins – two themes likely to be relevant to the entire neurodegeneration field. Insights from repeat disease research are catalyzing new lines of study that should not only elucidate molecular mechanisms of disease, but also highlight opportunities for therapeutic intervention for these currently untreatable disorders. PMID:20177426

  16. Novel mutational mechanism in man: Expansion of trinucleotide repeats

    SciTech Connect

    Ilarioshkin, S.N.; Ivanova-Smolenskaya, I.A.; Markova, E.D.

    1995-11-01

    An analysis of a novel, recently discovered class of mutations in man - an expansion, i.e., an increase of the copy number of intragenic unstable trinucleotide repeats - is presented. The expansion of trinucleotide X chromosome syndrome (two separate variants of the disease - FRAXA and FRAXE), myotonic dystrophy, spinal and bulbar Kennedy`s amyotrophy, Huntington`s chorea, type 1 spinocerebellar ataxia, and dentatorubral-pallidolyusian atrophy. The discovery of triplet expansion allows a satisfactory explanation on the molecular level of a series of unusual clinical genetic phenomena, such as anticipation, the {open_quotes}paternal transmission{close_quotes} effect, the {open_quotes}Sherman paradox,{close_quotes} and others. The common properties and the distinctions of unstable trinucleotide mutations in the nosologic forms mentioned above are analyzed comprehensively. These features include the mechanism by which these mutations cause disease, the time of their appearance in ontogenesis, and various clinical genetic correlations. The evolutionary origin of this class of mutations and, in particular, the role of alleles with an {open_quotes}intermediate{close_quotes} triplet number, which are the persistent reservoir of mutations arising de novo in a population, are also discussed. The possible implication of unstable trinucleotide repeats for a series of other hereditary diseases, such as type 2, spinocerebellar ataxia, Machado-Joseph disease, hereditary spastic paraplegia, essential tremor, schizophrenia, and others, is also suggested. 108 refs., 1 tab.

  17. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1.

    PubMed

    Yu, Zhenming; Goodman, Lindsey D; Shieh, Shin-Yi; Min, Michelle; Teng, Xiuyin; Zhu, Yongqing; Bonini, Nancy M

    2015-02-15

    Expanded non-coding RNA repeats of CUG and CCUG are the underlying genetic causes for myotonic dystrophy type 1 (DM1) and type 2 (DM2), respectively. A gain-of-function of these pathogenic repeat expansions is mediated at least in part by their abnormal interactions with RNA-binding proteins such as MBNL1 and resultant loss of activity of these proteins. To study pathogenic mechanisms of CCUG-repeat expansions in an animal model, we created a fly model of DM2 that expresses pure, uninterrupted CCUG-repeat expansions ranging from 16 to 720 repeats in length. We show that this fly model for DM2 recapitulates key features of human DM2 including RNA repeat-induced toxicity, ribonuclear foci formation and changes in alternative splicing. Interestingly, expression of two isoforms of MBNL1, MBNL135 and MBNL140, leads to cleavage and concurrent upregulation of the levels of the RNA-repeat transcripts, with MBNL140 having more significant effects than MBNL135. This property is shared with a fly CUG-repeat expansion model. Our results suggest a novel mechanism for interaction between the pathogenic RNA repeat expansions of myotonic dystrophy and MBNL1.

  18. CAG repeat expansions in bipolar and unipolar disorders

    SciTech Connect

    Oruc, L.; Verheyen, G.R.; Raeymaekers, P.; Van Broeckhoven, C.

    1997-03-01

    Family, twin, and adoption studies consistently have indicated that the familial aggregation of bipolar (BP) disorder and unipolar recurrent major depression (UPR) is accounted for largely by genetic factors. However, the mode of inheritance is complex. One of the possible explanations could be that a gene with variable penetrance and variable expression is involved. Recently there have been reports on a new class of genetic diseases caused by an abnormal trinucleotide-repeat expansion (TRE). In a number of genetic disorders, these dynamic mutations were proved to be the biological basis for the clinically observed phenomenon of anticipation. DNA consisting of repeated triplets of nucleotides becomes unstable and increases in size over generations within families, giving rise to an increased severity and/or an earlier onset of the disorder. It has been recognized for a long time that anticipation occurs in multiplex families transmitting mental illness. More recent studies also suggest that both BP disorder and UPR show features that are compatible with anticipation. Although the findings of anticipation in BP disorders and in UPR must be interpreted with caution because of the possible presence of numerous ascertainment biases, they support the hypothesis that pathological TREs are implicated in the transmission of these disorders. TRE combined with variable penetrance of expression could explain the complex transmission pattern observed in BP disorder. In view of this, the recent reports of an association between CAG-repeat length and BP disorder in a Belgian, Swedish, and British population are promising. 14 refs., 1 fig., 1 tab.

  19. The C9ORF72 repeat expansion disrupts nucleocytoplasmic transport

    PubMed Central

    Haeusler, Aaron R.; Grima, Jonathan C.; Machamer, James B.; Steinwald, Peter; Daley, Elizabeth L.; Miller, Sean J.; Cunningham, Kathleen M.; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A.; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L.; Ostrow, Lyle W.; Matunis, Michael J.; Wang, Jiou; Sattler, Rita

    2016-01-01

    A GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila ortholog of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9ORF72 ALS patient-derived induced pluripotent stem cells (iPSNs), and in C9ORF72 patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9ORF72 iPSNs, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD amenable to pharmacotherapeutic intervention. PMID:26308891

  20. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2.

    PubMed

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten; Skovby, Flemming; Hjermind, Lena E; Nielsen, Jørgen E; Nielsen, Troels Tolstrup

    2013-06-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective genes leading to pathogenic expansions of polyglutamine stretches in the encoded proteins. In general, unstable CAG repeats have an uninterrupted CAG repeat, whereas stable CAG repeats are either short or interrupted by CAA codons, which - like CAG codons - code for glutamine. Here we report on an infantile SCA2 patient who, due to germ-line CAG repeat instability in her father, inherited an extremely expanded CAG repeat in the SCA2 locus. Surprisingly, the expanded allele of the father was an interrupted CAG repeat sequence. Furthermore, analyses of single spermatozoa showed a high frequency of paternal germ-line repeat sequence instability of the expanded SCA2 locus.

  1. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with C9ORF72 repeat expansion

    PubMed Central

    Sareen, D.; O’Rourke, J. G.; Meera, P.; Muhammad, A.K.M.G.; Grant, S.; Simpkinson, M.; Bell, S.; Carmona, S.; Ornelas, L.; Sahabian, A.; Gendron, T.; Petrucelli, L.; Baughn, M.; Ravits, J.; Harms, M. B.; Rigo, F.; Bennett, C. F.; Otis, T. S.; Svendsen, C. N.; Baloh, R. H.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. Here, we report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased leading to accumulation of GGGGCC repeat-containing RNA foci selectively in C9-ALS motor neurons. Repeat-containing RNA foci co-localized with hnRNPA1 and Pur-α, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides (ASOs) targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. PMID:24154603

  2. Tandem repeats discovery service (TReaDS) applied to finding novel cis-acting factors in repeat expansion diseases

    PubMed Central

    2012-01-01

    Background Tandem repeats are multiple duplications of substrings in the DNA that occur contiguously, or at a short distance, and may involve some mutations (such as substitutions, insertions, and deletions). Tandem repeats have been extensively studied also for their association with the class of repeat expansion diseases (mostly affecting the nervous system). Comparative studies on the output of different tools for finding tandem repeats highlighted significant differences among the sets of detected tandem repeats, while many authors pointed up how critical it is the right choice of parameters. Results In this paper we present TReaDS - Tandem Repeats Discovery Service, a tandem repeat meta search engine. TReaDS forwards user requests to several state of the art tools for finding tandem repeats and merges their outcome into a single report, providing a global, synthetic, and comparative view of the results. In particular, TReaDS allows the user to (i) simultaneously run different algorithms on the same data set, (ii) choose for each algorithm a different setting of parameters, and (iii) obtain a report that can be downloaded for further, off-line, investigations. We used TReaDS to investigate sequences associated with repeat expansion diseases. Conclusions By using the tool TReaDS we discover that, for 27 repeat expansion diseases out of a currently known set of 29, long fuzzy tandem repeats are covering the expansion loci. Tests with control sets confirm the specificity of this association. This finding suggests that long fuzzy tandem repeats can be a new class of cis-acting elements involved in the mechanisms leading to the expansion instability. We strongly believe that biologists can be interested in a tool that, not only gives them the possibility of using multiple search algorithm at the same time, with the same effort exerted in using just one of the systems, but also simplifies the burden of comparing and merging the results, thus expanding our

  3. C9ORF72 hexanucleotide repeat expansions in clinical Alzheimer’s disease

    PubMed Central

    Harms, Matthew; Benitez, Bruno; Cairns, Nigel; Cooper, Breanna; Cooper, Paul; Mayo, Kevin; Carrell, David; Faber, Kelley; Williamson, Jennifer; Bird, Tom; Diaz-Arrastia, Ramon; Foroud, Tatiana M.; Boeve, Bradley F.; Graff-Radford, Neill R.; Mayeux, Richard; Chakraverty, Sumitra; Goate, Alison M.; Cruchaga, Carlos

    2013-01-01

    Objective Hexanucleotide repeat expansions in C9ORF72 underlie a significant fraction of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This study investigates the frequency of C9ORF72 repeat expansions in clinically diagnosed late-onset Alzheimer’s disease (AD). Design, setting and patients This case-control study genotyped the C9ORF72 repeat expansion in 872 unrelated familial AD cases and 888 controls recruited as part of the NIA-LOAD cohort, a multi-site collaboration studying 1000 families with two or more individuals clinically diagnosed with late-onset-AD. Main Outcome Measure We determined the presence or absence of the C9ORF72 repeat expansion by repeat-primed PCR, the length of the longest non-expanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers. Results Three families showed large C9ORF72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the NIA-LOAD series, the C9ORF72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions. Interpretation C9ORF72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and highlight the necessity of screening “FTD genes” in clinical AD cases with strong family history. PMID:23588422

  4. Browsing repeats in genomes: Pygram and an application to non-coding region analysis

    PubMed Central

    Durand, Patrick; Mahé, Frédéric; Valin, Anne-Sophie; Nicolas, Jacques

    2006-01-01

    Background A large number of studies on genome sequences have revealed the major role played by repeated sequences in the structure, function, dynamics and evolution of genomes. In-depth repeat analysis requires specialized methods, including visualization techniques, to achieve optimum exploratory power. Results This article presents Pygram, a new visualization application for investigating the organization of repeated sequences in complete genome sequences. The application projects data from a repeat index file on the analysed sequences, and by combining this principle with a query system, is capable of locating repeated sequences with specific properties. In short, Pygram provides an efficient, graphical browser for studying repeats. Implementation of the complete configuration is illustrated in an analysis of CRISPR structures in Archaea genomes and the detection of horizontal transfer between Archaea and Viruses. Conclusion By proposing a new visualization environment to analyse repeated sequences, this application aims to increase the efficiency of laboratories involved in investigating repeat organization in single genomes or across several genomes. PMID:17067389

  5. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions

    PubMed Central

    Essebier, Alexandra; Vera Wolf, Patricia; Cao, Minh Duc; Carroll, Bernard J.; Balasubramanian, Sureshkumar; Bodén, Mikael

    2016-01-01

    More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions. PMID:27013954

  6. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.

    PubMed

    Xu, Meng; Lai, Yanhao; Torner, Justin; Zhang, Yanbin; Zhang, Zunzhen; Liu, Yuan

    2014-04-01

    Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location-dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5'-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5'- and 3'-flap that was cleaved by flap endonuclease 1 and a 3'-5' endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.

  7. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1)

    PubMed Central

    Winblad, Stefan; Lindberg, Christopher; Hansen, Stefan

    2006-01-01

    Background This study was designed to investigate cognitive abilities and their correlations with CTG repeat expansion size in classical Myotonic dystrophy type 1 (DM1), given that earlier studies have indicated cognitive deficits, possibly correlating with blood CTG repeats expansion size. Methods A measurement of CTG repeat expansion in lymphocytes and an extensive neuropsychological examination was made in 47 patients (25 women and 22 men). Individual results in the examination were compared with normative data. Results A substantial proportion of patients with DM1 (> 40%) scored worse in comparison to normative collectives on tests measuring executive, arithmetic, attention, speed and visuospatial abilities. We found significant correlations between longer CTG repeat expansion size and lower results on most tests associated with these abilities. Furthermore, the association between executive (frontal) deficits and DM1 were strengthened when considering both test results and correlations with CTG repeat expansion size in lymphocytes. Conclusion This study showed deficits in several cognitive abilities when patients with DM1 are compared to normative collectives. Some of the neuropsychological tests associated with these abilities are correlated to CTG repeat expansion size in blood. These data highlight the importance of considering cognitive deficits when seeing patients with classical DM1 in clinical practice, but also the utility of using blood CTG repeat expansion size as a broad predictor of finding cognitive deficit in DM1. PMID:16696870

  8. Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci

    PubMed Central

    He, Fang; Jones, Julie M.; Figueroa-Romero, Claudia; Zhang, Dapeng; Feldman, Eva L.; Goutman, Stephen A.; Meisler, Miriam H.; Callaghan, Brian C.

    2016-01-01

    Objective: To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS). Methods: We assessed G4C2 repeat number in 28 genes near known ALS and frontotemporal dementia (FTD) loci by repeat-primed PCR coupled with fluorescent fragment analysis in 199 patients with ALS (17 familial, 182 sporadic) and 136 healthy controls. We also obtained blood from patients with ALS4 for evaluation of repeats surrounding the SETX gene locus. C9orf72 expansions were evaluated in parallel. Results: Expansions of G4C2 repeats in C9orf72 explained 8.8% of sporadic and 47% of familial ALS cases analyzed. Repeat variance was observed at one other locus, RGS14, but no large expansions were observed, and repeat sizes were not different between cases and controls. No G4C2 repeat expansions were identified at other ALS or FTD risk loci or in ALS4 cases. Conclusions: G4C2 expansions near known ALS and FTD loci other than C9orf72 are not a common cause of ALS. PMID:27274540

  9. C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.

    PubMed

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T; Thompson, Elizabeth M; Haan, Eric; Sue, Carolyn M; Panegyres, Peter K; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E; Brooks, William S; Schofield, Peter R; Pastor, Pau; Kwok, John B J

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion' patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine 'expansion-positive' patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an 'intermediate' allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of 'non-expansion' FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.

  10. A Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild Irish Accessions of Arabidopsis thaliana.

    PubMed

    Tabib, Amanda; Vishwanathan, Sailaja; Seleznev, Andrei; McKeown, Peter C; Downing, Tim; Dent, Craig; Sanchez-Bermejo, Eduardo; Colling, Luana; Spillane, Charles; Balasubramanian, Sureshkumar

    2016-01-01

    Triplet repeat expansions underlie several human genetic diseases such as Huntington's disease and Friedreich's ataxia. Although such mutations are primarily known from humans, a triplet expansion associated genetic defect has also been reported at the IIL1 locus in the Bur-0 accession of the model plant Arabidopsis thaliana. The IIL1 triplet expansion is an example of cryptic genetic variation as its phenotypic effects are seen only under genetic or environmental perturbation, with high temperatures resulting in a growth defect. Here we demonstrate that the IIL1 triplet expansion associated growth defect is not a general stress response and is specific to particular environmental perturbations. We also confirm and map genetic modifiers that suppress the effect of IIL1 triplet repeat expansion. By collecting and analyzing accessions from the island of Ireland, we recover the repeat expansion in wild populations suggesting that the repeat expansion has persisted at least 60 years in Ireland. Through genome-wide genotyping, we show that the repeat expansion is present in diverse Irish populations. Our findings indicate that even deleterious alleles can persist in populations if their effect is conditional. Our study demonstrates that analysis of groups of wild populations is a powerful tool for understanding the dynamics of cryptic genetic variation.

  11. A Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild Irish Accessions of Arabidopsis thaliana

    PubMed Central

    Tabib, Amanda; Vishwanathan, Sailaja; Seleznev, Andrei; McKeown, Peter C.; Downing, Tim; Dent, Craig; Sanchez-Bermejo, Eduardo; Colling, Luana; Spillane, Charles; Balasubramanian, Sureshkumar

    2016-01-01

    Triplet repeat expansions underlie several human genetic diseases such as Huntington's disease and Friedreich's ataxia. Although such mutations are primarily known from humans, a triplet expansion associated genetic defect has also been reported at the IIL1 locus in the Bur-0 accession of the model plant Arabidopsis thaliana. The IIL1 triplet expansion is an example of cryptic genetic variation as its phenotypic effects are seen only under genetic or environmental perturbation, with high temperatures resulting in a growth defect. Here we demonstrate that the IIL1 triplet expansion associated growth defect is not a general stress response and is specific to particular environmental perturbations. We also confirm and map genetic modifiers that suppress the effect of IIL1 triplet repeat expansion. By collecting and analyzing accessions from the island of Ireland, we recover the repeat expansion in wild populations suggesting that the repeat expansion has persisted at least 60 years in Ireland. Through genome-wide genotyping, we show that the repeat expansion is present in diverse Irish populations. Our findings indicate that even deleterious alleles can persist in populations if their effect is conditional. Our study demonstrates that analysis of groups of wild populations is a powerful tool for understanding the dynamics of cryptic genetic variation. PMID:27630650

  12. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD.

    PubMed

    Liu, Elaine Y; Russ, Jenny; Wu, Kathryn; Neal, Donald; Suh, Eunran; McNally, Anna G; Irwin, David J; Van Deerlin, Vivianna M; Lee, Edward B

    2014-10-01

    Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hypermethylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.

  13. Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using repeat expansion detection and a PCR screening set

    SciTech Connect

    Bowen, T.; Guy, C.; Speight, G.

    1996-10-01

    Studies of the transmission of schizophrenia in families with affected members in several generations have suggested that an expanded trinucleotide repeat mechanism may contribute to the genetic inheritance of this disorder. Using repeat expansion detection (RED), we and others have previously found that the distribution of CAG/CTG repeat size is larger in patients with schizophrenia than in controls. In an attempt to identify the specific expanded CAG/CTG locus or loci associated with schizophrenia, we have now used an approach based on a CAG/CTG PCR screening set combined with RED data. This has allowed us to minimize genotyping while excluding 43 polymorphic autosomal loci and 7 X-chromosomal loci from the screening set as candidates for expansion in schizophrenia with a very high degree of confidence. 18 refs., 1 tab.

  14. Fluorescence Probe for Detecting CCG Trinucleotide Repeat DNA Expansion and Slip-Out.

    PubMed

    Shibata, Tomonori; Nakatani, Kazuhiko

    2016-09-15

    Trinucleotide repeat expansion in genomic DNA causes severe neurodegenerative diseases. Fluorescence probes that bind to trinucleotide repeats have potential as diagnostic tools of trinucleotide repeat disorders. Here, we report a novel tricyclic ligand that binds to CCG trinucleotide repeat DNA. The expansion of the aromatic ring system of the 2-amino-1,8-naphthyridine chromophore from the bicyclic to the tricyclic improved the binding ability to the CCG/CCG motif without losing the selectivity and emissive character. The fluorescence sensitively decreased in response to binding to the CCG trinucleotide repeat. The degree of quenching depended on the number of CCG repeats. In addition, the fluorescence detection was applicable to CCG slip-out DNA.

  15. A general method for the detection of large CAG repeat expansions by fluorescent PCR.

    PubMed Central

    Warner, J P; Barron, L H; Goudie, D; Kelly, K; Dow, D; Fitzpatrick, D R; Brock, D J

    1996-01-01

    The expansion of a tandemly repeated trinucleotide sequence, CAG, is the mutational mechanism for several human genetic diseases. We present a generally applicable PCR amplification method using a fluorescently labelled locus specific primer flanking the CAG repeat together with paired primers amplifying from multiple priming sites within the CAG repeat. Triplet repeat primed PCR (TP PCR) gives a characteristic ladder on the fluorescence trace enabling the rapid identification of large pathogenetic CAG repeats that cannot be amplified using flanking primers. We used our method to test a cohort of 183 people from myotonic dystrophy families including unaffected subjects and spouses. Eighty five clinically affected subjects with expanded alleles on Southern blot analysis were all correctly identified by TP PCR. This method is applicable for any human diseases involving CAG repeat expansions. Images PMID:9004136

  16. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  17. C9orf72 repeat expansions that cause frontotemporal dementia are detectable among patients with psychosis.

    PubMed

    Watson, Annie; Pribadi, Mochtar; Chowdari, Kodavali; Clifton, Sue; Joel Wood; Miller, Bruce L; Coppola, Giovanni; Nimgaonkar, Vishwajit

    2016-01-30

    A pathologic hexanucleotide repeat expansion in C9orf72 causes frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). Behavioral abnormalities can also occur among mutation carriers with FTD, but it is uncertain whether such mutations occur among persons with psychoses per se. Among participants in a genetic study of psychoses (N=739), two pairs of related individuals had C9orf72 expansions, of whom three were diagnosed with schizophrenia (SZ) / schizoaffective disorder (SZA), but their clinical features did not suggest dementia or ALS. A few patients with SZ/SZA carry C9orf72 repeat expansions; such individuals are highly likely to develop FTD/ALS.

  18. Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies.

    PubMed

    Kun-Rodrigues, Celia; Ross, Owen A; Orme, Tatiana; Shepherd, Claire; Parkkinen, Laura; Darwent, Lee; Hernandez, Dena; Ansorge, Olaf; Clark, Lorraine N; Honig, Lawrence S; Marder, Karen; Lemstra, Afina; Scheltens, Philippe; van der Flier, Wiesje; Louwersheimer, Eva; Holstege, Henne; Rogaeva, Ekaterina; St George-Hyslop, Peter; Londos, Elisabet; Zetterberg, Henrik; Barber, Imelda; Braae, Anne; Brown, Kristelle; Morgan, Kevin; Maetzler, Walter; Berg, Daniela; Troakes, Claire; Al-Sarraj, Safa; Lashley, Tammaryn; Holton, Janice; Compta, Yaroslau; Van Deerlin, Vivianna; Trojanowski, John Q; Serrano, Geidy E; Beach, Thomas G; Clarimon, Jordi; Lleó, Alberto; Morenas-Rodríguez, Estrella; Lesage, Suzanne; Galasko, Douglas; Masliah, Eliezer; Santana, Isabel; Diez, Monica; Pastor, Pau; Tienari, Pentti J; Myllykangas, Liisa; Oinas, Minna; Revesz, Tamas; Lees, Andrew; Boeve, Brad F; Petersen, Ronald C; Ferman, Tanis J; Escott-Price, Valentina; Graff-Radford, Neill; Cairns, Nigel J; Morris, John C; Stone, David J; Pickering-Brown, Stuart; Mann, David; Dickson, Dennis W; Halliday, Glenda M; Singleton, Andrew; Guerreiro, Rita; Bras, Jose

    2017-01-01

    C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that C9orf72 repeat expansions are not causally associated with DLB.

  19. Triplet repeat expansion at the FRAXE locus and X-linked mild mental handicap.

    PubMed Central

    Knight, S. J.; Voelckel, M. A.; Hirst, M. C.; Flannery, A. V.; Moncla, A.; Davies, K. E.

    1994-01-01

    We have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with the expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here we present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families we demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have > 200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. Images Figure 2 Figure 3 Figure 4 PMID:8023854

  20. Triplet repeat expansion at the FRAXE locus and x-linked mild mental handicap

    SciTech Connect

    Knight, S.J.L.; Hirst, M.C.; Flannery, A.V.; Davies, K.E. ); Voelckel, M.A.; Moncla, A.

    1994-07-01

    The authors have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here they present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families they demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have >200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. 19 refs., 4 figs., 1 tab.

  1. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations

    PubMed Central

    van Blitterswijk, Marka; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Ghidoni, Roberta; Benussi, Luisa; Finger, Elizabeth; Hsiung, Ging-Yuek R.; Kelley, Brendan J.; Murray, Melissa E.; Rutherford, Nicola J.; Brown, Patricia E.; Ravenscroft, Thomas; Mullen, Bianca; Ash, Peter E.A.; Bieniek, Kevin F.; Hatanpaa, Kimmo J.; Karydas, Anna; Wood, Elisabeth McCarty; Coppola, Giovanni; Bigio, Eileen H.; Lippa, Carol; Strong, Michael J.; Beach, Thomas G.; Knopman, David S.; Huey, Edward D.; Mesulam, Marsel; Bird, Thomas; White, Charles L.; Kertesz, Andrew; Geschwind, Dan H.; Van Deerlin, Vivianna M.; Petersen, Ronald C.; Binetti, Giuliano; Miller, Bruce L.; Petrucelli, Leonard; Wszolek, Zbigniew K.; Boylan, Kevin B.; Graff-Radford, Neill R.; Mackenzie, Ian R.; Boeve, Bradley F.; Dickson, Dennis W.

    2013-01-01

    Objective: To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases. Methods: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology. Results: We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations. Conclusions: Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members. PMID:24027057

  2. Drosha Inclusions Are New Components of Dipeptide-Repeat Protein Aggregates in FTLD-TDP and ALS C9orf72 Expansion Cases

    PubMed Central

    Porta, Sílvia; Kwong, Linda K.; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2015-01-01

    Abstract Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are 2 neurodegenerative disorders that share clinical, genetic, and neuropathologic features. The presence of abnormal expansions of GGGGCC repeats (G4C2 repeats) in a noncoding region of the Chromosome 9 open reading frame 72 (C9orf72) gene is the major genetic cause of both FTLD and ALS. Transcribed G4C2 repeats can form nuclear RNA foci and recruit RNA-binding proteins, thereby inhibiting their normal function. Moreover, through a repeat-associated non-ATG translation mechanism, G4C2 repeats translation leads to dipeptide-repeat protein aggregation in the cytoplasm of neurons. Here, we identify Drosha protein as a new component of these dipeptide-repeat aggregates. In C9orf72 mutation cases of FTLD-TDP (c9FTLD-TDP) and ALS (c9ALS), but not in FTLD or ALS cases without C9orf72 mutation, Drosha is mislocalized to form neuronal cytoplasmic inclusions in the hippocampus, frontal cortex, and cerebellum. Further characterization of Drosha-positive neuronal cytoplasmic inclusions in the hippocampus, frontal cortex, and cerebellum revealed colocalization with p62 and ubiquilin-2, 2 pathognomonic signatures of c9FTLD-TDP and c9ALS cases; however, Drosha inclusions rarely colocalized with TDP-43 pathology. We conclude that Drosha may play a unique pathogenic role in the onset or progression of FTLD-TDP/ALS in patients with the C9orf72 mutation. PMID:25756586

  3. The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes

    PubMed Central

    2009-01-01

    Background The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. Results Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. Conclusions Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene. PMID:20021652

  4. C9orf72 repeat expansions are a rare genetic cause of parkinsonism

    PubMed Central

    Lesage, Suzanne; Le Ber, Isabelle; Condroyer, Christel; Broussolle, Emmanuel; Gabelle, Audrey; Thobois, Stéphane; Pasquier, Florence; Mondon, Karl; Dion, Patrick A.; Rochefort, Daniel; Rouleau, Guy A.; Dürr, Alexandra; Brice, Alexis

    2013-01-01

    The recently identified C9ORF72 gene accounts for a large proportion of amyotrophic lateral sclerosis and frontotemporal lobar degenerations. Since several forms of these disorders are associated with parkinsonism, we hypothesized that some patients with Parkinson’s disease or other forms of parkinsonism might carry pathogenic C9OFR72 expansions. Therefore, we looked for C9ORF72 repeat expansions in 1,446 parkinsonian unrelated patients consisted of 1,225 clinically diagnosed with Parkinson’s disease, 123 with progressive supranuclear palsy, 21 with corticobasal degeneration syndrome, 43 with Lewy body dementia and 25 with multiple system atrophy-parkinsonism. Of the 1,446 parkinsonian patients, five carried C9ORF72 expansions: three patients with typical Parkinson’s disease, one with corticobasal degeneration syndrome and another with progressive supranuclear palsy. This study shows that: i) although rare, C9ORF72 repeat expansions may be associated with clinically typical Parkinson’s disease, but also with other parkinsonism; ii) in several patients, parkinsonism was dopa-responsive and remained pure, without associated dementia, for more than 10 years; iii) interestingly, all C9ORF72 repeat expansion carriers had positive family histories of parkinsonism, degenerative dementias or amyotrophic lateral sclerosis. This study also provides the tools for identifying parkinsonian patients with C9ORF72 expansions, with important consequences for genetic counseling. PMID:23413259

  5. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia.

    PubMed

    Topisirovic, I; Dragasevic, N; Savic, D; Ristic, A; Keckarevic, M; Keckarevic, D; Culjkovic, B; Petrovic, I; Romac, S; Kostic, V S

    2002-10-01

    Spinocerebellar ataxia type 8 (SCA8) is a slowly progressive ataxia causally associated with untranslated CTG repeat expansion on chromosome 13q21. However, the role of the CTG repeat in SCA8 pathology is not yet well understood. Therefore, we studied the length of the SCA8 CTA/CTG expansions (combined repeats, CRs) in 115 patients with ataxia, 64 unrelated individuals with non-triplet neuromuscular diseases, 70 unrelated patients with schizophrenia, and 125 healthy controls. Only one patient with apparently sporadic ataxia was identified with an expansion of 100 CRs. He had inherited the expansion from his asymptomatic father (140 CRs) and transmitted the mutation to his son (92 CRs). Paternal transmission in this family produced contractions of 40 and 8 CRs, respectively. None of the subjects from other studied groups had an expansion at the SCA8 locus. In the control group the number of CRs at the SCA8 locus ranged from 14 to 34. Our findings support the notion that allelic variants of the expansion mutation at the SCA8 locus can predispose to ataxia.

  6. A novel GAA-repeat-expansion-based mouse model of Friedreich’s ataxia

    PubMed Central

    Anjomani Virmouni, Sara; Ezzatizadeh, Vahid; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; Chutake, Yogesh; Pook, Mark A.

    2015-01-01

    Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced levels of frataxin protein. We have previously reported the generation of human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing 90–190 GAA repeats, but the presence of multiple GAA repeats within these mice is considered suboptimal. We now describe the cellular, molecular and behavioural characterisation of a newly developed YAC transgenic FRDA mouse model, designated YG8sR, which we have shown by DNA sequencing to contain a single pure GAA repeat expansion. The founder YG8sR mouse contained 120 GAA repeats but, due to intergenerational expansion, we have now established a colony of YG8sR mice that contain ~200 GAA repeats. We show that YG8sR mice have a single copy of the FXN transgene, which is integrated at a single site as confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We have identified significant behavioural deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8sR FRDA mice compared with control Y47R and wild-type (WT) mice. We have also detected increased somatic GAA repeat instability in the brain and cerebellum of YG8sR mice, together with significantly reduced expression of FXN, FAST-1 and frataxin, and reduced aconitase activity, compared with Y47R mice. Furthermore, we have confirmed the presence of pathological vacuoles within neurons of the dorsal root ganglia (DRG) of YG8sR mice. These novel GAA-repeat-expansion-based YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology, represent an excellent model for the investigation of FRDA disease mechanisms and therapy. PMID:25681319

  7. Trinucleotide repeat expansion in the FRAXE locus is not common among institutionalized individuals with non-specific developmental disabilities

    SciTech Connect

    Holden, J.J.A.; Julien-Inalsingh, C.; Fidler, K.

    1996-08-09

    Expansion of a polymorphic GCC-repeat at the FRAXE locus has been associated with expression of chromosome fragility at this site and cognitive impairment in some individuals previously testing negative for CGG-repeat expansion in the fragile X mental retardation-1 (FMR1) gene. To determine the frequency of FRAXE triplet repeat expansion among persons with developmental disability, 396 individuals from two institutions were studied, all of whom were negative for FMR1 repeat expansion. Clinically, there was a wide range of mental impairment, with the majority (61.1%) being severely to profoundly affected. The distribution of FRAXE GCC-repeat numbers in the study population was 5-38:28 (5.6%) with 10-14 repeats; 366 (73.8%) with 15-19 repeats; 74 (14.9%) with 20-24 repeats; 20 (4.0%) with 25-29 repeats; and 5 (1.0%) with 30-38 repeats, with no individuals demonstrating repeat expansion. One profoundly retarded male was found to have a deletion of about 40 bp. Southern blots of HindIII-digested DNAs from individuals with {ge}26 repeats all showed normal patterns. These results suggest that FRAXE GCC-repeat expansion is not a common cause of developmental disability in institutionalized persons with mild to profound mental retardation. 15 refs., 1 fig., 2 tabs.

  8. C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population

    PubMed Central

    Sabatelli, Mario; Conforti, Francesca Luisa; Zollino, Marcella; Mora, Gabriele; Monsurrò, Maria Rosaria; Volanti, Paolo; Marinou, Kalliopi; Salvi, Fabrizio; Corbo, Massimo; Giannini, Fabio; Battistini, Stefania; Penco, Silvana; Lunetta, Christian; Quattrone, Aldo; Gambardella, Antonio; Logroscino, Giancarlo; Simone, Isabella; Bartolomei, Ilaria; Pisano, Fabrizio; Tedeschi, Gioacchino; Conte, Amelia; Spataro, Rossella; La Bella, Vincenzo; Caponnetto, Claudia; Mancardi, Gianluigi; Mandich, Paola; Sola, Patrizia; Mandrioli, Jessica; Renton, Alan E.; Majounie, Elisa; Abramzon, Yevgeniya; Marrosu, Francesco; Marrosu, Maria Giovanna; Murru, Maria Rita; Sotgiu, Maria Alessandra; Pugliatti, Maura; Rodolico, Carmelo; Moglia, Cristina; Calvo, Andrea; Ossola, Irene; Brunetti, Maura; Traynor, Bryan J.; Borghero, Giuseppe; Restagno, Gabriella; Chiò, Adriano

    2012-01-01

    It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (familial ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1,757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1,523 from mainland Italy. Sixty (3.7%) of 1,624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally-matched control samples (1,238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived one year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucloetide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the commonest mutation in Italy and the second more common in Sardinia. PMID:22418734

  9. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2).

    PubMed

    Ramos, Eliana Marisa; Martins, Sandra; Alonso, Isabel; Emmel, Vanessa E; Saraiva-Pereira, Maria Luiza; Jardim, Laura Bannach; Coutinho, Paula; Sequeiros, Jorge; Silveira, Isabel

    2010-03-05

    The spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by gait and limb ataxia. This disease is caused by the expansion of a (CAG)(n) located in the ATXN2, that encodes a polyglutamine tract of more than 34 repeats. Lately, alleles with 32-33 CAGs have been associated to late-onset disease cases. Repeat interruptions by CAA triplets are common in normal alleles, while expanded alleles usually contain a pure repeat tract. To investigate the mutational origin and the instability associated to the ATXN2 repeat, we performed an extensive haplotype study and sequencing of the CAG/CAA repeat, in a cohort of families of different geographic origins and phenotypes. Our results showed (1) CAA interruptions also in expanded ATXN2 alleles; (2) that pathological CAA interrupted alleles shared an ancestral haplotype with pure expanded alleles; and (3) higher genetic diversity in European SCA2 families, suggesting an older European ancestry of SCA2. In conclusion, we found instability towards expansion in interrupted ATXN2 alleles and a shared ancestral ATXN2 haplotype for pure and interrupted expanded alleles; this finding has strong implications in mutation diagnosis and counseling. Our results indicate that interrupted alleles, below the pathological threshold, may be a reservoir of mutable alleles, prone to expansion in subsequent generations, leading to full disease mutation.

  10. Large-scale assessment of polyglutamine repeat expansions in Parkinson disease

    PubMed Central

    Wang, Lisa; Aasly, Jan O.; Annesi, Grazia; Bardien, Soraya; Bozi, Maria; Brice, Alexis; Carr, Jonathan; Chung, Sun J.; Clarke, Carl; Crosiers, David; Deutschländer, Angela; Eckstein, Gertrud; Farrer, Matthew J.; Goldwurm, Stefano; Garraux, Gaetan; Hadjigeorgiou, Georgios M.; Hicks, Andrew A.; Hattori, Nobutaka; Klein, Christine; Jeon, Beom; Kim, Yun J.; Lesage, Suzanne; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E.; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D.; Morrison, Karen E.; Opala, Grzegorz; Pihlstrøm, Lasse; Pramstaller, Peter P.; Park, Sung S.; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A.; Stefanis, Leonidas; Stockton, Joanne D.; Silburn, Peter A.; Theuns, Jessie; Tan, Eng K.; Tomiyama, Hiroyuki; Toft, Mathias; Van Broeckhoven, Christine; Uitti, Ryan J.; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius M.; Krüger, Rejko

    2015-01-01

    Objectives: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). Methods: We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. Results: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. Conclusions: Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD. PMID:26354989

  11. Expansion of a chromosomal repeat in Escherichia coli: roles of replication, repair, and recombination functions

    PubMed Central

    Poteete, Anthony R

    2009-01-01

    Background Previous studies of gene amplification in Escherichia coli have suggested that it occurs in two steps: duplication and expansion. Expansion is thought to result from homologous recombination between the repeated segments created by duplication. To explore the mechanism of expansion, a 7 kbp duplication in the chromosome containing a leaky mutant version of the lac operon was constructed, and its expansion into an amplified array was studied. Results Under selection for lac function, colonies bearing multiple copies of the mutant lac operon appeared at a constant rate of approximately 4 to 5 per million cells plated per day, on days two through seven after plating. Expansion was not seen in a recA strain; null mutations in recBCD and ruvC reduced the rate 100- and 10-fold, respectively; a ruvC recG double mutant reduced the rate 1000-fold. Expansion occurred at an increased rate in cells lacking dam, polA, rnhA, or uvrD functions. Null mutations of various other cellular recombination, repair, and stress response genes had little effect upon expansion. The red recombination genes of phage lambda could substitute for recBCD in mediating expansion. In the red-substituted cells, expansion was only partially dependent upon recA function. Conclusion These observations are consistent with the idea that the expansion step of gene amplification is closely related, mechanistically, to interchromosomal homologous recombination events. They additionally provide support for recently described models of RecA-independent Red-mediated recombination at replication forks. PMID:19236706

  12. Trinucleotide repeat expansion and DRPLA (Smith`s disease): Molecular characterization of atrophin-1

    SciTech Connect

    Margolis, R.L.; Li, S.H.; Li, X.J.; Ross, C.A.

    1994-09-01

    Smith`s disease (also known as dentatorubral pallidoluysian atrophy or DRPLA) is a rare, progressive, fatal neuropsychiatric disorder similar to Huntington`s disease (HD). Smith`s disease is characterized by ataxia, choreoathetosis, myoclonic epilepsy, dementia, and genetic anticipation. Neuropathological findings include prominent cell loss in the dentate nucleus of the cerebellum, the globus pallidus, the red nucleus, and the subthalamic nucleus. An expansion of a CAG trinucleotide repeat encoding polyglutamine in a gene originally identified in our laboratory as part of a program to clone candidate genes for disorders with anticipation has recently been found to cause this disorder. We have identified two families that demonstrate the pathological and genetic features (expanded CAG repeat and anticipation) of this disease. Northern analysis indicates that the gene, which we have termed atrophin-1, is widely expressed as a 5 kb mRNA in normal human brain and peripheral tissues. Brain expression is highest in the cerebellum. The developmental expression of the rat homologues of IT-15 (the gene in which a CAG expansion causes HD) and atrophin-1 were compared. Atrophin-1 was most highly expressed in early rat embryo brain (E16), whereas the greatest expression of IT-15 was in the adult rat brain. Cloning and sequencing of the open reading frame from inserts contained in brain cDNA libraries is in progress. In addition to the CAG repeat, the ORF contains an unusual region of alternating acidic and basic amino acids. Further characterization of atrophin-1, and comparison of it to other genes in which trinucleotide repeat expansion leads to neuropsychiatric disorders, should lead to a better understanding of the pathophysiology by which CAG repeat expansion causes human disease.

  13. Searching for Grendel: origin and global spread of the C9ORF72 repeat expansion

    PubMed Central

    Pliner, Hannah A.; Mann, David M.; Traynor, Bryan J.

    2015-01-01

    Recent advances are uncovering more and more of the genetic architecture underlying amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative condition that affects ~6,000 Americans annually. Chief among these was the discovery that a large repeat expansion in the C9ORF72 gene is responsible for an unprecedented portion of familial and sporadic ALS cases. Much has been published on how this expansion disrupts neuronal homeostasis and how gene-based therapy might be an effective treatment in the future. Nevertheless, it is instructive to look back at the origins of this important mutation. In this opinion piece, we attempt to answer three key questions concerning C9ORF72. First, how many times did the expansion occur throughout human history? Second, how old is the expansion? And finally and perhaps most importantly, how did the expansion spread throughout Europe? We speculate that the expansion occurred only once in the past, that this event took place in the Finnish population and that the Vikings and their descendants were responsible for disseminating this mutation throughout the rest of the continent. PMID:24496499

  14. Uncloned expanded CAG/CTG repeat sequences in autosomal dominant cerebellar ataxia (ADCA) detected by the repeat expansion detection (RED) method.

    PubMed Central

    Pujana, M A; Volpini, V; Gratacós, M; Corral, J; Banchs, I; Sánchez, A; Genís, D; Cervera, C; Estivill, X

    1998-01-01

    In some neurodegenerative diseases, genetic anticipation correlates with expansions of the CAG/CTG repeat sequence above the normal range through the generations of a pedigree. Among these neurodegenerative diseases are late onset autosomal dominant cerebellar ataxias (ADCA). ADCA are genetically heterogeneous disorders with different cloned genes for spinocerebellar ataxia type 1 (SCA1), type 2 (SCA2), type 3 or Machado-Joseph disease (SCA3/MJD), and type 6 (SCA6). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), also shows CAG/CTG repeat expansions. Genetic anticipation has been reported for all of them except for the recently cloned SCA6 gene. Other, as yet undetected SCA genes may show the same features. We have used the repeat expansion detection (RED) method to detect repeat expansions directly in DNA samples from ADCA patients not resulting from known genes. Our sample consists of 19 affected index cases, corresponding to 52.8% of our ADCA families without CAG/CTG repeat expansions in the SCA1, SCA2, SCA3/MJD, SCA6, or DRPLA genes. Eighty-nine percent of the index cases had expansions of a CAG/CTG sequence greater than 40 repeats by RED, while these were observed in only 26.9% of 78 healthy subjects from the general population (p < 0.0001). The distribution of RED fragments in controls and ADCA patients also shows significant differences with the Mann-Whitney U test (U = 376.5, p = 0.0007). Moreover, there was a significant inverse correlation between the size of expansion and the age of onset (r = -0.54, p = 0.018). These results show CAG/CTG repeat expansions of over 40 repeats in our sample of ADCA families not resulting from known SCA genes. Images PMID:9507387

  15. Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1.

    PubMed

    Kraus-Perrotta, Cara; Lagalwar, Sarita

    2016-01-01

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that primarily affects the cerebellum and brainstem. The genetic mutation is an expansion of CAG trinucleotide repeats within the coding region of the ataxin-1 gene, characterizing SCA1 as a polyglutamine expansion disease like Huntington's. As with most polyglutamine expansion diseases, SCA1 follows the rules of genetic anticipation: the larger the expansion, the earlier and more rapid the symptoms. Unlike the majority of polyglutamine expansion diseases, the presence of histidine interruptions within the polyglutamine tract of ataxin-1 protein can prevent or mitigate disease. The present review aims to synthesize three decades of research on the ataxin-1 polyglutamine expansion mutation that causes SCA1. Data from genetic population studies and case studies is gathered along with data from manipulation studies in animal models. Specifically, we examine the molecular mechanisms that cause tract expansions and contractions, the molecular pathways that confer instability of tract length in gametic and somatic cells resulting in gametic and somatic mosaicism, the influence of maternal or paternal factors in inheritance of the expanded allele, and the effects of CAT/histidine interruptions to the ataxin-1 allele and protein product. Our review of existing data supports the following conclusions. First, polyCAG expansion of gametic alleles occur due to the failure of gap repair mechanisms for single or double strand breaks during the transition from an immature haploid spermatid to a mature haploid sperm cell. Equivalent failures were not detected in female gametic cells. Second, polyCAG expansion of somatic alleles occur due to hairpins formed on Okazaki fragments and slipped strand structures due to failures in mismatch repair and transcription-coupled nucleotide excision repair mechanisms. Third, CAT trinucleotide interruptions, which code for histidines in the translated

  16. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells

    PubMed Central

    Du, Jintang; Campau, Erica; Soragni, Elisabetta; Jespersen, Christine; Gottesfeld, Joel M.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is an inherited dominant muscular dystrophy caused by expanded CTG·CAG triplet repeats in the 3′ untranslated region of the DMPK1 gene, which produces a toxic gain-of-function CUG RNA. It has been shown that the severity of disease symptoms, age of onset and progression are related to the length of the triplet repeats. However, the mechanism(s) of CTG·CAG triplet-repeat instability is not fully understood. Herein, induced pluripotent stem cells (iPSCs) were generated from DM1 and Huntington's disease patient fibroblasts. We isolated 41 iPSC clones from DM1 fibroblasts, all showing different CTG·CAG repeat lengths, thus demonstrating somatic instability within the initial fibroblast population. During propagation of the iPSCs, the repeats expanded in a manner analogous to the expansion seen in somatic cells from DM1 patients. The correlation between repeat length and expansion rate identified the interval between 57 and 126 repeats as being an important length threshold where expansion rates dramatically increased. Moreover, longer repeats showed faster triplet-repeat expansion. However, the overall tendency of triplet repeats to expand ceased on differentiation into differentiated embryoid body or neurospheres. The mismatch repair components MSH2, MSH3 and MSH6 were highly expressed in iPSCs compared with fibroblasts, and only occupied the DMPK1 gene harboring longer CTG·CAG triplet repeats. In addition, shRNA silencing of MSH2 impeded CTG·CAG triplet-repeat expansion. The information gained from these studies provides new insight into a general mechanism of triplet-repeat expansion in iPSCs. PMID:23933738

  17. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells.

    PubMed

    Bauer, Peter O

    2016-01-26

    A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), together referred to as c9FTD/ALS. It has been suggested that a loss of C9orf72 protein expression, the formation of toxic RNA foci and dipeptide-repeat proteins contribute to C9orf72-related diseases. Interestingly, it has been shown that trimethylation of histones and methylation of CpG islands near the repeat expansion may play a role in the pathogenesis c9FTD/ALS. Recently, methylation of expanded repeat itself has been reported. To further elucidate the mechanisms underlying these diseases, the influence of epigenetic modification in the repeat expansion on its pathogenic effect was assessed. Here, a reduced formation of toxic RNA foci and dipeptide-repeat proteins upon methylation of the GGGGCC repeat in a cellular model of c9FTD/ALS is shown. Additionally, a novel methylcytosine-capture DNA hybridization immunoassay for semi-quantitative detection of the repeat methylation levels is presented, potentially usable for methylation analysis in patients carrying C9orf72 repeat expansion carriers as a diagnostic tool. Presented results suggest that increased level of pathogenic GGGGCC expansion methylation may be sufficient to alleviate the molecular pathology of the C9orf72-related diseases.

  18. Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice.

    PubMed

    Peters, Owen M; Cabrera, Gabriela Toro; Tran, Helene; Gendron, Tania F; McKeon, Jeanne E; Metterville, Jake; Weiss, Alexandra; Wightman, Nicholas; Salameh, Johnny; Kim, Juhyun; Sun, Huaming; Boylan, Kevin B; Dickson, Dennis; Kennedy, Zachary; Lin, Ziqiang; Zhang, Yong-Jie; Daughrity, Lillian; Jung, Chris; Gao, Fen-Biao; Sapp, Peter C; Horvitz, H Robert; Bosco, Daryl A; Brown, Solange P; de Jong, Pieter; Petrucelli, Leonard; Mueller, Christian; Brown, Robert H

    2015-12-02

    A non-coding hexanucleotide repeat expansion in the C9ORF72 gene is the most common mutation associated with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathological role of C9ORF72 in these diseases, we generated a line of mice carrying a bacterial artificial chromosome containing exons 1 to 6 of the human C9ORF72 gene with approximately 500 repeats of the GGGGCC motif. The mice showed no overt behavioral phenotype but recapitulated distinctive histopathological features of C9ORF72 ALS/FTD, including sense and antisense intranuclear RNA foci and poly(glycine-proline) dipeptide repeat proteins. Finally, using an artificial microRNA that targets human C9ORF72 in cultures of primary cortical neurons from the C9BAC mice, we have attenuated expression of the C9BAC transgene and the poly(GP) dipeptides. The C9ORF72 BAC transgenic mice will be a valuable tool in the study of ALS/FTD pathobiology and therapy.

  19. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties.

    PubMed

    Chang, Yu-Jen; Jeng, U-Ser; Chiang, Ya-Ling; Hwang, Ing-Shouh; Chen, Yun-Ru

    2016-03-04

    Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development.

  20. Myotonic dystrophy type 1 (DM1): a triplet repeat expansion disorder.

    PubMed

    Kumar, Ashok; Agarwal, Sarita; Agarwal, Divya; Phadke, Shubha R

    2013-06-15

    Myotonic dystrophy is a progressive multisystem genetic disorder affecting about 1 in 8000 people worldwide. The unstable repeat expansions of (CTG)n or (CCTG)n in the DMPK and ZNF9 genes cause the two known subtypes of myotonic dystrophy: (i) myotonic dystrophy type 1 (DM1) and (ii) myotonic dystrophy type 2 (DM2) respectively. There is currently no cure but supportive management helps equally to reduce the morbidity and mortality and patients need close follow up to pay attention to their clinical problems. This review will focus on the clinical features, molecular view and genetics, diagnosis and management of DM1.

  1. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy.

    PubMed

    Lalioti, M D; Scott, H S; Buresi, C; Rossier, C; Bottani, A; Morris, M A; Malafosse, A; Antonarakis, S E

    1997-04-24

    Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1; MIM 254800) is an autosomal recessive disorder with onset between 6 and 13 years followed by variable progression to mental deterioration and cerebellar ataxia. It is a rare disorder but more common in Finland (1 in 20,000) and the western Mediterranean. Two point mutations in the cysteine proteinase inhibitor gene cystatin B (CSTB), proved that this gene is responsible for EPM1 (ref. 3). An extensive search in the CSTB gene revealed mutations accounting only for 14% of the 58 unrelated EPM1 alleles studied. Here we report that the majority of EPM1 alleles contain expansions of a dodecamer (12-mer) repeat located about 70 nucleotides upstream of the transcription start site nearest to the 5' end of the CSTB gene. Normal alleles contain 2 or 3 copies of this repeat whereas mutant alleles contain more than 60 such repeats and have reduced levels of CSTB messenger RNA in blood but not in cell lines. 'Premutation' CSTB alleles with 12-17 repeats show marked instability when transmitted to offspring.

  2. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-11-23

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.

  3. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    PubMed Central

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  4. Cis-acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation

    PubMed Central

    Zaninovic, Nikica; Zhan, Qiansheng; Madireddy, Advaitha; Nolin, Sarah L.; Ersalesi, Nicole; Yan, Zi; Rosenwaks, Zev

    2014-01-01

    Fragile X syndrome (FXS) is caused by CGG repeat expansion that leads to FMR1 silencing. Women with a premutation allele are at risk of having a full mutation child with FXS. To investigate the mechanism of repeat expansion, we examined the relationship between a single-nucleotide polymorphism (SNP) variant that is linked to repeat expansion in haplogroup D and a replication origin located ∼53 kb upstream of the repeats. This origin is absent in FXS human embryonic stem cells (hESCs), which have the SNP variant C, but present in the nonaffected hESCs, which have a T variant. The SNP maps directly within the replication origin. Interestingly, premutation hESCs have a replication origin and the T variant similar to nonaffected hESCs. These results suggest that a T/C SNP located at a replication origin could contribute to the inactivation of this replication origin in FXS hESCs, leading to altered replication fork progression through the repeats, which could result in repeat expansion to the FXS full mutation. PMID:25179629

  5. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested.

  6. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes

    SciTech Connect

    Kremer, B.; Theilmann, J.; Spence, N.

    1995-08-01

    A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in {approximately}70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r{sup 2}=.19). The size of the CAG repeat influenced larger intergenerational expansions (>7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (>7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P<10{sub -7}), while offspring of affected mothers are more likely to show no change (P=.01) or contractions in CAG size (P=.002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability. 22 refs., 4 figs., 3 tabs.

  7. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72

    PubMed Central

    Boylan, Kevin B.; Graff-Radford, Neill R.; DeJesus-Hernandez, Mariely; Knopman, David S.; Pedraza, Otto; Vemuri, Prashanthi; Jones, David; Lowe, Val; Murray, Melissa E.; Dickson, Dennis W.; Josephs, Keith A.; Rush, Beth K.; Machulda, Mary M.; Fields, Julie A.; Ferman, Tanis J.; Baker, Matthew; Rutherford, Nicola J.; Adamson, Jennifer; Wszolek, Zbigniew K.; Adeli, Anahita; Savica, Rodolfo; Boot, Brendon; Kuntz, Karen M.; Gavrilova, Ralitza; Reeves, Andrew; Whitwell, Jennifer; Kantarci, Kejal; Jack, Clifford R.; Parisi, Joseph E.; Lucas, John A.; Petersen, Ronald C.; Rademakers, Rosa

    2012-01-01

    Numerous kindreds with familial frontotemporal dementia and/or amyotrophic lateral sclerosis have been linked to chromosome 9, and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 has recently been identified as the pathogenic mechanism. We describe the key characteristics in the probands and their affected relatives who have been evaluated at Mayo Clinic Rochester or Mayo Clinic Florida in whom the hexanucleotide repeat expansion were found. Forty-three probands and 10 of their affected relatives with DNA available (total 53 subjects) were shown to carry the hexanucleotide repeat expansion. Thirty-six (84%) of the 43 probands had a familial disorder, whereas seven (16%) appeared to be sporadic. Among examined subjects from the 43 families (n = 63), the age of onset ranged from 33 to 72 years (median 52 years) and survival ranged from 1 to 17 years, with the age of onset <40 years in six (10%) and >60 in 19 (30%). Clinical diagnoses among examined subjects included behavioural variant frontotemporal dementia with or without parkinsonism (n = 30), amyotrophic lateral sclerosis (n = 18), frontotemporal dementia/amyotrophic lateral sclerosis with or without parkinsonism (n = 12), and other various syndromes (n = 3). Parkinsonism was present in 35% of examined subjects, all of whom had behavioural variant frontotemporal dementia or frontotemporal dementia/amyotrophic lateral sclerosis as the dominant clinical phenotype. No subject with a diagnosis of primary progressive aphasia was identified with this mutation. Incomplete penetrance was suggested in two kindreds, and the youngest generation had significantly earlier age of onset (>10 years) compared with the next oldest generation in 11 kindreds. Neuropsychological testing showed a profile of slowed processing speed, complex attention/executive dysfunction, and impairment in rapid word retrieval. Neuroimaging studies showed bilateral

  8. Absence of FMR1 protein in two mentally retarded fragile X males without CGG repeat expansion

    SciTech Connect

    Lugenbeel, K.A.; Nelson, D.L.; Carson, N.L.; Chudley, A.E.

    1994-09-01

    Fragile X syndrome is characterized by absence of the product of the FMR1 gene due to an expansion and abnormal methylation of a CGG repeat located in exon 1. While the vast majority of fragile X patients demonstrate this common mutation, a small number of non-CGG mutations have been identified among patients exhibiting features of fragile X syndrome. Three patients with large deletions ablating all or a portion of FMR1 have been previously reported. A fourth patient has been described with a point mutation resulting in an Ile367 Asn substitution. While this last individual suggests that FMR1 is directly responsible for fragile X syndrome, the severe phenotype observed suggests a gain of function mutation. Our long-term goal is to understand both the normal function of the FMR1 gene product and the consequences of its absence. Using Western blot analysis of protein extracts prepared from transformed lymphoblastoid cell lines derived from individuals suspected of fragile X syndrome without CGG expansion, we have identified two fragile X males who display no FMR1 protein. In order to facilitate identification of small-scale mutations in these patients, primers have been designed which allow amplification of each exon of the FMR1 gene along with their intron boundaries. Exons 2 through 17 of FMR1 have been analyzed by amplification of patient genomic DNA using these primers. Each patient shows normal length amplification product from each exon as assayed by agarose gel electrophoresis, suggesting the absence of insertions, deletions, or other rearrangements. Sequence analysis of exons 8, 9, 10, 11, and 12 has shown no alteration from the normal FMR1 sequence. Current analysis has focused on the use of mutation detection electrophoresis (MDE) in order to identify candidate exons for mutations. RT-PCR analysis is also under way to determine if FMR1 mRNA is present and to offer an alternative approach to mutation detection.

  9. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors.

    PubMed

    Parashar, Vijay; Jeffrey, Philip D; Neiditch, Matthew B

    2013-01-01

    The large family of Gram-positive quorum-sensing receptors known as the RNPP proteins consists of receptors homologous to the Rap, NprR, PlcR, and PrgX proteins that are regulated by imported oligopeptide autoinducers. Rap proteins are phosphatases and transcriptional anti-activators, and NprR, PlcR, and PrgX proteins are DNA binding transcription factors. Despite their obvious importance, the mechanistic basis of oligopeptide receptor regulation is largely unknown. Here, we report the X-ray crystal structure of the Bacillus subtilis quorum-sensing receptor RapJ in complex with the centrally important oligopeptide autoinducer competence and sporulation factor (CSF, also termed PhrC), a member of the Phr family of quorum-sensing signals. Furthermore, we present the crystal structure of RapI. Comparison of the RapJ-PhrC, RapI, RapH-Spo0F, and RapF-ComA(C) crystal structures reveals the mechanistic basis of Phr activity. More specifically, when complexed with target proteins, Rap proteins consist of a C-terminal tetratricopeptide repeat (TPR) domain connected by a flexible helix-containing linker to an N-terminal 3-helix bundle. In the absence of a target protein or regulatory peptide, the Rap protein 3-helix bundle adopts different conformations. However, in the peptide-bound conformation, the Rap protein N-terminal 3-helix bundle and linker undergo a radical conformational change, form TPR-like folds, and merge with the existing C-terminal TPR domain. To our knowledge, this is the first example of conformational change-induced repeat domain expansion. Furthermore, upon Phr binding, the entire Rap protein is compressed along the TPR superhelical axis, generating new intramolecular contacts that lock the Rap protein in an inactive state. The fact that Rap proteins are conformationally flexible is surprising considering that it is accepted dogma that TPR proteins do not undergo large conformational changes. Repeat proteins are widely used as scaffolds for the

  10. Cascade Screening for Fragile X Syndrome/CGG Repeat Expansions in Children Attending Special Education in Sri Lanka

    PubMed Central

    Chong, Samuel S.; Rajan-Babu, Indhu-Shree

    2015-01-01

    Fragile X syndrome (FXS) is the commonest cause of inherited mental retardation and clinically presents with learning, emotional and behaviour problems. FXS is caused by expansion of cytosine-guanine-guanine (CGG) repeats present in the 5’ untranslated region of the FMR1 gene. The aim of this study was to screen children attending special education institutions in Sri Lanka to estimate the prevalence of CGG repeat expansions. The study population comprised a representative national sample of 850 children (540 males, 310 females) with 5 to 18 years of age from moderate to severe mental retardation of wide ranging aetiology. Screening for CGG repeat expansion was carried out on DNA extracted from buccal cells using 3’ direct triplet primed PCR followed by melting curve analysis. To identify the expanded status of screened positive samples, capillary electrophoresis, methylation specific PCR and Southern hybridization were carried out using venous blood samples. Prevalence of CGG repeat expansions was 2.2%. Further classification of the positive samples into FXS full mutation, pre-mutation and grey zone gave prevalence of 1.3%, 0.8% and 0.1% respectively. All positive cases were male. No females with FXS were detected in our study may have been due to the small sample size. PMID:26694146

  11. Cascade Screening for Fragile X Syndrome/CGG Repeat Expansions in Children Attending Special Education in Sri Lanka.

    PubMed

    Chandrasekara, C H W M R Bhagya; Wijesundera, W S Sulochana; Perera, Hemamali N; Chong, Samuel S; Rajan-Babu, Indhu-Shree

    2015-01-01

    Fragile X syndrome (FXS) is the commonest cause of inherited mental retardation and clinically presents with learning, emotional and behaviour problems. FXS is caused by expansion of cytosine-guanine-guanine (CGG) repeats present in the 5' untranslated region of the FMR1 gene. The aim of this study was to screen children attending special education institutions in Sri Lanka to estimate the prevalence of CGG repeat expansions. The study population comprised a representative national sample of 850 children (540 males, 310 females) with 5 to 18 years of age from moderate to severe mental retardation of wide ranging aetiology. Screening for CGG repeat expansion was carried out on DNA extracted from buccal cells using 3' direct triplet primed PCR followed by melting curve analysis. To identify the expanded status of screened positive samples, capillary electrophoresis, methylation specific PCR and Southern hybridization were carried out using venous blood samples. Prevalence of CGG repeat expansions was 2.2%. Further classification of the positive samples into FXS full mutation, pre-mutation and grey zone gave prevalence of 1.3%, 0.8% and 0.1% respectively. All positive cases were male. No females with FXS were detected in our study may have been due to the small sample size.

  12. C9orf72 repeat expansions are restricted to the ALS-FTD spectrum.

    PubMed

    Ticozzi, Nicola; Tiloca, Cinzia; Calini, Daniela; Gagliardi, Stella; Altieri, Alessandra; Colombrita, Claudia; Cereda, Cristina; Ratti, Antonia; Pezzoli, Gianni; Borroni, Barbara; Goldwurm, Stefano; Padovani, Alessandro; Silani, Vincenzo

    2014-04-01

    Expansion of a GGGGCC repeat (RE) in the C9orf72 gene has been recently reported as the main genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Given the growing evidence of genetic and clinicopathologic overlap among ALS, FTD, and other neurodegenerative diseases, we investigated the occurrence of RE in a subset of 9 patients with ALS-plus syndromes, including Parkinson's disease (PD), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy. We identified RE in 2 ALS-plus individuals (22.2%) displaying PSP and CBS features. On the basis of this finding, we extended our analysis to a cohort composed of 190 PD, 103 CBS, 107 PSP, and 177 Alzheimer's disease cases. We did not identify any RE in these patients, indicating that C9orf72 is in all probability not involved in the pathogenesis of these disorders. However, the high frequency of C9orf72 RE in patients with ALS-plus syndromes suggests that, similar to ALS-FTD patients, individuals with combined motor neuron and extrapyramidal features should be screened for RE, independent of their family history.

  13. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer

    PubMed Central

    Bersani, Francesca; Lee, Eunjung; Kharchenko, Peter V.; Xu, Andrew W.; Liu, Mingzhu; Xega, Kristina; MacKenzie, Olivia C.; Brannigan, Brian W.; Wittner, Ben S.; Jung, Hyunchul; Ramaswamy, Sridhar; Park, Peter J.; Maheswaran, Shyamala; Ting, David T.; Haber, Daniel A.

    2015-01-01

    Aberrant transcription of the pericentromeric human satellite II (HSATII) repeat is present in a wide variety of epithelial cancers. In deriving experimental systems to study its deregulation, we observed that HSATII expression is induced in colon cancer cells cultured as xenografts or under nonadherent conditions in vitro, but it is rapidly lost in standard 2D cultures. Unexpectedly, physiological induction of endogenous HSATII RNA, as well as introduction of synthetic HSATII transcripts, generated cDNA intermediates in the form of DNA/RNA hybrids. Single molecule sequencing of tumor xenografts showed that HSATII RNA-derived DNA (rdDNA) molecules are stably incorporated within pericentromeric loci. Suppression of RT activity using small molecule inhibitors reduced HSATII copy gain. Analysis of whole-genome sequencing data revealed that HSATII copy number gain is a common feature in primary human colon tumors and is associated with a lower overall survival. Together, our observations suggest that cancer-associated derepression of specific repetitive sequences can promote their RNA-driven genomic expansion, with potential implications on pericentromeric architecture. PMID:26575630

  14. C9ORF72 hexanucleotide repeat expansions are a frequent cause of Huntington disease phenocopies in the Greek population.

    PubMed

    Koutsis, Georgios; Karadima, Georgia; Kartanou, Chrisoula; Kladi, Athina; Panas, Marios

    2015-01-01

    An expanded hexanucleotide repeat in C9ORF72 has been identified as the most common genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia in many populations, including the Greek. Recently, C9ORF72 expansions were reported as the most common genetic cause of Huntington disease (HD) phenocopies in a UK population. In the present study, we screened a selected cohort of 40 Greek patients with HD phenocopies for C9ORF72 hexanucleotide repeat expansions using repeat-primed polymerase chain reaction. We identified 2 patients (5%) with pathologic expansions. The first patient had chorea, behavioral-psychiatric disturbance, cognitive impairment, and a positive family history, fulfilling the strictest criteria for HD phenocopy. The second patient was sporadic and had parkinsonism, behavioral-psychiatric disturbance, and cognitive impairment, corresponding to a broader definition of HD phenocopy. These findings identify C9ORF72 expansions as a frequent cause of HD phenocopies in the Greek population, confirming recent findings in other populations and supporting proposed diagnostic testing for C9ORF72 expansions in patients with HD-like syndromes.

  15. Expansion of the CGG repeat in fragile X in the FRM1 gene depends on the sex of the offspring

    SciTech Connect

    Loesch, D.Z.; Huggins, R.; Petrovic, V.

    1995-12-01

    Analysis of 139 mother-to-offspring transmissions of fragile X CGG triplet repeats revealed that the repeat expansion is enhanced in mother-to-son transmissions compared with mother-to-daughter transmissions. Evidence has been based on analysis of mother-offspring differences in the size of repeat (in kb), as well as on comparisons between proportions of male and female offspring with premutations, and full mutations, inherited from mothers carrying a premutation. Mean difference in the repeat size from mother-son transmissions was 1.45 kb, compared with mother-daughter transmissions of 0.76 kb. The difference is due primarily to a greater proportion of male than female offspring with full mutation from the premutation mothers and also to a higher frequency of reduction in repeat size from mothers to daughters than from mothers to sons. Our findings suggest the possibility of an interaction of the normal X homologue in a female zygote with the FMR1 sequence on the fragile X during replication to account for the lower level of expansion in mother-to-daughter transmissions relative to mother-to-son transmissions. 27 refs., 3 figs., 2 tabs.

  16. The epilepsy, the protease inhibitor and the dodecamer: progressive myoclonus epilepsy, cystatin b and a 12-mer repeat expansion.

    PubMed

    Lalioti, M D; Antonarakis, S E; Scott, H S

    2003-01-01

    Progressive myoclonus epilepsy 1 (EPM1) or Unverricht-Lundborg disease is a human autosomal recessive neurodegenerative disorder caused by mutations in cystatin B (CSTB). The CSTB gene maps to human chromosome 21 and encodes an inhibitor of lysosomal cysteine proteases. Five point mutations have been found, two of which are seen in numerous unrelated patients. However, the main CSTB mutation in EPM1, even among patients of different ethnic origins, is an expansion of a dodecamer repeat (CCCCGCCCCGCG) in the 5' flanking area of CSTB. Most normal alleles contain either two or three repeats, while rarer normal alleles that are highly unstable contain between 12 and 17 repeats. Mutant expanded alleles have been reported to contain between 30 and 80 copies and are also highly unstable, particularly via parental transmission. There is no apparent correlation between mutant repeat length and disease phenotype. While the repeat expansion is outside the CSTB transcriptional unit, it results in a marked decrease in CSTB expression, at least in certain cell types in vitro. CSTB homozygous knockout mice show some parallels to the phenotype of human EPM1 including myoclonic seizures, development of ataxia and neuropathological changes associated with cell loss via apoptosis. Loss of CSTB function due to mutations is consistent with the observed neurodegenerative pathology and phenotype, but the functional link to the epileptic phenotype of EPM1 remains largely unknown.

  17. A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects.

    PubMed

    Favaro, Francine P; Alvizi, Lucas; Zechi-Ceide, Roseli M; Bertola, Debora; Felix, Temis M; de Souza, Josiane; Raskin, Salmo; Twigg, Stephen R F; Weiner, Andrea M J; Armas, Pablo; Margarit, Ezequiel; Calcaterra, Nora B; Andersen, Gregers R; McGowan, Simon J; Wilkie, Andrew O M; Richieri-Costa, Antonio; de Almeida, Maria L G; Passos-Bueno, Maria Rita

    2014-01-02

    Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5' untranslated region (5' UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis.

  18. Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states.

    PubMed

    Völker, Jens; Gindikin, Vera; Klump, Horst H; Plum, G Eric; Breslauer, Kenneth J

    2012-04-04

    DNA repeat domains can form ensembles of canonical and noncanonical states, including stable and metastable DNA secondary structures. Such sequence-induced structural diversity creates complex conformational landscapes for DNA processing pathways, including those triplet expansion events that accompany replication, recombination, and/or repair. Here we demonstrate further levels of conformational complexity within repeat domains. Specifically, we show that bulge loop structures within an extended repeat domain can form dynamic ensembles containing a distribution of loop positions, thereby yielding families of positional loop isomers, which we designate as "rollamers". Our fluorescence, absorbance, and calorimetric data are consistent with loop migration/translocation between sites within the repeat domain ("rollamerization"). We demonstrate that such "rollameric" migration of bulge loops within repeat sequences can invade and disrupt previously formed base-paired domains via an isoenthalpic, entropy-driven process. We further demonstrate that destabilizing abasic lesions alter the loop distributions so as to favor "rollamers" with the lesion positioned at the duplex/loop junction, sites where the flexibility of the abasic "universal hinge" relaxes unfavorable interactions and/or facilitates topological accommodation. Another strategic siting of an abasic site induces directed loop migration toward denaturing domains, a phenomenon that merges destabilizing domains. In the aggregate, our data reveal that dynamic ensembles within repeat domains profoundly impact the overall energetics of such DNA constructs as well as the distribution of states by which they denature/renature. These static and dynamic influences within triplet repeat domains expand the conformational space available for selection and targeting by the DNA processing machinery. We propose that such dynamic ensembles and their associated impact on DNA properties influence pathways that lead to DNA

  19. Early onset behavioral variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations.

    PubMed

    Arighi, Andrea; Fumagalli, Giorgio G; Jacini, Francesca; Fenoglio, Chiara; Ghezzi, Laura; Pietroboni, Anna M; De Riz, Milena; Serpente, Maria; Ridolfi, Elisa; Bonsi, Rossana; Bresolin, Nereo; Scarpini, Elio; Galimberti, Daniela

    2012-01-01

    A hexanucleotide repeat expansion in the first intron of C9ORF72 has been shown to be responsible for a high number of familial cases of amyotrophic lateral sclerosis or frontotemporal lobar degeneration with or without concomitant motor neuron disease phenotype and TDP-43 based pathology. Here, we report on three cases carrying the hexanucleotide repeat expansion with an atypical presentation consisting in the development of psychiatric symptoms. Patient #1, a 53 year old man with positive family history for dementia, presented with mood deflection, characterized by apathy, social withdraw, and irritability in the last two years. He was diagnosed with "mild cognitive impairment due to depressive syndrome" six months later and subsequently with Alzheimer's disease. Patient #2, a woman with positive family history for dementia, developed behavioral disturbances, aggressiveness, and swearing at 57 years of age. Patient #3 presented, in the absence of brain atrophy, with mystical delirium with auditory hallucinations at 44 years of age, and did not present neurological symptoms over a 7-year follow up. The description of these cases underlines that the hexanucleotide repeat expansion in chromosome 9 could be associated with early onset psychiatric presentations.

  20. Scanning for unstable trinucleotide repeats in neuropsychiatric disorders: Detection of a large CTG expansion in a schizophrenic patient

    SciTech Connect

    Sirugo, G.; Haaf, T.; Kidd, K.K.

    1994-09-01

    Expansion of unstable trinucleotide repeats have been associated so far with seven human genetic disorders including fragile X, myotonic dystrophy and Huntington disease. This newly discovered class of genetic mutations is almost invariably associated with genetic anticipation. Anticipation has been recently reported in bipolar affective disorder and schizophrenia pedigrees, suggesting a possible implication of genes with unstable triplets in these disorders. To explore this hypothesis we have analyzed large schizophrenia and bipolar affective disorder kindreds by means of the Repeat Expansion Detection Method (RED) described by Schalling and modified in our laboratory. This method uses genomic DNA as a template for the annealing and ligation of repeat-specific oligonucleotides. The reactions were subjected to denaturing PAGE and then transferred onto nylon membrane by capillary transfer. The multimers were revealed after hybridization with an oligoprobe and 5 hours exposure on film. To date the kindreds have been screened for the presence of unstable (CTG)n. CTG multimers ranging from 51 to 119 CTG units were detected in both affected and normal individuals corresponding to a normal variation in length of one or more CTG loci. Although our results indicate that (CTG)n expansions are not the mechanism causing schziophrenia or bipolar affective disorder, in one schizophrenia patient we have detected a large (CTG)n constituted by at least 204 CTG units. The incomplete structure of the family does not allow us to determine if this large repeat segregates with the disease. Localization of this expanded locus by in situ hybridization is underway. Similar in situ studies using PCR-generated CCA multimers up to 1 kb in length as a probe have revealed the presence of long tracts of CCA repeats at discrete sites in the human genome. This shows the feasibility of the in situ approach to localize large arrays of triplets in the human genome.

  1. Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    PubMed Central

    Lai, Yanhao; Budworth, Helen; Beaver, Jill M.; Chan, Nelson L. S.; Zhang, Zunzhen; McMurray, Cynthia T.; Liu, Yuan

    2016-01-01

    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion. PMID:27546332

  2. A Noncoding Expansion in EIF4A3 Causes Richieri-Costa-Pereira Syndrome, a Craniofacial Disorder Associated with Limb Defects

    PubMed Central

    Favaro, Francine P.; Alvizi, Lucas; Zechi-Ceide, Roseli M.; Bertola, Debora; Felix, Temis M.; de Souza, Josiane; Raskin, Salmo; Twigg, Stephen R.F.; Weiner, Andrea M.J.; Armas, Pablo; Margarit, Ezequiel; Calcaterra, Nora B.; Andersen, Gregers R.; McGowan, Simon J.; Wilkie, Andrew O.M.; Richieri-Costa, Antonio; de Almeida, Maria L.G.; Passos-Bueno, Maria Rita

    2014-01-01

    Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5′ untranslated region (5′ UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis. PMID:24360810

  3. Exceptional expansion and conservation of a CT-repeat complex in the core promoter of PAXBP1 in primates.

    PubMed

    Mohammadparast, Saeid; Bayat, Hadi; Biglarian, Akbar; Ohadi, Mina

    2014-08-01

    Adaptive evolution may be linked with the genomic distribution and function of short tandem repeats (STRs). Proximity of the core promoter STRs to the +1 transcription start site (TSS), and their mutable nature are characteristics that highlight those STRs as a novel source of interspecies variation. The PAXBP1 gene (alternatively known as GCFC1) core promoter contains the longest STR identified in a Homo sapiens gene core promoter. Indeed, this core promoter is a stretch of four consecutive CT-STRs. In the current study, we used the Ensembl, NCBI, and UCSC databases to analyze the evolutionary trend and functional implication of this CT-STR complex in six major lineages across vertebrates, including primates, non-primate mammals, birds, reptiles, amphibians, and fish. We observed exceptional expansion (≥4-repeats) and conservation of this CT-STR complex across primates, except prosimians, Microcebus murinus and Otolemur garnettii (Fisher exact P<4.1×10(-7)). H. sapiens has the most complex STR formula, and longest repeats. Macaca mulatta and Callithrix jacchus monkeys have the simplest STR formulas, and shortest repeat numbers. CT≥4-repeats were not detected in non-primate lineages. Different length alleles across the PAXBP1 core promoter CT-STRs significantly altered gene expression in vitro (P<0.001, t-test). PAXBP1 has a crucial role in craniofacial development, myogenesis, and spine morphogenesis, properties that have been diverged between primates and non-primates. To our knowledge, this is the first instance of expansion and conservation of a STR complex co-occurring specifically with the primate lineage.

  4. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    PubMed Central

    Gallagher, Michael D.; Suh, Eunran; Grossman, Murray; Elman, Lauren; McCluskey, Leo; Van Swieten, John C.; Al-Sarraj, Safa; Neumann, Manuela; Gelpi, Ellen; Ghetti, Bernardino; Rohrer, Jonathan D.; Halliday, Glenda; Van Broeckhoven, Christine; Seilhean, Danielle; Shaw, Pamela J.; Frosch, Matthew P.; Trojanowski, John Q.; Lee, Virginia M.Y.; Van Deerlin, Vivianna; Chen-Plotkin, Alice S.

    2014-01-01

    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA binding protein of 43kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n=14), with the major allele correlated with later age at death (p=0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n=75), again finding that the major allele associates with later age at death (p=0.016), as well as later age at onset (p=0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease. PMID:24442578

  5. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

    PubMed Central

    Lee, J.-M.; Ramos, E.M.; Lee, J.-H.; Gillis, T.; Mysore, J.S.; Hayden, M.R.; Warby, S.C.; Morrison, P.; Nance, M.; Ross, C.A.; Margolis, R.L.; Squitieri, F.; Orobello, S.; Di Donato, S.; Gomez-Tortosa, E.; Ayuso, C.; Suchowersky, O.; Trent, R.J.A.; McCusker, E.; Novelletto, A.; Frontali, M.; Jones, R.; Ashizawa, T.; Frank, S.; Saint-Hilaire, M.H.; Hersch, S.M.; Rosas, H.D.; Lucente, D.; Harrison, M.B.; Zanko, A.; Abramson, R.K.; Marder, K.; Sequeiros, J.; Paulsen, J.S.; Landwehrmeyer, G.B.; Myers, R.H.; MacDonald, M.E.; Durr, Alexandra; Rosenblatt, Adam; Frati, Luigi; Perlman, Susan; Conneally, Patrick M.; Klimek, Mary Lou; Diggin, Melissa; Hadzi, Tiffany; Duckett, Ayana; Ahmed, Anwar; Allen, Paul; Ames, David; Anderson, Christine; Anderson, Karla; Anderson, Karen; Andrews, Thomasin; Ashburner, John; Axelson, Eric; Aylward, Elizabeth; Barker, Roger A.; Barth, Katrin; Barton, Stacey; Baynes, Kathleen; Bea, Alexandra; Beall, Erik; Beg, Mirza Faisal; Beglinger, Leigh J.; Biglan, Kevin; Bjork, Kristine; Blanchard, Steve; Bockholt, Jeremy; Bommu, Sudharshan Reddy; Brossman, Bradley; Burrows, Maggie; Calhoun, Vince; Carlozzi, Noelle; Chesire, Amy; Chiu, Edmond; Chua, Phyllis; Connell, R.J.; Connor, Carmela; Corey-Bloom, Jody; Craufurd, David; Cross, Stephen; Cysique, Lucette; Santos, Rachelle Dar; Davis, Jennifer; Decolongon, Joji; DiPietro, Anna; Doucette, Nicholas; Downing, Nancy; Dudler, Ann; Dunn, Steve; Ecker, Daniel; Epping, Eric A.; Erickson, Diane; Erwin, Cheryl; Evans, Ken; Factor, Stewart A.; Farias, Sarah; Fatas, Marta; Fiedorowicz, Jess; Fullam, Ruth; Furtado, Sarah; Garde, Monica Bascunana; Gehl, Carissa; Geschwind, Michael D.; Goh, Anita; Gooblar, Jon; Goodman, Anna; Griffith, Jane; Groves, Mark; Guttman, Mark; Hamilton, Joanne; Harrington, Deborah; Harris, Greg; Heaton, Robert K.; Helmer, Karl; Henneberry, Machelle; Hershey, Tamara; Herwig, Kelly; Howard, Elizabeth; Hunter, Christine; Jankovic, Joseph; Johnson, Hans; Johnson, Arik; Jones, Kathy; Juhl, Andrew; Kim, Eun Young; Kimble, Mycah; King, Pamela; Klimek, Mary Lou; Klöppel, Stefan; Koenig, Katherine; Komiti, Angela; Kumar, Rajeev; Langbehn, Douglas; Leavitt, Blair; Leserman, Anne; Lim, Kelvin; Lipe, Hillary; Lowe, Mark; Magnotta, Vincent A.; Mallonee, William M.; Mans, Nicole; Marietta, Jacquie; Marshall, Frederick; Martin, Wayne; Mason, Sarah; Matheson, Kirsty; Matson, Wayne; Mazzoni, Pietro; McDowell, William; Miedzybrodzka, Zosia; Miller, Michael; Mills, James; Miracle, Dawn; Montross, Kelsey; Moore, David; Mori, Sasumu; Moser, David J.; Moskowitz, Carol; Newman, Emily; Nopoulos, Peg; Novak, Marianne; O'Rourke, Justin; Oakes, David; Ondo, William; Orth, Michael; Panegyres, Peter; Pease, Karen; Perlman, Susan; Perlmutter, Joel; Peterson, Asa; Phillips, Michael; Pierson, Ron; Potkin, Steve; Preston, Joy; Quaid, Kimberly; Radtke, Dawn; Rae, Daniela; Rao, Stephen; Raymond, Lynn; Reading, Sarah; Ready, Rebecca; Reece, Christine; Reilmann, Ralf; Reynolds, Norm; Richardson, Kylie; Rickards, Hugh; Ro, Eunyoe; Robinson, Robert; Rodnitzky, Robert; Rogers, Ben; Rosenblatt, Adam; Rosser, Elisabeth; Rosser, Anne; Price, Kathy; Price, Kathy; Ryan, Pat; Salmon, David; Samii, Ali; Schumacher, Jamy; Schumacher, Jessica; Sendon, Jose Luis Lópenz; Shear, Paula; Sheinberg, Alanna; Shpritz, Barnett; Siedlecki, Karen; Simpson, Sheila A.; Singer, Adam; Smith, Jim; Smith, Megan; Smith, Glenn; Snyder, Pete; Song, Allen; Sran, Satwinder; Stephan, Klaas; Stober, Janice; Sü?muth, Sigurd; Suter, Greg; Tabrizi, Sarah; Tempkin, Terry; Testa, Claudia; Thompson, Sean; Thomsen, Teri; Thumma, Kelli; Toga, Arthur; Trautmann, Sonja; Tremont, Geoff; Turner, Jessica; Uc, Ergun; Vaccarino, Anthony; van Duijn, Eric; Van Walsem, Marleen; Vik, Stacie; Vonsattel, Jean Paul; Vuletich, Elizabeth; Warner, Tom; Wasserman, Paula; Wassink, Thomas; Waterman, Elijah; Weaver, Kurt; Weir, David; Welsh, Claire; Werling-Witkoske, Chris; Wesson, Melissa; Westervelt, Holly; Weydt, Patrick; Wheelock, Vicki; Williams, Kent; Williams, Janet; Wodarski, Mary; Wojcieszek, Joanne; Wood, Jessica; Wood-Siverio, Cathy; Wu, Shuhua; Yastrubetskaya, Olga; de Yebenes, Justo Garcia; Zhao, Yong Qiang; Zimbelman, Janice; Zschiegner, Roland; Aaserud, Olaf; Abbruzzese, Giovanni; Andrews, Thomasin; Andrich, Jurgin; Antczak, Jakub; Arran, Natalie; Artiga, Maria J. Saiz; Bachoud-Lévi, Anne-Catherine; Banaszkiewicz, Krysztof; di Poggio, Monica Bandettini; Bandmann, Oliver; Barbera, Miguel A.; Barker, Roger A.; Barrero, Francisco; Barth, Katrin; Bas, Jordi; Beister, Antoine; Bentivoglio, Anna Rita; Bertini, Elisabetta; Biunno, Ida; Bjørgo, Kathrine; Bjørnevoll, Inga; Bohlen, Stefan; Bonelli, Raphael M.; Bos, Reineke; Bourne, Colin; Bradbury, Alyson; Brockie, Peter; Brown, Felicity; Bruno, Stefania; Bryl, Anna; Buck, Andrea; Burg, Sabrina; Burgunder, Jean-Marc; Burns, Peter; Burrows, Liz; Busquets, Nuria; Busse, Monica; Calopa, Matilde; Carruesco, Gemma T.; Casado, Ana Gonzalez; Catena, Judit López; Chu, Carol; Ciesielska, Anna; Clapton, Jackie; Clayton, Carole; Clenaghan, Catherine; Coelho, Miguel; Connemann, Julia; Craufurd, David; Crooks, Jenny; Cubillo, Patricia Trigo; Cubo, Esther; Curtis, Adrienne; De Michele, Giuseppe; De Nicola, A.; de Souza, Jenny; de Weert, A. Marit; de Yébenes, Justo Garcia; Dekker, M.; Descals, A. Martínez; Di Maio, Luigi; Di Pietro, Anna; Dipple, Heather; Dose, Matthias; Dumas, Eve M.; Dunnett, Stephen; Ecker, Daniel; Elifani, F.; Ellison-Rose, Lynda; Elorza, Marina D.; Eschenbach, Carolin; Evans, Carole; Fairtlough, Helen; Fannemel, Madelein; Fasano, Alfonso; Fenollar, Maria; Ferrandes, Giovanna; Ferreira, Jaoquim J.; Fillingham, Kay; Finisterra, Ana Maria; Fisher, K.; Fletcher, Amy; Foster, Jillian; Foustanos, Isabella; Frech, Fernando A.; Fullam, Robert; Fullham, Ruth; Gago, Miguel; García, RocioGarcía-Ramos; García, Socorro S.; Garrett, Carolina; Gellera, Cinzia; Gill, Paul; Ginestroni, Andrea; Golding, Charlotte; Goodman, Anna; Gørvell, Per; Grant, Janet; Griguoli, A.; Gross, Diana; Guedes, Leonor; BascuñanaGuerra, Monica; Guerra, Maria Rosalia; Guerrero, Rosa; Guia, Dolores B.; Guidubaldi, Arianna; Hallam, Caroline; Hamer, Stephanie; Hammer, Kathrin; Handley, Olivia J.; Harding, Alison; Hasholt, Lis; Hedge, Reikha; Heiberg, Arvid; Heinicke, Walburgis; Held, Christine; Hernanz, Laura Casas; Herranhof, Briggitte; Herrera, Carmen Durán; Hidding, Ute; Hiivola, Heli; Hill, Susan; Hjermind, Lena. E.; Hobson, Emma; Hoffmann, Rainer; Holl, Anna Hödl; Howard, Liz; Hunt, Sarah; Huson, Susan; Ialongo, Tamara; Idiago, Jesus Miguel R.; Illmann, Torsten; Jachinska, Katarzyna; Jacopini, Gioia; Jakobsen, Oda; Jamieson, Stuart; Jamrozik, Zygmunt; Janik, Piotr; Johns, Nicola; Jones, Lesley; Jones, Una; Jurgens, Caroline K.; Kaelin, Alain; Kalbarczyk, Anna; Kershaw, Ann; Khalil, Hanan; Kieni, Janina; Klimberg, Aneta; Koivisto, Susana P.; Koppers, Kerstin; Kosinski, Christoph Michael; Krawczyk, Malgorzata; Kremer, Berry; Krysa, Wioletta; Kwiecinski, Hubert; Lahiri, Nayana; Lambeck, Johann; Lange, Herwig; Laver, Fiona; Leenders, K.L.; Levey, Jamie; Leythaeuser, Gabriele; Lezius, Franziska; Llesoy, Joan Roig; Löhle, Matthias; López, Cristobal Diez-Aja; Lorenza, Fortuna; Loria, Giovanna; Magnet, Markus; Mandich, Paola; Marchese, Roberta; Marcinkowski, Jerzy; Mariotti, Caterina; Mariscal, Natividad; Markova, Ivana; Marquard, Ralf; Martikainen, Kirsti; Martínez, Isabel Haro; Martínez-Descals, Asuncion; Martino, T.; Mason, Sarah; McKenzie, Sue; Mechi, Claudia; Mendes, Tiago; Mestre, Tiago; Middleton, Julia; Milkereit, Eva; Miller, Joanne; Miller, Julie; Minster, Sara; Möller, Jens Carsten; Monza, Daniela; Morales, Blas; Moreau, Laura V.; Moreno, Jose L. López-Sendón; Münchau, Alexander; Murch, Ann; Nielsen, Jørgen E.; Niess, Anke; Nørremølle, Anne; Novak, Marianne; O'Donovan, Kristy; Orth, Michael; Otti, Daniela; Owen, Michael; Padieu, Helene; Paganini, Marco; Painold, Annamaria; Päivärinta, Markku; Partington-Jones, Lucy; Paterski, Laurent; Paterson, Nicole; Patino, Dawn; Patton, Michael; Peinemann, Alexander; Peppa, Nadia; Perea, Maria Fuensanta Noguera; Peterson, Maria; Piacentini, Silvia; Piano, Carla; Càrdenas, Regina Pons i; Prehn, Christian; Price, Kathleen; Probst, Daniela; Quarrell, Oliver; Quiroga, Purificacion Pin; Raab, Tina; Rakowicz, Maryla; Raman, Ashok; Raymond, Lucy; Reilmann, Ralf; Reinante, Gema; Reisinger, Karin; Retterstol, Lars; Ribaï, Pascale; Riballo, Antonio V.; Ribas, Guillermo G.; Richter, Sven; Rickards, Hugh; Rinaldi, Carlo; Rissling, Ida; Ritchie, Stuart; Rivera, Susana Vázquez; Robert, Misericordia Floriach; Roca, Elvira; Romano, Silvia; Romoli, Anna Maria; Roos, Raymond A.C.; Røren, Niini; Rose, Sarah; Rosser, Elisabeth; Rosser, Anne; Rossi, Fabiana; Rothery, Jean; Rudzinska, Monika; Ruíz, Pedro J. García; Ruíz, Belan Garzon; Russo, Cinzia Valeria; Ryglewicz, Danuta; Saft, Carston; Salvatore, Elena; Sánchez, Vicenta; Sando, Sigrid Botne; Šašinková, Pavla; Sass, Christian; Scheibl, Monika; Schiefer, Johannes; Schlangen, Christiane; Schmidt, Simone; Schöggl, Helmut; Schrenk, Caroline; Schüpbach, Michael; Schuierer, Michele; Sebastián, Ana Rojo; Selimbegovic-Turkovic, Amina; Sempolowicz, Justyna; Silva, Mark; Sitek, Emilia; Slawek, Jaroslaw; Snowden, Julie; Soleti, Francesco; Soliveri, Paola; Sollom, Andrea; Soltan, Witold; Sorbi, Sandro; Sorensen, Sven Asger; Spadaro, Maria; Städtler, Michael; Stamm, Christiane; Steiner, Tanja; Stokholm, Jette; Stokke, Bodil; Stopford, Cheryl; Storch, Alexander; Straßburger, Katrin; Stubbe, Lars; Sulek, Anna; Szczudlik, Andrzej; Tabrizi, Sarah; Taylor, Rachel; Terol, Santiago Duran-Sindreu; Thomas, Gareth; Thompson, Jennifer; Thomson, Aileen; Tidswell, Katherine; Torres, Maria M. Antequera; Toscano, Jean; Townhill, Jenny; Trautmann, Sonja; Tucci, Tecla; Tuuha, Katri; Uhrova, Tereza; Valadas, Anabela; van Hout, Monique S.E.; van Oostrom, J.C.H.; van Vugt, Jeroen P.P.; vanm, Walsem Marleen R.; Vandenberghe, Wim; Verellen-Dumoulin, Christine; Vergara, Mar Ruiz; Verstappen, C.C.P.; Verstraelen, Nichola; Viladrich, Celia Mareca; Villanueva, Clara; Wahlström, Jan; Warner, Thomas; Wehus, Raghild; Weindl, Adolf; Werner, Cornelius J.; Westmoreland, Leann; Weydt, Patrick; Wiedemann, Alexandra; Wild, Edward; Wild, Sue; Witjes-Ané, Marie-Noelle; Witkowski, Grzegorz; Wójcik, Magdalena; Wolz, Martin; Wolz, Annett; Wright, Jan; Yardumian, Pam; Yates, Shona; Yudina, Elizaveta; Zaremba, Jacek; Zaugg, Sabine W.; Zdzienicka, Elzbieta; Zielonka, Daniel; Zielonka, Euginiusz; Zinzi, Paola; Zittel, Simone; Zucker, Birgrit; Adams, John; Agarwal, Pinky; Antonijevic, Irina; Beck, Christopher; Chiu, Edmond; Churchyard, Andrew; Colcher, Amy; Corey-Bloom, Jody; Dorsey, Ray; Drazinic, Carolyn; Dubinsky, Richard; Duff, Kevin; Factor, Stewart; Foroud, Tatiana; Furtado, Sarah; Giuliano, Joe; Greenamyre, Timothy; Higgins, Don; Jankovic, Joseph; Jennings, Dana; Kang, Un Jung; Kostyk, Sandra; Kumar, Rajeev; Leavitt, Blair; LeDoux, Mark; Mallonee, William; Marshall, Frederick; Mohlo, Eric; Morgan, John; Oakes, David; Panegyres, Peter; Panisset, Michel; Perlman, Susan; Perlmutter, Joel; Quaid, Kimberly; Raymond, Lynn; Revilla, Fredy; Robertson, Suzanne; Robottom, Bradley; Sanchez-Ramos, Juan; Scott, Burton; Shannon, Kathleen; Shoulson, Ira; Singer, Carlos; Tabbal, Samer; Testa, Claudia; van, Kammen Dan; Vetter, Louise; Walker, Francis; Warner, John; Weiner, illiam; Wheelock, Vicki; Yastrubetskaya, Olga; Barton, Stacey; Broyles, Janice; Clouse, Ronda; Coleman, Allison; Davis, Robert; Decolongon, Joji; DeLaRosa, Jeanene; Deuel, Lisa; Dietrich, Susan; Dubinsky, Hilary; Eaton, Ken; Erickson, Diane; Fitzpatrick, Mary Jane; Frucht, Steven; Gartner, Maureen; Goldstein, Jody; Griffith, Jane; Hickey, Charlyne; Hunt, Victoria; Jaglin, Jeana; Klimek, Mary Lou; Lindsay, Pat; Louis, Elan; Loy, Clemet; Lucarelli, Nancy; Malarick, Keith; Martin, Amanda; McInnis, Robert; Moskowitz, Carol; Muratori, Lisa; Nucifora, Frederick; O'Neill, Christine; Palao, Alicia; Peavy, Guerry; Quesada, Monica; Schmidt, Amy; Segro, Vicki; Sperin, Elaine; Suter, Greg; Tanev, Kalo; Tempkin, Teresa; Thiede, Curtis; Wasserman, Paula; Welsh, Claire; Wesson, Melissa; Zauber, Elizabeth

    2012-01-01

    Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695 PMID:22323755

  6. Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population

    PubMed Central

    Beck, Jon; Poulter, Mark; Hensman, Davina; Rohrer, Jonathan D.; Mahoney, Colin J.; Adamson, Gary; Campbell, Tracy; Uphill, James; Borg, Aaron; Fratta, Pietro; Orrell, Richard W.; Malaspina, Andrea; Rowe, James; Brown, Jeremy; Hodges, John; Sidle, Katie; Polke, James M.; Houlden, Henry; Schott, Jonathan M.; Fox, Nick C.; Rossor, Martin N.; Tabrizi, Sarah J.; Isaacs, Adrian M.; Hardy, John; Warren, Jason D.; Collinge, John; Mead, Simon

    2013-01-01

    Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800–4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized. PMID:23434116

  7. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective

    PubMed Central

    Fernandes, Stephanie A.; Douglas, Andrew G. L.; Varela, Miguel A.; Wood, Matthew J. A.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5–10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS. PMID:24349764

  8. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective.

    PubMed

    Fernandes, Stephanie A; Douglas, Andrew G L; Varela, Miguel A; Wood, Matthew J A; Aoki, Yoshitsugu

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5-10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.

  9. A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia

    PubMed Central

    Lashley, Tammaryn; Rohrer, Jonathan D; Mahoney, Colin; Gordon, Elizabeth; Beck, Jon; Mead, Simon; Warren, Jason; Rossor, Martin; Revesz, Tamas

    2014-01-01

    Aims Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease and is the second most common form of young onset dementia after Alzheimer's disease (AD). An autosomal dominant pattern of inheritance is present in around 25–50% of FTLD cases indicating a strong genetic component. Major pathogenic mutations of FTLD have been demonstrated independently in the progranulin (GRN) gene and the C9orf72 hexanucleotide expansion repeat. In this study we present a family that have been identified as carrying both a GRN Cys31fs mutation and the C9orf72 hexanucleotide expansion repeat. Methods In the present study we describe the clinical and genetic details of family members and pathological features of two family members that have come to post-mortem. Results The mean age at disease onset was 57 years (48–61 years) and mean duration 4 years (2–7 years). The most common presenting syndrome was behavioural variant frontotemporal dementia. Brain imaging from available cases showed a symmetrical pattern of atrophy particularly affecting the frontal and temporal lobes. Pathologically two cases were classified as FTLD-TDP type A with TDP-43 positive inclusions, with additional p62-positive ‘star-like’ inclusions found in the hippocampal formation and cerebellum. Conclusions The type and distribution of the pathological lesions in these two cases were in keeping with FTLD cases carrying only the C9orf72 hexanucleotide repeat. However the driving force of the pathological process may be either pathogenic mutation or a combination of both converging on a singular mechanism. PMID:24286341

  10. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export

    PubMed Central

    Shi, Kevin Y.; Mori, Eiichiro; Nizami, Zehra F.; Lin, Yi; Kato, Masato; Xiang, Siheng; Wu, Leeju C.; Ding, Ming; Yu, Yonghao; Gall, Joseph G.; McKnight, Steven L.

    2017-01-01

    The toxic proline:arginine (PRn) poly-dipeptide encoded by the (GGGGCC)n repeat expansion in the C9orf72 form of heritable amyotrophic lateral sclerosis (ALS) binds to the central channel of the nuclear pore and inhibits the movement of macromolecules into and out of the nucleus. The PRn poly-dipeptide binds to polymeric forms of the phenylalanine:glycine (FG) repeat domain, which is shared by several proteins of the nuclear pore complex, including those in the central channel. A method of chemical footprinting was used to characterize labile, cross-β polymers formed from the FG domain of the Nup54 protein. Mutations within the footprinted region of Nup54 polymers blocked both polymerization and binding by the PRn poly-dipeptide. The aliphatic alcohol 1,6-hexanediol melted FG domain polymers in vitro and reversed PRn-mediated enhancement of the nuclear pore permeability barrier. These data suggest that toxicity of the PRn poly-dipeptide results in part from its ability to lock the FG repeats of nuclear pore proteins in the polymerized state. Our study offers a mechanistic interpretation of PRn poly-dipeptide toxicity in the context of a prominent form of ALS. PMID:28069952

  11. X inactivation plays a major role in the gender bias in somatic expansion in a mouse model of the fragile X-related disorders: implications for the mechanism of repeat expansion.

    PubMed

    Adihe Lokanga, Rachel; Zhao, Xiao-Nan; Entezam, Ali; Usdin, Karen

    2014-09-15

    The Fragile X-related disorders are X-linked disorders resulting from the inheritance of FMR1 alleles with >54 CGG/CCG repeats in their 5' UTR. The repeats expand both somatically and on intergenerational transmission and increased repeat numbers are associated with increased risk of disease and increased risk of further expansion. The mechanism responsible for expansion is unknown. Here, we show in a knockin mouse model of these disorders that somatic expansion is much less common in females than in males. We show that this is due in large part to the fact that expansions occur only when the repeat is on the active X chromosome. However, even when this is taken into account, expansions in females are still less common than expected. This additional gender effect is not due to a protective effect of estrogen, a deleterious effect of testosterone or to differences in the expression of the Fmr1 gene or a variety of X-linked and autosomal DNA repair genes. However, our data do suggest that a higher level of expression of genes that protect against oxidative damage in females may contribute to their lower levels of expansion. Whatever the basis, our data suggest that the risk for somatic expansion may be lower in women than it is in men. This could help explain the reduced penetrance of some aspects of disease pathology in women. The fact that expansion only occurs when the Fmr1 allele is on the active X chromosome has important implications for the mechanism of repeat expansion.

  12. Key Role of Amino Acid Repeat Expansions in the Functional Diversification of Duplicated Transcription Factors

    PubMed Central

    Radó-Trilla, Núria; Arató, Krisztina; Pegueroles, Cinta; Raya, Alicia; de la Luna, Susana; Albà, M. Mar

    2015-01-01

    The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes. PMID:25931513

  13. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases

    PubMed Central

    Koon, Alex C.; Chan, Ho Yin Edwin

    2017-01-01

    For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development. PMID:28377694

  14. Revisiting genotype-phenotype overlap in neurogenetics: triplet-repeat expansions mimicking spastic paraplegias.

    PubMed

    Bettencourt, Conceição; Quintáns, Beatriz; Ros, Raquel; Ampuero, Israel; Yáñez, Zuleima; Pascual, Samuel Ignacio; de Yébenes, Justo García; Sobrido, María-Jesús

    2012-09-01

    Hereditary spastic paraplegias (HSPs) constitute a heterogeneous group of neurological disorders, characterized primarily by progressive spasticity and weakness of the lower limbs. HSPs are caused by mutations in multiple genes (at least 48 loci and 28 causative genes). The clinical spectrum of HSPs is wide and important differences have been reported between patients with distinct mutations in the same gene, or even between different family members bearing the same mutation. Many patients with HSP present clinical deficits related to the involvement of neuronal systems other than corticospinal tracts, namely, peripheral nerves, sensory, or cerebellar pathways. These cases may be difficult to differentiate from other neurological diseases (e.g., hereditary ataxias), also genetically and clinically heterogeneous. As an illustration of how overlapping this genotype-phenotype relationship is, and the difficulties that it brings upon the development of neurogenetic algorithms and databases, we review the main clinical and genetic features of HSPs, and summarize reports on cases of triplet-repeat spinocerebellar ataxias that can mimic HSP phenotypes. This complex scenario makes the necessity of high-quality, curated mutation databases even more urgent, in order to develop adequate diagnostic guidelines, correct interpretation of genetic testing, and appropriate genetic counseling.

  15. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

    PubMed Central

    Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393

  16. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  17. Altered spacing of promoter elements due to the dodecamer repeat expansion contributes to reduced expression of the cystatin B gene in EPM1.

    PubMed

    Lalioti, M D; Scott, H S; Antonarakis, S E

    1999-09-01

    Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1; MIM 254800) is an autosomal recessive disorder characterized by seizures, myoclonus and progression to cerebellar ataxia. EPM1 arises due to mutations in the cystatin B (CSTB) gene which encodes a cysteine proteinase inhibitor. Only a minority of EPM1 alleles carry point mutations, while the majority contain large expansions of the dodecamer CCCCGCCCCGCG repeat which is present at two to three copies in normal individuals. The dodecamer repeat is located in the 5' flanking region of the CSTB gene, presumably in its promoter. The pathological repeat expansion results in a reduction in CSTB mRNA, which may be cell specific. To elucidate the mechanism of this reduction of gene expression, we have studied the putative CSTB promoter in vitro. A 3.8 kb fragment, containing the putative promoter with a 600 bp repeat expansion, showed a 2- to 4-fold reduction in luciferase activity compared with an identical fragment with a normal repeat; this reduction was observed only in certain cell types. Introduction of heterologous DNA fragments of 730 and 1000 bp into the normal promoter, instead of the repeat expansion, showed similarly reduced activity. Terminal deletions of the promoter implicate a putative AP-1 binding site, upstream of the repeat, in CSTB transcription activation. We propose that a novel mechanism of pathogenesis, the altering of the spacing of transcription factor binding sites from each other and/or the transcription initiation site due to repeat expansion, is among the causes of reduction in CSTB expression and thus EPM1.

  18. Comparative phylogeography of woodland reptiles in California: repeated patterns of cladogenesis and population expansion.

    PubMed

    Feldman, Chris R; Spicer, Greg S

    2006-07-01

    The ultimate goal of comparative phylogeographical analyses is to infer processes of diversification from contemporary geographical patterns of genetic diversity. When such studies are employed across diverse groups in an array of communities, it may be difficult to discover common evolutionary and ecological processes associated with diversification. In order to identify taxa that have responded in a similar fashion to historical events, we conducted comparative phylogeographical analyses on a phylogenetically and ecologically limited set of taxa. Here, we focus on a group of squamate reptiles (snakes and lizards) that share similar ecological requirements and generally occupy the same communities in the western USA. At a gross level, deep genetic division in Contia tenuis, Diadophis punctatus, Elgaria multicarinata, the Charina bottae complex, and Lampropeltis zonata are often concordant in the Transverse Ranges, the Monterey Bay and Sacramento-San Joaquin Delta region, and the southern Sierra Nevada in California. Molecular clock estimates suggest that major phyletic breaks within many of these taxa roughly coincide temporally, and may correspond to important geological events. Furthermore, significant congruence between the phylogeographies of E. multicarinata and L. zonata suggests that the succession of vicariance and dispersal events in these species progressed in concert. Such congruence suggests that E. multicarinata and L. zonata have occupied the same communities through time. However, across our entire multi-taxon data set, the sequence of branching events rarely match between sympatric taxa, indicating the importance of subtle differences in life history features as well as random processes in creating unique genetic patterns. Lastly, coalescent and noncoalescent estimates of population expansion suggest that populations in the more southerly distributed clades of C. tenuis, D. punctatus, E. multicarinata, and L. zonata have been stable, while

  19. DNA deamination enables direct PCR amplification of the cystatin B (CSTB) gene-associated dodecamer repeat expansion in myoclonus epilepsy type Unverricht-Lundborg.

    PubMed

    Weinhaeusel, Andreas; Morris, Michael A; Antonarakis, Stylianos E; Haas, Oskar A

    2003-11-01

    The Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder that is caused by the dysfunction of the cystatin B (CSTB) gene product. In the vast majority of affected cases, mRNA transcription is impaired by a biallelic expansion of a dodecamer repeat within the 5'-untranslated region of the respective gene. Since this minisatellite contains exclusively G and C nucleotides, direct PCR analysis of allele expansion is extremely difficult and error prone. To circumvent these problems, we have developed a PCR assay that is based on the deamination of the DNA prior to amplification. We have developed a method based on PCR after DNA deamination of the GC-rich repeat region, which improves the PCR condition to such an extent that we were not only able to reliably amplify expanded alleles of affected individuals (homozygotes and compound heterozygotes), but also the two alleles of full mutation carriers, whose analysis is particularly difficult because of PCR bias and heteroduplex formation between the two alleles. We used promoter- and repeat-specific primer combinations to investigate whether dodecamer repeat expansion concurs with de novo methylation of the CSTB gene promoter in a similar fashion to other repeat expansion syndromes. We confirmed previous evidence obtained by HpaII digestion and Southern blot analysis that both the promoter and the repeat regions are unmethylated, in both healthy and affected individuals. Thus, in contrast to certain trinucleotide repeat expansion-associated diseases, such as fragile X syndrome (FRAXA) and myotonic dystrophy, methylation analyses can not be utilized for indirect diagnostic testing.

  20. Persistent heteroplasmy of a mutation in the human mtDNA control region: hypermutation as an apparent consequence of simple-repeat expansion/contraction.

    PubMed Central

    Howell, N; Smejkal, C B

    2000-01-01

    In the genealogical and phylogenetic analyses that are reported here, we obtained evidence for an unusual pattern of mutation/reversion in the human mitochondrial genome. The cumulative results indicate that, when there is a T-->C polymorphism at nt 16189 and a C-->T substitution at nt 16192, there is an extremely high rate of reversion (hypermutation) at the latter site. The apparent reversion rate is sufficiently high that there is persistent heteroplasmy at nt 16192 in maternal lineages and at the phylogenetic level, a situation that is similar to that observed for the rapid expansion/contraction of simple repeats within the control region. This is the first specific instance in which the mutation frequency at one site in the D-loop is markedly influenced by the local sequence "context." The 16189 T-->C polymorphism lengthens a (C:G)n simple repeat, which then undergoes expansion and contraction, probably through replication slippage. This proclivity toward expansion/contraction is more pronounced when there is a C residue, rather than a T, at nt 16192. The high T-->C reversion frequency at nt 16192 apparently is the result of polymerase misincorporation or slippage during replication, the same mechanism that also causes the expansion/contraction of this simple-repeat sequence. In addition to the first analysis of this mitochondrial hypermutation process, these results also yield mechanistic insights into the expansion/contraction of simple-repeat sequences in mtDNA. PMID:10762545

  1. C9ORF72 intermediate repeat expansion in patients affected by atypical parkinsonian syndromes or Parkinson's disease complicated by psychosis or dementia in a Sardinian population.

    PubMed

    Cannas, Antonino; Solla, Paolo; Borghero, Giuseppe; Floris, Gian Luca; Chio, Adriano; Mascia, Marcello Mario; Modugno, Nicola; Muroni, Antonella; Orofino, Gianni; Di Stefano, Francesca; Calvo, Andrea; Moglia, Cristina; Restagno, Gabriella; Meloni, Mario; Farris, Rita; Ciaccio, Daniela; Puddu, Roberta; Vacca, Melisa Iris; Melis, Rosanna; Murru, Maria Rita; Tranquilli, Stefania; Corongiu, Daniela; Rolesu, Marcella; Cuccu, Stefania; Marrosu, Maria Giovanna; Marrosu, Francesco

    2015-11-01

    The hexanucleotide repeat expansion GGGGCC in the C9ORF72 gene larger than 30 repeats has been identified as a major genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent papers investigated the possible pathogenic role and associated clinical phenotypes of intermediate C9ORF72 repeat expansion ranging between 20 and 30 repeats. Some studies suggested its pathogenicity for typical Parkinson's disease (PD), atypical parkinsonian syndromes, FTD with/without parkinsonism, and ALS with/without parkinsonism or with/without dementia. In our study, we aimed to screen patients affected by atypical parkinsonian syndromes or PD complicated by psychosis or dementia for the presence of C9ORF72 repeat expansions, and in unrelated age- and sex-matched healthy controls. Consecutive unrelated patients with atypical parkinsonian syndromes and patients with PD complicated by psychosis or dementia were included in this study. Atypical parkinsonian syndromes were further divided into two groups: one with patients who met the criteria for the classic forms of atypical parkinsonism [multiple system atrophy (MSA), Lewy body disease (LBD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD)] ;and patients who did not meet the above criteria, named non-classical atypical parkinsonism with or without dementia. Ninety-two unrelated patients (48 men, 44 women) were enrolled. None of the patients was found to be carriers of C9ORF72 repeat expansions with more than 30 repeats. Intermediate 20-30 repeat expansions were detected in four female patients (4.3 %). Three of them presented clinical features of atypical parkinsonian syndromes, two with non-classical atypical parkinsonism and dementia FTD-like, and one with non-classical atypical parkinsonism without dementia. The other patient presented clinical features of typical PD complicated by psychosis. Among 121 control subjects, none presented long or short expansion for the C9ORF

  2. Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice.

    PubMed

    Bojovic, B; Ho, H-Y; Wu, J; Crowe, D L

    2013-10-24

    To examine the role of telomeric repeat-binding factor 2 (TRF2) in epithelial tumorigenesis, we characterized conditional loss of TRF2 expression in the basal layer of mouse epidermis. These mice exhibit some characteristics of dyskeratosis congenita, a human stem cell depletion syndrome caused by telomere dysfunction. The epidermis in conditional TRF2 null mice exhibited DNA damage response and apoptosis, which correlated with stem cell depletion. The stem cell population in conditional TRF2 null epidermis exhibited shorter telomeres than those in control mice. Squamous cell carcinomas induced in conditional TRF2 null mice developed with increased latency and slower growth due to reduced numbers of proliferating cells as the result of increased apoptosis. TRF2 null epidermal stem cells were found in both primary and metastatic tumors. Despite the low-grade phenotype of the conditional TRF2 null primary tumors, the number of metastatic lesions was similar to control cancers. Basal cells from TRF2 null tumors demonstrated extreme telomere shortening and dramatically increased numbers of telomeric signals by fluorescence in situ hybridization due to increased genomic instability and aneuploidy in these cancers. DNA damage response signals were detected at telomeres in TRF2 null tumor cells from these mice. The increased genomic instability in these tumors correlated with eightfold expansion of the transformed stem cell population compared with that in control cancers. We concluded that genomic instability resulting from loss of TRF2 expression provides biological advantages to the cancer stem cell population.

  3. A CGG-repeat expansion mutation in ZNF713 causes FRA7A: association with autistic spectrum disorder in two families.

    PubMed

    Metsu, Sofie; Rainger, Jacqueline K; Debacker, Kim; Bernhard, Birgitta; Rooms, Liesbeth; Grafodatskaya, Daria; Weksberg, Rosanna; Fombonne, Eric; Taylor, Martin S; Scherer, Stephen W; Kooy, R Frank; FitzPatrick, David R

    2014-11-01

    We report de novo occurrence of the 7p11.2 folate-sensitive fragile site FRA7A in a male with an autistic spectrum disorder (ASD) due to a CGG-repeat expansion mutation (∼450 repeats) in a 5' intron of ZNF713. This expanded allele showed hypermethylation of the adjacent CpG island with reduced ZNF713 expression observed in a proband-derived lymphoblastoid cell line (LCL). His unaffected mother carried an unmethylated premutation (85 repeats). This CGG-repeat showed length polymorphism in control samples (five to 22 repeats). In a second unrelated family, three siblings with ASD and their unaffected father were found to carry FRA7A premutations, which were partially or mosaically methylated. In one of the affected siblings, mitotic instability of the premutation was observed. ZNF713 expression in LCLs in this family was increased in three of these four premutation carriers. A firm link cannot yet be established between ASD and the repeat expansion mutation but plausible pathogenic mechanisms are discussed.

  4. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.

    PubMed

    Jiang, Jie; Zhu, Qiang; Gendron, Tania F; Saberi, Shahram; McAlonis-Downes, Melissa; Seelman, Amanda; Stauffer, Jennifer E; Jafar-Nejad, Paymaan; Drenner, Kevin; Schulte, Derek; Chun, Seung; Sun, Shuying; Ling, Shuo-Chien; Myers, Brian; Engelhardt, Jeffery; Katz, Melanie; Baughn, Michael; Platoshyn, Oleksandr; Marsala, Martin; Watt, Andy; Heyser, Charles J; Ard, M Colin; De Muynck, Louis; Daughrity, Lillian M; Swing, Deborah A; Tessarollo, Lino; Jung, Chris J; Delpoux, Arnaud; Utzschneider, Daniel T; Hedrick, Stephen M; de Jong, Pieter J; Edbauer, Dieter; Van Damme, Philip; Petrucelli, Leonard; Shaw, Christopher E; Bennett, C Frank; Da Cruz, Sandrine; Ravits, John; Rigo, Frank; Cleveland, Don W; Lagier-Tourenne, Clotilde

    2016-05-04

    Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.

  5. Gonosomal mosaicism in myotonic dystrophy patients: Involvement of mitotic events in (CTG)[sub n] repeat variation and selection against extreme expansion in sperm

    SciTech Connect

    Jansen, G.; Coerwinkel, M.; Wieringa, B.; Nillesen, W.; Smeets, H.; Brunner, H.; Wieringa, B. ); Willems, P.; Vits, L. ); Hoeweler, C. )

    1994-04-01

    Myotonic dystrophy (DM) is caused by abnormal expansion of a polymorphic (CTG)[sub n] repeat, located in the DM protein kinase gene. The authors determined the (CTG)[sub n] repeat lengths in a broad range of tissue DNAs from patients with mild, classical, or congenital manifestation of DM. Differences in the repeat length were seen in somatic tissues from single DM individuals and twins. Repeats appeared to expand to a similar extent in tissues originating from the same embryonal origin. In most male patients carrying intermediate- or small-sized expansions in blood, the repeat lengths covered a markedly wider range in sperm. In contrast, male patients with large allele expansions in blood (>700 CTGs) had similar or smaller repeats in sperm, when detectable. Sperm alleles with >1,000 CTGs were not seen. The authors conclude that DM patients can be considered gonosomal mosaics, i.e., combined somatic and germ-line tissue mosaics. Most remarkably, they observed multiple cases where the length distributions of intermediate- or small-sized alleles in fathers' sperm were significantly different from that in their offspring's blood. The combined findings indicate that intergenerational length changes in the unstable CTG repeat are most likely to occur during early embryonic mitotic divisions in both somatic and germ-line tissue formation. Both the initial CTG length, the overall number of cell divisions involved in tissue formation, and perhaps a specific selection process in spermatogenesis may influence the dynamics of this process. A model explaining mitotic instability and sex-dependent segregation phenomena in DM manifestation is discussed. 59 refs., 5 figs.

  6. Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion

    PubMed Central

    Westeneng, Henk-Jan; Walhout, Renée; Straathof, Milou; Schmidt, Ruben; Hendrikse, Jeroen; Veldink, Jan H; van den Heuvel, Martijn P; van den Berg, Leonard H

    2016-01-01

    Background In patients with a C9orf72 repeat expansion (C9+), a neuroimaging phenotype with widespread structural cerebral changes has been found. We aimed to investigate the specificity of this neuroimaging phenotype in patients with amyotrophic lateral sclerosis (ALS). Methods 156 C9− and 14 C9+ patients with ALS underwent high-resolution T1-weighted MRI; a subset (n=126) underwent diffusion-weighted imaging. Cortical thickness, subcortical volumes and white matter integrity were compared between C9+ and C9− patients. Using elastic net logistic regression, a model defining the neuroimaging phenotype of C9+ was determined and applied to C9− patients with ALS. Results C9+ patients showed cortical thinning outside the precentral gyrus, extending to the bilateral pars opercularis, fusiform, lingual, isthmus-cingulate and superior parietal cortex, and smaller volumes of the right hippocampus and bilateral thalamus, and reduced white matter integrity of the inferior and superior longitudinal fasciculus compared with C9− patients (p<0.05). Among 128 C9− patients, we detected a subgroup of 27 (21%) with a neuroimaging phenotype congruent to C9+ patients, while 101 (79%) C9− patients showed cortical thinning restricted to the primary motor cortex. C9− patients with a ‘C9+’ neuroimaging phenotype had lower performance on the frontal assessment battery, compared with other C9− patients with ALS (p=0.004). Conclusions This study shows that widespread structural brain involvement is not limited to C9+ patients, but also presents in a subgroup of C9− patients with ALS and relates to cognitive deficits. Our neuroimaging findings reveal an intermediate phenotype that may provide insight into the complex relationship between genetic factors and clinical characteristics. PMID:27756805

  7. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte*

    PubMed Central

    Davies, Heledd M.; Thalassinos, Konstantinos; Osborne, Andrew R.

    2016-01-01

    Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure. PMID:27777305

  8. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72.

    PubMed

    Davidson, Yvonne S; Barker, Holly; Robinson, Andrew C; Thompson, Jennifer C; Harris, Jenny; Troakes, Claire; Smith, Bradley; Al-Saraj, Safa; Shaw, Chris; Rollinson, Sara; Masuda-Suzukake, Masami; Hasegawa, Masato; Pickering-Brown, Stuart; Snowden, Julie S; Mann, David M

    2014-06-20

    A hexanucleotide (GGGGCC) expansion in C9ORF72 gene is the most common genetic change seen in familial Frontotemporal Lobar Degeneration (FTLD) and familial Motor Neurone Disease (MND). Pathologically, expansion bearers show characteristic p62 positive, TDP-43 negative inclusion bodies within cerebellar and hippocampal neurons which also contain dipeptide repeat proteins (DPR) formed from sense and antisense RAN (repeat associated non ATG-initiated) translation of the expanded repeat region itself. 'Inappropriate' formation, and aggregation, of DPR might therefore confer neurotoxicity and influence clinical phenotype. Consequently, we compared the topographic brain distribution of DPR in 8 patients with Frontotemporal dementia (FTD), 6 with FTD + MND and 7 with MND alone (all 21 patients bearing expansions in C9ORF72) using a polyclonal antibody to poly-GA, and related this to the extent of TDP-43 pathology in key regions of cerebral cortex and hippocampus. There were no significant differences in either the pattern or severity of brain distribution of DPR between FTD, FTD + MND and MND groups, nor was there any relationship between the distribution of DPR and TDP-43 pathologies in expansion bearers. Likewise, there were no significant differences in the extent of TDP-43 pathology between FTLD patients bearing an expansion in C9ORF72 and non-bearers of the expansion. There were no association between the extent of DPR pathology and TMEM106B or APOE genotypes. However, there was a negative correlation between the extent of DPR pathology and age at onset. Present findings therefore suggest that although the presence and topographic distribution of DPR may be of diagnostic relevance in patients bearing expansion in C9ORF72 this has no bearing on the determination of clinical phenotype. Because TDP-43 pathologies are similar in bearers and non-bearers of the expansion, the expansion may act as a major genetic risk factor for FTLD and MND by rendering the brain

  9. Treatment of neuroblastoma in congenital central hypoventilation syndrome with a PHOX2B polyalanine repeat expansion mutation: New twist on a neurocristopathy syndrome.

    PubMed

    Armstrong, Amy E; Weese-Mayer, Debra E; Mian, Amir; Maris, John M; Batra, Vandana; Gosiengfiao, Yasmin; Reichek, Jennifer; Madonna, Mary Beth; Bush, Jonathan W; Shore, Richard M; Walterhouse, David O

    2015-11-01

    Neuroblastoma in patients with congenital central hypoventilation syndrome (CCHS) as part of a neurocristopathy syndrome is a rare finding and has only been associated with paired-like homeobox 2b (PHOX2B) non-polyalanine-repeat-expansion mutations. To the best of our knowledge, we report the first case of a child with CCHS and Hirschsprung disease who had a PHOX2B polyalanine-repeat-expansion mutation (PARM) (genotype 20/33) and developed high-risk neuroblastoma. We further describe his treatment including chemotherapy and therapeutic I(131) -metaiodobenzylguanidine. This case highlights the need to consider neuroblastoma in patients with CCHS and the longest PHOX2B PARMs and to individualize treatment based on co-morbidities.

  10. Expansion of CAG triplet repeats by human DNA polymerases λ and β in vitro, is regulated by flap endonuclease 1 and DNA ligase 1.

    PubMed

    Crespan, Emmanuele; Hübscher, Ulrich; Maga, Giovanni

    2015-05-01

    Huntington's disease (HD) is a neurological genetic disorder caused by the expansion of the CAG trinucleotide repeats (TNR) in the N-terminal region of coding sequence of the Huntingtin's (HTT) gene. This results in the addition of a poly-glutamine tract within the Huntingtin protein, resulting in its pathological form. The mechanism by which TRN expansion takes place is not yet fully understood. We have recently shown that DNA polymerase (Pol) β can promote the microhomology-mediated end joining and triplet expansion of a substrate mimicking a double strand break in the TNR region of the HTT gene. Here we show that TNR expansion is dependent on the structure of the DNA substrate, as well as on the two essential Pol β co-factors: flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). We found that Fen1 significantly stimulated TNR expansion by Pol β, but not by the related enzyme Pol λ, and subsequent ligation of the DNA products by Lig1. Interestingly, the deletion of N-terminal domains of Pol λ, resulted in an enzyme which displayed properties more similar to Pol β, suggesting a possible evolutionary mechanism. These results may suggest a novel mechanism for somatic TNR expansion in HD.

  11. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.

    PubMed

    Renton, Alan E; Majounie, Elisa; Waite, Adrian; Simón-Sánchez, Javier; Rollinson, Sara; Gibbs, J Raphael; Schymick, Jennifer C; Laaksovirta, Hannu; van Swieten, John C; Myllykangas, Liisa; Kalimo, Hannu; Paetau, Anders; Abramzon, Yevgeniya; Remes, Anne M; Kaganovich, Alice; Scholz, Sonja W; Duckworth, Jamie; Ding, Jinhui; Harmer, Daniel W; Hernandez, Dena G; Johnson, Janel O; Mok, Kin; Ryten, Mina; Trabzuni, Danyah; Guerreiro, Rita J; Orrell, Richard W; Neal, James; Murray, Alex; Pearson, Justin; Jansen, Iris E; Sondervan, David; Seelaar, Harro; Blake, Derek; Young, Kate; Halliwell, Nicola; Callister, Janis Bennion; Toulson, Greg; Richardson, Anna; Gerhard, Alex; Snowden, Julie; Mann, David; Neary, David; Nalls, Michael A; Peuralinna, Terhi; Jansson, Lilja; Isoviita, Veli-Matti; Kaivorinne, Anna-Lotta; Hölttä-Vuori, Maarit; Ikonen, Elina; Sulkava, Raimo; Benatar, Michael; Wuu, Joanne; Chiò, Adriano; Restagno, Gabriella; Borghero, Giuseppe; Sabatelli, Mario; Heckerman, David; Rogaeva, Ekaterina; Zinman, Lorne; Rothstein, Jeffrey D; Sendtner, Michael; Drepper, Carsten; Eichler, Evan E; Alkan, Can; Abdullaev, Ziedulla; Pack, Svetlana D; Dutra, Amalia; Pak, Evgenia; Hardy, John; Singleton, Andrew; Williams, Nigel M; Heutink, Peter; Pickering-Brown, Stuart; Morris, Huw R; Tienari, Pentti J; Traynor, Bryan J

    2011-10-20

    The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.

  12. The Replication of Frataxin Gene Is Assured by Activation of Dormant Origins in the Presence of a GAA-Repeat Expansion

    PubMed Central

    2016-01-01

    It is well known that DNA replication affects the stability of several trinucleotide repeats, but whether replication profiles of human loci carrying an expanded repeat differ from those of normal alleles is poorly understood in the endogenous context. We investigated this issue using cell lines from Friedreich’s ataxia patients, homozygous for a GAA-repeat expansion in intron 1 of the Frataxin gene. By interphase, FISH we found that in comparison to the normal Frataxin sequence the replication of expanded alleles is slowed or delayed. According to molecular combing, origins never fired within the normal Frataxin allele. In contrast, in mutant alleles dormant origins are recruited within the gene, causing a switch of the prevalent fork direction through the expanded repeat. Furthermore, a global modification of the replication profile, involving origin choice and a differential distribution of unidirectional forks, was observed in the surrounding 850 kb region. These data provide a wide-view of the interplay of events occurring during replication of genes carrying an expanded repeat. PMID:27447727

  13. Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions.

    PubMed

    Lattante, Serena; Le Ber, Isabelle; Galimberti, Daniela; Serpente, Maria; Rivaud-Péchoux, Sophie; Camuzat, Agnès; Clot, Fabienne; Fenoglio, Chiara; Scarpini, Elio; Brice, Alexis; Kabashi, Edor

    2014-11-01

    TMEM106B was identified as a risk factor for frontotemporal lobar degeneration (FTD) with TAR DNA-binding protein 43 kDa inclusions. It has been reported that variants in this gene are genetic modifiers of the disease and that this association is stronger in patients carrying a GRN mutation or a pathogenic expansion in chromosome 9 open reading frame 72 (C9orf72) gene. Here, we investigated the contribution of TMEM106B polymorphisms in cohorts of FTD and FTD with amyotrophic lateral sclerosis patients from France and Italy. Patients carrying the C9orf72 expansion (n = 145) and patients with GRN mutations (n = 76) were compared with a group of FTD patients (n = 384) negative for mutations and to a group of healthy controls (n = 552). In our cohorts, the presence of the C9orf72 expansion did not correlate with TMEM106B genotypes but the association was very strong in individuals with pathogenic GRN mutations (p = 9.54 × 10(-6)). Our data suggest that TMEM106B genotypes differ in FTD patient cohorts and strengthen the protective role of TMEM106B in GRN carriers. Further studies are needed to determine whether TMEM106B polymorphisms are associated with other genetic causes for FTD, including C9orf72 repeat expansions.

  14. Molecular-intelligence correlations in young fragile X males with a mild CGG repeat expansion in the FMR1 gene

    SciTech Connect

    Steyaert, J.; Borghgraef, M.; Legius, E.

    1996-08-09

    Several mechanisms can explain the occurrence of full-mutation fragile X males with an IQ level above -2 SD below mean, also called {open_quotes}high-functioning fragile X males.{close_quotes} Incomplete methylation of the CpG island at the 5{prime} end of the FMR1 gene is one of these mechanisms. The present study describes the physical and behavior phenotypes in 7 fragile X boys with CGG repeat insertions in the FMR1 gene between 600-2,400 base pairs. The degree of methylation at the FMR1-associated CpG island ranges in peripheral blood lymphocytes from 0-95%. Subjects with a low degree of methylation at this site have mild or absent physical characteristics of the fragile X syndrome, while subjects with a high degree of methylation at this site have more severe physical characteristics. In this range of CGG repeat insertion (600-2,400 base pairs), the degree of methylation at the FMR1-associated CpG island is a good predictor of intelligence, while CGG repeat insertion length is not. 13 refs., 1 fig., 1 tab.

  15. Expansion of GA Dinucleotide Repeats Increases the Density of CLAMP Binding Sites on the X-Chromosome to Promote Drosophila Dosage Compensation

    PubMed Central

    Chery, Jessica; Siggers, Trevor; Boor, Sonia; Bliss, Jacob; Liu, Wei; Jogl, Gerwald; Rohs, Remo; Singh, Nadia D.; Bulyk, Martha L.; Tolstorukov, Michael Y.; Larschan, Erica

    2016-01-01

    Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression. PMID:27414415

  16. The effect of repeated lateral compression and expansions mimicking blinking on selected tear film polar lipid monofilms.

    PubMed

    Patterson, Matthew; Vogel, Hans J; Prenner, Elmar J

    2017-03-01

    The tear film lipid layer is formed on the anterior surface of the eye, functioning as a barrier to excess evaporation and foreign particles, while also providing stability to the tear film. The lipid layer is organized into a polar lipid layer consisting of phospholipids, ceramides, and free fatty acids that act as a surfactant to a non-polar multilayer of wax and cholesterol esters. Due to shear forces from eye movement and the compression and expansion of blinking, the tear lipids are under constant stress. However, tear film is able to resist immediate rupture and remains intact over multiple blinks. This work aimed to better understand the lateral organization of selected tear film polar lipids. The polar lipid biomimetic studied here consisted of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl glucosylceramide (PGC), and palmitoyl sphingomyelin (PSM). Surface pressure-area isocycles mimicked blinking and films were visualized by Brewster angle microscopy (BAM). All lipid systems formed relatively reversible films as indicated by limited hysteresis. However, pure DPPC and PSM films experienced greater changes in lipid packing upon compression and expansion compared to pure PGC and DPPE. This suggests that the driving force behind maintaining the lateral organization of the polar lipids from tear film may be the hydrogen bonding propensities of the head groups. Additionally, isocycles of films containing DPPC, DPPE, and PGC mixtures exhibited evidence for reversible multilayer formation or folding. This was supported by 3D analysis of structures that formed during compression but reintegrated back into the bulk lipid film during expansion near the in vitro tear film surface pressure of the open eye. Therefore, the polar lipids of tear film may be directly involved in preventing film rupture during a blink.

  17. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers.

    PubMed

    Lin, Yi; Mori, Eiichiro; Kato, Masato; Xiang, Siheng; Wu, Leeju; Kwon, Ilmin; McKnight, Steven L

    2016-10-20

    Two complementary approaches were used in search of the intracellular targets of the toxic PR poly-dipeptide encoded by the repeat sequences expanded in the C9orf72 form of amyotrophic lateral sclerosis. The top categories of PRn-bound proteins include constituents of non-membrane invested cellular organelles and intermediate filaments. PRn targets are enriched for the inclusion of low complexity (LC) sequences. Evidence is presented indicating that LC sequences represent the direct target of PRn binding and that interaction between the PRn poly-dipeptide and LC domains is polymer-dependent. These studies indicate that PRn-mediated toxicity may result from broad impediments to the dynamics of cell structure and information flow from gene to message to protein.

  18. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers

    PubMed Central

    Lin, Yi; Mori, Eiichiro; Kato, Masato; Xiang, Siheng; Wu, Leeju; Kwon, Ilmin; McKnight, Steven L.

    2016-01-01

    Summary Two complementary approaches were used in search of the intracellular targets of the toxic PR poly-dipeptide encoded by the repeat sequences expanded in the C9orf72 form of amyotrophic lateral sclerosis. The top categories of PRn-bound proteins include constituents of non-membrane invested cellular organelles and intermediate filaments. PRn targets are enriched for the inclusion of low complexity (LC) sequences. Evidence is presented indicating that LC sequences represent the direct target of PRn binding, and that interaction between the PRn poly-dipeptide and LC domains is polymer-dependent. These studies indicate that PRn-mediated toxicity may result from broad impediments to the dynamics of cell structure and information flow from gene to message to protein. PMID:27768897

  19. Exploration of Noncoding Sequences in Metagenomes

    PubMed Central

    Tobar-Tosse, Fabián; Rodríguez, Adrián C.; Vélez, Patricia E.; Zambrano, María M.; Moreno, Pedro A.

    2013-01-01

    Environment-dependent genomic features have been defined for different metagenomes, whose genes and their associated processes are related to specific environments. Identification of ORFs and their functional categories are the most common methods for association between functional and environmental features. However, this analysis based on finding ORFs misses noncoding sequences and, therefore, some metagenome regulatory or structural information could be discarded. In this work we analyzed 23 whole metagenomes, including coding and noncoding sequences using the following sequence patterns: (G+C) content, Codon Usage (Cd), Trinucleotide Usage (Tn), and functional assignments for ORF prediction. Herein, we present evidence of a high proportion of noncoding sequences discarded in common similarity-based methods in metagenomics, and the kind of relevant information present in those. We found a high density of trinucleotide repeat sequences (TRS) in noncoding sequences, with a regulatory and adaptive function for metagenome communities. We present associations between trinucleotide values and gene function, where metagenome clustering correlate with microorganism adaptations and kinds of metagenomes. We propose here that noncoding sequences have relevant information to describe metagenomes that could be considered in a whole metagenome analysis in order to improve their organization, classification protocols, and their relation with the environment. PMID:23536879

  20. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae

  1. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.

    PubMed

    Angelbello, Alicia J; González, Àlex L; Rzuczek, Suzanne G; Disney, Matthew D

    2016-12-01

    RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG)(exp)). Several small molecules have been found to disrupt the MBNL1-r(CUG)(exp) complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells.

  2. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Wieben, Eric D.; Aleff, Ross A.; Tang, Xiaojia; Butz, Malinda L.; Kalari, Krishna R.; Highsmith, Edward W.; Jen, Jin; Vasmatzis, George; Patel, Sanjay V.; Maguire, Leo J.; Baratz, Keith H.; Fautsch, Michael P.

    2017-01-01

    Purpose To identify RNA missplicing events in human corneal endothelial tissue isolated from Fuchs' endothelial corneal dystrophy (FECD). Methods Total RNA was isolated and sequenced from corneal endothelial tissue obtained during keratoplasty from 12 patients with FECD and 4 patients undergoing keratoplasty or enucleation for other indications. The length of the trinucleotide repeat (TNR) CTG in the transcription factor 4 (TCF4) gene was determined using leukocyte-derived DNA analyzed by a combination of Southern blotting and Genescan analysis. Commercial statistical software was used to quantify expression of alternatively spliced genes. Validation of selected alternative splicing events was performed by using RT-PCR. Gene sets identified were analyzed for overrepresentation using Web-based analysis system. Results Corneal endothelial tissue from FECD patients containing a CTG TNR expansion sequence in the TCF4 gene revealed widespread changes in mRNA splicing, including a novel splicing event involving FGFR2. Differential splicing of NUMA1, PPFIBP1, MBNL1, and MBNL2 transcripts were identified in all FECD samples containing a TNR expansion. The differentially spliced genes were enriched for products that localize to the cell cortex and bind cytoskeletal and cell adhesion proteins. Conclusions Corneal endothelium from FECD patients harbors a unique signature of mis-splicing events due to CTG TNR expansion in the TCF4 gene, consistent with the hypothesis that RNA toxicity contributes to the pathogenesis of FECD. Changes to the endothelial barrier function, a known event in the development of FECD, was identified as a key biological process influenced by the missplicing events. PMID:28118661

  3. Complete Plastid Genome Sequencing of Trochodendraceae Reveals a Significant Expansion of the Inverted Repeat and Suggests a Paleogene Divergence between the Two Extant Species

    PubMed Central

    Sun, Yan-xia; Moore, Michael J.; Meng, Ai-ping; Soltis, Pamela S.; Soltis, Douglas E.; Li, Jian-qiang; Wang, Heng-chang

    2013-01-01

    The early-diverging eudicot order Trochodendrales contains only two monospecific genera, Tetracentron and Trochodendron. Although an extensive fossil record indicates that the clade is perhaps 100 million years old and was widespread throughout the Northern Hemisphere during the Paleogene and Neogene, the two extant genera are both narrowly distributed in eastern Asia. Recent phylogenetic analyses strongly support a clade of Trochodendrales, Buxales, and Gunneridae (core eudicots), but complete plastome analyses do not resolve the relationships among these groups with strong support. However, plastid phylogenomic analyses have not included data for Tetracentron. To better resolve basal eudicot relationships and to clarify when the two extant genera of Trochodendrales diverged, we sequenced the complete plastid genome of Tetracentron sinense using Illumina technology. The Tetracentron and Trochodendron plastomes possess the typical gene content and arrangement that characterize most angiosperm plastid genomes, but both genomes have the same unusual ∼4 kb expansion of the inverted repeat region to include five genes (rpl22, rps3, rpl16, rpl14, and rps8) that are normally found in the large single-copy region. Maximum likelihood analyses of an 83-gene, 88 taxon angiosperm data set yield an identical tree topology as previous plastid-based trees, and moderately support the sister relationship between Buxaceae and Gunneridae. Molecular dating analyses suggest that Tetracentron and Trochodendron diverged between 44-30 million years ago, which is congruent with the fossil record of Trochodendrales and with previous estimates of the divergence time of these two taxa. We also characterize 154 simple sequence repeat loci from the Tetracentron sinense and Trochodendron aralioides plastomes that will be useful in future studies of population genetic structure for these relict species, both of which are of conservation concern. PMID:23577110

  4. RNA toxicity and foci formation in microsatellite expansion diseases.

    PubMed

    Zhang, Nan; Ashizawa, Tetsuo

    2017-02-13

    More than 30 incurable neurological and neuromuscular diseases are caused by simple microsatellite expansions consisted of 3-6 nucleotides. These repeats can occur in non-coding regions and often result in a dominantly inherited disease phenotype that is characteristic of a toxic RNA gain-of-function. The expanded RNA adopts unusual secondary structures, sequesters various RNA binding proteins to form insoluble nuclear foci, and causes cellular defects at a multisystem level. Nuclear foci are dynamic in size, shape and colocalization of RNA binding proteins in different expansion diseases and tissue types. This review sets to provide new insights into the disease mechanisms of RNA toxicity and foci modulation, in light of recent advancement on bi-directional transcription, antisense RNA, repeat-associated non-ATG translation and beyond.

  5. Genetic counseling for FTD/ALS caused by the C9ORF72 hexanucleotide expansion

    PubMed Central

    2012-01-01

    Frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) are related but distinct neurodegenerative diseases. The identification of a hexanucleotide repeat expansion in a noncoding region of the chromosome 9 open reading frame 72 (C9ORF72) gene as a common cause of FTD/ALS, familial FTD, and familial ALS marks the culmination of many years of investigation. This confirms the linkage of disease to chromosome 9 in large, multigenerational families with FTD and ALS, and it promotes deeper understanding of the diseases' shared molecular FTLD-TDP pathology. The discovery of the C9ORF72 repeat expansion has significant implications not only for familial FTD and ALS, but also for sporadic disease. Clinical and pathological correlates of the repeat expansion are being reported but remain to be refined, and a genetic test to detect the expansion has only recently become clinically available. Consequently, individuals and their families who are considering genetic testing for the C9ORF72 expansion should receive genetic counseling to discuss the risks, benefits, and limitations of testing. The following review aims to describe genetic counseling considerations for individuals at risk for a C9ORF72 repeat expansion. PMID:22808918

  6. Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype

    PubMed Central

    Rutherford, Nicola J.; Heckman, Michael G.; DeJesus-Hernandez, Mariely; Baker, Matt C.; Soto-Ortolaza, Alexandra I.; Rayaprolu, Sruti; Stewart, Heather; Finger, Elizabeth; Volkening, Kathryn; Seeley, William W.; Hatanpaa, Kimmo J.; Lomen-Hoerth, Catherine; Kertesz, Andrew; Bigio, Eileen H.; Lippa, Carol; Knopman, David S.; Kretzschmar, Hans A.; Neumann, Manuela; Caselli, Richard J.; White, Charles L.; Mackenzie, Ian R.; Petersen, Ronald C.; Strong, Michael J.; Miller, Bruce L.; Boeve, Bradley F.; Uitti, Ryan J.; Boylan, Kevin; Wszolek, Zbigniew K.; Graff-Radford, Neill R.; Dickson, Dennis W.; Ross, Owen A.; Rademakers, Rosa

    2012-01-01

    Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers. PMID:22840558

  7. Long noncoding RNA turnover

    PubMed Central

    Yoon, Je-Hyun; Kim, Jiyoung; Gorospe, Myriam

    2015-01-01

    Most RNAs transcribed in mammalian cells lack protein-coding sequences. Among them is a vast family of long (>200 nt) noncoding (lnc)RNAs. LncRNAs can modulate cellular protein expression patterns by influencing the transcription of many genes, the post-transcriptional fate of mRNAs and ncRNAs, and the turnover and localization of proteins. Given the broad impact of lncRNAs on gene regulation, there is escalating interest in elucidating the mechanisms that govern the steady-state levels of lncRNAs. In this review, we summarize our current knowledge of the factors and mechanisms that modulate mammalian lncRNA stability. PMID:25769416

  8. Retention of stemness and vasculogenic potential of human umbilical cord blood stem cells after repeated expansions on PES-nanofiber matrices

    PubMed Central

    Joseph, Matthew; Das, Manjusri; Kanji, Suman; Lu, Jingwei; Aggarwal, Reeva; Chakraborty, Debanjan; Sarkar, Chandrani; Yu, Hongmei; Mao, Hai-Quan; Basu, Sujit; Pompili, Vincent J.; Das, Hiranmoy

    2014-01-01

    Despite recent advances in cardiovascular medicine, ischemic diseases remain a major cause of morbidity and mortality. Although stem cell-based therapies for the treatment of ischemic diseases show great promise, limited availability of biologically functional stem cells mired the application of stem cell-based therapies. Previously, we reported a PES-nanofiber based ex vivo stem cell expansion technology, which supports expansion of human umbilical cord blood (UCB)-derived CD133+/CD34+ progenitor cells ~225 fold. Herein, we show that using similar technology and subsequent re-expansion methods, we can achieve ~5 million-fold yields within 24 days of the initial seeding. Interestingly, stem cell phenotype was preserved during the course of the multiple expansions. The high level of the stem cell homing receptor, CXCR4 was expressed in the primary expansion cells, and was maintained throughout the course of re-expansions. In addition, re-expanded cells preserved their multi-potential differential capabilities in vitro such as, endothelial and smooth muscle lineages. Moreover, biological functionality of the re-expanded cells was preserved and was confirmed by a murine hind limb ischemia model for revascularization. These cells could also be genetically modified for enhanced vasculogenesis. Immunohistochemical evidences support enhanced expression of angiogenic factors responsible for this enhanced neovascularization. These data further confirms that nanofiber-based ex-vivo expansion technology can generate sufficient numbers of biologically functional stem cells for potential clinical applications. PMID:25002260

  9. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity.

    PubMed

    Echeverria, Gloria V; Cooper, Thomas A

    2012-06-26

    Although protein-mediated toxicity in neurological disease has been extensively characterized, RNA-mediated toxicity is an emerging mechanism of pathogenesis. In microsatellite expansion disorders, expansion of repeated sequences in noncoding regions gives rise to RNA that produces a toxic gain of function, while expansions in coding regions can disrupt protein function as well as produce toxic RNA. The toxic RNA typically aggregates into nuclear foci and contributes to disease pathogenesis. In many cases, toxicity of the RNA is caused by the disrupted functions of RNA-binding proteins. We will discuss evidence for RNA-mediated toxicity in microsatellite expansion disorders. Different microsatellite expansion disorders are linked with alterations in the same as well as disease-specific RNA-binding proteins. Recent studies have shown that microsatellite expansions can encode multiple repeat-containing toxic RNAs through bidirectional transcription and protein species through repeat-associated non-ATG translation. We will discuss approaches that have characterized the toxic contributions of these various factors.

  10. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example.

  11. Simple sequence repeat variations expedite phage divergence: Mechanisms of indels and gene mutations.

    PubMed

    Lin, Tiao-Yin

    2016-07-01

    Phages are the most abundant biological entities and influence prokaryotic communities on Earth. Comparing closely related genomes sheds light on molecular events shaping phage evolution. Simple sequence repeat (SSR) variations impart over half of the genomic changes between T7M and T3, indicating an important role of SSRs in accelerating phage genetic divergence. Differences in coding and noncoding regions of phages infecting different hosts, coliphages T7M and T3, Yersinia phage ϕYeO3-12, and Salmonella phage ϕSG-JL2, frequently arise from SSR variations. Such variations modify noncoding and coding regions; the latter efficiently changes multiple amino acids, thereby hastening protein evolution. Four classes of events are found to drive SSR variations: insertion/deletion of SSR units, expansion/contraction of SSRs without alteration of genome length, changes of repeat motifs, and generation/loss of repeats. The categorization demonstrates the ways SSRs mutate in genomes during phage evolution. Indels are common constituents of genome variations and human diseases, yet, how they occur without preexisting repeat sequence is less understood. Non-repeat-unit-based misalignment-elongation (NRUBME) is proposed to be one mechanism for indels without adjacent repeats. NRUBME or consecutive NRUBME may also change repeat motifs or generate new repeats. NRUBME invoking a non-Watson-Crick base pair explains insertions that initiate mononucleotide repeats. Furthermore, NRUBME successfully interprets many inexplicable human di- to tetranucleotide repeat generations. This study provides the first evidence of SSR variations expediting phage divergence, and enables insights into the events and mechanisms of genome evolution. NRUBME allows us to emulate natural evolution to design indels for various applications.

  12. Noncoding RNAs in Cancer Immunology.

    PubMed

    Li, Qian; Liu, Qiang

    2016-01-01

    Cancer immunology is the study of interaction between cancer cells and immune system by the application of immunology principle and theory. With the recent approval of several new drugs targeting immune checkpoints in cancer, cancer immunology has become a very attractive field of research and is thought to be the new hope to conquer cancer. This chapter introduces the aberrant expression and function of noncoding RNAs, mainly microRNAs and long noncoding RNAs, in tumor-infiltrating immune cells, and their significance in tumor immunity. It also illustrates how noncoding RNAs are shuttled between tumor cells and immune cells in tumor microenvironments via exosomes or other microvesicles to modulate tumor immunity.

  13. High-resolution interrogation of functional elements in the noncoding genome

    PubMed Central

    Sanjana, Neville E.; Wright, Jason; Zheng, Kaijie; Shalem, Ophir; Fontanillas, Pierre; Joung, Julia; Cheng, Christine; Regev, Aviv; Zhang, Feng

    2016-01-01

    The noncoding genome affects gene regulation and disease, yet we lack tools for rapid identification and manipulation of noncoding elements. We develop a CRISPR screen employing ~18,000 sgRNAs targeting >700 kb surrounding the genes NF1, NF2, and CUL3, which are involved in BRAF inhibitor resistance in melanoma. We find that noncoding locations that modulate drug resistance also harbor predictive hallmarks of noncoding function. With a subset of regions at the CUL3 locus, we demonstrate that engineered mutations alter transcription factor occupancy and long-range and local epigenetic environments, implicating these sites in gene regulation and chemotherapeutic resistance. Though our expansion of the potential of pooled CRISPR screens we provide tools for genomic discovery and for elucidating biologically relevant mechanisms of gene regulation. Pooled CRISPR mutagenesis identifies functional elements in the noncoding genome. PMID:27708104

  14. Long noncoding RNA and epigenomics.

    PubMed

    Kanduri, Chandrasekhar

    2011-01-01

    Accumulating evidence over the last decade has presented us with the intriguing observation that the majority of eukaryotic genomes are pervasively transcribed to encode a complex network of small and long noncoding RNAs. Long noncoding RNAs are of particular interest, as they were once thought to be restricted to housekeeping functions and are now linked to a wide variety of biological functions related to physiology, embryology and development. Emerging evidence indicates that a subset of long noncoding RNAs mediate their biological functions by using chromatin as a substrate, to index the genetic information encoded in the genome. This chapter will discuss how noncoding RNAs and the processes underlying their transcription mediate transcriptional regulation, by epigenetically regulating the structure of chromatin in various biological contexts.

  15. Long noncoding RNAs in hematopoiesis

    PubMed Central

    Zhang, Xu; Hu, Wenqian

    2016-01-01

    Mammalian development is under tight control to ensure precise gene expression. Recent studies reveal a new layer of regulation of gene expression mediated by long noncoding RNAs. These transcripts are longer than 200nt that do not have functional protein coding capacity. Interestingly, many of these long noncoding RNAs are expressed with high specificity in different types of cells, tissues, and developmental stages in mammals, suggesting that they may have functional roles in diverse biological processes. Here, we summarize recent findings of long noncoding RNAs in hematopoiesis, which is one of the best-characterized mammalian cell differentiation processes. Then we provide our own perspectives on future studies of long noncoding RNAs in this field. PMID:27508063

  16. Validation of a commercially available test that enables the quantification of the numbers of CGG trinucleotide repeat expansion in FMR1 gene.

    PubMed

    Lim, Grace X Y; Yeo, Minli; Koh, Yvonne Y; Winarni, Tri Indah; Rajan-Babu, Indhu-Shree; Chong, Samuel S; Faradz, Sultana M H; Guan, Ming

    2017-01-01

    In the present study, we evaluated a commercially available TP-PCR-based assay, the FastFraXTM FMR1 Sizing kit, as a test in quantifying the number of CGG repeats in the FMR1 gene. Based on testing with well characterized DNA samples from Coriell, the kit yielded size results within 3 repeats of those obtained by common consensus (n = 14), with the exception of one allele. Furthermore, based on data obtained using all Coriell samples with or without common consensus (n = 29), the Sizing kit was 97.5% in agreement with existing approaches. Additionally, the kit generated consistent size information in repeatability and reproducibility studies (CV 0.39% to 3.42%). Clinical performance was established with 198 archived clinical samples, yielding results of 100% sensitivity (95% CI, 91.03% to 100%) and 100% specificity (95% CI, 97.64% to 100%) in categorizing patient samples into the respective normal, intermediate, premutation and full mutation genotypes.

  17. Lack of expansion of triplet repeats in the FMR1, FRAXE, and FRAXF loci in male multiplex families with autism and pervasive developmental disorders

    SciTech Connect

    Holden, J.J.A.; Julien-Inalsingh, C.; Wing, M.

    1996-08-09

    Sib, twin, and family studies have shown that a genetic cause exists in many cases of autism, with a portion of cases associated with a fragile X chromosome. Three folate-sensitive fragile sites in the Xq27{r_arrow}Xq28 region have been cloned and found to have polymorphic trinucleotide repeats at the respective sites; these repeats are amplified and methylated in individuals who are positive for the different fragile sites. We have tested affected boys and their mothers from 19 families with two autistic/PDD boys for amplification and/or instability of the triplet repeats at these loci and concordance of inheritance of alleles by affected brothers. In all cases, the triplet repeat numbers were within the normal range, with no individuals having expanded or premutation-size alleles. For each locus, there was no evidence for an increased frequency of concordance, indicating that mutations within these genes are unlikely to be responsible for the autistic/PDD phenotypes in the affected boys. Thus, we think it is important to retest those autistic individuals who were cytogenetically positive for a fragile X chromosome, particularly cases where there is no family history of the fragile X syndrome, using the more accurate DNA-based testing procedures. 29 refs., 1 fig., 1 tab.

  18. Validation of a commercially available test that enables the quantification of the numbers of CGG trinucleotide repeat expansion in FMR1 gene

    PubMed Central

    Yeo, Minli; Koh, Yvonne Y.; Winarni, Tri Indah; Rajan-Babu, Indhu-Shree; Chong, Samuel S.; Faradz, Sultana M. H.; Guan, Ming

    2017-01-01

    In the present study, we evaluated a commercially available TP-PCR-based assay, the FastFraXTM FMR1 Sizing kit, as a test in quantifying the number of CGG repeats in the FMR1 gene. Based on testing with well characterized DNA samples from Coriell, the kit yielded size results within 3 repeats of those obtained by common consensus (n = 14), with the exception of one allele. Furthermore, based on data obtained using all Coriell samples with or without common consensus (n = 29), the Sizing kit was 97.5% in agreement with existing approaches. Additionally, the kit generated consistent size information in repeatability and reproducibility studies (CV 0.39% to 3.42%). Clinical performance was established with 198 archived clinical samples, yielding results of 100% sensitivity (95% CI, 91.03% to 100%) and 100% specificity (95% CI, 97.64% to 100%) in categorizing patient samples into the respective normal, intermediate, premutation and full mutation genotypes. PMID:28278294

  19. Gene regulation by noncoding RNAs

    PubMed Central

    Patil, Veena S.; Zhou, Rui; Rana, Tariq M.

    2015-01-01

    The past two decades have seen an explosion in research on noncoding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) noncoding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long noncoding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents. PMID:24164576

  20. Noncoding RNAs in endocrine malignancy.

    PubMed

    Kentwell, Jessica; Gundara, Justin S; Sidhu, Stan B

    2014-05-01

    Only recently has it been uncovered that the mammalian transcriptome includes a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. Among numerous kinds of ncRNAs, short noncoding RNAs, such as microRNAs, have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. Long noncoding RNAs (lncRNAs) have only recently been implicated in playing a key regulatory role in cancer biology. The deregulation of ncRNAs has been demonstrated to have important roles in the regulation and progression of cancer development. In this review, we describe the roles of both short noncoding RNAs (including microRNAs, small nuclear RNAs, and piwi-interacting RNAs) and lncRNAs in carcinogenesis and outline the possible underlying genetic mechanisms, with particular emphasis on clinical applications. The focus of our review includes studies from the literature on ncRNAs in traditional endocrine-related cancers, including thyroid, parathyroid, adrenal gland, and gastrointestinal neuroendocrine malignancies. The current and potential future applications of ncRNAs in clinical cancer research is also discussed, with emphasis on diagnosis and future treatment.

  1. Changes in expression of the long non-coding RNA FMR4 associate with altered gene expression during differentiation of human neural precursor cells

    PubMed Central

    Peschansky, Veronica J.; Pastori, Chiara; Zeier, Zane; Motti, Dario; Wentzel, Katya; Velmeshev, Dmitry; Magistri, Marco; Bixby, John L.; Lemmon, Vance P.; Silva, José P.; Wahlestedt, Claes

    2015-01-01

    CGG repeat expansions in the Fragile X mental retardation 1 (FMR1) gene are responsible for a family of associated disorders characterized by either intellectual disability and autism Fragile X Syndrome (FXS), or adult-onset neurodegeneration Fragile X-associated Tremor/Ataxia Syndrome. However, the FMR1 locus is complex and encodes several long non-coding RNAs, whose expression is altered by repeat expansion mutations. The role of these lncRNAs is thus far unknown; therefore we investigated the functionality of FMR4, which we previously identified. “Full”-length expansions of the FMR1 triplet repeat cause silencing of both FMR1 and FMR4, thus we are interested in potential loss-of-function that may add to phenotypic manifestation of FXS. Since the two transcripts do not exhibit cis-regulation of one another, we examined the potential for FMR4 to regulate target genes at distal genomic loci using gene expression microarrays. We identified FMR4-responsive genes, including the methyl-CpG-binding domain protein 4 (MBD4). Furthermore, we found that in differentiating human neural precursor cells, FMR4 expression is developmentally regulated in opposition to expression of both FMR1 (which is expected to share a bidirectional promoter with FMR4) and MBD4. We therefore propose that FMR4’s function is as a gene-regulatory lncRNA and that this transcript may function in normal development. Closer examination of FMR4 increases our understanding of the role of regulatory lncRNA and the consequences of FMR1 repeat expansions. PMID:26322075

  2. Scaling features of noncoding DNA

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.

    1999-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene, and utilize this fact to build a Coding Sequence Finder Algorithm, which uses statistical ideas to locate the coding regions of an unknown DNA sequence. Finally, we describe briefly some recent work adapting to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function, and reporting that noncoding regions in eukaryotes display a larger redundancy than coding regions. Specifically, we consider the possibility that this result is solely a consequence of nucleotide concentration differences as first noted by Bonhoeffer and his collaborators. We find that cytosine-guanine (CG) concentration does have a strong "background" effect on redundancy. However, we find that for the purine-pyrimidine binary mapping rule, which is not affected by the difference in CG concentration, the Shannon redundancy for the set of analyzed sequences is larger for noncoding regions compared to coding regions.

  3. Thermal expansion of glassy polymers.

    PubMed

    Davy, K W; Braden, M

    1992-01-01

    The thermal expansion of a number of glassy polymers of interest in dentistry has been studied using a quartz dilatometer. In some cases, the expansion was linear and therefore the coefficient of thermal expansion readily determined. Other polymers exhibited non-linear behaviour and values appropriate to different temperature ranges are quoted. The linear coefficient of thermal expansion was, to a first approximation, a function of both the molar volume and van der Waal's volume of the repeating unit.

  4. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

    PubMed

    Donnelly, Christopher J; Zhang, Ping-Wu; Pham, Jacqueline T; Haeusler, Aaron R; Heusler, Aaron R; Mistry, Nipun A; Vidensky, Svetlana; Daley, Elizabeth L; Poth, Erin M; Hoover, Benjamin; Fines, Daniel M; Maragakis, Nicholas; Tienari, Pentti J; Petrucelli, Leonard; Traynor, Bryan J; Wang, Jiou; Rigo, Frank; Bennett, C Frank; Blackshaw, Seth; Sattler, Rita; Rothstein, Jeffrey D

    2013-10-16

    A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.

  5. Long noncoding RNAs and atherosclerosis.

    PubMed

    Zhou, Tian; Ding, Jia-wang; Wang, Xin-an; Zheng, Xia-xia

    2016-05-01

    Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall in response to dyslipidemia and haemodynamic stress involving dysfunction and activation of resident vascular cells as well as infiltration of leukocytes. As members of nonprotein-coding RNAs, the long noncoding RNAs (lncRNAs) are implicated in various biological processes. Accumulating evidences suggest that lncRNAs regulate the function of vascular wall, activation of macrophages, lipid metabolism and immune response. Here, we review the effects of lncRNAs on the progress of atherosclerosis.

  6. Viral noncoding RNAs: more surprises

    PubMed Central

    Tycowski, Kazimierz T.; Guo, Yang Eric; Lee, Nara; Moss, Walter N.; Vallery, Tenaya K.; Xie, Mingyi

    2015-01-01

    Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles—including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation—have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action. PMID:25792595

  7. Coding DNA repeated throughout intergenic regions of the Arabidopsis thaliana genome: Evolutionary footprints of RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyknons are non-random sequence patterns significantly repeated throughout non-coding genomic DNA that also appear at least once among genes. They are interesting because they portend an unforeseen connection between coding and non-coding DNA. Pyknons have only been discovered in the human genome,...

  8. Repeated nightmares

    MedlinePlus

    ... different from night terrors . Alternative Names Nightmares - repeated; Dream anxiety disorder References American Academy of Family Physicians. Information from your family doctor. Nightmares and night terrors in children. ...

  9. Long noncoding RNAs and neuroblastoma

    PubMed Central

    Pandey, Gaurav Kumar; Kanduri, Chandrasekhar

    2015-01-01

    Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients. PMID:26087192

  10. Long noncoding RNAs and neuroblastoma.

    PubMed

    Pandey, Gaurav Kumar; Kanduri, Chandrasekhar

    2015-07-30

    Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients.

  11. Non-coding RNAs in cardiac hypertrophy.

    PubMed

    Ottaviani, Lara; da Costa Martins, Paula A

    2017-02-23

    Heart Failure is one of the largest contributors to disease burden and healthcare outflow in the Western world. Despite significant progress in the treatment of heart failure, disease prognosis remains very poor with the only curative therapy still being heart transplantation. To counteract the current situation, efforts have been made to better understand the underlying molecular pathways in the progression of cardiac disease towards heart failure, and to link the disease to novel therapeutic targets such as non-coding RNAs. The non-coding part of the genome has gained prominence over the last couple of decades by opening a completely new research field and having established different non-coding RNAs species as fundamental regulators of cellular functions. Not surprisingly, their dysregulation is increasingly being linked to pathology, including to cardiac disease. Pre-clinically, non-coding RNAs have been shown to be of great value as therapeutic targets in pathological cardiac remodelling and also as diagnostic/prognostic biomarkers for heart failure. Therefore, it is to expect that non-coding RNA-based therapeutic strategies will reach the bedside in the future and provide new and more efficient treatments for heart failure. Here, we review recent discoveries linking the function and molecular interactions of non-coding RNAs with the pathophysiology of cardiac hypertrophy and heart failure. This article is protected by copyright. All rights reserved.

  12. The expanding universe of noncoding RNAs.

    PubMed

    Hannon, G J; Rivas, F V; Murchison, E P; Steitz, J A

    2006-01-01

    The 71st Cold Spring Harbor Symposium on Quantitative Biology celebrated the numerous and expanding roles of regulatory RNAs in systems ranging from bacteria to mammals. It was clearly evident that noncoding RNAs are undergoing a renaissance, with reports of their involvement in nearly every cellular process. Previously known classes of longer noncoding RNAs were shown to function by every possible means-acting catalytically, sensing physiological states through adoption of complex secondary and tertiary structures, or using their primary sequences for recognition of target sites. The many recently discovered classes of small noncoding RNAs, generally less than 35 nucleotides in length, most often exert their effects by guiding regulatory complexes to targets via base-pairing. With the ability to analyze the RNA products of the genome in ever greater depth, it has become clear that the universe of noncoding RNAs may extend far beyond the boundaries we had previously imagined. Thus, as much as the Symposium highlighted exciting progress in the field, it also revealed how much farther we must go to understand fully the biological impact of noncoding RNAs.

  13. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  14. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    NASA Technical Reports Server (NTRS)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  15. Non-coding RNAs as antibiotic targets.

    PubMed

    Colameco, Savannah; Elliot, Marie A

    2016-12-22

    Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.

  16. Brain ¹⁸F-FDG and ¹¹C-PiB PET findings in two siblings with FTD/ALS associated with the C9ORF72 repeat expansion.

    PubMed

    Martikainen, Mika H; Gardberg, Maria; Jansson, Lilja; Röyttä, Matias; Rinne, Juha O; Kaasinen, Valtteri

    2014-04-01

    The C9ORF72 hexanucleotide expansion is a major pathological expansion pattern found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (C9FTD/ALS). We describe a patient in whom early clinical evaluation, MRI and fluorodeoxyglucose (FDG) positron emission tomography (PET) findings failed to definitively differentiate between FTD and Alzheimer's disease (AD), whereas (11)C-Pittsburgh compound B (PiB) PET was negative for amyloid pathology. He later developed ALS symptoms, and post mortem neuropathological findings were diagnostic of FTD-ALS, while no findings suggested AD. His sister was diagnosed with FTD, and the C9ORF72 expansion was detected in both siblings. We conclude that ¹¹C-PiB PET imaging may help the early differential diagnosis between AD and FTD, including C9FTD/ALS.

  17. Non-coding genetic variants in human disease.

    PubMed

    Zhang, Feng; Lupski, James R

    2015-10-15

    Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described.

  18. Non-coding genetic variants in human disease

    PubMed Central

    Zhang, Feng; Lupski, James R.

    2015-01-01

    Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described. PMID:26152199

  19. Long noncoding RNAs in cardiovascular diseases.

    PubMed

    Uchida, Shizuka; Dimmeler, Stefanie

    2015-02-13

    In recent year, increasing evidence suggests that noncoding RNAs play important roles in the regulation of tissue homeostasis and pathophysiological conditions. Besides small noncoding RNAs (eg, microRNAs), >200-nucleotide long transcripts, namely long noncoding RNAs (lncRNAs), can interfere with gene expressions and signaling pathways at various stages. In the cardiovascular system, studies have detected and characterized the expression of lncRNAs under normal physiological condition and in disease states. Several lncRNAs are regulated during acute myocardial infarction (eg, Novlnc6) and heart failure (eg, Mhrt), whereas others control hypertrophy, mitochondrial function and apoptosis of cardiomyocytes. In the vascular system, the endothelial-expressed lncRNAs (eg, MALAT1 and Tie-1-AS) can regulate vessel growth and function, whereas the smooth-muscle-expressed lncRNA smooth muscle and endothelial cell-enriched migration/differentiation-associated long noncoding RNA was recently shown to control the contractile phenotype of smooth muscle cells. This review article summarizes the data on lncRNA expressions in mouse and human and highlights identified cardiovascular lncRNAs that might play a role in cardiovascular diseases. Although our understanding of lncRNAs is still in its infancy, these examples may provide helpful insights how lncRNAs interfere with cardiovascular diseases.

  20. Non-coding RNAs: An Introduction.

    PubMed

    Yang, Jennifer X; Rastetter, Raphael H; Wilhelm, Dagmar

    2016-01-01

    For many years the main role of RNA, it addition to the housekeeping functions of for example tRNAs and rRNAs, was believed to be a messenger between the genes encoded on the DNA and the functional units of the cell, the proteins. This changed drastically with the identification of the first small non-coding RNA, termed microRNA, some 20 years ago. This discovery opened the field of regulatory RNAs with no or little protein-coding potential. Since then many new classes of regulatory non-coding RNAs, including endogenous small interfering RNAs (endo-siRNAs), PIWI-associated RNAs (piRNAs), and long non-coding RNAs, have been identified and we have made amazing progress in elucidating their expression, biogenesis, mechanisms and mode of action, and function in many, if not all, biological processes. In this chapter we provide an introduction about the current knowledge of the main classes of non-coding RNAs, what is know about their biogenesis and mechanism of function.

  1. Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome.

    PubMed

    Pastori, Chiara; Peschansky, Veronica J; Barbouth, Deborah; Mehta, Arpit; Silva, Jose P; Wahlestedt, Claes

    2014-01-01

    The majority of the human genome is transcribed but not translated, giving rise to noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs, >200 nt) that perform a wide range of functions in gene regulation. The Fragile X mental retardation 1 (FMR1) gene is a microsatellite locus that in the general population contains <55 CGG repeats in its 5'-untranslated region. Expansion of this repeat region to a size of 55-200 CGG repeats, known as premutation, is associated with Fragile X tremor and ataxia syndrome (FXTAS). Further expansion beyond 200 CGG repeats, or full mutation, leads to FMR1 gene silencing and results in Fragile X syndrome (FXS). Using a novel technology called "Deep-RACE", which combines rapid amplification of cDNA ends (RACE) with next generation sequencing, we systematically interrogated the FMR1 gene locus for the occurrence of novel lncRNAs. We discovered two transcripts, FMR5 and FMR6. FMR5 is a sense lncRNA transcribed upstream of the FMR1 promoter, whereas FMR6 is an antisense transcript overlapping the 3' region of FMR1. FMR5 was expressed in several human brain regions from unaffected individuals and from full and premutation patients. FMR6 was silenced in full mutation and, unexpectedly, in premutation carriers suggesting abnormal transcription and/or chromatin remodeling prior to transition to the full mutation. These lncRNAs may thus be useful as biomarkers, allowing for early detection and therapeutic intervention in FXS and FXTAS. Finally we show that FMR5 and FMR6 are expressed in peripheral blood leukocytes and propose future studies that correlate lncRNA expression with clinical outcomes.

  2. Repeat instability: mechanisms of dynamic mutations.

    PubMed

    Pearson, Christopher E; Nichol Edamura, Kerrie; Cleary, John D

    2005-10-01

    Disease-causing repeat instability is an important and unique form of mutation that is linked to more than 40 neurological, neurodegenerative and neuromuscular disorders. DNA repeat expansion mutations are dynamic and ongoing within tissues and across generations. The patterns of inherited and tissue-specific instability are determined by both gene-specific cis-elements and trans-acting DNA metabolic proteins. Repeat instability probably involves the formation of unusual DNA structures during DNA replication, repair and recombination. Experimental advances towards explaining the mechanisms of repeat instability have broadened our understanding of this mutational process. They have revealed surprising ways in which metabolic pathways can drive or protect from repeat instability.

  3. Conserved Noncoding Sequences in the Grasses4

    PubMed Central

    Inada, Dan Choffnes; Bashir, Ali; Lee, Chunghau; Thomas, Brian C.; Ko, Cynthia; Goff, Stephen A.; Freeling, Michael

    2003-01-01

    As orthologous genes from related species diverge over time, some sequences are conserved in noncoding regions. In mammals, large phylogenetic footprints, or conserved noncoding sequences (CNSs), are known to be common features of genes. Here we present the first large-scale analysis of plant genes for CNSs. We used maize and rice, maximally diverged members of the grass family of monocots. Using a local sequence alignment set to deliver only significant alignments, we found one or more CNSs in the noncoding regions of the majority of genes studied. Grass genes have dramatically fewer and much smaller CNSs than mammalian genes. Twenty-seven percent of grass gene comparisons revealed no CNSs. Genes functioning in upstream regulatory roles, such as transcription factors, are greatly enriched for CNSs relative to genes encoding enzymes or structural proteins. Further, we show that a CNS cluster in an intron of the knotted1 homeobox gene serves as a site of negative regulation. We showthat CNSs in the adh1 gene do not correlate with known cis-acting sites. We discuss the potential meanings of CNSs and their value as analytical tools and evolutionary characters. We advance the idea that many CNSs function to lock-in gene regulatory decisions. PMID:12952874

  4. Analysis of Performance Variation Using Query Expansion.

    ERIC Educational Resources Information Center

    Alemayehu, Nega

    2003-01-01

    Discussion of information retrieval performance evaluation focuses on a case study using a statistical repeated measures analysis of variance for testing the significance of factors, such as retrieval method and topic in retrieval performance variation. Analyses of the effect of query expansion on document ranking confirm that expansion affects…

  5. Expansive Cements

    DTIC Science & Technology

    1970-10-01

    either burned simultaneously with a portland ce4nt or !r;terground with portland cement clinker ; Type M - a mixture of portland cement, calcium-aluminate... clinker that is interground with portland clinker or blended with portland cement or, alternately, it may be formed simul- taneously vrith the portland ... clinker compounds during the burning process. 3. Expansive cement, Type M is either a mixture of portland cement, calcium aluminate cement, and calcium

  6. Solution structure of a DNA quadruplex containing ALS and FTD related GGGGCC repeat stabilized by 8-bromodeoxyguanosine substitution.

    PubMed

    Brčić, Jasna; Plavec, Janez

    2015-09-30

    A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K(+) ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GG(Br)GG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.

  7. Long Noncoding RNA Identification: Comparing Machine Learning Based Tools for Long Noncoding Transcripts Discrimination

    PubMed Central

    Liang, Yanchun

    2016-01-01

    Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and obtaining a more reliable result. PMID:28042575

  8. Long Noncoding RNA Identification: Comparing Machine Learning Based Tools for Long Noncoding Transcripts Discrimination.

    PubMed

    Han, Siyu; Liang, Yanchun; Li, Ying; Du, Wei

    2016-01-01

    Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and obtaining a more reliable result.

  9. Long Noncoding RNAs in Metabolic Syndrome Related Disorders

    PubMed Central

    2016-01-01

    Ribonucleic acids (RNAs) are very complex and their all functions have yet to be fully clarified. Noncoding genes (noncoding RNA, sequences, and pseudogenes) comprise 67% of all genes and they are represented by housekeeping noncoding RNAs (transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)) that are engaged in basic cellular processes and by regulatory noncoding RNA (short and long noncoding RNA (ncRNA)) that are important for gene expression/transcript stability. In this review, we summarize data concerning the significance of long noncoding RNAs (lncRNAs) in metabolic syndrome related disorders, focusing on adipose tissue and pancreatic islands. PMID:27881904

  10. Noncoding chloroplast DNA variation in Mexican pines.

    PubMed

    Perez de la Rosa, J; Harris, S A; Farjon, A

    1995-11-01

    Universal primers were used for PCR amplification of three noncoding regions of chloroplast DNA in order to study restriction site variation in 12 Mexican pine species. Two length mutations were identified that are of diagnostic value for two subgenera or sections of the genus. Phylogenetic analysis of the restriction site and length variation showed patterns of variation largely consistent with previous arrangements of these pines, except for the position of Pinus nelsonii, indicating that Pinus section Parraya Mayr, as circumscribed by Little and Critchfield (1969) and later authors, is not a monophyletic group.

  11. An expanding universe of noncoding RNAs.

    PubMed

    Storz, Gisela

    2002-05-17

    Noncoding RNAs (ncRNAs) have been found to have roles in a great variety of processes, including transcriptional regulation, chromosome replication, RNA processing and modification, messenger RNA stability and translation, and even protein degradation and translocation. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined. These findings raise several fundamental questions: How many ncRNAs are encoded by a genome? Given the absence of a diagnostic open reading frame, how can these genes be identified? How can all the functions of ncRNAs be elucidated?

  12. Expansion Microscopy

    PubMed Central

    Chen, Fei; Tillberg, Paul W.; Boyden, Edward S.

    2014-01-01

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. Here we report the discovery that, by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable super-resolution microscopy with diffraction-limited microscopes. We demonstrate ExM with effective ~70 nm lateral resolution in both cultured cells and brain tissue, performing three-color super-resolution imaging of ~107 μm3 of the mouse hippocampus with a conventional confocal microscope. PMID:25592419

  13. DASHR: database of small human noncoding RNAs

    PubMed Central

    Leung, Yuk Yee; Kuksa, Pavel P.; Amlie-Wolf, Alexandre; Valladares, Otto; Ungar, Lyle H.; Kannan, Sampath; Gregory, Brian D.; Wang, Li-San

    2016-01-01

    Small non-coding RNAs (sncRNAs) are highly abundant RNAs, typically <100 nucleotides long, that act as key regulators of diverse cellular processes. Although thousands of sncRNA genes are known to exist in the human genome, no single database provides searchable, unified annotation, and expression information for full sncRNA transcripts and mature RNA products derived from these larger RNAs. Here, we present the Database of small human noncoding RNAs (DASHR). DASHR contains the most comprehensive information to date on human sncRNA genes and mature sncRNA products. DASHR provides a simple user interface for researchers to view sequence and secondary structure, compare expression levels, and evidence of specific processing across all sncRNA genes and mature sncRNA products in various human tissues. DASHR annotation and expression data covers all major classes of sncRNAs including microRNAs (miRNAs), Piwi-interacting (piRNAs), small nuclear, nucleolar, cytoplasmic (sn-, sno-, scRNAs, respectively), transfer (tRNAs), and ribosomal RNAs (rRNAs). Currently, DASHR (v1.0) integrates 187 smRNA high-throughput sequencing (smRNA-seq) datasets with over 2.5 billion reads and annotation data from multiple public sources. DASHR contains annotations for ∼48 000 human sncRNA genes and mature sncRNA products, 82% of which are expressed in one or more of the curated tissues. DASHR is available at http://lisanwanglab.org/DASHR. PMID:26553799

  14. Long Noncoding RNAs: Past, Present, and Future

    PubMed Central

    Kung, Johnny T. Y.; Colognori, David; Lee, Jeannie T.

    2013-01-01

    Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years as a potentially new and crucial layer of biological regulation. lncRNAs of all kinds have been implicated in a range of developmental processes and diseases, but knowledge of the mechanisms by which they act is still surprisingly limited, and claims that almost the entirety of the mammalian genome is transcribed into functional noncoding transcripts remain controversial. At the same time, a small number of well-studied lncRNAs have given us important clues about the biology of these molecules, and a few key functional and mechanistic themes have begun to emerge, although the robustness of these models and classification schemes remains to be seen. Here, we review the current state of knowledge of the lncRNA field, discussing what is known about the genomic contexts, biological functions, and mechanisms of action of lncRNAs. We also reflect on how the recent interest in lncRNAs is deeply rooted in biology’s longstanding concern with the evolution and function of genomes. PMID:23463798

  15. Non-coding RNAs and gastric cancer

    PubMed Central

    Li, Pei-Fei; Chen, Sheng-Can; Xia, Tian; Jiang, Xiao-Ming; Shao, Yong-Fu; Xiao, Bing-Xiu; Guo, Jun-Ming

    2014-01-01

    Non-coding RNAs (ncRNAs) play key roles in development, proliferation, differentiation and apoptosis. Altered ncRNA expression is associated with gastric cancer occurrence, invasion, and metastasis. Moreover, aberrant expression of microRNAs (miRNAs) is significantly related to gastric cancer tumor stage, size, differentiation and metastasis. MiRNAs interrupt cellular signaling pathways, inhibit the activity of tumor suppressor genes, and affect the cell cycle in gastric cancer cells. Some miRNAs, including miR-21, miR-106a and miR-421, could be potential markers for the diagnosis of gastric cancer. Long non-coding RNAs (lncRNAs), a new research hotspot among cancer-associated ncRNAs, play important roles in epigenetic, transcriptional and post-transcriptional regulation. Several gastric cancer-associated lncRNAs, such as CCAT1, GACAT1, H19, and SUMO1P3, have been explored. In addition, Piwi-interacting RNAs, another type of small ncRNA that is recognized by gastroenterologists, are involved in gastric carcinogenesis, and piR-651/823 represents an efficient diagnostic biomarker of gastric cancer that can be detected in the blood and gastric juice. Small interfering RNAs also function in post-transcriptional regulation in gastric cancer and might be useful in gastric cancer treatment. PMID:24833871

  16. Trinucleotide Repeats: A Structural Perspective

    PubMed Central

    Almeida, Bruno; Fernandes, Sara; Abreu, Isabel A.; Macedo-Ribeiro, Sandra

    2013-01-01

    Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation. PMID:23801983

  17. A panoramic view of yeast noncoding RNA processing.

    PubMed

    Peng, Wen Tao; Robinson, Mark D; Mnaimneh, Sanie; Krogan, Nevan J; Cagney, Gerard; Morris, Quaid; Davierwala, Armaity P; Grigull, Jörg; Yang, Xueqi; Zhang, Wen; Mitsakakis, Nicholas; Ryan, Owen W; Datta, Nira; Jojic, Vladimir; Pal, Chris; Canadien, Veronica; Richards, Dawn; Beattie, Bryan; Wu, Lani F; Altschuler, Steven J; Roweis, Sam; Frey, Brendan J; Emili, Andrew; Greenblatt, Jack F; Hughes, Timothy R

    2003-06-27

    Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.

  18. Quantitative Trait Loci Identify Functional Noncoding Variation in Cancer.

    PubMed

    Heyn, Holger

    2016-03-01

    The interpretation of noncoding alterations in cancer genomes presents an unresolved problem in cancer studies. While the impact of somatic variations in protein-coding regions is widely accepted, noncoding aberrations are mostly considered as passenger events. However, with the advance of genome-wide profiling strategies, alterations outside the coding context entered the focus, and multiple examples highlight the role of gene deregulation as cancer-driving events. This review describes the implication of noncoding alterations in oncogenesis and provides a theoretical framework for the identification of causal somatic variants using quantitative trait loci (QTL) analysis. Assuming that functional noncoding alterations affect quantifiable regulatory processes, somatic QTL studies constitute a valuable strategy to pinpoint cancer gene deregulation. Eventually, the comprehensive identification and interpretation of coding and noncoding alterations will guide our future understanding of cancer biology.

  19. Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Ventura, Guglielmo; Perfetti, Mauro

    All solid materials, when cooled to low temperatures experience a change in physical dimensions which called "thermal contraction" and is typically lower than 1 % in volume in the 4-300 K temperature range. Although the effect is small, it can have a heavy impact on the design of cryogenic devices. The thermal contraction of different materials may vary by as much as an order of magnitude: since cryogenic devices are constructed at room temperature with a lot of different materials, one of the major concerns is the effect of the different thermal contraction and the resulting thermal stress that may occur when two dissimilar materials are bonded together. In this chapter, theory of thermal contraction is reported in Sect. 1.2 . Section 1.3 is devoted to the phenomenon of negative thermal expansion and its applications.

  20. Noncoding RNA Control of Cellular Senescence

    PubMed Central

    Abdelmohsen, Kotb; Gorospe, Myriam

    2015-01-01

    Senescent cells accumulate in normal tissues with advancing age and arise by long-term culture of primary cells. Senescence develops following exposure to a range of stress-causing agents and broadly influences the physiology and pathology of tissues, organs, and systems in the body. While many proteins are known to control senescence, numerous noncoding (nc)RNAs are also found to promote or repress the senescent phenotype. Here, we review the regulatory ncRNAs (primarily microRNAs and lncRNAs) identified to-date as key modulators of senescence. We highlight the major senescent pathways (p53/p21 and pRB/p16), as well as the senescence-associated secretory phenotype (SASP) and other senescence-associated events governed by ncRNAs, and discuss the importance of understanding comprehensively the ncRNAs implicated in cell senescence. PMID:26331977

  1. Long noncoding RNA in hematopoiesis and immunity.

    PubMed

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases.

  2. Visualization of Enhancer-Derived Noncoding RNA.

    PubMed

    Shibayama, Youtaro; Fanucchi, Stephanie; Mhlanga, Musa M

    2017-01-01

    Enhancers are principal regulators that allow spatiotemporal tissue-specific control of gene expression. While mounting evidence suggests that enhancer-derived long noncoding RNAs (long ncRNAs), including enhancer RNAs (eRNAs), are an important component of enhancer function, their expression has not been broadly analyzed at a single cell level via imaging techniques. This protocol describes a method to image eRNA in single cells by in situ hybridization followed by tyramide signal amplification (TSA). The procedure can be multiplexed to simultaneously visualize both eRNA and protein-coding transcript at the site of transcriptional elongation, thereby permitting analysis of dynamics between the two transcript species in single cells. Our approach is not limited to eRNAs, but can be implemented on other transcripts.

  3. Non-coding landscapes of colorectal cancer

    PubMed Central

    Ragusa, Marco; Barbagallo, Cristina; Statello, Luisa; Condorelli, Angelo Giuseppe; Battaglia, Rosalia; Tamburello, Lucia; Barbagallo, Davide; Di Pietro, Cinzia; Purrello, Michele

    2015-01-01

    For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy. PMID:26556998

  4. Noncoder: a web interface for exon array-based detection of long non-coding RNAs

    PubMed Central

    Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka

    2013-01-01

    Due to recent technical developments, a high number of long non-coding RNAs (lncRNAs) have been discovered in mammals. Although it has been shown that lncRNAs are regulated differently among tissues and disease statuses, functions of these transcripts are still unknown in most cases. GeneChip Exon 1.0 ST Arrays (exon arrays) from Affymetrix, Inc. have been used widely to profile genome-wide expression changes and alternative splicing of protein-coding genes. Here, we demonstrate that re-annotation of exon array probes can be used to profile expressions of tens of thousands of lncRNAs. With this annotation, a detailed inspection of lncRNAs and their isoforms is possible. To allow for a general usage to the research community, we developed a user-friendly web interface called ‘noncoder’. By uploading CEL files from exon arrays and with a few mouse clicks and parameter settings, exon array data will be normalized and analysed to identify differentially expressed lncRNAs. Noncoder provides the detailed annotation information of lncRNAs and is equipped with unique features to allow for an efficient search for interesting lncRNAs to be studied further. The web interface is available at http://noncoder.mpi-bn.mpg.de. PMID:23012263

  5. Long noncoding RNAs: functional surprises from the RNA world

    PubMed Central

    Wilusz, Jeremy E.; Sunwoo, Hongjae; Spector, David L.

    2009-01-01

    Most of the eukaryotic genome is transcribed, yielding a complex network of transcripts that includes tens of thousands of long noncoding RNAs with little or no protein-coding capacity. Although the vast majority of long noncoding RNAs have yet to be characterized thoroughly, many of these transcripts are unlikely to represent transcriptional “noise” as a significant number have been shown to exhibit cell type-specific expression, localization to subcellular compartments, and association with human diseases. Here, we highlight recent efforts that have identified a myriad of molecular functions for long noncoding RNAs. In some cases, it appears that simply the act of noncoding RNA transcription is sufficient to positively or negatively affect the expression of nearby genes. However, in many cases, the long noncoding RNAs themselves serve key regulatory roles that were assumed previously to be reserved for proteins, such as regulating the activity or localization of proteins and serving as organizational frameworks of subcellular structures. In addition, many long noncoding RNAs are processed to yield small RNAs or, conversely, modulate how other RNAs are processed. It is thus becoming increasingly clear that long noncoding RNAs can function via numerous paradigms and are key regulatory molecules in the cell. PMID:19571179

  6. Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy.

    PubMed

    Bär, Christian; Chatterjee, Shambhabi; Thum, Thomas

    2016-11-08

    Vast parts of mammalian genomes encode for transcripts that are not further translated into proteins. The purpose of the majority of such noncoding ribonucleic acids (RNAs) remained paradoxical for a long time. However, a growing body of evidence demonstrates that long noncoding RNAs are dynamically expressed in different cell types, diseases, or developmental stages to execute a wide variety of regulatory roles at virtually every step of gene expression and translation. Indeed, long noncoding RNAs influence gene expression via epigenetic modulations, through regulating alternative splicing, or by acting as molecular sponges. The abundance of long noncoding RNAs in the cardiovascular system indicates that they may be part of a complex regulatory network governing physiology and pathology of the heart. In this review, we discuss the multifaceted functions of long noncoding RNAs and highlight the current literature with an emphasis on cardiac development and disease. Furthermore, as the enormous spectrum of long noncoding RNAs potentially opens up new avenues for diagnosis and prevention of heart failure, we ultimately evaluate the futuristic prospects of long noncoding RNAs as biomarkers, and therapeutic targets for the treatment of cardiovascular disorders, as well.

  7. Comparative and Transcriptome Analyses Uncover Key Aspects of Coding- and Long Noncoding RNAs in Flatworm Mitochondrial Genomes

    PubMed Central

    Ross, Eric; Blair, David; Guerrero-Hernández, Carlos; Alvarado, Alejandro Sánchez

    2016-01-01

    Exploiting the conservation of various features of mitochondrial genomes has been instrumental in resolving phylogenetic relationships. Despite extensive sequence evidence, it has not previously been possible to conclusively resolve some key aspects of flatworm mitochondrial genomes, including generally conserved traits, such as start codons, noncoding regions, the full complement of tRNAs, and whether ATP8 is, or is not, encoded by this extranuclear genome. In an effort to address these difficulties, we sought to determine the mitochondrial transcriptomes and genomes of sexual and asexual taxa of freshwater triclads, a group previously poorly represented in flatworm mitogenomic studies. We have discovered evidence for an alternative start codon, an extended cox1 gene, a previously undescribed conserved open reading frame, long noncoding RNAs, and a highly conserved gene order across the large evolutionary distances represented within the triclads. Our findings contribute to the expansion and refinement of mitogenomics to address evolutionary issues in this diverse group of animals. PMID:26921295

  8. Comparison of simple sequence repeats in 19 Archaea.

    PubMed

    Trivedi, S

    2006-12-05

    All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.

  9. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes.

    PubMed

    Lacaze, Paul; Forster, Thorsten; Ross, Alan; Kerr, Lorraine E; Salvo-Chirnside, Eliane; Lisnic, Vanda Juranic; López-Campos, Guillermo H; García-Ramírez, José J; Messerle, Martin; Trgovcich, Joanne; Angulo, Ana; Ghazal, Peter

    2011-06-01

    The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.

  10. A long noncoding way to alternative splicing in plant development.

    PubMed

    Kornblihtt, Alberto R

    2014-07-28

    In this issue of Developmental Cell, Bardou et al. (2014) elucidate how long, highly structured noncoding RNAs control alternative splicing regulators that specifically mediate the action of the hormone auxin in the promotion of lateral root growth in Arabidopsis.

  11. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  12. Nonextensive statistical approach to non-coding human DNA

    NASA Astrophysics Data System (ADS)

    Oikonomou, Th.; Provata, A.; Tirnakli, U.

    2008-04-01

    We use q-exponential distributions, which maximize the nonextensive entropy Sq (defined as Sq≡(1-∑ipiq)/(q-1)), to study the size distributions of non-coding DNA (including introns and intergenic regions) in all human chromosomes. We show that the value of the exponent q describing the non-coding size distributions is similar for all chromosomes and varies between 2≤q≤2.3 with the exception of chromosomes X and Y.

  13. Long noncoding RNAs in viral infections

    PubMed Central

    Fortes, Puri; Morris, Kevin

    2015-01-01

    Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer. PMID:26454188

  14. Non-coding RNAs and atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos

    2014-01-01

    Non-coding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer and cardiovascular diseases (CVDs) including atherosclerosis. The best-characterized ncRNAs are the microRNAs (miRNAs), which are small, ~22 nucleotide (nt) sequences of RNA that regulate gene expression at the posttranscriptional level through transcript degradation or translational repression. MiRNAs control several aspects of atherosclerosis including endothelial cell, vascular smooth cell, and macrophage functions as well as lipoprotein metabolism. Apart from miRNAs, recently ncRNAs, especially long ncRNAs (lncRNAs), have emerged as important potential regulators of the progression of atherosclerosis. However, the molecular mechanism of their regulation and function as well as significance of other ncRNAs such as small nucleolar RNAs (snoRNAs) during atherogenesis is largely unknown. In this review, we summarize the recent findings in the field, highlighting the importance of ncRNAs in atherosclerosis and discuss their potential use as therapeutic targets in CVDs. PMID:24623179

  15. Short Stories on Zebrafish Long Noncoding RNAs

    PubMed Central

    Haque, Shadabul; Kaushik, Kriti; Leonard, Vincent Elvin; Kapoor, Shruti; Sivadas, Ambily; Joshi, Adita

    2014-01-01

    Abstract The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes. PMID:25110965

  16. Functional roles of non-coding Y RNAs.

    PubMed

    Kowalski, Madzia P; Krude, Torsten

    2015-09-01

    Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.

  17. Hypoxic regulation of the noncoding genome and NEAT1

    PubMed Central

    Choudhry, Hani

    2016-01-01

    Activation of hypoxia pathways is both associated with and contributes to an aggressive phenotype across multiple types of solid cancers. The regulation of gene transcription by hypoxia-inducible factor (HIF) is a key element in this response. HIF directly upregulates the expression of many hundreds of protein-coding genes, which act to both improve oxygen delivery and to reduce oxygen demand. However, it is now becoming apparent that many classes of noncoding RNAs are also regulated by hypoxia, with several (e.g. micro RNAs, long noncoding RNAs and antisense RNAs) under direct transcriptional regulation by HIF. These hypoxia-regulated, noncoding RNAs may act as effectors of the indirect response to HIF by acting on specific coding transcripts or by affecting generic RNA-processing pathways. In addition, noncoding RNAs may also act as modulators of the HIF pathway, either by integrating other physiological responses or, in the case of HIF-regulated, noncoding RNAs, by providing negative or positive feedback and feedforward loops that affect upstream or downstream components of the HIF cascade. These hypoxia-regulated, noncoding transcripts play important roles in the aggressive hypoxic phenotype observed in cancer. PMID:26590207

  18. The Effects of Expansions, Questions and Cloze Procedures on Children's Conversational Skills

    ERIC Educational Resources Information Center

    Wong, Tze-Peng; Moran, Catherine; Foster-Cohen, Susan

    2012-01-01

    The effectiveness of expansion as a technique for facilitating children's language and conversational skills is well known (Scherer and Olswang, 1984). Expansion, however, can appear alone or in combination with other techniques. Using a repeated measures design, this study aimed to compare the effects of expansion alone (EA); expansion combined…

  19. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2015-11-01

    Long noncoding RNAs (lncRNAs) are ≥200 nt long, abundant class of non-protein coding RNAs that are transcribed in complex, sense- and antisense patterns from the intergenic and intronic regions of mammalian genome. Mammalian central nervous system constitutes the largest repertoire of noncoding transcripts that are known to be expressed in developmentally regulated and cell-type specific manners. Although many lncRNAs, functioning in the brain development and diseases are known, none involved in brain aging has been reported so far. Here, we report involvement of a novel, repeat sequence (simple repeats and SINES)-containing, trans-spliced, long intergenic non-protein coding RNA (lincRNA), named as LINC-RBE (rat brain expressed transcript) involved in maturation and aging of mammalian brain. The LINC-RBE is strongly expressed in the rat brain and the upstream/downstream sequences of its DNA in the chromosome 5 contain binding sites for many cell growth, survival and development-specific transcriptional factors. Through RT-PCR and RNA in situ hybridization, LINC-RBE was found to be expressed in an age-dependent manner with significantly higher level of expression in the brain of adult (16 weeks) compared to both immature (4 weeks) and old (70 weeks) rats. Moreover, the expression pattern of the LINC-RBE showed distinct association with the specific neuro-anatomical regions, cell types and sub-cellular compartments of the rat brain in an age-related manner. Thus, its expression increased from immature stage to adulthood and declined further in old age. This is a first-time report of involvement of an intergenic repeat sequence-containing lncRNA in different regions of the rat brain in an age-dependent manner.

  20. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2015-12-01

    Long noncoding RNAs (lncRNAs) are ≥ 200 nt long, abundant class of non-protein coding RNAs that are transcribed in complex, sense- and antisense patterns from the intergenic and intronic regions of mammalian genome. Mammalian central nervous system constitutes the largest repertoire of noncoding transcripts that are known to be expressed in developmentally regulated and cell-type specific manners. Although many lncRNAs, functioning in the brain development and diseases are known, none involved in brain aging has been reported so far. Here, we report involvement of a novel, repeat sequence (simple repeats and SINES)-containing, trans-spliced, long intergenic non-protein coding RNA (lincRNA), named as LINC-RBE (rat brain expressed transcript) involved in maturation and aging of mammalian brain. The LINC-RBE is strongly expressed in the rat brain and the upstream/downstream sequences of its DNA in the chromosome 5 contain binding sites for many cell growth, survival and development-specific transcriptional factors. Through RT-PCR and RNA in situ hybridization, LINC-RBE was found to be expressed in an age-dependent manner with significantly higher level of expression in the brain of adult (16 week) compared to both immature (4 week) and old (70 week) rats. Moreover, the expression pattern of the LINC-RBE showed distinct association with the specific neuro-anatomical regions, cell types and sub-cellular compartments of the rat brain in an age-related manner. Thus, its expression increased from immature stage to adulthood and declined further in old age. This is a first-time report of involvement of an intergenic repeat sequence-containing lncRNA in different regions of the rat brain in an age-dependent manner.

  1. Disease-associated repeat instability and mismatch repair.

    PubMed

    Schmidt, Monika H M; Pearson, Christopher E

    2016-02-01

    Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential.

  2. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.

    PubMed

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K

    2015-07-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  3. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor.

    PubMed

    Janes, D E; Chapus, C; Gondo, Y; Clayton, D F; Sinha, S; Blatti, C A; Organ, C L; Fujita, M K; Balakrishnan, C N; Edwards, S V

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.

  4. Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor

    PubMed Central

    Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607

  5. Portraying breast cancers with long noncoding RNAs

    PubMed Central

    Van Grembergen, Olivier; Bizet, Martin; de Bony, Eric J.; Calonne, Emilie; Putmans, Pascale; Brohée, Sylvain; Olsen, Catharina; Guo, Mingzhou; Bontempi, Gianluca; Sotiriou, Christos; Defrance, Matthieu; Fuks, François

    2016-01-01

    Evidence is emerging that long noncoding RNAs (lncRNAs) may play a role in cancer development, but this role is not yet clear. We performed a genome-wide transcriptional survey to explore the lncRNA landscape across 995 breast tissue samples. We identified 215 lncRNAs whose genes are aberrantly expressed in breast tumors, as compared to normal samples. Unsupervised hierarchical clustering of breast tumors on the basis of their lncRNAs revealed four breast cancer subgroups that correlate tightly with PAM50-defined mRNA-based subtypes. Using multivariate analysis, we identified no less than 210 lncRNAs prognostic of clinical outcome. By analyzing the coexpression of lncRNA genes and protein-coding genes, we inferred potential functions of the 215 dysregulated lncRNAs. We then associated subtype-specific lncRNAs with key molecular processes involved in cancer. A correlation was observed, on the one hand, between luminal A–specific lncRNAs and the activation of phosphatidylinositol 3-kinase, fibroblast growth factor, and transforming growth factor–β pathways and, on the other hand, between basal-like–specific lncRNAs and the activation of epidermal growth factor receptor (EGFR)–dependent pathways and of the epithelial-to-mesenchymal transition. Finally, we showed that a specific lncRNA, which we called CYTOR, plays a role in breast cancer. We confirmed its predicted functions, showing that it regulates genes involved in the EGFR/mammalian target of rapamycin pathway and is required for cell proliferation, cell migration, and cytoskeleton organization. Overall, our work provides the most comprehensive analyses for lncRNA in breast cancers. Our findings suggest a wide range of biological functions associated with lncRNAs in breast cancer and provide a foundation for functional investigations that could lead to new therapeutic approaches. PMID:27617288

  6. Noncoding RNAs, cytokines, and inflammation-related diseases.

    PubMed

    Marques-Rocha, José Luiz; Samblas, Mirian; Milagro, Fermin I; Bressan, Josefina; Martínez, J Alfredo; Marti, Amelia

    2015-09-01

    Chronic inflammation is involved in the onset and development of many diseases, including obesity, atherosclerosis, type 2 diabetes, osteoarthritis, autoimmune and degenerative diseases, asthma, periodontitis, and cirrhosis. The inflammation process is mediated by chemokines, cytokines, and different inflammatory cells. Although the molecules and mechanisms that regulate this primary defense mechanism are not fully understood, recent findings offer a putative role of noncoding RNAs, especially microRNAs (miRNAs), in the progression and management of the inflammatory response. These noncoding RNAs are crucial for the stability and maintenance of gene expression patterns that characterize some cell types, tissues, and biologic responses. Several miRNAs, such as miR-126, miR-132, miR-146, miR-155, and miR-221, have emerged as important transcriptional regulators of some inflammation-related mediators. Additionally, little is known about the involvement of long noncoding RNAs, long intergenic noncoding RNAs, and circular RNAs in inflammation-mediated processes and the homeostatic imbalance associated with metabolic disorders. These noncoding RNAs are emerging as biomarkers with diagnosis value, in prognosis protocols, or in the personalized treatment of inflammation-related alterations. In this context, this review summarizes findings in the field, highlighting those noncoding RNAs that regulate inflammation, with emphasis on recognized mediators such as TNF-α, IL-1, IL-6, IL-18, intercellular adhesion molecule 1, VCAM-1, and plasminogen activator inhibitor 1. The down-regulation or antagonism of the noncoding RNAs and the administration of exogenous miRNAs could be, in the near future, a promising therapeutic strategy in the treatment of inflammation-related diseases.

  7. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA

    PubMed Central

    Lee, Nara; Moss, Walter N.; Yario, Therese A.; Steitz, Joan A.

    2015-01-01

    Summary EBER2 is an abundant nuclear noncoding RNA expressed by Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2’s presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B-cell transcription factor PAX5. EBER2 interacts with and is required for PAX5 localization to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA. PMID:25662012

  8. Epigenetics and Triplet-Repeat Neurological Diseases.

    PubMed

    Nageshwaran, Sathiji; Festenstein, Richard

    2015-01-01

    The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.

  9. Noncoding RNA gene detection using comparative sequence analysis

    PubMed Central

    Rivas, Elena; Eddy, Sean R

    2001-01-01

    Background Noncoding RNA genes produce transcripts that exert their function without ever producing proteins. Noncoding RNA gene sequences do not have strong statistical signals, unlike protein coding genes. A reliable general purpose computational genefinder for noncoding RNA genes has been elusive. Results We describe a comparative sequence analysis algorithm for detecting novel structural RNA genes. The key idea is to test the pattern of substitutions observed in a pairwise alignment of two homologous sequences. A conserved coding region tends to show a pattern of synonymous substitutions, whereas a conserved structural RNA tends to show a pattern of compensatory mutations consistent with some base-paired secondary structure. We formalize this intuition using three probabilistic "pair-grammars": a pair stochastic context free grammar modeling alignments constrained by structural RNA evolution, a pair hidden Markov model modeling alignments constrained by coding sequence evolution, and a pair hidden Markov model modeling a null hypothesis of position-independent evolution. Given an input pairwise sequence alignment (e.g. from a BLASTN comparison of two related genomes) we classify the alignment into the coding, RNA, or null class according to the posterior probability of each class. Conclusions We have implemented this approach as a program, QRNA, which we consider to be a prototype structural noncoding RNA genefinder. Tests suggest that this approach detects noncoding RNA genes with a fair degree of reliability. PMID:11801179

  10. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states

    PubMed Central

    Barry, Guy; Briggs, James A.; Hwang, Do Won; Nayler, Sam P.; Fortuna, Patrick R. J.; Jonkhout, Nicky; Dachet, Fabien; Maag, Jesper L. V.; Mestdagh, Pieter; Singh, Erin M.; Avesson, Lotta; Kaczorowski, Dominik C.; Ozturk, Ezgi; Jones, Nigel C.; Vetter, Irina; Arriola-Martinez, Luis; Hu, Jianfei; Franco, Gloria R.; Warn, Victoria M.; Gong, Andrew; Dinger, Marcel E.; Rigo, Frank; Lipovich, Leonard; Morris, Margaret J.; O’Brien, Terence J.; Lee, Dong Soo; Loeb, Jeffrey A.; Blackshaw, Seth; Mattick, John S.; Wolvetang, Ernst J.

    2017-01-01

    Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy. PMID:28054653

  11. Selective Constraint on Noncoding Regions of Hominid Genomes

    PubMed Central

    2005-01-01

    An important challenge for human evolutionary biology is to understand the genetic basis of human–chimpanzee differences. One influential idea holds that such differences depend, to a large extent, on adaptive changes in gene expression. An important step in assessing this hypothesis involves gaining a better understanding of selective constraint on noncoding regions of hominid genomes. In noncoding sequence, functional elements are frequently small and can be separated by large nonfunctional regions. For this reason, constraint in hominid genomes is likely to be patchy. Here we use conservation in more distantly related mammals and amniotes as a way of identifying small sequence windows that are likely to be functional. We find that putatively functional noncoding elements defined in this manner are subject to significant selective constraint in hominids. PMID:16362073

  12. Selective constraint on noncoding regions of hominid genomes.

    PubMed

    Bush, Eliot C; Lahn, Bruce T

    2005-12-01

    An important challenge for human evolutionary biology is to understand the genetic basis of human-chimpanzee differences. One influential idea holds that such differences depend, to a large extent, on adaptive changes in gene expression. An important step in assessing this hypothesis involves gaining a better understanding of selective constraint on noncoding regions of hominid genomes. In noncoding sequence, functional elements are frequently small and can be separated by large nonfunctional regions. For this reason, constraint in hominid genomes is likely to be patchy. Here we use conservation in more distantly related mammals and amniotes as a way of identifying small sequence windows that are likely to be functional. We find that putatively functional noncoding elements defined in this manner are subject to significant selective constraint in hominids.

  13. Mechanisms of trinucleotide repeat instability during human development

    PubMed Central

    McMurray, Cynthia T.

    2011-01-01

    Trinucleotide expansion underlies several human diseases. Expansion occurs during multiple stages of human development in different cell types, and is sensitive to the gender of the parent who transmits the repeats. Repair and replication models for expansions have been described, but we do not know whether the pathway involved is the same under all conditions and for all repeat tract lengths, which differ among diseases. Currently, researchers rely on bacteria, yeast and mice to study expansion, but these models differ substantially from humans. We need now to connect the dots among human genetics, pathway biochemistry and the appropriate model systems to understand the mechanism of expansion as it occurs in human disease. PMID:20953213

  14. Overexpression of long non-coding RNAs following exposure to xenobiotics in the aquatic midge Chironomus riparius.

    PubMed

    Martínez-Guitarte, José-Luis; Planelló, Rosario; Morcillo, Gloria

    2012-04-01

    Non-coding RNAs (ncRNAs) represent an important transcriptional output of eukaryotic genomes. In addition to their functional relevance as housekeeping and regulatory elements, recent studies have suggested their involvement in rather unexpected cellular functions. The aim of this work was to analyse the transcriptional behaviour of non-coding RNAs in the toxic response to pollutants in Chironomus riparius, a reference organism in aquatic toxicology. Three well-characterized long non-coding sequences were studied: telomeric repeats, Cla repetitive elements and the SINE CTRT1. Transcription levels were evaluated by RT-PCR after 24-h exposures to three current aquatic contaminants: bisphenol A (BPA), benzyl butyl phthalate (BBP) and the heavy metal cadmium (Cd). Upregulation of telomeric transcripts was found after BPA treatments. Moreover, BPA significantly activated Cla transcription, which also appeared to be increased by cadmium, whereas BBP did not affect the transcription levels of these sequences. Transcription of SINE CTRT1 was not altered by any of the chemicals tested. These data are discussed in the light of previous studies that have shown a response by long ncRNAS (lncRNAs) to cellular stressors, indicating a relationship with environmental stimuli. Our results demonstrated for the first time the ability of bisphenol A to activate non-coding sequences mainly located at telomeres and centromeres. Overall, this study provides evidence that xenobiotics can induce specific responses in ncRNAs derived from repetitive sequences that could be relevant in the toxic response, and also suggests that ncRNAs could represent a novel class of potential biomarkers in toxicological assessment.

  15. Long Noncoding RNAs: Fresh Perspectives into the RNA world

    PubMed Central

    Yang, Lin; Froberg, John E.; Lee, Jeannie T.

    2014-01-01

    Large scale mapping of transcriptomes has revealed significant levels of transcriptional activity within both unannotated and annotated regions of the genome. Interestingly, many of the novel transcripts demonstrate tissue-specific expression and some level of sequence conservation across species, but most have low protein-coding potential. Here we describe progress in identifying and characterizing long noncoding RNAs and review how these transcripts interact with other biological molecules to regulate diverse cellular processes. We also preview emerging techniques that will help advance the discovery and characterization of novel transcripts. Finally, we discuss the role of long non-coding RNAs in disease and therapeutics. PMID:24290031

  16. The development of non-coding RNA ontology

    PubMed Central

    Eilbeck, Karen; Smith, Barry; Blake, Judith A.; Dou, Dejing; Huang, Weili; Natale, Darren A.; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T.; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J.; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M.; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data. PMID:27990175

  17. Functions of plants long non-coding RNAs.

    PubMed

    Shafiq, Sarfraz; Li, Jingrui; Sun, Qianwen

    2016-01-01

    Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.

  18. Non-coding RNAs in Mammary Gland Development and Disease.

    PubMed

    Sandhu, Gurveen K; Milevskiy, Michael J G; Wilson, Wesley; Shewan, Annette M; Brown, Melissa A

    2016-01-01

    Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.

  19. ATXN2 trinucleotide repeat length correlates with risk of ALS.

    PubMed

    Sproviero, William; Shatunov, Aleksey; Stahl, Daniel; Shoai, Maryam; van Rheenen, Wouter; Jones, Ashley R; Al-Sarraj, Safa; Andersen, Peter M; Bonini, Nancy M; Conforti, Francesca L; Van Damme, Philip; Daoud, Hussein; Del Mar Amador, Maria; Fogh, Isabella; Forzan, Monica; Gaastra, Ben; Gellera, Cinzia; Gitler, Aaron D; Hardy, John; Fratta, Pietro; La Bella, Vincenzo; Le Ber, Isabelle; Van Langenhove, Tim; Lattante, Serena; Lee, Yi-Chung; Malaspina, Andrea; Meininger, Vincent; Millecamps, Stéphanie; Orrell, Richard; Rademakers, Rosa; Robberecht, Wim; Rouleau, Guy; Ross, Owen A; Salachas, Francois; Sidle, Katie; Smith, Bradley N; Soong, Bing-Wen; Sorarù, Gianni; Stevanin, Giovanni; Kabashi, Edor; Troakes, Claire; van Broeckhoven, Christine; Veldink, Jan H; van den Berg, Leonard H; Shaw, Christopher E; Powell, John F; Al-Chalabi, Ammar

    2017-03-01

    We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carrying intermediate sized trinucleotide repeat alleles (odds ratio 3.06 [95% confidence interval 2.37-3.94]; p = 6 × 10(-18)), with an exponential relationship between repeat length and ALS risk for alleles of 29-32 repeats (R(2) = 0.91, p = 0.0002). No relationship was seen for repeat length and age of onset or survival. In contrast to trinucleotide repeat diseases, intermediate ATXN2 trinucleotide repeat expansion in ALS does not predict age of onset but does predict disease risk.

  20. Repeat instability during DNA repair: Insights from model systems

    PubMed Central

    Usdin, Karen; House, Nealia C. M.; Freudenreich, Catherine H.

    2015-01-01

    The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them. PMID:25608779

  1. Human-specific genomic signatures of neocortical expansion.

    PubMed

    Florio, Marta; Borrell, Víctor; Huttner, Wieland B

    2017-02-01

    Neocortex evolutionary expansion is primarily due to increased proliferative capacity of neural progenitor cells during cortical development. Exploiting insights into the cell biology of cortical progenitors gained during the past two decades, recent studies uncovered a variety of gene expression differences that underlie differential cortical progenitor behavior. These comprise both, differences between cortical areas that likely provide a molecular basis for cortical folding, and differences across species thought to be responsible for increases in neocortex size. Human-specific signatures have been identified for gene regulatory elements, non-coding gene products, and protein-encoding genes, and have been functionally examined in in vivo as well as novel in vitro model systems.

  2. Non-coding RNAs in cancer brain metastasis.

    PubMed

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2016-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can't penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed.

  3. HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts

    PubMed Central

    Ferdin, J; Nishida, N; Wu, X; Nicoloso, M S; Shah, M Y; Devlin, C; Ling, H; Shimizu, M; Kumar, K; Cortez, M A; Ferracin, M; Bi, Y; Yang, D; Czerniak, B; Zhang, W; Schmittgen, T D; Voorhoeve, M P; Reginato, M J; Negrini, M; Davuluri, R V; Kunej, T; Ivan, M; Calin, G A

    2013-01-01

    Recent data have linked hypoxia, a classic feature of the tumor microenvironment, to the function of specific microRNAs (miRNAs); however, whether hypoxia affects other types of noncoding transcripts is currently unknown. Starting from a genome-wide expression profiling, we demonstrate for the first time a functional link between oxygen deprivation and the modulation of long noncoding transcripts from ultraconserved regions, termed transcribed-ultraconserved regions (T-UCRs). Interestingly, several hypoxia-upregulated T-UCRs, henceforth named ‘hypoxia-induced noncoding ultraconserved transcripts' (HINCUTs), are also overexpressed in clinical samples from colon cancer patients. We show that these T-UCRs are predominantly nuclear and that the hypoxia-inducible factor (HIF) is at least partly responsible for the induction of several members of this group. One specific HINCUT, uc.475 (or HINCUT-1) is part of a retained intron of the host protein-coding gene, O-linked N-acetylglucosamine transferase, which is overexpressed in epithelial cancer types. Consistent with the hypothesis that T-UCRs have important function in tumor formation, HINCUT-1 supports cell proliferation specifically under hypoxic conditions and may be critical for optimal O-GlcNAcylation of proteins when oxygen tension is limiting. Our data gives a first glimpse of a novel functional hypoxic network comprising protein-coding transcripts and noncoding RNAs (ncRNAs) from the T-UCRs category. PMID:24037088

  4. The Long Noncoding RNA Transcriptome of Dictyostelium discoideum Development

    PubMed Central

    Rosengarten, Rafael D.; Santhanam, Balaji; Kokosar, Janez; Shaulsky, Gad

    2016-01-01

    Dictyostelium discoideum live in the soil as single cells, engulfing bacteria and growing vegetatively. Upon starvation, tens of thousands of amoebae enter a developmental program that includes aggregation, multicellular differentiation, and sporulation. Major shifts across the protein-coding transcriptome accompany these developmental changes. However, no study has presented a global survey of long noncoding RNAs (ncRNAs) in D. discoideum. To characterize the antisense and long intergenic noncoding RNA (lncRNA) transcriptome, we analyzed previously published developmental time course samples using an RNA-sequencing (RNA-seq) library preparation method that selectively depletes ribosomal RNAs (rRNAs). We detected the accumulation of transcripts for 9833 protein-coding messenger RNAs (mRNAs), 621 lncRNAs, and 162 putative antisense RNAs (asRNAs). The noncoding RNAs were interspersed throughout the genome, and were distinct in expression level, length, and nucleotide composition. The noncoding transcriptome displayed a temporal profile similar to the coding transcriptome, with stages of gradual change interspersed with larger leaps. The transcription profiles of some noncoding RNAs were strongly correlated with known differentially expressed coding RNAs, hinting at a functional role for these molecules during development. Examining the mitochondrial transcriptome, we modeled two novel antisense transcripts. We applied yet another ribosomal depletion method to a subset of the samples to better retain transfer RNA (tRNA) transcripts. We observed polymorphisms in tRNA anticodons that suggested a post-transcriptional means by which D. discoideum compensates for codons missing in the genomic complement of tRNAs. We concluded that the prevalence and characteristics of long ncRNAs indicate that these molecules are relevant to the progression of molecular and cellular phenotypes during development. PMID:27932387

  5. Detecting non-coding selective pressure in coding regions

    PubMed Central

    Chen, Hui; Blanchette, Mathieu

    2007-01-01

    Background Comparative genomics approaches, where orthologous DNA regions are compared and inter-species conserved regions are identified, have proven extremely powerful for identifying non-coding regulatory regions located in intergenic or intronic regions. However, non-coding functional elements can also be located within coding region, as is common for exonic splicing enhancers, some transcription factor binding sites, and RNA secondary structure elements affecting mRNA stability, localization, or translation. Since these functional elements are located in regions that are themselves highly conserved because they are coding for a protein, they generally escaped detection by comparative genomics approaches. Results We introduce a comparative genomics approach for detecting non-coding functional elements located within coding regions. Codon evolution is modeled as a mixture of codon substitution models, where each component of the mixture describes the evolution of codons under a specific type of coding selective pressure. We show how to compute the posterior distribution of the entropy and parsimony scores under this null model of codon evolution. The method is applied to a set of growth hormone 1 orthologous mRNA sequences and a known exonic splicing elements is detected. The analysis of a set of CORTBP2 orthologous genes reveals a region of several hundred base pairs under strong non-coding selective pressure whose function remains unknown. Conclusion Non-coding functional elements, in particular those involved in post-transcriptional regulation, are likely to be much more prevalent than is currently known. With the numerous genome sequencing projects underway, comparative genomics approaches like that proposed here are likely to become increasingly powerful at detecting such elements. PMID:17288582

  6. The Long Noncoding RNA Transcriptome of Dictyostelium discoideum Development.

    PubMed

    Rosengarten, Rafael D; Santhanam, Balaji; Kokosar, Janez; Shaulsky, Gad

    2017-02-09

    Dictyostelium discoideum live in the soil as single cells, engulfing bacteria and growing vegetatively. Upon starvation, tens of thousands of amoebae enter a developmental program that includes aggregation, multicellular differentiation, and sporulation. Major shifts across the protein-coding transcriptome accompany these developmental changes. However, no study has presented a global survey of long noncoding RNAs (ncRNAs) in D. discoideum To characterize the antisense and long intergenic noncoding RNA (lncRNA) transcriptome, we analyzed previously published developmental time course samples using an RNA-sequencing (RNA-seq) library preparation method that selectively depletes ribosomal RNAs (rRNAs). We detected the accumulation of transcripts for 9833 protein-coding messenger RNAs (mRNAs), 621 lncRNAs, and 162 putative antisense RNAs (asRNAs). The noncoding RNAs were interspersed throughout the genome, and were distinct in expression level, length, and nucleotide composition. The noncoding transcriptome displayed a temporal profile similar to the coding transcriptome, with stages of gradual change interspersed with larger leaps. The transcription profiles of some noncoding RNAs were strongly correlated with known differentially expressed coding RNAs, hinting at a functional role for these molecules during development. Examining the mitochondrial transcriptome, we modeled two novel antisense transcripts. We applied yet another ribosomal depletion method to a subset of the samples to better retain transfer RNA (tRNA) transcripts. We observed polymorphisms in tRNA anticodons that suggested a post-transcriptional means by which D. discoideum compensates for codons missing in the genomic complement of tRNAs. We concluded that the prevalence and characteristics of long ncRNAs indicate that these molecules are relevant to the progression of molecular and cellular phenotypes during development.

  7. Promoter-Bound Trinucleotide Repeat mRNA Drives Epigenetic Silencing in Fragile X Syndrome

    PubMed Central

    Colak, Dilek; Zaninovic, Nikica; Cohen, Michael S.; Rosenwaks, Zev; Yang, Wang-Yong; Gerhardt, Jeannine; Disney, Matthew D.; Jaffrey, Samie R.

    2015-01-01

    Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide–repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5′ untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA·DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA. PMID:24578575

  8. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome.

    PubMed

    Colak, Dilek; Zaninovic, Nikica; Cohen, Michael S; Rosenwaks, Zev; Yang, Wang-Yong; Gerhardt, Jeannine; Disney, Matthew D; Jaffrey, Samie R

    2014-02-28

    Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide-repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5' untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA·DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.

  9. Prioritization of non-coding disease-causing variants and long non-coding RNAs in liver cancer

    PubMed Central

    Li, Hua; He, Zekun; Gu, Yang; Fang, Lin; Lv, Xin

    2016-01-01

    There are multiple bioinformatics tools available for the detection of coding driver mutations in cancers. However, the prioritization of pathogenic non-coding variants remains a challenging and demanding task. The present study was performed to discriminate non-coding disease-causing mutations and prioritize potential cancer-implicated long non-coding RNAs (lncRNAs) in liver cancer using a logistic regression model. A logistic regression model was constructed by combining 19,153 disease-associated ClinVar and human gene mutation database pathogenic variants as the response variable and non-coding features as the predictor variable. Genome-wide association study (GWAS) disease or trait-associated variants and recurrent somatic mutations were used to validate the model. Non-coding gene features with the highest fractions of load were characterized and potential cancer-associated lncRNA candidates were prioritized by combining the fraction of high-scoring regions and average score predicted by the logistic regression model. H3K9me3 and conserved regions were the most negatively and positively informative for the model, respectively. The area under the receiver operating characteristic curve of the model was 0.92. The average score of GWAS disease-associated variants was significantly increased compared with neutral single nucleotide polymorphisms (5.8642 vs. 5.4707; P<0.001), the average score of recurrent somatic mutations of liver cancer was significantly increased compared with non-recurrent somatic mutations (5.4101 vs. 5.2768; P=0.0125). The present study found regions in lncRNAs and introns/untranslated regions of protein coding genes where mutations are most likely to be damaging. In total, 847 lncRNAs were filtered out from the background. Characterization of this subset of lncRNAs showed that these lncRNAs are more conservative, less mutated and more highly expressed compared with other control lncRNAs. In addition, 23 of these lncRNAs were differentially

  10. Prioritization of non-coding disease-causing variants and long non-coding RNAs in liver cancer.

    PubMed

    Li, Hua; He, Zekun; Gu, Yang; Fang, Lin; Lv, Xin

    2016-11-01

    There are multiple bioinformatics tools available for the detection of coding driver mutations in cancers. However, the prioritization of pathogenic non-coding variants remains a challenging and demanding task. The present study was performed to discriminate non-coding disease-causing mutations and prioritize potential cancer-implicated long non-coding RNAs (lncRNAs) in liver cancer using a logistic regression model. A logistic regression model was constructed by combining 19,153 disease-associated ClinVar and human gene mutation database pathogenic variants as the response variable and non-coding features as the predictor variable. Genome-wide association study (GWAS) disease or trait-associated variants and recurrent somatic mutations were used to validate the model. Non-coding gene features with the highest fractions of load were characterized and potential cancer-associated lncRNA candidates were prioritized by combining the fraction of high-scoring regions and average score predicted by the logistic regression model. H3K9me3 and conserved regions were the most negatively and positively informative for the model, respectively. The area under the receiver operating characteristic curve of the model was 0.92. The average score of GWAS disease-associated variants was significantly increased compared with neutral single nucleotide polymorphisms (5.8642 vs. 5.4707; P<0.001), the average score of recurrent somatic mutations of liver cancer was significantly increased compared with non-recurrent somatic mutations (5.4101 vs. 5.2768; P=0.0125). The present study found regions in lncRNAs and introns/untranslated regions of protein coding genes where mutations are most likely to be damaging. In total, 847 lncRNAs were filtered out from the background. Characterization of this subset of lncRNAs showed that these lncRNAs are more conservative, less mutated and more highly expressed compared with other control lncRNAs. In addition, 23 of these lncRNAs were differentially

  11. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells

    PubMed Central

    2012-01-01

    Background The function of RNA from the non-coding (the so called “dark matter”) regions of the genome has been a subject of considerable recent debate. Perhaps the most controversy is regarding the function of RNAs found in introns of annotated transcripts, where most of the reads that map outside of exons are usually found. However, it has been reported that the levels of RNA in introns are minor relative to those of the corresponding exons, and that changes in the levels of intronic RNAs correlate tightly with that of adjacent exons. This would suggest that RNAs produced from the vast expanse of intronic space are just pieces of pre-mRNAs or excised introns en route to degradation. Results We present data that challenges the notion that intronic RNAs are mere by-standers in the cell. By performing a highly quantitative RNAseq analysis of transcriptome changes during an inflammation time course, we show that intronic RNAs have a number of features that would be expected from functional, standalone RNA species. We show that there are thousands of introns in the mouse genome that generate RNAs whose overall abundance, which changes throughout the inflammation timecourse, and other properties suggest that they function in yet unknown ways. Conclusions So far, the focus of non-coding RNA discovery has shied away from intronic regions as those were believed to simply encode parts of pre-mRNAs. Results presented here suggest a very different situation – the sequences encoded in the introns appear to harbor a yet unexplored reservoir of novel, functional RNAs. As such, they should not be ignored in surveys of functional transcripts or other genomic studies. PMID:23006825

  12. The puzzle of the triple repeats

    SciTech Connect

    Morell, V.

    1993-06-04

    Two years ago, when researchers discovered the gene that causes a hereditary form of mental retardation known as fragile-X syndrome, they also turned up a mutation so unexpected geneticists are still scratching their heads over it. The defect, which makes genes balloon in size by adding extra copies of a three base-pair repeated sequence of DNA, was the first of its kind. Despite decades of study, nothing like it had ever been seen in any of the species that laid the foundations for modern genetics: bacteria, the fruit fly Drosophila melanogaster, and the mouse. The mutations caused by these expanding trinucleotide repeats turned out be common causes of human disease. In the past 2 years, they have been fingered as the culprits in three hereditary disorders besides fragile-X syndrome: myotronic dystrophy, spinobullar muscular atrophy (also known as Kennedy's disease), and just this March-Huntington's disease. The FMR-1 gene, which is the one at fault in fragile-X syndrome, shows just how much the trinucleotide repeats can expand. The normal gene carries at most 50 copies of the CGG trinucleotide. But in children who inherit the gene from these carriers and actually develop mental retardation and the other fragile-X symptoms, the FMR-1 gene may have hundreds to thousands of CGG repeats. Huge expansions of another trinucleotide repeat (CTG) can also occur from one generation to the next in the gene that causes myotonic dystrophy (DM), while smaller, although no less devastating, expansions in the CAG trinucleotide repeat lead to Huntington's and Kennedy's diseases.

  13. Bidirectional transcription of trinucleotide repeats: roles for excision repair

    PubMed Central

    Budworth, Helen; McMurray, Cynthia T.

    2013-01-01

    SUMMARY Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100–300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes. PMID:23669397

  14. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

    PubMed Central

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K.

    2015-01-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  15. Large tandem, higher order repeats and regularly dispersed repeat units contribute substantially to divergence between human and chimpanzee Y chromosomes.

    PubMed

    Paar, Vladimir; Glunčić, Matko; Basar, Ivan; Rosandić, Marija; Paar, Petar; Cvitković, Mislav

    2011-01-01

    Comparison of human and chimpanzee genomes has received much attention, because of paramount role for understanding evolutionary step distinguishing us from our closest living relative. In order to contribute to insight into Y chromosome evolutionary history, we study and compare tandems, higher order repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y chromosome contigs, using robust Global Repeat Map algorithm. We find a new type of long-range acceleration, human-accelerated HOR regions. In peripheral domains of 35mer human alphoid HORs, we find riddled features with ten additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We construct alphoid HOR schemes showing significant human-chimpanzee difference, revealing rapid evolution after human-chimpanzee separation. We identify and analyze over 20 large repeat units, most of them reported here for the first time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and ~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848, 15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial human-chimpanzee differences are concentrated in large repeat structures, at the level of as much as ~70% divergence, sizably exceeding previous numerical estimates for some selected noncoding sequences. Smeared over the whole sequenced assembly (25 Mb) this gives ~14% human-chimpanzee divergence. This is significantly higher estimate of divergence between human and chimpanzee than previous estimates.

  16. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.

    PubMed Central

    Rolfsmeier, M L; Dixon, M J; Pessoa-Brandão, L; Pelletier, R; Miret, J J; Lahue, R S

    2001-01-01

    Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of approximately 15--17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast. PMID:11290713

  17. Graphite thermal expansion reference for high temperature

    NASA Technical Reports Server (NTRS)

    Gaal, P. S.

    1974-01-01

    The design requirements of the aerospace and high-temperature nuclear reactor industries necessitate reliable thermal expansion data for graphite and other carbonaceous materials. The feasibility of an acceptable reference for calibration of expansion measuring systems that operate in carbon-rich atmospheres at temperatures ranging to 2500 C is the prime subject of this work. Present-day graphite technology provides acceptable materials for stable, reproducible references, as reflected by some of the candidate materials. The repeatability for a single specimen in a given expansion measuring system was found to be plus or minus 1%, while the combined results of several tests made on a number of samples fell within a plus or minus 2.5% band.

  18. Markerless modification of trinucleotide repeat loci in BACs.

    PubMed

    Benzow, Kellie A; Koob, Michael D

    2013-01-01

    Transcription and splicing of human genes are regulated by nucleotide sequences encoded across large segments of our genome, and trinucleotide repeat expansion mutations can have both profound and subtle effects on these processes. In the course of our work to understand the impact of the Spinocerebellar Ataxia type 8 (SCA8) CTG repeat expansion on the transcription and splicing of the RNAs encoded near the SCA8 locus, we have developed a set of reagents and protocols for modifying large genomic BAC clones of this region. We describe the two-step procedure that allows us to precisely replace unexpanded trinucleotide repeats with expanded variants of these repeat sequences without leaving any exogenous sequences in the final constructs, and we discuss how this approach can be adapted to make other desired sequence changes to these genomic clones.

  19. Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region.

    PubMed

    Savolainen, V; Spichiger, R; Manen, J F

    1997-04-01

    In a previous study we examined the phylogeny of four families related to the angiosperm order Celastrales based on chloroplast rbcL 5' flanking sequences. We have added here several additional dicots, sampled from 6 of the 7 families of Celastrales sensu Cronquist and 19 putatively related genera. Based on a cladistic analysis of these DNA sequences, the order Celastrales appears polyphyletic: it is here restricted to Celastraceae (including Hippocrateaceae and Brexia) with Parnassia as sister; Aquifoliaceae plus Helwingia are included in Asteridae. Neither Salvadoraceae nor Geissolomataceae, Icacinaceae, Phellinaceae, Aextoxicaceae, Corynocarpaceae, Dichapetalaceae, Stackhousiaceae, or Goupiaceae are related to Celastrales. The usefulness of this noncoding region is discussed and the influence of the A + T content of neighboring bases on the increase of transversions is also observed as previously shown in chloroplast noncoding regions of monocots.

  20. Long non-coding RNAs in cancer metabolism.

    PubMed

    Xiao, Zhen-Dong; Zhuang, Li; Gan, Boyi

    2016-10-01

    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism.

  1. Long non-coding RNA CASC2 in human cancer.

    PubMed

    Palmieri, Giuseppe; Paliogiannis, Panagiotis; Sini, Maria Cristina; Manca, Antonella; Palomba, Grazia; Doneddu, Valentina; Tanda, Francesco; Pascale, Maria Rosa; Cossu, Antonio

    2017-03-01

    Long non-coding RNAs cover large part of the non-coding information of the human DNA, which represents more than 90% of the whole genome. They constitute a wide and complex group of molecules with more than 200 nucleotides, which generally lack an open reading frame, and are involved in various ways in the pathophysiology of cancer. Their roles in the regulation of gene expression, imprinting, transcription, and post-translational processing have been described in several types of cancer. CASC2 was discovered in 2004 in patients with endometrial carcinoma as a potential tumor suppressor. Since then, additional studies in other types of neoplasia have been carried out, and both mechanisms and interactions of CASC2 in cancer have been better elucidated. In this review, we summarize the current knowledge on the role of CASC2 in the genesis, progression, and clinical management of human cancer.

  2. Long noncoding RNAs during normal and malignant hematopoiesis

    PubMed Central

    Alvarez-Dominguez, Juan R.; Hu, Wenqian; Gromatzky, Austin A.

    2014-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies. PMID:24609766

  3. The role of chromosomal retention of noncoding RNA in meiosis.

    PubMed

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2013-12-01

    Meiosis is a process of fundamental importance for sexually reproducing eukaryotes. During meiosis, homologous chromosomes pair with each other and undergo homologous recombination, ultimately producing haploid sets of recombined chromosomes that will be inherited by the offspring. Compared with the extensive progress that has been made in understanding the molecular mechanisms underlying recombination, how homologous sequences pair with each other is still poorly understood. The diversity of the underlying mechanisms of pairing present in different organisms further increases the complexity of this problem. Involvement of meiosis-specific noncoding RNA in the pairing of homologous chromosomes has been found in the fission yeast Schizosaccharomyces pombe. Although different organisms may have developed other or additional systems that are involved in chromosome pairing, the findings in S. pombe will provide new insights into understanding the roles of noncoding RNA in meiosis.

  4. Structure and Gene-Silencing Mechanisms of Small Noncoding RNAs

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Ying; Rana, Tariq M.

    Small (19-31-nucleotides) noncoding RNAs were identified in the past 10 years for their distinct function in gene silencing. The best known gene-silencing phenomenon, RNA interference (RNAi), is triggered in a sequence-specific manner by endogenously produced or exogenously introduced small doubled-stranded RNAs. As knowledge of the structure and function of the RNAi machinery has expanded, this phenomenon has become a powerful tool for biochemical research; it has enormous potential for therapeutics. This chapter summarizes significant aspects of three major classes of small noncoding, regulatory RNAs: small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). Here, we focus on the biogenesis of these small RNAs, their structural features and coupled effectors as well as the mechanisms of each small regulatory RNA pathway which reveal fascinating ways by which gene silencing is controlled and fine-tuned at an epigenetic level.

  5. Long noncoding RNAs during normal and malignant hematopoiesis.

    PubMed

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Gromatzky, Austin A; Lodish, Harvey F

    2014-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.

  6. An inducible long noncoding RNA amplifies DNA damage signaling

    PubMed Central

    Schmitt, Adam M.; Garcia, Julia T.; Hung, Tiffany; Flynn, Ryan A.; Shen, Ying; Qu, Kun; Payumo, Alexander Y.; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K.; Attardi, Laura D.; Chang, Howard Y.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently exquisite regulation but mostly unknown functions. Here we demonstrate a role of lncRNAs in guiding organismal DNA damage response. DNA damage activates transcription of DINO (Damage Induced NOncoding) via p53. DINO is required for p53-dependent gene expression, cell cycle arrest, and apoptosis in response to DNA damage, and DINO expression suffice to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO binds to and promotes p53 protein stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampens p53 signaling and ameliorates acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks. PMID:27668660

  7. Dysregulation of non-coding RNAs in gastric cancer

    PubMed Central

    Yang, Qing; Zhang, Ren-Wen; Sui, Peng-Cheng; He, Hai-Tao; Ding, Lei

    2015-01-01

    Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC. PMID:26494954

  8. DNA methylation and triplet repeat stability: New proposals addressing actual questions on the CGG repeat of fragile X syndrome

    SciTech Connect

    Woehrle, D.; Schwemmle, S.; Steinbach, P.

    1996-08-09

    Methylation of expanded CGG repeats in the FMR1 gene may well have different consequences. One is that methylation, extending into upstream regulatory elements, could lead to gene inactivation. Another effect of methylation, which we have obtained evidence for, could be stabilization of the repeat sequence and even prevention of premutations from expansion to full mutation. The full mutation of the fragile X syndrome probably occurs in an early transitional stage of embryonic development. The substrate is a maternally inherited premutation. The product usually is a mosaic pattern of full mutations detectable in early fetal life. These full mutation patterns are mitotically stable as, for instance, different somatic tissues of full mutation fetuses show identical mutation patterns. This raised the following questions: What triggers repeat expansion in that particular stage of development and what causes subsequent mitotic stability of expanded repeats? 21 refs., 1 fig.

  9. Origin of noncoding DNA sequences: molecular fossils of genome evolution.

    PubMed

    Naora, H; Miyahara, K; Curnow, R N

    1987-09-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. We propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approximately equal to 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approximately equal to 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stop codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. We attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.

  10. Noncoding RNA Profiles in Tobacco- and Alcohol-Associated Diseases

    PubMed Central

    Soares do Amaral, Nayra; Cruz e Melo, Natalia; de Melo Maia, Beatriz; Malagoli Rocha, Rafael

    2016-01-01

    Tobacco and alcohol are the leading environmental risk factors in the development of human diseases, such as cancer, cardiovascular disease, and liver injury. Despite the copious amount of research on this topic, by 2030, 8.3 million deaths are projected to occur worldwide due to tobacco use. The expression of noncoding RNAs, primarily microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), is modulated by tobacco and alcohol consumption. Drinking alcohol and smoking cigarettes can modulate the expression of miRNAs and lncRNAs through various signaling pathways, such as apoptosis, angiogenesis, and inflammatory pathways—primarily interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3), which seems to play a major role in the development of diseases associated with these risk factors. Since they may be predictive and prognostic biomarkers, they can be used both as predictors of the response to therapy and as a targeted therapy. Further, circulating miRNAs might be valuable noninvasive tools that can be used to examine diseases that are related to the use of tobacco and alcohol. This review discusses the function of noncoding RNAs in cancer and other human tobacco- and alcohol-associated diseases. PMID:28025544

  11. The Landscape of long non-coding RNA classification

    PubMed Central

    St Laurent, Georges; Wahlestedt, Claes; Kapranov, Philipp

    2015-01-01

    Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long non-coding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the non-coding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual un-ambiguous classification framework results in a number of challenges in the annotation and interpretation of non-coding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets. PMID:25869999

  12. Long Non-Coding RNA Regulation of Reproduction and Development

    PubMed Central

    Taylor, David H.; Chu, Erin Tsi-Jia; Spektor, Roman; Soloway, Paul D.

    2016-01-01

    SUMMARY Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)—a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placenta-tion, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionary conserved processes lncRNAs are involved in. PMID:26517592

  13. Repeating the Past

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1998-05-01

    As part of the celebration of the Journal 's 75th year, we are scanning each Journal issue from 25, 50, and 74 years ago. Many of the ideas and practices described are so similar to present-day "innovations" that George Santayana's adage (1) "Those who cannot remember the past are condemned to repeat it" comes to mind. But perhaps "condemned" is too strong - sometimes it may be valuable to repeat something that was done long ago. One example comes from the earliest days of the Division of Chemical Education and of the Journal.

  14. Simple Sequence Repeats in Escherichia coli: Abundance, Distribution, Composition, and Polymorphism

    PubMed Central

    Gur-Arie, Riva; Cohen, Cyril J.; Eitan, Yuval; Shelef, Leora; Hallerman, Eric M.; Kashi, Yechezkel

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.[The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AF209020–209030 and AF209508–209518.] PMID:10645951

  15. An expanding universe of noncoding RNAs between the poles of basic science and clinical investigations.

    PubMed

    Weil, Patrick P; Hensel, Kai O; Weber, David; Postberg, Jan

    2016-03-01

    The Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer', Keystone, CO, USA, 7-12 June 2015 Since the discovery of RNAi, great efforts have been undertaken to unleash the potential biomedical applicability of small noncoding RNAs, mainly miRNAs, involving their use as biomarkers for personalized diagnostics or their usability as active agents or therapy targets. The research's focus on the noncoding RNA world is now slowly moving from a phase of basic discoveries into a new phase, where every single molecule out of many hundreds of cataloged noncoding RNAs becomes dissected in order to investigate these molecules' biomedical relevance. In addition, RNA classes neglected before, such as long noncoding RNAs or circular RNAs attract more attention. Numerous timely results and hypotheses were presented at the 2015 Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer'.

  16. Optimal Electric Utility Expansion

    SciTech Connect

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.

  17. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  18. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  19. Thermal Expansion "Paradox."

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  20. The Unstable Repeats - Three Evolving Faces of Neurological Disease

    PubMed Central

    Nelson, David L.; Orr, Harry T.; Warren, Stephen T.

    2013-01-01

    Disorders characterized by expansion of an unstable nucleotide repeat account for a number of inherited neurological diseases. Here, we review examples of unstable repeat disorders that nicely illustrate the three of the major pathogenic mechanisms associated with these diseases: loss-of-function typically by disrupting transcription of the mutated gene, RNA toxic gain-of-function, and protein toxic gain-of-function. In addition to providing insight into the mechanisms underlying these devastating neurological disorders, the study of these unstable microsatellite repeat disorders has provided insight into very basic aspects of neuroscience. PMID:23473314

  1. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell‐Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

    PubMed Central

    Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G.L.; Fletcher‐Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R.; Wade‐Martins, Richard

    2016-01-01

    Abstract An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC‐derived motor neurons, decreased cell survival is correlated with dysfunction in Ca2+ homeostasis, reduced levels of the antiapoptotic protein Bcl‐2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC‐derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063–2078 PMID:27097283

  2. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    PubMed

    Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  3. GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells

    PubMed Central

    Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602

  4. A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions

    PubMed Central

    Cheng, Jijun; Roden, Christine A.; Pan, Wen; Zhu, Shu; Baccei, Anna; Pan, Xinghua; Jiang, Tingting; Kluger, Yuval; Weissman, Sherman M.; Guo, Shangqin; Flavell, Richard A.; Ding, Ye; Lu, Jun

    2016-01-01

    Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes. PMID:27025950

  5. Widespread selection across coding and noncoding DNA in the pea aphid genome.

    PubMed

    Bickel, Ryan D; Dunham, Joseph P; Brisson, Jennifer A

    2013-06-21

    Genome-wide patterns of diversity and selection are critical measures for understanding how evolution has shaped the genome. Yet, these population genomic estimates are available for only a limited number of model organisms. Here we focus on the population genomics of the pea aphid (Acyrthosiphon pisum). The pea aphid is an emerging model system that exhibits a range of intriguing biological traits not present in classic model systems. We performed low-coverage genome resequencing of 21 clonal pea aphid lines collected from alfalfa host plants in North America to characterize genome-wide patterns of diversity and selection. We observed an excess of low-frequency polymorphisms throughout coding and noncoding DNA, which we suggest is the result of a founding event and subsequent population expansion in North America. Most gene regions showed lower levels of Tajima's D than synonymous sites, suggesting that the majority of the genome is not evolving neutrally but rather exhibits significant constraint. Furthermore, we used the pea aphid's unique manner of X-chromosome inheritance to assign genomic scaffolds to either autosomes or the X chromosome. Comparing autosomal vs. X-linked sequence variation, we discovered that autosomal genes show an excess of low frequency variants indicating that purifying selection acts more efficiently on the X chromosome. Overall, our results provide a critical first step in characterizing the genetic diversity and evolutionary pressures on an aphid genome.

  6. Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias

    PubMed Central

    Sattari, Arash; Siddiqui, Hasan; Moshiri, Farzaneh; Ngankeu, Apollinaire; Nakamura, Tatsuya; Kipps, Thomas J.; Croce, Carlo M.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are non-proten-coding transcripts of more than 200 nucleotides generated by RNA polymerase II and their expressions are tightly regulated in cell type specific- and/or cellular differential stage specific- manner. MIAT, originally isolated as a candidate gene for myocardial infarction, encodes lncRNA (termed MIAT). Here, we determined the expression level of MIAT in established leukemia/lymphoma cell lines and found its upregulation in lymphoid but not in myeloid cell lineage with mature B cell phenotype. MIAT expression level was further determined in chronic lymphocytic leukemias (CLL), characterized by expansion of leukemic cells with mature B phenotype, to demonstrate relatively high occurrence of MIAT upregulation in aggressive form of CLL carrying either 17p-deletion, 11q-deletion, or Trisomy 12 over indolent form carrying 13p-deletion. Furthermore, we show that MIAT constitutes a regulatory loop with OCT4 in malignant mature B cell, as was previously reported in mouse pulripotent stem cell, and that both molecules are essential for cell survival. PMID:27527866

  7. Isolation and characterization of human brain genes with (CCA){sub n} trinucleotide repeats

    SciTech Connect

    Longshore, J.W.; Finley, W.H.; Descartes, M.

    1994-09-01

    Expansion of trinucleotide repeats has been described as a new form of mutation. To date, only the expansion of (CGG){sub n} and (CAG){sub n} repeats have been associated with disease. Expansion of (CAG){sub n} repeats has been found to cause Huntington`s disease, Kennedy`s disease, myotonic dystrophy, spinocerebellar ataxia type 1, and dentatorubral pallidoluysian atrophy. (CGG){sub n} repeat expansion has been implicated in the fragile X syndrome and FRAXE mental retardation. In an effort to identify other potential repeats as candidates for expansion, a DNA linguistics approach was used to study 10 Mb of human DNA sequences in GenBank. Our study found the (CCA){sub n} repeat and the disease-associated (CGG){sub n} and (CAG){sub n} repeats to be over-represented in the human genome. The (CCA){sub n} repeat also shares other characteristics with (CGG){sub n} and (CAG){sub n}, making it a good candidate for expansion. Trinucleotide repeat numbers in disease-associated genes are normally polymorphic in a population. Therefore, by studying genes for polymorphisms, candidate genes may be identified. Twelve sequences previously deposited in GenBank with at least five tandem copies of (CCA) were studied and no polymorphisms were found. To identify other candidate genes, a human hippocampus cDNA library was screened with a (CCA){sub 8} probe. This approach identified 19 novel expressed sequences having long tandem (CCA){sub n} repeats which are currently under investigation for polymorphisms. Genes with polymorphic repeats may serve as markers for linkage studies or as candidate genes for genetic diseases showing anticipation.

  8. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR.

    PubMed

    Li, Peijin; Tao, Zhen; Dean, Caroline

    2015-04-01

    The extent to which natural polymorphisms in noncoding sequences have functional consequences is still unknown. A large proportion of the natural variation in flowering in Arabidopsis thaliana accessions is due to noncoding cis polymorphisms that define distinct haplotypes of FLOWERING LOCUS C (FLC). Here, we show that a single natural intronic polymorphism in one haplotype affects FLC expression and thus flowering by specifically changing splicing of the FLC antisense transcript COOLAIR. Altered antisense splicing increases FLC expression via a cotranscriptional mechanism involving capping of the FLC nascent transcript. Single noncoding polymorphisms can therefore be a major contributor to phenotypic evolution through modulation of noncoding transcripts.

  9. Regulation of mammalian cell differentiation by long non-coding RNAs.

    PubMed

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-11-06

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development.

  10. SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.

    PubMed

    Kerrest, Alix; Anand, Ranjith P; Sundararajan, Rangapriya; Bermejo, Rodrigo; Liberi, Giordano; Dujon, Bernard; Freudenreich, Catherine H; Richard, Guy-Franck

    2009-02-01

    Several molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Delta cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Delta cells. In sgs1Delta cells, CTG repeats undergo contractions and increased fragility by a mechanism partially dependent on RAD52 and RAD51. Analysis of replication intermediates revealed abundant joint molecules at the CTG repeats during S phase. These molecules migrate similarly to reversed replication forks, and their presence is dependent on SRS2 and SGS1 but not RAD51. Our results suggest that Srs2 promotes fork reversal in repetitive sequences, preventing repeat instability and fragility. In the absence of Srs2 or Sgs1, DNA damage accumulates and is processed by homologous recombination, triggering repeat rearrangements.

  11. Epigenetics and Triplet-Repeat Neurological Diseases

    PubMed Central

    Nageshwaran, Sathiji; Festenstein, Richard

    2015-01-01

    The term “junk DNA” has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases. PMID:26733936

  12. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    PubMed

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.

  13. Long noncoding RNAs and Alzheimer’s disease

    PubMed Central

    Luo, Qiong; Chen, Yinghui

    2016-01-01

    Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides. lncRNAs can regulate gene expression at epigenetic, transcriptional, and posttranscriptional levels. Recent studies have shown that lncRNAs are involved in many neurological diseases such as epilepsy, neurodegenerative conditions, and genetic disorders. Alzheimer’s disease is a neurodegenerative disease, which accounts for >80% of dementia in elderly subjects. In this review, we will highlight recent studies investigating the role of lncRNAs in Alzheimer’s disease and focus on some specific lncRNAs that may underlie Alzheimer’s disease pathophysiology and therefore could be potential therapeutic targets. PMID:27418812

  14. UpSETing chromatin during non-coding RNA production

    PubMed Central

    2013-01-01

    The packaging of eukaryotic DNA into nucleosomal arrays permits cells to tightly regulate and fine-tune gene expression. The ordered disassembly and reassembly of these nucleosomes allows RNA polymerase II (RNAPII) conditional access to the underlying DNA sequences. Disruption of nucleosome reassembly following RNAPII passage results in spurious transcription initiation events, leading to the production of non-coding RNA (ncRNA). We review the molecular mechanisms involved in the suppression of these cryptic initiation events and discuss the role played by ncRNAs in regulating gene expression. PMID:23738864

  15. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions

    PubMed Central

    Nolte-’t Hoen, Esther N. M.; Buermans, Henk P. J.; Waasdorp, Maaike; Stoorvogel, Willem; Wauben, Marca H. M.; ’t Hoen, Peter A. C.

    2012-01-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used array analysis to establish the presence of microRNAs and mRNA in cell-derived vesicles from many sources. Here, we used an unbiased approach by deep sequencing of small RNA released by immune cells. We found a large variety of small non-coding RNA species representing pervasive transcripts or RNA cleavage products overlapping with protein coding regions, repeat sequences or structural RNAs. Many of these RNAs were enriched relative to cellular RNA, indicating that cells destine specific RNAs for extracellular release. Among the most abundant small RNAs in shuttle RNA were sequences derived from vault RNA, Y-RNA and specific tRNAs. Many of the highly abundant small non-coding transcripts in shuttle RNA are evolutionary well-conserved and have previously been associated to gene regulatory functions. These findings allude to a wider range of biological effects that could be mediated by shuttle RNA than previously expected. Moreover, the data present leads for unraveling how cells modify the function of other cells via transfer of specific non-coding RNA species. PMID:22821563

  16. Analysis of a very large trinucleotide repeat in a patient with juvenile Huntington's disease.

    PubMed

    Nance, M A; Mathias-Hagen, V; Breningstall, G; Wick, M J; McGlennen, R C

    1999-01-15

    A patient with juvenile Huntington's disease (HD) of probable maternal inheritance is reported. The expanded IT-15 allele was only detected with the use of modified PCR and Southern transfer techniques, which showed a CAG trinucleotide repeat expansion of approximately 250 repeats-the largest CAG expansion reported within the huntingtin gene. This case emphasizes the need for communication between the diagnostic laboratory and the clinician to define the molecular genetics of unusual cases.

  17. Kcnq1ot1/Lit1 Noncoding RNA Mediates Transcriptional Silencing by Targeting to the Perinucleolar Region ▿ †

    PubMed Central

    Mohammad, Faizaan; Pandey, Radha Raman; Nagano, Takashi; Chakalova, Lyubomira; Mondal, Tanmoy; Fraser, Peter; Kanduri, Chandrasekhar

    2008-01-01

    The Kcnq1ot1 antisense noncoding RNA has been implicated in long-range bidirectional silencing, but the underlying mechanisms remain enigmatic. Here we characterize a domain at the 5′ end of the Kcnq1ot1 RNA that carries out transcriptional silencing of linked genes using an episomal vector system. The bidirectional silencing property of Kcnq1ot1 maps to a highly conserved repeat motif within the silencing domain, which directs transcriptional silencing by interaction with chromatin, resulting in histone H3 lysine 9 trimethylation. Intriguingly, the silencing domain is also required to target the episomal vector to the perinucleolar compartment during mid-S phase. Collectively, our data unfold a novel mechanism by which an antisense RNA mediates transcriptional gene silencing of chromosomal domains by targeting them to distinct nuclear compartments known to be rich in heterochromatic machinery. PMID:18299392

  18. Defining Genetic Factors That Modulate Intergenerational CAG Repeat Instability in Drosophila melanogaster

    PubMed Central

    Jung, Joonil; van Jaarsveld, Marijn T. M.; Shieh, Shin-Yi; Xu, Kexiang; Bonini, Nancy M.

    2011-01-01

    Trinucleotide repeat instability underlies >20 human hereditary disorders. These diseases include many neurological and neurodegenerative situations, such as those caused by pathogenic polyglutamine (polyQ) domains encoded by expanded CAG repeats. Although mechanisms of instability have been intensely studied, our knowledge remains limited in part due to the lack of unbiased genome-wide screens in multicellular eukaryotes. Drosophila melanogaster displays triplet repeat instability with features that recapitulate repeat instability seen in patients with disease. Here we report an enhanced fly model with substantial instability based on a noncoding 270 CAG (UAS–CAG270) repeat construct under control of a germline-specific promoter. We find that expression of pathogenic polyQ protein modulates repeat instability of CAG270 in trans, indicating that pathogenic-length polyQ proteins may globally modulate repeat instability in the genome in vivo. We further performed an unbiased genetic screen for novel modifiers of instability. These studies indicate that different aspects of repeat instability are under independent genetic control, and identify CG15262, a protein with a NOT2/3/5 conserved domain, as a modifier of CAG repeat instability in vivo. PMID:21041558

  19. Transcription of Satellite III non-coding RNAs is a general stress response in human cells

    PubMed Central

    Valgardsdottir, Rut; Chiodi, Ilaria; Giordano, Manuela; Rossi, Antonio; Bazzini, Silvia; Ghigna, Claudia; Riva, Silvano; Biamonti, Giuseppe

    2008-01-01

    In heat-shocked human cells, heat shock factor 1 activates transcription of tandem arrays of repetitive Satellite III (SatIII) DNA in pericentromeric heterochromatin. Satellite III RNAs remain associated with sites of transcription in nuclear stress bodies (nSBs). Here we use real-time RT-PCR to study the expression of these genomic regions. Transcription is highly asymmetrical and most of the transcripts contain the G-rich strand of the repeat. A low level of G-rich RNAs is detectable in unstressed cells and a 104-fold induction occurs after heat shock. G-rich RNAs are induced by a wide range of stress treatments including heavy metals, UV-C, oxidative and hyper-osmotic stress. Differences exist among stressing agents both for the kinetics and the extent of induction (>100- to 80.000-fold). In all cases, G-rich transcripts are associated with nSBs. On the contrary, C-rich transcripts are almost undetectable in unstressed cells and modestly increase after stress. Production of SatIII RNAs after hyper-osmotic stress depends on the Tonicity Element Binding Protein indicating that activation of the arrays is triggered by different transcription factors. This is the first example of a non-coding RNA whose transcription is controlled by different transcription factors under different growth conditions. PMID:18039709

  20. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity

    PubMed Central

    Smalheiser, Neil R.

    2014-01-01

    If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition. PMID:25135965

  1. The Long Noncoding RNA SPRIGHTLY Regulates Cell Proliferation in Primary Human Melanocytes.

    PubMed

    Zhao, Wei; Mazar, Joseph; Lee, Bongyong; Sawada, Junko; Li, Jian-Liang; Shelley, John; Govindarajan, Subramaniam; Towler, Dwight; Mattick, John S; Komatsu, Masanobu; Dinger, Marcel E; Perera, Ranjan J

    2016-04-01

    The long noncoding RNA SPRIGHTLY (formerly SPRY4-IT1), which lies within the intronic region of the SPRY4 gene, is up-regulated in human melanoma cells compared to melanocytes. SPRIGHTLY regulates a number of cancer hallmarks, including proliferation, motility, and apoptosis. To better understand its oncogenic role, SPRIGHTLY was stably transfected into human melanocytes, which resulted in increased cellular proliferation, colony formation, invasion, and development of a multinucleated dendritic-like phenotype. RNA sequencing and mass spectrometric analysis of SPRIGHTLY-expressing cells revealed changes in the expression of genes involved in cell proliferation, apoptosis, chromosome organization, regulation of DNA damage responses, and cell cycle. The proliferation marker Ki67, minichromosome maintenance genes 2-5, antiapoptotic gene X-linked inhibitor of apoptosis, and baculoviral IAP repeat-containing 7 were all up-regulated in SPRIGHTLY-expressing melanocytes, whereas the proapoptotic tumor suppressor gene DPPIV/CD26 was down-regulated, followed by an increase in extracellular signal-regulated kinase 1/2 phosphorylation, suggesting an increase in mitogen-activated protein kinase activity. Because down-regulation of DPPIV is known to be associated with malignant transformation in melanocytes, SPRIGHTLY-mediated DPPIV down-regulation may play an important role in melanoma pathobiology. Together, these findings provide important insights into how SPRIGHTLY regulates cell proliferation and anchorage-independent colony formation in primary human melanocytes.

  2. Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes

    PubMed Central

    Kannan, Sivakumar; Chernikova, Diana; Rogozin, Igor B.; Poliakov, Eugenia; Managadze, David; Koonin, Eugene V.; Milanesi, Luciano

    2015-01-01

    Transposable elements (TEs) are abundant in mammalian genomes and appear to have contributed to the evolution of their hosts by providing novel regulatory or coding sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA) genes in human and mouse genomes to systematically assess the potential contribution of TEs to the evolution of the structure and regulation of expression of lincRNA genes. Introns of lincRNA genes contain the highest percentage of TE-derived sequences (TES), followed by exons and then promoter regions although the density of TEs is not significantly different between exons and promoters. Higher frequencies of ancient TEs in promoters and exons compared to introns implies that many lincRNA genes emerged before the split of primates and rodents. The content of TES in lincRNA genes is substantially higher than that in protein-coding genes, especially in exons and promoter regions. A significant positive correlation was detected between the content of TEs and evolutionary rate of lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. These results are consistent with the repeat insertion domains of LncRNAs hypothesis under which TEs have substantially contributed to the origin, evolution, and, in particular, fast functional diversification, of lincRNA genes. PMID:26106594

  3. The great human expansion.

    PubMed

    Henn, Brenna M; Cavalli-Sforza, L L; Feldman, Marcus W

    2012-10-30

    Genetic and paleoanthropological evidence is in accord that today's human population is the result of a great demic (demographic and geographic) expansion that began approximately 45,000 to 60,000 y ago in Africa and rapidly resulted in human occupation of almost all of the Earth's habitable regions. Genomic data from contemporary humans suggest that this expansion was accompanied by a continuous loss of genetic diversity, a result of what is called the "serial founder effect." In addition to genomic data, the serial founder effect model is now supported by the genetics of human parasites, morphology, and linguistics. This particular population history gave rise to the two defining features of genetic variation in humans: genomes from the substructured populations of Africa retain an exceptional number of unique variants, and there is a dramatic reduction in genetic diversity within populations living outside of Africa. These two patterns are relevant for medical genetic studies mapping genotypes to phenotypes and for inferring the power of natural selection in human history. It should be appreciated that the initial expansion and subsequent serial founder effect were determined by demographic and sociocultural factors associated with hunter-gatherer populations. How do we reconcile this major demic expansion with the population stability that followed for thousands years until the inventions of agriculture? We review advances in understanding the genetic diversity within Africa and the great human expansion out of Africa and offer hypotheses that can help to establish a more synthetic view of modern human evolution.

  4. Virial Expansion Bounds

    NASA Astrophysics Data System (ADS)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  5. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  6. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  7. Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae.

    PubMed

    Dhar, Alok; Lahue, Robert S

    2008-06-01

    Expansions of trinucleotide repeats cause at least 15 heritable human diseases. Single-stranded triplet repeat DNA in vitro forms stable hairpins in a sequence-dependent manner that correlates with expansion risk in vivo. Hairpins are therefore considered likely intermediates during the expansion process. Unwinding of a hairpin by a DNA helicase would help protect against expansions. Yeast Srs2, but not the RecQ homolog Sgs1, blocks expansions in vivo in a manner largely dependent on its helicase function. The current study tested the idea that Srs2 would be faster at unwinding DNA substrates with an extrahelical triplet repeat hairpin embedded in a duplex context. These substrates should mimic the relevant intermediate structure thought to occur in vivo. Srs2 was faster than Sgs1 at unwinding several substrates containing triplet repeat hairpins or another structured loop. In contrast, control substrates with an unstructured loop or a Watson-Crick duplex were unwound equally well by both enzymes. Results with a fluorescently labeled, three-way junction showed that Srs2 unwinding proceeds unabated through extrahelical triplet repeats. In summary, Srs2 maintains its facile unwinding of triplet repeat hairpins embedded within duplex DNA, supporting the genetic evidence that Srs2 is a key helicase in Saccharomyces cerevisiae for preventing expansions.

  8. Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells

    PubMed Central

    Ohms, Stephen; Rangasamy, Danny

    2014-01-01

    Noncoding RNAs are key players in the maintenance of genomic integrity, particularly in silencing the expression of repetitive elements, some of which are retrotransposable and capable of causing genomic instability. Recent computational studies suggest an association between L1 expression and the generation of small RNAs. However, whether L1 expression has a role in the activation of small RNA expression has yet to be determined experimentally.; Here we report a global analysis of small RNAs in deep sequencing from L1-active and L1-silenced breast cancer cells. We found that cells in which L1 expression was silenced exhibited greatly increased expression of a number of miRNAs and in particular, members of the let-7 family. In addition, we found differential expression of a few piRNAs that might potentially regulate gene expression. We also report the identification of several repeat RNAs against LTRs, LINEs and SINE elements. Although most of the repeat RNAs mapped to L1 elements, in general we found no significant differences in the expression levels of repeat RNAs in the presence or absence of L1 expression except for a few RNAs targeting subclasses of L1 elements. These differentially expressed small RNAs may function in human genome defence responses. PMID:24980824

  9. Structure Prediction: New Insights into Decrypting Long Noncoding RNAs

    PubMed Central

    Yan, Kun; Arfat, Yasir; Li, Dijie; Zhao, Fan; Chen, Zhihao; Yin, Chong; Sun, Yulong; Hu, Lifang; Yang, Tuanmin; Qian, Airong

    2016-01-01

    Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological functions such as dosage compensation, chromatin regulation, genomic imprinting, and nuclear organization. However, understanding the wide range of functions of lncRNAs related to various processes of cellular networks remains a great experimental challenge. Structural versatility is critical for RNAs to perform various functions and provides new insights into probing the functions of lncRNAs. In recent years, the computational method of RNA structure prediction has been developed to analyze the structure of lncRNAs. This novel methodology has provided basic but indispensable information for the rapid, large-scale and in-depth research of lncRNAs. This review focuses on mainstream RNA structure prediction methods at the secondary and tertiary levels to offer an additional approach to investigating the functions of lncRNAs. PMID:26805815

  10. Functional interactions among microRNAs and long noncoding RNAs

    PubMed Central

    Yoon, Je-Hyun; Abdelmohsen, Kotb; Gorospe, Myriam

    2014-01-01

    In mammals, the vast majority of transcripts expressed are noncoding RNAs, ranging from short RNAs (including microRNAs) to long RNAs spanning up to hundreds of kb. While the actions of microRNAs as destabilizers and repressors of the translation of protein-coding transcripts (mRNAs) have been studied in detail, the influence of microRNAs on long noncoding RNA (lncRNA) function is only now coming into view. Conversely, the influence of lncRNAs upon microRNA function is also rapidly emerging. In some cases, lncRNA stability is reduced through the interaction of specific miRNAs. In other cases, lncRNAs can act as microRNA decoys, with the sequestration of microRNAs favoring expression of repressed target mRNAs. Other lncRNAs derepress gene expression by competing with miRNAs for interaction with shared target mRNAs. Finally, some lncRNAs can produce miRNAs, leading to repression of target mRNAs. These microRNA-lncRNA regulatory paradigms modulate gene expression patterns that drive major cellular processes (such as cell differentiation, proliferation, and cell death) which are central to mammalian physiologic and pathologic processes. We review and summarize the types of microRNA-lncRNA crosstalk identified to-date and discuss their influence on gene expression programs. PMID:24965208

  11. Peptides Used in the Delivery of Small Noncoding RNA

    PubMed Central

    2015-01-01

    RNA interference (RNAi) is an endogenous process in which small noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), post-transcriptionally regulate gene expressions. In general, siRNA and miRNA/miRNA mimics are similar in nature and activity except their origin and specificity. Although both siRNAs and miRNAs have been extensively studied as novel therapeutics for a wide range of diseases, the large molecular weight, anionic surface charges, instability in blood circulation, and intracellular trafficking to the RISC after cellular uptake have hindered the translation of these RNAs from bench to clinic. As a result, a great variety of delivery systems have been investigated for safe and effective delivery of small noncoding RNAs. Among these systems, peptides, especially cationic peptides, have emerged as a promising type of carrier due to their inherent ability to condense negatively charged RNAs, ease of synthesis, controllable size, and tunable structure. In this review, we will focus on three major types of cationic peptides, including poly(l-lysine) (PLL), protamine, and cell penetrating peptides (CPP), as well as peptide targeting ligands that have been extensively used in RNA delivery. The delivery strategies, applications, and limitations of these cationic peptides in siRNA/miRNA delivery will be discussed. PMID:25157701

  12. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation.

    PubMed

    Gendrel, Anne-Valerie; Heard, Edith

    2014-01-01

    In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.

  13. Long noncoding RNAs in prostate cancer: overview and clinical implications

    PubMed Central

    Malik, Bhavna; Feng, Felix Y

    2016-01-01

    Prostate cancer is the second most common cause of cancer mortality among men in the United States. While many prostate cancers are indolent, an important subset of patients experiences disease recurrence after conventional therapy and progresses to castration-resistant prostate cancer (CRPC), which is currently incurable. Thus, there is a critical need to identify biomarkers that will distinguish indolent from aggressive disease, as well as novel therapeutic targets for the prevention or treatment of CRPC. In recent years, long noncoding RNAs (lncRNAs) have emerged as an important class of biological molecules. LncRNAs are polyadenylated RNA species that share many similarities with protein-coding genes despite the fact that they are noncoding (not translated into proteins). They are usually transcribed by RNA polymerase II and exhibit the same epigenetic signatures as protein-coding genes. LncRNAs have also been implicated in the development and progression of variety of cancers, including prostate cancer. While a large number of lncRNAs exhibit tissue- and cancer-specific expression, their utility as diagnostic and prognostic biomarkers is just starting to be explored. In this review, we highlight recent findings on the functional role and molecular mechanisms of lncRNAs in the progression of prostate cancer and evaluate their use as potential biomarkers and therapeutic targets. PMID:27072044

  14. IRNdb: the database of immunologically relevant non-coding RNAs

    PubMed Central

    Denisenko, Elena; Ho, Daniel; Tamgue, Ousman; Ozturk, Mumin; Suzuki, Harukazu; Brombacher, Frank; Guler, Reto; Schmeier, Sebastian

    2016-01-01

    MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs) and other functional non-coding RNAs (ncRNAs) have emerged as pivotal regulators involved in multiple biological processes. Recently, ncRNA control of gene expression has been identified as a critical regulatory mechanism in the immune system. Despite the great efforts made to discover and characterize ncRNAs, the functional role for most remains unknown. To facilitate discoveries in ncRNA regulation of immune system-related processes, we developed the database of immunologically relevant ncRNAs and target genes (IRNdb). We integrated mouse data on predicted and experimentally supported ncRNA-target interactions, ncRNA and gene annotations, biological pathways and processes and experimental data in a uniform format with a user-friendly web interface. The current version of IRNdb documents 12 930 experimentally supported miRNA-target interactions between 724 miRNAs and 2427 immune-related mouse targets. In addition, we recorded 22 453 lncRNA-immune target and 377 PIWI-interacting RNA-immune target interactions. IRNdb is a comprehensive searchable data repository which will be of help in studying the role of ncRNAs in the immune system. Database URL: http://irndb.org

  15. Non-coding RNAs: the architects of eukaryotic complexity.

    PubMed

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  16. A role for non-coding variation in schizophrenia

    PubMed Central

    Roussos, Panos; Mitchell, Amanda C.; Voloudakis, Georgios; Fullard, John F.; Pothula, Venu M.; Tsang, Jonathan; Stahl, Eli A.; Georgakopoulos, Anastasios; Ruderfer, Douglas M.; Charney, Alexander; Okada, Yukinori; Siminovitch, Katherine A.; Worthington, Jane; Padyukov, Leonid; Klareskog, Lars; Gregersen, Peter K.; Plenge, Robert M.; Raychaudhuri, Soumya; Fromer, Menachem; Purcell, Shaun M.; Brennand, Kristen J.; Robakis, Nikolaos K.; Schadt, Eric E.; Akbarian, Schahram; Sklar, Pamela

    2014-01-01

    SUMMARY A large portion of common variant loci associated with genetic risk for schizophrenia reside within non-coding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on co-localization of a risk SNP, eQTL and regulatory element sequence. We identified potential physical interactions of non-contiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated non-coding SNPs and 3-dimensional genome architecture associated with chromosomal loopings and transcriptional regulation in the brain. PMID:25453756

  17. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia.

    PubMed

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong

    2017-01-01

    Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses.

  18. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia

    PubMed Central

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong

    2017-01-01

    Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses. PMID:28217082

  19. Transcription and activation under environmental stress of the complex telomeric repeats of Chironomus thummi.

    PubMed

    Martínez-Guitarte, J L; Díez, J L; Morcillo, G

    2008-01-01

    In contrast to their traditional role, telomeres seem to behave as transcriptionally active regions. RNAs complementary to the short DNA repeats characteristic of telomerase-maintained telomeres have recently been identified in various mammalian cell lines, representing a new and unexpected element in telomere architecture. Here, we report the existence of transcripts complementary to telomeric sequences characteristic of Chironomus thummi telomeres. As in other Diptera, the non-canonical telomeres of chironomids lack the simple telomerase repeats and have instead more complex repetitive sequences. Northern blots of total RNA hybridized with telomere probes and RT-PCR with telomere-specific tailed primers confirm the existence of small non-coding RNAs of around 200 bp, the size of the DNA repeated telomeric unit. Telomere transcripts are heterogeneous in length, and they appear as a ladder pattern that probably corresponds to multimers of the repeat. Moreover, telomeres are activated under conditions of environmental stress, such as heat shock, appearing highly decondensed and densely labelled with acetylated H4 histone, as well as with RNA polymerase II antibodies, both marks of transcriptional activity. Changes in the expression levels of telomeric RNA were detected after heat shock. These findings provide evidence that transcriptional activity of the repetitive telomere sequences is an evolutionarily conserved feature, not limited to telomerase telomeres. The functional significance of this non-coding RNA as a new additional element in the context of telomere biology remains to be explained.

  20. Stable CoT-1 repeat RNA is abundant and associated with euchromatic interphase chromosomes

    PubMed Central

    Hall, Lisa L.; Carone, Dawn M.; Gomez, Alvin; Kolpa, Heather J.; Byron, Meg; Mehta, Nitish; Fackelmayer, Frank O.; Lawrence, Jeanne B.

    2014-01-01

    SUMMARY Recent studies recognize a vast diversity of non-coding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using CoT-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (“CoT-1 RNA”), including LINE-1. CoT-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis, and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The CoT-1 RNA territory resists mechanical disruption and fractionates with the non-chromatin scaffold, but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. CoT-1 RNA has several properties similar to XIST chromosomal RNA, but is excluded from chromatin condensed by XIST. These findings impact two “black boxes” of genome science: the poorly understood diversity of non-coding RNA and the unexplained abundance of repetitive elements. PMID:24581492

  1. Expression profiling and functional annotation of noncoding genes across 11 distinct organs in rat development

    PubMed Central

    Wen, Zhuo; Chen, Geng; Zhu, Sibo; Zhu, Jinhang; Li, Bin; Song, Yunjie; Li, Suqing; Shi, Leming; Zheng, Yuanting; Li, Menglong

    2016-01-01

    Accumulating evidence suggests that noncoding RNAs (ncRNAs) have important regulatory functions. However, lacking of functional annotations for ncRNAs hampered us from carrying out the subsequent functional or predictive research. Here we dissected the expression profiles of 3,458 rat noncoding genes using rat bodymap RNA-sequencing data consisting of 11 solid organs over four developmental stages (juvenile, adolescent, adult and aged) from both sexes, and conducted a comprehensive analysis of differentially expressed noncoding genes (DEnGs) between various conditions. We then constructed a co-expression network between protein-coding and noncoding genes to infer biological functions of noncoding genes. Modules of interest were linked to online databases including DAVID for functional annotation and pathway analysis. Our results indicated that noncoding genes are functionally enriched through pathways similar to those of protein-coding genes. Terms about development of the immune system were enriched with genes from age-related modules, whereas terms about sexual reproduction were enriched with genes in sex-related modules. We also built connection networks on some significant modules to visualize the interactions and regulatory relationship between protein-coding and noncoding genes. Our study could improve our understanding and facilitate a deeper investigation on organ/age/sex-related regulatory events of noncoding genes, which may lead to a superior preclinical model for drug development and translational medicine. PMID:27934932

  2. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes

    PubMed Central

    Richard, Guy-Franck; Kerrest, Alix; Dujon, Bernard

    2008-01-01

    Summary: Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, “tandem repeats” and “dispersed repeats.” Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences. PMID:19052325

  3. Homoiterons and expansion in ribosomal RNAs

    PubMed Central

    Parker, Michael S.; Sallee, Floyd R.; Park, Edwards A.; Parker, Steven L.

    2015-01-01

    Ribosomal RNAs in both prokaryotes and eukaryotes feature numerous repeats of three or more nucleotides with the same nucleobase (homoiterons). In prokaryotes these repeats are much more frequent in thermophile compared to mesophile or psychrophile species, and have similar frequency in both large RNAs. These features point to use of prokaryotic homoiterons in stabilization of both ribosomal subunits. The two large RNAs of eukaryotic cytoplasmic ribosomes have expanded to a different degree across the evolutionary ladder. The big RNA of the larger subunit (60S LSU) evolved expansion segments of up to 2400 nucleotides, and the smaller subunit (40S SSU) RNA acquired expansion segments of not more than 700 nucleotides. In the examined eukaryotes abundance of rRNA homoiterons generally follows size and nucleotide bias of the expansion segments, and increases with GC content and especially with phylogenetic rank. Both the nucleotide bias and frequency of homoiterons are much larger in metazoan and angiosperm LSU compared to the respective SSU RNAs. This is especially pronounced in the tetrapod vertebrates and seems to culminate in the hominid mammals. The stability of secondary structure in polyribonucleotides would significantly connect to GC content, and should also relate to G and C homoiteron content. RNA modeling points to considerable presence of homoiteron-rich double-stranded segments especially in vertebrate LSU RNAs, and homoiterons with four or more nucleotides in the vertebrate and angiosperm LSU RNAs are largely confined to the expansion segments. These features could mainly relate to protein export function and attachment of LSU to endoplasmic reticulum and other subcellular networks. PMID:26636029

  4. Homoiterons and expansion in ribosomal RNAs.

    PubMed

    Parker, Michael S; Sallee, Floyd R; Park, Edwards A; Parker, Steven L

    2015-01-01

    Ribosomal RNAs in both prokaryotes and eukaryotes feature numerous repeats of three or more nucleotides with the same nucleobase (homoiterons). In prokaryotes these repeats are much more frequent in thermophile compared to mesophile or psychrophile species, and have similar frequency in both large RNAs. These features point to use of prokaryotic homoiterons in stabilization of both ribosomal subunits. The two large RNAs of eukaryotic cytoplasmic ribosomes have expanded to a different degree across the evolutionary ladder. The big RNA of the larger subunit (60S LSU) evolved expansion segments of up to 2400 nucleotides, and the smaller subunit (40S SSU) RNA acquired expansion segments of not more than 700 nucleotides. In the examined eukaryotes abundance of rRNA homoiterons generally follows size and nucleotide bias of the expansion segments, and increases with GC content and especially with phylogenetic rank. Both the nucleotide bias and frequency of homoiterons are much larger in metazoan and angiosperm LSU compared to the respective SSU RNAs. This is especially pronounced in the tetrapod vertebrates and seems to culminate in the hominid mammals. The stability of secondary structure in polyribonucleotides would significantly connect to GC content, and should also relate to G and C homoiteron content. RNA modeling points to considerable presence of homoiteron-rich double-stranded segments especially in vertebrate LSU RNAs, and homoiterons with four or more nucleotides in the vertebrate and angiosperm LSU RNAs are largely confined to the expansion segments. These features could mainly relate to protein export function and attachment of LSU to endoplasmic reticulum and other subcellular networks.

  5. AUTO-EXPANSIVE FLOW

    EPA Science Inventory

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  6. Static gas expansion cooler

    DOEpatents

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  7. Expansion of Pannes

    EPA Science Inventory

    For the Long Island, New Jersey, and southern New England region, one facet of marsh drowning as a result of accelerated sea level rise is the expansion of salt marsh ponds and pannes. Over the past century, marsh ponds and pannes have formed and expanded in areas of poor drainag...

  8. A Special Trinomial Expansion

    ERIC Educational Resources Information Center

    Ayoub, Ayoub B.

    2006-01-01

    In this article, the author takes up the special trinomial (1 + x + x[squared])[superscript n] and shows that the coefficients of its expansion are entries of a Pascal-like triangle. He also shows how to calculate these entries recursively and explicitly. This article could be used in the classroom for enrichment. (Contains 1 table.)

  9. Urban Expansion Study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Under an Egyptian government contract, PADCO studies urban growth in the Nile Area. They were assisted by LANDSAT survey maps and measurements provided by TAC. TAC had classified the raw LANDSAT data and processed it into various categories to detail urban expansion. PADCO crews spot checked the results, and correlations were established.

  10. Definition and annotation of (myco)bacterial non-coding RNA.

    PubMed

    Lamichhane, Gyanu; Arnvig, Kristine B; McDonough, Kathleen A

    2013-01-01

    RNA in bacteria may be broadly classified into coding and non-coding types. The prior, also known as messenger RNA, encode proteins as their final product. The non-coding RNA include all RNAs that are not translated into a protein. Examples of extensively studied and therefore prominent non-coding RNAs include rRNA, tRNA, tmRNA, whose designations reflect the functions performed by these RNAs. Discoveries of non-coding RNAs in mycobacteria have been reported in the recent years. At this early stage of this discipline of mycobacterial research, there is an opportunity for the scientific community to establish a consistent, systematic and objective approach to annotation of these RNAs. We are providing recommendations for this systematic annotation that we hope will be adopted by the mycobacterial research community. These may also serve as templates for annotation of non-coding RNAs in other bacteria.

  11. Always look on both sides: Phylogenetic information conveyed by simple sequence repeat allele sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily,...

  12. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington’s Disease Knock-In Mice

    PubMed Central

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R.; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C.; Pinto, Ricardo Mouro

    2017-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. PMID:27913616

  13. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice.

    PubMed

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro

    2017-02-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability.

  14. Case of maternally transmitted juvenile Huntington's disease with a very large trinucleotide repeat.

    PubMed

    Papapetropoulos, Spiridon; Lopez-Alberola, Roberto; Baumbach, Lisa; Russell, Angela; Gonzalez, Manuel A; Bowen, Brian C; Singer, Carlos

    2005-10-01

    We describe and present a video of a patient with maternally inherited juvenile Huntington's disease (HD) caused by a very large (108-repeat) expansion. Maternally transmitted very large trinucleotide repeats (>100) are extremely rare in juvenile HD and may represent instability during female gametogenesis.

  15. The great human expansion

    PubMed Central

    Henn, Brenna M.; Cavalli-Sforza, L. L.; Feldman, Marcus W.

    2012-01-01

    Genetic and paleoanthropological evidence is in accord that today’s human population is the result of a great demic (demographic and geographic) expansion that began approximately 45,000 to 60,000 y ago in Africa and rapidly resulted in human occupation of almost all of the Earth’s habitable regions. Genomic data from contemporary humans suggest that this expansion was accompanied by a continuous loss of genetic diversity, a result of what is called the “serial founder effect.” In addition to genomic data, the serial founder effect model is now supported by the genetics of human parasites, morphology, and linguistics. This particular population history gave rise to the two defining features of genetic variation in humans: genomes from the substructured populations of Africa retain an exceptional number of unique variants, and there is a dramatic reduction in genetic diversity within populations living outside of Africa. These two patterns are relevant for medical genetic studies mapping genotypes to phenotypes and for inferring the power of natural selection in human history. It should be appreciated that the initial expansion and subsequent serial founder effect were determined by demographic and sociocultural factors associated with hunter-gatherer populations. How do we reconcile this major demic expansion with the population stability that followed for thousands years until the inventions of agriculture? We review advances in understanding the genetic diversity within Africa and the great human expansion out of Africa and offer hypotheses that can help to establish a more synthetic view of modern human evolution. PMID:23077256

  16. On the formation of nucleosomes within the FMR1 trinucleotide repeat

    SciTech Connect

    Metzenberg, S.

    1996-07-01

    Zhong et al. presented an intriguing analysis both of the AGG trinucleotides interspersed in the CGG/CCG triplet repeats of the FMR1 gene and of the effect that they may have no trinucleotide-repeat expansion. They suggested that pure FMR1 triplet repeats >50 repeats in length might efficiently form nucleosomes, promoting trinucleotide-repeat expansion through strand slippage or a pause during DNA replication. Several recent papers suggest, however, that the free energy of nucleosome formation on DNA consisting of only guanylate and cytidylate nucleotides is extremely unfavorable, because of the inflexibility of the DNA. Expanded CGG/CCG trinucleotide repeats may therefore repress rather than encourage nucleosome formation, and the DNA decondensation and {open_quotes}fragile{close_quotes} chromosome aberration may be a direct consequence of the thermodynamics of DNA bending. 6 refs., 1 fig.

  17. NONCODEv4: exploring the world of long non-coding RNA genes

    PubMed Central

    Xie, Chaoyong; Yuan, Jiao; Li, Hui; Li, Ming; Zhao, Guoguang; Bu, Dechao; Zhu, Weimin; Wu, Wei; Chen, Runsheng; Zhao, Yi

    2014-01-01

    NONCODE (http://www.bioinfo.org/noncode/) is an integrated knowledge database dedicated to non-coding RNAs (excluding tRNAs and rRNAs). Non-coding RNAs (ncRNAs) have been implied in diseases and identified to play important roles in various biological processes. Since NONCODE version 3.0 was released 2 years ago, discovery of novel ncRNAs has been promoted by high-throughput RNA sequencing (RNA-Seq). In this update of NONCODE, we expand the ncRNA data set by collection of newly identified ncRNAs from literature published in the last 2 years and integration of the latest version of RefSeq and Ensembl. Particularly, the number of long non-coding RNA (lncRNA) has increased sharply from 73 327 to 210 831. Owing to similar alternative splicing pattern to mRNAs, the concept of lncRNA genes was put forward to help systematic understanding of lncRNAs. The 56 018 and 46 475 lncRNA genes were generated from 95 135 and 67 628 lncRNAs for human and mouse, respectively. Additionally, we present expression profile of lncRNA genes by graphs based on public RNA-seq data for human and mouse, as well as predict functions of these lncRNA genes. The improvements brought to the database also include an incorporation of an ID conversion tool from RefSeq or Ensembl ID to NONCODE ID and a service of lncRNA identification. NONCODE is also accessible through http://www.noncode.org/. PMID:24285305

  18. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  19. Orthologous repeats and mammalian phylogenetic inference

    PubMed Central

    Bashir, Ali; Ye, Chun; Price, Alkes L.; Bafna, Vineet

    2005-01-01

    Determining phylogenetic relationships between species is a difficult problem, and many phylogenetic relationships remain unresolved, even among eutherian mammals. Repetitive elements provide excellent markers for phylogenetic analysis, because their mode of evolution is predominantly homoplasy-free and unidirectional. Historically, phylogenetic studies using repetitive elements have relied on biological methods such as PCR analysis, and computational inference is limited to a few isolated repeats. Here, we present a novel computational method for inferring phylogenetic relationships from partial sequence data using orthologous repeats. We apply our method to reconstructing the phylogeny of 28 mammals, using more than 1000 orthologous repeats obtained from sequence data available from the NISC Comparative Sequencing Program. The resulting phylogeny has robust bootstrap numbers, and broadly matches results from previous studies which were obtained using entirely different data and methods. In addition, we shed light on some of the debatable aspects of the phylogeny. With rapid expansion of available partial sequence data, computational analysis of repetitive elements holds great promise for the future of phylogenetic inference. PMID:15998912

  20. Repeat Customer Success in Extension

    ERIC Educational Resources Information Center

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  1. 78 FR 65594 - Vehicular Repeaters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... changes, and on whether current mobile repeater filter technologies can support reduced frequency... feasibility of adapting SAW filters, or other filter technology, for mobile repeater use. We particularly... mobile repeaters by public safety licensees on certain frequencies in the VHF band. DATES:...

  2. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  3. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  4. Making a long story short: noncoding RNAs and chromosome change

    PubMed Central

    Brown, J D; Mitchell, S E; O'Neill, R J

    2012-01-01

    As important as the events that influence selection for specific chromosome types in the derivation of novel karyotypes, are the events that initiate the changes in chromosome number and structure between species, and likewise polymorphisms, variants and disease states within species. Although once thought of as transcriptional ‘noise', noncoding RNAs (ncRNAs) are now recognized as important mediators of epigenetic regulation and chromosome stability. Here we highlight recent work that illustrates the influence short and long ncRNAs have as participants in the function and stability of chromosome regions such as centromeres, telomeres, evolutionary breakpoints and fragile sites. We summarize recent evidence that ncRNAs can facilitate chromosome change and present mechanisms by which ncRNAs create DNA breaks. Finally, we present hypotheses on how they may create novel karyotypes and thus affect chromosome evolution. PMID:22072070

  5. Transcription of Inflammatory Genes: Long Noncoding RNA and Beyond

    PubMed Central

    Carpenter, Susan

    2015-01-01

    The innate immune system must coordinate elaborate signaling pathways to turn on expression of hundreds of genes to provide protection against pathogens and resolve acute inflammation. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional on and off switches in response to distinct external stimuli. Three classes of transcription factors act together with transcriptional coregulators and chromatin-modifying complexes to control these programs. In addition, newer studies implicate long noncoding RNA (lncRNA) as additional regulators of these responses. LncRNAs promote, fine-tune, and restrain the inflammatory program. In this study, we provide an overview of gene regulation and the emerging importance of lncRNAs in the immune system. PMID:25250698

  6. Noncoding RNAs in gastric cancer: Research progress and prospects

    PubMed Central

    Zhang, Meng; Du, Xiang

    2016-01-01

    Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC. PMID:27547004

  7. Functions and mechanisms of long noncoding RNAs in lung cancer

    PubMed Central

    Peng, Zhenzi; Zhang, Chunfang; Duan, Chaojun

    2016-01-01

    Lung cancer is a heterogeneous disease, and there is a lack of adequate biomarkers for diagnosis. Long noncoding RNAs (lncRNAs) are emerging as an important set of molecules because of their roles in various key pathophysiological pathways, including cell growth, apoptosis, and metastasis. We review the current knowledge of the lncRNAs in lung cancer. In-depth analyses of lncRNAs in lung cancer have increased the number of potential effective biomarkers, thus providing options to increase the therapeutic benefit. In this review, we summarize the functions, mechanisms, and regulatory networks of lncRNAs in lung cancer, providing a basis for further research in this field. PMID:27499635

  8. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE PAGES

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  9. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  10. Long non-coding RNAs in innate and adaptive immunity

    PubMed Central

    Aune, Thomas M.; Spurlock, Charles F.

    2015-01-01

    Long noncoding RNAs (lncRNAs) represent a newly discovered class of regulatory molecules that impact a variety of biological processes in cells and organ systems. In humans, it is estimated that there may be more than twice as many lncRNA genes than protein-coding genes. However, only a handful of lncRNAs have been analyzed in detail. In this review, we describe expression and functions of lncRNAs that have been demonstrated to impact innate and adaptive immunity. These emerging paradigms illustrate remarkably diverse mechanisms that lncRNAs utilize to impact the transcriptional programs of immune cells required to fight against pathogens and maintain normal health and homeostasis. PMID:26166759

  11. [Epigenetics of plant vernalization regulated by non-coding RNAs].

    PubMed

    Zhang, Shao-Feng; Li, Xiao-Rong; Sun, Chuan-Bao; He, Yu-Ke

    2012-07-01

    Many higher plants must experience a period of winter cold to accomplish the transition from vegetative to reproductive growth. This biological process is called vernalization. Some crops such as wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) produce seeds as edible organs, and therefore special measures of rotation and cultivation are necessary for plants to go through an early vernalization for flower differentiation and development, whereas the other crops such as Chinese cabbage (B rapa ssp. pekinenesis) and cabbage (Brassica napus L.) produce leafy heads as edible organs, and additional practice should be taken to avoid vernalization for a prolonged and fully vegetative growth. Before vernalization, flowering is repressed by the action of a gene called Flowering Locus C (FLC). This paper reviewed the function of non-coding RNAs and some proteins including VRN1, VRN2, and VIN3 in epigenetic regulation of FLC during vernalization.

  12. Long non-coding RNAs in normal and malignant hematopoiesis

    PubMed Central

    Nobili, Lucia; Lionetti, Marta; Neri, Antonino

    2016-01-01

    Long non-coding RNAs (lncRNAs) are defined as ncRNAs of more than 200 nt in length. They are involved in a large spectrum of biological processes, such as maintenance of genome integrity, genomic imprinting, cell differentiation, and development by means of mechanisms that remain to be fully elucidated. Besides their role in normal cellular physiology, accumulating evidence has linked lncRNA expression and functions to cancer development and progression. In this review, we summarize and discuss what is known about their expression and roles in hematopoiesis with a particular focus on their cell-type specificity, functional interactions, and involvement in the pathobiology of hematological malignancies. PMID:27177333

  13. RNAcentral: a comprehensive database of non-coding RNA sequences

    PubMed Central

    2017-01-01

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/. PMID:27794554

  14. Dysregulated Expression of Long Noncoding RNAs in Ovarian Cancer

    PubMed Central

    Zhong, Yancheng; Gao, Dan; He, Shiwei; Shuai, Cijun; Peng, Shuping

    2016-01-01

    Abstract Ovarian cancer is the leading cause of death among women with gynecologic malignancies. The development and progression of ovarian cancer are complex and a multiple-step process. New biomarker molecules for diagnostic and prognostic are essential for novel therapeutic targets and to extend the survival time of patients with ovarian cancer. Long noncoding RNAs (lncRNAs) are non–protein-coding transcripts longer than 200 nucleotides that have recently been found as key regulators of various biological processes and to be involved in the development and progression of many diseases including cancers. In this review, we summarized the expression pattern of several dysregulated lncRNAs (HOTAIR, H19, XIST, and HOST2) and the functional molecular mechanism of these lncRNAs on the initiation and progression of ovarian cancer. The lncRNAs as biomarkers may be used for current and future clinical diagnosis, therapeutics, and prognosis. PMID:27603915

  15. RNAcentral: A comprehensive database of non-coding RNA sequences

    SciTech Connect

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality.

  16. Bigravity from gradient expansion

    SciTech Connect

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  17. Range expansion of mutualists

    NASA Astrophysics Data System (ADS)

    Muller, Melanie J. I.; Korolev, Kirill S.; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    The expansion of a species into new territory is often strongly influenced by the presence of other species. This effect is particularly striking for the case of mutualistic species that enhance each other's proliferation. Examples range from major events in evolutionary history, such as the spread and diversification of flowering plants due to their mutualism with pollen-dispersing insects, to modern examples like the surface colonisation of multi-species microbial biofilms. Here, we investigate the spread of cross-feeding strains of the budding yeast Saccharomyces cerevisiae on an agar surface as a model system for expanding mutualists. Depending on the degree of mutualism, the two strains form distinctive spatial patterns during their range expansion. This change in spatial patterns can be understood as a phase transition within a stepping stone model generalized to two mutualistic species.

  18. Long Noncoding RNA Expression during Human B-Cell Development

    PubMed Central

    Petri, Andreas; Dybkær, Karen; Bøgsted, Martin; Thrue, Charlotte Albæk; Hagedorn, Peter H.; Schmitz, Alexander; Bødker, Julie Støve; Johnsen, Hans Erik; Kauppinen, Sakari

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as “guilt by association”. By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations. PMID:26394393

  19. Influenza A virus preferentially snatches noncoding RNA caps.

    PubMed

    Gu, Weifeng; Gallagher, Glen R; Dai, Weiwei; Liu, Ping; Li, Ruidong; Trombly, Melanie I; Gammon, Don B; Mello, Craig C; Wang, Jennifer P; Finberg, Robert W

    2015-12-01

    Influenza A virus (IAV) lacks the enzyme for adding 5' caps to its RNAs and snatches the 5' ends of host capped RNAs to prime transcription. Neither the preference of the host RNA sequences snatched nor the effect of cap-snatching on host processes is completely defined. Previous studies of influenza cap-snatching used poly(A)-selected RNAs from infected cells or relied on annotated host genes to define the snatched host RNAs, and thus lack details on many noncoding host RNAs including snRNAs, snoRNAs, and promoter-associated capped small (cs)RNAs, which are made by "paused" Pol II during transcription initiation. In this study, we used a nonbiased technique, CapSeq, to identify host and viral-capped RNAs including nonpolyadenylated RNAs in the same samples, and investigated the substrate-product correlation between the host RNAs and the viral RNAs. We demonstrated that noncoding host RNAs, particularly U1 and U2, are the preferred cap-snatching source over mRNAs or pre-mRNAs. We also found that csRNAs are highly snatched by IAV. Because the functions of csRNAs remain mostly unknown, especially in somatic cells, our finding reveals that csRNAs at least play roles in the process of IAV infection. Our findings support a model where nascent RNAs including csRNAs are the preferred targets for cap-snatching by IAV and raise questions about how IAV might use snatching preferences to modulate host-mRNA splicing and transcription.

  20. ALDB: A Domestic-Animal Long Noncoding RNA Database

    PubMed Central

    Li, Aimin; Zhang, Junying; Zhou, Zhongyin; Wang, Lei; Liu, Yujuan; Liu, Yajun

    2015-01-01

    Background Long noncoding RNAs (lncRNAs) have attracted significant attention in recent years due to their important roles in many biological processes. Domestic animals constitute a unique resource for understanding the genetic basis of phenotypic variation and are ideal models relevant to diverse areas of biomedical research. With improving sequencing technologies, numerous domestic-animal lncRNAs are now available. Thus, there is an immediate need for a database resource that can assist researchers to store, organize, analyze and visualize domestic-animal lncRNAs. Results The domestic-animal lncRNA database, named ALDB, is the first comprehensive database with a focus on the domestic-animal lncRNAs. It currently archives 12,103 pig intergenic lncRNAs (lincRNAs), 8,923 chicken lincRNAs and 8,250 cow lincRNAs. In addition to the annotations of lincRNAs, it offers related data that is not available yet in existing lncRNA databases (lncRNAdb and NONCODE), such as genome-wide expression profiles and animal quantitative trait loci (QTLs) of domestic animals. Moreover, a collection of interfaces and applications, such as the Basic Local Alignment Search Tool (BLAST), the Generic Genome Browser (GBrowse) and flexible search functionalities, are available to help users effectively explore, analyze and download data related to domestic-animal lncRNAs. Conclusions ALDB enables the exploration and comparative analysis of lncRNAs in domestic animals. A user-friendly web interface, integrated information and tools make it valuable to researchers in their studies. ALDB is freely available from http://res.xaut.edu.cn/aldb/index.jsp. PMID:25853886

  1. Ups and Downs: Mechanisms of Repeat Instability in the Fragile X-Related Disorders

    PubMed Central

    Zhao, Xiao-Nan; Usdin, Karen

    2016-01-01

    The Fragile X-related disorders (FXDs) are a group of clinical conditions resulting from the expansion of a CGG/CCG-repeat tract in exon 1 of the Fragile X mental retardation 1 (FMR1) gene. While expansions of the repeat tract predominate, contractions are also seen with the net result being that individuals can show extensive repeat length heterogeneity in different tissues. The mechanisms responsible for expansion and contraction are still not well understood. This review will discuss what is known about these processes and current evidence that supports a model in which expansion arises from the interaction of components of the base excision repair, mismatch repair and transcription coupled repair pathways. PMID:27657135

  2. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury.

    PubMed

    Kaur, Prameet; Liu, Fujia; Tan, Jun Rong; Lim, Kai Ying; Sepramaniam, Sugunavathi; Karolina, Dwi Setyowati; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah

    2013-03-20

    Over the past decade, scientific discoveries have highlighted new roles for a unique class of non-coding RNAs. Transcribed from the genome, these non-coding RNAs have been implicated in determining the biological complexity seen in mammals by acting as transcriptional and translational regulators. Non-coding RNAs, which can be sub-classified into long non-coding RNAs, microRNAs, PIWI-interacting RNAs and several others, are widely expressed in the nervous system with roles in neurogenesis, development and maintenance of the neuronal phenotype. Perturbations of these non-coding transcripts have been observed in ischemic preconditioning as well as ischemic brain injury with characterization of the mechanisms by which they confer toxicity. Their dysregulation may also confer pathogenic conditions in neurovascular diseases. A better understanding of their expression patterns and functions has uncovered the potential use of these riboregulators as neuroprotectants to antagonize the detrimental molecular events taking place upon ischemic-reperfusion injury. In this review, we discuss the various roles of non-coding RNAs in brain development and their mechanisms of gene regulation in relation to ischemic brain injury. We will also address the future directions and open questions for identifying promising non-coding RNAs that could eventually serve as potential neuroprotectants against ischemic brain injury.

  3. Non-coding RNAs and LRRFIP1 Regulate TNF Expression1

    PubMed Central

    Shi, Lihua; Song, Li; Fitzgerald, Michael; Maurer, Kelly; Bagashev, Asen; Sullivan, Kathleen E.

    2014-01-01

    Non-coding RNAs have been implicated in the regulation of expression of numerous genes, however, the mechanism is not fully understood. We identified bidirectional, long non-coding RNAs upstream of the TNF gene using five different methods. They arose in a region where the repressors LRRFIP1, EZH2, and SUZ12 were demonstrated to bind, suggesting a role in repression. The non-coding RNAs were polyadenylated, capped, and chromatin-associated. Knock-down of the non-coding RNAs was associated with de-repression of TNF mRNA and diminished binding of LRRFIP1 to both RNA targets and chromatin. Over-expression of the non-coding RNAs led to diminished expression of TNF and recruitment of repressor proteins to the locus. One repressor protein, LRRFIP1, bound directly to the non-coding RNAs. These data place the non-coding RNAs upstream of TNF gene as central to the transcriptional regulation. They appear to serve as a platform for the assembly of a repressive complex. PMID:24567534

  4. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer

    PubMed Central

    Lowdon, Rebecca F.

    2017-01-01

    Evidence that noncoding mutation can result in cancer driver events is mounting. However, it is more difficult to assign molecular biological consequences to noncoding mutations than to coding mutations, and a typical cancer genome contains many more noncoding mutations than protein-coding mutations. Accordingly, parsing functional noncoding mutation signal from noise remains an important challenge. Here we use an empirical approach to identify putatively functional noncoding somatic single nucleotide variants (SNVs) from liver cancer genomes. Annotation of candidate variants by publicly available epigenome datasets finds that 40.5% of SNVs fall in regulatory elements. When assigned to specific regulatory elements, we find that the distribution of regulatory element mutation mirrors that of nonsynonymous coding mutation, where few regulatory elements are recurrently mutated in a patient population but many are singly mutated. We find potential gain-of-binding site events among candidate SNVs, suggesting a mechanism of action for these variants. When aggregating noncoding somatic mutation in promoters, we find that genes in the ERBB signaling and MAPK signaling pathways are significantly enriched for promoter mutations. Altogether, our results suggest that functional somatic SNVs in cancer are sporadic, but occasionally occur in regulatory elements and may affect phenotype by creating binding sites for transcriptional regulators. Accordingly, we propose that noncoding mutation should be formally accounted for when determining gene- and pathway-mutation burden in cancer. PMID:28333948

  5. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs.

  6. RepeatsDB: a database of tandem repeat protein structures

    PubMed Central

    Di Domenico, Tomás; Potenza, Emilio; Walsh, Ian; Gonzalo Parra, R.; Giollo, Manuel; Minervini, Giovanni; Piovesan, Damiano; Ihsan, Awais; Ferrari, Carlo; Kajava, Andrey V.; Tosatto, Silvio C.E.

    2014-01-01

    RepeatsDB (http://repeatsdb.bio.unipd.it/) is a database of annotated tandem repeat protein structures. Tandem repeats pose a difficult problem for the analysis of protein structures, as the underlying sequence can be highly degenerate. Several repeat types haven been studied over the years, but their annotation was done in a case-by-case basis, thus making large-scale analysis difficult. We developed RepeatsDB to fill this gap. Using state-of-the-art repeat detection methods and manual curation, we systematically annotated the Protein Data Bank, predicting 10 745 repeat structures. In all, 2797 structures were classified according to a recently proposed classification schema, which was expanded to accommodate new findings. In addition, detailed annotations were performed in a subset of 321 proteins. These annotations feature information on start and end positions for the repeat regions and units. RepeatsDB is an ongoing effort to systematically classify and annotate structural protein repeats in a consistent way. It provides users with the possibility to access and download high-quality datasets either interactively or programmatically through web services. PMID:24311564

  7. Influence of CGG-repeat length upon FMR1 transcription and translation

    SciTech Connect

    Warren, S.T.; Zhang, F.; Lokey, L.K.

    1994-09-01

    Fragile X syndrome is the result of the expansion of a 5{prime} untranslated CGG-repeat in the FMR1 gene. In penetrant individuals the repeat is typically >230 triplets and is abnormally methylated and transcriptionally silent while premutation alleles generally contain 60-200 repeats. Consistent with the lack of penetrance among premutation carriers, FMR1 transcription and translation were found similar among normal and premutation cell lines, suggesting little influence of CGG-repeat length of <110 repeats on FMRP expression. However, similar studies of a mildly affected mosaic male with a predominantly hypomethylated allele exhibiting a mode of 300 repeats indicates an influence of larger repeats upon FMRP translation. Lymphoblasts and fibroblasts from this individual revealed normal transcription but {approximately}30% of normal FMRP levels. From an explant fibroblast culture, individual colonies were isolated and clones containing 57, 168, 182, 207, 266 and 285 hypomethylated repeats were identified. Quantitative RNase protection revealed normal steady state levels of FMR1 mRNA in these clonal cultures and RT-PCR of the repeat showed accurate transcription through the repeats. FMRP levels, quantitated using monoclonal antibody, were normal up to 182 repeats and reduced in clones containing larger repeat lengths with very little FMRP detected in the 285 repeat cells. Sucrose fractionation of ribosomes followed by RNase protection showed FMR1 mRNA associated with polyribosomes in control cells while transcripts containing 266 repeats localized predominantly to the 40-80S subunit fraction. These data indicate an inability of the ribosome to scan through lengthy trinucleotide repeats. This has implications regarding the molecular mechanisms of fragile X syndrome and other disorders due to trinucleotide repeat expansions.

  8. The expression profiling and ontology analysis of noncoding RNAs in peritoneal fibrosis induced by peritoneal dialysis fluid.

    PubMed

    Liu, Yanli; Guo, Runsheng; Hao, Guojun; Xiao, Jun; Bao, Yi; Zhou, Jing; Chen, Qinkai; Wei, Xin

    2015-06-15

    Increasing amounts of evidence have indicated that noncoding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contributions of ncRNAs, especially long noncoding RNAs (lncRNAs), to peritoneal fibrosis remain largely unknown. The aim of this study was to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of peritoneal fibrosis. Microarray expression profiles of the miRNAs, lncRNAs and mRNAs were determined in normal control peritoneum and in a mouse model of peritoneal dialysis fluid (PDF)-induced fibrotic peritoneum. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in peritoneal fibrosis. Compared to the normal control, 232 lncRNAs (127 up-regulated and 105 down-regulated), 154 mRNAs (87 up-regulated and 67 down-regulated) and 15 miRNAs (14 miRNAs up-regulated and 1 down-regulated) were differentially expressed in the fibrotic peritoneum. Among the differentially expressed ncRNAs, 9 lncRNAs and 5 miRNAs were validated by real-time RT-PCR. Pathway analysis showed that the Jak-STAT, TGF-beta and MAPK signaling pathways had a close relationship with peritoneal fibrosis. Gene co-expression network analysis identified many genes, including JunB, HSP72, and Nedd9. It also identified lncRNAs AK089579, AK080622, and ENSMUST00000053838 and miRNAs miR-182 and miR-488. All of these species potentially play a key role in peritoneal fibrosis. Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in PDF-induced peritoneal fibrosis.

  9. Identification and analysis of mouse non-coding RNA using transcriptome data.

    PubMed

    Zhao, Yuhui; Liu, Wanfei; Zeng, Jingyao; Liu, Shoucheng; Tan, Xinyu; Aljohi, Hasanawad; Hu, Songnian

    2016-06-01

    Transcripts are expressed spatially and temporally and they are very complicated, precise and specific; however, most studies are focused on protein-coding related genes. Recently, massively parallel cDNA sequencing (RNA-seq) has emerged to be a new and promising tool for transcriptome research, and numbers of non-coding RNAs, especially lincRNAs, have been widely identified and well characterized as important regulators of diverse biological processes. In this study, we used ultra-deep RNA-seq data from 15 mouse tissues to study the diversity and dynamic of non-coding RNAs in mouse. Using our own criteria, we identified totally 16,249 non-coding genes (21,569 non-coding RNAs) in mouse. We annotated these non-coding RNAs by diverse properties and found non-coding RNAs are generally shorter, have fewer exons, express in lower level and are more strikingly tissue-specific compared with protein-coding genes. Moreover, these non-coding RNAs show significant enrichment with transcriptional initiation and elongation signals including histone modifications (H3K4me3, H3K27me3 and H3K36me3), RNAPII binding sites and CAGE tags. The gene set enrichment analysis (GSEA) result revealed several sets of lincRNAs associated with diverse biological processes such as immune effector process, muscle development and sexual reproduction. Taken together, this study provides a more comprehensive annotation of mouse non-coding RNAs and gives an opportunity for future functional and evolutionary study of mouse non-coding RNAs.

  10. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  11. Expansion: A Plan for Success.

    ERIC Educational Resources Information Center

    Callahan, A.P.

    This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…

  12. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.

    PubMed

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.

  13. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting

    PubMed Central

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18–24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field. PMID:26635829

  14. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  15. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  16. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  17. Expansible quantum secret sharing network

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Xu, Sheng-Wei; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2013-08-01

    In the practical applications, member expansion is a usual demand during the development of a secret sharing network. However, there are few consideration and discussion on network expansibility in the existing quantum secret sharing schemes. We propose an expansible quantum secret sharing scheme with relatively simple and economical quantum resources and show how to split and reconstruct the quantum secret among an expansible user group in our scheme. Its trait, no requirement of any agent's assistant during the process of member expansion, can help to prevent potential menaces of insider cheating. We also give a discussion on the security of this scheme from three aspects.

  18. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I

    SciTech Connect

    Jodice, C.; Malaspina, P.; Persichetti, F.; Novelletto, A.; Terrenato, L. ); Spadaro, M.; Morocutti, C. ); Giunti, P. Institute of Neurology, London ); Harding, A.E. ); Frontali, M. )

    1994-06-01

    Trinucleotide repeat expansion has been found in 64 subjects from 19 families: 57 patients with SCA1 and 7 subjects predicted, by haplotype analysis, to carry the mutation. Comparison with a large set of normal chromosomes shows two distinct distributions, with a much wider variation among expanded chromosomes. The sex of transmitting parent plays a major role in the size distribution of expanded alleles, those with >54 repeats being transmitted by affected fathers exclusively. The data suggest that alleles with >54 repeats have a reduced chance of survival; these appear to be replaced in each generation by further expansion of alleles in the low- to medium-expanded repeat range, preferentially in male transmission. Detailed clinical follow-up of a subset of patients demonstrates significant relationships between increasing repeat number on expanded chromosomes and earlier age at onset, faster progression of the disease, and earlier age at death.

  19. Pathological repeat variation at the SCA17/TBP gene in south Indian patients.

    PubMed

    Lone, Waseem Gul; Khan, Imran Ali; Shaik, Noor Ahmad; Meena, Angmuthu Kanikannan; Rao, Kaipa Prabhakar; Hasan, Qurratulain

    2015-12-15

    Despite the intense debate around the repeat instability reported on the large group of neurological disorders caused by trinucleotide repeat expansions, little is known about the mutation process underlying alleles in the normal range, diseases range, large normal alleles (LNAs). In this study, we assessed the CAG repeats at SCA17 in 188 clinical SCA patients and 100 individuals without any neurological signs. This highly polymorphic population displayed high variability in the CAG repeats and ranged from 19-38 CAG repeats in patients with mode of 20 and 19-32 CAG repeats in controls with mode of 24. The triplet repeat expansion was not detected in any of the 188 patients, as per the reference pathogenic range (>43 repeats); however, 2.7% of the patients had >33 CAG repeats with a clinical phenotype close to what is expected of SCA 17 patients. The findings of this study implicate a more sophisticated interpretation of SCA17 gene and raise the question about the diagnostic thresh hold between normal and expanded repeats in our population.

  20. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies

    PubMed Central

    Hensman Moss, Davina J.; Poulter, Mark; Beck, Jon; Hehir, Jason; Polke, James M.; Campbell, Tracy; Adamson, Garry; Mudanohwo, Ese; McColgan, Peter; Haworth, Andrea; Wild, Edward J.; Sweeney, Mary G.; Houlden, Henry; Mead, Simon

    2014-01-01

    Objective: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. Methods: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. Results: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. Discussion: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data. PMID:24363131

  1. Noncoding RNAs and enhancers: complications of a long-distance relationship

    PubMed Central

    Ørom, Ulf Andersson; Shiekhattar, Ramin

    2015-01-01

    Spatial and temporal regulation of gene expression is achieved through instructions provided by the distal transcriptional regulatory elements known as enhancers. How enhancers transmit such information to their targets has been the subject of intense investigation. Recent advances in high throughput analysis of the mammalian transcriptome have revealed a surprising result indicating that a large number of enhancers are transcribed to noncoding RNAs. Although long noncoding RNAs were initially shown to confer epigenetic transcriptional repression, recent studies have uncovered a role for a class of such transcripts in gene-specific activation, often from distal genomic regions. In this review, we discuss recent findings on the role of long noncoding RNAs in transcriptional regulation, with an emphasis on new developments on the functional links between long noncoding RNAs and enhancers. PMID:21831473

  2. To Repeat or Not to Repeat a Course

    ERIC Educational Resources Information Center

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  3. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    PubMed

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease.

  4. Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats.

    PubMed Central

    Wöhrle, D; Salat, U; Gläser, D; Mücke, J; Meisel-Stosiek, M; Schindler, D; Vogel, W; Steinbach, P

    1998-01-01

    We report on further cases of high functioning fragile X males showing decreased expression of FMR1 protein, absence of detectable methylation at the EagI site in the FMR1 gene promoter, and highly unusual patterns of fragile X mutations defined as smear of expansions extending from premutation to full mutation range. Very diffuse and therefore not easily detectable patterns of full mutations were also observed on prenatal testing using DNA from chorionic villi sampled at a time of development when full mutations were still unmethylated in this particular tissue. In the search for possible determinants of such unusual patterns, repeat expansions in the premutation and in the lower full mutation range were identified on genomic PstI blots previously prepared for fragile X DNA testing. Cases with 130 or more triplets, and a number of shorter repeats, were reinvestigated on EcoRI plus EagI digests. Among the 119 expansions, there were 22 in our sample showing either blurred bands or smears on PstI blots. This particular characteristic was strongly associated with the coincidence of a repeat size of more than 130 triplets and absence of EagI site methylation. Our data set also includes cases of mosaic patterns consisting of smears of unmethylated expansions to more than 130 CGGs and of clear bands of methylated expansions. We therefore suggest that in fragile X syndrome unusual smeared patterns of mutations result from somatic instability of larger repeats under circumstantial absence of repeat methylation. Images PMID:9507388

  5. Target genes of microsatellite sequences in head and neck squamous cell carcinoma: mononucleotide repeats are not detected.

    PubMed

    Wang, Yimin; Liu, Xuejuan; Li, Yulin

    2012-09-10

    Microsatellite instability (MSI) is detected in a wide variety of tumors. It is thought that mismatch repair gene mutation or inactivation is the major cause of MSI. Microsatellite sequences are predominantly distributed in intergenic or intronic DNA. However, MSI is found in the exonic sequences of some genes, causing their inactivation. In this report, we searched GenBank for candidate genes containing potential MSI sequences in exonic regions. Twenty seven target genes were selected for MSI analysis. Instability was found in 70% of these genes (14/20) with head and neck squamous cell carcinoma (HNSCC). Interestingly, no instability was detected in mononucleotide repeats in genes or in intergenic sequences. We conclude that instability of mononucleotide repeats is a rare event in HNSCC. High MSI phenotype in young HNSCC patients is limited to noncoding regions only. MSI percentage in HNSCC tumor is closely related to the repeat type, repeat location and patient's age.

  6. Ageing and the Small, Non-Coding RNA World

    PubMed Central

    Kato, Masaomi; Slack, Frank J.

    2012-01-01

    MicroRNAs, a class of small, non-coding RNAs, are now widely known for their importance in many aspects of biology. These small regulatory RNAs have critical functions in diverse biological events, including development and disease. Recent findings show that microRNAs are essential for lifespan determination in the model organisms, C. elegans and Drosophila, suggesting that microRNAs are also involved in the complex process of ageing. Further, short RNA fragments derived from longer parental RNAs, such as transfer RNA cleavage fragments, have now emerged as a novel class of regulatory RNAs that inhibit translation in response to stress. In addition, the RNA editing pathway is likely to act in the double-stranded RNA-mediated silencing machinery to suppress unfavorable RNA interference activity in the ageing process. These multiple, redundant layers in gene regulatory networks may make it possible to both stably and flexibly regulate genetic pathways in ensuring robustness of developmental and ageing processes. PMID:22504407

  7. CANTATAdb: A Collection of Plant Long Non-Coding RNAs

    PubMed Central

    Szcześniak, Michał W.; Rosikiewicz, Wojciech; Makałowska, Izabela

    2016-01-01

    Long non-coding RNAs (lncRNAs) represent a class of potent regulators of gene expression that are found in a wide array of eukaryotes; however, our knowledge about these molecules in plants is still very limited. In particular, a number of model plant species still lack comprehensive data sets of lncRNAs and their annotations, and very little is known about their biological roles. To meet these shortcomings, we created an online database of lncRNAs in 10 model plant species. The lncRNAs were identified computationally using dozens of publicly available RNA sequencing (RNA-Seq) libraries. Expression values, coding potential, sequence alignments as well as other types of data provide annotation for the identified lncRNAs. In order to better characterize them, we investigated their potential roles in splicing modulation and deregulation of microRNA functions. The data are freely available for searching, browsing and downloading from an online database called CANTATAdb (http://cantata.amu.edu.pl, http://yeti.amu.edu.pl/CANTATA/). PMID:26657895

  8. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis.

    PubMed

    Weinberg, Zasha; Perreault, Jonathan; Meyer, Michelle M; Breaker, Ronald R

    2009-12-03

    Estimates of the total number of bacterial species indicate that existing DNA sequence databases carry only a tiny fraction of the total amount of DNA sequence space represented by this division of life. Indeed, environmental DNA samples have been shown to encode many previously unknown classes of proteins and RNAs. Bioinformatics searches of genomic DNA from bacteria commonly identify new noncoding RNAs (ncRNAs) such as riboswitches. In rare instances, RNAs that exhibit more extensive sequence and structural conservation across a wide range of bacteria are encountered. Given that large structured RNAs are known to carry out complex biochemical functions such as protein synthesis and RNA processing reactions, identifying more RNAs of great size and intricate structure is likely to reveal additional biochemical functions that can be achieved by RNA. We applied an updated computational pipeline to discover ncRNAs that rival the known large ribozymes in size and structural complexity or that are among the most abundant RNAs in bacteria that encode them. These RNAs would have been difficult or impossible to detect without examining environmental DNA sequences, indicating that numerous RNAs with extraordinary size, structural complexity, or other exceptional characteristics remain to be discovered in unexplored sequence space.

  9. Community structure of non-coding RNA interaction network.

    PubMed

    Nacher, Jose C

    2013-04-02

    Rapid technological advances have shown that the ratio of non-protein coding genes rises to 98.5% in humans, suggesting that current knowledge on genetic information processing might be largely incomplete. It implies that protein-coding sequences only represent a small fraction of cellular transcriptional information. Here, we examine the community structure of the network defined by functional interactions between non-coding RNAs (ncRNAs) and proteins related bio-macromolecules (PRMs) using a two-fold approach: modularity in bipartite network and k-clique community detection. First, the high modularity scores as well as the distribution of community sizes showing a scaling-law revealed manifestly non-random features. Second, the k-clique sub-graphs and overlaps show that the identified communities of the ncRNA molecules of H. sapiens can potentially be associated with certain functions. These findings highlight the complex modular structure of ncRNA interactions and its possible regulatory roles in the cell.

  10. Natural antisense and noncoding RNA transcripts as potential drug targets.

    PubMed

    Wahlestedt, Claes

    2006-06-01

    Information on the complexity of mammalian RNA transcription has increased greatly in the past few years. Notably, thousands of sense transcripts (conventional protein-coding genes) have antisense transcript partners, most of which are noncoding. Interestingly, a number of antisense transcripts regulate the expression of their sense partners, either in a discordant (antisense knockdown results in sense-transcript elevation) or concordant (antisense knockdown results in concomitant sense-transcript reduction) manner. Two new pharmacological strategies based on the knockdown of antisense RNA transcripts by siRNA (or another RNA targeting principle) are proposed in this review. In the case of discordant regulation, knockdown of antisense transcript elevates the expression of the conventional (sense) gene, thereby conceivably mimicking agonist-activator action. In the case of concordant regulation, knockdown of antisense transcript, or concomitant knockdown of antisense and sense transcripts, results in an additive or even synergistic reduction of the conventional gene expression. Although both strategies have been demonstrated to be valid in cell culture, it remains to be seen whether they provide advantages in other contexts.

  11. Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation

    PubMed Central

    Tudek, Agnieszka; Porrua, Odil; Kabzinski, Tomasz; Lidschreiber, Michael; Kubicek, Karel; Fortova, Andrea; Lacroute, François; Vanacova, Stepanka; Cramer, Patrick; Stefl, Richard; Libri, Domenico

    2014-01-01

    Summary The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex. PMID:25066235

  12. Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis

    PubMed Central

    Liu, Xiao-Yang; Wang, Liang; Yu, Bin; Zhuang, Qian-yu; Wang, Yi-Peng

    2015-01-01

    Purpose. Adolescent idiopathic scoliosis (AIS), the most common pediatric spinal deformity, is considered a complex genetic disease. Causing genes and pathogenesis of AIS are still unclear. This study was designed to identify differentially expressed long noncoding RNAs (lncRNAs) involving the pathogenesis of AIS. Methods. We first performed comprehensive screening of lncRNA and mRNA in AIS patients and healthy children using Agilent human lncRNA + mRNA Array V3.0 microarray. LncRNAs expression in different AIS patients was further evaluated using quantitative PCR. Results. A total of 139 lncRNAs and 546 mRNAs were differentially expressed between AIS patients and healthy control. GO and Pathway analysis showed that these mRNAs might be involved in bone mineralization, neuromuscular junction, skeletal system morphogenesis, nucleotide and nucleic acid metabolism, and regulation of signal pathway. Four lncRNAs (ENST00000440778.1, ENST00000602322.1, ENST00000414894.1, and TCONS_00028768) were differentially expressed between different patients when grouped according to age, height, classification, severity of scoliosis, and Risser grade. Conclusions. This study demonstrates the abnormal expression of lncRNAs and mRNAs in AIS, and the expression of some lncRNAs was related to clinical features. This study is helpful for further understanding of lncRNAs in pathogenesis, treatment, and prognosis of AIS. PMID:26421281

  13. Noncoding RNAs: Possible Players in the Development of Fluorosis.

    PubMed

    Daiwile, Atul P; Sivanesan, Saravanadevi; Izzotti, Alberto; Bafana, Amit; Naoghare, Pravin K; Arrigo, Patrizio; Purohit, Hemant J; Parmar, Devendra; Kannan, Krishnamurthi

    2015-01-01

    Fluorosis is caused by excess of fluoride intake over a long period of time. Aberrant change in the Runt-related transcription factor 2 (RUNX2) mediated signaling cascade is one of the decisive steps during the pathogenesis of fluorosis. Up to date, role of fluoride on the epigenetic alterations is not studied. In the present study, global expression profiling of short noncoding RNAs, in particular miRNAs and snoRNAs, was carried out in sodium fluoride (NaF) treated human osteosarcoma (HOS) cells to understand their possible role in the development of fluorosis. qPCR and in silico hybridization revealed that miR-124 and miR-155 can be directly involved in the transcriptional regulation of Runt-related transcription factor 2 (RUNX2) and receptor activator of nuclear factor κ-B ligand (RANKL) genes. Compared to control, C/D box analysis revealed marked elevation in the number of UG dinucleotides and D-box sequences in NaF exposed HOS cells. Herein, we report miR-124 and miR-155 as the new possible players involved in the development of fluorosis. We show that the alterations in UG dinucleotides and D-box sequences of snoRNAs could be due to NaF exposure.

  14. Noncoding RNAs: Possible Players in the Development of Fluorosis

    PubMed Central

    Daiwile, Atul P.; Sivanesan, Saravanadevi; Izzotti, Alberto; Bafana, Amit; Naoghare, Pravin K.; Arrigo, Patrizio; Purohit, Hemant J.; Parmar, Devendra; Kannan, Krishnamurthi

    2015-01-01

    Fluorosis is caused by excess of fluoride intake over a long period of time. Aberrant change in the Runt-related transcription factor 2 (RUNX2) mediated signaling cascade is one of the decisive steps during the pathogenesis of fluorosis. Up to date, role of fluoride on the epigenetic alterations is not studied. In the present study, global expression profiling of short noncoding RNAs, in particular miRNAs and snoRNAs, was carried out in sodium fluoride (NaF) treated human osteosarcoma (HOS) cells to understand their possible role in the development of fluorosis. qPCR and in silico hybridization revealed that miR-124 and miR-155 can be directly involved in the transcriptional regulation of Runt-related transcription factor 2 (RUNX2) and receptor activator of nuclear factor κ-B ligand (RANKL) genes. Compared to control, C/D box analysis revealed marked elevation in the number of UG dinucleotides and D-box sequences in NaF exposed HOS cells. Herein, we report miR-124 and miR-155 as the new possible players involved in the development of fluorosis. We show that the alterations in UG dinucleotides and D-box sequences of snoRNAs could be due to NaF exposure. PMID:26339601

  15. Critical roles of long noncoding RNAs in Drosophila spermatogenesis

    PubMed Central

    Wen, Kejia; Yang, Lijuan; Xiong, Tuanlin; Di, Chao; Ma, Danhui; Wu, Menghua; Xue, Zhaoyu; Zhang, Xuedi; Long, Li; Zhang, Weimin; Zhang, Jiaying; Bi, Xiaolin; Dai, Junbiao; Zhang, Qiangfeng; Lu, Zhi John; Gao, Guanjun

    2016-01-01

    Long noncoding RNAs (lncRNAs), a recently discovered class of cellular RNAs, play important roles in the regulation of many cellular developmental processes. Although lncRNAs have been systematically identified in various systems, most of them have not been functionally characterized in vivo in animal models. In this study, we identified 128 testis-specific Drosophila lncRNAs and knocked out 105 of them using an optimized three-component CRISPR/Cas9 system. Among the lncRNA knockouts, 33 (31%) exhibited a partial or complete loss of male fertility, accompanied by visual developmental defects in late spermatogenesis. In addition, six knockouts were fully or partially rescued by transgenes in a trans configuration, indicating that those lncRNAs primarily work in trans. Furthermore, gene expression profiles for five lncRNA mutants revealed that testis-specific lncRNAs regulate global gene expression, orchestrating late male germ cell differentiation. Compared with coding genes, the testis-specific lncRNAs evolved much faster. Moreover, lncRNAs of greater functional importance exhibited higher sequence conservation, suggesting that they are under constant evolutionary selection. Collectively, our results reveal critical functions of rapidly evolving testis-specific lncRNAs in late Drosophila spermatogenesis. PMID:27516619

  16. Small non-coding RNA deregulation in endometrial carcinogenesis

    PubMed Central

    Ravo, Maria; Cordella, Angela; Rinaldi, Antonio; Bruno, Giuseppina; Alexandrova, Elena; Saggese, Pasquale; Nassa, Giovanni; Giurato, Giorgio; Tarallo, Roberta; Marchese, Giovanna; Rizzo, Francesca; Stellato, Claudia; Biancardi, Rossella; Troisi, Jacopo; Di Spiezio Sardo, Attilio; Zullo, Fulvio; Weisz, Alessandro; Guida, Maurizio

    2015-01-01

    Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy. Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/β-catenin, and ERK/MAPK and TGF-β-Signaling. Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors. PMID:25686835

  17. A processed noncoding RNA regulates an altruistic bacterial antiviral system.

    PubMed

    Blower, Tim R; Pei, Xue Y; Short, Francesca L; Fineran, Peter C; Humphreys, David P; Luisi, Ben F; Salmond, George P C

    2011-02-01

    The ≥ 10³⁰ bacteriophages on Earth relentlessly drive adaptive coevolution, forcing the generation of protective mechanisms in their bacterial hosts. One such bacterial phage-resistance system, ToxIN, consists of a protein toxin (ToxN) that is inhibited in vivo by a specific RNA antitoxin (ToxI); however, the mechanisms for this toxicity and inhibition have not been defined. Here we present the crystal structure of the ToxN-ToxI complex from Pectobacterium atrosepticum, determined to 2.75-Å resolution. ToxI is a 36-nucleotide noncoding RNA pseudoknot, and three ToxI monomers bind to three ToxN monomers to generate a trimeric ToxN-ToxI complex. Assembly of this complex is mediated entirely through extensive RNA-protein interactions. Furthermore, a 2'-3' cyclic phosphate at the 3' end of ToxI, and catalytic residues, identify ToxN as an endoRNase that processes ToxI from a repetitive precursor but is regulated by its own catalytic product.

  18. Expression and functional studies on the noncoding RNA, PRINS.

    PubMed

    Szegedi, Krisztina; Göblös, Anikó; Bacsa, Sarolta; Antal, Mária; Németh, István Balázs; Bata-Csörgő, Zsuzsanna; Kemény, Lajos; Dobozy, Attila; Széll, Márta

    2012-12-21

    PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s) of PRINS, we searched for a direct interacting partner(s) of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM) protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin.

  19. Biocomputational prediction of small non-coding RNAs in Streptomyces

    PubMed Central

    Pánek, Josef; Bobek, Jan; Mikulík, Karel; Basler, Marek; Vohradský, Jiří

    2008-01-01

    Background The first systematic study of small non-coding RNAs (sRNA, ncRNA) in Streptomyces is presented. Except for a few exceptions, the Streptomyces sRNAs, as well as the sRNAs in other genera of the Actinomyces group, have remained unstudied. This study was based on sequence conservation in intergenic regions of Streptomyces, localization of transcription termination factors, and genomic arrangement of genes flanking the predicted sRNAs. Results Thirty-two potential sRNAs in Streptomyces were predicted. Of these, expression of 20 was detected by microarrays and RT-PCR. The prediction was validated by a structure based computational approach. Two predicted sRNAs were found to be terminated by transcription termination factors different from the Rho-independent terminators. One predicted sRNA was identified computationally with high probability as a Streptomyces 6S RNA. Out of the 32 predicted sRNAs, 24 were found to be structurally dissimilar from known sRNAs. Conclusion Streptomyces is the largest genus of Actinomyces, whose sRNAs have not been studied. The Actinomyces is a group of bacterial species with unique genomes and phenotypes. Therefore, in Actinomyces, new unique bacterial sRNAs may be identified. The sequence and structural dissimilarity of the predicted Streptomyces sRNAs demonstrated by this study serve as the first evidence of the uniqueness of Actinomyces sRNAs. PMID:18477385

  20. Neighboring gene regulation by antisense long non-coding RNAs.

    PubMed

    Villegas, Victoria E; Zaphiropoulos, Peter G

    2015-02-03

    Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation--pretranscriptional, transcriptional and posttranscriptional--through DNA-RNA, RNA-RNA or protein-RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm.

  1. Bioengineering of noncoding RNAs for research agents and therapeutics.

    PubMed

    Ho, Pui Yan; Yu, Ai-Ming

    2016-01-01

    The discovery of functional small noncoding RNAs (ncRNAs), such as microRNAs and small interfering RNAs, in the control of human cellular processes has opened new avenues to develop RNA-based therapies for various diseases including viral infections and cancers. However, studying ncRNA functions and developing RNA-based therapeutics relies on access to large quantities of affordable ncRNA agents. Currently, synthetic RNAs account for the major source of agents for RNA research and development, yet carry artificial modifications on the ribose ring and phosphate backbone in sharp contrast to posttranscriptional modifications present on the nucleobases or unmodified natural RNA molecules produced within cells. Therefore, large efforts have been made in recent years to develop recombinant RNA techniques to cost-effectively produce biological RNA agents that may better capture the structure, function, and safety properties of natural RNAs. In this article, we summarize and compare current in vitro and in vivo methods for the production of RNA agents including chemical synthesis, in vitro transcription, and bioengineering approaches. We highlight the latest recombinant RNA approaches using transfer RNA (tRNA), ribosomal RNA (rRNA), and optimal ncRNA scaffold (OnRS), and discuss the applications of bioengineered ncRNA agents (BERAs) that should facilitate RNA research and development.

  2. Non-coding recurrent mutations in chronic lymphocytic leukaemia.

    PubMed

    Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías

    2015-10-22

    Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.

  3. The role of noncoding RNAs in chromatin regulation during differentiation.

    PubMed

    Nahkuri, Satu; Paro, Renato

    2012-01-01

    A myriad of nuclear noncoding RNAs (ncRNAs) have been discovered since the paradigm of RNAs as plain conveyors of protein translation was discarded. There is increasing evidence that at vital intersections of developmental pathways, ncRNAs target the chromatin modulating machinery to its site of action. However, the mechanistic details of processes involved are still largely unclear, and well-characterized metazoan ncRNA species implicated in chromatin regulation during differentiation remain few. Nevertheless, four major categories are slowly emerging: cis-acting antisense ncRNAs that flag the neighboring genes for the propagation of chromatin marks; allele-specific ncRNAs that perform similar tasks, but target larger loci that typically vary in size from hundreds of thousands of base pairs to a whole chromosome; structural ncRNAs proposed to act as scaffolds that couple chromatin shaping complexes of distinct functionalities; and cofactor ncRNAs with a capacity to inhibit or activate essential components of the intertwined chromatin and transcription apparatuses.

  4. Non-coding Y RNAs as tethers and gates

    PubMed Central

    Wolin, Sandra L; Belair, Cedric; Boccitto, Marco; Chen, Xinguo; Sim, Soyeong; Taylor, David W; Wang, Hong-Wei

    2013-01-01

    Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins. PMID:24036917

  5. Determining the Function of Long Noncoding RNA in Innate Immunity.

    PubMed

    Carpenter, Susan

    2016-01-01

    The advent of deep sequencing technologies has provided us with an unprecedented view of the human genome. Over 85 % of the genome is actively transcribed, yet we do not know the function of the vast majority of these RNA transcripts. Long noncoding RNAs (lncRNA) represent the largest group of RNA genes transcribed in the cell and currently there is limited experimental data supporting the functions of a very small proportion of these transcripts. lncRNA are expressed in a highly cell type specific manner and our interests involve understanding the role they play in innate immune signaling networks. In this chapter I will outline the approach we took to attempt to uncover the role for lncRNA in innate immune cells. Two of the main techniques required to study lncRNA are RNA-seq and loss of function analysis. This allows us to first identify all lncRNA in a cell type of choice and then try to determine the functional significance of these transcripts. This approach has been successful for us to date in identifying lincRNA-Cox2 as a highly inflammatory inducible lncRNA that is responsible for activation and repression of distinct immune genes.

  6. Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation

    PubMed Central

    Ballantyne, Margaret D.; Pinel, Karine; Dakin, Rachel; Vesey, Alex T.; Diver, Louise; Mackenzie, Ruth; Garcia, Raquel; Welsh, Paul; Sattar, Naveed; Hamilton, Graham; Joshi, Nikhil; Dweck, Marc R.; Miano, Joseph M.; McBride, Martin W.; Newby, David E.; McDonald, Robert A.

    2016-01-01

    Background— Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. Methods and Results— Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle–induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. Conclusions— These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies. PMID:27052414

  7. In Vivo Enhancer Analysis Chromosome 16 Conserved NoncodingSequences

    SciTech Connect

    Pennacchio, Len A.; Ahituv, Nadav; Moses, Alan M.; Nobrega,Marcelo; Prabhakar, Shyam; Shoukry, Malak; Minovitsky, Simon; Visel,Axel; Dubchak, Inna; Holt, Amy; Lewis, Keith D.; Plajzer-Frick, Ingrid; Akiyama, Jennifer; De Val, Sarah; Afzal, Veena; Black, Brian L.; Couronne, Olivier; Eisen, Michael B.; Rubin, Edward M.

    2006-02-01

    The identification of enhancers with predicted specificitiesin vertebrate genomes remains a significant challenge that is hampered bya lack of experimentally validated training sets. In this study, weleveraged extreme evolutionary sequence conservation as a filter toidentify putative gene regulatory elements and characterized the in vivoenhancer activity of human-fish conserved and ultraconserved1 noncodingelements on human chromosome 16 as well as such elements from elsewherein the genome. We initially tested 165 of these extremely conservedsequences in a transgenic mouse enhancer assay and observed that 48percent (79/165) functioned reproducibly as tissue-specific enhancers ofgene expression at embryonic day 11.5. While driving expression in abroad range of anatomical structures in the embryo, the majority of the79 enhancers drove expression in various regions of the developingnervous system. Studying a set of DNA elements that specifically droveforebrain expression, we identified DNA signatures specifically enrichedin these elements and used these parameters to rank all ~;3,400human-fugu conserved noncoding elements in the human genome. The testingof the top predictions in transgenic mice resulted in a three-foldenrichment for sequences with forebrain enhancer activity. These datadramatically expand the catalogue of in vivo-characterized human geneenhancers and illustrate the future utility of such training sets for avariety of iological applications including decoding the regulatoryvocabulary of the human genome.

  8. Sequence and Structural Analyses for Functional Non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yasubumi; Sato, Kengo

    Analysis and detection of functional RNAs are currently important topics in both molecular biology and bioinformatics research. Several computational methods based on stochastic context-free grammars (SCFGs) have been developed for modeling and analysing functional RNA sequences. These grammatical methods have succeeded in modeling typical secondary structures of RNAs and are used for structural alignments of RNA sequences. Such stochastic models, however, are not sufficient to discriminate member sequences of an RNA family from non-members, and hence to detect non-coding RNA regions from genome sequences. Recently, the support vector machine (SVM) and kernel function techniques have been actively studied and proposed as a solution to various problems in bioinformatics. SVMs are trained from positive and negative samples and have strong, accurate discrimination abilities, and hence are more appropriate for the discrimination tasks. A few kernel functions that extend the string kernel to measure the similarity of two RNA sequences from the viewpoint of secondary structures have been proposed. In this article, we give an overview of recent progress in SCFG-based methods for RNA sequence analysis and novel kernel functions tailored to measure the similarity of two RNA sequences and developed for use with support vector machines (SVM) in discriminating members of an RNA family from non-members.

  9. Non-Coding RNAs in Stroke and Neuroprotection

    PubMed Central

    Saugstad, Julie A.

    2015-01-01

    This review will focus on the current state of knowledge regarding non-coding RNAs (ncRNA) in stroke and neuroprotection. There will be a brief introduction to microRNAs (miRNA), long ncRNAs (lncRNA), and piwi-interacting RNAs (piRNA), followed by evidence for the regulation of ncRNAs in ischemia. This review will also discuss the effect of neuroprotection induced by a sublethal duration of ischemia or other stimuli given before a stroke (preconditioning) on miRNA expression and the role of miRNAs in preconditioning-induced neuroprotection. Experimental manipulation of miRNAs and/or their targets to induce pre- or post-stroke protection will also be presented, as well as discussion on miRNA responses to current post-stroke therapies. This review will conclude with a brief discussion of future directions for ncRNAs studies in stroke, such as new approaches to model complex ncRNA datasets, challenges in ncRNA studies, and the impact of extracellular RNAs on human diseases such as stroke. PMID:25821444

  10. Long non-coding RNAs in colorectal cancer.

    PubMed

    Xie, Xia; Tang, Bo; Xiao, Yu-Feng; Xie, Rui; Li, Bo-Sheng; Dong, Hui; Zhou, Jian-Yun; Yang, Shi-Ming

    2016-02-02

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Despite substantial progress in understanding the molecular mechanisms and treatment of CRC in recent years, the overall survival rate of CRC patients has not improved dramatically. The development of CRC is multifactor and multistep processes, in which abnormal gene expression may play an important role. With the advance of human tumor molecular biology, a series of studies have highlighted the role of long non-coding RNAs (lncRNAs) in the development of CRC. CRC-related lncRNAs have been demonstrated to regulate the genes by various mechanisms, including epigenetic modifications, lncRNA-miRNA and lncRNA-protein interactions, and by their actions as miRNA precursors or pseudogenes. Since some lncRNAs can be detected in human body fluid and have good specificity and accessibility, they have been suggested to be used as novel potential biomarkers for CRC diagnosis and prognosis as well as in the prediction of the response to therapy. Therefore, in this review, we will focus on lncRNAs in CRC development, the mechanisms and biomarkers of lncRNAs in CRC.

  11. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology.

    PubMed

    Choudhuri, Supratim

    2010-01-01

    In recent years, the discovery of small ncRNAs (noncoding RNAs) has unveiled a slew of powerful riboregulators of gene expression. So far, many different types of small ncRNAs have been described. Of these, miRNAs (microRNAs), siRNAs (small interfering RNAs), and piRNAs (Piwi-interacting RNAs) have been studied in more detail. A significant fraction of genes in most organisms and tissues is targets of these small ncRNAs. Because these tiny RNAs are turning out to be important regulators of gene and genome expression, their aberrant expression profiles are expected to be associated with cellular dysfunction and disease. In fact, an ever-increasing number of studies have implicated miRNAs and siRNAs in human health and disease ranging from metabolic disorders to diseases of various organ systems as well as various forms of cancer. Nevertheless, despite the flurry of research on these small ncRNAs, many aspects of their biology still remain to be understood. The following discussion focuses on some aspects of the biogenesis and function of small ncRNAs with major emphasis on miRNAs since these are the most widespread endogenous small ncRNAs that have been called "micromanagers" of gene expression. Their emerging significance in toxicology is also discussed.

  12. Circadian changes in long noncoding RNAs in the pineal gland.

    PubMed

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F; Sugden, David; Rath, Martin F; Møller, Morten; Clokie, Samuel J H; Fu, Cong; Olanich, Mary E; Rangel, Zoila; Werner, Thomas; Mullikin, James C; Klein, David C

    2012-08-14

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5-1.3 h). Light exposure at night rapidly reverses (halving time = 9-32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.

  13. Design of a small molecule against an oncogenic noncoding RNA

    PubMed Central

    Velagapudi, Sai Pradeep; Cameron, Michael D.; Haga, Christopher L.; Rosenberg, Laura H.; Lafitte, Marie; Duckett, Derek R.; Phinney, Donald G.; Disney, Matthew D.

    2016-01-01

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif–small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187

  14. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  15. Evaluating the Stability of mRNAs and Noncoding RNAs.

    PubMed

    Ayupe, Ana Carolina; Reis, Eduardo M

    2017-01-01

    Changes in RNA stability have an important impact in the gene expression regulation. Different methods based on the transcription blockage with RNA polymerase inhibitors or metabolic labeling of newly synthesized RNAs have been developed to evaluate RNA decay rates in cultured cell. Combined with techniques to measure transcript abundance genome-wide, these methods have been used to reveal novel features of the eukaryotic transcriptome. The stability of protein-coding mRNAs is in general closely associated to the physiological function of their encoded proteins, with short-lived mRNAs being significantly enriched among regulatory genes whereas genes associated with housekeeping functions are predominantly stable. Likewise, the stability of noncoding RNAs (ncRNAs) seems to reflect their functional role in the cell. Thus, investigating RNA stability can provide insights regarding the function of yet uncharacterized regulatory ncRNAs. In this chapter, we discuss the methodologies currently used to estimate RNA decay and outline an experimental protocol for genome-wide estimation of RNA stability of protein-coding and lncRNAs. This protocol details the transcriptional blockage of cultured cells with actinomycin D, followed by RNA isolation at different time points, the determination of transcript abundance by qPCR/DNA oligoarray hybridization, and the calculation of individual transcript half-lives.

  16. Non-Coding RNAs in Neural Networks, REST-Assured

    PubMed Central

    Rossbach, Michael

    2011-01-01

    In the nervous system, several key steps in cellular complexity and development are regulated by non-coding RNAs (ncRNAs) and the repressor element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF). REST recruits gene regulatory complexes to regulatory sequences, among them the repressor element-1/neuron-restrictive silencer element, and mediates developmental stage-specific gene expression or repression, chromatin (re-)organization or silencing for protein-coding genes as well as for several ncRNAs like microRNAs, short interfering RNAs or long ncRNAs. NcRNAs are far from being just transcriptional noise and are involved in chromatin accessibility, transcription and post-transcriptional processing, trafficking, or RNA editing. REST and its cofactor CoREST are both highly regulated through various ncRNAs. The importance of the correct regulation within the ncRNA network, the ncRNAome, is demonstrated when it comes to a deregulation of REST and/or ncRNAs associated with molecular pathophysiology underlying diverse disorders including neurodegenerative diseases or brain tumors. PMID:22303307

  17. The Landscape of Long Noncoding RNAs in the Human Transcriptome

    PubMed Central

    Iyer, Matthew K.; Niknafs, Yashar S.; Malik, Rohit; Singhal, Udit; Sahu, Anirban; Hosono, Yasuyuki; Barrette, Terrence R.; Prensner, John R.; Evans, Joseph R.; Zhao, Shuang; Poliakov, Anton; Cao, Xuhong; Dhanasekaran, Saravana M.; Wu, Yi-Mi; Robinson, Dan R.; Beer, David G.; Feng, Felix Y.; Iyer, Hariharan K.; Chinnaiyan, Arul M.

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes including cancer. In order to delineate genome-wide lncRNA expression, we curated 7,256 RNA-Seq libraries from tumors, normal tissues, and cell lines comprising over 43 terabases of sequence from 25 independent studies. We applied ab initio assembly methodology to this dataset, yielding a consensus human transcriptome of 91,013 expressed genes. Over 68% (58,648) of genes were classified as lncRNAs, of which 79% (48,952) were previously unannotated. About 1% (597) of the lncRNAs harbored ultraconserved elements and 7% (3,900) overlapped disease-associated single nucleotide polymorphisms (SNPs). To prioritize lineage-specific, disease-associated lncRNA expression we employed non-parametric differential expression testing and nominated 7,942 lineage- or cancer-associated lncRNA genes. The lncRNA landscape characterized here may shed light into normal biology and cancer pathogenesis, and be valuable for future biomarker development. PMID:25599403

  18. Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling

    PubMed Central

    Lai, Alicia Sook-Wei; Eldai, Hisham; Liu, Wenting; McGimpsey, Stephanie; Wheeler, Nicole E.; Biggs, Patrick J.; Thomson, Nick R.; Barquist, Lars; Poole, Anthony M.; Gardner, Paul P.

    2014-01-01

    Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling. PMID:25357249

  19. Distributed parameter modeling of repeated truss structures

    NASA Technical Reports Server (NTRS)

    Wang, Han-Ching

    1994-01-01

    A new approach to find homogeneous models for beam-like repeated flexible structures is proposed which conceptually involves two steps. The first step involves the approximation of 3-D non-homogeneous model by a 1-D periodic beam model. The structure is modeled as a 3-D non-homogeneous continuum. The displacement field is approximated by Taylor series expansion. Then, the cross sectional mass and stiffness matrices are obtained by energy equivalence using their additive properties. Due to the repeated nature of the flexible bodies, the mass, and stiffness matrices are also periodic. This procedure is systematic and requires less dynamics detail. The first step involves the homogenization from a 1-D periodic beam model to a 1-D homogeneous beam model. The periodic beam model is homogenized into an equivalent homogeneous beam model using the additive property of compliance along the generic axis. The major departure from previous approaches in literature is using compliance instead of stiffness in homogenization. An obvious justification is that the stiffness is additive at each cross section but not along the generic axis. The homogenized model preserves many properties of the original periodic model.

  20. The Asian Rice Gall Midge (Orseolia oryzae) Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes

    PubMed Central

    Atray, Isha; Bentur, Jagadish Sanmallappa; Nair, Suresh

    2015-01-01

    The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae) was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1) rearrangement in the order of tRNAs as well as protein coding genes; (2) truncation and unusual secondary structures of tRNAs; (3) presence of two different repeat elements in separate non-coding regions; (4) presence of one pseudo-tRNA gene; (5) inversion of the rRNA genes; (6) higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated. PMID:26226163

  1. Optical imaging. Expansion microscopy.

    PubMed

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S

    2015-01-30

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  2. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  3. Nifty Nines and Repeating Decimals

    ERIC Educational Resources Information Center

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  4. Recognition of hypermethylated triplet repeats in vitro by cationic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gearheart, Latha A.; Caswell, Kimberlyn; Murphy, Catherine J.

    2001-04-01

    Genomic DNA contains many higher-order structural deviations from the Watson-Crick global average. The massive expansion and hypermethylation of the duplex triplet repeat (CCG)n(CGG)n has characteristic higher-order structures that are associated with the fragile X syndrome. We have used luminescent mineral nanoparticles of protein-sized cadmium sulfide in optical assays to detect anomalous DNA structures. The photoluminescence of these particles is sensitive to the presence and nature of adsorbates. We previously found that our nanoparticles bind the fragile X repeat well but do not bind to normal double-helical DNA. In this study, we have determined that these particles are also able to detect the hypermethylated forms of these triplet repeats. Therefore, these nanoparticles may form the basis for future optical assays of higher-order DNA structures, especially those associated with human disease.

  5. All-photonic quantum repeaters

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-04-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories.

  6. A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size of the repeat and age at onset.

    PubMed Central

    Lalioti, M D; Scott, H S; Genton, P; Grid, D; Ouazzani, R; M'Rabet, A; Ibrahim, S; Gouider, R; Dravet, C; Chkili, T; Bottani, A; Buresi, C; Malafosse, A; Antonarakis, S E

    1998-01-01

    Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is a rare, autosomal recessive disorder characterized by onset at age 6-16 years, generalized seizures, incapacitating myoclonus, and variable progression to cerebellar ataxia. The gene that causes EPM1, cystatin B, encodes a cysteine proteinase inhibitor. Only a minority of EPM1 patients carry a point mutation within the transcription unit. The majority of EPM1 alleles contain large expansions of a dodecamer repeat, CCC CGC CCC GCG, located upstream of the 5' transcription start site of the cystatin B gene; normal alleles contain two or three copies of this repeat. All EPM1 alleles with an expansion were resistant to standard PCR amplification. To precisely determine the size of the repeat in affected individuals, we developed a detection protocol involving PCR amplification and subsequent hybridization with an oligonucleotide containing the repeat. The largest detected expansion was approximately 75 copies; the smallest was approximately 30 copies. We identified affected siblings with repeat expansions, of different sizes, on the same haplotype, which confirms the repeat's instability during transmissions. Expansions were observed directly; contractions were deduced by comparison of allele sizes within a family. In a sample of 28 patients, we found no correlation between age at onset of EPM1 and the size of the expanded dodecamer. This suggests that once the dodecamer repeat expands beyond a critical threshold, cystatin B expression is reduced in certain cells, with pathological consequences. PMID:9529356

  7. A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size of the repeat and age at onset.

    PubMed

    Lalioti, M D; Scott, H S; Genton, P; Grid, D; Ouazzani, R; M'Rabet, A; Ibrahim, S; Gouider, R; Dravet, C; Chkili, T; Bottani, A; Buresi, C; Malafosse, A; Antonarakis, S E

    1998-04-01

    Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is a rare, autosomal recessive disorder characterized by onset at age 6-16 years, generalized seizures, incapacitating myoclonus, and variable progression to cerebellar ataxia. The gene that causes EPM1, cystatin B, encodes a cysteine proteinase inhibitor. Only a minority of EPM1 patients carry a point mutation within the transcription unit. The majority of EPM1 alleles contain large expansions of a dodecamer repeat, CCC CGC CCC GCG, located upstream of the 5' transcription start site of the cystatin B gene; normal alleles contain two or three copies of this repeat. All EPM1 alleles with an expansion were resistant to standard PCR amplification. To precisely determine the size of the repeat in affected individuals, we developed a detection protocol involving PCR amplification and subsequent hybridization with an oligonucleotide containing the repeat. The largest detected expansion was approximately 75 copies; the smallest was approximately 30 copies. We identified affected siblings with repeat expansions, of different sizes, on the same haplotype, which confirms the repeat's instability during transmissions. Expansions were observed directly; contractions were deduced by comparison of allele sizes within a family. In a sample of 28 patients, we found no correlation between age at onset of EPM1 and the size of the expanded dodecamer. This suggests that once the dodecamer repeat expands beyond a critical threshold, cystatin B expression is reduced in certain cells, with pathological consequences.

  8. Indicator Expansion with Analysis Pipeline

    DTIC Science & Technology

    2015-01-13

    2014 Carnegie Mellon University Indicator Expansion with Analysis Pipeline Dan Ruef 1/13/15 Report Documentation Page Form ApprovedOMB No. 0704...4. TITLE AND SUBTITLE Indicator Expansion with Analysis Pipeline 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Mellon®, CERT® and FloCon® are registered marks of Carnegie Mellon University. DM-0002067 3 Definition “Indicator expansion is a process of using one or

  9. Burial Ground Expansion Hydrogeologic Characterization

    SciTech Connect

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  10. Relativistic Sommerfeld Low Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Lourenço, O.; Dutra, M.; Delfino, A.; Sá Martins, J. S.

    We derive a relativistic Sommerfeld expansion for thermodynamic quantities in many-body fermionic systems. The expansion is used to generate the equation of state of the Walecka model and its isotherms. We find that these results are in good agreement with numerical calculations, even when the expansion is truncated at its lowest order, in the low temperature regime, defined by T/xf ≪ 1. Although the interesting region near the liquid-gas phase transition is excluded by this criterion, the expansion may still find usefulness in the study of very cold nuclear matter systems, such as neutron stars.

  11. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.

    PubMed

    Usdin, Karen; Kumari, Daman

    2015-01-01

    The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.

  12. Non-Coding RNAs: New Players in Skin Wound Healing

    PubMed Central

    Herter, Eva K.; Xu Landén, Ning

    2017-01-01

    Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing. PMID:28289554

  13. Coding-noncoding gene expression in intrahepatic cholangiocarcinoma.

    PubMed

    Wang, Jianguo; Xie, Haiyang; Ling, Qi; Lu, Di; Lv, Zhen; Zhuang, Runzhou; Liu, Zhikun; Wei, Xuyong; Zhou, Lin; Xu, Xiao; Zheng, Shusen

    2016-02-01

    Recent studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in human cancers. However, the function of lncRNAs and their downstream mechanisms are largely unknown in the molecular pathogenesis of intrahepatic cholangiocarcinoma (ICC). In the present study, we performed transcriptomic profiling of ICC and paired adjacent noncancerous tissues (N) by using lncRNA and messenger RNA (mRNA) microarrays. Quantitative real-time polymerase chain reaction was used to validate the microarray results. We tested for correlations between the expression levels of lncRNAs and target genes. Clinicopathologic characteristics and overall survival were compared using the t test and the Kaplan-Meier method, respectively. A total of 2773 lncRNAs were significantly upregulated in ICC tissues compared with the noncancerous tissues, whereas 2392 lncRNAs were downregulated. Bioinformatic analysis indicated that most of the genes were involved in carcinogenesis, hepatic system diseases, and signal transductions. Positive correlations were found between 4 lncRNA-mRNA pairs (RNA43085 and SULF1, RNA47504 and KDM8, RNA58630 and PCSK6, and RNA40057 and CYP2D6). When the clinicopathologic characteristics were accounted for, the cumulative overall survival rate was found to be associated with low expression levels of CYP2D6 (P = 0.005) and PCSK6 (P = 0.038). Patients with high expression levels of CYP2D6 and RNA40057 had a better prognosis (P = 0.014). Our results suggested that the lncRNA expression profiling in ICC tissues is profoundly different from that in noncancerous tissues. Thus, lncRNA may be a potential diagnostic and prognostic biomarker for ICC. Furthermore, the combined assessment of lncRNA and mRNA expressions might predict the survival of patients with ICC.

  14. AUF1 regulation of coding and noncoding RNA.

    PubMed

    White, Elizabeth J F; Matsangos, Aerielle E; Wilson, Gerald M

    2017-03-01

    AUF1 is a family of four RNA-binding proteins (RBPs) generated by alternative pre-messenger RNA (pre-mRNA) splicing, with canonical roles in controlling the stability and/or translation of mRNA targets based on recognition of AU-rich sequences within mRNA 3' untranslated regions. However, recent studies identifying AUF1 target sites across the transcriptome have revealed that these canonical functions are but a subset of its roles in posttranscriptional regulation of gene expression. In this review, we describe recent developments in our understanding of the RNA-binding properties of AUF1 together with their biochemical implications and roles in directing mRNA decay and translation. This is then followed by a survey of newly discovered activities for AUF1 proteins in control of miRNA synthesis and function, including miRNA assembly into microRNA (miRNA)-loaded RNA-induced silencing complexes (miRISCs), miRISC targeting to mRNA substrates, interplay with an expanding network of other cellular RBPs, and reciprocal regulatory relationships between miRNA and AUF1 synthesis. Finally, we discuss recently reported relationships between AUF1 and long noncoding RNAs and regulatory roles on viral RNA substrates. Cumulatively, these findings have significantly expanded our appreciation of the scope and diversity of AUF1 functions in the cell, and are prompting an exciting array of new questions moving forward. WIREs RNA 2017, 8:e1393. doi: 10.1002/wrna.1393 For further resources related to this article, please visit the WIREs website.

  15. Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance.

    PubMed

    Yan, Wei

    2014-12-01

    "Epigenetic transgenerational inheritance" (ETI) has been defined as germline (sperm or egg) transmission of epigenetic information between generations in the absence of direct exposures or genetic manipulations. Among reported cases of ETI in mammals, the majority are induced by environmental factors, including environmental toxicants [e.g. agricultural fungicide vinclozolin, plastic additive bisphenol A, pesticide methoxychlor, dioxin, di-(2-ethylhexyl) phthalate, dichlorodiphenyltrichloroethane, and hydrocarbons] and poor nutritional conditions. Although the ETI phenomenon is well established, the underlying mechanism remains elusive. Putative epimutations, including changes in DNA methylation and histone modification patterns, have been reported, but it remains unclear how these epimutations are formed in the first place, and how they are memorized in the germline and then get transmitted to subsequent generations. Based on recent advances in our understanding of regulatory noncoding RNAs (ncRNAs), I propose that ncRNAs are involved in ETI, during both the initial epimutation formation and the subsequent germline transmission of epimutations. ncRNAs can function at epigenetic levels by affecting DNA methylation and histone modifications, thereby changing gene transcriptional activities, which can lead to an altered mRNA transcriptome associated with a disease phenotype. Alternatively, novel or altered ncRNA expression can cause dysregulated post-transcriptional regulation, thus directly affecting the mRNA transcriptome and inducing a disease phenotype. Sperm-borne ncRNAs are potential mediators for epigenetic memory across generations, but they alone may not be sufficient for stable transmission of epimutations across generations. Overall, research on ncRNAs in the context of ETI is urgently needed to shed light on the underlying mechanism of ETI.

  16. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  17. Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis.

    PubMed

    Deguchi, S; Katsushima, K; Hatanaka, A; Shinjo, K; Ohka, F; Wakabayashi, T; Zong, H; Natsume, A; Kondo, Y

    2017-04-03

    Accumulating studies have demonstrated the importance of long noncoding RNAs (lncRNAs) during oncogenic transformation. However, because most lncRNAs are currently uncharacterized, the identification of novel oncogenic lncRNAs is difficult. Given that intergenic lncRNA have substantially less sequence conservation patterns than protein-coding genes across species, evolutionary conserved intergenic lncRNAs are likely to be functional. The current study identified a novel intergenic lncRNA, LINC00461 (ECONEXIN) using a combined approach consisting of searching lncRNAs by evolutionary conservation and validating their expression in a glioma mouse model. ECONEXIN was the most highly conserved intergenic lncRNA containing 83.0% homology with the mouse ortholog (C130071C03Rik) for a region over 2500 bp in length within its exon 3. Expressions of ECONEXIN and C130071C03Rik were significantly upregulated in both human and mouse glioma tissues. Moreover, the expression of C130071C03Rik was upregulated even in precancerous conditions and markedly increased during glioma progression. Functional analysis of ECONEXIN in glioma cell lines, U87 and U251, showed it was dominantly located in the cytoplasm and interacted with miR-411-5p via two binding sites within ECONEXIN. Inhibition of ECONEXIN upregulated miR-411-5p together with the downregulation of its target, Topoisomerase 2 alpha (TOP2A), in glioma cell lines, resulting in decreased cell proliferation. Our data demonstrated that ECONEXIN is a potential oncogene that regulates TOP2A by sponging miR-411-5p in glioma. In addition, our investigative approaches to identify conserved lncRNA and their molecular characterization by validation in mouse tumor models may be useful to functionally annotate novel lncRNAs, especially cancer-associated lncRNAs.Oncogene advance online publication, 3 April 2017; doi:10.1038/onc.2017.88.

  18. Non-Coding RNAs: New Players in Skin Wound Healing.

    PubMed

    Herter, Eva K; Xu Landén, Ning

    2017-03-01

    Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing.

  19. Novel classes of non-coding RNAs and cancer

    PubMed Central

    2012-01-01

    For the many years, the central dogma of molecular biology has been that RNA functions mainly as an informational intermediate between a DNA sequence and its encoded protein. But one of the great surprises of modern biology was the discovery that protein-coding genes represent less than 2% of the total genome sequence, and subsequently the fact that at least 90% of the human genome is actively transcribed. Thus, the human transcriptome was found to be more complex than a collection of protein-coding genes and their splice variants. Although initially argued to be spurious transcriptional noise or accumulated evolutionary debris arising from the early assembly of genes and/or the insertion of mobile genetic elements, recent evidence suggests that the non-coding RNAs (ncRNAs) may play major biological roles in cellular development, physiology and pathologies. NcRNAs could be grouped into two major classes based on the transcript size; small ncRNAs and long ncRNAs. Each of these classes can be further divided, whereas novel subclasses are still being discovered and characterized. Although, in the last years, small ncRNAs called microRNAs were studied most frequently with more than ten thousand hits at PubMed database, recently, evidence has begun to accumulate describing the molecular mechanisms by which a wide range of novel RNA species function, providing insight into their functional roles in cellular biology and in human disease. In this review, we summarize newly discovered classes of ncRNAs, and highlight their functioning in cancer biology and potential usage as biomarkers or therapeutic targets. PMID:22613733

  20. Deletions in the CGG repeat region of the FMR1 gene

    SciTech Connect

    Graaff, E. de; Oostra, B.A.; Meijer, H.

    1994-09-01

    The fragile X syndrome is the most frequent cause of inherited mental retardation. A remarkable feature of FMR1, the gene involved in the fragile X syndrome, is the presence of a polymorphic (CGG){sub n} repeat in the first exon of the gene. In patients this repeat is expanded to over 200 repeats. The expansion results in methylation of the CpG island 250 bp upstream of this repeat, leading to the absence of FMR1 mRNA and protein, thus resulting in the fragile X phenotype. We have found that the instability of the repeat is not restricted to the CGG repeat itself but expands to the flanking region as well. Firstly, we have identified a family in which 4 males with the fragile X clinical phenotype had a deletion immediately 5{prime} of the CGG repeat. Sequencing the deletion junction revealed that the AGG triplets that normally intersperse the CGG repeat were lacking. This suggests that prior to the deletion an expansion of the repeat had occured. The male patients with this deletion did not have FMR1 mRNA expression. The deceased grandfather, from whom the deletion originated, was fertile, despite the lack of FMR1 mRNA expression. This indicated that FMR1 expression is not required for spermatogenesis. Other deletions were found in 4 individual patients. These patients were mosaic for both a full mutation and a small deletion in the region surrounding the (CGG){sub n} repeat, present in approximately 5% of their cells. Sequence analysis of the regions surrounding the deletions showed that the (CGG){sub n} repeat was missing in all 4 patients. The 5{prime} endpoints of all deletions were found to be located between 75 to 53 bp proximal to the CGG repeat. This suggests a hot spot region for deletions and emphasizes the instability of this region when the CGG repeat is expanded. Models explaining the occurrence of the deletions will be discussed.

  1. The evolution of filamin – A protein domain repeat perspective

    PubMed Central

    Light, Sara; Sagit, Rauan; Ithychanda, Sujay S.; Qin, Jun; Elofsson, Arne

    2013-01-01

    Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates. PMID:22414427

  2. Lattice harmonics expansion revisited

    NASA Astrophysics Data System (ADS)

    Kontrym-Sznajd, G.; Holas, A.

    2017-04-01

    The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.

  3. Singularity Expansion Method

    NASA Astrophysics Data System (ADS)

    Riggs, Lloyd Stephen

    In this work the transient currents induced on an arbitrary system of thin linear scatterers by an electromagnetic plane wave are solved by using an electric field integral equation (EFIE) formulation. The transient analysis is carried out using the singularity expansion method (SEM). The general analysis developed here is useful for assessing the vulnerability of military aircraft to a nuclear generated electromagnetic pulse (EMP). It is also useful as a modal synthesis tool in the analysis and design of frequency selective surfaces (FSS). SEM parameters for a variety of thin cylindrical geometries have been computed. Specifically, SEM poles, modes, coupling coefficients, and transient currents are given for the two and three element planar array. Poles and modes for planar arrays with a larger number (as many as eight) of identical equally spaced elements are also considered. SEM pole-mode results are given for identical parallel elements with ends located at the vertices of a regular N-agon. Pole-mode patterns are found for symmetric (and slightly perturbed) single junction N-arm elements and for the five junction Jerusalem cross. The Jerusalem cross element has been used extensively in FSS.

  4. Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load.

    PubMed

    Gilbert, Kimberly J; Sharp, Nathaniel P; Angert, Amy L; Conte, Gina L; Draghi, Jeremy A; Guillaume, Frédéric; Hargreaves, Anna L; Matthey-Doret, Remi; Whitlock, Michael C

    2017-04-01

    The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.

  5. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    PubMed Central

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  6. Microsatellite and trinucleotide-repeat evolution: evidence for mutational bias and different rates of evolution in different lineages.

    PubMed Central

    Rubinsztein, D C; Amos, B; Cooper, G

    1999-01-01

    Microsatellites are stretches of repetitive DNA, where individual repeat units comprise one to six bases. These sequences are often highly polymorphic with respect to repeat number and include trinucleotide repeats, which are abnormally expanded in a number of diseases. It has been widely assumed that microsatellite loci are as likely to gain and lose repeats when they mutate. In this review, we present population genetic and empirical data arguing that microsatellites, including normal alleles at trinucleotide-repeat disease loci, are more likely to expand in length when they mutate. In addition, our experiments suggest that the rates of expansion of such sequences differ in related species. PMID:10434312

  7. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  8. Quantum repeaters: fundamental and future

    NASA Astrophysics Data System (ADS)

    Li, Yue; Hua, Sha; Liu, Yu; Ye, Jun; Zhou, Quan

    2007-04-01

    An overview of the Quantum Repeater techniques based on Entanglement Distillation and Swapping is provided. Beginning with a brief history and the basic concepts of the quantum repeaters, the article primarily focuses on the communication model based on the quantum repeater techniques, which mainly consists of two fundamental modules --- the Entanglement Distillation module and the Swapping module. The realizations of Entanglement Distillation are discussed, including the Bernstein's Procrustean method, the Entanglement Concentration and the CNOT-purification method, etc. The schemes of implementing Swapping, which include the Swapping based on Bell-state measurement and the Swapping in Cavity QED, are also introduced. Then a comparison between these realizations and evaluations on them are presented. At last, the article discusses the experimental schemes of quantum repeaters at present, documents some remaining problems and emerging trends in this field.

  9. Repeatability in redundant manipulator systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ranjan

    1994-02-01

    Terrestrial manipulators with more DOF than the dimension of the workspace and space manipulators with as many manipulator DOF as the dimension of the workspace are both redundant systems. An interesting problem of such redundant systems has been the repeatability problem due to the presence of nonholonomic constraints. We show, contrary to the existing belief, that integrability of the nonholonomic constraints is not a necessary condition for the repeatability of the configuration variables. There exist certain trajectories in the independent configuration variable space that are like 'holonomic loops' along which the redundant manipulators exhibit repeatable motion. We present a simple method based on optimization techniques for designing repeatable trajectories for free-flying space manipulators and terrestrial manipulators under pseudoinverse control.

  10. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-04-05

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  11. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  12. On the Applicability of Elastic Network Models for the Study of RNA CUG Trinucleotide Repeat Overexpansion.

    PubMed

    González, Àlex L; Teixidó, Jordi; Borrell, José I; Estrada-Tejedor, Roger

    2016-01-01

    Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy type 1 (DM1), a multisystemic autosomal dominant disease, the formation of large non-coding CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL), which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT) and insulin receptor's, among others. Evidence suggests that conformational changes in RNA are determinant for the recognition and binding of splicing proteins, molecular modeling simulations can attempt to shed light on the structural diversity of CUG repeats and to understand their pathogenic mechanisms. Molecular dynamics (MD) are widely used to obtain accurate results at atomistic level, despite being very time consuming, and they contrast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM). In this paper, we assess the application of ENM (traditionally applied on proteins) for studying the conformational space of CUG repeats and compare it to conventional and accelerated MD conformational sampling. Overall, the results provided here reveal that ANM can provide useful insights into dynamic rCUG structures at a global level, and that their dynamics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to describe local U-U dynamics of the rCUG system, which require more computationally expensive methods such as MD. Given that several limitations are inherent to both methods, we discuss here the usefulness of the current theoretical approaches for studying highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions.

  13. On the Applicability of Elastic Network Models for the Study of RNA CUG Trinucleotide Repeat Overexpansion

    PubMed Central

    González, Àlex L.; Teixidó, Jordi; Borrell, José I.; Estrada-Tejedor, Roger

    2016-01-01

    Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy type 1 (DM1), a multisystemic autosomal dominant disease, the formation of large non-coding CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL), which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT) and insulin receptor’s, among others. Evidence suggests that conformational changes in RNA are determinant for the recognition and binding of splicing proteins, molecular modeling simulations can attempt to shed light on the structural diversity of CUG repeats and to understand their pathogenic mechanisms. Molecular dynamics (MD) are widely used to obtain accurate results at atomistic level, despite being very time consuming, and they contrast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM). In this paper, we assess the application of ENM (traditionally applied on proteins) for studying the conformational space of CUG repeats and compare it to conventional and accelerated MD conformational sampling. Overall, the results provided here reveal that ANM can provide useful insights into dynamic rCUG structures at a global level, and that their dynamics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to describe local U-U dynamics of the rCUG system, which require more computationally expensive methods such as MD. Given that several limitations are inherent to both methods, we discuss here the usefulness of the current theoretical approaches for studying highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions. PMID:27010216

  14. Nanospring behaviour of ankyrin repeats.

    PubMed

    Lee, Gwangrog; Abdi, Khadar; Jiang, Yong; Michaely, Peter; Bennett, Vann; Marszalek, Piotr E

    2006-03-09

    Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla. Ankyrin repeats contain antiparallel alpha-helices that can stack to form a superhelical spiral. Visual inspection of the extrapolated structure of 24 ankyrin-R repeats indicates the possibility of spring-like behaviour of the putative superhelix. Moreover, stacks of 17-29 ankyrin repeats in the cytoplasmic domains of transient receptor potential (TRP) channels have been identified as candidates for a spring that gates mechanoreceptors in hair cells as well as in Drosophila bristles. Here we report that tandem ankyrin repeats exhibit tertiary-structure-based elasticity and behave as a linear and fully reversible spring in single-molecule measurements by atomic force microscopy. We also observe an unexpected ability of unfolded repeats to generate force during refolding, and report the first direct measurement of the refolding force of a protein domain. Thus, we show that one of the most common amino-acid motifs has spring properties that could be important in mechanotransduction and in the design of nanodevices.

  15. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer

    PubMed Central

    Krakowsky, Rosanna H. E.; Tollefsbol, Trygve O.

    2015-01-01

    Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level. PMID:26075205

  16. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer.

    PubMed

    Krakowsky, Rosanna H E; Tollefsbol, Trygve O

    2015-01-01

    Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level.

  17. A long-term demasculinization of X-linked intergenic noncoding RNAs in Drosophila melanogaster.

    PubMed

    Gao, Ge; Vibranovski, Maria D; Zhang, Li; Li, Zheng; Liu, Ming; Zhang, Yong E; Li, Xinmin; Zhang, Wenxia; Fan, Qichang; VanKuren, Nicholas W; Long, Manyuan; Wei, Liping

    2014-04-01

    Recent studies have revealed key roles of noncoding RNAs in sex-related pathways, but little is known about the evolutionary forces acting on these noncoding RNAs. Profiling the transcriptome of Drosophila melanogaster with whole-genome tiling arrays found that 15% of male-biased transcribed fragments are intergenic noncoding RNAs (incRNAs), suggesting a potentially important role for incRNAs in sex-related biological processes. Statistical analysis revealed a paucity of male-biased incRNAs and coding genes on the X chromosome, suggesting that similar evolutionary forces could be affecting the genomic organization of both coding and noncoding genes. Expression profiling across germline and somatic tissues further suggested that both male meiotic sex chromosome inactivation (MSCI) and sexual antagonism could contribute to the chromosomal distribution of male-biased incRNAs. Comparative sequence analysis showed that the evolutionary age of male-biased incRNAs is a significant predictor of their chromosomal locations. In addition to identifying abundant sex-biased incRNAs in the fly genome, our work unveils a global picture of the complex interplay between noncoding RNAs and sexual chromosome evolution.

  18. LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations

    PubMed Central

    Lochovsky, Lucas; Zhang, Jing; Fu, Yao; Khurana, Ekta; Gerstein, Mark

    2015-01-01

    In cancer research, background models for mutation rates have been extensively calibrated in coding regions, leading to the identification of many driver genes, recurrently mutated more than expected. Noncoding regions are also associated with disease; however, background models for them have not been investigated in as much detail. This is partially due to limited noncoding functional annotation. Also, great mutation heterogeneity and potential correlations between neighboring sites give rise to substantial overdispersion in mutation count, resulting in problematic background rate estimation. Here, we address these issues with a new computational framework called LARVA. It integrates variants with a comprehensive set of noncoding functional elements, modeling the mutation counts of the elements with a β-binomial distribution to handle overdispersion. LARVA, moreover, uses regional genomic features such as replication timing to better estimate local mutation rates and mutational hotspots. We demonstrate LARVA's effectiveness on 760 whole-genome tumor sequences, showing that it identifies well-known noncoding drivers, such as mutations in the TERT promoter. Furthermore, LARVA highlights several novel highly mutated regulatory sites that could potentially be noncoding drivers. We make LARVA available as a software tool and release our highly mutated annotations as an online resource (larva.gersteinlab.org). PMID:26304545

  19. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration

    PubMed Central

    Xu, Zihui; Poidevin, Mickael; Li, Xuekun; Li, Yujing; Shu, Liqi; Nelson, David L.; Li, He; Hales, Chadwick M.; Gearing, Marla; Wingo, Thomas S.; Jin, Peng

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) share phenotypic and pathologic overlap. Recently, an expansion of GGGGCC repeats in the first intron of C9orf72 was found to be a common cause of both illnesses; however, the molecular pathogenesis of this expanded repeat is unknown. Here we developed both Drosophila and mammalian models of this expanded hexanucleotide repeat and showed that expression of the expanded GGGGCC repeat RNA (rGGGGCC) is sufficient to cause neurodegeneration. We further identified Pur α as the RNA-binding protein of rGGGGCC repeats and discovered that Pur α and rGGGGCC repeats interact in vitro and in vivo in a sequence-specific fashion that is conserved between mammals and Drosophila. Furthermore, overexpression of Pur α in mouse neuronal cells and Drosophila mitigates rGGGGCC repeat-mediated neurodegeneration, and Pur α forms inclusions in the fly eye expressing expanded rGGGGCC repeats, as well as in cerebellum of human carriers of expanded GGGGCC repeats. These data suggest that expanded rGGGGCC repeats could sequester specific RNA-binding protein from their normal functions, ultimately leading to cell death. Taken together, these findings suggest that the expanded rGGGGCC repeats could cause neurodegeneration, and that Pur α may play a role in the pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. PMID:23553836

  20. Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of lagomorphs.

    PubMed

    Casane, D; Dennebouy, N; de Rochambeau, H; Mounolou, J C; Monnerot, M

    1997-08-01

    The mitochondrial DNA of the European rabbit (Oryctolagus cuniculus) contains a tandem array of 153-bp repeats in the vicinity of the replication origin of the H-stand. Variation among molecules in the number of these repeats results in inter- and intraindividual length polymorphism (heteroplasmy). Generally, in an individual, one predominant molecular type is observed, the others representing a low percentage of the mtDNA content. At the tissue level, we observe a particular distribution of this polymorphism in the gonads compared with liver, kidneys, or brain, implying a relationship between the differentiation status of the cells and the types of new mtDNA molecules which appear and accumulate during lifetime. Similar tandem repeats were also found in the mtDNA noncoding region of European hares (Lepus europaeus), a cottontail (Sylvilagus floridanus), and a pika (Ochotona rufescens). The lengths and the sequences of these units evolve rapidly and in a concerted way, but the number of repeats is maintained in a narrow range, and an internal 20-bp segment is highly conserved. Constraints restrict the evolution of the primary sequence of these repeated units, the number of which is probably controlled by a stabilizing selection.

  1. Polymorphism of CAG repeats in androgen receptor of carnivores.

    PubMed

    Wang, Qin; Zhang, Xiuyue; Wang, Xiaofang; Zeng, Bo; Jia, Xiaodong; Hou, Rong; Yue, Bisong

    2012-03-01

    Androgen effect is mediated by the androgen receptor (AR). The polymorphism of CAG triplet repeat (polyCAG), in the N-terminal transactivation domain of the AR protein, has been involved either in endocrine or neurological disorders in human. We obtained partial sequence of AR exon 1 in 10 carnivore species. In most carnivore species, polyglutamine length polymorphism presented in all three CAG repeat regions of AR, in contrast, only CAG-I site polymorphism presented in primate species, and CAG-I and CAG-III sites polymorphism presented in Canidae. Therefore, studies focusing on disease-associated polymorphism of poly(CAG) in carnivore species AR should investigate all three CAG repeats sites, and should not only consider CAG-I sites as the human disease studies. The trinucleotide repeat length in carnivore AR exon 1 had undergone from expansions to contractions during carnivores evolution, unlike a linear increase in primate species. Furthermore, the polymorphisms of the triplet-repeats in the same tissue (somatic mosaicism) were demonstrated in Moutain weasel, Eurasian lynx, Clouded leopard, Chinese tiger, Black leopard and Leopard AR. And, the abnormal stop codon was found in the exon 1 of three carnivore species AR (Moutain weasel, Eurasian lynx and Black leopard). It seemed to have a high frequency presence of tissue-specific somatic in carnivores AR genes. Thus the in vivo mechanism leading to such highly variable phenotypes of the described mutations, and their impact on these animals, are worthwhile to be further elucidated.

  2. Non-coding RNAs derived from an alternatively spliced REST transcript (REST-003) regulate breast cancer invasiveness.

    PubMed

    Lee, Nan Sook; Evgrafov, Oleg V; Souaiaia, Tade; Bonyad, Adrineh; Herstein, Jennifer; Lee, Joo Yeun; Kim, Jihong; Ning, Yan; Sixto, Marcos; Weitz, Andrew C; Lenz, Heinz-Josef; Wang, Kai; Knowles, James A; Press, Michael F; Salvaterra, Paul M; Shung, K Kirk; Chow, Robert H

    2015-06-08

    RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30-200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.

  3. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm, Bombyx mori.

    PubMed

    Wu, Yuqian; Cheng, Tingcai; Liu, Chun; Liu, Duolian; Zhang, Quan; Long, Renwen; Zhao, Ping; Xia, Qingyou

    2016-01-01

    Long noncoding RNAs (lncRNAs) are emerging as important regulators in various biological processes. However, to date, no systematic characterization of lncRNAs has been reported in the silkworm Bombyx mori. In the present study, we generated eighteen RNA-seq datasets with relatively high depth. Using an in-house designed lncRNA identification pipeline, 11,810 lncRNAs were identified for 5,556 loci. Among these lncRNAs, 474 transcripts were intronic lncRNAs (ilncRNAs), 6,250 transcripts were intergenic lncRNAs (lincRNAs), and 5,086 were natural antisense lncRNAs (lncNATs). Compared with protein-coding mRNAs, silkworm lncRNAs are shorter in terms of full length but longer in terms of exon and intron length. In addition, lncRNAs exhibit a lower level of sequence conservation, more repeat sequences overlapped and higher tissue specificity than protein-coding mRNAs in the silkworm. We found that 69 lncRNA transcripts from 33 gene loci may function as miRNA precursors, and 104 lncRNA transcripts from 72 gene loci may act as competing endogenous RNAs (ceRNAs). In total, 49.47% of all gene loci (2,749/5,556) for which lncRNAs were identified showed sex-biased expression. Co-expression network analysis resulted in 19 modules, 12 of which revealed relatively high tissue specificity. The highlighted darkgoldenrod module was specifically associated with middle and posterior silk glands, and the hub lncRNAs within this module were co-expressed with proteins involved in translation, translocation, and secretory processes, suggesting that these hub lncRNAs may function as regulators of the biosynthesis, translocation, and secretion of silk proteins. This study presents the first comprehensive genome-wide analysis of silkworm lncRNAs and provides an invaluable resource for genetic, evolutionary, and genomic studies of B. mori.

  4. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm, Bombyx mori

    PubMed Central

    Wu, Yuqian; Cheng, Tingcai; Liu, Chun; Liu, Duolian; Zhang, Quan; Long, Renwen; Zhao, Ping; Xia, Qingyou

    2016-01-01

    Long noncoding RNAs (lncRNAs) are emerging as important regulators in various biological processes. However, to date, no systematic characterization of lncRNAs has been reported in the silkworm Bombyx mori. In the present study, we generated eighteen RNA-seq datasets with relatively high depth. Using an in-house designed lncRNA identification pipeline, 11,810 lncRNAs were identified for 5,556 loci. Among these lncRNAs, 474 transcripts were intronic lncRNAs (ilncRNAs), 6,250 transcripts were intergenic lncRNAs (lincRNAs), and 5,086 were natural antisense lncRNAs (lncNATs). Compared with protein-coding mRNAs, silkworm lncRNAs are shorter in terms of full length but longer in terms of exon and intron length. In addition, lncRNAs exhibit a lower level of sequence conservation, more repeat sequences overlapped and higher tissue specificity than protein-coding mRNAs in the silkworm. We found that 69 lncRNA transcripts from 33 gene loci may function as miRNA precursors, and 104 lncRNA transcripts from 72 gene loci may act as competing endogenous RNAs (ceRNAs). In total, 49.47% of all gene loci (2,749/5,556) for which lncRNAs were identified showed sex-biased expression. Co-expression network analysis resulted in 19 modules, 12 of which revealed relatively high tissue specificity. The highlighted darkgoldenrod module was specifically associated with middle and posterior silk glands, and the hub lncRNAs within this module were co-expressed with proteins involved in translation, translocation, and secretory processes, suggesting that these hub lncRNAs may function as regulators of the biosynthesis, translocation, and secretion of silk proteins. This study presents the first comprehensive genome-wide analysis of silkworm lncRNAs and provides an invaluable resource for genetic, evolutionary, and genomic studies of B. mori. PMID:26771876

  5. Atom cooling by nonadiabatic expansion

    SciTech Connect

    Chen Xi; Muga, J. G.; Campo, A. del; Ruschhaupt, A.

    2009-12-15

    Motivated by the recent discovery that a reflecting wall moving with a square-root-in-time trajectory behaves as a universal stopper of classical particles regardless of their initial velocities, we compare linear-in-time and square-root-in-time expansions of a box to achieve efficient atom cooling. For the quantum single-atom wave functions studied the square-root-in-time expansion presents important advantages: asymptotically it leads to zero average energy whereas any linear-in-time (constant box-wall velocity) expansion leaves a nonzero residual energy, except in the limit of an infinitely slow expansion. For finite final times and box lengths we set a number of bounds and cooling principles which again confirm the superior performance of the square-root-in-time expansion, even more clearly for increasing excitation of the initial state. Breakdown of adiabaticity is generally fatal for cooling with the linear expansion but not so with the square-root-in-time expansion.

  6. Embryonic stem cell models of CAG repeat disease.

    PubMed

    Lorincz, Matthew T

    2005-01-01

    Nine neurodegenerative disorders are caused by CAG/polyglutamine (polyQ) repeat expansions. The underlying molecular mechanisms responsible for disease specific neurodegeneration remain elusive. In vivo and in vitro models utilizing rodent tissues, immortalized human cell lines, and human post mortem samples have provided insight into disease mechanisms. Concern that cellular and molecular processes observed in these models may not faithfully reproduce human diseases or be useful to identify compounds of therapeutic utility has driven development of new disease models. In addition to their therapeutic potential, stem cells represent a renewable source of tissue that can be directed into neurons and glia and can be used to study neurodegenerative cascades from their inception. Neuronally differentiated human stem cells containing CAG repeat expansions have the potential to accurately replicate human CAG repeat diseases and may be a faithful predictor of which compounds will be of human benefit. As a first step in development of this type of model, we developed murine embryonic stem cell models to study the mechanisms of polyQ tract induced neuronal degeneration.

  7. Noncoding DNA and the teem theory of inheritance, emotions and innate behaviour.

    PubMed

    Vendramini, Danny

    2005-01-01

    The evolutionary function of noncoding 'junk' DNA remains one of the most challenging mysteries of genetics. Here a new model of DNA is proposed to explain this function. The hypothesis asserts the DNA molecule contains not one, but two separate modes of inheritance. In addition to exons that code for proteins and physical traits, it is argued noncoding repetitive elements code for the inheritance of emotions and innate behaviour in metazoans. That is to say, noncoding DNA functions as the medium of a second, hitherto unknown evolutionary process that genetically archives adaptive information, configured as emotions and acquired during the life of an organism, into an inheritable form. This second evolutionary process, here called 'Teemosis', is a selectionist process, but paradoxically, because it does not affect physical traits, it has no maladaptive Lamarckian consequences. The medical implications of the hypothesis are discussed.

  8. A Micropeptide Encoded by a Putative Long Non-coding RNA Regulates Muscle Performance

    PubMed Central

    Anderson, Douglas M.; Anderson, Kelly M.; Chang, Chi-Lun; Makarewich, Catherine A.; Nelson, Benjamin R.; McAnally, John R.; Kasaragod, Prasad; Shelton, John M.; Liou, Jen; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Summary Functional micropeptides can be concealed within RNAs that appear to be non-coding. We discovered a conserved micropeptide, that we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long non-coding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca2+ uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca2+ uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca2+ handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as non-coding. PMID:25640239

  9. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs

    PubMed Central

    Zebisch, Armin; Hatzl, Stefan; Pichler, Martin; Wölfler, Albert; Sill, Heinz

    2016-01-01

    Acute myeloid leukemia (AML) is caused by malignant transformation of hematopoietic stem or progenitor cells and displays the most frequent acute leukemia in adults. Although some patients can be cured with high dose chemotherapy and allogeneic hematopoietic stem cell transplantation, the majority still succumbs to chemoresistant disease. Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA fragments and act as key players in the regulation of both physiologic and pathologic gene expression profiles. Aberrant expression of various non-coding RNAs proved to be of seminal importance in the pathogenesis of AML, as well in the development of resistance to chemotherapy. In this review, we discuss the role of miRNAs and lncRNAs with respect to sensitivity and resistance to treatment regimens currently used in AML and provide an outlook on potential therapeutic targets emerging thereof. PMID:27973410

  10. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants

    PubMed Central

    Grant-Downton, Robert; Rodriguez-Enriquez, Josefina

    2012-01-01

    Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen—containing the male gametes (sperm cells)—in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus. PMID:24970151

  11. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance.

    PubMed

    Ayers, Duncan; Vandesompele, Jo

    2017-03-03

    Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.

  12. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells

    PubMed Central

    Lukovic, Dunja; Moreno-Manzano, Victoria; Klabusay, Martin; Stojkovic, Miodrag; Bhattacharya, Shomi S.; Erceg, Slaven

    2014-01-01

    Several studies have demonstrated the important role of non-coding RNAs as regulators of posttranscriptional processes, including stem cells self-renewal and neural differentiation. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show enormous potential in regenerative medicine due to their capacity to differentiate to virtually any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency, self-renewal and neural differentiation will reveal new molecular mechanisms involved in induction and maintenances of pluripotent state as well as triggering these cells toward clinically relevant cells for transplantation. In this brief review we will summarize recently published studies which reveal the role of non-coding RNAs in pluripotency and neural differentiation of hESCs and ihPSC. PMID:24860598

  13. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance

    PubMed Central

    Ayers, Duncan; Vandesompele, Jo

    2017-01-01

    Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology. PMID:28273813

  14. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants.

    PubMed

    Grant-Downton, Robert; Rodriguez-Enriquez, Josefina

    2012-12-04

    Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen-containing the male gametes (sperm cells)-in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus.

  15. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  16. Micromechanics of expansive mechanisms in expansive cement concretes

    NASA Astrophysics Data System (ADS)

    Cohen, M. D.

    The kinetics of hydration were studied by monitoring the presence of various compounds by X-ray diffractometer, a chemical extraction method, and scanning electron microscope. These studies indicated that the rates of depletion of the expanding particles and sulfates are higher in the finer blends, which is why expansion stops earlier in these blends. It is shown that the double curvature phenomenon (strength-drop and sudden increase in the rate of expansion) is caused by mechanical failure (e.g., microcracking) of the matrix surrounding the expanding particles that are producing ettringite crystals. The theory of protective and partial protective coating is reviewed. A hypothesis is introduced which assumes that monosulfate is not formed immediately when ettringite stops forming but is preceded by an intermediate phase. Shrinkage studies show that expansive cements shrink more than portland cements. The results of these studies were used to develop a modified model of the expansive process. It was shown theoretically that the time of expansion is inversely proportional to the surface area of the expansive clinker and directly proportional to the amount of sulfate used.

  17. Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers

    PubMed Central

    van Blitterswijk, Marka; Mullen, Bianca; Heckman, Michael G.; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Brown, Patricia H.; Murray, Melissa E.; Hsiung, Ging-Yuek R.; Stewart, Heather; Karydas, Anna M.; Finger, Elizabeth; Kertesz, Andrew; Bigio, Eileen H.; Weintraub, Sandra; Mesulam, Marsel; Hatanpaa, Kimmo J.; White, Charles L.; Neumann, Manuela; Strong, Michael J.; Beach, Thomas G.; Wszolek, Zbigniew K.; Lippa, Carol; Caselli, Richard; Petrucelli, Leonard; Josephs, Keith A.; Parisi, Joseph E.; Knopman, David S.; Petersen, Ronald C.; Mackenzie, Ian R.; Seeley, William W.; Grinberg, Lea T.; Miller, Bruce L.; Boylan, Kevin B.; Graff-Radford, Neill R.; Boeve, Bradley F.; Dickson, Dennis W.; Rademakers, Rosa

    2014-01-01

    Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion carriers. In this study, we investigated four genes that could represent genetic modifiers: ataxin-2 (ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1 (SMN1) and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of 331 C9ORF72 expansion carriers and 376 controls, revealed that intermediate repeat lengths in ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was provided for a potential role of NIPA1, SMN1 or SMN2. The effects of intermediate ATXN2 repeats were most profound in probands with MND or FTD/MND (2.1% versus 0% in controls, P=0.013), whereas the frequency in probands with FTD was identical to controls. Though intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports did not focus on individuals with clear pathogenic mutations, such as repeat expansions in C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths may render C9ORF72 expansion carriers more susceptible to the development of MND; further studies are needed, however, to validate our findings. PMID:24866401

  18. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats.

    PubMed

    van der Zee, Julie; Gijselinck, Ilse; Dillen, Lubina; Van Langenhove, Tim; Theuns, Jessie; Engelborghs, Sebastiaan; Philtjens, Stéphanie; Vandenbulcke, Mathieu; Sleegers, Kristel; Sieben, Anne; Bäumer, Veerle; Maes, Githa; Corsmit, Ellen; Borroni, Barbara; Padovani, Alessandro; Archetti, Silvana; Perneczky, Robert; Diehl-Schmid, Janine; de Mendonça, Alexandre; Miltenberger-Miltenyi, Gabriel; Pereira, Sónia; Pimentel, José; Nacmias, Benedetta; Bagnoli, Silvia; Sorbi, Sandro; Graff, Caroline; Chiang, Huei-Hsin; Westerlund, Marie; Sanchez-Valle, Raquel; Llado, Albert; Gelpi, Ellen; Santana, Isabel; Almeida, Maria Rosário; Santiago, Beatriz; Frisoni, Giovanni; Zanetti, Orazio; Bonvicini, Cristian; Synofzik, Matthis; Maetzler, Walter; Vom Hagen, Jennifer Müller; Schöls, Ludger; Heneka, Michael T; Jessen, Frank; Matej, Radoslav; Parobkova, Eva; Kovacs, Gabor G; Ströbel, Thomas; Sarafov, Stayko; Tournev, Ivailo; Jordanova, Albena; Danek, Adrian; Arzberger, Thomas; Fabrizi, Gian Maria; Testi, Silvia; Salmon, Eric; Santens, Patrick; Martin, Jean-Jacques; Cras, Patrick; Vandenberghe, Rik; De Deyn, Peter Paul; Cruts, Marc; Van Broeckhoven, Christine; van der Zee, Julie; Gijselinck, Ilse; Dillen, Lubina; Van Langenhove, Tim; Theuns, Jessie; Philtjens, Stéphanie; Sleegers, Kristel; Bäumer, Veerle; Maes, Githa; Corsmit, Ellen; Cruts, Marc; Van Broeckhoven, Christine; van der Zee, Julie; Gijselinck, Ilse; Dillen, Lubina; Van Langenhove, Tim; Philtjens, Stéphanie; Theuns, Jessie; Sleegers, Kristel; Bäumer, Veerle; Maes, Githa; Cruts, Marc; Van Broeckhoven, Christine; Engelborghs, Sebastiaan; De Deyn, Peter P; Cras, Patrick; Engelborghs, Sebastiaan; De Deyn, Peter P; Vandenbulcke, Mathieu; Vandenbulcke, Mathieu; Borroni, Barbara; Padovani, Alessandro; Archetti, Silvana; Perneczky, Robert; Diehl-Schmid, Janine; Synofzik, Matthis; Maetzler, Walter; Müller Vom Hagen, Jennifer; Schöls, Ludger; Synofzik, Matthis; Maetzler, Walter; Müller Vom Hagen, Jennifer; Schöls, Ludger; Heneka, Michael T; Jessen, Frank; Ramirez, Alfredo; Kurzwelly, Delia; Sachtleben, Carmen; Mairer, Wolfgang; de Mendonça, Alexandre; Miltenberger-Miltenyi, Gabriel; Pereira, Sónia; Firmo, Clara; Pimentel, José; Sanchez-Valle, Raquel; Llado, Albert; Antonell, Anna; Molinuevo, Jose; Gelpi, Ellen; Graff, Caroline; Chiang, Huei-Hsin; Westerlund, Marie; Graff, Caroline; Kinhult Ståhlbom, Anne; Thonberg, Håkan; Nennesmo, Inger; Börjesson-Hanson, Anne; Nacmias, Benedetta; Bagnoli, Silvia; Sorbi, Sandro; Bessi, Valentina; Piaceri, Irene; Santana, Isabel; Santiago, Beatriz; Santana, Isabel; Helena Ribeiro, Maria; Rosário Almeida, Maria; Oliveira, Catarina; Massano, João; Garret, Carolina; Pires, Paula; Frisoni, Giovanni; Zanetti, Orazio; Bonvicini, Cristian; Sarafov, Stayko; Tournev, Ivailo; Jordanova, Albena; Tournev, Ivailo; Kovacs, Gabor G; Ströbel, Thomas; Heneka, Michael T; Jessen, Frank; Ramirez, Alfredo; Kurzwelly, Delia; Sachtleben, Carmen; Mairer, Wolfgang; Jessen, Frank; Matej, Radoslav; Parobkova, Eva; Danel, Adrian; Arzberger, Thomas; Maria Fabrizi, Gian; Testi, Silvia; Ferrari, Sergio; Cavallaro, Tiziana; Salmon, Eric; Santens, Patrick; Cras, Patrick

    2013-02-01

    We assessed the geographical distribution of C9orf72 G(4) C(2) expansions in a pan-European frontotemporal lobar degeneration (FTLD) cohort (n = 1,205), ascertained by the European Early-Onset Dementia (EOD) consortium. Next, we performed a meta-analysis of our data and that of other European studies, together 2,668 patients from 15 Western European countries. The frequency of the C9orf72 expansions in Western Europe was 9.98% in overall FTLD, with 18.52% in familial, and 6.26% in sporadic FTLD patients. Outliers were Finland and Sweden with overall frequencies of respectively 29.33% and 20.73%, but also Spain with 25.49%. In contrast, prevalence in Germany was limited to 4.82%. In addition, we studied the role of intermediate repeats (7-24 repeat units), which are strongly correlated with the risk haplotype, on disease and C9orf72 expression. In vitro reporter gene expression studies demonstrated significantly decreased transcriptional activity of C9orf72 with increasing number of normal repeat units, indicating that intermediate repeats might act as predisposing alleles and in favor of the loss-of-function disease mechanism. Further, we observed a significantly increased frequency of short indels in the GC-rich low complexity sequence adjacent to the G(4) C(2) repeat in C9orf72 expansion carriers (P < 0.001) with the most common indel creating one long contiguous imperfect G(4) C(2) repeat, which is likely more prone to replication slippage and pathological expansion.

  19. Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD.

    PubMed

    Nordin, Angelica; Akimoto, Chizuru; Wuolikainen, Anna; Alstermark, Helena; Jonsson, Pär; Birve, Anna; Marklund, Stefan L; Graffmo, Karin S; Forsberg, Karin; Brännström, Thomas; Andersen, Peter M

    2015-06-01

    A GGGGCC-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasians. However, little is known about the variability of the GGGGCC expansion in different tissues and whether this correlates with the observed phenotype. Here, we used Southern blotting to estimate the size of hexanucleotide expansions in C9orf72 in neural and non-neural tissues from 18 autopsied ALS and FTD patients with repeat expansion in blood. Digitalization of the Southern blot images allowed comparison of repeat number, smear distribution and expansion band intensity between tissues and between patients. We found marked intra-individual variation of repeat number between tissues, whereas there was less variation within each tissue group. In two patients, the size variation between tissues was extreme, with repeat numbers below 100 in all studied non-neural tissues, whereas expansions in neural tissues were 20-40 times greater and in the same size range observed in neural tissues of the other 16 patients. The expansion pattern in different tissues could not distinguish between diagnostic groups and no correlation was found between expansion size in frontal lobe and occurrence of cognitive impairment. In ALS patients, a less number of repeats in the cerebellum and parietal lobe correlated with earlier age of onset and a larger number of repeats in the parietal lobe correlated with a more rapid progression. In 43 other individuals without repeat expansion in blood, we find that repeat sizes up to 15 are stable, as no size variation between blood, brain and spinal cord was found.

  20. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring.

    PubMed

    Kunej, Tanja; Obsteter, Jana; Pogacar, Ziva; Horvat, Simon; Calin, George Adrian

    2014-12-01

    Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve

  1. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants

    PubMed Central

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1–6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ PMID:25380781

  2. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  3. Magnetars as soft gamma repeaters

    NASA Astrophysics Data System (ADS)

    O'Meara, Karen

    1999-05-01

    The source of non-periodic, repeating, gamma-ray bursts located within our galaxy and near supernova remnants has been a mystery. A new theory by Christopher Thompson and Robert Duncan, postulating the existence of young neutron stars with intense magnetic fields (1E14 Gauss or more) offers an explanation. The intense magnetic fields of these "magnetars" suffice to create the phenomena detected from soft gamma-ray repeaters. The poles of a magnetar are hot enough to emit steady, low level x-ray emissions. Stresses on the star's crust due to the drifting of the magnetic field through the superfluid core create seismic activity and "starquakes," which release enormous bursts of energy. Data collected from recent soft gamma-ray repeater bursts appear to be strong evidence in support of this exciting new theory.

  4. Limitations on quantum key repeaters

    NASA Astrophysics Data System (ADS)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-01

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  5. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  6. Identification and Functional Prediction of Large Intergenic Noncoding RNAs (lincRNAs) in Rainbow Trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long noncoding RNAs (lncRNAs) have been recognized in recent years as key regulators of diverse cellular processes. Genome-wide large-scale projects have uncovered thousands of lncRNAs in many model organisms. Large intergenic noncoding RNAs (lincRNAs) are lncRNAs that are transcribed from intergeni...

  7. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  8. Trinucleotide repeats at the FRAXF locus: Frequency and distribution in the general population

    SciTech Connect

    Holden, J.J.A.; Walker, M.

    1996-08-09

    FRAXF the third X-chromosomal fragile site to be cloned, has been shown to harbor a polymorphic compound triplet array: (GC-CGTC){sub n} (GCC){sub n}. Expansion and methylation of the GCC-repeat and the neighboring CpG-rich region result in chromosomal fragility. DNAs from 500 anonymous consecutive newborn males were examined to determine the incidence of various repeat numbers. The range of repeats was from 10-38, with the most common alleles having 14 (52.7%), 12 (16.6%), 21 (9.0%), and 22 (5.2%) triplets. Based on the distribution of repeat numbers, we suggest that the 21-repeat allele resulted from hairpin formation involving 7 GCC-repeats in a 14-repeat allele, accompanied by polymerase slippage. Examination of dinucleotide repeats near the FRAXF repeat will be important in testing this hypothesis. Since the clinical phenotype, if any, of FRAXF is unknown, this database will also be valuable for comparisons with repeat numbers in individuals from special populations. 20 refs., 1 fig., 1 tab.

  9. Single cell analysis reveals gametic and tissue-specific instability of the SCA1 CAG repeat

    SciTech Connect

    Chong, S.S.; McCall, A.E.; Cota, J.

    1994-09-01

    Spinocerebellar ataxia type 1 is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat within the SCA1 gene on chromosome 6p22-23. We performed a comparative analysis of the SCA1 CAG repeat from blood and sperm of an affected male. Genomic amplification revealed a broader smear of the SCA1 allele product from sperm compared to that from peripheral blood leukocytes (PBL). To resolve this observed difference, we analyzed single sperm directly and demonstrate that the SCA1 allele in PBL is also heterogeneous, although the range of variability in allele sizes is much less than that observed in sperm. Limited genome analysis was also performed on PBL DNA from an unaffected individual with an upper normal allele of 36 repeats in parallel with an affected individual with an expanded allele of 40 repeats. The 36 repeat normal allele, which contains a CAT interruption, was completely stable compared to the uninterrupted repeat of the SCA1 allele, demonstrating a direct correlation between absence of a CAT interruption and somatic instability of the repeat. We also analyzed the size of the CAG repeat in tissues derived from various brain regions from a patient with juvenile-onset disease to determine if the size of the expansion correlated with the site of neuropathology. The results clearly show tissue-specific differences in mosaicism of repeat length. More importantly, the pattern of tissue-specific differences in repeat-length mosaicism in SCA1 within the brain parallels those seen in Huntington disease. In both disorders the expanded alleles are smaller in cerebellar tissue. These results suggest that the observed tissue-specific differences in instability of the SCA1 CAG repeat, either within the brain or between blood and sperm, are a function of the intracellular milieu or the intrinsic replicative potential of the various celltypes.

  10. Characterization of conservative somatic instability of the CAG repeat region in Huntington`s disease

    SciTech Connect

    Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.

    1994-09-01

    Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onset and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.

  11. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera

    PubMed Central

    Zayed, Amro; Whitfield, Charles W.

    2008-01-01

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding r