Sample records for noncoding repeat expansions

  1. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions.

    PubMed

    Landrian, Ivette; McFarland, Karen N; Liu, Jilin; Mulligan, Connie J; Rasmussen, Astrid; Ashizawa, Tetsuo

    2017-01-01

    Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5'-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3'-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5'-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5'-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.

  2. MicroRNAs in CAG trinucleotide repeat expansion disorders: an integrated review of the literature.

    PubMed

    Dumitrescu, Laura; Popescu, Bogdan O

    2015-01-01

    MicroRNAs are small RNAs involved in gene silencing. They play important roles in transcriptional regulation and are selectively and abundantly expressed in the central nervous system. A considerable amount of the human genome is comprised of tandem repeating nucleotide streams. Several diseases are caused by above-threshold expansion of certain trinucleotide repeats occurring in a protein-coding or non-coding region. Though monogenic, CAG trinucleotide repeat expansion disorders have a complex pathogenesis, various combinations of multiple coexisting pathways resulting in one common final consequence: selective neurodegeneration. Mutant protein and mutant transcript gain of toxic function are considered to be the core pathogenic mechanisms. The profile of microRNAs in CAG trinucleotide repeat disorders is scarcely described, however microRNA dysregulation has been identified in these diseases and microRNA-related intereference with gene expression is considered to be involved in their pathogenesis. Better understanding of microRNAs functions and means of manipulation promises to offer further insights into the pathogenic pathways of CAG repeat expansion disorders, to point out new potential targets for drug intervention and to provide some of the much needed etiopathogenic therapeutic agents. A number of disease-modifying microRNA silencing strategies are under development, but several implementation impediments still have to be resolved. CAG targeting seems feasible and efficient in animal models and is an appealing approach for clinical practice. Preliminary human trials are just beginning.

  3. Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis.

    PubMed

    Herdewyn, Sarah; Zhao, Hui; Moisse, Matthieu; Race, Valérie; Matthijs, Gert; Reumers, Joke; Kusters, Benno; Schelhaas, Helenius J; van den Berg, Leonard H; Goris, An; Robberecht, Wim; Lambrechts, Diether; Van Damme, Philip

    2012-06-01

    Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2-23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)(n) repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS.

  4. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    PubMed Central

    Frizzell, Aisling; Nguyen, Jennifer H.G.; Petalcorin, Mark I.R.; Turner, Katherine D.; Boulton, Simon J.; Freudenreich, Catherine H.; Lahue, Robert S.

    2018-01-01

    SUMMARY Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG·CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG·CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. PMID:24561255

  5. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    PubMed

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats.

    PubMed

    Yu, Zhenming; Zhu, Yongqing; Chen-Plotkin, Alice S; Clay-Falcone, Dana; McCluskey, Leo; Elman, Lauren; Kalb, Robert G; Trojanowski, John Q; Lee, Virginia M-Y; Van Deerlin, Vivianna M; Gitler, Aaron D; Bonini, Nancy M

    2011-03-29

    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.

  7. Precise small molecule recognition of a toxic CUG RNA repeat expansion

    PubMed Central

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-01-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context. PMID:27941760

  8. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    PubMed

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG) exp ) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG) exp . In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) exp in its natural context.

  9. Expansion of the Spinocerebellar Ataxia Type 10 (SCA10) Repeat in a Patient with Sioux Native American Ancestry

    PubMed Central

    Liu, Jilin; McFarland, Karen N.; Landrian, Ivette; Hutter, Diane; Teive, Hélio A. G.; Rasmussen, Astrid; Mulligan, Connie J.; Ashizawa, Tetsuo

    2013-01-01

    Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia, is caused by the expansion of the non-coding ATTCT pentanucleotide repeat in the ATAXIN 10 gene. To date, all cases of SCA10 are restricted to patients with ancestral ties to Latin American countries. Here, we report on a SCA10 patient with Sioux Native American ancestry and no reported Hispanic or Latino heritage. Neurological exam findings revealed impaired gait with mild, age-consistent cerebellar atrophy and no evidence of epileptic seizures. The age at onset for this patient, at 83 years of age, is the latest documented for SCA10 patients and is suggestive of a reduced penetrance allele in his family. Southern blot analysis showed an SCA10 expanded allele of 1400 repeats. Established SNPs surrounding the SCA10 locus showed a disease haplotype consistent with the previously described “SCA10 haplotype”. This case suggests that the SCA10 expansion represents an early mutation event that possibly occurred during the initial peopling of the Americas. PMID:24278426

  10. Idiopathic Parkinson’s disease phenotype related to C9ORF72 repeat expansions: contribution of the neuropsychological assessment

    PubMed Central

    2013-01-01

    Background Expanded GGGGCC hexanucleotide repeats in the non-coding region of the C9ORF72 gene was recently identified as being responsible for over 40% of the cases of amyotrophic lateral sclerosis associated with frontotemporal lobar degeneration, in various extrapyramidal syndromes including supranuclear gaze palsy and corticobasal degeneration, and in addition, has been found to be a rare genetic cause of isolated Parkinsonism. To our knowledge, there is no published data concerning the neuropsychological evaluation of patients diagnosed with idiopathic Parkinson’s disease related with C9ORF72 repeat expansions. Case presentation We report the results of the comprehensive neuropsychological evaluation in a newly described case in the literature (the sixth) of a patient presenting isolated idiopathic Parkinson’s disease associated with C9ORF72 repeat expansions. The decrease in the patient’s prefrontal functions resulted in a slight decrease in global efficiency. These abnormalities did not appear to be different, with respect to the deficit observed and the intensity of the cognitive impairment, from those classically observed in cases of sporadic idiopathic Parkinson’s disease. Our patient also exhibited a significant impairment in visual gnosis. Conclusions If confirmed in other patients, visuoperceptive deficits in idiopathic Parkinson’s disease could represent a red flag that should prompt the clinician to perform addition diagnostic procedures. A thorough neuropsychological assessment may prove to be useful for detecting idiopathic Parkinson’s disease in patients who are suspected of having repeat abnormalities of C9ORF72 expansions. PMID:23987827

  11. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions

    PubMed Central

    Essebier, Alexandra; Vera Wolf, Patricia; Cao, Minh Duc; Carroll, Bernard J.; Balasubramanian, Sureshkumar; Bodén, Mikael

    2016-01-01

    More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions. PMID:27013954

  12. Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy.

    PubMed

    Rudnicki, Dobrila D; Margolis, Russell L

    2003-08-22

    Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative disorders falling into three groups. Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a CAG repeat expansion that encodes polyglutamine. Convergent lines of evidence demonstrate that neurodegeneration in these diseases is a consequence of the neurotoxic effects of abnormally long stretches of glutamines. How polyglutamine induces neurodegeneration, and why neurodegeneration occurs in only select neuronal populations, remains a matter of intense investigation. SCA6 is caused by a CAG repeat expansion in CACNA1A, a gene that encodes a subunit of the P/Q-type calcium channel. The threshold length at which the repeat causes disease is much shorter than in the other polyglutamine diseases, and neurodegeneration may arise from expansion-induced change of function in the calcium channel. Huntington's disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation into these diseases is still at an early stage, but it is now reasonable to hypothesise that the net effect of each expansion is to alter gene expression. The different pathogenic mechanisms in these three groups of diseases have important implications for the development of rational therapeutics.

  13. C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.

    PubMed

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T; Thompson, Elizabeth M; Haan, Eric; Sue, Carolyn M; Panegyres, Peter K; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E; Brooks, William S; Schofield, Peter R; Pastor, Pau; Kwok, John B J

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion' patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine 'expansion-positive' patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an 'intermediate' allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of 'non-expansion' FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.

  14. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.

    PubMed

    Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed

    2012-08-24

    While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future.

  15. DNA Mismatch Repair Complex MutSβ Promotes GAA·TTC Repeat Expansion in Human Cells*

    PubMed Central

    Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed

    2012-01-01

    While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future. PMID:22787155

  16. C9orf72 repeat expansions in rapid eye movement sleep behaviour disorder.

    PubMed

    Daoud, Hussein; Postuma, Ronald B; Bourassa, Cynthia V; Rochefort, Daniel; Gauthier, Maude Turcotte; Montplaisir, Jacques; Gagnon, Jean-Francois; Arnulf, Isabelle; Dauvilliers, Yves; Charley, Christelle Monaca; Inoue, Yuichi; Sasai, Taeko; Högl, Birgit; Desautels, Alex; Frauscher, Birgit; Cochen De Cock, Valérie; Rouleau, Guy A; Dion, Patrick A

    2014-11-01

    A large hexanucleotide repeat expansion in C9orf72 has been identified as the most common genetic cause in familial amyotrophic lateral sclerosis and frontotemporal dementia. Rapid Eye Movement Sleep Behavior Disorder (RBD) is a sleep disorder that has been strongly linked to synuclein-mediated neurodegeneration. The aim of this study was to evaluate the role of the C9orf72 expansions in the pathogenesis of RBD. We amplified the C9orf72 repeat expansion in 344 patients with RBD by a repeat-primed polymerase chain reaction assay. We identified two RBD patients carrying the C9orf72 repeat expansion. Most interestingly, these patients have the same C9orf72 associated-risk haplotype identified in 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia families. Our study enlarges the phenotypic spectrum associated with the C9orf72 hexanucleotide repeat expansions and suggests that, although rare, this expansion may play a role in the pathogenesis of RBD.

  17. C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients

    PubMed Central

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T.; Thompson, Elizabeth M.; Haan, Eric; Sue, Carolyn M.; Panegyres, Peter K.; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E.; Brooks, William S.; Schofield, Peter R.; Pastor, Pau; Kwok, John B. J.

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in ‘non-expansion’ patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5–17% of patients (21–41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine ‘expansion-positive’ patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an ‘intermediate’ allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of ‘non-expansion’ FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease. PMID:23437264

  18. The Role of the Immune System in Triplet Repeat Expansion Diseases

    PubMed Central

    Urbanek, Martyna O.; Krzyzosiak, Wlodzimierz J.

    2015-01-01

    Trinucleotide repeat expansion disorders (TREDs) are a group of dominantly inherited neurological diseases caused by the expansion of unstable repeats in specific regions of the associated genes. Expansion of CAG repeat tracts in translated regions of the respective genes results in polyglutamine- (polyQ-) rich proteins that form intracellular aggregates that affect numerous cellular activities. Recent evidence suggests the involvement of an RNA toxicity component in polyQ expansion disorders, thus increasing the complexity of the pathogenic processes. Neurodegeneration, accompanied by reactive gliosis and astrocytosis is the common feature of most TREDs, which may suggest involvement of inflammation in pathogenesis. Indeed, a number of immune response markers have been observed in the blood and CNS of patients and mouse models, and the activation of these markers was even observed in the premanifest stage of the disease. Although inflammation is not an initiating factor of TREDs, growing evidence indicates that inflammatory responses involving astrocytes, microglia, and the peripheral immune system may contribute to disease progression. Herein, we review the involvement of the immune system in the pathogenesis of triplet repeat expansion diseases, with particular emphasis on polyglutamine disorders. We also present various therapeutic approaches targeting the dysregulated inflammation pathways in these diseases. PMID:25873774

  19. Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions.

    PubMed

    Tan, Rachel H; Kril, Jillian J; McGinley, Ciara; Hassani, Mohammad; Masuda-Suzukake, Masami; Hasegawa, Masato; Mito, Remika; Kiernan, Matthew C; Halliday, Glenda M

    2016-02-01

    Despite evidence suggesting that the cerebellum may be targeted in amyotrophic lateral sclerosis (ALS), particularly in cases with repeat expansions in the ATXN2 and C9ORF72 genes, the integrity of cerebellar neurons has yet to be examined. The present study undertakes a histopathological analysis to assess the impact of these repeat expansions on cerebellar neurons and determine whether similar cerebellar pathology occurs in sporadic disease. Purkinje and granule cells were quantified in the vermis and lateral cerebellar hemispheres of ALS cases with repeat expansions in the ATXN2 and C9ORF72 genes, sporadic disease, and sporadic progressive muscular atrophy with only lower motor neuron degeneration. ALS cases with intermediate repeat expansions in the ATXN2 gene demonstrate a significant loss in Purkinje cells in the cerebellar vermis only. Despite ALS cases with expansions in the C9ORF72 gene having the highest burden of inclusion pathology, no neuronal loss was observed in this group. Neuronal numbers were also unchanged in sporadic ALS and sporadic PMA cases. The present study has established a selective loss of Purkinje cells in the cerebellar vermis of ALS cases with intermediate repeat expansions in the ATXN2 gene, suggesting a divergent pathogenic mechanism independent of upper and lower motor neuron degeneration in ALS. We discuss these findings in the context of large repeat expansions in ATXN2 and spinocerebellar ataxia type 2, providing evidence that intermediate repeats in ATXN2 cause significant, albeit less substantial, spinocerebellar damage compared with longer repeats in ATXN2. © 2016 American Neurological Association.

  20. Large-scale assessment of polyglutamine repeat expansions in Parkinson disease

    PubMed Central

    Wang, Lisa; Aasly, Jan O.; Annesi, Grazia; Bardien, Soraya; Bozi, Maria; Brice, Alexis; Carr, Jonathan; Chung, Sun J.; Clarke, Carl; Crosiers, David; Deutschländer, Angela; Eckstein, Gertrud; Farrer, Matthew J.; Goldwurm, Stefano; Garraux, Gaetan; Hadjigeorgiou, Georgios M.; Hicks, Andrew A.; Hattori, Nobutaka; Klein, Christine; Jeon, Beom; Kim, Yun J.; Lesage, Suzanne; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E.; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D.; Morrison, Karen E.; Opala, Grzegorz; Pihlstrøm, Lasse; Pramstaller, Peter P.; Park, Sung S.; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A.; Stefanis, Leonidas; Stockton, Joanne D.; Silburn, Peter A.; Theuns, Jessie; Tan, Eng K.; Tomiyama, Hiroyuki; Toft, Mathias; Van Broeckhoven, Christine; Uitti, Ryan J.; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius M.; Krüger, Rejko

    2015-01-01

    Objectives: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). Methods: We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. Results: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. Conclusions: Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD. PMID:26354989

  1. The Repeat Expansion Diseases: the dark side of DNA repair?

    PubMed Central

    Zhao, Xiao-Nan; Usdin, Karen

    2015-01-01

    DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199

  2. Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using repeat expansion detection and a PCR screening set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, T.; Guy, C.; Speight, G.

    Studies of the transmission of schizophrenia in families with affected members in several generations have suggested that an expanded trinucleotide repeat mechanism may contribute to the genetic inheritance of this disorder. Using repeat expansion detection (RED), we and others have previously found that the distribution of CAG/CTG repeat size is larger in patients with schizophrenia than in controls. In an attempt to identify the specific expanded CAG/CTG locus or loci associated with schizophrenia, we have now used an approach based on a CAG/CTG PCR screening set combined with RED data. This has allowed us to minimize genotyping while excluding 43more » polymorphic autosomal loci and 7 X-chromosomal loci from the screening set as candidates for expansion in schizophrenia with a very high degree of confidence. 18 refs., 1 tab.« less

  3. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells

    PubMed Central

    Gannon, Anne-Marie M.; Frizzell, Aisling; Healy, Evan; Lahue, Robert S.

    2012-01-01

    Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington’s disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2–MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR expansions is a threshold effect, a narrow range of repeat units (∼30–40 in humans) at which mutation frequency rises dramatically and disease can initiate. The goal of this study was to identify factors that promote expansion of threshold-length CTG•CAG repeats in a human astrocytic cell line. siRNA knockdown of the MutSβ subunits MSH2 or MSH3 impeded expansions of threshold-length repeats, while knockdown of the MutSα subunit MSH6 had no effect. Chromatin immunoprecipitation experiments indicated that MutSβ, but not MutSα, was enriched at the TNR. These findings imply a direct role for MutSβ in promoting expansion of threshold-length CTG•CAG tracts. We identified the class II deacetylase HDAC5 as a novel promoting factor for expansions, joining the class I deacetylase HDAC3 that was previously identified. Double knockdowns were consistent with the possibility that MutSβ, HDAC3 and HDAC5 act through a common pathway to promote expansions of threshold-length TNRs. PMID:22941650

  4. Triplet repeat expansion at the FRAXE locus and X-linked mild mental handicap.

    PubMed Central

    Knight, S. J.; Voelckel, M. A.; Hirst, M. C.; Flannery, A. V.; Moncla, A.; Davies, K. E.

    1994-01-01

    We have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with the expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here we present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families we demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have > 200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. Images Figure 2 Figure 3 Figure 4 PMID:8023854

  5. Triplet repeat expansion at the FRAXE locus and x-linked mild mental handicap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, S.J.L.; Hirst, M.C.; Flannery, A.V.

    1994-07-01

    The authors have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here they present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families they demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25more » copies of the repeat, whereas affected individuals have >200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males. 19 refs., 4 figs., 1 tab.« less

  6. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae

    PubMed Central

    Koch, Melissa R.; House, Nealia C. M.; Cosetta, Casey M.; Jong, Robyn M.; Salomon, Christelle G.; Joyce, Cailin E.; Philips, Elliot A.; Su, Xiaofeng A.; Freudenreich, Catherine H.

    2018-01-01

    CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair. PMID:29305386

  7. Repeat expansion disease: Progress and puzzles in disease pathogenesis

    PubMed Central

    La Spada, Albert R.; Taylor, J. Paul

    2015-01-01

    Repeat expansion mutations cause at least 22 inherited neurological diseases. The complexity of repeat disease genetics and pathobiology has revealed unexpected shared themes and mechanistic pathways among the diseases, for example, RNA toxicity. Also, investigation of the polyglutamine diseases has identified post-translational modification as a key step in the pathogenic cascade, and has shown that the autophagy pathway plays an important role in the degradation of misfolded proteins – two themes likely to be relevant to the entire neurodegeneration field. Insights from repeat disease research are catalyzing new lines of study that should not only elucidate molecular mechanisms of disease, but also highlight opportunities for therapeutic intervention for these currently untreatable disorders. PMID:20177426

  8. Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells.

    PubMed

    Shen, Jianying; Zhang, Yu; Zhao, Shi; Mao, Hong; Wang, Zhongjing; Li, Honglian; Xu, Zihui

    2018-05-01

    Expanded hexanucleotide GGGGCC repeat in a noncoding region of C9ORF72 is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). However, its molecular pathogenesis remains unclear. In our previous study, the expanded GGGGCC repeats have been shown to be sufficient to cause neurodegeneration. In order to investigate the further role of expanded GGGGCC repeats in the neuron, the normal r(GGGGCC) 3 and mutant-type expanded r(GGGGCC) 30 expression vectors were transfected into Neuro-2a cells. Cell proliferation, dendrite development, and the proteins' levels of microtubule-associated protein-2 (MAP2) and cyclin-dependent kinase-5 (CDK5) were used to evaluate the cell toxicity of GGGGCC repeats on Neuro-2a cells. The results were shown that expression of expanded GGGGCC repeats caused neuronal cell toxicity in Neuro-2a cells, enhanced the expression of pMAP2 and pCDK5. Moreover, overexpression of Purα repaired expanded GGGGCC repeat-inducing neuronal toxicity in Neuro-2a cells and reduced the expression of pMAP2 and pCDK5. In all, our findings suggested that the expanded GGGGCC repeats might cause neurodegeneration through destroyed neuron cells. And the GGGGCC repeat-induced neuronal cell toxicity was inhibited by upregulation of Purα. We inferred that Purα inhibits expanded GGGGCC repeat-inducing neurodegeneration, which might reveal a novel mechanism of neurodegenerative diseases ALS and FTD.

  9. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties.

    PubMed

    Chang, Yu-Jen; Jeng, U-Ser; Chiang, Ya-Ling; Hwang, Ing-Shouh; Chen, Yun-Ru

    2016-03-04

    Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremer, B.; Theilmann, J.; Spence, N.

    1995-08-01

    A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in {approximately}70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r{sup 2}=.19). The size of the CAG repeat influenced largermore » intergenerational expansions (>7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (>7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P<10{sub -7}), while offspring of affected mothers are more likely to show no change (P=.01) or contractions in CAG size (P=.002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability. 22 refs., 4 figs., 3 tabs.« less

  11. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    PubMed

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  12. In Vitro Expansion of CAG, CAA, and Mixed CAG/CAA Repeats.

    PubMed

    Figura, Grzegorz; Koscianska, Edyta; Krzyzosiak, Wlodzimierz J

    2015-08-11

    Polyglutamine diseases, including Huntington's disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguish the effects triggered by mutant protein from those caused by mutant RNA in cellular models of polyglutamine diseases. We used the SLIP (Synthesis of Long Iterative Polynucleotide) method to generate plasmids expressing long CAG repeats (forming a hairpin structure), CAA-interrupted CAG repeats (forming multiple unstable hairpins) or pure CAA repeats (not forming any secondary structure). We successfully modified the original SLIP protocol to generate repeats of desired length starting from constructs containing short repeat tracts. We demonstrated that the SLIP method is a time- and cost-effective approach to manipulate the lengths of expanded repeat sequences.

  13. Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions

    PubMed Central

    Kantartzis, Athena; Williams, Gregory M.; Balakrishnan, Lata; Roberts, Rick L.; Surtees, Jennifer A.; Bambara, Robert A.

    2012-01-01

    Summary Trinucleotide repeat (TNR) expansions are the underlying cause of more than forty neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease. Although genetic evidence has attributed the cause of these diseases to errors in DNA replication and/or repair, clear molecular mechanisms have not been described. We have focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. We further provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA Ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging strand DNA replication. PMID:22938864

  14. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.

    PubMed

    Kantartzis, Athena; Williams, Gregory M; Balakrishnan, Lata; Roberts, Rick L; Surtees, Jennifer A; Bambara, Robert A

    2012-08-30

    Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.

    PubMed

    Kartanou, Chrisoula; Karadima, Georgia; Koutsis, Georgios; Breza, Marianthi; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Panas, Marios

    2018-02-01

    The C9orf72 repeat expansion is a common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in European populations. A previous study has reported a high frequency of the expansion in Greek ALS. However, no data have been reported on the frequency of the expansion in Greek FTD. Currently, we investigated the frequency of the C9orfF72 expansion in a well-characterized cohort of 64 Greek FTD patients. We detected the C9orf72 repeat expansion in 9.3% of cases. Overall, 27.7% of familial and 2.2% of sporadic cases were expansion-positive. Five out of 6 cases had a diagnosis of behavioral variant FTD. All expansion-positive cases had fairly typical FTD presentations. Clinical features included motor neuron disease, Parkinsonism and hallucinations. We conclude that the overall frequency of C9orf72-positive cases in Greek FTD is high, comparable to Greek ALS, similar to some Western European, but significantly higher than some Mediterranean FTD populations.

  16. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example. Copyright © 2016. Published by Elsevier Ltd.

  17. A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice?

    PubMed Central

    Zhao, Xiao-Nan; Lokanga, Rachel; Allette, Kimaada; Gazy, Inbal; Wu, Di; Usdin, Karen

    2016-01-01

    The fragile X-related disorders result from expansion of a CGG/CCG microsatellite in the 5’ UTR of the FMR1 gene. We have previously demonstrated that the MSH2/MSH3 complex, MutSβ, that is important for mismatch repair, is essential for almost all expansions in a mouse model of these disorders. Here we show that the MSH2/MSH6 complex, MutSα also contributes to the production of both germ line and somatic expansions as evidenced by the reduction in the number of expansions observed in Msh6-/- mice. This effect is not mediated via an indirect effect of the loss of MSH6 on the level of MSH3. However, since MutSβ is required for 98% of germ line expansions and almost all somatic ones, MutSα is apparently not able to efficiently substitute for MutSβ in the expansion process. Using purified human proteins we demonstrate that MutSα, like MutSβ, binds to substrates with loop-outs of the repeats and increases the thermal stability of the structures that they form. We also show that MutSα facilitates binding of MutSβ to these loop-outs. These data suggest possible models for the contribution of MutSα to repeat expansion. In addition, we show that unlike MutSβ, MutSα may also act to protect against repeat contractions in the Fmr1 gene. PMID:27427765

  18. Detection of Large Pathogenic Expansions in FRDA1, SCA10, and SCA12 Genes Using a Simple Fluorescent Repeat-Primed PCR Assay

    PubMed Central

    Cagnoli, Claudia; Michielotto, Chiara; Matsuura, Tohru; Ashizawa, Tetsuo; Margolis, Russell L.; Holmes, Susan E.; Gellera, Cinzia; Migone, Nicola; Brusco, Alfredo

    2004-01-01

    At least 18 human genetic diseases are caused by expansion of short tandem repeats. Here we describe a successful application of a fluorescent PCR method for the detection of expanded repeats in FRDA1, SCA10, and SCA12 genes. Although this test cannot give a precise estimate of the size of the expansion, it is robust, reliable, and inexpensive, and can be used to screen large series of patients. It proved useful for confirming the presence of large expansions in the Friedreich ataxia gene following an ambiguous result of long-range PCR, as well as rapid pre-screening for large repeat expansions associated with Friedreich ataxia and SCA10 and the shorter repeat expansions associated with SCA12. PMID:15096564

  19. C9orf72 hexanucleotide repeat expansion and Guam amyotrophic lateral sclerosis-Parkinsonism-dementia complex.

    PubMed

    Dombroski, Beth A; Galasko, Douglas R; Mata, Ignacio F; Zabetian, Cyrus P; Craig, Ulla-Katrina; Garruto, Ralph M; Oyanagi, Kiyomitsu; Schellenberg, Gerard D

    2013-06-01

    High-prevalence foci of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) exist in Japanese on the Kii Peninsula of Japan and in the Chamorros of Guam. Clinical and neuropathologic similarities suggest that the disease in these 2 populations may be related. Recent findings showed that some of the Kii Peninsula ALS cases had pathogenic C9orf72 repeat expansions, a genotype that causes ALS in Western populations. To perform genotyping among Guam residents to determine if the C9orf72 expanded repeat allele contributes to ALS-PDC in this population and to evaluate LRRK2 for mutations in the same population. Case-control series from neurodegenerative disease research programs on Guam that screened residents for ALS, PDC, and dementia. Study participants included 24 with ALS and 22 with PDC and 43 older control subjects with normal cognition ascertained between 1956 and 2006. All but one participant were Chamorro, the indigenous people of Guam. A single individual of white race/ethnicity with ALS was ascertained on Guam during the study. Participants were screened for C9orf72 hexanucleotide repeat length. Participants with repeat numbers in great excess of 30 were considered to have pathogenic repeat expansions. LRRK2 was screened for point mutations by DNA sequencing. We found a single individual with an expanded pathogenic hexanucleotide repeat. This individual of white race/ethnicity with ALS was living on Guam at the time of ascertainment but had been born in the United States. All Chamorro participants with ALS and PDC and control subjects had normal repeats, ranging from 2 to 17 copies. No pathogenic LRRK2 mutations were found. Unlike participants with ALS from the Kii Peninsula, C9orf72 expansions do not cause ALS-PDC in Chamorros. Likewise, LRRK2 mutations do not cause Guam ALS-PDC.

  20. NONCODE v2.0: decoding the non-coding.

    PubMed

    He, Shunmin; Liu, Changning; Skogerbø, Geir; Zhao, Haitao; Wang, Jie; Liu, Tao; Bai, Baoyan; Zhao, Yi; Chen, Runsheng

    2008-01-01

    The NONCODE database is an integrated knowledge database designed for the analysis of non-coding RNAs (ncRNAs). Since NONCODE was first released 3 years ago, the number of known ncRNAs has grown rapidly, and there is growing recognition that ncRNAs play important regulatory roles in most organisms. In the updated version of NONCODE (NONCODE v2.0), the number of collected ncRNAs has reached 206 226, including a wide range of microRNAs, Piwi-interacting RNAs and mRNA-like ncRNAs. The improvements brought to the database include not only new and updated ncRNA data sets, but also an incorporation of BLAST alignment search service and access through our custom UCSC Genome Browser. NONCODE can be found under http://www.noncode.org or http://noncode.bioinfo.org.cn.

  1. C9orf72 hexanucleotide repeat expansions in Chinese sporadic amyotrophic lateral sclerosis.

    PubMed

    He, Ji; Tang, Lu; Benyamin, Beben; Shah, Sonia; Hemani, Gib; Liu, Rong; Ye, Shan; Liu, Xiaolu; Ma, Yan; Zhang, Huagang; Cremin, Katie; Leo, Paul; Wray, Naomi R; Visscher, Peter M; Xu, Huji; Brown, Matthew A; Bartlett, Perry F; Mangelsdorf, Marie; Fan, Dongsheng

    2015-09-01

    A hexanucleotide repeat expansion (HRE) in the C9orf72 gene has been identified as the most common mutation in amyotrophic lateral sclerosis (ALS) among Caucasian populations. We sought to comprehensively evaluate genetic and epigenetic variants of C9orf72 and the contribution of the HRE in Chinese ALS cases. We performed fragment-length and repeat-primed polymerase chain reaction to determine GGGGCC copy number and expansion within the C9orf72 gene in 1092 sporadic ALS (sALS) and 1062 controls from China. We performed haplotype analysis of 23 single-nucleotide polymorphisms within and surrounding C9orf72. The C9orf72 HRE was found in 3 sALS patients (0.3%) but not in control subjects (p = 0.25). For 2 of the cases with the HRE, genotypes of 8 single-nucleotide polymorphisms flanking the HRE were inconsistent with the haplotype reported to be strongly associated with ALS in Caucasian populations. For these 2 individuals, we found hypermethylation of the CpG island upstream of the repeat, an observation not detected in other sALS patients (p < 10(-8)) or controls. The detailed analysis of the C9orf72 locus in a large cohort of Chinese samples provides robust evidence that may not be consistent with a single Caucasian founder event. Both the Caucasian and Chinese haplotypes associated with HRE were highly associated with repeat lengths >8 repeats implying that both haplotypes may confer instability of repeat length. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study.

    PubMed

    Byrne, Susan; Elamin, Marwa; Bede, Peter; Shatunov, Aleksey; Walsh, Cathal; Corr, Bernie; Heverin, Mark; Jordan, Norah; Kenna, Kevin; Lynch, Catherine; McLaughlin, Russell L; Iyer, Parameswaran Mahadeva; O'Brien, Caoimhe; Phukan, Julie; Wynne, Brona; Bokde, Arun L; Bradley, Daniel G; Pender, Niall; Al-Chalabi, Ammar; Hardiman, Orla

    2012-03-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons, associated with frontotemporal dementia (FTD) in about 14% of incident cases. We assessed the frequency of the recently identified C9orf72 repeat expansion in familial and apparently sporadic cases of ALS and characterised the cognitive and clinical phenotype of patients with this expansion. A population-based register of patients with ALS has been in operation in Ireland since 1995, and an associated DNA bank has been in place since 1999. 435 representative DNA samples from the bank were screened using repeat-primed PCR for the presence of a GGGGCC repeat expansion in C9orf72. We assessed clinical, cognitive, behavioural, MRI, and survival data from 191 (44%) of these patients, who comprised a population-based incident group and had previously participated in a longitudinal study of cognitive and behavioural changes in ALS. Samples from the DNA bank included 49 cases of known familial ALS and 386 apparently sporadic cases. Of these samples, 20 (41%) cases of familial ALS and 19 (5%) cases of apparently sporadic ALS had the C9orf72 repeat expansion. Of the 191 patients for whom phenotype data were available, 21 (11%) had the repeat expansion. Age at disease onset was lower in patients with the repeat expansion (mean 56·3 [SD 8·3] years) than in those without (61·3 [10·6] years; p=0·043). A family history of ALS or FTD was present in 18 (86%) of those with the repeat expansion. Patients with the repeat expansion had significantly more co-morbid FTD than patients without the repeat (50%vs 12%), and a distinct pattern of non-motor cortex changes on high-resolution 3 T magnetic resonance structural neuroimaging. Age-matched univariate analysis showed shorter survival (20 months vs 26 months) in patients with the repeat expansion. Multivariable analysis showed an increased hazard rate of 1·9 (95% 1·1-3·7; p=0·035) in those patients with the repeat

  3. MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions

    PubMed Central

    Keogh, Norma; Chan, Kara Y.; Li, Guo-Min

    2017-01-01

    Abstract CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3−/− cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3−/− cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSβ on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSβ complex, indicating that MutSβ abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3−/− cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSβ and rely heavily on Msh3 ATPase function. PMID:28973443

  4. MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions.

    PubMed

    Keogh, Norma; Chan, Kara Y; Li, Guo-Min; Lahue, Robert S

    2017-09-29

    CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3-/- cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3-/- cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSβ on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSβ complex, indicating that MutSβ abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3-/- cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSβ and rely heavily on Msh3 ATPase function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits

    PubMed Central

    Herranz-Martin, Saul; Lewis, Katherine; Mulcahy, Padraig; Higginbottom, Adrian; Walker, Callum; Valenzuela, Isabel Martinez-Pena y; Coldicott, Ian; Shaw, Pamela J.

    2017-01-01

    ABSTRACT Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches. PMID:28550099

  6. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology.

    PubMed

    Al-Mahdawi, Sahar; Pinto, Ricardo Mouro; Varshney, Dhaval; Lawrence, Lorraine; Lowrie, Margaret B; Hughes, Sian; Webster, Zoe; Blake, Julian; Cooper, J Mark; King, Rosalind; Pook, Mark A

    2006-11-01

    Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies.

  7. C9ORF72 hexanucleotide repeat expansions are a frequent cause of Huntington disease phenocopies in the Greek population.

    PubMed

    Koutsis, Georgios; Karadima, Georgia; Kartanou, Chrisoula; Kladi, Athina; Panas, Marios

    2015-01-01

    An expanded hexanucleotide repeat in C9ORF72 has been identified as the most common genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia in many populations, including the Greek. Recently, C9ORF72 expansions were reported as the most common genetic cause of Huntington disease (HD) phenocopies in a UK population. In the present study, we screened a selected cohort of 40 Greek patients with HD phenocopies for C9ORF72 hexanucleotide repeat expansions using repeat-primed polymerase chain reaction. We identified 2 patients (5%) with pathologic expansions. The first patient had chorea, behavioral-psychiatric disturbance, cognitive impairment, and a positive family history, fulfilling the strictest criteria for HD phenocopy. The second patient was sporadic and had parkinsonism, behavioral-psychiatric disturbance, and cognitive impairment, corresponding to a broader definition of HD phenocopy. These findings identify C9ORF72 expansions as a frequent cause of HD phenocopies in the Greek population, confirming recent findings in other populations and supporting proposed diagnostic testing for C9ORF72 expansions in patients with HD-like syndromes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Crosstalk between MSH2-MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair.

    PubMed

    Lai, Yanhao; Budworth, Helen; Beaver, Jill M; Chan, Nelson L S; Zhang, Zunzhen; McMurray, Cynthia T; Liu, Yuan

    2016-08-22

    Studies in knockout mice provide evidence that MSH2-MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2-MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2-MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion.

  9. C9ORF72 G4C2-repeat expansion and frontotemporal dementia first reported case in Argentina.

    PubMed

    Fernández Suarez, M; Surace, Ezequiel; Harris, P; Tapajoz, F; Sevlever, G; Allegri, R; Russo, G N

    2016-06-01

    We present a female patient aged 51 who developed behavioral disorders followed by cognitive impairment over 3 years. Neuropsychological, neuropsychiatric, and radiological features suggested a probable behavioral variant of frontotemporal dementia (bvFTD). A family history of amyotrophic lateral sclerosis and parkinsonism suggested the hexanucleotide repeat expansion G4C2 in C9ORF72 . We set up a two-step genotyping algorithm for the detection of the expansion using fragment-length analysis polymerase chain reaction (PCR) and repeat-primed PCR with fluorescent primers. We confirmed the presence of an expanded G4C2 allele in the patient. This represents the first documented case of bvFTD due to a C9ORF72 expansion in Argentina.

  10. Induced Pluripotent Stem Cells from Patients with Huntington’s Disease Show CAG Repeat Expansion Associated Phenotypes

    PubMed Central

    Mattis, Virginia B; Svendsen, Soshana P; Ebert, Allison; Svendsen, Clive N; King, Alvin R; Casale, Malcolm; Winokur, Sara T; Batugedara, Gayani; Vawter, Marquis; Donovan, Peter J; Lock, Leslie F; Thompson, Leslie M; Zhu, Yu; Fossale, Elisa; Singh Atwal, Ranjit; Gillis, Tammy; Mysore, Jayalakshmi; Li, Jian-hong; Seong, IhnSik; Shen, Yiping; Chen, Xiaoli; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Akimov, Sergey; Arbez, Nicolas; Juopperi, Tarja; Ratovitski, Tamara; Chiang, Jason H; Kim, Woon Roung; Chighladze, Eka; Watkin, Erin; Zhong, Chun; Makri, Georgia; Cole, Robert N; Margolis, Russell L; Song, Hongjun; Ming, Guoli; Ross, Christopher A; Kaye, Julia A; Daub, Aaron; Sharma, Punita; Mason, Amanda R; Finkbeiner, Steven; Yu, Junying; Thomson, James A; Rushton, David; Brazier, Stephen P; Battersby, Alysia A; Redfern, Amanda; Tseng, Hsui-Er; Harrison, Alexander W; Kemp, Paul J; Allen, Nicholas D; Onorati, Marco; Castiglioni, Valentina; Cattaneo, Elena; Arjomand, Jamshid

    2013-01-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, the HD consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. PMID:22748968

  11. Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    PubMed Central

    Lai, Yanhao; Budworth, Helen; Beaver, Jill M.; Chan, Nelson L. S.; Zhang, Zunzhen; McMurray, Cynthia T.; Liu, Yuan

    2016-01-01

    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion. PMID:27546332

  12. Functional interrogation of non-coding DNA through CRISPR genome editing.

    PubMed

    Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H

    2017-05-15

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Functional interrogation of non-coding DNA through CRISPR genome editing

    PubMed Central

    Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.

    2017-01-01

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828

  14. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.

    PubMed

    Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume

    2017-02-28

    A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.

  15. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy.

    PubMed

    Hu, Jiaxin; Rong, Ziye; Gong, Xin; Zhou, Zhengyang; Sharma, Vivek K; Xing, Chao; Watts, Jonathan K; Corey, David R; Mootha, V Vinod

    2018-03-15

    Fuchs' endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has ∼2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD.

  16. Large pathogenic expansions in the SCA2 and SCA7 genes can be detected by fluorescent repeat-primed polymerase chain reaction assay.

    PubMed

    Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo

    2006-02-01

    Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR.

  17. A CGG-repeat expansion mutation in ZNF713 causes FRA7A: association with autistic spectrum disorder in two families.

    PubMed

    Metsu, Sofie; Rainger, Jacqueline K; Debacker, Kim; Bernhard, Birgitta; Rooms, Liesbeth; Grafodatskaya, Daria; Weksberg, Rosanna; Fombonne, Eric; Taylor, Martin S; Scherer, Stephen W; Kooy, R Frank; FitzPatrick, David R

    2014-11-01

    We report de novo occurrence of the 7p11.2 folate-sensitive fragile site FRA7A in a male with an autistic spectrum disorder (ASD) due to a CGG-repeat expansion mutation (∼450 repeats) in a 5' intron of ZNF713. This expanded allele showed hypermethylation of the adjacent CpG island with reduced ZNF713 expression observed in a proband-derived lymphoblastoid cell line (LCL). His unaffected mother carried an unmethylated premutation (85 repeats). This CGG-repeat showed length polymorphism in control samples (five to 22 repeats). In a second unrelated family, three siblings with ASD and their unaffected father were found to carry FRA7A premutations, which were partially or mosaically methylated. In one of the affected siblings, mitotic instability of the premutation was observed. ZNF713 expression in LCLs in this family was increased in three of these four premutation carriers. A firm link cannot yet be established between ASD and the repeat expansion mutation but plausible pathogenic mechanisms are discussed. © 2014 WILEY PERIODICALS, INC.

  18. Validation of a screening tool for the rapid and reliable detection of CGG trinucleotide repeat expansions in FMR1.

    PubMed

    Basehore, Monica J; Marlowe, Natalia M; Jones, Julie R; Behlendorf, Deborah E; Laver, Thomas A; Friez, Michael J

    2012-06-01

    Most individuals with intellectual disability and/or autism are tested for Fragile X syndrome at some point in their lifetime. Greater than 99% of individuals with Fragile X have an expanded CGG trinucleotide repeat motif in the promoter region of the FMR1 gene, and diagnostic testing involves determining the size of the CGG repeat as well as methylation status when an expansion is present. Using a previously described triplet repeat-primed polymerase chain reaction, we have performed additional validation studies using two cohorts with previous diagnostic testing results available for comparison purposes. The first cohort (n=88) consisted of both males and females and had a high percentage of abnormal samples, while the second cohort (n=624) consisted of only females and was not enriched for expansion mutations. Data from each cohort were completely concordant with the results previously obtained during the course of diagnostic testing. This study further demonstrates the utility of using laboratory-developed triplet repeat-primed FMR1 testing in a clinical setting.

  19. Large Pathogenic Expansions in the SCA2 and SCA7 Genes Can Be Detected by Fluorescent Repeat-Primed Polymerase Chain Reaction Assay

    PubMed Central

    Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo

    2006-01-01

    Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR. PMID:16436644

  20. Repeat expansion in C9ORF72 is not a major cause of amyotrophic lateral sclerosis among Iranian patients.

    PubMed

    Alavi, Afagh; Nafissi, Shahriar; Rohani, Mohammad; Shahidi, Gholamali; Zamani, Babak; Shamshiri, Hosein; Safari, Iman; Elahi, Elahe

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in populations of European descent. It was recently found that a hexanucleotide repeat expansion in C9ORF72 is its most common cause in these populations. The contribution of C9ORF72 to ALS is notably lower in the Far East, but its role in other populations is unknown. Results of C9ORF72 screening in 78 unrelated Iranian ALS patients are reported here. The repeat expansion was observed in only 1 (5.9%) of the familial and 1 (1.6%) of the sporadic cases. These figures are to be compared, respectively, with 30% and 6.9% among patients of European ethnicity. Screenings of C9ORF72 in other Middle East countries will reveal whether the low contribution of C9ORF72 to ALS is a feature of the entire region. During the screenings, it was noted that in a single family, 3 individuals affected with ALS, Parkinson's disease, or frontotemporal dementia all carried the repeat expansion. The finding suggests the mutation does rarely contribute to the etiology of Parkinson's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse].

    PubMed

    Kolesnikov, N N; Elisafenko, E A

    2010-10-01

    After the radiation of primates and rodents, the evolution of X-chromosome inactivation centers in human and mouse (XIC/Xic) followed two different directions. Human XIC followed the pathway towards transposon accumulation (the repeat proportion in the center constitutes 72%), especially LINEs, which prevail in the center. On the contrary, mouse Xic eliminated long repeats and accumulated species-specific SIN Es (the repeat proportion in the center constitutes 35%). The mechanism underlying inactivation of one of the X chromosomes in female mammals appeared on the basis of trasnsposons. The key gene of the inactivation process, XIST/Xist, similarly to other long noncoding RNA genes, like TSIX/Tsix, JPX/Jpx, and FTX/Ftx, was formed with the involvement of different transposon sequences. Furthermore, two clusters ofmicroRNA genes from inactivation center originated from L2 [1]. In mouse, one of such clusters has been preserved in the form of microRNA pseudogenes. Thus, long ncRNA genes and microRNAs appeared during the period of transposable elements expansion in this locus, 140 to 105 Myr ago, after the radiation of marsupials and placental mammal lineages.

  2. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

    PubMed

    Zhang, Ke; Donnelly, Christopher J; Haeusler, Aaron R; Grima, Jonathan C; Machamer, James B; Steinwald, Peter; Daley, Elizabeth L; Miller, Sean J; Cunningham, Kathleen M; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L; Ostrow, Lyle W; Matunis, Michael J; Wang, Jiou; Sattler, Rita; Lloyd, Thomas E; Rothstein, Jeffrey D

    2015-09-03

    The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.

  3. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.

    PubMed

    van den Broek, Walther J A A; Nelen, Marcel R; Wansink, Derick G; Coerwinkel, Marga M; te Riele, Hein; Groenen, Patricia J T A; Wieringa, Bé

    2002-01-15

    The mechanism of expansion of the (CTG)n repeat in myotonic dystrophy (DM1) patients and the cause of its pathobiological effects are still largely unknown. Most likely, long repeats exert toxicity at the level of nuclear RNA transport or splicing. Here, we analyse cis- and trans-acting parameters that determine repeat behaviour in novel mouse models for DM1. Our mice carry 'humanized' myotonic dystrophy protein kinase (Dmpk) allele(s) with either a (CTG)84 or a (CTG)11 repeat, inserted at the correct position into the endogenous DM locus. Unlike in the human situation, the (CTG)84 repeat in the syntenic mouse environment was relatively stable during intergenerational segregation. However, somatic tissues showed substantial repeat expansions which were progressive upon aging and prominent in kidney, and in stomach and small intestine, where it was cell-type restricted. Other tissues examined showed only marginal size changes. The (CTG)11 allele was completely stable, as anticipated. Introducing the (CTG)84 allele into an Msh3-deficient background completely blocked the somatic repeat instability. In contrast, Msh6 deficiency resulted in a significant increase in the frequency of somatic expansions. Competition of Msh3 and Msh6 for binding to Msh2 in functional complexes with different DNA mismatch-recognition specificity may explain why the somatic (CTG)n expansion rate is differentially affected by ablation of Msh3 and Msh6.

  4. Bilateral cross-bite treated by repeated rapid maxillary expansions: a 17-year follow-up case.

    PubMed

    Cozzani, M; Mazzotta, L; Caprioglio, A

    2014-07-01

    The objective of this paper is to show the clinical results after the repeated application of a Haas expander for rapid maxillary expansion (RME) anchored onto deciduous teeth in a 7-year-old patient that presented bilateral cross-bite, superior crowding and no space for permanent lateral incisors eruption. A first Haas expander was applied to the patient. She was told to activate it once a day, each activation was equal to 0.20 mm. After the first RME, the bilateral cross-bite was solved but still there was not enough space for lateral incisor eruption. A second and then a third Haas expander were applied, with the same activation protocol as the first one, in order to gain space in the anterior region and to achieve proper eruption of the lateral incisors. The patient was then treated with fixed appliances. At debonding the patient presented well aligned arch-forms: space for lateral incisor eruption was gained and superior crowding was solved. Bilateral cross-bite was also corrected. She was seen again 10 years and 17 years after expansions: she showed no relapse and presented a good functional occlusion that had remained stable, and an aesthetically pleasant smile, however she exhibited gingival recessions. Repeated rapid maxillary expansion, anchored onto deciduous teeth, performed in early mixed dentition represents a safe and successful treatment to correct severe bilateral cross- bites and to create space for maxillary incisor eruption.

  5. Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers.

    PubMed

    Lu, H-J; Bernardo, R; Ohm, H W

    2003-02-01

    Popping expansion volume is the most important quality trait in popcorn ( Zea mays L.), but its genetics is not well understood. The objectives of this study were to map quantitative trait loci (QTLs) responsible for popping expansion volume in a popcorn x dent corn cross, and to compare the predicted efficiencies of phenotypic selection, marker-based selection, and marker-assisted selection for popping expansion volume. Of 259 simple sequence repeat (SSR) primer pairs screened, 83 pairs were polymorphic between the H123 (dent corn) and AG19 (popcorn) parental inbreds. Popping test data were obtained for 160 S(1) families developed from the [AG19(H123 x AG19)] BC(1) population. The heritability ( h(2)) for popping expansion volume on an S(1) family mean basis was 0.73. The presence of the gametophyte factor Ga1(s) in popcorn complicates the analysis of popcorn x dent corn crosses. But, from a practical perspective, the linkage between a favorable QTL allele and Ga1(s) in popcorn will lead to selection for the favorable QTL allele. Four QTLs, on chromosomes 1S, 3S, 5S and 5L, jointly explained 45% of the phenotypic variation. Marker-based selection for popping expansion volume would require less time and work than phenotypic selection. But due to the high h(2) of popping expansion volume, marker-based selection was predicted to be only 92% as efficient as phenotypic selection. Marker-assisted selection, which comprises index selection on phenotypic and marker scores, was predicted to be 106% as efficient as phenotypic selection. Overall, our results suggest that phenotypic selection will remain the preferred method for selection in popcorn x dent corn crosses.

  6. Short intronic repeat sequences facilitate circular RNA production.

    PubMed

    Liang, Dongming; Wilusz, Jeremy E

    2014-10-15

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  7. Short intronic repeat sequences facilitate circular RNA production

    PubMed Central

    Liang, Dongming

    2014-01-01

    Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217

  8. Noncoding copy-number variations are associated with congenital limb malformation.

    PubMed

    Flöttmann, Ricarda; Kragesteen, Bjørt K; Geuer, Sinje; Socha, Magdalena; Allou, Lila; Sowińska-Seidler, Anna; Bosquillon de Jarcy, Laure; Wagner, Johannes; Jamsheer, Aleksander; Oehl-Jaschkowitz, Barbara; Wittler, Lars; de Silva, Deepthi; Kurth, Ingo; Maya, Idit; Santos-Simarro, Fernando; Hülsemann, Wiebke; Klopocki, Eva; Mountford, Roger; Fryer, Alan; Borck, Guntram; Horn, Denise; Lapunzina, Pablo; Wilson, Meredith; Mascrez, Bénédicte; Duboule, Denis; Mundlos, Stefan; Spielmann, Malte

    2017-10-12

    PurposeCopy-number variants (CNVs) are generally interpreted by linking the effects of gene dosage with phenotypes. The clinical interpretation of noncoding CNVs remains challenging. We investigated the percentage of disease-associated CNVs in patients with congenital limb malformations that affect noncoding cis-regulatory sequences versus genes sensitive to gene dosage effects.MethodsWe applied high-resolution copy-number analysis to 340 unrelated individuals with isolated limb malformation. To investigate novel candidate CNVs, we re-engineered human CNVs in mice using clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing.ResultsOf the individuals studied, 10% harbored CNVs segregating with the phenotype in the affected families. We identified 31 CNVs previously associated with congenital limb malformations and four novel candidate CNVs. Most of the disease-associated CNVs (57%) affected the noncoding cis-regulatory genome, while only 43% included a known disease gene and were likely to result from gene dosage effects. In transgenic mice harboring four novel candidate CNVs, we observed altered gene expression in all cases, indicating that the CNVs had a regulatory effect either by changing the enhancer dosage or altering the topological associating domain architecture of the genome.ConclusionOur findings suggest that CNVs affecting noncoding regulatory elements are a major cause of congenital limb malformations.Genetics in Medicine advance online publication, 12 October 2017; doi:10.1038/gim.2017.154.

  9. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.

    PubMed

    Majounie, Elisa; Renton, Alan E; Mok, Kin; Dopper, Elise G P; Waite, Adrian; Rollinson, Sara; Chiò, Adriano; Restagno, Gabriella; Nicolaou, Nayia; Simon-Sanchez, Javier; van Swieten, John C; Abramzon, Yevgeniya; Johnson, Janel O; Sendtner, Michael; Pamphlett, Roger; Orrell, Richard W; Mead, Simon; Sidle, Katie C; Houlden, Henry; Rohrer, Jonathan D; Morrison, Karen E; Pall, Hardev; Talbot, Kevin; Ansorge, Olaf; Hernandez, Dena G; Arepalli, Sampath; Sabatelli, Mario; Mora, Gabriele; Corbo, Massimo; Giannini, Fabio; Calvo, Andrea; Englund, Elisabet; Borghero, Giuseppe; Floris, Gian Luca; Remes, Anne M; Laaksovirta, Hannu; McCluskey, Leo; Trojanowski, John Q; Van Deerlin, Vivianna M; Schellenberg, Gerard D; Nalls, Michael A; Drory, Vivian E; Lu, Chin-Song; Yeh, Tu-Hsueh; Ishiura, Hiroyuki; Takahashi, Yuji; Tsuji, Shoji; Le Ber, Isabelle; Brice, Alexis; Drepper, Carsten; Williams, Nigel; Kirby, Janine; Shaw, Pamela; Hardy, John; Tienari, Pentti J; Heutink, Peter; Morris, Huw R; Pickering-Brown, Stuart; Traynor, Bryan J

    2012-04-01

    We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully

  10. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion.

    PubMed

    Waite, Adrian J; Bäumer, Dirk; East, Simon; Neal, James; Morris, Huw R; Ansorge, Olaf; Blake, Derek J

    2014-07-01

    An intronic G(4)C(2) hexanucleotide repeat expansion in C9ORF72 is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several mechanisms including RNA toxicity, repeat-associated non-AUG translation mediated dipeptide protein aggregates, and haploinsufficiency of C9orf72 have been implicated in the molecular pathogenesis of this disorder. The aims of this study were to compare the use of two different Southern blot probes for detection of repeat expansions in an amyotrophic lateral sclerosis and frontotemporal lobar degeneration pathological cohort and to determine the levels of C9orf72 transcript variants and protein isoforms in patients versus control subjects. Our Southern blot studies identified smaller repeat expansions (250-1800 bp) that were only detectable with the flanking probe highlighting the potential for divergent results using different Southern blotting protocols that could complicate genotype-phenotype correlation studies. Further, we characterize a new C9orf72 antibody and show for the first time decreased C9orf72 protein levels in the frontal cortex from patients with a pathological hexanucleotide repeat expansion. These data suggest that a reduction in C9orf72 protein may be a consequence of the disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The Long Non-coding RNA HOTTIP Enhances Pancreatic Cancer Cell Proliferation, Survival and Migration

    EPA Science Inventory

    ABSTRACTHOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expres...

  12. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    NASA Technical Reports Server (NTRS)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  14. Disease-associated repeat instability and mismatch repair.

    PubMed

    Schmidt, Monika H M; Pearson, Christopher E

    2016-02-01

    Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress.

    PubMed

    Sonobe, Yoshifumi; Ghadge, Ghanashyam; Masaki, Katsuhisa; Sendoel, Ataman; Fuchs, Elaine; Roos, Raymond P

    2018-08-01

    Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G 4 C 2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G 4 C 2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington's Disease and Myotonic Dystrophy Type 1.

    PubMed

    Chen, Jonathan L; VanEtten, Damian M; Fountain, Matthew A; Yildirim, Ilyas; Disney, Matthew D

    2017-07-11

    RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.

  17. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.

    PubMed

    Ye, Yanfang; Kirkham-McCarthy, Lucy; Lahue, Robert S

    2016-07-01

    Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11. Copyright

  18. Current Research on Non-Coding Ribonucleic Acid (RNA).

    PubMed

    Wang, Jing; Samuels, David C; Zhao, Shilin; Xiang, Yu; Zhao, Ying-Yong; Guo, Yan

    2017-12-05

    Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.

  19. No CAG repeat expansion of polymerase gamma is associated with male infertility in Tamil Nadu, South India

    PubMed Central

    Poongothai, J.

    2013-01-01

    Mitochondria contains a single deoxyribonucleic acid (DNA) polymerase, polymerase gamma (POLG) mapped to long arm of chromosome 15 (15q25), responsible for replication and repair of mitochondrial DNA. Exon 1 of the human POLG contains CAG trinucleotide repeat, which codes for polyglutamate. Ten copies of CAG repeat were found to be uniformly high (0.88) in different ethnic groups and considered as the common allele, whereas the mutant alleles (not -10/not -10 CAG repeats) were found to be associated with oligospermia/oligoasthenospermia in male infertility. Recent data suggested the implication of POLG CAG repeat expansion in infertility, but are debated. The aim of our study was to explore whether the not -10/not -10 variant is associated with spermatogenic failure. As few study on Indian population have been conducted so far to support this view, we investigated the distribution of the POLG CAG repeats in 61 infertile men and 60 normozoospermic control Indian men of Tamil Nadu, from the same ethnic background. This analysis interestingly revealed that the homozygous wild type genotype (10/-10) was common in infertile men (77% - 47/61) and in normozoospermic control men (71.7% - 43/60). Our study failed to confirm any influence of the POLG gene polymorphism on the efficiency of the spermatogenesis. PMID:24339545

  20. Stable CoT-1 repeat RNA is abundant and associated with euchromatic interphase chromosomes

    PubMed Central

    Hall, Lisa L.; Carone, Dawn M.; Gomez, Alvin; Kolpa, Heather J.; Byron, Meg; Mehta, Nitish; Fackelmayer, Frank O.; Lawrence, Jeanne B.

    2014-01-01

    SUMMARY Recent studies recognize a vast diversity of non-coding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using CoT-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (“CoT-1 RNA”), including LINE-1. CoT-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis, and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The CoT-1 RNA territory resists mechanical disruption and fractionates with the non-chromatin scaffold, but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. CoT-1 RNA has several properties similar to XIST chromosomal RNA, but is excluded from chromatin condensed by XIST. These findings impact two “black boxes” of genome science: the poorly understood diversity of non-coding RNA and the unexplained abundance of repetitive elements. PMID:24581492

  1. The emergence of noncoding RNAs as Heracles in autophagy.

    PubMed

    Zhang, Jian; Wang, Peiyuan; Wan, Lin; Xu, Shouping; Pang, Da

    2017-06-03

    Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.

  2. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17.

    PubMed

    Gao, Rui; Matsuura, Tohru; Coolbaugh, Mary; Zühlke, Christine; Nakamura, Koichiro; Rasmussen, Astrid; Siciliano, Michael J; Ashizawa, Tetsuo; Lin, Xi

    2008-02-01

    Trinucleotide repeat expansions are dynamic mutations causing many neurological disorders, and their instability is influenced by multiple factors. Repeat configuration seems particularly important, and pure repeats are thought to be more unstable than interrupted repeats. But direct evidence is still lacking. Here, we presented strong support for this hypothesis from our studies on spinocerebellar ataxia type 17 (SCA17). SCA17 is a typical polyglutamine disease caused by CAG repeat expansion in TBP (TATA binding protein), and is unique in that the pure expanded polyglutamine tract is coded by either a simple configuration with long stretches of pure CAGs or a complex configuration containing CAA interruptions. By small pool PCR (SP-PCR) analysis of blood DNA from SCA17 patients of distinct racial backgrounds, we quantitatively assessed the instability of these two types of expanded alleles coding similar length of polyglutamine expansion. Mutation frequency in patients harboring pure CAG repeats is 2-3 folds of those with CAA interruptions. Interestingly, the pure CAG repeats showed both expansion and deletion while the interrupted repeats exhibited mostly deletion at a significantly lower frequency. These data strongly suggest that repeat configuration is a critical determinant for instability, and CAA interruptions might serve as a limiting element for further expansion of CAG repeats in SCA17 locus, suggesting a molecular basis for lack of anticipation in SCA17 families with interrupted CAG expansion.

  3. CRISPR/Cas9-mediated noncoding RNA editing in human cancers.

    PubMed

    Yang, Jie; Meng, Xiaodan; Pan, Jinchang; Jiang, Nan; Zhou, Chengwei; Wu, Zhenhua; Gong, Zhaohui

    2018-01-02

    Cancer is characterized by multiple genetic and epigenetic alterations, including a higher prevalence of mutations of oncogenes and/or tumor suppressors. Mounting evidences have shown that noncoding RNAs (ncRNAs) are involved in the epigenetic regulation of cancer genes and their associated pathways. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system, a revolutionary genome-editing technology, has shed light on ncRNA-based cancer therapy. Here, we briefly introduce the classifications and mechanisms of CRISPR/Cas9 system. Importantly, we mainly focused on the applications of CRISPR/Cas9 system as a molecular tool for ncRNA (microRNA, long noncoding RNA and circular RNA, etc.) editing in human cancers, and the novel techniques that are based on CRISPR/Cas9 system. Additionally, the off-target effects and the corresponding solutions as well as the challenges toward CRISPR/Cas9 were also evaluated and discussed. Long- and short-ncRNAs have been employed as targets in precision oncology, and CRISPR/Cas9-mediated ncRNA editing may provide an excellent way to cure cancer.

  4. Expanded complexity of unstable repeat diseases

    PubMed Central

    Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek

    2015-01-01

    Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field. PMID:23233240

  5. The expanding universe of noncoding RNAs.

    PubMed

    Hannon, G J; Rivas, F V; Murchison, E P; Steitz, J A

    2006-01-01

    The 71st Cold Spring Harbor Symposium on Quantitative Biology celebrated the numerous and expanding roles of regulatory RNAs in systems ranging from bacteria to mammals. It was clearly evident that noncoding RNAs are undergoing a renaissance, with reports of their involvement in nearly every cellular process. Previously known classes of longer noncoding RNAs were shown to function by every possible means-acting catalytically, sensing physiological states through adoption of complex secondary and tertiary structures, or using their primary sequences for recognition of target sites. The many recently discovered classes of small noncoding RNAs, generally less than 35 nucleotides in length, most often exert their effects by guiding regulatory complexes to targets via base-pairing. With the ability to analyze the RNA products of the genome in ever greater depth, it has become clear that the universe of noncoding RNAs may extend far beyond the boundaries we had previously imagined. Thus, as much as the Symposium highlighted exciting progress in the field, it also revealed how much farther we must go to understand fully the biological impact of noncoding RNAs.

  6. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17.

    PubMed

    Oda, Masaya; Maruyama, Hirofumi; Komure, Osamu; Morino, Hiroyuki; Terasawa, Hideo; Izumi, Yuishin; Imamura, Tohru; Yasuda, Minoru; Ichikawa, Keiji; Ogawa, Masafumi; Matsumoto, Masayasu; Kawakami, Hideshi

    2004-02-01

    Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant cerebellar ataxia caused by expansion of CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP) gene. Because the number of triplets in patients with SCA17 in previous studies ranged from 43 to 63, the normal number of trinucleotide units has been considered to be 42 or less. However, some healthy subjects in SCA17 pedigrees carry alleles with the same number of expanded repeats as patients with SCA17. To investigate the minimum number of CAG/CAA repeats in the TBP gene that causes SCA17. We amplified the region of the TBP gene containing the CAG/CAA repeat by means of polymerase chain reaction and performed fragment and sequence analyses. The subjects included 734 patients with SCA (480 patients with sporadic SCA and 254 patients with familial SCA) without CAG repeat expansions at the SCA1, SCA2, Machado-Joseph disease, SCA6, SCA7, or dentatorubral-pallidolluysian atrophy loci, with 162 healthy subjects, 216 patients with Parkinson disease, and 195 with Alzheimer disease as control subjects. Eight patients with SCA possessed an allele with more than 43 CAG/CAA repeats. Among the non-SCA groups, alleles with 43 to 45 repeats were seen in 3 healthy subjects and 2 with Parkinson disease. In 1 SCA pedigree, a patient with possible SCA17 and her healthy sister had alleles with 45 repeats. A 34-year-old man carrying alleles with 47 and 44 repeats (47/44) had developed progressive cerebellar ataxia and myoclonus at 25 years of age, and he exhibited dementia and pyramidal signs. He was the only affected person in his pedigree, although his father and mother carried alleles with mildly expanded repeats (44/36 and 47/36, respectively). In another pedigree, 1 patient carried a 43-repeat allele, whereas another patient had 2 normal alleles, indicating that the 43-repeat allele may not be pathologic in this family. We estimate that 44 CAG/CAA repeats is the minimum number required to cause SCA17. However

  7. Long Noncoding RNAs: a New Regulatory Code in Metabolic Control

    PubMed Central

    Zhao, Xu-Yun; Lin, Jiandie D.

    2015-01-01

    Long noncoding RNAs (lncRNAs) are emerging as an integral part of the regulatory information encoded in the genome. LncRNAs possess the unique capability to interact with nucleic acids and proteins and exert discrete effects on numerous biological processes. Recent studies have delineated multiple lncRNA pathways that control metabolic tissue development and function. The expansion of the regulatory code that links nutrient and hormonal signals to tissue metabolism gives new insights into the genetic and pathogenic mechanisms underlying metabolic disease. This review discusses lncRNA biology with a focus on its role in the development, signaling, and function of key metabolic tissues. PMID:26410599

  8. Comparison of simple sequence repeats in 19 Archaea.

    PubMed

    Trivedi, S

    2006-12-05

    All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.

  9. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism.

    PubMed

    Gur-Arie, R; Cohen, C J; Eitan, Y; Shelef, L; Hallerman, E M; Kashi, Y

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.

  10. Gene regulation by noncoding RNAs

    PubMed Central

    Patil, Veena S.; Zhou, Rui; Rana, Tariq M.

    2015-01-01

    The past two decades have seen an explosion in research on noncoding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) noncoding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long noncoding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents. PMID:24164576

  11. Impact of Noncoding Satellite Repeats on Pancreatic Cancer Metastasis

    DTIC Science & Technology

    2015-11-01

    in 2D and Xenografts . B) Panel of cancer cell lines grown in 2D or 3D culture. 5 cancers (Fig. 3). We have completed RNA-seq analysis of 2D and 3D...reverse transcribed (RT) as a means to expand these regions in tumor genomes. We evaluated the presence of HSATII RT products by treating xenograft small...specific for satellite repeats in human cells. These RNA derived DNAs (rdDNA) are found in primary tumors, xenografts , and tumorspheres in large

  12. Oncologic Phenotype of Peripheral Neuroblastic Tumors Associated With PHOX2B Non-Polyalanine Repeat Expansion Mutations.

    PubMed

    Heide, Solveig; Masliah-Planchon, Julien; Isidor, Bertrand; Guimier, Anne; Bodet, Damien; Coze, Carole; Deville, Anne; Thebault, Estelle; Pasquier, Corinne Jeanne; Cassagnau, Elisabeth; Pierron, Gaelle; Clément, Nathalie; Schleiermacher, Gudrun; Amiel, Jeanne; Delattre, Olivier; Peuchmaur, Michel; Bourdeaut, Franck

    2016-01-01

    Germline non-polyalanine repeat expansion mutations in PHOX2B (PHOX2B NPARM) predispose to peripheral neuroblastic tumors (PNT), frequently in association with other neurocristopathies: Hirschsprung disease (HSCR) or congenital central hypoventilation syndrome (CCHS). Although PHOX2B polyalanine repeat expansions predispose to a low incidence of benign PNTs, the oncologic phenotype associated with PHOX2B NPARM is still not known in detail. We analyzed prognostic factors, treatment toxicity, and outcome of patients with PNT and PHOX2B NPARM. Thirteen patients were identified, six of whom also had CCHS and/or HSCR, one also had late-onset hypoventilation with hypothalamic dysfunction (LO-CHS/HD), and six had no other neurocristopathy. Four tumours were "poorly differentiated," and nine were differentiated, including five ganglioneuromas, three ganglioneuroblastomas, and one differentiating neuroblastoma, hence illustrating that PHOX2B NPARM are predominantly associated with differentiating tumors. Nevertheless, three patients had stage 4 and one patient had stage 3 disease. Segmental chromosomal alterations, correlating with poor prognosis, were found in all the six tumors analyzed by array-comparative genomic hybridization. One patient died of tumor progression, one is on palliative care, one died of hypoventilation, and 10 patients are still alive, with median follow-up of 5 years. Based on histological phenotype, our series suggests that heterozygous PHOX2B NPARM do not fully preclude ganglion cell differentiation in tumors. However, this tumor predisposition syndrome may also be associated with poorly differentiated tumors with unfavorable genomic profiles and clinically aggressive behaviors. The intrafamilial variability and the unpredictable tumor prognosis should be considered in genetic counseling. © 2015 Wiley Periodicals, Inc.

  13. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-11-23

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.

  14. The Pathogenic Role of Low Range Repeats in SCA17.

    PubMed

    Shin, Jung Hwan; Park, Hyeyoung; Ehm, Gwan Hee; Lee, Woong Woo; Yun, Ji Young; Kim, Young Eun; Lee, Jee-Young; Kim, Han-Joon; Kim, Jong-Min; Jeon, Beom Seok; Park, Sung-Sup

    2015-01-01

    SCA17 is an autosomal dominant cerebellar ataxia with expansion of the CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP) gene. SCA17 can have various clinical presentations including parkinsonism, ataxia, chorea and dystonia. SCA17 is diagnosed by detecting the expanded CAG repeats in the TBP gene; however, in the literature, pathologic repeat numbers as low as 41 overlap with normal repeat numbers. The subjects in this study included patients with involuntary movement disorders such as cerebellar ataxia, parkinsonism, chorea and dystonia who visited Seoul National University Hospital between Jan. 2006 and Apr. 2014 and were screened for SCA17. Those who were diagnosed with other genetic diseases or nondegenerative diseases were excluded. DNA from healthy subjects who did not have a family history of parkinsonism, ataxia, psychiatric symptoms, chorea or dystonia served as the control. In total, 5242 chromosomes from 2099 patients and 522 normal controls were analyzed. The total number of patients included in the analysis was 2099 (parkinsonism, 1706; ataxia, 345; chorea, 37; and dystonia, 11). In the normal control, up to 44 repeats were found. In the 44 repeat group, there were 7 (0.3%) patients and 1 (0.2%) normal control. In 43 repeat group, there were 8 (0.4%) patients and 2 (0.4%) normal controls. In the 42 repeat group, there were 16 (0.8%) patients and 3 (0.6%) normal controls. In 41 repeat group, there were 48 (2.3%) patients and 8 (1.5%) normal controls. Considering the overlaps and non-significant differences in allelic frequencies between the patients and the normal controls with low-expansions, we could not determine a definitive cutoff value for the pathologic CAG repeat number of SCA17. Because the statistical analysis between the normal controls and patients with low range expansions failed to show any differences so far, we must consider that clinical cases with low range expansions could be idiopathic movement disorders showing

  15. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study.

    PubMed

    Gijselinck, Ilse; Van Langenhove, Tim; van der Zee, Julie; Sleegers, Kristel; Philtjens, Stéphanie; Kleinberger, Gernot; Janssens, Jonathan; Bettens, Karolien; Van Cauwenberghe, Caroline; Pereson, Sandra; Engelborghs, Sebastiaan; Sieben, Anne; De Jonghe, Peter; Vandenberghe, Rik; Santens, Patrick; De Bleecker, Jan; Maes, Githa; Bäumer, Veerle; Dillen, Lubina; Joris, Geert; Cuijt, Ivy; Corsmit, Ellen; Elinck, Ellen; Van Dongen, Jasper; Vermeulen, Steven; Van den Broeck, Marleen; Vaerenberg, Carolien; Mattheijssens, Maria; Peeters, Karin; Robberecht, Wim; Cras, Patrick; Martin, Jean-Jacques; De Deyn, Peter P; Cruts, Marc; Van Broeckhoven, Christine

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are extremes of a clinically, pathologically, and genetically overlapping disease spectrum. A locus on chromosome 9p21 has been associated with both disorders, and we aimed to identify the causal gene within this region. We studied 305 patients with FTLD, 137 with ALS, and 23 with concomitant FTLD and ALS (FTLD-ALS) and 856 controls from Flanders (Belgium); patients were identified from a hospital-based cohort and were negative for mutations in known FTLD and ALS genes. We also examined the family of one patient with FTLD-ALS previously linked to 9p21 (family DR14). We analysed 130 kbp at 9p21 in association and segregation studies, genomic sequencing, repeat genotyping, and expression studies to identify the causal mutation. We compared genotype-phenotype correlations between mutation carriers and non-carriers. In the patient-control cohort, the single-nucleotide polymorphism rs28140707 within the 130 kbp region of 9p21 was associated with disease (odds ratio [OR] 2·6, 95% CI 1·5-4·7; p=0·001). A GGGGCC repeat expansion in C9orf72 completely co-segregated with disease in family DR14. The association of rs28140707 with disease in the patient-control cohort was abolished when we excluded GGGGCC repeat expansion carriers. In patients with familial disease, six (86%) of seven with FTLD-ALS, seven (47%) of 15 with ALS, and 12 (16%) of 75 with FTLD had the repeat expansion. In patients without known familial disease, one (6%) of 16 with FTLD-ALS, six (5%) of 122 with ALS, and nine (4%) of 230 with FTLD had the repeat expansion. Mutation carriers primarily presented with classic ALS (10 of 11 individuals) or behavioural variant FTLD (14 of 15 individuals). Mean age at onset of FTLD was 55·3 years (SD 8·4) in 21 mutation carriers and 63·2 years (9·6) in 284 non-carriers (p=0·001); mean age at onset of ALS was 54·5 years (9·9) in 13 carriers and 60·4 years (11·4) in 124 non

  16. A Noncoding Expansion in EIF4A3 Causes Richieri-Costa-Pereira Syndrome, a Craniofacial Disorder Associated with Limb Defects

    PubMed Central

    Favaro, Francine P.; Alvizi, Lucas; Zechi-Ceide, Roseli M.; Bertola, Debora; Felix, Temis M.; de Souza, Josiane; Raskin, Salmo; Twigg, Stephen R.F.; Weiner, Andrea M.J.; Armas, Pablo; Margarit, Ezequiel; Calcaterra, Nora B.; Andersen, Gregers R.; McGowan, Simon J.; Wilkie, Andrew O.M.; Richieri-Costa, Antonio; de Almeida, Maria L.G.; Passos-Bueno, Maria Rita

    2014-01-01

    Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5′ untranslated region (5′ UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis. PMID:24360810

  17. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model.

    PubMed

    Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; Te Riele, Hein; Pook, Mark A

    2012-04-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model

    PubMed Central

    Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; te Riele, Hein; Pook, Mark A.

    2013-01-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. PMID:22289650

  19. The non-coding RNA landscape of human hematopoiesis and leukemia.

    PubMed

    Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning

    2017-08-09

    Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.

  20. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export.

    PubMed

    Shi, Kevin Y; Mori, Eiichiro; Nizami, Zehra F; Lin, Yi; Kato, Masato; Xiang, Siheng; Wu, Leeju C; Ding, Ming; Yu, Yonghao; Gall, Joseph G; McKnight, Steven L

    2017-02-14

    The toxic proline:arginine (PR n ) poly-dipeptide encoded by the (GGGGCC) n repeat expansion in the C9orf72 form of heritable amyotrophic lateral sclerosis (ALS) binds to the central channel of the nuclear pore and inhibits the movement of macromolecules into and out of the nucleus. The PR n poly-dipeptide binds to polymeric forms of the phenylalanine:glycine (FG) repeat domain, which is shared by several proteins of the nuclear pore complex, including those in the central channel. A method of chemical footprinting was used to characterize labile, cross-β polymers formed from the FG domain of the Nup54 protein. Mutations within the footprinted region of Nup54 polymers blocked both polymerization and binding by the PR n poly-dipeptide. The aliphatic alcohol 1,6-hexanediol melted FG domain polymers in vitro and reversed PR n -mediated enhancement of the nuclear pore permeability barrier. These data suggest that toxicity of the PR n poly-dipeptide results in part from its ability to lock the FG repeats of nuclear pore proteins in the polymerized state. Our study offers a mechanistic interpretation of PR n poly-dipeptide toxicity in the context of a prominent form of ALS.

  1. The Inescapable Influence of Noncoding RNAs in Cancer

    PubMed Central

    Adams, Brian D.; Anastasiadou, Eleni; Esteller, Manel; He, Lin; Slack, Frank J.

    2015-01-01

    This report summarizes information presented at the 2015 Keystone Symposium on “MicroRNAs and Noncoding RNAs in Cancer”. Nearly two decades after the discovery of the first microRNA (miRNA), the role of noncoding RNAs in developmental processes and the mechanisms behind their dysregulation in cancer has been steadily elucidated. Excitingly, miRNAs have begun making their way into the clinic to combat disease such a hepatitis C, and various forms of cancer. Therefore, at this Keystone meeting novel findings were presented that enhance our view on how small and long noncoding RNAs control developmental timing and oncogenic processes. Recurring themes included, 1) how miRNAs can be differentially processed, degraded, and regulated by ribonucleoprotein (RNP) complexes, 2) how particular miRNA genetic networks that control developmental process, when disrupted, can result in cancer disease, 3) the technologies available to therapeutically deliver RNA to combat diseases such as cancer, and 4) the elucidation of the mechanism of actions for long noncoding RNAs, currently a poorly understood class of noncoding RNA. During the meeting there was an emphasis on presenting unpublished findings, and the breadth of topics covered reflected how inescapable the influence of noncoding RNAs are in development and cancer. PMID:26567137

  2. Virulence Phenotypes of Legionella pneumophila Associated with Noncoding RNA lpr0035

    PubMed Central

    Jayakumar, Deepak; Early, Julie V.

    2012-01-01

    The Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, contains a recently discovered noncoding RNA, lpr0035. lpr0035 straddles the 5′ chromosomal junction of a 45-kbp mobile genetic element, pLP45, which can exist as an episome or integrated in the bacterial chromosome. A 121-bp deletion was introduced in strain JR32, a Philadelphia-1 derivative. The deletion inactivated lpr0035, removed the 49-bp direct repeat at the 5′ junction of pLP45, and locked pLP45 in the chromosome. Intracellular multiplication of the deletion mutant was decreased by nearly 3 orders of magnitude in Acanthamoeba castellanii amoebae and nearly 2 orders of magnitude in J774 mouse macrophages. Entry of the deletion mutant into amoebae and macrophages was decreased by >70%. The level of entry in both hosts was restored to that in strain JR32 by plasmid copies of two open reading frames immediately downstream of the 5′ junction and plasmid lpr0035 driven by its endogenous promoter. When induced from a tac promoter, plasmid lpr0035 completely reversed the intracellular multiplication defect in macrophages but was without effect in amoebae. These data are the first evidence of a role for noncoding RNA lpr0035, which has homologs in six other Legionella genomes, in entry of L. pneumophila into amoebae and macrophages and in host-specific intracellular multiplication. The data also demonstrate that deletion of a direct-repeat sequence restricts the mobility of pLP45 and is a means of studying the role of pLP45 mobility in Legionella virulence phenotypes. PMID:22966048

  3. Structural studies of CNG repeats

    PubMed Central

    Kiliszek, Agnieszka; Rypniewski, Wojciech

    2014-01-01

    CNG repeats (where N denotes one of the four natural nucleotides) are abundant in the human genome. Their tendency to undergo expansion can lead to hereditary diseases known as TREDs (trinucleotide repeat expansion disorders). The toxic factor can be protein, if the abnormal gene is expressed, or the gene transcript, or both. The gene transcripts have attracted much attention in the biomedical community, but their molecular structures have only recently been investigated. Model RNA molecules comprising CNG repeats fold into long hairpins whose stems generally conform to an A-type helix, in which the non-canonical N-N pairs are flanked by C-G and G-C pairs. Each homobasic pair is accommodated in the helical context in a unique manner, with consequences for the local helical parameters, solvent structure, electrostatic potential and potential to interact with ligands. The detailed three-dimensional profiles of RNA CNG repeats can be used in screening of compound libraries for potential therapeutics and in structure-based drug design. Here is a brief survey of the CNG structures published to date. PMID:24939898

  4. Noncoding sequence classification based on wavelet transform analysis: part I

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  5. Simple Sequence Repeats in Escherichia coli: Abundance, Distribution, Composition, and Polymorphism

    PubMed Central

    Gur-Arie, Riva; Cohen, Cyril J.; Eitan, Yuval; Shelef, Leora; Hallerman, Eric M.; Kashi, Yechezkel

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.[The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AF209020–209030 and AF209508–209518.] PMID:10645951

  6. [Relevance of long non-coding RNAs in tumour biology].

    PubMed

    Nagy, Zoltán; Szabó, Diána Rita; Zsippai, Adrienn; Falus, András; Rácz, Károly; Igaz, Péter

    2012-09-23

    The discovery of the biological relevance of non-coding RNA molecules represents one of the most significant advances in contemporary molecular biology. It has turned out that a major fraction of the non-coding part of the genome is transcribed. Beside small RNAs (including microRNAs) more and more data are disclosed concerning long non-coding RNAs of 200 nucleotides to 100 kb length that are implicated in the regulation of several basic molecular processes (cell proliferation, chromatin functioning, microRNA-mediated effects, etc.). Some of these long non-coding RNAs have been associated with human tumours, including H19, HOTAIR, MALAT1, etc., the different expression of which has been noted in various neoplasms relative to healthy tissues. Long non-coding RNAs may represent novel markers of molecular diagnostics and they might even turn out to be targets of therapeutic intervention.

  7. A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects.

    PubMed

    Favaro, Francine P; Alvizi, Lucas; Zechi-Ceide, Roseli M; Bertola, Debora; Felix, Temis M; de Souza, Josiane; Raskin, Salmo; Twigg, Stephen R F; Weiner, Andrea M J; Armas, Pablo; Margarit, Ezequiel; Calcaterra, Nora B; Andersen, Gregers R; McGowan, Simon J; Wilkie, Andrew O M; Richieri-Costa, Antonio; de Almeida, Maria L G; Passos-Bueno, Maria Rita

    2014-01-02

    Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5' untranslated region (5' UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. DDM1 represses noncoding RNA expression and RNA-directed DNA methylation in heterochromatin.

    PubMed

    Tan, Feng; Lu, Yue; Jiang, Wei; Zhao, Yu; Wu, Tian; Zhang, Ruoyu; Zhou, Dao-Xiu

    2018-05-24

    Cytosine methylation of DNA, which occurs at CG, CHG, and CHH (H=A, C, or T) sequences in plants, is a hallmark for epigenetic repression of repetitive sequences. The chromatin remodeling factor DECREASE IN DNA METHYLATION1 (DDM1) is essential for DNA methylation, especially at CG and CHG sequences. However, its potential role in RNA-directed DNA methylation (RdDM) and in chromatin function is not completely understood in rice (Oryza sativa). In this work, we used high-throughput approaches to study the function of rice DDM1 (OsDDM1) in RdDM and the expression of non-coding RNA (ncRNA). We show that loss of function of OsDDM1 results in ectopic CHH methylation of transposable elements and repeats. The ectopic CHH methylation was dependent on rice DOMAINS REARRANGED METHYLTRANSFERASE2 (OsDRM2), a DNA methyltransferase involved in RdDM. Mutations in OsDDM1 lead to decreases of histone H3K9me2 and increases in the levels of heterochromatic small RNA (sRNA) and long noncoding RNA (lncRNA). In particular, OsDDM1 was found to be essential to repress transcription of the two repetitive sequences, Centromeric Retrotransposons of Rice1 (CRR1) and the dominant centromeric CentO repeats. These results suggest that OsDDM1 antagonizes RdDM at heterochromatin and represses tissue-specific expression of ncRNA from repetitive sequences in the rice genome. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  9. The origins and evolutionary history of human non-coding RNA regulatory networks.

    PubMed

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  10. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

    PubMed Central

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K.

    2015-01-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  11. Non-coding RNAs in cancer brain metastasis

    PubMed Central

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2017-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can’t penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed. PMID:26709907

  12. Bleomycin Can Cleave an Oncogenic Noncoding RNA.

    PubMed

    Angelbello, Alicia J; Disney, Matthew D

    2018-01-04

    Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural studies of CNG repeats.

    PubMed

    Kiliszek, Agnieszka; Rypniewski, Wojciech

    2014-07-01

    CNG repeats (where N denotes one of the four natural nucleotides) are abundant in the human genome. Their tendency to undergo expansion can lead to hereditary diseases known as TREDs (trinucleotide repeat expansion disorders). The toxic factor can be protein, if the abnormal gene is expressed, or the gene transcript, or both. The gene transcripts have attracted much attention in the biomedical community, but their molecular structures have only recently been investigated. Model RNA molecules comprising CNG repeats fold into long hairpins whose stems generally conform to an A-type helix, in which the non-canonical N-N pairs are flanked by C-G and G-C pairs. Each homobasic pair is accommodated in the helical context in a unique manner, with consequences for the local helical parameters, solvent structure, electrostatic potential and potential to interact with ligands. The detailed three-dimensional profiles of RNA CNG repeats can be used in screening of compound libraries for potential therapeutics and in structure-based drug design. Here is a brief survey of the CNG structures published to date. © Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera

    PubMed Central

    Zayed, Amro; Whitfield, Charles W.

    2008-01-01

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852–1,371 genes or ≈10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between FST estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee. PMID:18299560

  15. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera.

    PubMed

    Zayed, Amro; Whitfield, Charles W

    2008-03-04

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating "Africanized" honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (F(ST)) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher F(ST) estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852-1,371 genes or approximately 10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between F(ST) estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee.

  16. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases

    PubMed Central

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew GL; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew JA

    2016-01-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets. PMID:25990798

  17. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  18. Facts and updates about cardiovascular non-coding RNAs in heart failure.

    PubMed

    Thum, Thomas

    2015-09-01

    About 11% of all deaths include heart failure as a contributing cause. The annual cost of heart failure amounts to US $34,000,000,000 in the United States alone. With the exception of heart transplantation, there is no curative therapy available. Only occasionally there are new areas in science that develop into completely new research fields. The topic on non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, is such a field. In this short review, we will discuss the latest developments about non-coding RNAs in cardiovascular disease. MicroRNAs are short regulatory non-coding endogenous RNA species that are involved in virtually all cellular processes. Long non-coding RNAs also regulate gene and protein levels; however, by much more complicated and diverse mechanisms. In general, non-coding RNAs have been shown to be of great value as therapeutic targets in adverse cardiac remodelling and also as diagnostic and prognostic biomarkers for heart failure. In the future, non-coding RNA-based therapeutics are likely to enter the clinical reality offering a new treatment approach of heart failure.

  19. Noncoding RNAs in human intervertebral disc degeneration: An integrated microarray study.

    PubMed

    Liu, Xu; Che, Lu; Xie, Yan-Ke; Hu, Qing-Jie; Ma, Chi-Jiao; Pei, Yan-Jun; Wu, Zhi-Gang; Liu, Zhi-Heng; Fan, Li-Ying; Wang, Hai-Qiang

    2015-09-01

    Accumulating evidence indicates that noncoding RNAs play important roles in a multitude of biological processes. The striking findings of miRNAs (microRNAs) and lncRNAs (long noncoding RNAs) as members of noncoding RNAs open up an exciting era in the studies of gene regulation. More recently, the reports of circRNAs (circular RNAs) add fuel to the noncoding RNAs research. Human intervertebral disc degeneration (IDD) is a main cause of low back pain as a disabling spinal disease. We have addressed the expression profiles if miRNAs, lncRNAs and mRNAs in IDD (Wang et al., J Pathology, 2011 and Wan et al., Arthritis Res Ther, 2014). Furthermore, we thoroughly analysed noncoding RNAs, including miRNAs, lncRNAs and circRNAs in IDD using the very same samples. Here we delineate in detail the contents of the aforementioned microarray analyses. Microarray and sample annotation data were deposited in GEO under accession number GSE67567 as SuperSeries. The integrated analyses of these noncoding RNAs will shed a novel light on coding-noncoding regulatory machinery.

  20. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.

    PubMed

    Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko

    2016-05-01

    The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Long Noncoding RNAs in Lung Cancer.

    PubMed

    Roth, Anna; Diederichs, Sven

    2016-01-01

    Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.

  2. Noncoding RNAs of the Ultrabithorax Domain of the Drosophila Bithorax Complex

    PubMed Central

    Pease, Benjamin; Borges, Ana C.; Bender, Welcome

    2013-01-01

    RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function. PMID:24077301

  3. Biological significance of long non-coding RNA FTX expression in human colorectal cancer

    PubMed Central

    Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming

    2015-01-01

    The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer. PMID:26629053

  4. Biological significance of long non-coding RNA FTX expression in human colorectal cancer.

    PubMed

    Guo, Xiao-Bo; Hua, Zhu; Li, Chen; Peng, Li-Pan; Wang, Jing-Shen; Wang, Bo; Zhi, Qiao-Ming

    2015-01-01

    The purpose of this study was to determine the expression of long non-coding RNA (lncRNA) FTX and analyze its prognostic and biological significance in colorectal cancer (CRC). A quantitative reverse transcription PCR was performed to detect the expression of long non-coding RNA FTX in 35 pairs of colorectal cancer and corresponding noncancerous tissues. The expression of long non-coding RNA FTX was detected in 187 colorectal cancer tissues and its correlations with clinicopathological factors of patients were examined. Univariate and multivariate analyses were performed to analyze the prognostic significance of Long Non-coding RNA FTX expression. The effects of long non-coding RNA FTX expression on malignant phenotypes of colorectal cancer cells and its possible biological significances were further determined. Long non-coding RNA FTX was significantly upregulated in colorectal cancer tissues, and low long non-coding RNA FTX expression was significantly correlated with differentiation grade, lymph vascular invasion, and clinical stage. Patients with high long non-coding RNA FTX showed poorer overall survival than those with low long non-coding RNA FTX. Multivariate analyses indicated that status of long non-coding RNA FTX was an independent prognostic factor for patients. Functional analyses showed that upregulation of long non-coding RNA FTX significantly promoted growth, migration, invasion, and increased colony formation in colorectal cancer cells. Therefore, long non-coding RNA FTX may be a potential biomarker for predicting the survival of colorectal cancer patients and might be a molecular target for treatment of human colorectal cancer.

  5. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants

    PubMed Central

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1–6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ PMID:25380781

  6. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants.

    PubMed

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ © The Author(s) 2014. Published by Oxford University Press.

  7. Regulation of mammalian cell differentiation by long non-coding RNAs

    PubMed Central

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-01-01

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development. PMID:23070366

  8. FMR1 CGG repeat expansion mutation detection and linked haplotype analysis for reliable and accurate preimplantation genetic diagnosis of fragile X syndrome.

    PubMed

    Rajan-Babu, Indhu-Shree; Lian, Mulias; Cheah, Felicia S H; Chen, Min; Tan, Arnold S C; Prasath, Ethiraj B; Loh, Seong Feei; Chong, Samuel S

    2017-07-19

    Fragile X mental retardation 1 (FMR1) full-mutation expansion causes fragile X syndrome. Trans-generational fragile X syndrome transmission can be avoided by preimplantation genetic diagnosis (PGD). We describe a robust PGD strategy that can be applied to virtually any couple at risk of transmitting fragile X syndrome. This novel strategy utilises whole-genome amplification, followed by triplet-primed polymerase chain reaction (TP-PCR) for robust detection of expanded FMR1 alleles, in parallel with linked multi-marker haplotype analysis of 13 highly polymorphic microsatellite markers located within 1 Mb of the FMR1 CGG repeat, and the AMELX/Y dimorphism for gender identification. The assay was optimised and validated on single lymphoblasts isolated from fragile X reference cell lines, and applied to a simulated PGD case and a clinical in vitro fertilisation (IVF)-PGD case. In the simulated PGD case, definitive diagnosis of the expected results was achieved for all 'embryos'. In the clinical IVF-PGD case, delivery of a healthy baby girl was achieved after transfer of an expansion-negative blastocyst. FMR1 TP-PCR reliably detects presence of expansion mutations and obviates reliance on informative normal alleles for determining expansion status in female embryos. Together with multi-marker haplotyping and gender determination, misdiagnosis and diagnostic ambiguity due to allele dropout is minimised, and couple-specific assay customisation can be avoided.

  9. SCA8 Repeat Expansion: Large CTA/CTG Repeat Alleles Are More Common in Ataxic Patients, Including Those with SCA6

    PubMed Central

    Izumi, Yuishin; Maruyama, Hirofumi; Oda, Masaya; Morino, Hiroyuki; Okada, Takayuki; Ito, Hidefumi; Sasaki, Iwao; Tanaka, Hiroyasu; Komure, Osamu; Udaka, Fukashi; Nakamura, Shigenobu; Kawakami, Hideshi

    2003-01-01

    We analyzed the SCA8 CTA/CTG repeat in a large group of Japanese subjects. The frequency of large alleles (85–399 CTA/CTG repeats) was 1.9% in spinocerebellar ataxia (SCA), 0.4% in Parkinson disease, 0.3% in Alzheimer disease, and 0% in a healthy control group; the frequency was significantly higher in the group with SCA than in the control group. Homozygotes for large alleles were observed only in the group with SCA. In five patients with SCA from two families, a large SCA8 CTA/CTG repeat and a large SCA6 CAG repeat coexisted. Age at onset was correlated with SCA8 repeats rather than SCA6 repeats in these five patients. In one of these families, at least one patient showed only a large SCA8 CTA/CTG repeat allele, with no large SCA6 CAG repeat allele. We speculate that the presence of a large SCA8 CTA/CTG repeat allele influences the function of channels such as α1A-voltage–dependent calcium channel through changing or aberrant splicing, resulting in the development of cerebellar ataxia, especially in homozygous patients. PMID:12545428

  10. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6.

    PubMed

    Izumi, Yuishin; Maruyama, Hirofumi; Oda, Masaya; Morino, Hiroyuki; Okada, Takayuki; Ito, Hidefumi; Sasaki, Iwao; Tanaka, Hiroyasu; Komure, Osamu; Udaka, Fukashi; Nakamura, Shigenobu; Kawakami, Hideshi

    2003-03-01

    We analyzed the SCA8 CTA/CTG repeat in a large group of Japanese subjects. The frequency of large alleles (85-399 CTA/CTG repeats) was 1.9% in spinocerebellar ataxia (SCA), 0.4% in Parkinson disease, 0.3% in Alzheimer disease, and 0% in a healthy control group; the frequency was significantly higher in the group with SCA than in the control group. Homozygotes for large alleles were observed only in the group with SCA. In five patients with SCA from two families, a large SCA8 CTA/CTG repeat and a large SCA6 CAG repeat coexisted. Age at onset was correlated with SCA8 repeats rather than SCA6 repeats in these five patients. In one of these families, at least one patient showed only a large SCA8 CTA/CTG repeat allele, with no large SCA6 CAG repeat allele. We speculate that the presence of a large SCA8 CTA/CTG repeat allele influences the function of channels such as alpha(1A)-voltage-dependent calcium channel through changing or aberrant splicing, resulting in the development of cerebellar ataxia, especially in homozygous patients.

  11. A New Property of Repeating Decimals

    ERIC Educational Resources Information Center

    Arledge, Jane; Tekansik, Sarah

    2008-01-01

    As extended by Ginsberg, Midi's theorem says that if the repeated section of a decimal expansion of a prime is split into appropriate blocks and these are added, the result is a string of nines. We show that if the expansion of 1/p[superscript n+1] is treated the same way, instead of being a string of nines, the sum is related to the period of…

  12. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor.

    PubMed

    Janes, D E; Chapus, C; Gondo, Y; Clayton, D F; Sinha, S; Blatti, C A; Organ, C L; Fujita, M K; Balakrishnan, C N; Edwards, S V

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.

  13. Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor

    PubMed Central

    Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.

    2010-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607

  14. Noncoding sequence classification based on wavelet transform analysis: part II

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez-Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. We hypothesize that the characteristic periodicities of the noncoding sequences are related to their function. We describe the procedure to identify these characteristic periodicities using the wavelet analysis. Our results show that three groups of noncoding sequences, each one with different biological function, may be differentiated by their wavelet coefficients within specific frequency range.

  15. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice.

    PubMed

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro

    2017-02-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. Copyright © 2017 by the Genetics Society of America.

  16. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington’s Disease Knock-In Mice

    PubMed Central

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R.; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C.; Pinto, Ricardo Mouro

    2017-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. PMID:27913616

  17. Scaling features of noncoding DNA

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.

    1999-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene, and utilize this fact to build a Coding Sequence Finder Algorithm, which uses statistical ideas to locate the coding regions of an unknown DNA sequence. Finally, we describe briefly some recent work adapting to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function, and reporting that noncoding regions in eukaryotes display a larger redundancy than coding regions. Specifically, we consider the possibility that this result is solely a consequence of nucleotide concentration differences as first noted by Bonhoeffer and his collaborators. We find that cytosine-guanine (CG) concentration does have a strong "background" effect on redundancy. However, we find that for the purine-pyrimidine binary mapping rule, which is not affected by the difference in CG concentration, the Shannon redundancy for the set of analyzed sequences is larger for noncoding regions compared to coding regions.

  18. Targeting noncoding RNAs in disease

    PubMed Central

    Parsons, Christine; Walker, Lisa; Zhang, Wen Cai; Slack, Frank J.

    2017-01-01

    Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide–based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease. PMID:28248199

  19. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo

    PubMed Central

    Williams, Gregory M.; Surtees, Jennifer A.

    2015-01-01

    Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion. PMID:25969461

  20. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.

    PubMed

    Williams, Gregory M; Surtees, Jennifer A

    2015-07-01

    Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion. Copyright © 2015 by the Genetics Society of America.

  1. Non-coding RNAs in lung cancer

    PubMed Central

    Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio

    2014-01-01

    The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996

  2. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  3. Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders.

    PubMed

    Lattante, Serena; Millecamps, Stéphanie; Stevanin, Giovanni; Rivaud-Péchoux, Sophie; Moigneu, Carine; Camuzat, Agnès; Da Barroca, Sandra; Mundwiller, Emeline; Couarch, Philippe; Salachas, François; Hannequin, Didier; Meininger, Vincent; Pasquier, Florence; Seilhean, Danielle; Couratier, Philippe; Danel-Brunaud, Véronique; Bonnet, Anne-Marie; Tranchant, Christine; LeGuern, Eric; Brice, Alexis; Le Ber, Isabelle; Kabashi, Edor

    2014-09-09

    The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS. © 2014 American Academy of Neurology.

  4. Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders

    PubMed Central

    Lattante, Serena; Millecamps, Stéphanie; Stevanin, Giovanni; Rivaud-Péchoux, Sophie; Moigneu, Carine; Camuzat, Agnès; Da Barroca, Sandra; Mundwiller, Emeline; Couarch, Philippe; Salachas, François; Hannequin, Didier; Meininger, Vincent; Pasquier, Florence; Seilhean, Danielle; Couratier, Philippe; Danel-Brunaud, Véronique; Bonnet, Anne-Marie; Tranchant, Christine; LeGuern, Eric; Brice, Alexis; Le Ber, Isabelle

    2014-01-01

    Objective: The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. Methods: We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). Results: We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. Conclusions: ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS. PMID:25098532

  5. Trinucleotide repeat length and progression of illness in Huntington's disease.

    PubMed

    Kieburtz, K; MacDonald, M; Shih, C; Feigin, A; Steinberg, K; Bordwell, K; Zimmerman, C; Srinidhi, J; Sotack, J; Gusella, J

    1994-11-01

    The genetic defect causing Huntington's disease (HD) has been identified as an unstable expansion of a trinucleotide (CAG) repeat sequence within the coding region of the IT15 gene on chromosome 4. In 50 patients with manifest HD who were evaluated prospectively and uniformly, we examined the relationship between the extent of the DNA expansion and the rate of illness progression. Although the length of CAG repeats showed a strong inverse correlation with the age at onset of HD, there was no such relationship between the number of CAG repeats and the rate of clinical decline. These findings suggest that the CAG repeat length may influence or trigger the onset of HD, but other genetic, neurobiological, or environmental factors contribute to the progression of illness and the underlying pace of neuronal degeneration.

  6. Trinucleotide repeat length and progression of illness in Huntington's disease.

    PubMed Central

    Kieburtz, K; MacDonald, M; Shih, C; Feigin, A; Steinberg, K; Bordwell, K; Zimmerman, C; Srinidhi, J; Sotack, J; Gusella, J

    1994-01-01

    The genetic defect causing Huntington's disease (HD) has been identified as an unstable expansion of a trinucleotide (CAG) repeat sequence within the coding region of the IT15 gene on chromosome 4. In 50 patients with manifest HD who were evaluated prospectively and uniformly, we examined the relationship between the extent of the DNA expansion and the rate of illness progression. Although the length of CAG repeats showed a strong inverse correlation with the age at onset of HD, there was no such relationship between the number of CAG repeats and the rate of clinical decline. These findings suggest that the CAG repeat length may influence or trigger the onset of HD, but other genetic, neurobiological, or environmental factors contribute to the progression of illness and the underlying pace of neuronal degeneration. PMID:7853373

  7. DNA rearrangements directed by non-coding RNAs in ciliates

    PubMed Central

    Mochizuki, Kazufumi

    2013-01-01

    Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937

  8. [Long non-coding RNAs in the pathophysiology of atherosclerosis].

    PubMed

    Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav

    2018-01-01

    The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words

  9. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    PubMed

    Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  10. R-loops: targets for nuclease cleavage and repeat instability.

    PubMed

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  11. A-to-I editing of coding and non-coding RNAs by ADARs

    PubMed Central

    Nishikura, Kazuko

    2016-01-01

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264

  12. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    PubMed

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Noncoding RNAs in Neurodegenerative Diseases

    PubMed Central

    Rege, Shraddha D.; Geetha, Thangiah; Pondugula, Satyanarayana R.; Zizza, Claire A.; Wernette, Catherine M.

    2013-01-01

    Noncoding RNAs are widely known for their various essential roles in the development of central nervous system. It involves neurogenesis, neural stem cells generation, maintenance and maturation, neurotransmission, neural network plasticity, formation of synapses, and even brain aging and DNA damage responses. In this review, we will discuss the biogenesis of microRNA, various functions of noncoding RNA's specifically microRNAs (miRNAs) that act as the chief regulators of gene expression, and focus in particular on misregulation of miRNAs which leads to several neurodegenerative diseases as well as its therapeutic outcome. Recent evidences has shown that miRNAs expression levels are changed in patients with neurodegenerative diseases; hence, miRNA can be used as a potential diagnostic biomarker and serve as an effective therapeutic tool in overcoming various neurodegenerative disease processes. PMID:23738143

  14. The Effects of Expansions, Questions and Cloze Procedures on Children's Conversational Skills

    ERIC Educational Resources Information Center

    Wong, Tze-Peng; Moran, Catherine; Foster-Cohen, Susan

    2012-01-01

    The effectiveness of expansion as a technique for facilitating children's language and conversational skills is well known (Scherer and Olswang, 1984). Expansion, however, can appear alone or in combination with other techniques. Using a repeated measures design, this study aimed to compare the effects of expansion alone (EA); expansion combined…

  15. Integrating non-coding RNAs in JAK-STAT regulatory networks

    PubMed Central

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925

  16. The development of non-coding RNA ontology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.

  17. GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells

    PubMed Central

    Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602

  18. Mutsβ generates both expansions and contractions in a mouse model of the Fragile X-associated disorders

    PubMed Central

    Zhao, Xiao-Nan; Kumari, Daman; Gupta, Shikha; Wu, Di; Evanitsky, Maya; Yang, Wei; Usdin, Karen

    2015-01-01

    Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSβ complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSβ-independent one that generates small contractions and a MutSβ-dependent one that generates larger ones. We also show that MutSβ complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSβ increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process. PMID:26420841

  19. ATXN2 trinucleotide repeat length correlates with risk of ALS.

    PubMed

    Sproviero, William; Shatunov, Aleksey; Stahl, Daniel; Shoai, Maryam; van Rheenen, Wouter; Jones, Ashley R; Al-Sarraj, Safa; Andersen, Peter M; Bonini, Nancy M; Conforti, Francesca L; Van Damme, Philip; Daoud, Hussein; Del Mar Amador, Maria; Fogh, Isabella; Forzan, Monica; Gaastra, Ben; Gellera, Cinzia; Gitler, Aaron D; Hardy, John; Fratta, Pietro; La Bella, Vincenzo; Le Ber, Isabelle; Van Langenhove, Tim; Lattante, Serena; Lee, Yi-Chung; Malaspina, Andrea; Meininger, Vincent; Millecamps, Stéphanie; Orrell, Richard; Rademakers, Rosa; Robberecht, Wim; Rouleau, Guy; Ross, Owen A; Salachas, Francois; Sidle, Katie; Smith, Bradley N; Soong, Bing-Wen; Sorarù, Gianni; Stevanin, Giovanni; Kabashi, Edor; Troakes, Claire; van Broeckhoven, Christine; Veldink, Jan H; van den Berg, Leonard H; Shaw, Christopher E; Powell, John F; Al-Chalabi, Ammar

    2017-03-01

    We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carrying intermediate sized trinucleotide repeat alleles (odds ratio 3.06 [95% confidence interval 2.37-3.94]; p = 6 × 10 -18 ), with an exponential relationship between repeat length and ALS risk for alleles of 29-32 repeats (R 2  = 0.91, p = 0.0002). No relationship was seen for repeat length and age of onset or survival. In contrast to trinucleotide repeat diseases, intermediate ATXN2 trinucleotide repeat expansion in ALS does not predict age of onset but does predict disease risk. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Partners in crime: bidirectional transcription in unstable microsatellite disease.

    PubMed

    Batra, Ranjan; Charizanis, Konstantinos; Swanson, Maurice S

    2010-04-15

    Nearly two decades have passed since the discovery that the expansion of microsatellite trinucleotide repeats is responsible for a prominent class of neurological disorders, including Huntington disease and fragile X syndrome. These hereditary diseases are characterized by genetic anticipation or the intergenerational increase in disease severity accompanied by a decrease in age-of-onset. The revelation that the variable expansion of simple sequence repeats accounted for anticipation spawned a number of pathogenesis models and a flurry of studies designed to reveal the molecular events affected by these expansions. This work led to our current understanding that expansions in protein-coding regions result in extended homopolymeric amino acid tracts, often polyglutamine or polyQ, and deleterious protein gain-of-function effects. In contrast, expansions in noncoding regions cause RNA-mediated toxicity. However, the realization that the transcriptome is considerably more complex than previously imagined, as well as the emerging regulatory importance of antisense RNAs, has blurred this distinction. In this review, we summarize evidence for bidirectional transcription of microsatellite disease genes and discuss recent suggestions that some repeat expansions produce variable levels of both toxic RNAs and proteins that influence cell viability, disease penetrance and pathological severity.

  1. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice.

    PubMed

    Foiry, Laurent; Dong, Li; Savouret, Cédric; Hubert, Laurence; te Riele, Hein; Junien, Claudine; Gourdon, Geneviève

    2006-06-01

    The CTG repeat involved in myotonic dystrophy is one of the most unstable trinucleotide repeats. However, the molecular mechanisms underlying this particular form of genetic instability-biased towards expansions-have not yet been completely elucidated. We previously showed, with highly unstable CTG repeat arrays in DM1 transgenic mice, that Msh2 is required for the formation of intergenerational and somatic expansions. To identify the partners of Msh2 in the formation of intergenerational CTG repeat expansions, we investigated the involvement of Msh3 and Msh6, partners of Msh2 in mismatch repair. Transgenic mice with CTG expansions were crossed with Msh3- or Msh6-deficient mice and CTG repeats were analysed after maternal and paternal transmissions. We demonstrated that Msh3 but not Msh6 plays also a key role in the formation of expansions over successive generation. Furthermore, the absence of one Msh3 allele was sufficient to decrease the formation of expansions, indicating that Msh3 is rate-limiting in this process. In the absence of Msh6, the frequency of expansions decreased only in maternal transmissions. However, the significantly lower levels of Msh2 and Msh3 proteins in Msh6 -/- ovaries suggest that the absence of Msh6 may have an indirect effect.

  2. Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions.

    PubMed

    Lattante, Serena; Le Ber, Isabelle; Galimberti, Daniela; Serpente, Maria; Rivaud-Péchoux, Sophie; Camuzat, Agnès; Clot, Fabienne; Fenoglio, Chiara; Scarpini, Elio; Brice, Alexis; Kabashi, Edor

    2014-11-01

    TMEM106B was identified as a risk factor for frontotemporal lobar degeneration (FTD) with TAR DNA-binding protein 43 kDa inclusions. It has been reported that variants in this gene are genetic modifiers of the disease and that this association is stronger in patients carrying a GRN mutation or a pathogenic expansion in chromosome 9 open reading frame 72 (C9orf72) gene. Here, we investigated the contribution of TMEM106B polymorphisms in cohorts of FTD and FTD with amyotrophic lateral sclerosis patients from France and Italy. Patients carrying the C9orf72 expansion (n = 145) and patients with GRN mutations (n = 76) were compared with a group of FTD patients (n = 384) negative for mutations and to a group of healthy controls (n = 552). In our cohorts, the presence of the C9orf72 expansion did not correlate with TMEM106B genotypes but the association was very strong in individuals with pathogenic GRN mutations (p = 9.54 × 10(-6)). Our data suggest that TMEM106B genotypes differ in FTD patient cohorts and strengthen the protective role of TMEM106B in GRN carriers. Further studies are needed to determine whether TMEM106B polymorphisms are associated with other genetic causes for FTD, including C9orf72 repeat expansions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Brain white matter demyelinating lesions and amyotrophic lateral sclerosis in a patient with C9orf72 hexanucleotide repeat expansion.

    PubMed

    Oliveira Santos, Miguel; Caldeira, Inês; Gromicho, Marta; Pronto-Laborinho, Ana; de Carvalho, Mamede

    2017-10-01

    A hexanucleotide repeat expansion in the C9orf72 gene is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. It has been described before four patients with multiple sclerosis (MS) and C9orf72-ALS. However, C9orf72 positivity is not associated with increased risk of MS. Inflammatory pathways related to NF-κB have been linked to ALS and MS, and appear to be important in C9orf72-ALS patients. A 42-year-old woman presented with progressive bulbar symptoms for 9 months. Neurological examination disclosed spastic dysarthria, atrophic tongue with fasciculations, brisk jaw and limb tendon reflexes, and bilateral Hoffman sign. Electrophysiological assessment confirmed ALS. Brain MRI revealed multiple and bilateral juxtacortical and periventricular inflammatory changes, some with gadolinium-enhancement, configuring a probable MS-like pattern. CSF evaluation was unremarkable, with no oligoclonal bands. Visual and somatosensory evoked potentials were normal. Follow-up brain MRI 6 months later showed two new lesions in two relatively characteristic locations of MS, with no gadolinium-enhancement. Genetic screening revealed a C9orf72 expansion. As patient had no clinical manifestation of MS, a diagnosis of radiologically isolated syndrome was considered. We speculate that these demyelinating lesions might facilitate expressivity of C9orf72 expansion, through NF-κB activation. This plausible association may lead to the identification of a therapeutic target in this subgroup of C9orf72-ALS patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion.

    PubMed

    Fratta, Pietro; Polke, James M; Newcombe, Jia; Mizielinska, Sarah; Lashley, Tammaryn; Poulter, Mark; Beck, Jon; Preza, Elisavet; Devoy, Anny; Sidle, Katie; Howard, Robin; Malaspina, Andrea; Orrell, Richard W; Clarke, Jan; Lu, Ching-Hua; Mok, Kin; Collins, Toby; Shoaii, Maryam; Nanji, Tina; Wray, Selina; Adamson, Gary; Pittman, Alan; Renton, Alan E; Traynor, Bryan J; Sweeney, Mary G; Revesz, Tamas; Houlden, Henry; Mead, Simon; Isaacs, Adrian M; Fisher, Elizabeth M C

    2015-01-01

    An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Although 0-30 hexanucleotide repeats are present in the general population, expansions >500 repeats are associated with C9ALS/FTD. Large C9ALS/FTD expansions share a common haplotype and whether these expansions derive from a single founder or occur more frequently on a predisposing haplotype is yet to be determined and is relevant to disease pathomechanisms. Furthermore, although cases carrying 50-200 repeats have been described, their role and the pathogenic threshold of the expansions remain to be identified and carry importance for diagnostics and genetic counseling. We present clinical and genetic data from a UK ALS cohort and report the detailed molecular study of an atypical somatically unstable expansion of 90 repeats. Our results across different tissues provide evidence for the pathogenicity of this repeat number by showing they can somatically expand in the central nervous system to the well characterized pathogenic range. Our results support the occurrence of multiple expansion events for C9ALS/FTD. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.

    PubMed

    Usdin, Karen; Kumari, Daman

    2015-01-01

    The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.

  6. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.

    PubMed

    Tani, Hidenori

    2017-03-22

    Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.

  7. Role of non-coding RNAs in non-aging-related neurological disorders.

    PubMed

    Vieira, A S; Dogini, D B; Lopes-Cendes, I

    2018-06-11

    Protein coding sequences represent only 2% of the human genome. Recent advances have demonstrated that a significant portion of the genome is actively transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as key players in the regulation of biological processes, and act as "fine-tuners" of gene expression. Neurological disorders are caused by a wide range of genetic mutations, epigenetic and environmental factors, and the exact pathophysiology of many of these conditions is still unknown. It is currently recognized that dysregulations in the expression of non-coding RNAs are present in many neurological disorders and may be relevant in the mechanisms leading to disease. In addition, circulating non-coding RNAs are emerging as potential biomarkers with great potential impact in clinical practice. In this review, we discuss mainly the role of microRNAs and long non-coding RNAs in several neurological disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia, spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In addition, we give information about the conditions where microRNAs have demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.

  8. Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks

    PubMed Central

    Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.

    2012-01-01

    While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213

  9. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD.

    PubMed

    O'Rourke, Jacqueline G; Bogdanik, Laurent; Muhammad, A K M G; Gendron, Tania F; Kim, Kevin J; Austin, Andrew; Cady, Janet; Liu, Elaine Y; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W; Harms, Matthew B; Petrucelli, Leonard; Lee, Edward B; Lutz, Cathleen M; Baloh, Robert H

    2015-12-02

    Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Landscape of long non-coding RNA classification

    PubMed Central

    St Laurent, Georges; Wahlestedt, Claes; Kapranov, Philipp

    2015-01-01

    Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long non-coding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the non-coding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual un-ambiguous classification framework results in a number of challenges in the annotation and interpretation of non-coding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets. PMID:25869999

  11. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers

    PubMed Central

    Pan, Yangyang; Mao, Yuyan; Jin, Rong; Jiang, Lei

    2018-01-01

    The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells. PMID:29285185

  12. The Long Noncoding RNA Transcriptome of Dictyostelium discoideum Development.

    PubMed

    Rosengarten, Rafael D; Santhanam, Balaji; Kokosar, Janez; Shaulsky, Gad

    2017-02-09

    Dictyostelium discoideum live in the soil as single cells, engulfing bacteria and growing vegetatively. Upon starvation, tens of thousands of amoebae enter a developmental program that includes aggregation, multicellular differentiation, and sporulation. Major shifts across the protein-coding transcriptome accompany these developmental changes. However, no study has presented a global survey of long noncoding RNAs (ncRNAs) in D. discoideum To characterize the antisense and long intergenic noncoding RNA (lncRNA) transcriptome, we analyzed previously published developmental time course samples using an RNA-sequencing (RNA-seq) library preparation method that selectively depletes ribosomal RNAs (rRNAs). We detected the accumulation of transcripts for 9833 protein-coding messenger RNAs (mRNAs), 621 lncRNAs, and 162 putative antisense RNAs (asRNAs). The noncoding RNAs were interspersed throughout the genome, and were distinct in expression level, length, and nucleotide composition. The noncoding transcriptome displayed a temporal profile similar to the coding transcriptome, with stages of gradual change interspersed with larger leaps. The transcription profiles of some noncoding RNAs were strongly correlated with known differentially expressed coding RNAs, hinting at a functional role for these molecules during development. Examining the mitochondrial transcriptome, we modeled two novel antisense transcripts. We applied yet another ribosomal depletion method to a subset of the samples to better retain transfer RNA (tRNA) transcripts. We observed polymorphisms in tRNA anticodons that suggested a post-transcriptional means by which D. discoideum compensates for codons missing in the genomic complement of tRNAs. We concluded that the prevalence and characteristics of long ncRNAs indicate that these molecules are relevant to the progression of molecular and cellular phenotypes during development. Copyright © 2017 Rosengarten et al.

  13. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.

    PubMed

    Tomé, Stéphanie; Manley, Kevin; Simard, Jodie P; Clark, Greg W; Slean, Meghan M; Swami, Meera; Shelbourne, Peggy F; Tillier, Elisabeth R M; Monckton, Darren G; Messer, Anne; Pearson, Christopher E

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of

  14. MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice

    PubMed Central

    Simard, Jodie P.; Clark, Greg W.; Slean, Meghan M.; Swami, Meera; Shelbourne, Peggy F.; Tillier, Elisabeth R. M.; Monckton, Darren G.; Messer, Anne; Pearson, Christopher E.

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of

  15. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae

  16. An expanding universe of noncoding RNAs between the poles of basic science and clinical investigations.

    PubMed

    Weil, Patrick P; Hensel, Kai O; Weber, David; Postberg, Jan

    2016-03-01

    The Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer', Keystone, CO, USA, 7-12 June 2015 Since the discovery of RNAi, great efforts have been undertaken to unleash the potential biomedical applicability of small noncoding RNAs, mainly miRNAs, involving their use as biomarkers for personalized diagnostics or their usability as active agents or therapy targets. The research's focus on the noncoding RNA world is now slowly moving from a phase of basic discoveries into a new phase, where every single molecule out of many hundreds of cataloged noncoding RNAs becomes dissected in order to investigate these molecules' biomedical relevance. In addition, RNA classes neglected before, such as long noncoding RNAs or circular RNAs attract more attention. Numerous timely results and hypotheses were presented at the 2015 Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer'.

  17. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases

    PubMed Central

    Koon, Alex C.; Chan, Ho Yin Edwin

    2017-01-01

    For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development. PMID:28377694

  18. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Noncoding Genomics in Gastric Cancer and the Gastric Precancerous Cascade: Pathogenesis and Biomarkers

    PubMed Central

    Garcia-Bloj, Benjamin; Fry, Jacqueline; Wichmann, Ignacio

    2015-01-01

    Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death, whose patterns vary among geographical regions and ethnicities. It is a multifactorial disease, and its development depends on infection by Helicobacter pylori (H. pylori) and Epstein-Barr virus (EBV), host genetic factors, and environmental factors. The heterogeneity of the disease has begun to be unraveled by a comprehensive mutational evaluation of primary tumors. The low-abundance of mutations suggests that other mechanisms participate in the evolution of the disease, such as those found through analyses of noncoding genomics. Noncoding genomics includes single nucleotide polymorphisms (SNPs), regulation of gene expression through DNA methylation of promoter sites, miRNAs, other noncoding RNAs in regulatory regions, and other topics. These processes and molecules ultimately control gene expression. Potential biomarkers are appearing from analyses of noncoding genomics. This review focuses on noncoding genomics and potential biomarkers in the context of gastric cancer and the gastric precancerous cascade. PMID:26379360

  20. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    PubMed

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  1. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences.

    PubMed

    Bergman, C M; Kreitman, M

    2001-08-01

    Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.

  2. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains

    PubMed Central

    Hutchinson, John N; Ensminger, Alexander W; Clemson, Christine M; Lynch, Christopher R; Lawrence, Jeanne B; Chess, Andrew

    2007-01-01

    Background Noncoding RNA species play a diverse set of roles in the eukaryotic cell. While much recent attention has focused on smaller RNA species, larger noncoding transcripts are also thought to be highly abundant in mammalian cells. To search for large noncoding RNAs that might control gene expression or mRNA metabolism, we used Affymetrix expression arrays to identify polyadenylated RNA transcripts displaying nuclear enrichment. Results This screen identified no more than three transcripts; XIST, and two unique noncoding nuclear enriched abundant transcripts (NEAT) RNAs strikingly located less than 70 kb apart on human chromosome 11: NEAT1, a noncoding RNA from the locus encoding for TncRNA, and NEAT2 (also known as MALAT-1). While the two NEAT transcripts share no significant homology with each other, each is conserved within the mammalian lineage, suggesting significant function for these noncoding RNAs. NEAT2 is extraordinarily well conserved for a noncoding RNA, more so than even XIST. Bioinformatic analyses of publicly available mouse transcriptome data support our findings from human cells as they confirm that the murine homologs of these noncoding RNAs are also nuclear enriched. RNA FISH analyses suggest that these noncoding RNAs function in mRNA metabolism as they demonstrate an intimate association of these RNA species with SC35 nuclear speckles in both human and mouse cells. These studies show that one of these transcripts, NEAT1 localizes to the periphery of such domains, whereas the neighboring transcript, NEAT2, is part of the long-sought polyadenylated component of nuclear speckles. Conclusion Our genome-wide screens in two mammalian species reveal no more than three abundant large non-coding polyadenylated RNAs in the nucleus; the canonical large noncoding RNA XIST and NEAT1 and NEAT2. The function of these noncoding RNAs in mRNA metabolism is suggested by their high levels of conservation and their intimate association with SC35 splicing

  3. High frequency of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis patients from two founder populations sharing the same risk haplotype.

    PubMed

    Goldstein, Orly; Gana-Weisz, Mali; Nefussy, Beatrice; Vainer, Batel; Nayshool, Omri; Bar-Shira, Anat; Traynor, Bryan J; Drory, Vivian E; Orr-Urtreger, Avi

    2018-04-01

    We characterized the C9orf72 hexanucleotide repeat expansion (RE) mutation in amyotrophic lateral sclerosis (ALS) patients of 2 distinct origins, Ashkenazi and North Africa Jews (AJ, NAJ), its frequency, and genotype-phenotype correlations. In AJ, 80% of familial ALS (fALS) and 11% of sporadic ALS carried the RE, a total of 12.9% of all AJ-ALS compared to 0.3% in AJ controls (odds ratio [OR] = 44.3, p < 0.0001). In NAJ, 10% of fALS and 9% of sporadic ALS carried the RE, a total of 9.1% of all NAJ-ALS compared to 1% in controls (OR = 9.9, p = 0.0006). We identified a risk haplotype shared among all ALS patients, although an association with age at disease onset, fALS, and dementia were observed only in AJ. Variations were identified downstream the repeats. The risk haplotype and these polymorphisms were at high frequencies in alleles with 8 repeats or more, suggesting sequence instability. The different genotype-phenotype correlations and OR, together with the large range in age at onset, suggest that other modifiers and risk factors may affect penetrance and phenotype in ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Alu repeats: A source for the genesis of primate microsatellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcot, S.S.; Batzer, M.A.; Wang, Zhenyuan

    1995-09-01

    As a result of their abundance, relatively uniform distribution, and high degree of polymorphism, microsatellites and minisatellites have become valuable tools in genetic mapping, forensic identity testing, and population studies. In recent years, a number of microsatellite repeats have been found to be associated with Alu interspersed repeated DNA elements. The association of an Alu element with a microsatellite repeat could result from the integration of an Alu element within a preexisting microsatellite repeat. Alternatively, Alu elements could have a direct role in the origin of microsatellite repeats. Errors introduced during reverse transcription of the primary transcript derived from anmore » Alu {open_quotes}master{close_quote} gene or the accumulation of random mutations in the middle A-rich regions and oligo(dA)-rich tails of Alu elements after insertion and subsequent expansion and contraction of these sequences could result in the genesis of a microsatellite repeat. We have tested these hypotheses by a direct evolutionary comparison of the sequences of some recent Alu elements that are found only in humans and are absent from nonhuman primates, as well as some older Alu elements that are present at orthologous positions in a number of nonhuman primates. The origin of {open_quotes}young{close_quotes} Alu insertions, absence of sequences that resemble microsatellite repeats at the orthologous loci in chimpanzees, and the gradual expansion of microsatellite repeats in some old Alu repeats at orthologous positions within the genomes of a number of nonhuman primates suggest that Alu elements are a source for the genesis of primate microsatellite repeats. 48 refs., 5 figs., 3 tabs.« less

  5. Birth, coming of age and death: The intriguing life of long noncoding RNAs.

    PubMed

    Samudyata; Castelo-Branco, Gonçalo; Bonetti, Alessandro

    2018-07-01

    Mammalian genomes are pervasively transcribed, with long noncoding RNAs being the most abundant fraction. Recent studies have highlighted the central role played by these transcripts in several physiological and pathological processes. Despite several metabolic features shared between coding and noncoding transcripts, these two classes of RNAs exhibit multiple differences regarding their biogenesis and processing. Here we review such distinctions, focusing on the unique features of specific long noncoding RNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Long Noncoding RNA-Associated Transcriptomic Changes in Resiliency or Susceptibility to Depression and Response to Antidepressant Treatment

    PubMed Central

    Roy, Bhaskar; Wang, Qingzhong; Dwivedi, Yogesh

    2018-01-01

    Abstract Background Recent emergence of long noncoding RNAs in regulating gene expression and thereby modulating physiological functions in brain has manifested their possible role in psychiatric disorders. In this study, the roles of long noncoding RNAs in susceptibility and resiliency to develop stress-induced depression and their response to antidepressant treatment were examined. Methods Microarray-based transcriptome-wide changes in long noncoding RNAs were determined in hippocampus of male Holtzman rats who showed susceptibility (learned helplessness) or resiliency (nonlearned helplessness) to develop depression. Changes in long noncoding RNA expression were also ascertained after subchronic administration of fluoxetine to learned helplessness rats. Bioinformatic and target prediction analyses (cis- and trans-acting) and qPCR-based assays were performed to decipher the functional role of altered long noncoding RNAs. Results Group-wise comparison showed an overrepresented class of long noncoding RNAs that were uniquely associated with nonlearned helplessness or learned helplessness behavior. Chromosomal mapping within the 5-kbp flank region of the top 20 dysregulated long noncoding RNAs in the learned helplessness group showed several target genes that were regulated through cis- or trans-actions, including Zbtb20 and Zfp385b from zinc finger binding protein family. Genomic context of differentially expressed long noncoding RNAs showed an overall blunted response in the learned helplessness group regardless of the long noncoding RNA classes analyzed. Gene ontology exhibited the functional clustering for anatomical structure development, cellular architecture modulation, protein metabolism, and cellular communications. Fluoxetine treatment reversed learned helplessness-induced changes in many long noncoding RNAs and target genes. Conclusions The involvement of specific classes of long noncoding RNAs with distinctive roles in modulating target gene expression

  7. Long non-coding RNAs in cancer metabolism.

    PubMed

    Xiao, Zhen-Dong; Zhuang, Li; Gan, Boyi

    2016-10-01

    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism. © 2016 WILEY Periodicals, Inc.

  8. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants andmore » discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.« less

  9. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    PubMed Central

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin; Tuskan, Gerald A; Yang, Xiaohan

    2017-01-01

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs. PMID:28698797

  10. Dysregulation of non-coding RNAs in gastric cancer

    PubMed Central

    Yang, Qing; Zhang, Ren-Wen; Sui, Peng-Cheng; He, Hai-Tao; Ding, Lei

    2015-01-01

    Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC. PMID:26494954

  11. Long Non-Coding RNAs Regulating Immunity in Insects

    PubMed Central

    Satyavathi, Valluri; Ghosh, Rupam; Subramanian, Srividya

    2017-01-01

    Recent advances in modern technology have led to the understanding that not all genetic information is coded into protein and that the genomes of each and every organism including insects produce non-coding RNAs that can control different biological processes. Among RNAs identified in the last decade, long non-coding RNAs (lncRNAs) represent a repertoire of a hidden layer of internal signals that can regulate gene expression in physiological, pathological, and immunological processes. Evidence shows the importance of lncRNAs in the regulation of host–pathogen interactions. In this review, an attempt has been made to view the role of lncRNAs regulating immune responses in insects. PMID:29657286

  12. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization

    PubMed Central

    Romero-Soriano, Valèria; Burlet, Nelly; Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2016-01-01

    Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent. PMID:26872773

  13. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia

    PubMed Central

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong

    2017-01-01

    Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses. PMID:28217082

  14. Conserved noncoding sequences (CNSs) in higher plants.

    PubMed

    Freeling, Michael; Subramaniam, Shabarinath

    2009-04-01

    Plant conserved noncoding sequences (CNSs)--a specific category of phylogenetic footprint--have been shown experimentally to function. No plant CNS is conserved to the extent that ultraconserved noncoding sequences are conserved in vertebrates. Plant CNSs are enriched in known transcription factor or other cis-acting binding sites, and are usually clustered around genes. Genes that encode transcription factors and/or those that respond to stimuli are particularly CNS-rich. Only rarely could this function involve small RNA binding. Some transcribed CNSs encode short translation products as a form of negative control. Approximately 4% of Arabidopsis gene content is estimated to be both CNS-rich and occupies a relatively long stretch of chromosome: Bigfoot genes (long phylogenetic footprints). We discuss a 'DNA-templated protein assembly' idea that might help explain Bigfoot gene CNSs.

  15. CGG-repeat dynamics and FMR1 gene silencing in fragile X syndrome stem cells and stem cell-derived neurons.

    PubMed

    Zhou, Yifan; Kumari, Daman; Sciascia, Nicholas; Usdin, Karen

    2016-01-01

    Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons. We used a PCR assay optimized for the amplification of large CGG repeats for sizing, and a quantitative methylation-specific PCR for the analysis of FMR1 promoter methylation. The FMR1 mRNA levels were analyzed by qRT-PCR. FMRP levels were determined by western blotting and immunofluorescence. Chromatin immunoprecipitation was used to study the association of repressive histone marks with the FMR1 gene in FXS ESCs. We show here that while FMR1 gene silencing can be seen in FXS embryonic stem cells (ESCs), some silenced alleles contract and when the repeat number drops below ~400, DNA methylation erodes, even when the repeat number remains >200. The resultant active alleles do not show the large step-wise expansions seen in stem cells from other repeat expansion diseases. Furthermore, there may be selection against large active alleles and these alleles do not expand further or become silenced on neuronal differentiation. Our data support the hypotheses that (i) large expansions occur prezygotically or in the very early embryo, (ii) large unmethylated alleles may be deleterious in stem cells, (iii) methylation can occur on alleles with >400 repeats very early in embryogenesis, and (iv) expansion and contraction may occur by different

  16. Non-coding variants contribute to the clinical heterogeneity of TTR amyloidosis.

    PubMed

    Iorio, Andrea; De Lillo, Antonella; De Angelis, Flavio; Di Girolamo, Marco; Luigetti, Marco; Sabatelli, Mario; Pradotto, Luca; Mauro, Alessandro; Mazzeo, Anna; Stancanelli, Claudia; Perfetto, Federico; Frusconi, Sabrina; My, Filomena; Manfellotto, Dario; Fuciarelli, Maria; Polimanti, Renato

    2017-09-01

    Coding mutations in TTR gene cause a rare hereditary form of systemic amyloidosis, which has a complex genotype-phenotype correlation. We investigated the role of non-coding variants in regulating TTR gene expression and consequently amyloidosis symptoms. We evaluated the genotype-phenotype correlation considering the clinical information of 129 Italian patients with TTR amyloidosis. Then, we conducted a re-sequencing of TTR gene to investigate how non-coding variants affect TTR expression and, consequently, phenotypic presentation in carriers of amyloidogenic mutations. Polygenic scores for genetically determined TTR expression were constructed using data from our re-sequencing analysis and the GTEx (Genotype-Tissue Expression) project. We confirmed a strong phenotypic heterogeneity across coding mutations causing TTR amyloidosis. Considering the effects of non-coding variants on TTR expression, we identified three patient clusters with specific expression patterns associated with certain phenotypic presentations, including late onset, autonomic neurological involvement, and gastrointestinal symptoms. This study provides novel data regarding the role of non-coding variation and the gene expression profiles in patients affected by TTR amyloidosis, also putting forth an approach that could be used to investigate the mechanisms at the basis of the genotype-phenotype correlation of the disease.

  17. Characterization of noncoding regulatory DNA in the human genome.

    PubMed

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  18. Heavy Chronic Intermittent Ethanol Exposure Alters Small Noncoding RNAs in Mouse Sperm and Epididymosomes.

    PubMed

    Rompala, Gregory R; Mounier, Anais; Wolfe, Cody M; Lin, Qishan; Lefterov, Iliya; Homanics, Gregg E

    2018-01-01

    While the risks of maternal alcohol abuse during pregnancy are well-established, several preclinical studies suggest that chronic preconception alcohol consumption by either parent may also have significance consequences for offspring health and development. Notably, since isogenic male mice used in these studies are not involved in gestation or rearing of offspring, the cross-generational effects of paternal alcohol exposure suggest a germline-based epigenetic mechanism. Many recent studies have demonstrated that the effects of paternal environmental exposures such as stress or malnutrition can be transmitted to the next generation via alterations to small noncoding RNAs in sperm. Therefore, we used high throughput sequencing to examine the effect of preconception ethanol on small noncoding RNAs in sperm. We found that chronic intermittent ethanol exposure altered several small noncoding RNAs from three of the major small RNA classes in sperm, tRNA-derived small RNA (tDR), mitochondrial small RNA, and microRNA. Six of the ethanol-responsive small noncoding RNAs were evaluated with RT-qPCR on a separate cohort of mice and five of the six were confirmed to be altered by chronic ethanol exposure, supporting the validity of the sequencing results. In addition to altered sperm RNA abundance, chronic ethanol exposure affected post-transcriptional modifications to sperm small noncoding RNAs, increasing two nucleoside modifications previously identified in mitochondrial tRNA. Furthermore, we found that chronic ethanol reduced epididymal expression of a tRNA methyltransferase, Nsun2 , known to directly regulate tDR biogenesis. Finally, ethanol-responsive sperm tDR are similarly altered in extracellular vesicles of the epididymis (i.e., epididymosomes), supporting the hypothesis that alterations to sperm tDR emerge in the epididymis and that epididymosomes are the primary source of small noncoding RNAs in sperm. These results add chronic ethanol to the growing list of

  19. Heavy Chronic Intermittent Ethanol Exposure Alters Small Noncoding RNAs in Mouse Sperm and Epididymosomes

    PubMed Central

    Rompala, Gregory R.; Mounier, Anais; Wolfe, Cody M.; Lin, Qishan; Lefterov, Iliya; Homanics, Gregg E.

    2018-01-01

    While the risks of maternal alcohol abuse during pregnancy are well-established, several preclinical studies suggest that chronic preconception alcohol consumption by either parent may also have significance consequences for offspring health and development. Notably, since isogenic male mice used in these studies are not involved in gestation or rearing of offspring, the cross-generational effects of paternal alcohol exposure suggest a germline-based epigenetic mechanism. Many recent studies have demonstrated that the effects of paternal environmental exposures such as stress or malnutrition can be transmitted to the next generation via alterations to small noncoding RNAs in sperm. Therefore, we used high throughput sequencing to examine the effect of preconception ethanol on small noncoding RNAs in sperm. We found that chronic intermittent ethanol exposure altered several small noncoding RNAs from three of the major small RNA classes in sperm, tRNA-derived small RNA (tDR), mitochondrial small RNA, and microRNA. Six of the ethanol-responsive small noncoding RNAs were evaluated with RT-qPCR on a separate cohort of mice and five of the six were confirmed to be altered by chronic ethanol exposure, supporting the validity of the sequencing results. In addition to altered sperm RNA abundance, chronic ethanol exposure affected post-transcriptional modifications to sperm small noncoding RNAs, increasing two nucleoside modifications previously identified in mitochondrial tRNA. Furthermore, we found that chronic ethanol reduced epididymal expression of a tRNA methyltransferase, Nsun2, known to directly regulate tDR biogenesis. Finally, ethanol-responsive sperm tDR are similarly altered in extracellular vesicles of the epididymis (i.e., epididymosomes), supporting the hypothesis that alterations to sperm tDR emerge in the epididymis and that epididymosomes are the primary source of small noncoding RNAs in sperm. These results add chronic ethanol to the growing list of

  20. Spinocerebellar ataxia type 1 and Machado-Joseph disease: Incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranum, L.P.W.; Gomez, C.; Orr, H.T.

    1995-09-01

    The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia, we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 andmore » MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% have SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively. 30 refs., 1 fig., 3 tabs.« less

  1. Paraspeckles: nuclear bodies built on long noncoding RNA

    PubMed Central

    Bond, Charles S.

    2009-01-01

    Paraspeckles are ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. These structures play a role in regulating the expression of certain genes in differentiated cells by nuclear retention of RNA. The core paraspeckle proteins (PSF/SFPQ, P54NRB/NONO, and PSPC1 [paraspeckle protein 1]) are members of the DBHS (Drosophila melanogaster behavior, human splicing) family. These proteins, together with the long nonprotein-coding RNA NEAT1 (MEN-ϵ/β), associate to form paraspeckles and maintain their integrity. Given the large numbers of long noncoding transcripts currently being discovered through whole transcriptome analysis, paraspeckles may be a paradigm for a class of subnuclear bodies formed around long noncoding RNA. PMID:19720872

  2. Disruption of Higher Order DNA Structures in Friedreich’s Ataxia (GAA)n Repeats by PNA or LNA Targeting

    PubMed Central

    Bergquist, Helen; Rocha, Cristina S. J.; Álvarez-Asencio, Rubén; Nguyen, Chi-Hung; Rutland, Mark. W.; Smith, C. I. Edvard; Good, Liam; Nielsen, Peter E.; Zain, Rula

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression. PMID:27846236

  3. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  4. Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs

    PubMed Central

    Charley, Phillida A.; Wilusz, Jeffrey

    2015-01-01

    Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052

  5. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis

    PubMed Central

    El Khodiry, Aya; Afify, Menna; El Tayebi, Hend M

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren’t as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future. PMID:29434445

  6. SCA17 repeat expansion: mildly expanded CAG/CAA repeat alleles in neurological disorders and the functional implications.

    PubMed

    Chen, Chiung-Mei; Lee, Li-Ching; Soong, Bing-Wen; Fung, Hon-Chung; Hsu, Wen-Chuin; Lin, Pei-Ying; Huang, Hui-Ju; Chen, Fen-Lin; Lin, Cheng-Yueh; Lee-Chen, Guey-Jen; Wu, Yih-Ru

    2010-03-01

    Spinocerebellar ataxia type 17 (SCA17) involves the expression of a CAG/CAA expansion mutation in the gene encoding TATA-box binding protein (TBP), a general transcription initiation factor. The spectrum of SCA17 clinical presentation is broad. We screened for triplet expansion in the TBP gene in Taiwanese Parkinson's disease (PD), Alzheimer's disease (AD) and atypical parkinsonism and investigated the functional implication of expanded alleles using lymphoblastoid cells as a model. A total of 6 mildly expanded alleles (44-46) were identified in patients group. The frequency of the individuals carrying expanded alleles in PD (3/602 [0.5%]), AD (2/245 [0.8%]) and atypical parkinsonism (1/44 [2.3%]) is not significant as compared to that in the control subjects (0/644 [0.0%]). In lymphoblastoid cells, HSPA5, HSPA8 and HSPB1 expression levels in cells with expanded TBP were significantly lower than that of the control cells. Although not significantly, the levels of PARK7 protein isoforms 6.1 and 6.4 are notably increased in SCA17 lymphoblastoid cells. Treatment of TBH (tert-butyl hydroperoxide) significantly increases cell death in the cells with mildly expanded TBP. Our findings expand the spectrum of SCA17 phenotype and may contribute to our understanding of the disease. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Always look on both sides: Phylogenetic information conveyed by simple sequence repeat allele sequences

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily,...

  8. Progressive changes in non-coding RNA profile in leucocytes with age

    PubMed Central

    Muñoz-Culla, Maider; Irizar, Haritz; Gorostidi, Ana; Alberro, Ainhoa; Osorio-Querejeta, Iñaki; Ruiz-Martínez, Javier; Olascoaga, Javier; de Munain, Adolfo López; Otaegui, David

    2017-01-01

    It has been observed that immune cell deterioration occurs in the elderly, as well as a chronic low-grade inflammation called inflammaging. These cellular changes must be driven by numerous changes in gene expression and in fact, both protein-coding and non-coding RNA expression alterations have been observed in peripheral blood mononuclear cells from elder people. In the present work we have studied the expression of small non-coding RNA (microRNA and small nucleolar RNA -snoRNA-) from healthy individuals from 24 to 79 years old. We have observed that the expression of 69 non-coding RNAs (56 microRNAs and 13 snoRNAs) changes progressively with chronological age. According to our results, the age range from 47 to 54 is critical given that it is the period when the expression trend (increasing or decreasing) of age-related small non-coding RNAs is more pronounced. Furthermore, age-related miRNAs regulate genes that are involved in immune, cell cycle and cancer-related processes, which had already been associated to human aging. Therefore, human aging could be studied as a result of progressive molecular changes, and different age ranges should be analysed to cover the whole aging process. PMID:28448962

  9. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Hagerman, Randi; Hagerman, Paul

    2014-01-01

    Summary Fragile X syndrome, the leading heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene consequent to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, “premutation” expansions (55–200 repeats) can give rise to a family of neurodevelopmental (ADHD, autism spectrum disorder, seizure disorder) and neurodegenerative (FXTAS) clinical phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the spectrum of clinical involvement. Whereas advances on both mechanistic and clinical fronts are driving new approaches to targeted treatment, two important issues/needs are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in light of its differing presentations and associated features. PMID:23867198

  10. Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation.

    PubMed

    Mikhailov, Alexander T; Torrado, Mario

    2018-05-12

    There is growing evidence that putative gene regulatory networks including cardio-enriched transcription factors, such as PITX2, TBX5, ZFHX3, and SHOX2, and their effector/target genes along with downstream non-coding RNAs can play a potentially important role in the process of adaptive and maladaptive atrial rhythm remodeling. In turn, expression of atrial fibrillation-associated transcription factors is under the control of upstream regulatory non-coding RNAs. This review broadly explores gene regulatory mechanisms associated with susceptibility to atrial fibrillation-with key examples from both animal models and patients-within the context of both cardiac transcription factors and non-coding RNAs. These two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective control of atrial rhythm effector gene expression. Perturbations of a dynamic expression balance between transcription factors and corresponding non-coding RNAs can provoke the development or promote the progression of atrial fibrillation. We also outline deficiencies in current models and discuss ongoing studies to clarify remaining mechanistic questions. An understanding of the function of transcription factors and non-coding RNAs in gene regulatory networks associated with atrial fibrillation risk will enable the development of innovative therapeutic strategies.

  11. Expansion of all multitrace tree level EYM amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Feng, Bo; Teng, Fei

    2017-12-01

    In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.

  12. Differential expression and emerging functions of non-coding RNAs in cold adaptation.

    PubMed

    Frigault, Jacques J; Morin, Mathieu D; Morin, Pier Jr

    2017-01-01

    Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.

  13. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations.

    PubMed

    Zhou, Stanley; Treloar, Aislinn E; Lupien, Mathieu

    2016-11-01

    The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Identification of coding and non-coding mutational hotspots in cancer genomes.

    PubMed

    Piraino, Scott W; Furney, Simon J

    2017-01-05

    The identification of mutations that play a causal role in tumour development, so called "driver" mutations, is of critical importance for understanding how cancers form and how they might be treated. Several large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the most prominent driver genes are well characterised, comparatively less is known about the role of mutations in the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs has resulted in a concomitant increase in the number of cancer whole genome sequences being produced, facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes. To examine the mutational landscapes of tumour genomes we have developed a novel method to identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly, we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions) and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis. We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can be used to differentiate candidate driver regions from

  15. The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action.

    PubMed

    Shi, Xuan; Zhu, Hai-Rong; Liu, Tao-Tao; Shen, Xi-Zhong; Zhu, Ji-Min

    2017-08-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide. However, current strategies curing HCC are far from satisfaction. The Hippo pathway is an evolutionarily conserved tumor suppressive pathway that plays crucial roles in organ size control and tissue homeostasis. Its dysregulation is commonly observed in various types of cancer including HCC. Recently, the prominent role of non-coding RNAs in the Hippo pathway during normal development and neoplastic progression is also emerging in liver. Thus, further investigation into the regulatory network between non-coding RNAs and the Hippo pathway and their connections with HCC may provide new therapeutic avenues towards developing an effective preventative or perhaps curative treatment for HCC. Herein we summarize the role of non-coding RNAs in the Hippo pathway, with an emphasis on their contribution to carcinogenesis, diagnosis, treatment and prognosis of HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells.

    PubMed

    Qiu, Guo-Hua; Huang, Cuiqin; Zheng, Xintian; Yang, Xiaoyan

    2018-04-01

    Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.

  17. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinsztein, D.C.; Leggo, J.; Whittaker, J.L.

    1996-07-01

    Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant. Many of these experiments found an overlap between the normal and disease size ranges. Subsequent findings that the CCG repeats vary by 9 trinucleotide lengths suggested that the limits of the normal andmore » disease size ranges should be reevaluated with assays that exclude the CCG polymorphism. Since patients with between 30 and 40 repeats are rare, a consortium was assembled to collect such individuals. All 178 samples were reanalyzed in Cambridge by using assays specific for the CAG repeats. We have optimized methods for reliable sizing of CAG repeats and show cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms. Seven HD patients had 36 repeats, which confirms that this allele is associated with disease. Individuals without apparent symptoms or signs of HD were found at 36 repeats (aged 74, 78, 79, and 87 years), 37 repeats (aged 69 years), 38 repeats (aged 69 and 90 years), and 39 repeats (aged 67, 90, and 95 years). The detailed case histories of an exceptional case from this series will be presented: a 95-year-old man with 39 repeats who did not have classical features of HD. The apparently healthy survival into old age of some individuals with 36-39 repeats suggests that the HD mutation may not always be fully penetrant. 26 refs., 3 figs., 1 tab.« less

  18. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    PubMed Central

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  19. CGG Repeats in the 5’UTR of FMR1 RNA Regulate Translation of Other RNAs Localized in the Same RNA Granules

    PubMed Central

    Rovozzo, René; Korza, George; Baker, Mei W.; Li, Meng; Bhattacharyya, Anita; Barbarese, Elisa; Carson, John H.

    2016-01-01

    CGG repeats in the 5’UTR of Fragile X Mental Retardation 1 (FMR1) RNA mediate RNA localization and translation in granules. Large expansions of CGG repeats (> 200 repeats) in FMR1, referred to as full mutations, are associated with fragile X syndrome (FXS). Smaller expansions (55–200 repeats), referred to as premutations, are associated with fragile X tremor ataxia syndrome (FXTAS) and fragile X premature ovarian insufficiency (FXPOI). TMPyP4 is a porphyrin ring compound that destabilizes CGG repeat RNA secondary structure. Here we show that exogenous CGG repeat RNA by itself, lacking the FMRP ORF, microinjected into hippocampal neurons is localized in RNA granules and inhibits translation of ARC RNA, which is localized in the same granules. TMPyP4 rescues translation of ARC RNA in granules. We also show that in human premutation fibroblasts with endogenous CGG repeat expansions in the FMR1 gene, translation of ARC RNA is inhibited and calcium homeostasis is disrupted and both phenotypes are rescued by TMPyP4. Inhibition of granule translation by expanded CGG repeats and rescue of granule translation by TMPy4, represent potential pathogenic mechanism and therapeutic strategy, respectively, for FXTAS and FXPOI. PMID:28005950

  20. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers.

    PubMed

    Thin, Khaing Zar; Liu, Xuefang; Feng, Xiaobo; Raveendran, Sudheesh; Tu, Jian Cheng

    2018-06-01

    Long noncoding RNAs (lncRNA) are a type of noncoding RNA that comprise of longer than 200 nucleotides sequences. They can regulate chromosome structure, gene expression and play an essential role in the pathophysiology of human diseases, especially in tumorigenesis and progression. Nowadays, they are being targeted as potential biomarkers for various cancer types. And many research studies have proven that lncRNAs might bring a new era to cancer diagnosis and support treatment management. The purpose of this review was to inspect the molecular mechanism and clinical significance of long non-coding RNA- differentiation antagonizing nonprotein coding RNA(DANCR) in various types of human cancers. In this review, we summarize and figure out recent research studies concerning the expression and biological mechanisms of lncRNA-DANCR in tumour development. The related studies were obtained through a systematic search of PubMed, Embase and Cochrane Library. Long non-coding RNAs-DANCR is a valuable cancer-related lncRNA that its dysregulated expression was found in a variety of malignancies, including hepatocellular carcinoma, breast cancer, glioma, colorectal cancer, gastric cancer, and lung cancer. The aberrant expressions of DANCR have been shown to contribute to proliferation, migration and invasion of cancer cells. Long non-coding RNAs-DANCR likely serves as a useful disease biomarker or therapeutic cancer target. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR library

    PubMed Central

    Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng

    2017-01-01

    CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563

  2. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis.

    PubMed

    Buldyrev, S V; Goldberger, A L; Havlin, S; Mantegna, R N; Matsa, M E; Peng, C K; Simons, M; Stanley, H E

    1995-05-01

    An open question in computational molecular biology is whether long-range correlations are present in both coding and noncoding DNA or only in the latter. To answer this question, we consider all 33301 coding and all 29453 noncoding eukaryotic sequences--each of length larger than 512 base pairs (bp)--in the present release of the GenBank to dtermine whether there is any statistically significant distinction in their long-range correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding sequences have practically no correlations in the range from 10 bp to 100 bp (spectral exponent beta=0.00 +/- 0.04, where the uncertainty is two standard deviations). In contrast, for noncoding sequences, the average value of the spectral exponent beta is positive (0.16 +/- 0.05) which unambiguously shows the presence of long-range correlations. We also separately analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp and find a larger region of power-law behavior. We calculate the probability that these two data sets (coding and noncoding) were drawn from the same distribution and we find that it is less than 10(-10). We obtain independent confirmation of these findings using the method of detrended fluctuation analysis (DFA), which is designed to treat sequences with statistical heterogeneity, such as DNA's known mosaic structure ("patchiness") arising from the nonstationarity of nucleotide concentration. The near-perfect agreement between the two independent analysis methods, FFT and DFA, increases the confidence in the reliability of our conclusion.

  3. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis

    NASA Technical Reports Server (NTRS)

    Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Matsa, M. E.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    An open question in computational molecular biology is whether long-range correlations are present in both coding and noncoding DNA or only in the latter. To answer this question, we consider all 33301 coding and all 29453 noncoding eukaryotic sequences--each of length larger than 512 base pairs (bp)--in the present release of the GenBank to dtermine whether there is any statistically significant distinction in their long-range correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding sequences have practically no correlations in the range from 10 bp to 100 bp (spectral exponent beta=0.00 +/- 0.04, where the uncertainty is two standard deviations). In contrast, for noncoding sequences, the average value of the spectral exponent beta is positive (0.16 +/- 0.05) which unambiguously shows the presence of long-range correlations. We also separately analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp and find a larger region of power-law behavior. We calculate the probability that these two data sets (coding and noncoding) were drawn from the same distribution and we find that it is less than 10(-10). We obtain independent confirmation of these findings using the method of detrended fluctuation analysis (DFA), which is designed to treat sequences with statistical heterogeneity, such as DNA's known mosaic structure ("patchiness") arising from the nonstationarity of nucleotide concentration. The near-perfect agreement between the two independent analysis methods, FFT and DFA, increases the confidence in the reliability of our conclusion.

  4. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories

    PubMed Central

    Akimoto, Chizuru; Volk, Alexander E; van Blitterswijk, Marka; Van den Broeck, Marleen; Leblond, Claire S; Lumbroso, Serge; Camu, William; Neitzel, Birgit; Onodera, Osamu; van Rheenen, Wouter; Pinto, Susana; Weber, Markus; Smith, Bradley; Proven, Melanie; Talbot, Kevin; Keagle, Pamela; Chesi, Alessandra; Ratti, Antonia; van der Zee, Julie; Alstermark, Helena; Birve, Anna; Calini, Daniela; Nordin, Angelica; Tradowsky, Daniela C; Just, Walter; Daoud, Hussein; Angerbauer, Sabrina; DeJesus-Hernandez, Mariely; Konno, Takuya; Lloyd-Jani, Anjali; de Carvalho, Mamede; Mouzat, Kevin; Landers, John E; Veldink, Jan H; Silani, Vincenzo; Gitler, Aaron D; Shaw, Christopher E; Rouleau, Guy A; van den Berg, Leonard H; Van Broeckhoven, Christine; Rademakers, Rosa; Andersen, Peter M; Kubisch, Christian

    2014-01-01

    Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9–100%), and the mean specificity was 98.0% (87.5–100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting. PMID:24706941

  5. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer.

    PubMed

    Crea, Francesco; Venalainen, Erik; Ci, Xinpei; Cheng, Hongwei; Pikor, Larissa; Parolia, Abhijit; Xue, Hui; Nur Saidy, Nur Ridzwan; Lin, Dong; Lam, Wan; Collins, Colin; Wang, Yuzhuo

    2016-05-01

    Neuroendocrine prostate cancer (NEPC) is the most lethal prostatic neoplasm. NEPC is thought to originate from the transdifferentiation of AR-positive adenocarcinoma cells. We have previously shown that an epigenetic/noncoding interactome (ENI) orchestrates cancer cells' plasticity, thereby allowing the emergence of metastatic, drug-resistant neoplasms. The primary objective of this manuscript is to discuss evidence indicating that some components of the ENI (Polycomb genes, miRNAs) play a key role in NEPC initiation and progression. Long noncoding RNAs represent vast and largely unexplored component of the ENI. Their role in NEPC has not been investigated. We show preliminary evidence indicating that a lncRNA (MIAT) is selectively upregulated in NEPCs and might interact with Polycomb genes. Our results indicate that long noncoding RNAs can be exploited as new biomarkers and therapeutic targets for NEPC.

  6. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  7. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  8. Long Noncoding RNAs: Past, Present, and Future

    PubMed Central

    Kung, Johnny T. Y.; Colognori, David; Lee, Jeannie T.

    2013-01-01

    Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years as a potentially new and crucial layer of biological regulation. lncRNAs of all kinds have been implicated in a range of developmental processes and diseases, but knowledge of the mechanisms by which they act is still surprisingly limited, and claims that almost the entirety of the mammalian genome is transcribed into functional noncoding transcripts remain controversial. At the same time, a small number of well-studied lncRNAs have given us important clues about the biology of these molecules, and a few key functional and mechanistic themes have begun to emerge, although the robustness of these models and classification schemes remains to be seen. Here, we review the current state of knowledge of the lncRNA field, discussing what is known about the genomic contexts, biological functions, and mechanisms of action of lncRNAs. We also reflect on how the recent interest in lncRNAs is deeply rooted in biology’s longstanding concern with the evolution and function of genomes. PMID:23463798

  9. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    PubMed Central

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  10. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate

    PubMed Central

    Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou

    2017-01-01

    Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259

  11. Arabidopsis intragenomic conserved noncoding sequence

    PubMed Central

    Thomas, Brian C.; Rapaka, Lakshmi; Lyons, Eric; Pedersen, Brent; Freeling, Michael

    2007-01-01

    After the most recent tetraploidy in the Arabidopsis lineage, most gene pairs lost one, but not both, of their duplicates. We manually inspected the 3,179 retained gene pairs and their surrounding gene space still present in the genome using a custom-made viewer application. The display of these pairs allowed us to define intragenic conserved noncoding sequences (CNSs), identify exon annotation errors, and discover potentially new genes. Using a strict algorithm to sort high-scoring pair sequences from the bl2seq data, we created a database of 14,944 intragenomic Arabidopsis CNSs. The mean CNS length is 31 bp, ranging from 15 to 285 bp. There are ≈1.7 CNSs associated with a typical gene, and Arabidopsis CNSs are found in all areas around exons, most frequently in the 5′ upstream region. Gene ontology classifications related to transcription, regulation, or “response to …” external or endogenous stimuli, especially hormones, tend to be significantly overrepresented among genes containing a large number of CNSs, whereas protein localization, transport, and metabolism are common among genes with no CNSs. There is a 1.5% overlap between these CNSs and the 218,982 putative RNAs in the Arabidopsis Small RNA Project database, allowing for two mismatches. These CNSs provide a unique set of noncoding sequences enriched for function. CNS function is implied by evolutionary conservation and independently supported because CNS-richness predicts regulatory gene ontology categories. PMID:17301222

  12. Spinocerebellar ataxia 17: full phenotype in a 41 CAG/CAA repeats carrier.

    PubMed

    Origone, Paola; Gotta, Fabio; Lamp, Merit; Trevisan, Lucia; Geroldi, Alessandro; Massucco, Davide; Grazzini, Matteo; Massa, Federico; Ticconi, Flavia; Bauckneht, Matteo; Marchese, Roberta; Abbruzzese, Giovanni; Bellone, Emilia; Mandich, Paola

    2018-01-01

    Spinocerebellar ataxia 17 (SCA17) is one of the most heterogeneous forms of autosomal dominant cerebellar ataxias with a large clinical spectrum which can mimic other movement disorders such as Huntington disease (HD), dystonia and parkinsonism. SCA17 is caused by an expansion of CAG/CAA repeat in the Tata binding protein ( TBP ) gene. Normal alleles contain 25 to 40 CAG/CAA repeats, alleles with 50 or greater CAG/CAA repeats are pathological with full penetrance. Alleles with 43 to 49 CAG/CAA repeats were also reported and their penetrance is estimated between 50 and 80%. Recently few symptomatic individuals having 41 and 42 repeats were reported but it is still unclear whether CAG/CAA repeats of 41 or 42 are low penetrance disease-causing alleles. Thus, phenotypic variability like the disease course in subject with SCA17 locus restricted expansions remains to be fully understood. The patients was a 63-year-old woman who, at 54 years, showed personality changes and increased frequency of falls. At 55 years of age neuropsychological tests showed executive attention and visuospatial deficit. At the age of 59 the patient developed dysarthria and a progressive cognitive deficit. The neurological examination showed moderate gait ataxia, dysdiadochokinesia and dysmetria, dysphagia, dysarthria and abnormal saccadic pursuit, severe axial asynergy during postural changes, choreiform dyskinesias. Molecular analysis of the TBP gene demonstrated an allele with 41 repeat suggesting that 41 CAG/CCG TBP repeats could be an allele associated with the full clinical spectrum of SCA17. The described case with the other similar cases described in the literature suggests that 41 CAG/CAA trinucleotides should be considered as critical threshold in SCA17. We suggest that SCA17 diagnosis should be suspected in patients presenting with movement disorders associated with other neurodegenerative signs and symptoms.

  13. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.

    PubMed

    Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G L; Fletcher-Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R; Wade-Martins, Richard; Cowley, Sally A; Talbot, Kevin

    2016-08-01

    An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons, decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis, reduced levels of the antiapoptotic protein Bcl-2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063-2078. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Characterization of conservative somatic instability of the CAG repeat region in Huntington`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.

    1994-09-01

    Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less

  15. ¹H, ¹³C, ¹⁵N and ³¹P chemical shift assignments of a human Xist RNA A-repeat tetraloop hairpin essential for X-chromosome inactivation.

    PubMed

    Duszczyk, Malgorzata M; Sattler, Michael

    2012-04-01

    Initiation of X-chromosome inactivation in female mammals depends on the non-coding RNA Xist. We have solved the NMR structure of a 14-nucleotide hairpin with a novel AUCG tetraloop fold from a Xist A-repeat that is essential for silencing. The (1)H, (13)C, (15)N and (31)P chemical shift assignments are reported.

  16. Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae

    PubMed Central

    Sundararajan, Rangapriya; Freudenreich, Catherine H.

    2011-01-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275

  17. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  18. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  19. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

    PubMed Central

    Lee, J.-M.; Ramos, E.M.; Lee, J.-H.; Gillis, T.; Mysore, J.S.; Hayden, M.R.; Warby, S.C.; Morrison, P.; Nance, M.; Ross, C.A.; Margolis, R.L.; Squitieri, F.; Orobello, S.; Di Donato, S.; Gomez-Tortosa, E.; Ayuso, C.; Suchowersky, O.; Trent, R.J.A.; McCusker, E.; Novelletto, A.; Frontali, M.; Jones, R.; Ashizawa, T.; Frank, S.; Saint-Hilaire, M.H.; Hersch, S.M.; Rosas, H.D.; Lucente, D.; Harrison, M.B.; Zanko, A.; Abramson, R.K.; Marder, K.; Sequeiros, J.; Paulsen, J.S.; Landwehrmeyer, G.B.; Myers, R.H.; MacDonald, M.E.; Durr, Alexandra; Rosenblatt, Adam; Frati, Luigi; Perlman, Susan; Conneally, Patrick M.; Klimek, Mary Lou; Diggin, Melissa; Hadzi, Tiffany; Duckett, Ayana; Ahmed, Anwar; Allen, Paul; Ames, David; Anderson, Christine; Anderson, Karla; Anderson, Karen; Andrews, Thomasin; Ashburner, John; Axelson, Eric; Aylward, Elizabeth; Barker, Roger A.; Barth, Katrin; Barton, Stacey; Baynes, Kathleen; Bea, Alexandra; Beall, Erik; Beg, Mirza Faisal; Beglinger, Leigh J.; Biglan, Kevin; Bjork, Kristine; Blanchard, Steve; Bockholt, Jeremy; Bommu, Sudharshan Reddy; Brossman, Bradley; Burrows, Maggie; Calhoun, Vince; Carlozzi, Noelle; Chesire, Amy; Chiu, Edmond; Chua, Phyllis; Connell, R.J.; Connor, Carmela; Corey-Bloom, Jody; Craufurd, David; Cross, Stephen; Cysique, Lucette; Santos, Rachelle Dar; Davis, Jennifer; Decolongon, Joji; DiPietro, Anna; Doucette, Nicholas; Downing, Nancy; Dudler, Ann; Dunn, Steve; Ecker, Daniel; Epping, Eric A.; Erickson, Diane; Erwin, Cheryl; Evans, Ken; Factor, Stewart A.; Farias, Sarah; Fatas, Marta; Fiedorowicz, Jess; Fullam, Ruth; Furtado, Sarah; Garde, Monica Bascunana; Gehl, Carissa; Geschwind, Michael D.; Goh, Anita; Gooblar, Jon; Goodman, Anna; Griffith, Jane; Groves, Mark; Guttman, Mark; Hamilton, Joanne; Harrington, Deborah; Harris, Greg; Heaton, Robert K.; Helmer, Karl; Henneberry, Machelle; Hershey, Tamara; Herwig, Kelly; Howard, Elizabeth; Hunter, Christine; Jankovic, Joseph; Johnson, Hans; Johnson, Arik; Jones, Kathy; Juhl, Andrew; Kim, Eun Young; Kimble, Mycah; King, Pamela; Klimek, Mary Lou; Klöppel, Stefan; Koenig, Katherine; Komiti, Angela; Kumar, Rajeev; Langbehn, Douglas; Leavitt, Blair; Leserman, Anne; Lim, Kelvin; Lipe, Hillary; Lowe, Mark; Magnotta, Vincent A.; Mallonee, William M.; Mans, Nicole; Marietta, Jacquie; Marshall, Frederick; Martin, Wayne; Mason, Sarah; Matheson, Kirsty; Matson, Wayne; Mazzoni, Pietro; McDowell, William; Miedzybrodzka, Zosia; Miller, Michael; Mills, James; Miracle, Dawn; Montross, Kelsey; Moore, David; Mori, Sasumu; Moser, David J.; Moskowitz, Carol; Newman, Emily; Nopoulos, Peg; Novak, Marianne; O'Rourke, Justin; Oakes, David; Ondo, William; Orth, Michael; Panegyres, Peter; Pease, Karen; Perlman, Susan; Perlmutter, Joel; Peterson, Asa; Phillips, Michael; Pierson, Ron; Potkin, Steve; Preston, Joy; Quaid, Kimberly; Radtke, Dawn; Rae, Daniela; Rao, Stephen; Raymond, Lynn; Reading, Sarah; Ready, Rebecca; Reece, Christine; Reilmann, Ralf; Reynolds, Norm; Richardson, Kylie; Rickards, Hugh; Ro, Eunyoe; Robinson, Robert; Rodnitzky, Robert; Rogers, Ben; Rosenblatt, Adam; Rosser, Elisabeth; Rosser, Anne; Price, Kathy; Price, Kathy; Ryan, Pat; Salmon, David; Samii, Ali; Schumacher, Jamy; Schumacher, Jessica; Sendon, Jose Luis Lópenz; Shear, Paula; Sheinberg, Alanna; Shpritz, Barnett; Siedlecki, Karen; Simpson, Sheila A.; Singer, Adam; Smith, Jim; Smith, Megan; Smith, Glenn; Snyder, Pete; Song, Allen; Sran, Satwinder; Stephan, Klaas; Stober, Janice; Sü?muth, Sigurd; Suter, Greg; Tabrizi, Sarah; Tempkin, Terry; Testa, Claudia; Thompson, Sean; Thomsen, Teri; Thumma, Kelli; Toga, Arthur; Trautmann, Sonja; Tremont, Geoff; Turner, Jessica; Uc, Ergun; Vaccarino, Anthony; van Duijn, Eric; Van Walsem, Marleen; Vik, Stacie; Vonsattel, Jean Paul; Vuletich, Elizabeth; Warner, Tom; Wasserman, Paula; Wassink, Thomas; Waterman, Elijah; Weaver, Kurt; Weir, David; Welsh, Claire; Werling-Witkoske, Chris; Wesson, Melissa; Westervelt, Holly; Weydt, Patrick; Wheelock, Vicki; Williams, Kent; Williams, Janet; Wodarski, Mary; Wojcieszek, Joanne; Wood, Jessica; Wood-Siverio, Cathy; Wu, Shuhua; Yastrubetskaya, Olga; de Yebenes, Justo Garcia; Zhao, Yong Qiang; Zimbelman, Janice; Zschiegner, Roland; Aaserud, Olaf; Abbruzzese, Giovanni; Andrews, Thomasin; Andrich, Jurgin; Antczak, Jakub; Arran, Natalie; Artiga, Maria J. Saiz; Bachoud-Lévi, Anne-Catherine; Banaszkiewicz, Krysztof; di Poggio, Monica Bandettini; Bandmann, Oliver; Barbera, Miguel A.; Barker, Roger A.; Barrero, Francisco; Barth, Katrin; Bas, Jordi; Beister, Antoine; Bentivoglio, Anna Rita; Bertini, Elisabetta; Biunno, Ida; Bjørgo, Kathrine; Bjørnevoll, Inga; Bohlen, Stefan; Bonelli, Raphael M.; Bos, Reineke; Bourne, Colin; Bradbury, Alyson; Brockie, Peter; Brown, Felicity; Bruno, Stefania; Bryl, Anna; Buck, Andrea; Burg, Sabrina; Burgunder, Jean-Marc; Burns, Peter; Burrows, Liz; Busquets, Nuria; Busse, Monica; Calopa, Matilde; Carruesco, Gemma T.; Casado, Ana Gonzalez; Catena, Judit López; Chu, Carol; Ciesielska, Anna; Clapton, Jackie; Clayton, Carole; Clenaghan, Catherine; Coelho, Miguel; Connemann, Julia; Craufurd, David; Crooks, Jenny; Cubillo, Patricia Trigo; Cubo, Esther; Curtis, Adrienne; De Michele, Giuseppe; De Nicola, A.; de Souza, Jenny; de Weert, A. Marit; de Yébenes, Justo Garcia; Dekker, M.; Descals, A. Martínez; Di Maio, Luigi; Di Pietro, Anna; Dipple, Heather; Dose, Matthias; Dumas, Eve M.; Dunnett, Stephen; Ecker, Daniel; Elifani, F.; Ellison-Rose, Lynda; Elorza, Marina D.; Eschenbach, Carolin; Evans, Carole; Fairtlough, Helen; Fannemel, Madelein; Fasano, Alfonso; Fenollar, Maria; Ferrandes, Giovanna; Ferreira, Jaoquim J.; Fillingham, Kay; Finisterra, Ana Maria; Fisher, K.; Fletcher, Amy; Foster, Jillian; Foustanos, Isabella; Frech, Fernando A.; Fullam, Robert; Fullham, Ruth; Gago, Miguel; García, RocioGarcía-Ramos; García, Socorro S.; Garrett, Carolina; Gellera, Cinzia; Gill, Paul; Ginestroni, Andrea; Golding, Charlotte; Goodman, Anna; Gørvell, Per; Grant, Janet; Griguoli, A.; Gross, Diana; Guedes, Leonor; BascuñanaGuerra, Monica; Guerra, Maria Rosalia; Guerrero, Rosa; Guia, Dolores B.; Guidubaldi, Arianna; Hallam, Caroline; Hamer, Stephanie; Hammer, Kathrin; Handley, Olivia J.; Harding, Alison; Hasholt, Lis; Hedge, Reikha; Heiberg, Arvid; Heinicke, Walburgis; Held, Christine; Hernanz, Laura Casas; Herranhof, Briggitte; Herrera, Carmen Durán; Hidding, Ute; Hiivola, Heli; Hill, Susan; Hjermind, Lena. E.; Hobson, Emma; Hoffmann, Rainer; Holl, Anna Hödl; Howard, Liz; Hunt, Sarah; Huson, Susan; Ialongo, Tamara; Idiago, Jesus Miguel R.; Illmann, Torsten; Jachinska, Katarzyna; Jacopini, Gioia; Jakobsen, Oda; Jamieson, Stuart; Jamrozik, Zygmunt; Janik, Piotr; Johns, Nicola; Jones, Lesley; Jones, Una; Jurgens, Caroline K.; Kaelin, Alain; Kalbarczyk, Anna; Kershaw, Ann; Khalil, Hanan; Kieni, Janina; Klimberg, Aneta; Koivisto, Susana P.; Koppers, Kerstin; Kosinski, Christoph Michael; Krawczyk, Malgorzata; Kremer, Berry; Krysa, Wioletta; Kwiecinski, Hubert; Lahiri, Nayana; Lambeck, Johann; Lange, Herwig; Laver, Fiona; Leenders, K.L.; Levey, Jamie; Leythaeuser, Gabriele; Lezius, Franziska; Llesoy, Joan Roig; Löhle, Matthias; López, Cristobal Diez-Aja; Lorenza, Fortuna; Loria, Giovanna; Magnet, Markus; Mandich, Paola; Marchese, Roberta; Marcinkowski, Jerzy; Mariotti, Caterina; Mariscal, Natividad; Markova, Ivana; Marquard, Ralf; Martikainen, Kirsti; Martínez, Isabel Haro; Martínez-Descals, Asuncion; Martino, T.; Mason, Sarah; McKenzie, Sue; Mechi, Claudia; Mendes, Tiago; Mestre, Tiago; Middleton, Julia; Milkereit, Eva; Miller, Joanne; Miller, Julie; Minster, Sara; Möller, Jens Carsten; Monza, Daniela; Morales, Blas; Moreau, Laura V.; Moreno, Jose L. López-Sendón; Münchau, Alexander; Murch, Ann; Nielsen, Jørgen E.; Niess, Anke; Nørremølle, Anne; Novak, Marianne; O'Donovan, Kristy; Orth, Michael; Otti, Daniela; Owen, Michael; Padieu, Helene; Paganini, Marco; Painold, Annamaria; Päivärinta, Markku; Partington-Jones, Lucy; Paterski, Laurent; Paterson, Nicole; Patino, Dawn; Patton, Michael; Peinemann, Alexander; Peppa, Nadia; Perea, Maria Fuensanta Noguera; Peterson, Maria; Piacentini, Silvia; Piano, Carla; Càrdenas, Regina Pons i; Prehn, Christian; Price, Kathleen; Probst, Daniela; Quarrell, Oliver; Quiroga, Purificacion Pin; Raab, Tina; Rakowicz, Maryla; Raman, Ashok; Raymond, Lucy; Reilmann, Ralf; Reinante, Gema; Reisinger, Karin; Retterstol, Lars; Ribaï, Pascale; Riballo, Antonio V.; Ribas, Guillermo G.; Richter, Sven; Rickards, Hugh; Rinaldi, Carlo; Rissling, Ida; Ritchie, Stuart; Rivera, Susana Vázquez; Robert, Misericordia Floriach; Roca, Elvira; Romano, Silvia; Romoli, Anna Maria; Roos, Raymond A.C.; Røren, Niini; Rose, Sarah; Rosser, Elisabeth; Rosser, Anne; Rossi, Fabiana; Rothery, Jean; Rudzinska, Monika; Ruíz, Pedro J. García; Ruíz, Belan Garzon; Russo, Cinzia Valeria; Ryglewicz, Danuta; Saft, Carston; Salvatore, Elena; Sánchez, Vicenta; Sando, Sigrid Botne; Šašinková, Pavla; Sass, Christian; Scheibl, Monika; Schiefer, Johannes; Schlangen, Christiane; Schmidt, Simone; Schöggl, Helmut; Schrenk, Caroline; Schüpbach, Michael; Schuierer, Michele; Sebastián, Ana Rojo; Selimbegovic-Turkovic, Amina; Sempolowicz, Justyna; Silva, Mark; Sitek, Emilia; Slawek, Jaroslaw; Snowden, Julie; Soleti, Francesco; Soliveri, Paola; Sollom, Andrea; Soltan, Witold; Sorbi, Sandro; Sorensen, Sven Asger; Spadaro, Maria; Städtler, Michael; Stamm, Christiane; Steiner, Tanja; Stokholm, Jette; Stokke, Bodil; Stopford, Cheryl; Storch, Alexander; Straßburger, Katrin; Stubbe, Lars; Sulek, Anna; Szczudlik, Andrzej; Tabrizi, Sarah; Taylor, Rachel; Terol, Santiago Duran-Sindreu; Thomas, Gareth; Thompson, Jennifer; Thomson, Aileen; Tidswell, Katherine; Torres, Maria M. Antequera; Toscano, Jean; Townhill, Jenny; Trautmann, Sonja; Tucci, Tecla; Tuuha, Katri; Uhrova, Tereza; Valadas, Anabela; van Hout, Monique S.E.; van Oostrom, J.C.H.; van Vugt, Jeroen P.P.; vanm, Walsem Marleen R.; Vandenberghe, Wim; Verellen-Dumoulin, Christine; Vergara, Mar Ruiz; Verstappen, C.C.P.; Verstraelen, Nichola; Viladrich, Celia Mareca; Villanueva, Clara; Wahlström, Jan; Warner, Thomas; Wehus, Raghild; Weindl, Adolf; Werner, Cornelius J.; Westmoreland, Leann; Weydt, Patrick; Wiedemann, Alexandra; Wild, Edward; Wild, Sue; Witjes-Ané, Marie-Noelle; Witkowski, Grzegorz; Wójcik, Magdalena; Wolz, Martin; Wolz, Annett; Wright, Jan; Yardumian, Pam; Yates, Shona; Yudina, Elizaveta; Zaremba, Jacek; Zaugg, Sabine W.; Zdzienicka, Elzbieta; Zielonka, Daniel; Zielonka, Euginiusz; Zinzi, Paola; Zittel, Simone; Zucker, Birgrit; Adams, John; Agarwal, Pinky; Antonijevic, Irina; Beck, Christopher; Chiu, Edmond; Churchyard, Andrew; Colcher, Amy; Corey-Bloom, Jody; Dorsey, Ray; Drazinic, Carolyn; Dubinsky, Richard; Duff, Kevin; Factor, Stewart; Foroud, Tatiana; Furtado, Sarah; Giuliano, Joe; Greenamyre, Timothy; Higgins, Don; Jankovic, Joseph; Jennings, Dana; Kang, Un Jung; Kostyk, Sandra; Kumar, Rajeev; Leavitt, Blair; LeDoux, Mark; Mallonee, William; Marshall, Frederick; Mohlo, Eric; Morgan, John; Oakes, David; Panegyres, Peter; Panisset, Michel; Perlman, Susan; Perlmutter, Joel; Quaid, Kimberly; Raymond, Lynn; Revilla, Fredy; Robertson, Suzanne; Robottom, Bradley; Sanchez-Ramos, Juan; Scott, Burton; Shannon, Kathleen; Shoulson, Ira; Singer, Carlos; Tabbal, Samer; Testa, Claudia; van, Kammen Dan; Vetter, Louise; Walker, Francis; Warner, John; Weiner, illiam; Wheelock, Vicki; Yastrubetskaya, Olga; Barton, Stacey; Broyles, Janice; Clouse, Ronda; Coleman, Allison; Davis, Robert; Decolongon, Joji; DeLaRosa, Jeanene; Deuel, Lisa; Dietrich, Susan; Dubinsky, Hilary; Eaton, Ken; Erickson, Diane; Fitzpatrick, Mary Jane; Frucht, Steven; Gartner, Maureen; Goldstein, Jody; Griffith, Jane; Hickey, Charlyne; Hunt, Victoria; Jaglin, Jeana; Klimek, Mary Lou; Lindsay, Pat; Louis, Elan; Loy, Clemet; Lucarelli, Nancy; Malarick, Keith; Martin, Amanda; McInnis, Robert; Moskowitz, Carol; Muratori, Lisa; Nucifora, Frederick; O'Neill, Christine; Palao, Alicia; Peavy, Guerry; Quesada, Monica; Schmidt, Amy; Segro, Vicki; Sperin, Elaine; Suter, Greg; Tanev, Kalo; Tempkin, Teresa; Thiede, Curtis; Wasserman, Paula; Welsh, Claire; Wesson, Melissa; Zauber, Elizabeth

    2012-01-01

    Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695 PMID:22323755

  20. Long Noncoding RNA in Digestive Tract Cancers: Function, Mechanism, and Potential Biomarker

    PubMed Central

    Zeng, Shuo; Xiao, Yu-Feng; Tang, Bo; Hu, Chang-Jiang; Xie, Rei; Yang, Shi-Ming

    2015-01-01

    Digestive tract cancers (DTCs) are a leading cause of cancer-related death worldwide. Current therapeutic tools for advanced stage DTCs have limitations, and patients with early stage DTCs frequently have a missed diagnosis due to shortage of efficient biomarkers. Consequently, it is necessary to develop novel biomarkers for early diagnosis and novel therapeutic targets for treatment of DTCs. In recent years, long noncoding RNAs (lncRNAs), a class of noncoding RNAs with >200 nucleotides, have been shown to be aberrantly expressed in DTCs and to have an important role in DTC development: the expression profiles of lncRNAs strongly correlated with poor survival of patients with DTCs, and lncRNAs acted as oncogenes or tumor suppressor genes in DTC progression. In this review, we summarized the functional lncRNAs and expounded on their regulatory mechanisms in DTCs. Implications for Practice: Digestive tract cancers (DTCs) are a leading cause of cancer-related death worldwide. It is necessary to exploit novel biomarkers for early diagnosis and novel therapeutic targets for treatment of DTCs. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with approximately 200 nucleotides to 100,000 bases, participate in the progression of a variety of diseases. This review summarizes functional lncRNAs, which were shown to serve as novel biomarkers for diagnosis and prognosis of DTCs and to act as oncogenes or tumor suppressor genes in DTC development. In addition, the potential mechanism of functional lncRNAs in DTCs is highlighted. PMID:26156325

  1. Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington’s Disease

    PubMed Central

    Budworth, Helen; Harris, Faye R.; Williams, Paul; Lee, Do Yup; Holt, Amy; Pahnke, Jens; Szczesny, Bartosz; Acevedo-Torres, Karina; Ayala-Peña, Sylvette; McMurray, Cynthia T.

    2015-01-01

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible. PMID:26247199

  2. Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington’s Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budworth, Helen; Harris, Faye R.; Williams, Paul

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less

  3. Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington’s Disease

    DOE PAGES

    Budworth, Helen; Harris, Faye R.; Williams, Paul; ...

    2015-08-06

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less

  4. Dengue Non-coding RNA: TRIMmed for Transmission.

    PubMed

    Göertz, Giel P; Pijlman, Gorben P

    2015-08-12

    Dengue virus RNA is trimmed by the 5'→3' exoribonuclease XRN1 to produce an abundant, non-coding subgenomic flavivirus RNA (sfRNA) in infected cells. In a recent paper in Science, Manokaran et al. (2015) report that sfRNA binds TRIM25 to evade innate immune sensing of viral RNA by RIG-I. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evaluation of non-coding variation in GLUT1 deficiency.

    PubMed

    Liu, Yu-Chi; Lee, Jia Wei Audrey; Bellows, Susannah T; Damiano, John A; Mullen, Saul A; Berkovic, Samuel F; Bahlo, Melanie; Scheffer, Ingrid E; Hildebrand, Michael S

    2016-12-01

    Loss-of-function mutations in SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to dysfunction of glucose transport across the blood-brain barrier. Ten percent of cases with hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose <2.2mmol/L) do not have mutations. We hypothesized that GLUT1 deficiency could be due to non-coding SLC2A1 variants. We performed whole exome sequencing of one proband with a GLUT1 phenotype and hypoglycorrhachia negative for SLC2A1 sequencing and copy number variants. We studied a further 55 patients with different epilepsies and low CSF glucose who did not have exonic mutations or copy number variants. We sequenced non-coding promoter and intronic regions. We performed mRNA studies for the recurrent intronic variant. The proband had a de novo splice site mutation five base pairs from the intron-exon boundary. Three of 55 patients had deep intronic SLC2A1 variants, including a recurrent variant in two. The recurrent variant produced less SLC2A1 mRNA transcript. Fasting CSF glucose levels show an age-dependent correlation, which makes the definition of hypoglycorrhachia challenging. Low CSF glucose levels may be associated with pathogenic SLC2A1 mutations including deep intronic SLC2A1 variants. Extending genetic screening to non-coding regions will enable diagnosis of more patients with GLUT1 deficiency, allowing implementation of the ketogenic diet to improve outcomes. © 2016 Mac Keith Press.

  6. Noncoding origins of anthropoid traits and a new null model of transposon functionalization

    PubMed Central

    del Rosario, Ricardo C.H.; Rayan, Nirmala Arul

    2014-01-01

    Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the “gene-battery” model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. PMID:25043600

  7. An expanding universe of the non-coding genome in cancer biology.

    PubMed

    Xue, Bin; He, Lin

    2014-06-01

    Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the 'dark matter' of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products.

    PubMed

    Furlan, Giulia; Gutierrez Hernandez, Nancy; Huret, Christophe; Galupa, Rafael; van Bemmel, Joke Gerarda; Romito, Antonio; Heard, Edith; Morey, Céline; Rougeulle, Claire

    2018-05-03

    Accumulation of the Xist long noncoding RNA (lncRNA) on one X chromosome is the trigger for X chromosome inactivation (XCI) in female mammals. Xist expression, which needs to be tightly controlled, involves a cis-acting region, the X-inactivation center (Xic), containing many lncRNA genes that evolved concomitantly to Xist from protein-coding ancestors through pseudogeneization and loss of coding potential. Here, we uncover an essential role for the Xic-linked noncoding gene Ftx in the regulation of Xist expression. We show that Ftx is required in cis to promote Xist transcriptional activation and establishment of XCI. Importantly, we demonstrate that this function depends on Ftx transcription and not on the RNA products. Our findings illustrate the multiplicity of layers operating in the establishment of XCI and highlight the diversity in the modus operandi of the noncoding players. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Non-radioactive detection of trinucleotide repeat size variability.

    PubMed

    Tomé, Stéphanie; Nicole, Annie; Gomes-Pereira, Mario; Gourdon, Genevieve

    2014-03-06

    Many human diseases are associated with the abnormal expansion of unstable trinucleotide repeat sequences. The mechanisms of trinucleotide repeat size mutation have not been fully dissected, and their understanding must be grounded on the detailed analysis of repeat size distributions in human tissues and animal models. Small-pool PCR (SP-PCR) is a robust, highly sensitive and efficient PCR-based approach to assess the levels of repeat size variation, providing both quantitative and qualitative data. The method relies on the amplification of a very low number of DNA molecules, through sucessive dilution of a stock genomic DNA solution. Radioactive Southern blot hybridization is sensitive enough to detect SP-PCR products derived from single template molecules, separated by agarose gel electrophoresis and transferred onto DNA membranes. We describe a variation of the detection method that uses digoxigenin-labelled locked nucleic acid probes. This protocol keeps the sensitivity of the original method, while eliminating the health risks associated with the manipulation of radiolabelled probes, and the burden associated with their regulation, manipulation and waste disposal.

  10. Identification and Functional Prediction of Large Intergenic Noncoding RNAs (lincRNAs) in Rainbow Trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Long noncoding RNAs (lncRNAs) have been recognized in recent years as key regulators of diverse cellular processes. Genome-wide large-scale projects have uncovered thousands of lncRNAs in many model organisms. Large intergenic noncoding RNAs (lincRNAs) are lncRNAs that are transcribed from intergeni...

  11. Long Noncoding RNA H19 Inhibits Cell Viability, Migration, and Invasion Via Downregulation of IRS-1 in Thyroid Cancer Cells

    PubMed Central

    Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen

    2017-01-01

    Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545

  12. Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation

    PubMed Central

    Yue, Minghui; Richard, John Lalith Charles

    2015-01-01

    There is increasing evidence for the emergence of long noncoding RNAs (IncRNAs) as important components, especially in the regulation of gene expression. In the event of X chromosome inactivation, robust epigenetic marks are established in a long noncoding Xist RNA-dependent manner, giving rise to a distinct epigenetic landscape on the inactive X chromosome (Xi). The X inactivation center (Xic is essential for induction of X chromosome inactivation and harbors two topologically associated domains (TADs) to regulate monoallelic Xist expression: one at the noncoding Xist gene and its upstream region, and the other at the antisense Tsix and its upstream region. The monoallelic expression of Xist is tightly regulated by these two functionally distinct TADs as well as their constituting IncRNAs and proteins. In this review, we summarize recent updates in our knowledge of IncRNAs found at the Xic and discuss their overall mechanisms of action. We also discuss our current understanding of the molecular mechanism behind Xist RNA-mediated induction of the repressive epigenetic landscape at the Xi. PMID:26260844

  13. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    PubMed

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  14. Origin of noncoding DNA sequences: molecular fossils of genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naora, H.; Miyahara, K.; Curnow, R.N.

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. The authors propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approx. 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approx. 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stopmore » codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. They attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.« less

  15. Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle

    DOE PAGES

    Walworth, Nathan; Pfreundt, Ulrike; Nelson, William C.; ...

    2015-03-23

    Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20–25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. In this paper, we use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% ofmore » the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Finally, our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual “inflation” of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.« less

  16. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  17. Small non-coding RNAs in streptomycetes.

    PubMed

    Heueis, Nona; Vockenhuber, Michael-Paul; Suess, Beatrix

    2014-01-01

    Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.

  18. Pms2 Suppresses Large Expansions of the (GAA·TTC)n Sequence in Neuronal Tissues

    PubMed Central

    Bourn, Rebecka L.; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.; Bidichandani, Sanjay I.

    2012-01-01

    Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)n sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)n sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)n sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)n sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)n sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway. PMID:23071719

  19. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues.

    PubMed

    Bourn, Rebecka L; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A; Bidichandani, Sanjay I

    2012-01-01

    Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.

  20. Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training.

    PubMed

    Smalheiser, Neil R; Lugli, Giovanni; Thimmapuram, Jyothi; Cook, Edwin H; Larson, John

    2011-01-01

    We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo. Unexpectedly, a dramatic increase with training (more than 100-fold) was observed for a class of 25- to 30-nt small RNAs derived from specific sites within snoRNAs and abundant noncoding RNAs (Y1 RNA, RNA component of mitochondrial RNAse P, 28S rRNA, and 18S rRNA). Further studies are warranted to characterize the role(s) played by endogenous siRNAs and noncoding RNA-derived small RNAs in learning and memory.

  1. Slipped-strand mispairing at noncontiguous repeats in Poecilia reticulata: a model for minisatellite birth.

    PubMed Central

    Taylor, J S; Breden, F

    2000-01-01

    The standard slipped-strand mispairing (SSM) model for the formation of variable number tandem repeats (VNTRs) proposes that a few tandem repeats, produced by chance mutations, provide the "raw material" for VNTR expansion. However, this model is unlikely to explain the formation of VNTRs with long motifs (e.g., minisatellites), because the likelihood of a tandem repeat forming by chance decreases rapidly as the length of the repeat motif increases. Phylogenetic reconstruction of the birth of a mitochondrial (mt) DNA minisatellite in guppies suggests that VNTRs with long motifs can form as a consequence of SSM at noncontiguous repeats. VNTRs formed in this manner have motifs longer than the noncontiguous repeat originally formed by chance and are flanked by one unit of the original, noncontiguous repeat. SSM at noncontiguous repeats can therefore explain the birth of VNTRs with long motifs and the "imperfect" or "short direct" repeats frequently observed adjacent to both mtDNA and nuclear VNTRs. PMID:10880490

  2. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout.

    PubMed

    Al-Tobasei, Rafet; Paneru, Bam; Salem, Mohamed

    2016-01-01

    The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1-2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200 nt. Emerging evidence indicates that lncRNAs play critical roles in various cellular processes including regulation of gene expression. LncRNAs show low levels of gene expression and sequence conservation, which make their computational identification in genomes difficult. In this study, more than two billion Illumina sequence reads were mapped to the genome reference using the TopHat and Cufflinks software. Transcripts shorter than 200 nt, with more than 83-100 amino acids ORF, or with significant homologies to the NCBI nr-protein database were removed. In addition, a computational pipeline was used to filter the remaining transcripts based on a protein-coding-score test. Depending on the filtering stringency conditions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and 3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout genome and provides a valuable resource for functional genomics research in salmonids.

  3. [Myotonic dystrophies: clinical presentation, pathogenesis, diagnostics and therapy].

    PubMed

    Finsterer, Josef; Rudnik-Schöneborn, S

    2015-01-01

    The autosomal-dominant myotonic dystrophies dystrophia myotonica type-1 (DM1, Curschmann-Steinert disease) and dystrophia myotonica type-2 (DM2, proximal myotonic myopathy (PROMM)), are, contrary to the non-dystrophic myotonias, progressive multisystem disorders. DM1 and DM2 are the most frequent of the muscular dystrophies. In both diseases the skeletal muscle is the most severely affected organ (weakness, wasting, myotonia, myalgia). Additionally, they manifest in the eye, heart, brain, endocrine glands, gastrointestinal tract, skin, skeleton, and peripheral nerves. Phenotypes of DM1 may be classified as congenital, juvenile, classical, or late onset. DM2 is a disorder of the middle or older age and usually has a milder course compared to DM1. DM1 is due to a CTG-repeat expansion > 50 repeats in the non-coding 3' UTR of the DMPK-gene. DM2 is caused by a CCTG-repeat expansion to 75 - 11 000 repeats in intron-1 of the CNBP/ZNF9 gene. Mutant pre-mRNAs of both genes aggregate within the nucleus (nuclear foci), which sequester RNA-binding proteins and result in an abnormal protein expression via alternative splicing in downstream effector genes (toxic RNA diseases). Other mechanisms seem to play an additional pathogenetic role. Clinical severity of DM1 increases from generation to generation (anticipation). The higher the repeat expansion the more severe the DM1 phenotype. In DM2 severity of symptoms and age at onset do not correlate with the expansion size. Contrary to DM2, there is a congenital form and anticipation in DM1. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens

    PubMed Central

    Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies. PMID:25859258

  5. Expression of Antisense Long Noncoding RNAs as Potential Regulators in Rainbow Trout with Different Tolerance to Plant-Based Diets.

    PubMed

    Abernathy, Jason; Overturf, Ken

    2018-01-04

    Reformulation of aquafeeds in salmonid diets to include more plant proteins is critical for sustainable aquaculture. However, increasing plant proteins can lead to stunted growth and enteritis. Toward an understanding of the regulatory mechanisms behind plant protein utilization, directional RNA sequencing of liver tissues from a rainbow trout strain selected for growth on an all plant-protein diet and a control strain, both fed a plant diet for 12 weeks, were utilized to construct long noncoding RNAs. Antisense long noncoding RNAs were selected for differential expression and functional analyses since they have been shown to have regulatory actions within a genome. A total of 142 unique antisense long noncoding RNAs were differentially expressed between strains, 60 of which could be mapped to a gene. Genes underlying these noncoding RNAs are indicated in lipid metabolism and immunity. Six noncoding transcripts were also found to overlap with differentially expressed protein-coding genes, all of which were co-expressed. Associating variation in regulatory elements between rainbow trout strains with differing tolerance to plant-protein diets will assist in future studies toward increased gains throughout carnivorous aquaculture.

  6. Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Fengfeng; Tran Thao; Xu Ying

    2008-01-25

    Miniature inverted-repeat transposable elements (MITEs) were first identified in plants and exerted extensive proliferations throughout eukaryotic and archaeal genomes. But very few MITEs have been characterized in bacteria. We identified a novel MITE, called Nezha, in cyanobacteria Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120. Nezha, like most previously known MITEs in other organisms, is small in size, non-coding, carrying TIR and DR signals, and of potential to form a stable RNA secondary structure, and it tends to insert into A+T-rich regions. Recent transpositions of Nezha were observed in A. variabilis ATCC 29413 and Nostoc sp. PCC 7120, respectively.more » Nezha might have proliferated recently with aid from the transposase encoded by ISNpu3-like elements. A possible horizontal transfer event of Nezha from cyanobacteria to Polaromonas JS666 is also observed.« less

  7. A benchmark study of scoring methods for non-coding mutations.

    PubMed

    Drubay, Damien; Gautheret, Daniel; Michiels, Stefan

    2018-05-15

    Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. The Snakemake, C++ and R codes are freely available from https://github.com/Oncostat/BenchmarkNCVTools and supported on Linux. damien.drubay@gustaveroussy.fr or stefan.michiels@gustaveroussy.fr. Supplementary data are available at Bioinformatics online.

  8. nRC: non-coding RNA Classifier based on structural features.

    PubMed

    Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso

    2017-01-01

    Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.

  9. Noncoding RNPs of viral origin.

    PubMed

    Steitz, Joan; Borah, Sumit; Cazalla, Demian; Fok, Victor; Lytle, Robin; Mitton-Fry, Rachel; Riley, Kasandra; Samji, Tasleem

    2011-03-01

    Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host's response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs.

  10. Non-coding RNA in cystic fibrosis.

    PubMed

    Glasgow, Arlene M A; De Santi, Chiara; Greene, Catherine M

    2018-05-09

    Non-coding RNAs (ncRNAs) are an abundant class of RNAs that include small ncRNAs, long non-coding RNAs (lncRNA) and pseudogenes. The human ncRNA atlas includes thousands of these specialised RNA molecules that are further subcategorised based on their size or function. Two of the more well-known and widely studied ncRNA species are microRNAs (miRNAs) and lncRNAs. These are regulatory RNAs and their altered expression has been implicated in the pathogenesis of a variety of human diseases. Failure to express a functional cystic fibrosis (CF) transmembrane receptor (CFTR) chloride ion channel in epithelial cells underpins CF. Secondary to the CFTR defect, it is known that other pathways can be altered and these may contribute to the pathophysiology of CF lung disease in particular. For example, quantitative alterations in expression of some ncRNAs are associated with CF. In recent years, there has been a series of published studies exploring ncRNA expression and function in CF. The majority have focussed principally on miRNAs, with just a handful of reports to date on lncRNAs. The present study reviews what is currently known about ncRNA expression and function in CF, and discusses the possibility of applying this knowledge to the clinical management of CF in the near future. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. An expanding universe of noncoding RNAs.

    PubMed

    Storz, Gisela

    2002-05-17

    Noncoding RNAs (ncRNAs) have been found to have roles in a great variety of processes, including transcriptional regulation, chromosome replication, RNA processing and modification, messenger RNA stability and translation, and even protein degradation and translocation. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined. These findings raise several fundamental questions: How many ncRNAs are encoded by a genome? Given the absence of a diagnostic open reading frame, how can these genes be identified? How can all the functions of ncRNAs be elucidated?

  12. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism.

    PubMed

    Kim, Jong-Min; Hong, Susie; Kim, Gyoung Pyoung; Choi, Yoon Jae; Kim, Yu Kyeong; Park, Sung Sup; Kim, Sang Eun; Jeon, Beom S

    2007-10-01

    To examine the presence of an ATXN2 mutation in patients with parkinsonism in the Korean population and to find the difference in the ATXN2 mutation between ataxic and parkinsonian phenotypes. Survey. Seoul National University Hospital (a referral center). Patients Patients with Parkinson disease (PD) (n = 468) and the Parkinson variant of multiple system atrophy (MSA-P) (n = 135) who were seen at our Department of Neurology during the past 3 years. CAG expansion in spinocerebellar ataxia type 2 (SCA2) alleles was assessed by polymerase chain reaction amplification and fragment analysis, and its size and interruption were verified by cloning and sequencing. SCA2 was tested also in the family members of the probands. Striatal dopamine transporter (DAT) and D(2) receptor status were evaluated in the probands and their SCA2-positive family members using iodine I 123 [(123)I]-radiolabeled fluoropropyl (FP) 2-carbomethoxy-3-(4-iodophenyl) tropane (CIT) with single-photon emission computed tomography (SPECT) and carbon C 11 [(11)C]-radiolabeled raclopride positron emission tomography (PET). We found 3 patients with apparently sporadic disease with expanded CAG repeats in the ATXN2 locus. Two patients had a PD phenotype. The third patient showed an MSA-P phenotype. The CAG repeats in the ATXN2 locus of the patients were 35/22, 34/22, and 32/22, respectively (range in normal population, 19-27). The size of repeats was lower than the CAG repeats (38-51) in ataxic SCA2 in our population. The sequence of expanded CAG repeats was interrupted by CAA as (CAG)(n)(CAA)(CAG)(8) in all the patients. DNA analyses in 2 families showed 2 asymptomatic carriers in each family. In the patient with the PD phenotype, striatal DAT loss was more severe in the putamen than the caudate, and [(11)C]raclopride PET showed an increased relative putamen-caudate binding ratio. The patient with the MSA-P phenotype had severe DAT loss throughout the striatum. Two of 3 asymptomatic carriers had striatal

  13. Noncoding origins of anthropoid traits and a new null model of transposon functionalization.

    PubMed

    del Rosario, Ricardo C H; Rayan, Nirmala Arul; Prabhakar, Shyam

    2014-09-01

    Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the "gene-battery" model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. © 2014 del Rosario et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells.

    PubMed

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari; Gustincich, Stefano; Carninci, Piero

    2016-09-20

    Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species.

  15. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1

    PubMed Central

    Taniue, Kenzui; Kurimoto, Akiko; Sugimasa, Hironobu; Nasu, Emiko; Takeda, Yasuko; Iwasaki, Kei; Nagashima, Takeshi; Okada-Hatakeyama, Mariko; Oyama, Masaaki; Kozuka-Hata, Hiroko; Hiyoshi, Masaya; Kitayama, Joji; Negishi, Lumi; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2016-01-01

    Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its β-transducin repeat-containing protein (TrCP)–mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer. PMID:26768845

  16. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana.

    PubMed

    Zhu, Qian-Hao; Stephen, Stuart; Taylor, Jennifer; Helliwell, Chris A; Wang, Ming-Bo

    2014-01-01

    Short noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c. 20% of the annotated A. thaliana genes. Several noncoding natural antisense transcripts responsive to F. oxysporum infection were found in genes implicated in disease defense. While the majority of the novel transcriptionally active regions (TARs) were adjacent to annotated genes and could be an extension of the annotated transcripts, 159 novel intergenic TARs, including 20 F. oxysporum-responsive lncTARs, were identified. Ten F. oxysporum-induced lncTARs were functionally characterized using T-DNA insertion or RNA-interference knockdown lines, and five were demonstrated to be related to disease development. Promoter analysis suggests that some of the F. oxysporum-induced lncTARs are direct targets of transcription factor(s) responsive to pathogen attack. Our results demonstrated that strand-specific RNA sequencing is a powerful tool for uncovering hidden levels of transcriptome and that IncRNAs are important components of the antifungal networks in A. thaliana. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  18. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    PubMed

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  19. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism

    PubMed Central

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-01-01

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed. PMID:26690121

  20. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2)more » FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.« less

  1. Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays

    PubMed Central

    Boerner, Susan; McGinnis, Karen M.

    2012-01-01

    Background Computational analysis of cDNA sequences from multiple organisms suggests that a large portion of transcribed DNA does not code for a functional protein. In mammals, noncoding transcription is abundant, and often results in functional RNA molecules that do not appear to encode proteins. Many long noncoding RNAs (lncRNAs) appear to have epigenetic regulatory function in humans, including HOTAIR and XIST. While epigenetic gene regulation is clearly an essential mechanism in plants, relatively little is known about the presence or function of lncRNAs in plants. Methodology/Principal Findings To explore the connection between lncRNA and epigenetic regulation of gene expression in plants, a computational pipeline using the programming language Python has been developed and applied to maize full length cDNA sequences to identify, classify, and localize potential lncRNAs. The pipeline was used in parallel with an SVM tool for identifying ncRNAs to identify the maximal number of ncRNAs in the dataset. Although the available library of sequences was small and potentially biased toward protein coding transcripts, 15% of the sequences were predicted to be noncoding. Approximately 60% of these sequences appear to act as precursors for small RNA molecules and may function to regulate gene expression via a small RNA dependent mechanism. ncRNAs were predicted to originate from both genic and intergenic loci. Of the lncRNAs that originated from genic loci, ∼20% were antisense to the host gene loci. Conclusions/Significance Consistent with similar studies in other organisms, noncoding transcription appears to be widespread in the maize genome. Computational predictions indicate that maize lncRNAs may function to regulate expression of other genes through multiple RNA mediated mechanisms. PMID:22916204

  2. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family

    PubMed Central

    2013-01-01

    Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of

  3. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Yang, Qiaolin; Jia, Lingfei; Li, Xiaobei; Guo, Runzhi; Huang, Yiping; Zheng, Yunfei; Li, Weiran

    2018-06-01

    Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.

  4. The evolution of filamin-a protein domain repeat perspective.

    PubMed

    Light, Sara; Sagit, Rauan; Ithychanda, Sujay S; Qin, Jun; Elofsson, Arne

    2012-09-01

    Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Noncoding RNPs of Viral Origin

    PubMed Central

    Steitz, Joan; Borah, Sumit; Cazalla, Demian; Fok, Victor; Lytle, Robin; Mitton-Fry, Rachel; Riley, Kasandra; Samji, Tasleem

    2011-01-01

    SUMMARY Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host’s response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs. PMID:20719877

  6. [Long non-coding RNAs in plants].

    PubMed

    Xiaoqing, Huang; Dandan, Li; Juan, Wu

    2015-04-01

    Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length, widely exist in organisms and function in a variety of biological processes. Currently, most of lncRNAs found in plants are transcribed by RNA polymerase Ⅱ and mediate gene expression through multiple mechanisms, such as target mimicry, transcription interference, histone methylation and DNA methylation, and play important roles in flowering, male sterility, nutrition metabolism, biotic and abiotic stress and other biological processes as regulators in plants. In this review, we summarize the databases, prediction methods, and possible functions of plant lncRNAs discovered in recent years.

  7. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells.

    PubMed

    Murmann, Andrea E; Gao, Quan Q; Putzbach, William E; Patel, Monal; Bartom, Elizabeth T; Law, Calvin Y; Bridgeman, Bryan; Chen, Siquan; McMahon, Kaylin M; Thaxton, C Shad; Peter, Marcus E

    2018-03-01

    Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents. © 2018 The Authors.

  8. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  9. Hiding in Plain Sight: Rediscovering the Importance of Noncoding RNA in Human Malignancy.

    PubMed

    Feeley, Kyle P; Edmonds, Mick D

    2018-05-01

    At the time of its construction in the 1950s, the central dogma of molecular biology was a useful model that represented the current state of knowledge for the flow of genetic information after a period of prolific scientific discovery. Unknowingly, it also biased many of our assumptions going forward. Whether intentional or not, genomic elements not fitting into this paradigm were deemed unimportant and emphasis on the study of protein-coding genes prevailed for decades. The phrase "Junk DNA," first popularized in the 1960s, is still used with alarming frequency to describe the entirety of noncoding DNA. It has since become apparent that RNA molecules not coding for protein are vitally important in both normal development and human malignancy. Cancer researchers have been pioneers in determining noncoding RNA function and developing new technologies to study these molecules. In this review, we will discuss well known and newly emerging species of noncoding RNAs, their functions in cancer, and new technologies being utilized to understand their mechanisms of action in cancer. Cancer Res; 78(9); 2149-58. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  11. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma

    PubMed Central

    Mehra, Mrigaya; Chauhan, Ranjit

    2017-01-01

    Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non–protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far. PMID:29147078

  12. Thermodynamic stability of RNA structures formed by CNG trinucleotide repeats. Implication for prediction of RNA structure.

    PubMed

    Broda, Magdalena; Kierzek, Elzbieta; Gdaniec, Zofia; Kulinski, Tadeusz; Kierzek, Ryszard

    2005-08-16

    Trinucleotide repeat expansion diseases (TREDs) are correlated with elongation of CNG DNA and RNA repeats to pathological level. This paper shows, for the first time, complete data concerning thermodynamic stabilities of RNA with CNG trinucleotide repeats. Our studies include the stability of oligoribonucleotides composed of two to seven of CAG, CCG, CGG, and CUG repeats. The thermodynamic parameters of helix propagation correlated with the presence of multiple N-N mismatches within CNG RNA duplexes were also determined. Moreover, the total stability of CNG RNA hairpins, as well as the contribution of trinucleotide repeats placed only in the stem or loop regions, was evaluated. The improved thermodynamic parameters allow to predict much more accurately the thermodynamic stabilities and structures of CNG RNAs.

  13. Molecular interplay of pro-inflammatory transcription factors and non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Sundaram, Gopinath M; Veera Bramhachari, Pallaval

    2017-06-01

    Esophageal squamous cell carcinoma is the sixth most common cancer in the developing world. The aggressive nature of esophageal squamous cell carcinoma, its tendency for relapse, and the poor survival prospects of patients diagnosed at advanced stages, represent a pressing need for the development of new therapies for this disease. Chronic inflammation is known to have a causal link to cancer pre-disposition. Nuclear factor kappa B and signal transducer and activator of transcription 3 are transcription factors which regulate immunity and inflammation and are emerging as key regulators of tumor initiation, progression, and metastasis. Although these pro-inflammatory factors in esophageal squamous cell carcinoma have been well-characterized with reference to protein-coding targets, their functional interactions with non-coding RNAs have only recently been gaining attention. Non-coding RNAs, especially microRNAs and long non-coding RNAs demonstrate potential as biomarkers and alternative therapeutic targets. In this review, we summarize the recent literature and concepts on non-coding RNAs that are regulated by/regulate nuclear factor kappa B and signal transducer and activator of transcription 3 in esophageal cancer progression. We also discuss how these recent discoveries can pave way for future therapeutic options to treat esophageal squamous cell carcinoma.

  14. Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.

    PubMed

    Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel

    2013-09-01

    RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration.

    PubMed

    Cheng, Yating; Jutooru, Indira; Chadalapaka, Gayathri; Corton, J Christopher; Safe, Stephen

    2015-05-10

    HOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expressed in pancreatic cancer cell lines and knockdown of HOTTIP by RNA interference (siHOTTIP) in Panc1 pancreatic cancer cells decreased proliferation, induced apoptosis and decreased migration. In Panc1 cells transfected with siHOTTIP, there was a decrease in expression of 757 genes and increased expression of 514 genes, and a limited gene analysis indicated that HOTTIP regulation of genes is complex. For example, Aurora kinase A, an important regulator of cell growth, is coregulated by MLL and not WDR5 and, in contrast to previous studies in liver cancer cells, HOTTIP does not regulate HOXA13 but plays a role in regulation of several other HOX genes including HOXA10, HOXB2, HOXA11, HOXA9 and HOXA1. Although HOTTIP and the HOX-associated lncRNA HOTAIR have similar pro-oncogenic functions, they regulate strikingly different sets of genes in Panc1 cells and in pancreatic tumors.

  16. Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia

    PubMed Central

    Vatsavayai, Sarat C; Yoon, Soo Jin; Gardner, Raquel C; Gendron, Tania F; Vargas, Jose Norberto S; Trujillo, Andrew; Pribadi, Mochtar; Phillips, Joanna J; Gaus, Stephanie E; Hixson, John D; Garcia, Paul A; Rabinovici, Gil D; Coppola, Giovanni; Geschwind, Daniel H; Petrucelli, Leonard; Miller, Bruce L; Seeley, William W

    2016-01-01

    See Scaber and Talbot (doi:10.1093/aww264) for a scientific commentary on this article. A GGGGCC repeat expansion in C9orf72 leads to frontotemporal dementia and/or amyotrophic lateral sclerosis. Diverse pathological features have been identified, and their disease relevance remains much debated. Here, we describe two illuminating patients with frontotemporal dementia due to the C9orf72 repeat expansion. Case 1 was a 65-year-old female with behavioural variant frontotemporal dementia accompanied by focal degeneration in subgenual anterior cingulate cortex, amygdala, and medial pulvinar thalamus. At autopsy, widespread RNA foci and dipeptide repeat protein inclusions were observed, but TDP-43 pathology was nearly absent, even in degenerating brain regions. Case 2 was a 74-year-old female with atypical frontotemporal dementia–motor neuron disease who underwent temporal lobe resection for epilepsy 5 years prior to her first frontotemporal dementia symptoms. Archival surgical resection tissue contained RNA foci, dipeptide repeat protein inclusions, and loss of nuclear TDP-43 but no TDP-43 inclusions despite florid TDP-43 inclusions at autopsy 8 years after first symptoms. These findings suggest that C9orf72-specific phenomena may impact brain structure and function and emerge before first symptoms and TDP-43 aggregation. PMID:27797809

  17. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome

    PubMed Central

    Ferlaino, Michael; Rogers, Mark F.; Shihab, Hashem A.; Mort, Matthew; Cooper, David N.; Gaunt, Tom R.; Campbell, Colin

    2018-01-01

    Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. PMID:28985712

  18. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.

    PubMed

    Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin

    2017-10-06

    Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.

  19. In situ optical sequencing and structure analysis of a trinucleotide repeat genome region by localization microscopy after specific COMBO-FISH nano-probing

    NASA Astrophysics Data System (ADS)

    Stuhlmüller, M.; Schwarz-Finsterle, J.; Fey, E.; Lux, J.; Bach, M.; Cremer, C.; Hinderhofer, K.; Hausmann, M.; Hildenbrand, G.

    2015-10-01

    Trinucleotide repeat expansions (like (CGG)n) of chromatin in the genome of cell nuclei can cause neurological disorders such as for example the Fragile-X syndrome. Until now the mechanisms are not clearly understood as to how these expansions develop during cell proliferation. Therefore in situ investigations of chromatin structures on the nanoscale are required to better understand supra-molecular mechanisms on the single cell level. By super-resolution localization microscopy (Spectral Position Determination Microscopy; SPDM) in combination with nano-probing using COMBO-FISH (COMBinatorial Oligonucleotide FISH), novel insights into the nano-architecture of the genome will become possible. The native spatial structure of trinucleotide repeat expansion genome regions was analysed and optical sequencing of repetitive units was performed within 3D-conserved nuclei using SPDM after COMBO-FISH. We analysed a (CGG)n-expansion region inside the 5' untranslated region of the FMR1 gene. The number of CGG repeats for a full mutation causing the Fragile-X syndrome was found and also verified by Southern blot. The FMR1 promotor region was similarly condensed like a centromeric region whereas the arrangement of the probes labelling the expansion region seemed to indicate a loop-like nano-structure. These results for the first time demonstrate that in situ chromatin structure measurements on the nanoscale are feasible. Due to further methodological progress it will become possible to estimate the state of trinucleotide repeat mutations in detail and to determine the associated chromatin strand structural changes on the single cell level. In general, the application of the described approach to any genome region will lead to new insights into genome nano-architecture and open new avenues for understanding mechanisms and their relevance in the development of heredity diseases.

  20. Functional insights from the distribution and role of homopeptide repeat-containing proteins

    PubMed Central

    Faux, Noel G.; Bottomley, Stephen P.; Lesk, Arthur M.; Irving, James A.; Morrison, John R.; de la Banda, Maria Garcia; Whisstock, James C.

    2005-01-01

    Expansion of “low complex” repeats of amino acids such as glutamine (Poly-Q) is associated with protein misfolding and the development of degenerative diseases such as Huntington's disease. The mechanism by which such regions promote misfolding remains controversial, the function of many repeat-containing proteins (RCPs) remains obscure, and the role (if any) of repeat regions remains to be determined. Here, a Web-accessible database of RCPs is presented. The distribution and evolution of RCPs that contain homopeptide repeats tracts are considered, and the existence of functional patterns investigated. Generally, it is found that while polyamino acid repeats are extremely rare in prokaryotes, several eukaryote putative homologs of prokaryote RCP—involved in important housekeeping processes—retain the repetitive region, suggesting an ancient origin for certain repeats. Within eukarya, the most common uninterrupted amino acid repeats are glutamine, asparagines, and alanine. Interestingly, while poly-Q repeats are found in vertebrates and nonvertebrates, poly-N repeats are only common in more primitive nonvertebrate organisms, such as insects and nematodes. We have assigned function to eukaryote RCPs using Online Mendelian Inheritance in Man (OMIM), the Human Reference Protein Database (HRPD), FlyBase, and Wormpep. Prokaryote RCPs were annotated using BLASTp searches and Gene Ontology. These data reveal that the majority of RCPs are involved in processes that require the assembly of large, multiprotein complexes, such as transcription and signaling. PMID:15805494

  1. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.

    PubMed

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.

  2. MicroRNAs and other non-coding RNAs as targets for anticancer drug development

    PubMed Central

    Ling, Hui; Fabbri, Muller; Calin, George A.

    2015-01-01

    With the first cancer-targeted microRNA drug, MRX34, a liposome-based miR-34 mimic, entering phase I clinical trial in patients with advanced hepatocellular carcinoma in April 2013, miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although to date the most studied non-coding RNAs (ncRNAs) are miRNAs, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges. PMID:24172333

  3. Single sperm analysis of the trinucleotide repeat in the Huntington`s disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeflang, E.P.; Zhang, L.; Hubert, R.

    1994-09-01

    Huntington`s disease (HD) is one of several genetic diseases caused by trinucleotide repeat expansion. The CAG repeat is very unstable, with size changes occurring in more than 80% of transmissions. The degree of instability of this repeat in the male germline can be determined by analysis of individual sperm cells. An easy and sensitive PCR assay has been developed to amplify this trinucleotide repeat region from single sperm using two rounds of PCR. As many as 90% of the single sperm show amplification for the HD repeat. The PCR product can be easily detected on an ethidium bromide-stained agarose gel.more » Single sperm samples from an HD patient with 18 and 49 repeats were studied. We observed size variations for the expanded alleles while the size of the normal allele in sperm is very consistent. We did not detect any significant bias in the amplification of normal alleles over the larger HD alleles. Our preliminary study supports the observation made by PCR of total sperm that instability of the HD trinucleotide repeat occurs in the germline. HD preimplantation diagnosis on single embryo blastomeres may also possible.« less

  4. The evolution of filamin – A protein domain repeat perspective

    PubMed Central

    Light, Sara; Sagit, Rauan; Ithychanda, Sujay S.; Qin, Jun; Elofsson, Arne

    2013-01-01

    Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates. PMID:22414427

  5. C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease

    PubMed Central

    Haeusler, Aaron R.; Donnelly, Christopher J.; Periz, Goran; Simko, Eric A.J.; Shaw, Patrick G.; Kim, Min-Sik; Maragakis, Nicholas J.; Troncoso, Juan C.; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D.; Wang, Jiou

    2014-01-01

    Summary A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformationdependent manner. Specifically, nucleolin (NCL), an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases. PMID:24598541

  6. C9orf72 nucleotide repeat structures initiate molecular cascades of disease.

    PubMed

    Haeusler, Aaron R; Donnelly, Christopher J; Periz, Goran; Simko, Eric A J; Shaw, Patrick G; Kim, Min-Sik; Maragakis, Nicholas J; Troncoso, Juan C; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D; Wang, Jiou

    2014-03-13

    A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.

  7. Long Non-coding RNAs in the X-inactivation Center

    PubMed Central

    Kalantry, Sundeep

    2014-01-01

    The X-inactivation center is a hotbed of functional long non-coding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation over the last fifty years. In the last 25 years, the discovery and functional characterization has firmly established X-linked long non-coding RNAs as key players in choreographing X-chromosome inactivation. PMID:24297756

  8. NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Curcó, David; Casanovas, Jordi; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Grodzinski, Piotr; Alemán, Carlos

    2010-01-01

    Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids –also called non-coded, non-canonical or non-standard– is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, α-tetrasubstituted α-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example. PMID:20455555

  9. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'Pre-miRNAs' of black pepper.

    PubMed

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of '43 pre-miRNA candidates bearing different types of SSR motifs'. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted 'pre-miRNA candidates bearing SSRs'. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted 'pre-miRNA candidates'. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of 'tandem repeats' in miRNAs.

  10. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets

    PubMed Central

    Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana

    2017-01-01

    The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells. PMID:28703782

  11. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets.

    PubMed

    Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana

    2017-07-13

    The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are-for the time being-not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.

  12. Predicted stem-loop structures and variation in nucleotide sequence of 3' noncoding regions among animal calicivirus genomes.

    PubMed

    Seal, B S; Neill, J D; Ridpath, J F

    1994-07-01

    Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.

  13. Non-coding landscapes of colorectal cancer

    PubMed Central

    Ragusa, Marco; Barbagallo, Cristina; Statello, Luisa; Condorelli, Angelo Giuseppe; Battaglia, Rosalia; Tamburello, Lucia; Barbagallo, Davide; Di Pietro, Cinzia; Purrello, Michele

    2015-01-01

    For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy. PMID:26556998

  14. Variation in conserved non-coding sequences on chromosome 5q andsusceptibility to asthma and atopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donfack, Joseph; Schneider, Daniel H.; Tan, Zheng

    2005-09-10

    Background: Evolutionarily conserved sequences likely havebiological function. Methods: To determine whether variation in conservedsequences in non-coding DNA contributes to risk for human disease, westudied six conserved non-coding elements in the Th2 cytokine cluster onhuman chromosome 5q31 in a large Hutterite pedigree and in samples ofoutbred European American and African American asthma cases and controls.Results: Among six conserved non-coding elements (>100 bp,>70percent identity; human-mouse comparison), we identified one singlenucleotide polymorphism (SNP) in each of two conserved elements and sixSNPs in the flanking regions of three conserved elements. We genotypedour samples for four of these SNPs and an additional three SNPs eachmore » inthe IL13 and IL4 genes. While there was only modest evidence forassociation with single SNPs in the Hutterite and European Americansamples (P<0.05), there were highly significant associations inEuropean Americans between asthma and haplotypes comprised of SNPs in theIL4 gene (P<0.001), including a SNP in a conserved non-codingelement. Furthermore, variation in the IL13 gene was strongly associatedwith total IgE (P = 0.00022) and allergic sensitization to mold allergens(P = 0.00076) in the Hutterites, and more modestly associated withsensitization to molds in the European Americans and African Americans (P<0.01). Conclusion: These results indicate that there is overalllittle variation in the conserved non-coding elements on 5q31, butvariation in IL4 and IL13, including possibly one SNP in a conservedelement, influence asthma and atopic phenotypes in diversepopulations.« less

  15. Distinct C9orf72-Associated Dipeptide Repeat Structures Correlate with Neuronal Toxicity

    PubMed Central

    Krans, Amy; Sawaya, Michael R.; Paulson, Henry L.; Todd, Peter K.; Barmada, Sami J.; Ivanova, Magdalena I.

    2016-01-01

    Hexanucleotide repeat expansions in C9orf72 are the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansions elicit toxicity in part through repeat-associated non-AUG (RAN) translation of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). Little is known, however, about the structural characteristics and aggregation propensities of the dipeptide units comprising DPRs. To address this question, we synthesized dipeptide units corresponding to the three sense-strand RAN translation products, analyzed their structures by circular dichroism, electron microscopy and dye binding assays, and assessed their relative toxicity when applied to primary cortical neurons. Short, glycine-arginine (GR)3 dipeptides formed spherical aggregates and selectively reduced neuronal survival compared to glycine-alanine (GA)3 and glycine-proline (GP)3 dipeptides. Doubling peptide length had little effect on the structure of GR or GP peptides, but (GA)6 peptides formed β-sheet rich aggregates that bound thioflavin T and Congo red yet lacked the typical fibrillar morphology of amyloids. Aging of (GA)6 dipeptides increased their β-sheet content and enhanced their toxicity when applied to neurons. We also observed that the relative toxicity of each tested dipeptide was proportional to peptide internalization. Our results demonstrate that different C9orf72-related dipeptides exhibit distinct structural properties that correlate with their relative toxicity. PMID:27776165

  16. Braveheart, a long non-coding RNA required for cardiovascular lineage commitment

    PubMed Central

    Klattenhoff, Carla; Scheuermann, Johanna C.; Surface, Lauren E.; Bradley, Robert K.; Fields, Paul A.; Steinhauser, Matthew L.; Ding, Huiming; Butty, Vincent L.; Torrey, Lillian; Haas, Simon; Abo, Ryan; Tabebordbar, Mohammadsharif; Lee, Richard T.; Burge, Christopher B.; Boyer, Laurie A.

    2013-01-01

    Summary Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm towards a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of MesP1 (mesoderm posterior 1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of Polycomb Repressive Complex 2 (PRC2), during cardiomyocyte differentiation suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development. PMID:23352431

  17. Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes.

    PubMed

    Zhang, Jin; Griffith, Malachi; Miller, Christopher A; Griffith, Obi L; Spencer, David H; Walker, Jason R; Magrini, Vincent; McGrath, Sean D; Ly, Amy; Helton, Nichole M; Trissal, Maria; Link, Daniel C; Dang, Ha X; Larson, David E; Kulkarni, Shashikant; Cordes, Matthew G; Fronick, Catrina C; Fulton, Robert S; Klco, Jeffery M; Mardis, Elaine R; Ley, Timothy J; Wilson, Richard K; Maher, Christopher A

    2017-11-01

    To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  18. Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.

    PubMed

    Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten

    2011-01-01

    Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.

  19. Characterisation of the unstable expanded CAG repeat in the MJD1 gene in four Brazilian families of Portuguese descent with Machado-Joseph disease

    PubMed Central

    Stevanin, Giovanni; Cassa, Eloy; Cancel, Géraldine; Abbas, Nacer; Dürr, Alexandra; Jardim, Edymar; Agid, Yves; Sousa, Patricia S; Brice, Alexis

    1995-01-01

    Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder which has been shown to result, in Japanese families, from the expansion of a CAG repeat in the MJD1 gene on chromosome 14q. We show that the same molecular mechanism is responsible for MJD in four large Brazilian kindreds of Portuguese descent. The behaviour of the mutation was evaluated in 28 affected and 19 asymptomatic gene carriers. The number of repeats in the expanded alleles ranged from 66 to 77 with a strong negative correlation with age at onset (r=0·79). A mean 1·6 repeats increase from generation to generation correlated with clinical anticipation. Instability of the CAG repeat was bidirectional, with expansions as well as contractions, and was more marked in paternal transmissions. Finally, linkage disequilibrium was complete at locus D14S280 in the four Portuguese-Brazilian kindreds and four previously reported French families with the same mutation, which suggests the existence of a common founder. PMID:8558567

  20. New primer for specific amplification of the CAG repeat in Huntington disease alleles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, C.E.; Hodes, M.E.

    1994-09-01

    Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designingmore » a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.« less

  1. Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications

    PubMed Central

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2017-01-01

    Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC. PMID:28932078

  2. Huntingtin gene repeat size variations affect risk of lifetime depression.

    PubMed

    Gardiner, Sarah L; van Belzen, Martine J; Boogaard, Merel W; van Roon-Mom, Willeke M C; Rozing, Maarten P; van Hemert, Albert M; Smit, Johannes H; Beekman, Aartjan T F; van Grootheest, Gerard; Schoevers, Robert A; Oude Voshaar, Richard C; Roos, Raymund A C; Comijs, Hannie C; Penninx, Brenda W J H; van der Mast, Roos C; Aziz, N Ahmad

    2017-12-11

    Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect depression risk in the general population. Using binary logistic regression, we assessed the association between HTT CAG repeat size and depression risk in two well-characterized Dutch cohorts─the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons─including 2165 depressed and 1058 non-depressed persons. In both cohorts, separately as well as combined, there was a significant non-linear association between the risk of lifetime depression and HTT CAG repeat size in which both relatively short and relatively large alleles were associated with an increased risk of depression (β = -0.292 and β = 0.006 for the linear and the quadratic term, respectively; both P < 0.01 after adjustment for the effects of sex, age, and education level). The odds of lifetime depression were lowest in persons with a HTT CAG repeat size of 21 (odds ratio: 0.71, 95% confidence interval: 0.52 to 0.98) compared to the average odds in the total cohort. In conclusion, lifetime depression risk was higher with both relatively short and relatively large HTT CAG repeat sizes in the normal range. Our study provides important proof-of-principle that repeat polymorphisms can act as hitherto unappreciated but complex genetic modifiers of depression.

  3. Long Noncoding RNAs in the Yeast S. cerevisiae.

    PubMed

    Niederer, Rachel O; Hass, Evan P; Zappulla, David C

    2017-01-01

    Long noncoding RNAs have recently been discovered to comprise a sizeable fraction of the RNA World. The scope of their functions, physical organization, and disease relevance remain in the early stages of characterization. Although many thousands of lncRNA transcripts recently have been found to emanate from the expansive DNA between protein-coding genes in animals, there are also hundreds that have been found in simple eukaryotes. Furthermore, lncRNAs have been found in the bacterial and archaeal branches of the tree of life, suggesting they are ubiquitous. In this chapter, we focus primarily on what has been learned so far about lncRNAs from the greatly studied single-celled eukaryote, the yeast Saccharomyces cerevisiae. Most lncRNAs examined in yeast have been implicated in transcriptional regulation of protein-coding genes-often in response to forms of stress-whereas a select few have been ascribed yet other functions. Of those known to be involved in transcriptional regulation of protein-coding genes, the vast majority function in cis. There are also some yeast lncRNAs identified that are not directly involved in regulation of transcription. Examples of these include the telomerase RNA and telomere-encoded transcripts. In addition to its role as a template-encoding telomeric DNA synthesis, telomerase RNA has been shown to function as a flexible scaffold for protein subunits of the RNP holoenzyme. The flexible scaffold model provides a specific mechanistic paradigm that is likely to apply to many other lncRNAs that assemble and orchestrate large RNP complexes, even in humans. Looking to the future, it is clear that considerable fundamental knowledge remains to be obtained about the architecture and functions of lncRNAs. Using genetically tractable unicellular model organisms should facilitate lncRNA characterization. The acquired basic knowledge will ultimately translate to better understanding of the growing list of lncRNAs linked to human maladies.

  4. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.

    PubMed

    Vito, Davide; Smales, C Mark

    2018-05-21

    The role of non-coding RNAs in determining growth, productivity and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). We have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. We report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. We demonstrate that the mouse microarray was suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. We then further analysed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. We discuss the implications for the publication of this rich dataset and how this may be used by the community. This article is protected by copyright. All rights reserved.

  5. Long Non-Coding RNA CASC2 Improves Diabetic Nephropathy by Inhibiting JNK Pathway.

    PubMed

    Yang, Huihui; Kan, Quan E; Su, Yong; Man, Hua

    2018-06-11

    It's known that long non-coding RNA CASC2 overexpression inhibit the JNK pathway in some disease models, while JNK pathway activation exacerbates diabetic nephropathy. Therefore we speculate that long non-coding RNA CASC2 can improve diabetic nephropathy by inhibiting JNK pathway. Thus, our study was carried out to investigate the involvement of CASC2 in diabetic nephropathy. We found that serum level of CASC2 was significantly lower in diabetic nephropathy patients than in normal people, and serum level of CASC2 showed no significant correlations with age, gender, alcohol consumption and smoking habits, but was correlated with course of disease. ROC curve analysis showed that serum level of CASC2 could be used to accurately predict diabetic nephropathy. Diabetes mellitus has many complications. This study also included a series of complications of diabetes, such as diabetic retinopathy, diabetic ketoacidosis, diabetic foot infections and diabetic cardiopathy, while serum level of CASC2 was specifically reduced in diabetic nephropathy. CASC2 expression level decreased, while JNK1 phosphorylation level increased in mouse podocyte cells treated with high glucose. CASC2 overexpression inhibited apoptosis of podocyte cells and reduced phosphorylation level of JNK1. We conclude that long non-coding RNA CASC2 may improve diabetic nephropathy by inhibiting JNK pathway. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  7. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE PAGES

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...

    2014-08-19

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  8. The expression profiling and ontology analysis of non-coding RNAs in dexamethasone induced steatosis in hepatoma cell.

    PubMed

    Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan

    2018-04-15

    Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Peptides Used in the Delivery of Small Noncoding RNA

    PubMed Central

    2015-01-01

    RNA interference (RNAi) is an endogenous process in which small noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), post-transcriptionally regulate gene expressions. In general, siRNA and miRNA/miRNA mimics are similar in nature and activity except their origin and specificity. Although both siRNAs and miRNAs have been extensively studied as novel therapeutics for a wide range of diseases, the large molecular weight, anionic surface charges, instability in blood circulation, and intracellular trafficking to the RISC after cellular uptake have hindered the translation of these RNAs from bench to clinic. As a result, a great variety of delivery systems have been investigated for safe and effective delivery of small noncoding RNAs. Among these systems, peptides, especially cationic peptides, have emerged as a promising type of carrier due to their inherent ability to condense negatively charged RNAs, ease of synthesis, controllable size, and tunable structure. In this review, we will focus on three major types of cationic peptides, including poly(l-lysine) (PLL), protamine, and cell penetrating peptides (CPP), as well as peptide targeting ligands that have been extensively used in RNA delivery. The delivery strategies, applications, and limitations of these cationic peptides in siRNA/miRNA delivery will be discussed. PMID:25157701

  10. Present Scenario of Long Non-Coding RNAs in Plants

    PubMed Central

    Bhatia, Garima; Goyal, Neetu; Sharma, Shailesh; Upadhyay, Santosh Kumar; Singh, Kashmir

    2017-01-01

    Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs. PMID:29657289

  11. Evolution of coding and non-coding genes in HOX clusters of a marsupial.

    PubMed

    Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B

    2012-06-18

    The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.

  12. Evolution of coding and non-coding genes in HOX clusters of a marsupial

    PubMed Central

    2012-01-01

    Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672

  13. A Comparative Proteomic Analysis of the Simple Amino Acid Repeat Distributions in Plasmodia Reveals Lineage Specific Amino Acid Selection

    PubMed Central

    Dalby, Andrew R.

    2009-01-01

    Background Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. Results The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. Conclusions The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism. PMID:19597555

  14. Psychiatric symptoms and CAG expansion in Huntington`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, M.W.; Schmid, W.; Spiegel, R.

    1996-02-16

    The mutation responsible for Huntington`s disease (HD) is an elongated CAG repeat in the coding region of the IT15 gene. A PCR-based test with high sensitivity and accuracy is now available to identify asymptomatic gene carriers and patients. An inverse correlation between CAG copy number and age at disease onset has been found in a large number of affected individuals. The influence of the CAG repeat expansion on other phenotypic manifestations, especially specific psychiatric symptoms has not been studied intensively. In order to elucidate this situation we investigated the relation between CAG copy number and distinct psychiatric phenotypes found inmore » 79 HD-patients. None of the four differentiated categories (personality change, psychosis, depression, and nonspecific alterations) showed significant differences in respect to size of the CAG expansion. In addition, no influence of individual sex on psychiatric presentation could be found. On the other hand in patients with personality changes maternal transmission was significantly more frequent compared with all other groups. Therefore we suggest that clinical severity of psychiatric features in HD is not directly dependent on the size of the dynamic mutation involved. The complex pathogenetic mechanisms leading to psychiatric alterations are still unknown and thus genotyping does not provide information about expected psychiatric symptoms in HD gene carriers. 40 refs., 1 fig., 2 tabs.« less

  15. Non-coding, mRNA-like RNAs database Y2K.

    PubMed

    Erdmann, V A; Szymanski, M; Hochberg, A; Groot, N; Barciszewski, J

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www. man.poznan.pl/5SData/ncRNA/index.html

  16. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia.

    PubMed

    Aoki, Yoshitsugu; Manzano, Raquel; Lee, Yi; Dafinca, Ruxandra; Aoki, Misako; Douglas, Andrew G L; Varela, Miguel A; Sathyaprakash, Chaitra; Scaber, Jakub; Barbagallo, Paola; Vader, Pieter; Mäger, Imre; Ezzat, Kariem; Turner, Martin R; Ito, Naoki; Gasco, Samanta; Ohbayashi, Norihiko; El Andaloussi, Samir; Takeda, Shin'ichi; Fukuda, Mitsunori; Talbot, Kevin; Wood, Matthew J A

    2017-04-01

    A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  18. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration

    PubMed Central

    Cheng, Yating; Jutooru, Indira; Chadalapaka, Gayathri; Corton, J. Christopher; Safe, Stephen

    2015-01-01

    HOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5′ tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expressed in pancreatic cancer cell lines and knockdown of HOTTIP by RNA interference (siHOTTIP) in Panc1 pancreatic cancer cells decreased proliferation, induced apoptosis and decreased migration. In Panc1 cells transfected with siHOTTIP, there was a decrease in expression of 757 genes and increased expression of 514 genes, and a limited gene analysis indicated that HOTTIP regulation of genes is complex. For example, Aurora kinase A, an important regulator of cell growth, is coregulated by MLL and not WDR5 and, in contrast to previous studies in liver cancer cells, HOTTIP does not regulate HOXA13 but plays a role in regulation of several other HOX genes including HOXA10, HOXB2, HOXA11, HOXA9 and HOXA1. Although HOTTIP and the HOX-associated lncRNA HOTAIR have similar pro-oncogenic functions, they regulate strikingly different sets of genes in Panc1 cells and in pancreatic tumors. PMID:25912306

  19. Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle

    DOE PAGES

    Walworth, Nathan G.; Pfreundt, Ulrike; Nelson, William C.; ...

    2015-04-07

    Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance due to its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and non-pathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus both in culture and in situ. Transcriptome analysis indicates that 86% of the non-coding spacemore » is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and two fold higher than that found in the gene dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium ncRNA secondary structures were predicted between most culture and metagenomic sequences lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high fidelity replication allowed the unusual ‘inflation’ of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.« less

  20. [Myotonic dystrophy - a new insight into a well-known disease].

    PubMed

    Lusakowska, Anna; Sułek-Piatkowska, Anna

    2010-01-01

    Myotonic dystrophy (DM), the most common dystrophy in adults, is an autosomal dominant disease characterized by a variety of multisystemic features. Two genetically distinct forms of DM are identified - type 1 (DM1), the classic form first described by Steinert, and type 2 (DM2), identified by Ricker. DM1 is caused by trinucleotide expansion of CTG in the myotonic dystrophy protein kinase gene, whereas in DM2 the expansion of tetranucleotide repeats (CCTG) in the zinc finger protein 9 gene was identified. Both mutations are dynamic and are located in non-coding parts of the genes. Phenotype variability of DM1 and DM2 is caused by a molecular mechanism due to mutated RNA toxicity. This paper reviews the clinical features of both types of myotonic dystrophies and summarizes current views on pathogenesis of myotonic dystrophy.

  1. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer.

    PubMed

    Tang, Qing; Hann, Swei Sunny

    2018-05-24

    Long non-coding RNAs (LncRNAs) represent a novel class of noncoding RNAs that are longer than 200 nucleotides without protein-coding potential and function as novel master regulators in various human diseases, including cancer. Accumulating evidence shows that lncRNAs are dysregulated and implicated in various aspects of cellular homeostasis, such as proliferation, apoptosis, mobility, invasion, metastasis, chromatin remodeling, gene transcription, and post-transcriptional processing. However, the mechanisms by which lncRNAs regulate various biological functions in human diseases have yet to be determined. HOX antisense intergenic RNA (HOTAIR) is a recently discovered lncRNA and plays a critical role in various areas of cancer, such as proliferation, survival, migration, drug resistance, and genomic stability. In this review, we briefly introduce the concept, identification, and biological functions of HOTAIR. We then describe the involvement of HOTAIR that has been associated with tumorigenesis, growth, invasion, cancer stem cell differentiation, metastasis, and drug resistance in cancer. We also discuss emerging insights into the role of HOTAIR as potential biomarkers and therapeutic targets for novel treatment paradigms in cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Non-coding RNA networks in cancer.

    PubMed

    Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J

    2018-01-01

    Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.

  3. Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

    PubMed Central

    Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000

  4. Solving Mendelian Mysteries: The Non-coding Genome May Hold the Key.

    PubMed

    Valente, Enza Maria; Bhatia, Kailash P

    2018-02-22

    Despite revolutionary advances in sequencing approaches, many mendelian disorders have remained unexplained. In this issue of Cell, Aneichyk et al. combine genomic and cell-type-specific transcriptomic data to causally link a non-coding mutation in the ubiquitous TAF1 gene to X-linked dystonia-parkinsonism. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Non-coding, mRNA-like RNAs database Y2K

    PubMed Central

    Erdmann, Volker A.; Szymanski, Maciej; Hochberg, Abraham; Groot, Nathan de; Barciszewski, Jan

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www.man.poznan.pl/5SData/ncRNA/index.html PMID:10592224

  6. Noncoding RNA Shows Context-Dependent Function | Center for Cancer Research

    Cancer.gov

    In addition to well-studied protein coding sequences, it is known that the genomes of higher organisms produce numerous noncoding RNAs (ncRNAs). Important roles for some ncRNAs in cell function have been demonstrated, though usually on a case-by-case basis, leading some scientists to argue that the majority of ncRNA production is just “noise” that results from the imperfect

  7. Decoding the function of nuclear long non-coding RNAs.

    PubMed

    Chen, Ling-Ling; Carmichael, Gordon G

    2010-06-01

    Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Conserved Noncoding Elements in the Most Distant Genera of Cephalochordates: The Goldilocks Principle

    PubMed Central

    Yue, Jia-Xing; Kozmikova, Iryna; Ono, Hiroki; Nossa, Carlos W.; Kozmik, Zbynek; Putnam, Nicholas H.; Yu, Jr-Kai; Holland, Linda Z.

    2016-01-01

    Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120–160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes in several vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over >500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates. PMID:27412606

  9. Quantification of non-coding RNA target localization diversity and its application in cancers.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  10. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novelli, G.; Sineo, L.; Pontieri, E.

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PKmore » gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.« less

  11. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    PubMed

    Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong

    2012-01-01

    Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.

  12. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria.

    PubMed

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R; Voß, Björn

    2015-04-22

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5'UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5'UTR. Such an sRNA/mRNA structure, which we name 'actuaton', represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.

  13. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria

    PubMed Central

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R.; Voß, Björn

    2015-01-01

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5′UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5′UTR. Such an sRNA/mRNA structure, which we name ‘actuaton’, represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation. PMID:25902393

  14. Factors associated with ATXN2 CAG/CAA repeat intergenerational instability in Spinocerebellar Ataxia type 2.

    PubMed

    Almaguer-Mederos, L E; Mesa, J M L; González-Zaldívar, Y; Almaguer-Gotay, D; Cuello-Almarales, D; Aguilera-Rodríguez, R; Falcón, N S; Gispert, S; Auburger, G; Velázquez-Pérez, L

    2018-05-14

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by the unstable expansion of a CAG/CAA repeat in the ATXN2 gene, which normally encodes 22 glutamines (Q22). A large study was conducted to characterize the CAG/CAA repeat intergenerational instability in SCA2 families. Large normal alleles (LNA, Q24-31) were significantly more unstable upon maternal transmissions. In contrast, expanded alleles (EA, Q32-750) were significantly more unstable during paternal transmissions, in correlation with repeat length. Significant correlations were found between the instability and the age at conception in paternal transmissions. In conclusion, intergenerational instability at ATXN2 locus is influenced by the sex, repeat length and age at conception of the transmitting parent. These results have profound implications for genetic counseling services. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Historic cycles of fragmentation and expansion in Parnassius smintheus (papilionidae) inferred using mitochondrial DNA.

    PubMed

    DeChaine, Eric G; Martini, Andrew P

    2004-01-01

    Climate oscillations of the Quaternary drove the repeated expansion and contraction of ecosystems. Alpine organisms were probably isolated in sky island refugia during warm interglacials, such as now, and expanded their range by migrating down-slope during glacial periods. We used population genetic and phylogenetic approaches to infer how paleoclimatic events influenced the distribution of genetic variation in the predominantly alpine butterfly Parnassius smintheus. We sequenced a 789 bp region of cytochrome oxidase I for 385 individuals from 20 locations throughout the Rocky Mountains, ranging from southern Colorado to northern Montana. Analyses revealed at lease two centers of diversity in the northern and southern Rocky Mountains and strong population structure. Nested clade analysis suggested that the species experienced repeated cycles of population expansion and fragmentation. The estimated ages of these events, assuming a molecular clock, corresponded with paleoclimatic data on habitat expansion and contraction over the past 400,000 years. We propose that alpine butterflies persisted in an archipelago of isolated sky islands during interglacials and that populations expanded and became more connected during cold glacial periods. An archipelago model implies that the effects of genetic drift and selection varied among populations, depending on their latitude, area, and local environment. Alpine organisms are sensitive indicators of climate change and their history can be used to predict how high-elevation ecosystems might respond to further climate warming.

  16. Phylogeny and strain typing of Escherichia coli, inferred from variation at mononucleotide repeat loci.

    PubMed

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel

    2004-04-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.

  17. Phylogeny and Strain Typing of Escherichia coli, Inferred from Variation at Mononucleotide Repeat Loci

    PubMed Central

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel

    2004-01-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845

  18. The interplay between noncoding RNAs and insulin in diabetes.

    PubMed

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    PubMed

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.).

    PubMed

    Wang, Maojun; Yuan, Daojun; Tu, Lili; Gao, Wenhui; He, Yonghui; Hu, Haiyan; Wang, Pengcheng; Liu, Nian; Lindsey, Keith; Zhang, Xianlong

    2015-09-01

    Long noncoding RNAs (lncRNAs) are transcripts of at least 200 bp in length, possess no apparent coding capacity and are involved in various biological regulatory processes. Until now, no systematic identification of lncRNAs has been reported in cotton (Gossypium spp.). Here, we describe the identification of 30 550 long intergenic noncoding RNA (lincRNA) loci (50 566 transcripts) and 4718 long noncoding natural antisense transcript (lncNAT) loci (5826 transcripts). LncRNAs are rich in repetitive sequences and preferentially expressed in a tissue-specific manner. The detection of abundant genome-specific and/or lineage-specific lncRNAs indicated their weak evolutionary conservation. Approximately 76% of homoeologous lncRNAs exhibit biased expression patterns towards the At or Dt subgenomes. Compared with protein-coding genes, lncRNAs showed overall higher methylation levels and their expression was less affected by gene body methylation. Expression validation in different cotton accessions and coexpression network construction helped to identify several functional lncRNA candidates involved in cotton fibre initiation and elongation. Analysis of integrated expression from the subgenomes of lncRNAs generating miR397 and its targets as a result of genome polyploidization indicated their pivotal functions in regulating lignin metabolism in domesticated tetraploid cotton fibres. This study provides the first comprehensive identification of lncRNAs in Gossypium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Identification and characterization of long non-coding RNAs in rainbow trout eggs

    USDA-ARS?s Scientific Manuscript database

    Long non-coding RNAs (lncRNAs) are in general considered as a diverse class of transcripts longer than 200 nucleotides that structurally resemble mRNAs but do not encode proteins. Recent advances in RNA sequencing (RNA-Seq) and bioinformatics methods have provided an opportunity to indentify and ana...

  2. Evolutionary dynamics of the immunodominant repeats of the Plasmodium vivax malaria-vaccine candidate circumsporozoite protein (CSP)

    PubMed Central

    Patil, Aarti; Orjuela-Sánchez, Pamela; da Silva-Nunes, Mônica; Ferreira, Marcelo U.

    2010-01-01

    The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nonapeptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. PMID:20097310

  3. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes.

    PubMed

    Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan

    2017-10-03

    Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes.

  4. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes

    PubMed Central

    Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan

    2017-01-01

    Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes. PMID:29108274

  5. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases.

    PubMed

    St Ecedil Pień, Ewa; Costa, Marina C; Kurc, Szczepan; Drożdż, Anna; Cortez-Dias, Nuno; Enguita, Francisco J

    2018-06-07

    Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.

  6. Long non-coding RNA CASC2 regulates cell biological behaviour through the MAPK signalling pathway in hepatocellular carcinoma.

    PubMed

    Gan, Yuanyuan; Han, Nana; He, Xiaoqin; Yu, Jiajun; Zhang, Meixia; Zhou, Yujie; Liang, Huiling; Deng, Junjian; Zheng, Yongfa; Ge, Wei; Long, Zhixiong; Xu, Ximing

    2017-06-01

    Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, especially cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in hepatocellular carcinoma have not been extensively studied. The long non-coding RNA CASC2 (cancer susceptibility candidate 2) has been characterised as a tumour suppressor in endometrial cancer and gliomas. However, the role and function of CASC2 in hepatocellular carcinoma remain unknown. In this study, using quantitative real-time polymerase chain reaction, we confirmed that CASC2 expression was downregulated in 50 hepatocellular carcinoma cases (62%) and in hepatocellular carcinoma cell lines compared with the paired adjacent tissues and normal liver cells. In vitro experiments further demonstrated that overexpressed CASC2 decreased hepatocellular carcinoma cell proliferation, migration and invasion as well as promoted apoptosis via inactivating the mitogen-activated protein kinase signalling pathway. Our findings demonstrate that CASC2 could be a useful tumour suppressor factor and a promising therapeutic target for hepatocellular carcinoma.

  7. Temporal and Spatial Post-Transcriptional Regulation of Zebrafish Tie1 mRNA by Long Noncoding RNA During Brain Vascular Assembly.

    PubMed

    Chowdhury, Tamjid A; Koceja, Chris; Eisa-Beygi, Shahram; Kleinstiver, Benjamin P; Kumar, Suresh N; Lin, Chien-Wei; Li, Keguo; Prabhudesai, Shubhangi; Joung, J Keith; Ramchandran, Ramani

    2018-05-03

    Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus- tie1 antisense ( tie1AS ), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation. Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS . Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1 mRNA levels rescued all 3 abnormal phenotypes. We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS ). © 2018 American Heart Association, Inc.

  8. Huntington disease without CAG expansion: Phenocopies or errors in assignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, S.E.; Goldberg, Y.P.; Kremer, B.

    1994-05-01

    Huntington disease (HD) has been shown to be associated with an expanded CAG repeat within a novel gene on 4p16.3 (IT15). A total of 30 of 1,022 affected persons (2.9% of the cohort) did not have an expanded CAG in the disease range. The reasons for not observing expansion in affected individuals are important for determining the sensitivity of using repeat length both for diagnosis of affected patients and for predictive testing programs and may have biological relevance for the understanding of the molecular mechanism underlying HD. Here the authors show that the majority (18) of the individuals with normalmore » sized alleles represent misdiagnosis, sample mix-up, or clerical error. The remaining 12 patients represent possible phenocopies for HD. In at least four cases, family studies of these phenocopies excluded 4p16.3 as the region responsible for the phenotype. Mutations in the HD gene that are other than CAG expansion have not been excluded for the remaining eight cases, however, in as many as seven of these persons, retrospective review of these patients' clinical features identified characteristics not typical for HD. This study shows that on rare occasions mutations in other, as-yet-undefined genes can present with a clinical phenotype very similar to that of HD. 30 refs., 4 figs., 3 tabs.« less

  9. A Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells

    PubMed Central

    Koziol, Uriel; Radio, Santiago; Smircich, Pablo; Zarowiecki, Magdalena; Fernández, Cecilia; Brehm, Klaus

    2015-01-01

    Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes. PMID:26133390

  10. The Evolution of Dark Matter in the Mitogenome of Seed Beetles

    PubMed Central

    Sayadi, Ahmed; Immonen, Elina; Tellgren-Roth, Christian

    2017-01-01

    Abstract Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613 bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114–10,408 bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200 bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues. PMID:29048527

  11. Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5' noncoding region.

    PubMed Central

    Pelletier, J; Kaplan, G; Racaniello, V R; Sonenberg, N

    1988-01-01

    Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction. Images PMID:2836606

  12. ALDB: a domestic-animal long noncoding RNA database.

    PubMed

    Li, Aimin; Zhang, Junying; Zhou, Zhongyin; Wang, Lei; Liu, Yujuan; Liu, Yajun

    2015-01-01

    Long noncoding RNAs (lncRNAs) have attracted significant attention in recent years due to their important roles in many biological processes. Domestic animals constitute a unique resource for understanding the genetic basis of phenotypic variation and are ideal models relevant to diverse areas of biomedical research. With improving sequencing technologies, numerous domestic-animal lncRNAs are now available. Thus, there is an immediate need for a database resource that can assist researchers to store, organize, analyze and visualize domestic-animal lncRNAs. The domestic-animal lncRNA database, named ALDB, is the first comprehensive database with a focus on the domestic-animal lncRNAs. It currently archives 12,103 pig intergenic lncRNAs (lincRNAs), 8,923 chicken lincRNAs and 8,250 cow lincRNAs. In addition to the annotations of lincRNAs, it offers related data that is not available yet in existing lncRNA databases (lncRNAdb and NONCODE), such as genome-wide expression profiles and animal quantitative trait loci (QTLs) of domestic animals. Moreover, a collection of interfaces and applications, such as the Basic Local Alignment Search Tool (BLAST), the Generic Genome Browser (GBrowse) and flexible search functionalities, are available to help users effectively explore, analyze and download data related to domestic-animal lncRNAs. ALDB enables the exploration and comparative analysis of lncRNAs in domestic animals. A user-friendly web interface, integrated information and tools make it valuable to researchers in their studies. ALDB is freely available from http://res.xaut.edu.cn/aldb/index.jsp.

  13. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    PubMed Central

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  14. Noncoding RNAs in DNA Repair and Genome Integrity

    PubMed Central

    Wan, Guohui; Liu, Yunhua; Han, Cecil; Zhang, Xinna

    2014-01-01

    Abstract Significance: The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%–2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. Recent Advances: In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. Critical Issues: In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. Future Directions: A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications. Antioxid. Redox Signal. 20, 655–677. PMID:23879367

  15. The specificity of long noncoding RNA expression.

    PubMed

    Gloss, Brian S; Dinger, Marcel E

    2016-01-01

    Over the last decade, long noncoding RNAs (lncRNAs) have emerged as a fundamental molecular class whose members play pivotal roles in the regulation of the genome. The observation of pervasive transcription of mammalian genomes in the early 2000s sparked a revolution in the understanding of information flow in eukaryotic cells and the incredible flexibility and dynamic nature of the transcriptome. As a molecular class, distinct loci yielding lncRNAs are set to outnumber those yielding mRNAs. However, like many important discoveries, the road leading to uncovering this diverse class of molecules that act through a remarkable repertoire of mechanisms, was not a straight one. The same characteristic that most distinguishes lncRNAs from mRNAs, i.e. their developmental-stage, tissue-, and cell-specific expression, was one of the major impediments to their discovery and recognition as potentially functional regulatory molecules. With growing numbers of lncRNAs being assigned to biological functions, the specificity of lncRNA expression is now increasingly recognized as a characteristic that imbues lncRNAs with great potential as biomarkers and for the development of highly targeted therapeutics. Here we review the history of lncRNA research and how technological advances and insight into biological complexity have gone hand-in-hand in shaping this revolution. We anticipate that as increasing numbers of these molecules, often described as the dark matter of the genome, are characterized and the structure-function relationship of lncRNAs becomes better understood, it may ultimately be feasible to decipher what these non-(protein)-coding genes encode. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data.

    PubMed

    Huang, Yi-Fei; Gulko, Brad; Siepel, Adam

    2017-04-01

    Many genetic variants that influence phenotypes of interest are located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which mutations are likely to have deleterious fitness consequences, and which, therefore, are likely to be phenotypically important. LINSIGHT combines a generalized linear model for functional genomic data with a probabilistic model of molecular evolution. The method is fast and highly scalable, enabling it to exploit the 'big data' available in modern genomics. We show that LINSIGHT outperforms the best available methods in identifying human noncoding variants associated with inherited diseases. In addition, we apply LINSIGHT to an atlas of human enhancers and show that the fitness consequences at enhancers depend on cell type, tissue specificity, and constraints at associated promoters.

  17. Application of FTA sample collection and DNA purification system on the determination of CTG trinucleotide repeat size by PCR-based Southern blotting.

    PubMed

    Hsiao, K M; Lin, H M; Pan, H; Li, T C; Chen, S S; Jou, S B; Chiu, Y L; Wu, M F; Lin, C C; Li, S Y

    1999-01-01

    Myotonic dystrophy (DM) is caused by a CTG trinucleotide expansion mutation at exon 15 of the myotonic dystrophy protein kinase gene. The clinical severity of this disease correlates with the length of the CTG trinucleotide repeats. Determination of the CTG repeat length has been primarily relied on by Southern blot analysis of restriction enzyme-digested genomic DNA. The development of PCR-based Southern blotting methodology provides a much more sensitive and simpler protocol for DM diagnosis. However, the quality of the template and the high (G+C) ratio of the amplified region hamper the use of PCR on the diagnosis of DM. A modified PCR protocol to amplify different lengths of CTG repeat region using various concentrations of 7deaza-dGTP has been reported (1). Here we describe a procedure including sample collection, DNA purification, and PCR analysis of CTG repeat length without using 7-deaza-dGTP. This protocol is very sensitive and convenient because only a small number of nucleate cells are needed for detection of CTG expansion. Therefore, it could be very useful in clinical and prenatal diagnosis as well as in prevalence study of DM.

  18. Circular RNA - New member of noncoding RNA with novel functions.

    PubMed

    Hsiao, Kuei-Yang; Sun, H Sunny; Tsai, Shaw-Jenq

    2017-06-01

    A growing body of evidence indicates that circular RNAs are not simply a side product of splicing but a new class of noncoding RNAs in higher eukaryotes. The progression for the studies of circular RNAs is accelerated by combination of several advanced technologies such as next generation sequencing, gene silencing (small interfering RNAs) and editing (CRISPR/Cas9). More and more studies showed that dysregulated expression of circular RNAs plays critical roles during the development of several human diseases. Herein, we review the current advance of circular RNAs for their biosynthesis, molecular functions, and implications in human diseases. Impact statement The accumulating evidence indicate that circular RNA (circRNA) is a novel class of noncoding RNA with diverse molecular functions. Our review summarizes the current hypotheses for the models of circRNA biosynthesis including the direct interaction between upstream and downstream introns and lariat-driven circularization. In addition, molecular functions such as a decoy of microRNA (miRNA) termed miRNA sponge, transcriptional regulator, and protein-like modulator are also discussed. Finally, we reviewed the potential roles of circRNAs in neural system, cardiovascular system as well as cancers. These should provide insightful information for studying the regulation and functions of circRNA in other model of human diseases.

  19. Natural Selection and Functional Potentials of Human Noncoding Elements Revealed by Analysis of Next Generation Sequencing Data

    PubMed Central

    Xu, Shuhua

    2015-01-01

    Noncoding DNA sequences (NCS) have attracted much attention recently due to their functional potentials. Here we attempted to reveal the functional roles of noncoding sequences from the point of view of natural selection that typically indicates the functional potentials of certain genomic elements. We analyzed nearly 37 million single nucleotide polymorphisms (SNPs) of Phase I data of the 1000 Genomes Project. We estimated a series of key parameters of population genetics and molecular evolution to characterize sequence variations of the noncoding genome within and between populations, and identified the natural selection footprints in NCS in worldwide human populations. Our results showed that purifying selection is prevalent and there is substantial constraint of variations in NCS, while positive selectionis more likely to be specific to some particular genomic regions and regional populations. Intriguingly, we observed larger fraction of non-conserved NCS variants with lower derived allele frequency in the genome, indicating possible functional gain of non-conserved NCS. Notably, NCS elements are enriched for potentially functional markers such as eQTLs, TF motif, and DNase I footprints in the genome. More interestingly, some NCS variants associated with diseases such as Alzheimer's disease, Type 1 diabetes, and immune-related bowel disorder (IBD) showed signatures of positive selection, although the majority of NCS variants, reported as risk alleles by genome-wide association studies, showed signatures of negative selection. Our analyses provided compelling evidence of natural selection forces on noncoding sequences in the human genome and advanced our understanding of their functional potentials that play important roles in disease etiology and human evolution. PMID:26053627

  20. Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly.

    PubMed

    Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann

    2009-09-01

    Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.

  1. Distributed parameter modeling of repeated truss structures

    NASA Technical Reports Server (NTRS)

    Wang, Han-Ching

    1994-01-01

    A new approach to find homogeneous models for beam-like repeated flexible structures is proposed which conceptually involves two steps. The first step involves the approximation of 3-D non-homogeneous model by a 1-D periodic beam model. The structure is modeled as a 3-D non-homogeneous continuum. The displacement field is approximated by Taylor series expansion. Then, the cross sectional mass and stiffness matrices are obtained by energy equivalence using their additive properties. Due to the repeated nature of the flexible bodies, the mass, and stiffness matrices are also periodic. This procedure is systematic and requires less dynamics detail. The first step involves the homogenization from a 1-D periodic beam model to a 1-D homogeneous beam model. The periodic beam model is homogenized into an equivalent homogeneous beam model using the additive property of compliance along the generic axis. The major departure from previous approaches in literature is using compliance instead of stiffness in homogenization. An obvious justification is that the stiffness is additive at each cross section but not along the generic axis. The homogenized model preserves many properties of the original periodic model.

  2. A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data

    NASA Technical Reports Server (NTRS)

    Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.

  3. Multiple-Locus Variable-Number Tandem Repeat Analysis of Dutch Bordetella pertussis Strains Reveals Rapid Genetic Changes with Clonal Expansion during the Late 1990s

    PubMed Central

    Schouls, Leo M.; van der Heide, Han G. J.; Vauterin, Luc; Vauterin, Paul; Mooi, Frits R.

    2004-01-01

    Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected. PMID:15292152

  4. Fuchs' Endothelial Corneal Dystrophy in Patients With Myotonic Dystrophy, Type 1

    PubMed Central

    Winkler, Nelson S.; Milone, Margherita; Martinez-Thompson, Jennifer M.; Raja, Harish; Aleff, Ross A.; Patel, Sanjay V.; Fautsch, Michael P.; Wieben, Eric D.

    2018-01-01

    Purpose RNA toxicity from CTG trinucleotide repeat (TNR) expansion within noncoding DNA of the transcription factor 4 (TCF4) and DM1 protein kinase (DMPK) genes has been described in Fuchs' endothelial corneal dystrophy (FECD) and myotonic dystrophy, type 1 (DM1), respectively. We prospectively evaluated DM1 patients and their families for phenotypic FECD and report the analysis of CTG expansion in the TCF4 gene and DMPK expression in corneal endothelium. Methods FECD grade was evaluated by slit lamp biomicroscopy in 26 participants from 14 families with DM1. CTG TNR length in TCF4 and DMPK was determined by a combination of Gene Scan and Southern blotting of peripheral blood leukocyte DNA. Results FECD grade was 2 or higher in 5 (36%) of 14 probands, significantly greater than the general population (5%) (P < 0.001). FECD segregated with DM1; six of eight members of the largest family had both FECD and DM1, while the other two family members had neither disease. All DNA samples from 24 subjects, including four FECD-affected probands, were bi-allelic for nonexpanded TNR length in TCF4 (<40 repeats). Considering a 75% prevalence of TCF4 TNR expansion in FECD, the probability of four FECD probands lacking TNR expansion was 0.4%. Neither severity of DM1 nor DMPK TNR length predicted the presence of FECD in DM1 patients. Conclusions FECD was common in DM1 families, and the diseases cosegregated. TCF4 TNR expansion was lacking in DM1 families. These findings support a hypothesis that DMPK TNR expansion contributes to clinical FECD.

  5. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  6. Ultraprecise thermal expansion measurements of seven low expansion materials.

    PubMed

    Berthold Iii, J W; Jacobs, S F

    1976-10-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 degrees C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  7. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    PubMed Central

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  8. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    PubMed

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  9. Origin and evolution of the long non-coding genes in the X-inactivation center.

    PubMed

    Romito, Antonio; Rougeulle, Claire

    2011-11-01

    Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation. Copyright © 2011. Published by Elsevier Masson SAS.

  10. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish

    PubMed Central

    Naville, Magali; Volff, Jean-Nicolas

    2017-01-01

    It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts. PMID:28738066

  11. The effect of repeated lateral compression and expansions mimicking blinking on selected tear film polar lipid monofilms.

    PubMed

    Patterson, Matthew; Vogel, Hans J; Prenner, Elmar J

    2017-03-01

    The tear film lipid layer is formed on the anterior surface of the eye, functioning as a barrier to excess evaporation and foreign particles, while also providing stability to the tear film. The lipid layer is organized into a polar lipid layer consisting of phospholipids, ceramides, and free fatty acids that act as a surfactant to a non-polar multilayer of wax and cholesterol esters. Due to shear forces from eye movement and the compression and expansion of blinking, the tear lipids are under constant stress. However, tear film is able to resist immediate rupture and remains intact over multiple blinks. This work aimed to better understand the lateral organization of selected tear film polar lipids. The polar lipid biomimetic studied here consisted of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl glucosylceramide (PGC), and palmitoyl sphingomyelin (PSM). Surface pressure-area isocycles mimicked blinking and films were visualized by Brewster angle microscopy (BAM). All lipid systems formed relatively reversible films as indicated by limited hysteresis. However, pure DPPC and PSM films experienced greater changes in lipid packing upon compression and expansion compared to pure PGC and DPPE. This suggests that the driving force behind maintaining the lateral organization of the polar lipids from tear film may be the hydrogen bonding propensities of the head groups. Additionally, isocycles of films containing DPPC, DPPE, and PGC mixtures exhibited evidence for reversible multilayer formation or folding. This was supported by 3D analysis of structures that formed during compression but reintegrated back into the bulk lipid film during expansion near the in vitro tear film surface pressure of the open eye. Therefore, the polar lipids of tear film may be directly involved in preventing film rupture during a blink. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function

    PubMed Central

    Chillón, Isabel; Pyle, Anna M.

    2016-01-01

    LincRNA-p21 is a long intergenic non-coding RNA (lincRNA) involved in the p53-mediated stress response. We sequenced the human lincRNA-p21 (hLincRNA-p21) and found that it has a single exon that includes inverted repeat Alu elements (IRAlus). Sense and antisense Alu elements fold independently of one another into a secondary structure that is conserved in lincRNA-p21 among primates. Moreover, the structures formed by IRAlus are involved in the localization of hLincRNA-p21 in the nucleus, where hLincRNA-p21 colocalizes with paraspeckles. Our results underscore the importance of IRAlus structures for the function of hLincRNA-p21 during the stress response. PMID:27378782

  13. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    PubMed

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  14. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    PubMed Central

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  15. RNAcode: Robust discrimination of coding and noncoding regions in comparative sequence data

    PubMed Central

    Washietl, Stefan; Findeiß, Sven; Müller, Stephan A.; Kalkhof, Stefan; von Bergen, Martin; Hofacker, Ivo L.; Stadler, Peter F.; Goldman, Nick

    2011-01-01

    With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied “out of the box,” without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as “noncoding.” RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode. PMID:21357752

  16. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data.

    PubMed

    Washietl, Stefan; Findeiss, Sven; Müller, Stephan A; Kalkhof, Stefan; von Bergen, Martin; Hofacker, Ivo L; Stadler, Peter F; Goldman, Nick

    2011-04-01

    With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied "out of the box," without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as "noncoding." RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode.

  17. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways

    PubMed Central

    Yu, Weishi; McIntosh, Carl; Lister, Ryan; Zhu, Iris; Han, Yixing; Ren, Jianke; Landsman, David; Lee, Eunice; Briones, Victorino; Terashima, Minoru; Leighty, Robert; Ecker, Joseph R.

    2014-01-01

    Cytosine methylation is critical in mammalian development and plays a role in diverse biologic processes such as genomic imprinting, X chromosome inactivation, and silencing of repeat elements. Several factors regulate DNA methylation in early embryogenesis, but their precise role in the establishment of DNA methylation at a given site remains unclear. We have generated a comprehensive methylation map in fibroblasts derived from the murine DNA methylation mutant Hells−/− (helicase, lymphoid specific, also known as LSH). It has been previously shown that HELLS can influence de novo methylation of retroviral sequences and endogenous genes. Here, we describe that HELLS controls cytosine methylation in a nuclear compartment that is in part defined by lamin B1 attachment regions. Despite widespread loss of cytosine methylation at regulatory sequences, including promoter regions of protein-coding genes and noncoding RNA genes, overall relative transcript abundance levels in the absence of HELLS are similar to those in wild-type cells. A subset of promoter regions shows increases of the histone modification H3K27me3, suggesting redundancy of epigenetic silencing mechanisms. Furthermore, HELLS modulates CG methylation at all classes of repeat elements and is critical for repression of a subset of repeat elements. Overall, we provide a detailed analysis of gene expression changes in relation to DNA methylation alterations, which contributes to our understanding of the biological role of cytosine methylation. PMID:25170028

  18. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans

    PubMed Central

    Holdt, Lesca M.; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A.; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H.; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel

    2016-01-01

    Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542

  19. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation.

    PubMed

    Velazquez Camacho, Oscar; Galan, Carmen; Swist-Rosowska, Kalina; Ching, Reagan; Gamalinda, Michael; Karabiber, Fethullah; De La Rosa-Velazquez, Inti; Engist, Bettina; Koschorz, Birgit; Shukeir, Nicholas; Onishi-Seebacher, Megumi; van de Nobelen, Suzanne; Jenuwein, Thomas

    2017-08-01

    The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.

  20. Marked Phenotypic Heterogeneity Associated with Expansion of a CAG Repeat Sequence at the Spinocerebellar Ataxia 3/Machado-Joseph Disease Locus

    PubMed Central

    Cancel, Géraldine; Abbas, Nacer; Stevanin, Giovanni; Dürr, Alexandra; Chneiweiss, Hervé; Néri, Christian; Duyckaerts, Charles; Penet, Christiane; Cann, Howard M.; Agid, Yves; Brice, Alexis

    1995-01-01

    The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats. ImagesFigure 3Figure 5 PMID:7573040

  1. Decoding the Emerging Patterns Exhibited in Non-coding RNAs Characteristic of Lung Cancer with Regard to their Clinical Significance.

    PubMed

    Sonea, Laura; Buse, Mihail; Gulei, Diana; Onaciu, Anca; Simon, Ioan; Braicu, Cornelia; Berindan-Neagoe, Ioana

    2018-05-01

    Lung cancer continues to be the leading topic concerning global mortality rate caused by can-cer; it needs to be further investigated to reduce these dramatic unfavorable statistic data. Non-coding RNAs (ncRNAs) have been shown to be important cellular regulatory factors and the alteration of their expression levels has become correlated to extensive number of pathologies. Specifically, their expres-sion profiles are correlated with development and progression of lung cancer, generating great interest for further investigation. This review focuses on the complex role of non-coding RNAs, namely miR-NAs, piwi-interacting RNAs, small nucleolar RNAs, long non-coding RNAs and circular RNAs in the process of developing novel biomarkers for diagnostic and prognostic factors that can then be utilized for personalized therapies toward this devastating disease. To support the concept of personalized medi-cine, we will focus on the roles of miRNAs in lung cancer tumorigenesis, their use as diagnostic and prognostic biomarkers and their application for patient therapy.

  2. Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation.

    PubMed

    Tilman, Gaëlle; Arnoult, Nausica; Lenglez, Sandrine; Van Beneden, Amandine; Loriot, Axelle; De Smet, Charles; Decottignies, Anabelle

    2012-08-01

    Epigenetic dysfunctions, including DNA methylation alterations, play major roles in cancer initiation and progression. Although it is well established that gene promoter demethylation activates transcription, it remains unclear whether hypomethylation of repetitive heterochromatin similarly affects expression of non-coding RNA from these loci. Understanding how repetitive non-coding RNAs are transcriptionally regulated is important given that their established upregulation by the heat shock (HS) pathway suggests important functions in cellular response to stress, possibly by promoting heterochromatin reconstruction. We found that, although pericentromeric satellite 2 (Sat2) DNA hypomethylation is detected in a majority of cancer cell lines of various origins, DNA methylation loss does not constitutively hyperactivate Sat2 expression, and also does not facilitate Sat2 transcriptional induction upon heat shock. In melanoma tumor samples, our analysis revealed that the HS response, frequently upregulated in tumors, is probably the main determinant of Sat2 RNA expression in vivo. Next, we tested whether HS pathway hyperactivation may drive Sat2 demethylation. Strikingly, we found that both hyperthermia and hyperactivated RasV12 oncogene, another potent inducer of the HS pathway, reduced Sat2 methylation levels by up to 27% in human fibroblasts recovering from stress. Demethylation occurred locally on Sat2 repeats, resulting in a demethylation signature that was also detected in cancer cell lines with moderate genome-wide hypomethylation. We therefore propose that upregulation of Sat2 transcription in response to HS pathway hyperactivation during tumorigenesis may promote localized demethylation of the locus. This, in turn, may contribute to tumorigenesis, as demethylation of Sat2 was previously reported to favor chromosomal rearrangements.

  3. Long noncoding RNA NORAD regulates transforming growth factor -β signaling and epithelial-to-mesenchymal transition-like phenotype.

    PubMed

    Kawasaki, Natsumi; Miwa, Toshiki; Hokari, Satoshi; Sakurai, Tsubasa; Ohmori, Kazuho; Miyauchi, Kensuke; Miyazono, Kohei; Koinuma, Daizo

    2018-05-02

    Long noncoding RNAs are involved in a variety of cellular functions. In particular, an increasing number of studies have revealed the functions of long noncoding RNAs in various cancers; however, their precise roles and mechanisms of action remain to be elucidated. NORAD, a cytoplasmic long noncoding RNA, is upregulated by irradiation and functions as a potential oncogenic factor by binding and inhibiting Pumilio proteins (PUM1/PUM2). Here, we show that NORAD upregulates transforming growth factor-β (TGF-β) signaling and regulates TGF-β-induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which is a critical step in the progression of lung adenocarcinoma, A549 cells. However, PUM1 does not appear to be involved in this process. We thus focused on importin β1 as a binding partner of NORAD and found that knock down of NORAD partially inhibits the physical interaction of importin β1 with Smad3, inhibiting the nuclear accumulation of Smad complexes in response to TGF-β. Our findings may provide a new mechanism underlying the function of NORAD in cancer cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Analysis of thirteen trinucleotide repeat loci as candidate genes for Schizophrenia and bipolar affective disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, S.; Leggo, J.; Ferguson-Smith, M.A.

    1996-04-09

    A group of diseases are due to abnormal expansions of trinucleotide repeats. These diseases all affect the nervous system. In addition, they manifest the phenomenon of anticipation, in which the disease tends to present at an earlier age or with greater severity in successive generations. Many additional genes with trinucleotide repeats are believed to be expressed in the human brain. As anticipation has been reported in schizophrenia and bipolar affective disorder, we have examined allele distributions of 13 trinucleotide repeat-containing genes, many novel and all expressed in the brain, in genomic DNA from schizophrenic (n = 20-97) and bipolar affectivemore » disorder patients (23-30) and controls (n = 43-146). No evidence was obtained to implicate expanded alleles in these 13 genes as causal factors in these diseases. 26 refs., 1 fig., 2 tabs.« less

  5. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays

    PubMed Central

    2010-01-01

    Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. PMID:20525227

  6. Influence of repeated prescribed fire and herbicide application on the fine root biomass of young longleaf pine

    Treesearch

    Mary Anne Sword Sayer; Eric A. Kuehler

    2010-01-01

    Photosynthate from mature foliage provides the energy source necessary for longleaf pine (Pinus palustris Mill.) root system expansion. Crown scorch caused by repeated prescribed fire could decrease this energy and, in turn, reduce new root production. We conducted a study to assess the root biomass of restored longleaf pine saplings in response to...

  7. Thermodynamic Effects of Noncoded and Coded Methionine Substitutions in Calmodulin

    PubMed Central

    Yamniuk, Aaron P.; Ishida, Hiroaki; Lippert, Dustin; Vogel, Hans J.

    2009-01-01

    The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19–26°C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding. PMID:19217866

  8. Long non-coding RNA expression profile in cervical cancer tissues

    PubMed Central

    Zhu, Hua; Chen, Xiangjian; Hu, Yan; Shi, Zhengzheng; Zhou, Qing; Zheng, Jingjie; Wang, Yifeng

    2017-01-01

    Cervical cancer (CC), one of the most common types of cancer of the female population, presents an enormous challenge in diagnosis and treatment. Long non-coding (lnc)RNAs, non-coding (nc)RNAs with length >200 nucleotides, have been identified to be associated with multiple types of cancer, including CC. This class of nc transcripts serves an important role in tumor suppression and oncogenic signaling pathways. In the present study, the microarray method was used to obtain the expression profile of lncRNAs and protein-coding mRNAs and to compare the expression of lncRNAs between CC tissues and corresponding adjacent non-cancerous tissues in order to screen potential lncRNAs for associations with CC. Overall, 3356 lncRNAs with significantly different expression pattern in CC tissues compared with adjacent non-cancerous tissues were identified, while 1,857 of them were upregulated. These differentially expressed lncRNAs were additionally classified into 5 subgroups. Reverse transcription quantitative polymerase chain reactions were performed to validate the expression pattern of 5 random selected lncRNAs, and 2lncRNAs were identified to have significantly different expression in CC samples compared with adjacent non-cancerous tissues. This finding suggests that those lncRNAs with different expression may serve important roles in the development of CC, and the expression data may provide information for additional study on the involvement of lncRNAs in CC. PMID:28789353

  9. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. A Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells.

    PubMed

    Koziol, Uriel; Radio, Santiago; Smircich, Pablo; Zarowiecki, Magdalena; Fernández, Cecilia; Brehm, Klaus

    2015-07-01

    Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Fork Stalling and Template Switching As a Mechanism for Polyalanine Tract Expansion Affecting the DYC Mutant of HOXD13, a New Murine Model of Synpolydactyly

    PubMed Central

    Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann

    2009-01-01

    Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named “Dyc” for “Digit in Y and Carpe” phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over. PMID:19546318

  12. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  13. On skin expansion.

    PubMed

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    PubMed

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  15. Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis

    PubMed Central

    Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia

    2011-01-01

    Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding

  16. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer.

    PubMed

    Li, Hengyu; Zhu, Li; Xu, Lu; Qin, Keyu; Liu, Chaoqian; Yu, Yue; Su, Dongwei; Wu, Kainan; Sheng, Yuan

    2017-01-01

    Protein-coding genes account for only 2% of the human genome, whereas the vast majority of transcripts are noncoding RNAs including long noncoding RNAs. LncRNAs are involved in the regulation of a diverse array of biological processes, including cancer progression. An evolutionarily conserved lncRNA TUNA, was found to be required for pluripotency of mouse embryonic stem cells. In this study, we found the human ortholog of TUNA, linc00617, was upregulated in breast cancer samples. Linc00617 promoted motility and invasion of breast cancer cells and induced epithelial-mesenchymal-transition (EMT), which was accompanied by generation of stem cell properties. Moreover, knockdown of linc00617 repressed lung metastasis in vivo. We demonstrated that linc00617 upregulated the expression of stemness factor Sox2 in breast cancer cells, which was shown to promote the oncogenic activity of breast cancer cells by stimulating epithelial-to-mesenchymal transition and enhancing the tumor-initiating capacity. Thus, our data indicate that linc00617 functions as an important regulator of EMT and promotes breast cancer progression and metastasis via activating the transcription of Sox2. Together, it suggests that linc00617 may be a potential therapeutic target for aggressive breast cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Fragile X mental retardation protein participates in non-coding RNA pathways.

    PubMed

    Li, En-Hui; Zhao, Xin; Zhang, Ce; Liu, Wei

    2018-02-20

    Fragile X syndrome is one of the most common forms of inherited intellectual disability. It is caused by mutations of the Fragile X mental retardation 1(FMR1) gene, resulting in either the loss or abnormal expression of the Fragile X mental retardation protein (FMRP). Recent research showed that FMRP participates in non-coding RNA pathways and plays various important roles in physiology, thereby extending our knowledge of the pathogenesis of the Fragile X syndrome. Initial studies showed that the Drosophila FMRP participates in siRNA and miRNA pathways by interacting with Dicer, Ago1 and Ago2, involved in neural activity and the fate determination of the germline stem cells. Subsequent studies showed that the Drosophila FMRP participates in piRNA pathway by interacting with Aub, Ago1 and Piwi in the maintenance of normal chromatin structures and genomic stability. More recent studies showed that FMRP is associated with lncRNA pathway, suggesting a potential role for the involvement in the clinical manifestations. In this review, we summarize the novel findings and explore the relationship between FMRP and non-coding RNA pathways, particularly the piRNA pathway, thereby providing critical insights on the molecular pathogenesis of Fragile X syndrome, and potential translational applications in clinical management of the disease.

  18. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    PubMed

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  19. Aberrant expression of long noncoding RNAs in autistic brain.

    PubMed

    Ziats, Mark N; Rennert, Owen M

    2013-03-01

    The autism spectrum disorders (ASD) have a significant hereditary component, but the implicated genetic loci are heterogeneous and complex. Consequently, there is a gap in understanding how diverse genomic aberrations all result in one clinical ASD phenotype. Gene expression studies from autism brain tissue have demonstrated that aberrantly expressed protein-coding genes may converge onto common molecular pathways, potentially reconciling the strong heritability and shared clinical phenotypes with the genomic heterogeneity of the disorder. However, the regulation of gene expression is extremely complex and governed by many mechanisms, including noncoding RNAs. Yet no study in ASD brain tissue has assessed for changes in regulatory long noncoding RNAs (lncRNAs), which represent a large proportion of the human transcriptome, and actively modulate mRNA expression. To assess if aberrant expression of lncRNAs may play a role in the molecular pathogenesis of ASD, we profiled over 33,000 annotated lncRNAs and 30,000 mRNA transcripts from postmortem brain tissue of autistic and control prefrontal cortex and cerebellum by microarray. We detected over 200 differentially expressed lncRNAs in ASD, which were enriched for genomic regions containing genes related to neurodevelopment and psychiatric disease. Additionally, comparison of differences in expression of mRNAs between prefrontal cortex and cerebellum within individual donors showed ASD brains had more transcriptional homogeneity. Moreover, this was also true of the lncRNA transcriptome. Our results suggest that further investigation of lncRNA expression in autistic brain may further elucidate the molecular pathogenesis of this disorder.

  20. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  1. Long noncoding RNA in hematopoiesis and immunity.

    PubMed

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Flavivirus RNAi suppression: decoding non-coding RNA.

    PubMed

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. CRNDE: An important oncogenic long non-coding RNA in human cancers.

    PubMed

    Zhang, Jiaming; Yin, Minuo; Peng, Gang; Zhao, Yingchao

    2018-06-01

    Aberrant overexpression of long non-coding RNA CRNDE (Colorectal Neoplasia Differentially Expressed) is confirmed in various human cancers, which is correlated with advanced clinicopathological features and poor prognosis. CRNDE promotes cancer cell proliferation, migration and invasion, and suppresses apoptosis in complicated mechanisms, which result in the initialization and development of human cancers. In this review, we provide an overview of the oncogenic role and potential clinical applications of CRNDE. © 2018 John Wiley & Sons Ltd.

  4. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.

    PubMed

    Achour, Cyrinne; Aguilo, Francesca

    2018-06-01

    High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript ( XIST ), antisense non-coding RNA in the INK4 locus ( ANRIL ), metastasis associated lung adenocarcinoma transcript 1 ( MALAT1 ), and HOX transcript antisense RNA ( HOTAIR ).

  5. A study of Huntington disease-like syndromes in black South African patients reveals a single SCA2 mutation and a unique distribution of normal alleles across five repeat loci.

    PubMed

    Baine, Fiona K; Peerbhai, Nabeelah; Krause, Amanda

    2018-07-15

    Huntington disease (HD) is a progressive neurodegenerative disease, characterised by a triad of movement disorder, emotional and behavioural disturbances and cognitive impairment. The underlying cause is an expanded CAG repeat in the huntingtin gene. For a small proportion of patients presenting with HD-like symptoms, the mutation in this gene is not identified and they are said to have a HD "phenocopy". South Africa has the highest number of recorded cases of an African-specific phenocopy, Huntington disease-like 2 (HDL2), caused by a repeat expansion in the junctophilin-3 gene. However, a significant proportion of black patients with clinical symptoms suggestive of HD still test negative for HD and HDL2. This study thus aimed to investigate five other loci associated with HD phenocopy syndromes - ATN1, ATXN2, ATXN7, TBP and C9orf72. In a sample of patients in whom HD and HDL2 had been excluded, a single expansion was identified in the ATXN2 gene, confirming a diagnosis of Spinocerebellar ataxia 2. The results indicate that common repeat expansion disorders do not contribute significantly to the HD-like phenotype in black South African patients. Importantly, allele sizing reveals unique distributions of normal repeat lengths across the associated loci in the African population studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants.

    PubMed

    Wang, Dong; Qu, Zhipeng; Yang, Lan; Zhang, Qingzhu; Liu, Zhi-Hong; Do, Trung; Adelson, David L; Wang, Zhen-Yu; Searle, Iain; Zhu, Jian-Kang

    2017-04-01

    Noncoding RNAs have been extensively described in plant and animal transcriptomes by using high-throughput sequencing technology. Of these noncoding RNAs, a growing number of long intergenic noncoding RNAs (lincRNAs) have been described in multicellular organisms, however the origins and functions of many lincRNAs remain to be explored. In many eukaryotic genomes, transposable elements (TEs) are widely distributed and often account for large fractions of plant and animal genomes yet the contribution of TEs to lincRNAs is largely unknown. By using strand-specific RNA-sequencing, we profiled the expression patterns of lincRNAs in Arabidopsis, rice and maize, and identified 47 611 and 398 TE-associated lincRNAs (TE-lincRNAs), respectively. TE-lincRNAs were more often derived from retrotransposons than DNA transposons and as retrotransposon copy number in both rice and maize genomes so did TE-lincRNAs. We validated the expression of these TE-lincRNAs by strand-specific RT-PCR and also demonstrated tissue-specific transcription and stress-induced TE-lincRNAs either after salt, abscisic acid (ABA) or cold treatments. For Arabidopsis TE-lincRNA11195, mutants had reduced sensitivity to ABA as demonstrated by longer roots and higher shoot biomass when compared to wild-type. Finally, by altering the chromatin state in the Arabidopsis chromatin remodelling mutant ddm1, unique lincRNAs including TE-lincRNAs were generated from the preceding untranscribed regions and interestingly inherited in a wild-type background in subsequent generations. Our findings not only demonstrate that TE-associated lincRNAs play important roles in plant abiotic stress responses but lincRNAs and TE-lincRNAs might act as an adaptive reservoir in eukaryotes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus.

    PubMed

    Qiu, Guo-Hua

    2016-01-01

    In this review, the protective function of the abundant non-coding DNA in the eukaryotic genome is discussed from the perspective of genome defense against exogenous nucleic acids. Peripheral non-coding DNA has been proposed to act as a bodyguard that protects the genome and the central protein-coding sequences from ionizing radiation-induced DNA damage. In the proposed mechanism of protection, the radicals generated by water radiolysis in the cytosol and IR energy are absorbed, blocked and/or reduced by peripheral heterochromatin; then, the DNA damage sites in the heterochromatin are removed and expelled from the nucleus to the cytoplasm through nuclear pore complexes, most likely through the formation of extrachromosomal circular DNA. To strengthen this hypothesis, this review summarizes the experimental evidence supporting the protective function of non-coding DNA against exogenous nucleic acids. Based on these data, I hypothesize herein about the presence of an additional line of defense formed by small RNAs in the cytosol in addition to their bodyguard protection mechanism in the nucleus. Therefore, exogenous nucleic acids may be initially inactivated in the cytosol by small RNAs generated from non-coding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. Exogenous nucleic acids may enter the nucleus, where some are absorbed and/or blocked by heterochromatin and others integrate into chromosomes. The integrated fragments and the sites of DNA damage are removed by repetitive non-coding DNA elements in the heterochromatin and excluded from the nucleus. Therefore, the normal eukaryotic genome and the central protein-coding sequences are triply protected by non-coding DNA against invasion by exogenous nucleic acids. This review provides evidence supporting the protective role of non-coding DNA in genome defense. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features

    PubMed Central

    Mahoney, Colin J.; Beck, Jon; Rohrer, Jonathan D.; Lashley, Tammaryn; Mok, Kin; Shakespeare, Tim; Yeatman, Tom; Warrington, Elizabeth K.; Schott, Jonathan M.; Fox, Nick C.; Rossor, Martin N.; Hardy, John; Collinge, John; Revesz, Tamas; Mead, Simon

    2012-01-01

    An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases

  9. Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events

    PubMed Central

    Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik

    2016-01-01

    Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers. PMID:28959951

  10. A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation.

    PubMed

    Tomita, Saori; Abdalla, Mohamed Osama Ali; Fujiwara, Saori; Matsumori, Haruka; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Iwase, Hirotaka; Saitoh, Noriko; Nakao, Mitsuyoshi

    2015-04-29

    Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells.

  11. A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation

    PubMed Central

    Tomita, Saori; Abdalla, Mohamed Osama Ali; Fujiwara, Saori; Matsumori, Haruka; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Iwase, Hirotaka; Saitoh, Noriko; Nakao, Mitsuyoshi

    2015-01-01

    Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells. PMID:25923108

  12. Imprinted and X-linked non-coding RNAs as potential regulators of human placental function

    PubMed Central

    Buckberry, Sam; Bianco-Miotto, Tina; Roberts, Claire T

    2014-01-01

    Pregnancy outcome is inextricably linked to placental development, which is strictly controlled temporally and spatially through mechanisms that are only partially understood. However, increasing evidence suggests non-coding RNAs (ncRNAs) direct and regulate a considerable number of biological processes and therefore may constitute a previously hidden layer of regulatory information in the placenta. Many ncRNAs, including both microRNAs and long non-coding transcripts, show almost exclusive or predominant expression in the placenta compared with other somatic tissues and display altered expression patterns in placentas from complicated pregnancies. In this review, we explore the results of recent genome-scale and single gene expression studies using human placental tissue, but include studies in the mouse where human data are lacking. Our review focuses on the ncRNAs epigenetically regulated through genomic imprinting or X-chromosome inactivation and includes recent evidence surrounding the H19 lincRNA, the imprinted C19MC cluster microRNAs, and X-linked miRNAs associated with pregnancy complications. PMID:24081302

  13. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus.

    PubMed

    Houtman, Miranda; Shchetynsky, Klementy; Chemin, Karine; Hensvold, Aase Haj; Ramsköld, Daniel; Tandre, Karolina; Eloranta, Maija-Leena; Rönnblom, Lars; Uebe, Steffen; Catrina, Anca Irinel; Malmström, Vivianne; Padyukov, Leonid

    2018-06-01

    Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4 + T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses

    PubMed Central

    Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael

    2013-01-01

    Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343

  15. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  16. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin

    PubMed Central

    Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T

    2016-01-01

    RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI: http://dx.doi.org/10.7554/eLife.19092.001 PMID:27779094

  17. CsrB, a noncoding regulatory RNA, is required for BarA-dependent expression of biocontrol traits in Rahnella aquatilis HX2.

    PubMed

    Mei, Li; Xu, Sanger; Lu, Peng; Lin, Haiping; Guo, Yanbin; Wang, Yongjun

    2017-01-01

    Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis.

  18. CsrB, a noncoding regulatory RNA, is required for BarA-dependent expression of biocontrol traits in Rahnella aquatilis HX2

    PubMed Central

    Lu, Peng; Lin, Haiping; Guo, Yanbin

    2017-01-01

    Background Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. Methodology/Principal findings In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. Conclusion/Significance The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis. PMID:29091941

  19. A Repeat Look at Repeating Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2016-01-01

    A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…

  20. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  1. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  2. LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature.

    PubMed

    Pian, Cong; Zhang, Guangle; Chen, Zhi; Chen, Yuanyuan; Zhang, Jin; Yang, Tao; Zhang, Liangyun

    2016-01-01

    As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.

  3. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats

    PubMed Central

    Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís

    2017-01-01

    Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426

  4. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Separating the wheat from the chaff: systematic identification of functionally relevant noncoding variants in ADHD.

    PubMed

    Tong, J H S; Hawi, Z; Dark, C; Cummins, T D R; Johnson, B P; Newman, D P; Lau, R; Vance, A; Heussler, H S; Matthews, N; Bellgrove, M A; Pang, K C

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is a highly heritable psychiatric condition with negative lifetime outcomes. Uncovering its genetic architecture should yield important insights into the neurobiology of ADHD and assist development of novel treatment strategies. Twenty years of candidate gene investigations and more recently genome-wide association studies have identified an array of potential association signals. In this context, separating the likely true from false associations ('the wheat' from 'the chaff') will be crucial for uncovering the functional biology of ADHD. Here, we defined a set of 2070 DNA variants that showed evidence of association with ADHD (or were in linkage disequilibrium). More than 97% of these variants were noncoding, and were prioritised for further exploration using two tools-genome-wide annotation of variants (GWAVA) and Combined Annotation-Dependent Depletion (CADD)-that were recently developed to rank variants based upon their likely pathogenicity. Capitalising on recent efforts such as the Encyclopaedia of DNA Elements and US National Institutes of Health Roadmap Epigenomics Projects to improve understanding of the noncoding genome, we subsequently identified 65 variants to which we assigned functional annotations, based upon their likely impact on alternative splicing, transcription factor binding and translational regulation. We propose that these 65 variants, which possess not only a high likelihood of pathogenicity but also readily testable functional hypotheses, represent a tractable shortlist for future experimental validation in ADHD. Taken together, this study brings into sharp focus the likely relevance of noncoding variants for the genetic risk associated with ADHD, and more broadly suggests a bioinformatics approach that should be relevant to other psychiatric disorders.

  6. De novo Transcriptome Sequencing Reveals a Considerable Bias in the Incidence of Simple Sequence Repeats towards the Downstream of ‘Pre-miRNAs’ of Black Pepper

    PubMed Central

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of ‘43 pre-miRNA candidates bearing different types of SSR motifs’. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted ‘pre-miRNA candidates bearing SSRs’. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted ‘pre-miRNA candidates’. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of ‘tandem repeats’ in miRNAs. PMID:23469176

  7. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation

    PubMed Central

    Velazquez Camacho, Oscar; Galan, Carmen; Swist-Rosowska, Kalina; Ching, Reagan; Gamalinda, Michael; Karabiber, Fethullah; De La Rosa-Velazquez, Inti; Engist, Bettina; Koschorz, Birgit; Shukeir, Nicholas; Onishi-Seebacher, Megumi; van de Nobelen, Suzanne; Jenuwein, Thomas

    2017-01-01

    The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin. DOI: http://dx.doi.org/10.7554/eLife.25293.001 PMID:28760199

  8. Biology and clinical relevance of noncoding sno/scaRNAs.

    PubMed

    Cao, Thuy; Rajasingh, Sheeja; Samanta, Saheli; Dawn, Buddhadeb; Bittel, Douglas C; Rajasingh, Johnson

    2018-02-01

    Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool.

    PubMed

    Manterola, Lorea; Guruceaga, Elizabeth; Gállego Pérez-Larraya, Jaime; González-Huarriz, Marisol; Jauregui, Patricia; Tejada, Sonia; Diez-Valle, Ricardo; Segura, Victor; Samprón, Nicolás; Barrena, Cristina; Ruiz, Irune; Agirre, Amaia; Ayuso, Angel; Rodríguez, Javier; González, Alvaro; Xipell, Enric; Matheu, Ander; López de Munain, Adolfo; Tuñón, Teresa; Zazpe, Idoya; García-Foncillas, Jesús; Paris, Sophie; Delattre, Jean Yves; Alonso, Marta M

    2014-04-01

    Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA. The aim of this hypothesis-generating study was to assess the diagnostic potential of miRNAs found in microvesicles isolated from the serum of GBM patients. To control disease heterogeneity, we used patients with newly diagnosed GBM. In the discovery stage, PCR-based TaqMan Low Density Arrays followed by individual quantitative reverse transcriptase polymerase chain reaction were used to test the differences in the miRNA expression levels of serum microvesicles among 25 GBM patients and healthy controls paired by age and sex. The detected noncoding RNAs were then validated in another 50 GBM patients. We found that the expression levels of 1 small noncoding RNA (RNU6-1) and 2 microRNAs (miR-320 and miR-574-3p) were significantly associated with a GBM diagnosis. In addition, RNU6-1 was consistently an independent predictor of a GBM diagnosis. Altogether our results uncovered a small noncoding RNA signature in microvesicles isolated from GBM patient serum that could be used as a fast and reliable differential diagnostic biomarker.

  10. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.

    PubMed

    Wucher, Valentin; Legeai, Fabrice; Hédan, Benoît; Rizk, Guillaume; Lagoutte, Lætitia; Leeb, Tosso; Jagannathan, Vidhya; Cadieu, Edouard; David, Audrey; Lohi, Hannes; Cirera, Susanna; Fredholm, Merete; Botherel, Nadine; Leegwater, Peter A J; Le Béguec, Céline; Fieten, Hille; Johnson, Jeremy; Alföldi, Jessica; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Derrien, Thomas

    2017-05-05

    Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Reward modulation of contextual cueing: Repeated context overshadows repeated target location.

    PubMed

    Sharifian, Fariba; Contier, Oliver; Preuschhof, Claudia; Pollmann, Stefan

    2017-10-01

    Contextual cueing can be enhanced by reward. However, there is a debate if reward is associated with the repeated target-distractor configurations or with the repeated target locations that occur in both repeated and new displays. Based on neuroimaging evidence, we hypothesized that reward becomes associated with the target location only in new displays, but not in repeated displays, where the repeated target location is overshadowed by the more salient repeated target-distractor configuration. To test this hypothesis, we varied the reward value associated with the same target location in repeated and new displays. The results confirmed the overshadowing hypothesis in that search facilitation in repeated target-distractor configurations was modulated by the variable value associated with the target location. This effect was observed mainly in early learning.

  12. Workplace expansion, long-term sickness absence, and hospital admission.

    PubMed

    Westerlund, Hugo; Ferrie, Jane; Hagberg, Jan; Jeding, Kerstin; Oxenstierna, Gabriel; Theorell, Töres

    2004-04-10

    Downsizing has in previous studies, as well as in public debate, been associated with increased sickness absence. No studies have, however, looked at the long-term relation between workplace expansion and morbidity. We investigated exposure to personnel change during 1991-96 in relation to long-term (90 days or longer) medically certified sickness absence and hospital admission for specified diagnoses during 1997-99 in 24?036 participants with a complete employment record in the biennial national Swedish Work Environment Surveys from 1989 to the end of 1999. Accumulated exposure to large expansion (> or =18% per year) was related to an increased risk of long-term sickness absence (odds ratio 1.07 [95% CI 1.01-1.13], p=0.013) and hospital admission (1.09 [1.02-1.16], p=0.017). In this context, odds ratio signifies the change in odds for each additional year of exposure, varying from 0 to 6. Moderate expansion (> or =8% and <18% per year), was associated with a decreased risk of admission (0.91 [0.84-0.98], p=0.012). Moderate downsizing (> or =8% and <18% per year) was associated with an increased risk of sickness absence (1.07 [1.02-1.12], p=0.003). The strongest association between large expansion and sickness absence was in women in the public sector (1.18 [1.08-1.30], p=0.0002), corresponding to an odds ratio of 2.77 [1.62-4.74] between full exposure (all 6 years) and no exposure. This study confirms earlier findings that downsizing is associated with health risks. It also shows that repeated exposure to rapid personnel expansion, possibly connected with centralisation of functions, statistically predicts long-term sickness absence and hospital admission. Although no conclusions about causal pathways can be drawn from our results, this exposure should be considered in future studies, policy making, and occupational health care practice.

  13. Comparisons between Arabidopsis thaliana and Drosophila melanogaster in relation to Coding and Noncoding Sequence Length and Gene Expression

    PubMed Central

    Caldwell, Rachel; Lin, Yan-Xia; Zhang, Ren

    2015-01-01

    There is a continuing interest in the analysis of gene architecture and gene expression to determine the relationship that may exist. Advances in high-quality sequencing technologies and large-scale resource datasets have increased the understanding of relationships and cross-referencing of expression data to the large genome data. Although a negative correlation between expression level and gene (especially transcript) length has been generally accepted, there have been some conflicting results arising from the literature concerning the impacts of different regions of genes, and the underlying reason is not well understood. The research aims to apply quantile regression techniques for statistical analysis of coding and noncoding sequence length and gene expression data in the plant, Arabidopsis thaliana, and fruit fly, Drosophila melanogaster, to determine if a relationship exists and if there is any variation or similarities between these species. The quantile regression analysis found that the coding sequence length and gene expression correlations varied, and similarities emerged for the noncoding sequence length (5′ and 3′ UTRs) between animal and plant species. In conclusion, the information described in this study provides the basis for further exploration into gene regulation with regard to coding and noncoding sequence length. PMID:26114098

  14. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia an bipolar affective disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinsztein, D.C.; Leggo, J.; Crow, T.J.

    A new class of disease (including Huntington disease, Kennedy disease, and spinocerebellar ataxias types 1 and 3) results from abnormal expansions of CAG trinucleotides in the coding regions of genes. In all of these diseases the CAG repeats are thought to be translated into polyglutamine tracts. There is accumulating evidence arguing for CAG trinucleotide expansions as one of the causative disease mutations in schizophrenia and bipolar affective disorder. We and others believe that the TATA-binding protein (TBP) is an important candidate to investigate in these diseases as it contains a highly polymorphic stretch of glutamine codons, which are close tomore » the threshold length where the polyglutamine tracts start to be associated with disease. Thus, we examined the lengths of this polyglutamine repeat in normal unrelated East Anglians, South African Blacks, sub-Saharan Africans mainly from Nigeria, and Asian Indians. We also examined 43 bipolar affective disorder patients and 65 schizophrenic patients. The range of polyglutamine tract-lengths that we found in humans was from 26-42 codons. No patients with bipolar affective disorder and schizophrenia had abnormal expansions at this locus. 22 refs., 1 tab.« less

  15. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    PubMed

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P < .001) in favor of BB rather than TB appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Post-transcriptional Regulation of Genes Related to Biological Behaviors of Gastric Cancer by Long Noncoding RNAs and MicroRNAs

    PubMed Central

    Liu, Wenjing; Ma, Rui; Yuan, Yuan

    2017-01-01

    Noncoding RNAs play critical roles in regulating protein-coding genes and comprise two major classes: long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). LncRNAs regulate gene expression at transcriptional, post-transcriptional, and epigenetic levels via multiple action modes. LncRNAs can also function as endogenous competitive RNAs for miRNAs and indirectly regulate gene expression post-transcriptionally. By binding to the 3'-untranslated regions (3'-UTR) of target genes, miRNAs post-transcriptionally regulate gene expression. Herein, we conducted a review of post-transcriptional regulation by lncRNAs and miRNAs of genes associated with biological behaviors of gastric cancer. PMID:29187891

  17. Long Non-Coding RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer

    PubMed Central

    Saus, Ester; Brunet-Vega, Anna; Iraola-Guzmán, Susana; Pegueroles, Cinta; Gabaldón, Toni; Pericay, Carles

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression. PMID:27148353

  18. Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms.

    PubMed

    Das, Sadhan; Reddy, Marpadga A; Senapati, Parijat; Stapleton, Kenneth; Lanting, Linda; Wang, Mei; Amaram, Vishnu; Ganguly, Rituparna; Zhang, Lingxiao; Devaraj, Sridevi; Schones, Dustin E; Natarajan, Rama

    2018-06-21

    Macrophages play key roles in inflammation and diabetic vascular complications. Emerging evidence implicates long noncoding RNAs in inflammation, but their role in macrophage dysfunction associated with inflammatory diabetic complications is unclear and was therefore investigated in this study. RNA-sequencing and real-time quantitative PCR demonstrated that a long noncoding RNA Dnm3os (dynamin 3 opposite strand) is upregulated in bone marrow-derived macrophages from type 2 diabetic db/db mice, diet-induced insulin-resistant mice, and diabetic ApoE -/ - mice, as well as in monocytes from type 2 diabetic patients relative to controls. Diabetic conditions (high glucose and palmitic acid) induced Dnm3os in mouse and human macrophages. Promoter reporter analysis and chromatin immunoprecipitation assays demonstrated that diabetic conditions induce Dnm3os via NF-κB activation. RNA fluorescence in situ hybridization and real-time quantitative PCRs of subcellular fractions demonstrated nuclear localization and chromatin enrichment of Dnm3os in macrophages. Stable overexpression of Dnm3os in macrophages altered global histone modifications and upregulated inflammation and immune response genes and phagocytosis. Conversely, RNAi-mediated knockdown of Dnm3os attenuated these responses. RNA pull-down assays with macrophage nuclear lysates identified nucleolin and ILF-2 (interleukin enhancer-binding factor 2) as protein binding partners of Dnm3os , which was further confirmed by RNA immunoprecipitation and RNA fluorescence in situ hybridization immunofluorescence. Furthermore, nucleolin levels were decreased in diabetic conditions, and its knockdown enhanced Dnm3os -induced inflammatory gene expression and histone H3K9-acetylation at their promoters. These results demonstrate novel mechanisms involving upregulation of long noncoding RNA Dnm3os , disruption of its interaction with nucleolin, and epigenetic modifications at target genes that promote macrophage inflammatory

  19. Long noncoding RNA DANCR promotes colorectal cancer proliferation and metastasis via miR-577 sponging.

    PubMed

    Wang, Yong; Lu, Zhi; Wang, Ningnin; Feng, Jianzhou; Zhang, Junjie; Luan, Lan; Zhao, Wei; Zeng, Xiandong

    2018-05-01

    Long non-coding RNAs (lncRNAs) play key roles in various malignant tumors, including colorectal cancer (CRC). Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) is overexpressed in CRC patients, but whether it affects CRC proliferation and metastasis via regulation of heat shock protein 27 (HSP27) remains unclear. In the present study, we found that DANCR was highly expressed and correlated with proliferation and metastasis in CRC. In addition, we demonstrated that DANCR and HSP27 were both targets of microRNA-577 (miR-577) and shared the same binding site. Furthermore, we revealed that DANCR promoted HSP27 expression and its mediation of proliferation/metastasis via miR-577 sponging. Finally, using an in vivo study, we confirmed that overexpression of DANCR promoted CRC tumor growth and liver metastasis. The present study demonstrated the function of DANCR in CRC and might provide a new target in the treatment of CRC.

  20. 3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.

    PubMed

    Goldfarb, Katherine C; Cech, Thomas R

    2013-09-21

    Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.

  1. Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

    PubMed

    Vatovec, Sabina; Kovanda, Anja; Rogelj, Boris

    2014-10-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are devastating neurodegenerative diseases that form two ends of a complex disease spectrum. Aggregation of RNA binding proteins is one of the hallmark pathologic features of ALS and FTDL and suggests perturbance of the RNA metabolism in their etiology. Recent identification of the disease-associated expansions of the intronic hexanucleotide repeat GGGGCC in the C9ORF72 gene further substantiates the case for RNA involvement. The expanded repeat, which has turned out to be the single most common genetic cause of ALS and FTLD, may enable the formation of complex DNA and RNA structures, changes in RNA transcription, and processing and formation of toxic RNA foci, which may sequester and inactivate RNA binding proteins. Additionally, the transcribed expanded repeat can undergo repeat-associated non-ATG-initiated translation resulting in accumulation of a series of dipeptide repeat proteins. Understanding the basis of the proposed mechanisms and shared pathways, as well as interactions with known key proteins such as TAR DNA-binding protein (TDP-43) are needed to clarify the pathology of ALS and/or FTLD, and make possible steps toward therapy development. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A critical role for noncoding 5S rRNA in regulating Mdmx stability.

    PubMed

    Li, Muyang; Gu, Wei

    2011-09-16

    Both p53 and Mdmx are ubiquitinated and degraded by the same E3 ligase Mdm2; interestingly, however, while p53 is rapidly degraded by Mdm2, Mdmx is a stable protein in most cancer cells. Thus, the mechanism by which Mdmx is degraded by Mdm2 needs further elucidation. Here, we identified the noncoding 5S rRNA as a major component of Mdmx-associated complexes from human cells. We show that 5S rRNA acts as a natural inhibitor of Mdmx degradation by Mdm2. RNAi-mediated knockdown of endogenous 5S rRNA, while not affecting p53 levels, significantly induces Mdmx degradation and, subsequently, activates p53-dependent growth arrest. Notably, 5S rRNA binds the RING domain of Mdmx and blocks its ubiquitination by Mdm2, whereas Mdm2-mediated p53 ubiquitination remains intact. These results provide insights into the differential effects on p53 and Mdmx by Mdm2 in vivo and reveal a critical role for noncoding 5S rRNA in modulating the p53-Mdmx axis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator

    PubMed Central

    Novikova, Irina V.; Hennelly, Scott P.; Sanbonmatsu, Karissa Y.

    2012-01-01

    While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features. PMID:22362738

  4. Long Noncoding RNA LINC00958 Accelerates Gliomagenesis Through Regulating miR-203/CDK2.

    PubMed

    Guo, Erkun; Liang, Chaohui; He, Xin; Song, Guozhi; Liu, Hongjiang; Lv, Zhongqiang; Guan, Jianchao; Yang, Dezhen; Zheng, Jiapeng

    2018-05-01

    Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play crucial roles in various biological processes, including glioma. However, the underlying mechanism of lncRNAs in gliomagenesis is still ambiguous. In this study, we aim to investigate the role of long intergenic noncoding RNA 00958 (LINC00958) in the tumorigenesis of glioma. Results revealed that LINC00958 was significantly upregulated in glioma tissues and cell lines compared with that of adjacent normal brain tissues and normal human astrocytes. Moreover, the ectopic overexpression of LINC00958 was correlated with poor prognosis of glioma patients. Loss-of-function experiments indicated that LINC00958 knockdown suppressed glioma cell proliferation, invasion, and induced cycle arrest at G0/G1 phase in vitro, and inhibited tumor growth in vivo. Bioinformatics programs and luciferase reporter assay revealed that miR-203 shared complementary binding sites with both 3'-untranslated region of LINC00958 and CDK2. In summary, our study concludes that LINC00958 acts as an oncogenic gene in the gliomagenesis through miR-203-CDK2 regulation, providing a novel insight into glioma tumorigenesis.

  5. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

    PubMed Central

    Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393

  6. Long terminal repeat retrotransposons of Oryza sativa

    PubMed Central

    McCarthy, Eugene M; Liu, Jingdong; Lizhi, Gao; McDonald, John F

    2002-01-01

    Background Long terminal repeat (LTR) retrotransposons constitute a major fraction of the genomes of higher plants. For example, retrotransposons comprise more than 50% of the maize genome and more than 90% of the wheat genome. LTR retrotransposons are believed to have contributed significantly to the evolution of genome structure and function. The genome sequencing of selected experimental and agriculturally important species is providing an unprecedented opportunity to view the patterns of variation existing among the entire complement of retrotransposons in complete genomes. Results Using a new data-mining program, LTR_STRUC, (LTR retrotransposon structure program), we have mined the GenBank rice (Oryza sativa) database as well as the more extensive (259 Mb) Monsanto rice dataset for LTR retrotransposons. Almost two-thirds (37) of the 59 families identified consist of copia-like elements, but gypsy-like elements outnumber copia-like elements by a ratio of approximately 2:1. At least 17% of the rice genome consists of LTR retrotransposons. In addition to the ubiquitous gypsy- and copia-like classes of LTR retrotransposons, the rice genome contains at least two novel families of unusually small, non-coding (non-autonomous) LTR retrotransposons. Conclusions Each of the major clades of rice LTR retrotransposons is more closely related to elements present in other species than to the other clades of rice elements, suggesting that horizontal transfer may have occurred over the evolutionary history of rice LTR retrotransposons. Like LTR retrotransposons in other species with relatively small genomes, many rice LTR retrotransposons are relatively young, indicating a high rate of turnover. PMID:12372141

  7. Measurements of the frequency stability of ultralow thermal expansion glass ceramic optical cavity lasers

    NASA Astrophysics Data System (ADS)

    Oram, R. J.; Latimer, I. D.; Spoor, S. P.

    1997-05-01

    This paper reports on a technique for providing a frequency-stabilized helium - neon gas laser by using inherently stable ultralow thermal expansion optical cavities. Four longitudinal monoblock cavity lasers were constructed and tested. These had their laser mirrors optically contacted to the bulk material. A 1 mm diameter hole along the axis of the block served as the discharge channel with electrodes optically contacted to the sides of the block. One of these lasers had a glass capilliary for the discharge channel. A fifth laser had a gain tube with Brewster angle windows fixed in a Zerodur box with the mirrors contacted to the ends. The warm-up characteristics of the five different lasers have been obtained and a theoretical model using finite element analysis was developed to determine the thermal expansion during warm-up. Using this computer model the thermal expansion coefficient of the material Zerodur was obtained. The results suggest that monoblock lasers can produce a free-running laser frequency stability of better than 10 MHz and show a repeatable warm-up characteristic of 100 MHz frequency drift.

  8. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  9. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.

  10. The Long Noncoding RNA Landscape of the Mouse Eye.

    PubMed

    Chen, Weiwei; Yang, Shuai; Zhou, Zhonglou; Zhao, Xiaoting; Zhong, Jiayun; Reinach, Peter S; Yan, Dongsheng

    2017-12-01

    Long noncoding RNAs (lncRNAs) are important regulators of diverse biological functions. However, an extensive in-depth analysis of their expression profile and function in mammalian eyes is still lacking. Here we describe comprehensive landscapes of stage-dependent and tissue-specific lncRNA expression in the mouse eye. Affymetrix transcriptome array profiled lncRNA signatures from six different ocular tissue subsets (i.e., cornea, lens, retina, RPE, choroid, and sclera) in newborn and 8-week-old mice. Quantitative RT-PCR analysis validated array findings. Cis analyses and Gene Ontology (GO) annotation of protein-coding genes adjacent to signature lncRNA loci clarified potential lncRNA roles in maintaining tissue identity and regulating eye maturation during the aforementioned phase. In newborn and 8-week-old mice, we identified 47,332 protein-coding and noncoding gene transcripts. LncRNAs comprise 19,313 of these transcripts annotated in public data banks. During this maturation phase of these six different tissue subsets, more than 1000 lncRNAs expression levels underwent ≥2-fold changes. qRT-PCR analysis confirmed part of the gene microarray analysis results. K-means clustering identified 910 lncRNAs in the P0 groups and 686 lncRNAs in the postnatal 8-week-old groups, suggesting distinct tissue-specific lncRNA clusters. GO analysis of protein-coding genes proximal to lncRNA signatures resolved close correlations with their tissue-specific functional maturation between P0 and 8 weeks of age in the 6 tissue subsets. Characterizating maturational changes in lncRNA expression patterns as well as tissue-specific lncRNA signatures in six ocular tissues suggest important contributions made by lncRNA to the control of developmental processes in the mouse eye.

  11. Targeted deletion of the 9p21 noncoding coronary artery disease risk interval in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Zhu, Yiwen; May, Dalit

    2010-01-01

    Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation propertiesmore » of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.« less

  12. The Ecological Genomics of Fungi: Repeated Elements in Filamentous Fungi with a Focus on Wood-Decay Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murat, Claude; Payen, Thibaut; Petitpierre, Denis

    2013-01-01

    In the last decade, the genome of several dozen filamentous fungi have been sequenced. Interestingly, vast diversity in genome size was observed (Fig. 2.1) with 14-fold differences between the 9 Mb of the human pathogenic dandruff fungus (Malassezia globosa; Xu, Saunders, et al., 2007) and the 125 Mb of the ectomycorrhizal black truffle of P rigord (Tuber melanosporum; Martin, Kohler, et al., 2010). Recently, Raffaele and Kamoun (2012) highlighted that the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansion. Indeed, repeated elements are ubiquitous in all prokaryote and eukaryote genomes; however, their frequencies canmore » vary from just a minor percentage of the genome to more that 60 percent of the genome. Repeated elements can be classified in two major types: satellites DNA and transposable elements. In this chapter, the different types of repeated elements and how these elements can impact genome and gene repertoire will be described. Also, an intriguing link between the transposable elements richness and diversity and the ecological niche will be highlighted.« less

  13. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  14. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer

    PubMed Central

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Chira, Sergiu; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-01-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer. PMID:28587155

  15. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer.

    PubMed

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Sergiu, Chira; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-06-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.

  16. Identification of novel non-coding RNA-based negative feedback regulating the expression of the oncogenic transcription factor GLI1.

    PubMed

    Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G

    2014-07-01

    Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Comparative analysis of human protein-coding and noncoding RNAs between brain and 10 mixed cell lines by RNA-Seq.

    PubMed

    Chen, Geng; Yin, Kangping; Shi, Leming; Fang, Yuanzhang; Qi, Ya; Li, Peng; Luo, Jian; He, Bing; Liu, Mingyao; Shi, Tieliu

    2011-01-01

    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.

  18. Long non-coding RNAs involved in autophagy regulation

    PubMed Central

    Yang, Lixian; Wang, Hanying; Shen, Qi; Feng, Lifeng; Jin, Hongchuan

    2017-01-01

    Autophagy degrades non-functioning or damaged proteins and organelles to maintain cellular homeostasis in a physiological or pathological context. Autophagy can be protective or detrimental, depending on its activation status and other conditions. Therefore, autophagy has a crucial role in a myriad of pathophysiological processes. From the perspective of autophagy-related (ATG) genes, the molecular dissection of autophagy process and the regulation of its level have been largely unraveled. However, the discovery of long non-coding RNAs (lncRNAs) provides a new paradigm of gene regulation in almost all important biological processes, including autophagy. In this review, we highlight recent advances in autophagy-associated lncRNAs and their specific autophagic targets, as well as their relevance to human diseases such as cancer, cardiovascular disease, diabetes and cerebral ischemic stroke. PMID:28981093

  19. Paraspeckles: Where Long Noncoding RNA Meets Phase Separation.

    PubMed

    Fox, Archa H; Nakagawa, Shinichi; Hirose, Tetsuro; Bond, Charles S

    2018-02-01

    Long noncoding RNA (lncRNA) molecules are some of the newest and least understood players in gene regulation. Hence, we need good model systems with well-defined RNA and protein components. One such system is paraspeckles - protein-rich nuclear organelles built around a specific lncRNA scaffold. New discoveries show how paraspeckles are formed through multiple RNA-protein and protein-protein interactions, some of which involve extensive polymerization, and others with multivalent interactions driving phase separation. Once formed, paraspeckles influence gene regulation through sequestration of component proteins and RNAs, with subsequent depletion in other compartments. Here we focus on the dual aspects of paraspeckle structure and function, revealing an emerging role for these dynamic bodies in a multitude of cellular settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  1. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kelly Porter; Lau, Britney Yan

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  2. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE PAGES

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  3. Decoding the usefulness of non-coding RNAs as breast cancer markers.

    PubMed

    Amorim, Maria; Salta, Sofia; Henrique, Rui; Jerónimo, Carmen

    2016-09-15

    Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.

  4. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.

    PubMed

    Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji

    2007-01-01

    Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.

  5. Detecting the borders between coding and non-coding DNA regions in prokaryotes based on recursive segmentation and nucleotide doublets statistics

    PubMed Central

    2012-01-01

    Background Detecting the borders between coding and non-coding regions is an essential step in the genome annotation. And information entropy measures are useful for describing the signals in genome sequence. However, the accuracies of previous methods of finding borders based on entropy segmentation method still need to be improved. Methods In this study, we first applied a new recursive entropic segmentation method on DNA sequences to get preliminary significant cuts. A 22-symbol alphabet is used to capture the differential composition of nucleotide doublets and stop codon patterns along three phases in both DNA strands. This process requires no prior training datasets. Results Comparing with the previous segmentation methods, the experimental results on three bacteria genomes, Rickettsia prowazekii, Borrelia burgdorferi and E.coli, show that our approach improves the accuracy for finding the borders between coding and non-coding regions in DNA sequences. Conclusions This paper presents a new segmentation method in prokaryotes based on Jensen-Rényi divergence with a 22-symbol alphabet. For three bacteria genomes, comparing to A12_JR method, our method raised the accuracy of finding the borders between protein coding and non-coding regions in DNA sequences. PMID:23282225

  6. C9orf72 expansion presenting as an eating disorder.

    PubMed

    Sanders, Peter; Ewing, Isobel; Ahmad, Kate

    2016-03-01

    This report describes a 64-year-old woman with a strong family history of motor neuron disease, whose diagnosis of behavioural variant frontotemporal dementia was delayed due to her initial presentation with atypical manifestations, including restriction of oral intake resulting in low weight, disordered eating and anxiety. Upon investigation, she was found to be a carrier of the C9orf72 hexanucleotide repeat expansion. Our case supports previous publications asserting that C9orf72 mutation carriers manifest with diverse clinical syndromes, and expands the phenotype to include anorexia and food refusal as potential features of the condition. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients.

    PubMed

    Morales, Fernando; Vásquez, Melissa; Santamaría, Carolina; Cuenca, Patricia; Corrales, Eyleen; Monckton, Darren G

    2016-04-01

    Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p<0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p=0.003); Rs1677658 (p=0.009); and Rs10168 (p=0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target. Copyright © 2016 Elsevier B

  8. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging.

    PubMed

    Grammatikakis, Ioannis; Panda, Amaresh C; Abdelmohsen, Kotb; Gorospe, Myriam

    2014-12-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.

  9. Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging

    PubMed Central

    Abdelmohsen, Kotb; Gorospe, Myriam

    2014-01-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits. PMID:25543668

  10. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  11. Long non-coding RNA AK096174 promotes cell proliferation and invasion in gastric cancer by regulating WDR66 expression.

    PubMed

    Zhang, Yeqian; Yu, Site; Zhang, Zizhen; Zhao, Gang; Xu, Jia

    2018-05-01

    Gastric cancer is one of the major causes of cancer death worldwide; however, the mechanism of carcinogenesis is complex and poorly understood. Long noncoding RNA (lncRNA) have been reported to be involved in the development of multiple cancers. Here we identified a novel lncRNA, AK096174, which was upregulated and associated with tumorigenesis, tumor size, metastasis, and poor prognosis in gastric cancer. Our data showed that AK096174 was highly expressed in the gastric cancer tissues and cell lines (SGC-7901, AGS, BGC-823, MGC-803), and patients with higher AK096174 expression had a poorer prognosis and shorter overall survival. AK096174 knockdown inhibited the proliferation, migration and invasiveness in SGC-7901 and BGC-823 cells, whereas AK096174 overexpression had the promoting effects. Furthermore, mechanistic investigation showed that AK096174 positively correlated with the expression of WD repeat-containing protein 66 (WDR66) gene at the translational level. Knockdown of WRD66 attenuated the positive impact of AK096174 in gastric cancer cells. The findings of this study establish a function for AK096174 in gastric cancer progression and suggest it may serve as a potential target for gastric cancer therapy in the future. ©2018 The Author(s).

  12. Junk DNA and the long non-coding RNA twist in cancer genetics

    PubMed Central

    Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A

    2015-01-01

    The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839

  13. Serial Tissue Expansion at the Same Site in Pediatric Patients: Is the Subsequent Expansion Faster?

    PubMed Central

    Lee, Moon Ki; Park, Seong Oh; Choi, Tae Hyun

    2017-01-01

    Background Serial tissue expansion is performed to remove giant congenital melanocytic nevi. However, there have been no studies comparing the expansion rate between the subsequent and preceding expansions. In this study, we analyzed the rate of expansion in accordance with the number of surgeries, expander location, expander size, and sex. Methods A retrospective analysis was performed in pediatric patients who underwent tissue expansion for giant congenital melanocytic nevi. We tested four factors that may influence the expansion rate: The number of surgeries, expander location, expander size, and sex. The rate of expansion was calculated by dividing the ‘inflation amount’ by the ‘expander size’. Results The expansion rate, compared with the first-time group, was 1.25 times higher in the second-or-more group (P=0.04) and 1.84 times higher in the third-or-more group (P<0.01). The expansion rate was higher at the trunk than at other sites (P<0.01). There was a tendency of lower expansion rate for larger expanders (P=0.03). Sex did not affect the expansion rate. Conclusions There was a positive correlation between the number of surgeries and the expansion rate, a positive correlation between the expander location and the expansion rate, and a negative correlation between the expander size and the expansion rate. PMID:29076319

  14. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection

    USDA-ARS?s Scientific Manuscript database

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...

  15. Specificity Protein (Sp) Transcription Factors and Metformin Regulate Expression of the Long Non-coding RNA HULC

    EPA Science Inventory

    There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...

  16. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials--a comparative study.

    PubMed

    Rüttermann, Stefan; Krüger, Sören; Raab, Wolfgang H-M; Janda, Ralf

    2007-10-01

    To investigate the polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials. The densities of SureFil (SU), CeramXMono (CM), Clearfil AP-X (CF), Solitaire 2 (SO), TetricEvoCeram (TE), and Filtek P60 (FT) were measured using the Archimedes' principle prior to and 15min after curing for 20, 40 and 60s and after 1h, 24h, 7 d, and 30 d storage at 37 degrees C in water. Volumetric changes (DeltaV) in percent after polymerization and after each storage period in water were calculated from the changes of densities. Water sorption and solubility were determined after 30 d for all specimens and their curing times. Two-way ANOVA was calculated for shrinkage and repeated measures ANOVA was calculated for hygroscopic expansion (p<0.05). DeltaV depended on filler load but not on curing time (SU approximately -2.0%, CM approximately -2.6%, CF approximately -2.1%, SO approximately -3.3%, TE approximately -1.7%, FT approximately -1.8%). Hygroscopic expansion depended on water sorption and solubility. Except for SU, all materials showed DeltaV approximately +1% after water storage. Polymerization shrinkage depended on the type of resin-based filling material but not on curing time. Shrinkage was not compensated by hygroscopic expansion.

  17. Non-coding RNAs' partitioning in the evolution of photosynthetic organisms via energy transduction and redox signaling.

    PubMed

    Kotakis, Christos

    2015-01-01

    Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.

  18. Collective pulsatile expansion and swirls in proliferating tumor tissue

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok Daniel; Kim, Hyun; Yoon, Changhyeong; Baek, Seung-Kuk; Lee, Kyoung J.

    2016-10-01

    Understanding the dynamics of expanding biological tissues is essential to a wide range of phenomena in morphogenesis, wound healing and tumor proliferation. Increasing evidence suggests that many of the relevant phenomena originate from complex collective dynamics, inherently nonlinear, of constituent cells that are physically active. Here, we investigate thin disk layers of proliferating, cohesive, monoclonal tumor cells and report the discovery of macroscopic, periodic, soliton-like mechanical waves with which cells are collectively ratcheting, as in the traveling-wave chemotaxis of dictyostelium discodium amoeba cells. The relevant length-scale of the waves is remarkably large (∼1 mm), compared to the thickness of a mono-layer tissue (∼ 10 μ {{m}}). During the tissue expansion, the waves are found to repeat several times with a quite well defined period of approximately 4 h. Our analyses suggest that the waves are initiated by the leading edge that actively pulls the tissue in the outward direction, while the cells within the bulk tissue do not seem to generate a strong self-propulsion. Subsequently, we demonstrate that a simple mathematical model chain of nonlinear springs that are constantly pulled in the outward direction at the leading edge recapitulates the observed phenomena well. As the areal cell density becomes too high, the tissue expansion stalls and the periodic traveling waves yield to multiple swirling vortices. Cancer cells are known to possess a broad spectrum of migration mechanisms. Yet, our finding has established a new unusual mode of tumor tissue expansion, and it may be equally applicable for many different expanding thin layers of cell tissues.

  19. Virial Expansion Bounds

    NASA Astrophysics Data System (ADS)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  20. Non-coding RNA networks underlying cognitive disorders across the lifespan

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Non-coding RNAs (ncRNAs) and their associated regulatory networks are increasingly being implicated in mediating a complex repertoire of neurobiological functions. Cognitive and behavioral processes are proving to be no exception. Here, we discuss the emergence of many novel, diverse, and rapidly expanding classes and subclasses of short and long ncRNAs. We briefly review the life cycles and molecular functions of these ncRNAs. We also examine how ncRNA circuitry mediates brain development, plasticity, stress responses, and aging and highlight its potential roles in the pathophysiology of cognitive disorders, including neural developmental and age-associated neurodegenerative diseases as well as those that manifest throughout the lifespan. PMID:21411369