Science.gov

Sample records for nonequilibrium electron transport

  1. Nonequilibrium electronic transport in a one-dimensional Mott insulator

    SciTech Connect

    Heidrich-Meisner, F.; Gonzalez, Ivan; Al-Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, M. J.; Dagotto, Elbio R

    2010-01-01

    We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state elec- tronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.

  2. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  3. Nonequilibrium mesoscopic transport: a genealogy.

    PubMed

    Das, Mukunda P; Green, Frederick

    2012-05-09

    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems.

  4. Nonequilibrium transport and electron-glass effects in thin GexTe films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2016-10-01

    We report on results of nonequilibrium transport measurements made on thin films of germanium-telluride (GexTe ) at cryogenic temperatures. Owing to a rather large deviation from stoichiometry (≈10 % of Ge vacancies), these films exhibit p -type conductivity with carrier concentration N ≥1020cm-3 and can be made either in the diffusive or strongly localized regime by a judicious choice of preparation and post-treatment conditions. In both regimes, the system shows persistent photoconductivity following excitation by a brief exposure to infrared radiation. Persistent photoconductivity is also observed in GexTe samples alloyed with Mn. However, in both GexTe and GeMnxTey , the effect is much weaker than that observable in GeSbxTey alloys, suggesting that antimony plays an important role in the phenomenon. Structural studies of these films reveal an unusual degree of texture that is rarely realized in strongly disordered systems with high carrier concentrations. Anderson-localized samples of GexTe exhibit nonergodic transport which is characteristic of intrinsic electron glasses, including a well-developed memory dip and slow relaxation of the excess conductance created in the excited state. These results support the conjecture that electron-glass effects with inherently long relaxation times is a generic property of all Anderson-localized systems with large carrier concentration.

  5. Nonequilibrium electron transport in a hybrid superconductor-normal metal entangler in a dissipative environment

    NASA Astrophysics Data System (ADS)

    Bubanja, Vladimir; Yamamoto, Mayumi; Iwabuchi, Shuichi

    2016-11-01

    We consider a three-terminal Cooper-pair splitting device with a superconducting electrode tunnel coupled to two normal metal electrodes. We employ the Nambu-Gor'kov and Schwinger-Keldysh formalisms to describe the nonequilibrium transport properties of the device for arbitrary transmissions of the barriers and for a general electromagnetic environment. We derive the analytic expressions for the current and the nonlocal differential conductance, and analyze the limits of clean and dirty superconductivity.

  6. An electrohydrodynamics model for non-equilibrium electron and phonon transport in metal films after ultra-short pulse laser heating

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Li, Nianbei; Yang, Ronggui

    2015-06-01

    The electrons and phonons in metal films after ultra-short pulse laser heating are in highly non-equilibrium states not only between the electrons and the phonons but also within the electrons. An electrohydrodynamics model consisting of the balance equations of electron density, energy density of electrons, and energy density of phonons is derived from the coupled non-equilibrium electron and phonon Boltzmann transport equations to study the nonlinear thermal transport by considering the electron density fluctuation and the transient electric current in metal films, after ultra-short pulse laser heating. The temperature evolution is calculated by the coupled electron and phonon Boltzmann transport equations, the electrohydrodynamics model derived in this work, and the two-temperature model. Different laser pulse durations, film thicknesses, and laser fluences are considered. We find that the two-temperature model overestimates the electron temperature at the front surface of the film and underestimates the damage threshold when the nonlinear thermal transport of electrons is important. The electrohydrodynamics model proposed in this work could be a more accurate prediction tool to study the non-equilibrium electron and phonon transport process than the two-temperature model and it is much easier to be solved than the Boltzmann transport equations.

  7. Non-equilibrium normal and critical transport of electrons in strontium-doped bismuthate cuprates

    NASA Astrophysics Data System (ADS)

    Kwang-Hua, Chu Rainer

    2014-05-01

    Critical dynamical transitional phases of electronic liquids driven by an initial electric field in a microscopic confined environment at low temperature regime could occur after we investigated by adopting the verified theory of absolute reactions. The critical temperatures related to the nearly frictionless transport of many condensed electrons might be directly relevant to the dynamical transition at low-temperature regime in amorphous materials, say (Bi2-xSrx)2CuO6, after selecting specific activation energies and activation volumes. We also address the normal-state high-temperature transport issue.

  8. Non-equilibrium quantum transport of spin-polarized electrons and back action on molecular magnet tunnel-junction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, J.-Q.

    2016-11-01

    We investigate the non-equilibrium quantum transport through a single-molecule magnet embedded in a tunnel junction with ferromagnetic electrodes, which generate spin-polarized electrons. The lead magnetization direction is non-collinear with the uniaxial anisotropy easy-axis of molecule-magnet. Based on the Pauli rate-equation approach we demonstrate the magnetization reversion of molecule-magnet induced by the back action of spin-polarized current in the sequential tunnel regime. The asymptotic magnetization of molecular magnet and spin-polarization of transport current are obtained as functions of time by means of time-dependent solution of the rate equation. It is found that the antiparallel configuration of the ferromagnetic electrodes and molecular anisotropy easy-axis is an effective structure to reverse both the magnetization of molecule-magnet and spin-polarization of the transport current. Particularly the non-collinear angle dependence provides useful knowledge for the quantum manipulation of molecule-magnet and spin polarized electron-transport.

  9. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  10. Magnetic-field-influenced nonequilibrium transport through a quantum ring with correlated electrons in a photon cavity

    NASA Astrophysics Data System (ADS)

    Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2013-01-01

    We investigate magnetic-field-influenced time-dependent transport of Coulomb interacting electrons through a two-dimensional quantum ring in an electromagnetic cavity under nonequilibrium conditions described by a time-convolutionless non-Markovian master equation formalism. We take into account the full electromagnetic interaction of electrons and cavity photons. A bias voltage is applied to semi-infinite leads along the x axis, which are connected to the quantum ring. The magnetic field is tunable to manipulate the time-dependent electron transport coupled to a photon field with either x or y polarization. We find that the lead-system-lead current is strongly suppressed by the y-polarized photon field at magnetic field with two flux quanta due to a degeneracy of the many-body energy spectrum of the mostly occupied states. On the other hand, the lead-system-lead current can be significantly enhanced by the y-polarized field at magnetic field with half-integer flux quanta. Furthermore, the y-polarized photon field perturbs the periodicity of the persistent current with the magnetic field and suppresses the magnitude of the persistent current. The spatial and temporal density distributions reflect the characteristics of the many-body spectrum. The vortex formation in the contact areas to the leads influences the charge circulation in the ring.

  11. Application of a semiclassical model for the second-quantized many-electron Hamiltonian to nonequilibrium quantum transport: the resonant level model.

    PubMed

    Swenson, David W H; Levy, Tal; Cohen, Guy; Rabani, Eran; Miller, William H

    2011-04-28

    A semiclassical approach is developed for nonequilibrium quantum transport in molecular junctions. Following the early work of Miller and White [J. Chem. Phys. 84, 5059 (1986)], the many-electron Hamiltonian in second quantization is mapped onto a classical model that preserves the fermionic character of electrons. The resulting classical electronic Hamiltonian allows for real-time molecular dynamics simulations of the many-body problem from an uncorrelated initial state to the steady state. Comparisons with exact results generated for the resonant level model reveal that a semiclassical treatment of transport provides a quantitative description of the dynamics at all relevant timescales for a wide range of bias and gate potentials, and for different temperatures. The approach opens a door to treating nontrivial quantum transport problems that remain far from the reach of fully quantum methodologies.

  12. An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.

    PubMed

    Qian, Zekan; Li, Rui; Hou, Shimin; Xue, Zengquan; Sanvito, Stefano

    2007-11-21

    An efficient self-consistent approach combining the nonequilibrium Green's function formalism with density functional theory is developed to calculate electron transport properties of molecular devices with quasi-one-dimensional (1D) electrodes. Two problems associated with the low dimensionality of the 1D electrodes, i.e., the nonequilibrium state and the uncertain boundary conditions for the electrostatic potential, are circumvented by introducing the reflectionless boundary conditions at the electrode-contact interfaces and the zero electric field boundary conditions at the electrode-molecule interfaces. Three prototypical systems, respectively, an ideal ballistic conductor, a high resistance tunnel junction, and a molecular device, are investigated to illustrate the accuracy and efficiency of our approach.

  13. Electron Systems Out of Equilibrium: Nonequilibrium Green's Function Approach

    NASA Astrophysics Data System (ADS)

    Špička, Václav Velický, Bedřich Kalvová, Anděla

    2015-10-01

    This review deals with the state of the art and perspectives of description of non-equilibrium many body systems using the non-equilibrium Green's function (NGF) method. The basic aim is to describe time evolution of the many-body system from its initial state over its transient dynamics to its long time asymptotic evolution. First, we discuss basic aims of transport theories to motivate the introduction of the NGF techniques. Second, this article summarizes the present view on construction of the electron transport equations formulated within the NGF approach to non-equilibrium. We discuss incorporation of complex initial conditions to the NGF formalism, and the NGF reconstruction theorem, which serves as a tool to derive simplified kinetic equations. Three stages of evolution of the non-equilibrium, the first described by the full NGF description, the second by a Non-Markovian Generalized Master Equation and the third by a Markovian Master Equation will be related to each other.

  14. Nonequilibrium charge susceptibility and dynamical conductance: identification of scattering processes in quantum transport.

    PubMed

    Ness, H; Dash, L K

    2012-03-23

    We calculate the nonequilibrium charge transport properties of nanoscale junctions in the steady state and extend the concept of charge susceptibility to the nonequilibrium conditions. We show that the nonequilibrium charge susceptibility is related to the nonlinear dynamical conductance. In spectroscopic terms, both contain the same features versus applied bias when charge fluctuation occurs in the corresponding electronic resonances. However, we show that, while the conductance exhibits features at biases corresponding to inelastic scattering with no charge fluctuations, the nonequilibrium charge susceptibility does not. We suggest that measuring both the nonequilibrium conductance and charge susceptibility in the same experiment will permit us to differentiate between different scattering processes in quantum transport.

  15. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  16. Nonequilibrium electron dynamics in noble metals

    NASA Astrophysics Data System (ADS)

    del Fatti, N.; Voisin, C.; Achermann, M.; Tzortzakis, S.; Christofilos, D.; Vallée, F.

    2000-06-01

    Electron-electron and electron-lattice interactions in noble metals are discussed in the light of two-color femtosecond pump-probe measurements in silver films. The internal thermalization of a nonequilibrium electron distribution created by intraband absorption of a pump pulse is followed by probing the induced optical property changes in the vicinity of the frequency threshold for the d band to Fermi surface transitions. This is shown to take place with a characteristic time constant of 350 fs, significantly shorter than previously reported in gold. This difference is ascribed to a weaker screening of the electron-electron interaction by the d-band electrons in silver than in gold. These results are in quantitative agreement with numerical simulations of the electron relaxation dynamics using a reduced static screening of the electron-electron Coulomb interaction, and including bound electron screening. Electron-lattice thermalization has been studied using a probe frequency out of resonance with the interband transitions. In both materials, the transient nonthermal nature of the electron distribution leads to the observation of a short-time delay reduction of the energy-loss rate of the electron gas to the lattice, in very good agreement with our theoretical model.

  17. Nonequilibrium density matrix for quantum transport: Hershfield approach as a McLennan-Zubarev form of the statistical operator.

    PubMed

    Ness, H

    2013-08-01

    In this paper, we formally demonstrate that the nonequilibrium density matrix developed by Hershfield for the steady state has the form of a McLennan-Zubarev nonequilibrium ensemble. The correction term in this pseudoequilibrium Gibbs-like ensemble is directly related to the entropy production in the quantum open system. The fact that both methods state that a nonequilibrium steady state can be mapped onto a pseudoequilibrium, permits us to develop nonequilibrium quantities from formal expressions equivalent to the equilibrium case. We provide an example: the derivation of a nonequilibrium distribution function for the electron population in a scattering region in the context of quantum transport.

  18. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  19. Study of non-equilibrium transport phenomena

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1987-01-01

    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  20. Combined physical and chemical nonequilibrium transport model for solution conduits.

    PubMed

    Field, Malcolm S; Leij, Feike J

    2014-02-01

    Solute transport in karst aquifers is primarily constrained to relatively complex and inaccessible solution conduits where transport is often rapid, turbulent, and at times constrictive. Breakthrough curves generated from tracer tests in solution conduits are typically positively-skewed with long tails evident. Physical nonequilibrium models to fit breakthrough curves for tracer tests in solution conduits are now routinely employed. Chemical nonequilibrium processes are likely important interactions, however. In addition to partitioning between different flow domains, there may also be equilibrium and nonequilibrium partitioning between the aqueous and solid phases. A combined physical and chemical nonequilibrium (PCNE) model was developed for an instantaneous release similar to that developed by Leij and Bradford (2009) for a pulse release. The PCNE model allows for partitioning open space in solution conduits into mobile and immobile flow regions with first-order mass transfer between the two regions to represent physical nonequilibrium in the conduit. Partitioning between the aqueous and solid phases proceeds either as an equilibrium process or as a first-order process and represents chemical nonequilibrium for both the mobile and immobile regions. Application of the model to three example breakthrough curves demonstrates the applicability of the combined physical and chemical nonequilibrium model to tracer tests conducted in karst aquifers, with exceptionally good model fits to the data. The three models, each from a different state in the United States, exhibit very different velocities, dispersions, and other transport properties with most of the transport occurring via the fraction of mobile water. Fitting the model suggests the potentially important interaction of physical and chemical nonequilibrium processes.

  1. Spin fluctuations of nonequilibrium electrons and excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.

    2016-03-01

    Effects that are related to deviations from thermodynamic equilibrium have a special place in modern physics. Among these, nonequilibrium phenomena in quantum systems attract the highest interest. The experimental technique of spin-noise spectroscopy has became quite widespread, which makes it possible to observe spin fluctuations of charge carriers in semiconductors under both equilibrium and nonequilibrium conditions. This calls for the development of a theory of spin fluctuations of electrons and electron-hole complexes for nonequilibrium conditions. In this paper, we consider a range of physical situations where a deviation from equilibrium becomes pronounced in the spin noise. A general method for the calculation of electron and exciton spin fluctuations in a nonequilibrium state is proposed. A short review of the theoretical and experimental results in this area is given.

  2. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Rezai, Raheleh; Ebrahimi, Farshad

    2014-04-01

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.

  3. Nonequilibrium density-matrix description of steady-state quantum transport.

    PubMed

    Dhar, Abhishek; Saito, Keiji; Hänggi, Peter

    2012-01-01

    With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode electron transport and low-dimensional phonon heat flux are elucidated.

  4. Nonequilibrium transport in superconducting tunneling structures.

    SciTech Connect

    Chtchelkatchev, N. M.; Vinokur, V. M.; Baturina, T. I.

    2010-12-01

    We derive the current-voltage (I-V) characteristics of far from equilibrium superconducting tunneling arrays and find that the energy relaxation ensuring the charge transfer occurs in two stages: (i) the energy exchange between charge carriers and the intermediate bosonic agent, environment, and (ii) relaxing the energy further to the (phonon) thermostat, the bath, provided the rate of the environmental modes-phonon interactions is slower than their energy exchange rate with the tunneling junction. For a single junction we find I {proportional_to} (V/R)ln({Lambda}/V), where R is the bare tunnel resistance of the junction and {Lambda} is the high energy cut-off of the electron-environment interaction. In large tunneling arrays comprised of macroscopic number of junctions, low-temperature transport is governed by the cotunneling processes losing energy to the electron-hole environment. Below some critical temperature, T*, the Coulomb interactions open a finite gap in the environment excitations spectrum blocking simultaneously Cooper pair and normal excitations currents through the array; this is the microscopic mechanism of the insulator-to-superinsulator transition.

  5. Macroscopic heat transport equations and heat waves in nonequilibrium states

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  6. Study of non-equilibrium electron dynamics in metals

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael Mohamed Gomaa

    Thermal phenomena, such as heat propagation, lattice melting, and ablation, are the result of energy deposition in metals. A fundamental understanding of the electron dynamics leading to these thermal phenomena would benefit many laser applications, such as laser deposition of thin films and laser processing. In this work, thin metal films were prepared using the resistive heating evaporation technique. High dynamic range autocorrelators were constructed to characterize the different laser systems used in this study. The nonequilibrium electron dynamics in single layer gold films, multi-layer gold-vanadium, and gold-titanium films were studied. The time evolution of the electron temperature was monitored using femtosecond time-resolved thermoreflectivity (DeltaR/R) measurements. The validity of the Two-Temperature Model (TTM) in describing ultrafast laser heating processes was checked. The effect of the padding layer on the surface damage threshold was investigated. The experimental results revealed a reduction of the thermoreflectivity signal, DeltaRmax, for the multi-layer film that signifies a reduction in the surface electron temperature. Multi-shot damage experiments, in contrast to the thermoreflectivity measurements and the results of Qiu et al., showed no evidence of surface damage in the case of the gold sample, whereas the multi-layer sample experienced an onset of surface damage at the same experimental conditions. The suitability of the Two-Temperature Model (TTM) in describing the transport and relaxation dynamics of hot electrons accurately was verified. A new methodology for the correction of the TTM to account for the internal thermalization of the electron gas and convolution effects was achieved.

  7. Non-equilibrium Transport in Carbon based Adsorbate Systems

    NASA Astrophysics Data System (ADS)

    Fürst, Joachim; Brandbyge, Mads; Stokbro, Kurt; Jauho, Antti-Pekka

    2007-03-01

    We have used the Atomistix Tool Kit(ATK) and TranSIESTA[1] packages to investigate adsorption of iron atoms on a graphene sheet. The technique of both codes is based on density functional theory using local basis sets[2], and non-equilibrium Green's functions (NEGF) to calculate the charge distribution under external bias. Spin dependent electronic structure calculations are performed for different iron coverages. These reveal adsorption site dependent charge transfer from iron to graphene leading to screening effects. Transport calculations show spin dependent scattering of the transmission which is analysed obtaining the transmission eigenchannels for each spin type. The phenomena of electromigration of iron in these systems at finite bias will be discussed, estimating the so-called wind force from the reflection[3]. [1] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Physical Review B (Condensed Matter and Materials Physics), 65(16):165401/11-7, 2002. [2] Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and Daniel Sanchez-Portal. Journal of Physics Condensed Matter, 14(11):2745-2779, 2002. [3] Sorbello. Theory of electromigration. Solid State Physics, 1997.

  8. Topological Hall Effect in Skyrmions: A Nonequilibrium Coherent Transport Approach

    NASA Astrophysics Data System (ADS)

    Yin, Gen; Zang, Jiadong; Lake, Roger

    2014-03-01

    Skyrmion is a topological spin texture recently observed in many materials with broken inversion symmetry. In experiments, one effective method to detect the skyrmion crystal phase is the topological Hall measurement. At adiabatic approximation, previous theoretical studies show that the Hall signal is provided by an emergent magnetic field, which explains the topological Hall effect in the classical level. Motivated by the potential device application of skyrmions as digital bits, it is important to understand the topological Hall effect in the mesoscopic level, where the electron coherence should be considered. In this talk, we will discuss the quantum aspects of the topological Hall effect on a tight binding setup solved by nonequilibrium Green's function (NEGF). The charge distribution, Hall potential distribution, thermal broadening effect and the Hall resistivity are investigated in detail. The relation between the Hall resistance and the DM interaction is investigated. Driven by the spin transferred torque (SST), Skyrmion dynamics is previously studied within the adiabatic approximation. At the quantum transport level, this talk will also discuss the non-adiabatic effect in the skyrmion motion with the presence of the topological Hall effect. This material is based upon work supported by the National Science Foundation under Grant Nos. NSF 1128304 and NSF 1124733. It was also supported in part by FAME, one of six centers of STARnet, an SRC program sponsored by MARCO and DARPA.

  9. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces.

    PubMed

    Hyldgaard, P

    2012-10-24

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted 'DBT', provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  10. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    NASA Astrophysics Data System (ADS)

    Hyldgaard, P.

    2012-10-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  11. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    SciTech Connect

    Rezai, Raheleh Ebrahimi, Farshad

    2014-04-15

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct

  12. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  13. Radiative electron capture in nonequilibrium plasmas

    SciTech Connect

    Milchberg, H.M.; Weisheit, J.C.

    1982-01-19

    Formulae have been obtained for the degree of linear polarization of recombination radiation from a homogeneous plasma having an anisotropic electron velocity distribution, f(v vector), characterized by an axis of symmetry. Polarization measurements are described which utilize these formulae to determine aspects of the anisotropy such as the symmetry axis direction and the lowest order even angular moments of f(v vector). As a special case, if the plasma conforms to a distribution such as a bi-Maxwellian with drift, one can determine the quantities u/sub D//T/sub parallel to/ and (1/T/sub parallel to/ - 1/T/sub perpendicular to/) which involve the electron drift speed, and the perpendicular and parallel electron temperatures. Also, the radiative recombination rate has been calculated for ions whose speeds are comparable to or greater than the electron thermal speed. The change in the rate is small for thermonuclear products in fusion plasmas, but large for cosmic rays in interstellar plasma.

  14. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-02-09

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.

  15. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  16. Nonequilibrium charge transport in an interacting open system: Two-particle resonance and current asymmetry

    NASA Astrophysics Data System (ADS)

    Roy, Dibyendu; Soori, Abhiram; Sen, Diptiman; Dhar, Abhishek

    2009-08-01

    We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is quite different depending on whether the electrons are incident from the left or the right lead.

  17. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography.

    PubMed

    Gedik, Nuh; Yang, Ding-Shyue; Logvenov, Gennady; Bozovic, Ivan; Zewail, Ahmed H

    2007-04-20

    Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity.

  18. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; Martin, Ivar; Demler, Eugene

    2016-12-01

    We analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  19. Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport of solutes and colloids in porous media is influenced by a variety of physical and chemical nonequilibrium processes. A combined physical–chemical nonequilibrium (PCNE) model was therefore used to describe general mass transport. The model partitions the pore space into “mobile” and “i...

  20. NON-EQUILIBRIUM ELECTRONS IN THE OUTSKIRTS OF GALAXY CLUSTERS

    SciTech Connect

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.; Nelson, Kaylea E-mail: camille.avestruz@yale.edu

    2015-08-01

    The analysis of X-ray and Sunyaev–Zel’dovich measurements of the intracluster medium (ICM) assumes that electrons are in thermal equilibrium with ions in the plasma. However, in the outskirts of galaxy clusters, the electron–ion equilibration timescale can become comparable to the Hubble time, leading to systematic biases in cluster mass estimates and mass-observable scaling relations. To quantify an upper limit of the impact of non-equilibrium electrons, we use a mass-limited sample of simulated galaxy clusters taken from a cosmological simulation with a two-temperature model that assumes the Spitzer equilibration time for the electrons and ions. We show that the temperature bias is more pronounced in more massive and rapidly accreting clusters. For the most extreme case, we find that the bias is of the order of 10% at half of the cluster virial radius and increases to 40% at the edge of the cluster. Gas in filaments is less susceptible to the non-equilibrium effect, leading to azimuthal variations in the temperature bias at large cluster-centric radii. Using mock Chandra observations of simulated clusters, we show that the bias manifests in ultra-deep X-ray observations of cluster outskirts and quantify the resulting biases in hydrostatic mass and cluster temperature derived from these observations. We provide a mass-dependent fitting function for the temperature bias profile, which can be useful for modeling the effect of electron-ion equilibration in galaxy clusters.

  1. Two-Temperature Model of Nonequilibrium Electron Relaxation:. a Review

    NASA Astrophysics Data System (ADS)

    Singh, Navinder

    The present paper is a review of the phenomena related to nonequilibrium electron relaxation in bulk and nano-scale metallic samples. The workable Two-Temperature Model (TTM) based on Boltzmann-Bloch-Peierls kinetic equation has been applied to study the ultra-fast (femto-second) electronic relaxation in various metallic systems. The advent of new ultra-fast (femto-second) laser technology and pump-probe spectroscopy has produced wealth of new results for micro- and nano-scale electronic technology. The aim of this paper is to clarify the TTM, conditions of its validity and nonvalidity, its modifications for nano-systems, to sum-up the progress, and to point out open problems in this field. We also give a phenomenological integro-differential equation for the kinetics of nondegenerate electrons that goes beyond the TTM.

  2. Energy and magnetization transport in nonequilibrium macrospin systems

    NASA Astrophysics Data System (ADS)

    Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Chico, Jonathan; Bergqvist, Lars; Delin, Anna; Fransson, Jonas

    2015-07-01

    We investigate numerically the magnetization dynamics of an array of nanodisks interacting through the magnetodipolar coupling. In the presence of a temperature gradient, the chain reaches a nonequilibrium steady state where energy and magnetization currents propagate. This effect can be described as the flow of energy and particle currents in an off-equilibrium discrete nonlinear Schrödinger (DNLS) equation. This model makes transparent the transport properties of the system and allows for a precise definition of temperature and chemical potential for a precessing spin. The present study proposes a setup for the spin-Seebeck effect, and shows that its qualitative features can be captured by a general oscillator-chain model.

  3. Nonequilibrium Effects in Ion and Electron Transport

    DTIC Science & Technology

    1990-11-01

    Fisica Universidad Nacional Autonoma de Mexico P.O. Box 1-39-B 62191 Cuernavaca, Mor. M~xico ABSTRACT A compilation of recent experimental work on the...and G. Mauri Dipartimento de Matematica dell’Universita Cattolica Brescia, Italy An integral expansion is obtained which reduces under explicitly...di Matematica Physics Department University Cattolica W. Lafayette, IN 47906 via Trieste, 17(317) 494-3014 25121 Brescia Italy 030-57-286 Steven Bajic

  4. A Cartesian quasi-classical model to nonequilibrium quantum transport: the Anderson impurity model.

    PubMed

    Li, Bin; Levy, Tal J; Swenson, David W H; Rabani, Eran; Miller, William H

    2013-03-14

    We apply the recently proposed quasi-classical approach for a second quantized many-electron Hamiltonian in Cartesian coordinates [B. Li and W. H. Miller, J. Chem. Phys. 137, 154107 (2012)] to correlated nonequilibrium quantum transport. The approach provides accurate results for the resonant level model for a wide range of temperatures, bias, and gate voltages, correcting the flaws of our recently proposed mapping using action-angle variables. When electron-electron interactions are included, a Gaussian function scheme is required to map the two-electron integrals, leading to quantitative results for the Anderson impurity model. In particular, we show that the current mapping is capable of capturing quantitatively the Coulomb blockade effect and the temperature dependence of the current below and above the blockade.

  5. Nonequilibrium spin-polarized thermal transport in ferromagnetic-quantum dot-metal system

    NASA Astrophysics Data System (ADS)

    Xu, Li; Li, Zhi-Jian; Niu, Pengbin; Nie, Yi-Hang

    2016-10-01

    We use nonequilibrium Green function to analyze the nonequilibrium spin-polarized thermal transport through the ferromagnetic-quantum dot-metal system, in which a quantum dot (QD) is coupled to the ferromagnetic and metal electrodes with the voltage bias and the temperature shift. The differential thermoelectric conductance L (θ) is always zero and has no relation with the temperature shift when ε is equal to the Fermi level. The positive and negative values of L (θ) manifest the thermoelectric characteristic of electron-like (or hole-like) carrier when the temperature shift is nonzero. The electrostatic potential U becomes spin-dependent, and makes the dot level renormalization when the ferromagnetic-quantum dot-metal system is driven by the voltage bias and the temperature shift. We define that the spin polarization of the currents between the spin current Is and the electric current Ic is denoted as Is /Ic. The spin polarization Is /Ic shows novel and unique physical phenomenon when the voltage bias and the temperature shift are changed in the nonequilibrium state. Another interesting phenomenon is that we can obtain the pure spin current and a zero point of the thermocurrent Ith by adjusting the voltage bias and the temperature shift.

  6. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    SciTech Connect

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  7. Nonequilibrium transport on a quantum molecular chain in terms of the complex Liouvillian spectrum.

    PubMed

    Tanaka, Satoshi; Kanki, Kazuki; Petrosky, Tomio

    2011-05-01

    The transport process in a molecular chain in a nonequilibrium stationary state is theoretically investigated. The molecule is interacting at both ends with thermal baths of different temperatures, while no dissipation mechanism is contained inside the molecular chain. We have first obtained the nonequilibrium stationary state outside the Hilbert space in terms of the complex spectral representation of Liouvillian. The nonequilibrium stationary state is obtained as an eigenstate of the Liouvillian, which is constructed through the collision invariant of the kinetic equation. The eigenstate of the Liouvillian contains information on the spatial correlation between the molecular chain and the thermal baths. While energy flow in the nonequilibrium state which is due to the first-order correlation can be described by the Landauer formula, the particle current due to the second-order correlation cannot be described by the Landauer formula. The present method provides a simple way to evaluate the energy transport in a molecular chain in a nonequilibrium situation.

  8. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    NASA Astrophysics Data System (ADS)

    Do, Van-Nam

    2014-09-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes.

  9. Electron Transport in Solvated Porous Nanocarbons

    NASA Astrophysics Data System (ADS)

    Baskin, Artem; Kral, Petr

    2013-03-01

    We study electron transport in porous nanocarbons (PNCs) in vacuum, gases, and ionic solutions. Using state of the art electronic structure methods and nonequilibrium Green's functions techniques, we explore the band structures and the current-voltage characteristics of PNCs with different sizes, shapes, positioning and functionalization of pores, edges, and types of electrodes. We find that the presence of ions and molecules around PNCs can largely influence their electron transmissivity. Therefore, PNCs could be used for highly sensitive detection of ions and polar molecules passing around them.

  10. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    SciTech Connect

    Zhang XiaoNing; Xia WeiDong; Li HePing; Murphy, Anthony B.

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  11. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  12. Fundamental kinetics and innovative applications of nonequilibrium atomic vibration in thermal energy transport and conversion

    NASA Astrophysics Data System (ADS)

    Shin, Seungha

    All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals

  13. Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons

    NASA Astrophysics Data System (ADS)

    Pennington, Gary; Finkenstadt, Daniel

    2010-03-01

    The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  14. Improvements on non-equilibrium and transport Green function techniques: The next-generation TRANSIESTA

    NASA Astrophysics Data System (ADS)

    Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads

    2017-03-01

    We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF ;post-processing; code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.

  15. Resistance of Ag-silicene-Ag junctions: A combined nonequilibrium Green's function and Boltzmann transport study

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Fry, J. N.; Cheng, Hai-Ping

    2013-09-01

    For several years the electronic structure properties of the two-dimensional system silicene have been studied extensively. Electron transport across metal-silicene junctions, however, remains relatively unexplored. To address this issue, we developed and implemented a theoretical framework that utilizes the tight-binding Fisher-Lee relation to span nonequilibrium Green's function (NEGF) techniques, the scattering method, and semiclassical Boltzmann transport theory. Within this hybrid quantum-classical, two-scale framework, we calculated transmission and reflection coefficients of monolayer and bilayer Ag-silicene-Ag junctions using the NEGF method in conjunction with density functional theory; derived and calculated the group velocities; and computed resistance using the semiclassical Boltzmann equation. We found that resistances of these junctions are ˜0.08fΩm2 for monolayer silicene junctions and ˜0.3fΩm2 for bilayer ones; factors of ˜8 and ˜2, respectively, smaller than Sharvin resistances estimated via the Landauer formalism.

  16. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  17. Theoretical study on electron-phonon coupling factor and electron-ion nonequilibrium process in uranium

    NASA Astrophysics Data System (ADS)

    Li, Zi; Wang, Cong; Zhao, Jize; Kang, Wei; Zhang, Ping

    2017-02-01

    Rapid laser heating is an important experimental technique to achieve extreme conditions for uranium. Theoretical simulations of the electron-ion nonequilibrium energy relaxation after laser heating usually employ a two-temperature model using the thermal quantities of the electron heat capacity and the electron-phonon coupling factor as input parameters. Based on the first-principles calculations of the electron density of states and Eliashberg function, we theoretically determine the thermal quantities and their dependence on electron temperature and external pressure for uranium and revealed the connection between the thermal quantities and the electron density of states. The electron/ion temperature evolution was examined by employing the two-temperature model with the obtained thermal quantities. The time/temperature at the peak/equilibrium point of the temperature evolution curve was examined for different external pressures and different laser energy densities. We found that the approximation of a linear temperature-dependent electron heat capacity is acceptable at a low energy density, while at a high energy density, the electron temperature dependence of the electron heat capacity and the coupling factor from the first-principles calculations must be considered.

  18. A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators.

    PubMed

    Ochoa, Maicol A; Galperin, Michael; Ratner, Mark A

    2014-11-12

    We consider a projection operator approach to the non-equilibrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.

  19. Non-equilibrium vibrational and electron energy distribution functions in mtorr, high-electron-density nitrogen discharges and afterglows

    NASA Astrophysics Data System (ADS)

    Capitelli, M.; Colonna, G.; D’Ammando, G.; Laricchiuta, A.; Pietanza, L. D.

    2017-03-01

    Non-equilibrium vibrational distributions (vdf) and non-equilibrium electron energy distribution functions (eedf) in a nitrogen plasma at low pressure (mtorr) have been calculated by using a time-dependent plasma physics model coupled to the Boltzmann equation and heavy particle kinetics. Different case studies have been selected showing the non-equilibrium character of both vdf and eedf under discharge and post-discharge conditions in the presence of large concentrations of electrons. Particular attention is devoted to the electron-molecule resonant vibrational excitation cross sections acting in the whole vibrational ladder. The results in the post-discharge conditions show the interplay of superelastic vibrational and electronic collisions in forming structures in the eedf. The link between the present results in the mtorr afterglow regime with the existing eedf in the torr and atmospheric regimes is discussed.

  20. Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions

    SciTech Connect

    Wendelen, W.; Bogaerts, A.; Mueller, B. Y.; Rethfeld, B.; Autrique, D.

    2012-06-01

    A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two- and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission.

  1. Non-Equilibrium Sediment Transport Modeling - Extensions and Applications

    DTIC Science & Technology

    2013-01-01

    located in the northern Mississippi, U.S.A. The watershed is about 202 ha, covered with cotton and soybean fields and wood area. The oxbow lake has a...stabilizing the bed against the impacts of surges and waves. In estuaries, reservoirs, lakes and rivers, cohesive and non-cohesive sediment mixtures...other test example was simulation of rainfall-runoff, soil erosion and transport, and contaminant transport in the Deep Hollow Lake watershed

  2. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    NASA Astrophysics Data System (ADS)

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature.

  3. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    PubMed Central

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  4. Nonlinear closure relations theory for transport processes in nonequilibrium systems.

    PubMed

    Sonnino, Giorgio

    2009-05-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ("Onsager") transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  5. Curl flux, coherence, and population landscape of molecular systems: nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics.

    PubMed

    Zhang, Zhedong; Wang, Jin; Zhang, Z D; Wang, J

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy

  6. Optically Imaged Striped Domains of Nonequilibrium Electronic and Nuclear Spins in a Fractional Quantum Hall Liquid.

    PubMed

    Moore, John N; Hayakawa, Junichiro; Mano, Takaaki; Noda, Takeshi; Yusa, Go

    2017-02-17

    Using photoluminescence microscopy enhanced by magnetic resonance, we visualize in real space both electron and nuclear polarization occurring in nonequilibrium fraction quantum Hall (FQH) liquids. We observe stripelike domain regions comprising FQH excited states which discretely form when the FQH liquid is excited by a source-drain current. These regions are deformable and give rise to bidirectionally polarized nuclear spins as spin-resolved electrons flow across their boundaries.

  7. Optically Imaged Striped Domains of Nonequilibrium Electronic and Nuclear Spins in a Fractional Quantum Hall Liquid

    NASA Astrophysics Data System (ADS)

    Moore, John N.; Hayakawa, Junichiro; Mano, Takaaki; Noda, Takeshi; Yusa, Go

    2017-02-01

    Using photoluminescence microscopy enhanced by magnetic resonance, we visualize in real space both electron and nuclear polarization occurring in nonequilibrium fraction quantum Hall (FQH) liquids. We observe stripelike domain regions comprising FQH excited states which discretely form when the FQH liquid is excited by a source-drain current. These regions are deformable and give rise to bidirectionally polarized nuclear spins as spin-resolved electrons flow across their boundaries.

  8. Thermal Conductivity in Nanoporous Gold Films during Electron-Phonon Nonequilibrium

    DOE PAGES

    Hopkins, Patrick E.; Norris, Pamela M.; Phinney, Leslie M.; ...

    2008-01-01

    The reduction of nanodevices has given recent attention to nanoporous materials due to their structure and geometry. However, the thermophysical properties of these materials are relatively unknown. In this article, an expression for thermal conductivity of nanoporous structures is derived based on the assumption that the finite size of the ligaments leads to electron-ligament wall scattering. This expression is then used to analyze the thermal conductivity of nanoporous structures in the event of electron-phonon nonequilibrium.

  9. Detecting stray microwaves and nonequilibrium quasiparticles in thin films by single-electron tunneling

    NASA Astrophysics Data System (ADS)

    Saira, Olli-Pentti; Maisi, Ville; Kemppinen, Antti; Möttönen, Mikko; Pekola, Jukka

    2013-03-01

    Superconducting thin films and tunnel junctions are the building blocks of many state-of-the-art technologies related to quantum information processing, microwave detection, and electronic amplification. These devices operate at millikelvin temperatures, and - in a naive picture - their fidelity metrics are expected to improve as the temperature is lowered. However, very often one finds in the experiment that the device performance levels off around 100-150 mK. In my presentation, I will address three common physical mechanisms that can cause such saturation: stray microwaves, nonequilibrium quasiparticles, and sub-gap quasiparticle states. The new experimental data I will present is based on a series of studies on quasiparticle transport in Coulomb-blockaded normal-insulator-superconductor tunnel junction devices. We have used a capacitively coupled SET electrometer to detect individual quasiparticle tunneling events in real time. We demonstrate the following record-low values for thin film aluminum: quasiparticle density nqp < 0 . 033 / μm3 , normalized density of sub-gap quasiparticle states (Dynes parameter) γ < 1 . 6 ×10-7 . I will also discuss some sample stage and chip designs that improve microwave shielding.

  10. Electron transporting semiconducting polymers in organic electronics.

    PubMed

    Zhao, Xingang; Zhan, Xiaowei

    2011-07-01

    Significant progress has been achieved in the preparation of semiconducting polymers over the past two decades, and successful commercial devices based on them are slowly beginning to enter the market. However, most of the conjugated polymers are hole transporting, or p-type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or n-type, materials that have lagged behind their p-type counterparts. Organic electron transporting materials are essential for the fabrication of organic p-n junctions, organic photovoltaic cells (OPVs), n-channel organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and complementary logic circuits. In this critical review we focus upon recent developments in several classes of electron transporting semiconducting polymers used in OLEDs, OFETs and OPVs, and survey and analyze what is currently known concerning electron transporting semiconductor architecture, electronic structure, and device performance relationships (87 references).

  11. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  12. Quantum electron transport in toroidal carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jack, Mark; Encinosa, Mario

    2008-03-01

    Electron transport under bias is treated in tight-binding approximation using a non-equilibrium Green's function approach. Density-of-states D(E), transmissivity T(E), and current ISD are calculated through a (3,3) armchair nanotorus with laterally attached metallic leads and a magnetic field penetrating the toroidal plane. Plateaus in T(E) through the torus are observed as a function of both the relative angle between leads and magnetic flux. Initial computational studies performed with 1800 atoms and attached leads show substantial computational slowdown when increasing the system size by a factor of two. Results are generated by inverting the device Hamiltonian with a standard recursion method extended to account for unit cell toroidal closure. Significant computational speed-up is expected for a parallelized code on a multiprocessor computer cluster. The dependence of electronic features on torus size and torus curvature is tested for three tori with 900, 1800 and 3600 carbon atoms, respectively. References: 1. M. Jack and M. Encinosa, Quantum electron transport in toroidal carbon nanotubes with metallic leads. ArXiv: quant-ph/0709.0760. 2. M. Encinosa and M. Jack, Dipole and solenoidal magnetic moments of electronic surface currents on toroidal nanostructures. J. Comp.-Aided Mat. Design (Springer), 14 (1) (2007) 65 -- 71.

  13. Transport Properties of a Nonequilibrium Quantum Dot Connected to Ferromagnetic Leads

    NASA Astrophysics Data System (ADS)

    Yongmei, Zhang

    2017-03-01

    In this paper, transmission resonance and conductance properties of nonequilibrium quantum dot connected by ferromagnetic leads are investigated. Thermoelectric properties are also studied. Using the tight-binding formalism and numerically solving the Schrodinger equation, spin-dependent transmissions are obtained and plotted as a function of incoming electron energy. Transmissions of spin up and spin down electrons change in different ways as voltage bias and tilt angle change. Current spin polarization can be sensitively tuned by adjusting voltage bias. These research indicates the possible methods to modulate tilt angle or the bias voltage to obtain spin-dependent transmission, spin polarized current and effective Seebeck coefficients.

  14. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state.

    PubMed

    Pasenow, B; Moloney, J V; Koch, S W; Chen, S H; Becker, A; Jaroń-Becker, A

    2012-01-30

    Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

  15. Time-dependent resonant tunneling transport: Keldysh and Kadanoff-Baym nonequilibrium Green's functions in an analytically soluble problem

    NASA Astrophysics Data System (ADS)

    Odashima, Mariana M.; Lewenkopf, Caio H.

    2017-03-01

    Here we address two nonequilibrium Green's-function approaches for a resonant tunneling structure under a sudden switch of a bias. Our aim is to stress that the time-dependent Keldysh formulation of Jauho, Wingreen, and Meir and the partition-free scheme of Stefanucci and Almbladh are formally equivalent in the ubiquitous case of wide-band limit and noninteracting electrons, if leads and dot are in equilibrium before the time-dependent perturbation. We develop explicit closed formulas of the lesser Green's function and time-dependent current, reminding that the different integration limits preclude a face-to-face comparison of two approaches. This study sheds light on both practices, which are of great interest to the mesoscopic transport community.

  16. Nonequilibrium steady state transport of collective-qubit system in strong coupling regime

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sun, Ke-Wei

    2015-11-01

    We investigate the steady state photon transport in a nonequilibrium collective-qubit model. By adopting the noninteracting blip approximation, which is applicable in the strong photon-qubit coupling regime, we describe the essential contribution of indirect qubit-qubit interaction to the population distribution, mediated by the photonic baths. The linear relations of both the optimal flux and noise power with the qubits system size are obtained. Moreover, the inversed power-law style for the finite-size scaling of the optimal photon-qubit coupling strength is exhibited, which is proposed to be universal.

  17. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  18. Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite.

    PubMed

    Simpson, Joshua A; Bowman, Robert S

    2009-08-11

    We characterized the nonequilibrium sorption and transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) by surfactant-modified zeolite (SMZ) in batch and column tests. The SMZ was shown in previous studies to be an effective sorbent for removal of BTEX from oilfield wastewaters prior to disposal or reuse. A two-site, first-order chemical nonequilibrium model was used to determine sorption parameters from the batch results. Individual BTEX linear sorption coefficients, K(d), ranged from 7.5 to 37 L kg(-1) and were independent of BTEX concentration or competing solutes, suggesting that partitioning was the mechanism of sorption. The K(d) values were the same whether the zeolite was covered by a monolayer or bilayer of the surfactant hexadecyltrimethylammonium (HDTMA). Batch rate coefficients and the fraction of "instantaneous" sorption sites decreased with BTEX hydrophobicity and with total BTEX concentration. The fraction of "instantaneous" sites was 3-11 times greater for the monolayer as compared to the bilayer SMZ. These observations are consistent with a conceptual model in which BTEX are rapidly partitioned into hydrophobic monolayer surfaces and more slowly partitioned to hydrophilic bilayer surfaces. Results from the batch experiments were used to predict BTEX transport through columns of SMZ. Batch-derived rate and site-distribution parameters accurately described the transport dynamics, but the batch-derived K(d)s significantly underestimated BTEX retardation. Excess dissolved HDTMA in the batch experiments likely led to anomalously low K(d) values for those determinations.

  19. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  20. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

    SciTech Connect

    Chase, T.; Trigo, M.; Reid, A. H.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Reis, D. A.; Wang, X. J.; Dürr, H. A.

    2016-01-25

    We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.

  1. Electron Broadening of Isolated Lines with Stationary Non-Equilibrium Level Populations

    SciTech Connect

    Iglesias, C A

    2005-01-12

    It is shown that a quantum kinetic theory approach to line broadening, extended to stationary non-equilibrium states, yields corrections to the standard electron impact widths of isolated lines that depend on the population of the radiator internal levels. A consistent classical limit from a general quantum treatment of the perturbing electrons also introduces corrections to the isolated line widths. Both effects are essential in preserving detailed-balance relations. Preliminary analysis indicates that these corrections may resolve existing discrepancies between theoretical and experimental widths of isolated lines. An experimental test of the results is proposed.

  2. Experimental determination of nonequilibrium transport parameters reflecting the competitive sorption between Cu and Pb in slag-sand column.

    PubMed

    Chung, Jaeshik; Kim, Young-Jin; Lee, Gwanghun; Nam, Kyoungphile

    2016-07-01

    Competitive sorption and resulting nonequilibrium transport of Cu and Pb were investigated using slag as a primary sorbent. A series of estimation models were applied based on the equilibrium, and nonequilibrium sorption respectively, and finally calibrated by incorporating the experimentally determined batch kinetic data. When applied individually, the behavior of metals in slag-sand column were well predicted by both equilibrium and nonequilibrium models in CXTFIT code. However, coexisting Cu and Pb exhibited competition for sorption sites, generating an irregular breakthrough curves such as overshoot (higher concentration in effluent than the feed concentration) of Cu and corresponding earlier peak of Pb followed by gradual re-rising. Although two-site nonequilibrium model further considers coupled hydrochemical process, desorption of the Cu from competition made the model prediction inaccurate. However, the parameter estimation could be improved by incorporating the experimentally determined mass transfer rate, ωexp from batch kinetics. Based on the calibrated model, the fraction of instantaneous retardation, βexp of Pb decreased from 0.41 in the single system to 0.30 in the binary system, indicating the shift from equilibrium to nonequilibrium state, where which of Cu increased from 0.39 to 0.94, representing the shift towards equilibrium. The modified results were also compared with five-step sequential extraction data, confirming that the shift of particular metal fractions from the competition triggered the nonequilibrium transport.

  3. A non-equilibrium thermodynamics model of multicomponent mass and heat transport in pervaporation processes

    NASA Astrophysics Data System (ADS)

    Villaluenga, Juan P. G.; Kjelstrup, Signe

    2012-12-01

    The framework of non-equilibrium thermodynamics (NET) is used to derive heat and mass transport equations for pervaporation of a binary mixture in a membrane. In this study, the assumption of equilibrium of the sorbed phase in the membrane and the adjacent phases at the feed and permeate sides of the membrane is abandoned, defining the interface properties using local equilibrium. The transport equations have been used to model the pervaporation of a water-ethanol mixture, which is typically encountered in the dehydration of organics. The water and ethanol activities and temperature profiles are calculated taking mass and heat coupling effects and surfaces into account. The NET approach is deemed good because the temperature results provided by the model are comparable to experimental results available for water-alcohol systems.

  4. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport.

    PubMed

    Ness, H; Dash, L K

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  5. Spectral measurements of electron temperature in nonequilibrium highly ionized He plasma

    NASA Astrophysics Data System (ADS)

    Korshunov, O. V.; Chinnov, V. F.; Kavyrshin, D. I.; Ageev, A. G.

    2016-11-01

    It has been experimentally shown that highly ionized He arc plasma does not achieve local thermodynamic equilibrium expected for plasmas with electron concentrations above 1 × 1016 cm-3 like argon plasma. We have found that the reason for this deviation is strong nonisotropy of plasma. Triple electron recombination with temperatures of 2.5-3 eV is almost absent. Charged particles move from the arc (r = 1 mm) to chamber walls due to ambipolar diffusion creating ionization nonequilibrium over the excited states rendering Boltzmann distribution and Saha equation inapplicable for determining electron temperature. A method for determining electron temperature is suggested that is based on using the relative intensities of the atomic and ion lines. Its advantage lies in an energy gap between these lines’ states over 50 eV that reduces the influence of nonequilibrium on the result. This influence can be taken into account if the ionization energies of emitting states of atom and ion have close values. The suggested method can be expanded for any media including those with dimensional nonisotropy that have both atomic and ion lines in their emission spectra.

  6. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications.

    PubMed

    Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad

    2017-01-23

    Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area.

  7. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  8. Non-equilibrium Phenomenon between Electron and Lattice Systems Induced by the Peltier Effect

    NASA Astrophysics Data System (ADS)

    Iwasaki, Hideo; Hori, Hidenobu; Sasaki, Shosuke

    2005-08-01

    Temperature distributions of the electron and lattice systems induced by the Peltier effect have been precisely measured by improved Harman method, where the temperature differences (Δ Tel and Δ Tla) have been independently evaluated for several terminal lengths (LV) in thermoelectric materials (Bi,Sb)2Te3. Both temperature distributions have different behaviors in the stationary state, that is, the LV dependences of Δ Tel and Δ Tla show positive and negative curvatures, respectively. It is also indicated that the temperature difference has a linear relation to LV in the whole system and the observed non-equilibrium phenomenon is consistent with a law of the conservation of heat quantity.

  9. First-principles transport calculation method based on real-space finite-difference nonequilibrium Green's function scheme

    NASA Astrophysics Data System (ADS)

    Ono, Tomoya; Egami, Yoshiyuki; Hirose, Kikuji

    2012-11-01

    We demonstrate an efficient nonequilibrium Green's function transport calculation procedure based on the real-space finite-difference method. The direct inversion of matrices for obtaining the self-energy terms of electrodes is computationally demanding in the real-space method because the matrix dimension corresponds to the number of grid points in the unit cell of electrodes, which is much larger than that of sites in the tight-binding approach. The procedure using the ratio matrices of the overbridging boundary-matching technique [Y. Fujimoto and K. Hirose, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.67.195315 67, 195315 (2003)], which is related to the wave functions of a couple of grid planes in the matching regions, greatly reduces the computational effort to calculate self-energy terms without losing mathematical strictness. In addition, the present procedure saves computational time to obtain the Green's function of the semi-infinite system required in the Landauer-Büttiker formula. Moreover, the compact expression to relate Green's functions and scattering wave functions, which provide a real-space picture of the scattering process, is introduced. An example of the calculated results is given for the transport property of the BN ring connected to (9,0) carbon nanotubes. The wave-function matching at the interface reveals that the rotational symmetry of wave functions with respect to the tube axis plays an important role in electron transport. Since the states coming from and going to electrodes show threefold rotational symmetry, the states in the vicinity of the Fermi level, the wave function of which exhibits fivefold symmetry, do not contribute to the electron transport through the BN ring.

  10. Non-equilibrium Landauer transport model for Hawking radiation from a black hole

    NASA Astrophysics Data System (ADS)

    Nation, P. D.; Blencowe, M. P.; Nori, Franco

    2012-03-01

    We propose that the Hawking radiation energy and entropy flow rates from a black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer transport process. Support for this viewpoint comes from previous calculations invoking conformal symmetry in the near-horizon region, which give radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The Landauer approach shows in a direct way the particle statistics independence of the energy and entropy fluxes of a black hole radiating into vacuum, as well as one near thermal equilibrium with its environment. As an application of the Landauer approach, we show that Hawking radiation gives a net entropy production that is 50% larger than that obtained assuming standard 3D emission into vacuum.

  11. Consistent multi-internal-temperature models for vibrational and electronic nonequilibrium in hypersonic nitrogen plasma flows

    SciTech Connect

    Guy, Aurélien Bourdon, Anne Perrin, Marie-Yvonne

    2015-04-15

    In this work, a state-to-state vibrational and electronic collisional model is developed to investigate nonequilibrium phenomena behind a shock wave in an ionized nitrogen flow. In the ionization dynamics behind the shock wave, the electron energy budget is of key importance and it is found that the main depletion term corresponds to the electronic excitation of N atoms, and conversely the major creation terms are the electron-vibration term at the beginning, then replaced by the electron ions elastic exchange term. Based on these results, a macroscopic multi-internal-temperature model for the vibration of N{sub 2} and the electronic levels of N atoms is derived with several groups of vibrational levels of N{sub 2} and electronic levels of N with their own internal temperatures to model the shape of the vibrational distribution of N{sub 2} and of the electronic excitation of N, respectively. In this model, energy and chemistry source terms are calculated self-consistently from the rate coefficients of the state-to-state database. For the shock wave condition studied, a good agreement is observed on the ionization dynamics as well as on the atomic bound-bound radiation between the state-to-state model and the macroscopic multi-internal temperature model with only one group of vibrational levels of N{sub 2} and two groups of electronic levels of N.

  12. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2012-07-28

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  13. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  14. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressurea)

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2012-07-01

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  15. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  16. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE PAGES

    Zhang, Le; Luo, Feng; Xu, Ruina; ...

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  17. Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning

    SciTech Connect

    Iwasaki, Masahiro; Matsudaira, Yuto; Hori, Masaru; Inui, Hirotoshi; Kano, Hiroyuki; Yoshida, Naofumi; Ito, Masafumi

    2008-02-25

    We produced a nonequilibrium atmospheric pressure plasma by applying an alternative current between two electrodes. The gas temperature and electron density were evaluated using optical emission spectroscopy. It was found that the plasma had gas temperatures from 1800 to 2150 K and ultrahigh electron densities in the order of 10{sup 16} cm{sup -3}. A remarkably high oxygen radical concentration of 1.6x10{sup 15} cm{sup -3} was obtained at a 1% O{sub 2}/Ar gas flow rate of 15 slm (standard liters per minute). Contact angles below 10 deg. were obtained in the process of glass cleaning with a plasma exposure time of 23 ms.

  18. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2015-03-01

    With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank-Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m-2. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50-90 °C). Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure), which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different) models developed for somewhat different purposes and for different porous media. Overall, this non-equilibrium

  19. Electronic transport in polycrystalline graphene.

    PubMed

    Yazyev, Oleg V; Louie, Steven G

    2010-10-01

    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours--either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.

  20. Electron transport in bipyridinium films.

    PubMed

    Raymo, Françisco M; Alvarado, Robert J

    2004-01-01

    Bipyridinium dications are versatile building blocks for the assembly of functional materials. In particular, their reliable electrochemical response has encouraged the design of electroactive films. Diverse and elegant experimental strategies to coat metallic and semiconducting electrodes with bipyridinium compounds have, in fact, emerged over the past two decades. The resulting interfacial assemblies span from a few nanometers to several micrometers in thickness. They incorporate from a single molecular layer to large collections of entangled polymer chains. They transport electrons efficiently from the electrode surface to the film/solution interface and vice versa. Electron self-exchange between and the physical diffusion of the bipyridinium building blocks conspire in defining the charge transport properties of these fascinating electroactive assemblies. Often, the matrix of electron-deficient bipyridinium dications can be exploited to entrap electron-rich analytes. Electrostatic interactions promote the supramolecular association of the guests with the surface-confined host matrix. Furthermore, chromophoric sites can be coupled to the bipyridinium dications to produce photosensitive arrays capable of harvesting light and generating current. Thus, thorough investigations on the fundamental properties of these functional molecule-based materials can lead to promising applications in electroanalysis and solar energy conversion, while contributing to advances in the basic understanding of electron transport in interfacial assemblies.

  1. Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening

    NASA Astrophysics Data System (ADS)

    Tomadin, Andrea; Brida, Daniele; Cerullo, Giulio; Ferrari, Andrea C.; Polini, Marco

    2013-07-01

    We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes—processes in which incoming and outgoing momenta of the scattering particles lie on the same line—including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them.

  2. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  3. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy.

    PubMed

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A; Murray, Christopher B; Su, Dong

    2016-05-09

    Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance.

  4. Application of nonequilibrium fracture matrix model in simulating reactive contaminant transport through fractured porous media

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.; Madramootoo, Chandra A.

    2015-01-01

    Nonequilibrium and nonlinear sorption of the contaminants in the fractured porous media could significantly influence the shape of the breakthrough curve (BTC). For the fracture-matrix system, there are very few studies which consider these processes. In this study, the nonequilibrium fracture-matrix model with two different nonlinear sorption isotherms, namely nonlinear Freundlich and Langmuir sorption isotherms were developed. The effect of sorption nonlinearity and nonequilibrium conditions on the shape of the BTC was studied using the temporal moments. The developed models along with the linear equilibrium, linear nonequilibrium fracture matrix models, and the multirate mass transfer model were used to simulate the BTC, which were compared with the experimental data available in the literature. Both sorption nonequilibrium and nonlinearity were found to significantly influence the shape of the BTC. Presence of sorption nonlinearity reduces the solute spreading, whereas presence of nonequilibrium conditions increases the solute spreading. Considering the sorption nonequilibrium along with the sorption nonlinearity leads to an improved simulation of the BTC. The nonequilibrium nonlinear sorption models could simulate the extended BTC tailing resulting from sorption nonlinearity and rate-limited interaction in the fracture-matrix system.

  5. Waiting time distribution for electron transport in a molecular junction with electron-vibration interaction

    NASA Astrophysics Data System (ADS)

    Kosov, Daniel S.

    2017-02-01

    On the elementary level, electronic current consists of individual electron tunnelling events that are separated by random time intervals. The waiting time distribution is a probability to observe the electron transfer in the detector electrode at time t +τ given that an electron was detected in the same electrode at an earlier time t. We study waiting time distribution for quantum transport in a vibrating molecular junction. By treating the electron-vibration interaction exactly and molecule-electrode coupling perturbatively, we obtain the master equation and compute the distribution of waiting times for electron transport. The details of waiting time distributions are used to elucidate microscopic mechanism of electron transport and the role of electron-vibration interactions. We find that as nonequilibrium develops in the molecular junction, the skewness and dispersion of the waiting time distribution experience stepwise drops with the increase of the electric current. These steps are associated with the excitations of vibrational states by tunnelling electrons. In the strong electron-vibration coupling regime, the dispersion decrease dominates over all other changes in the waiting time distribution as the molecular junction departs far away from the equilibrium.

  6. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  7. Electronic transport in unconventional superconductors

    SciTech Connect

    Graf, M.J.

    1998-12-31

    The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.

  8. Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics.

    PubMed

    Radhakrishnan, Ravi; Yu, Hsiu-Yu; Eckmann, David M; Ayyaswamy, Portonovo S

    2017-03-01

    Traditionally, the numerical computation of particle motion in a fluid is resolved through computational fluid dynamics (CFD). However, resolving the motion of nanoparticles poses additional challenges due to the coupling between the Brownian and hydrodynamic forces. Here, we focus on the Brownian motion of a nanoparticle coupled to adhesive interactions and confining-wall-mediated hydrodynamic interactions. We discuss several techniques that are founded on the basis of combining CFD methods with the theory of nonequilibrium statistical mechanics in order to simultaneously conserve thermal equipartition and to show correct hydrodynamic correlations. These include the fluctuating hydrodynamics (FHD) method, the generalized Langevin method, the hybrid method, and the deterministic method. Through the examples discussed, we also show a top-down multiscale progression of temporal dynamics from the colloidal scales to the molecular scales, and the associated fluctuations, hydrodynamic correlations. While the motivation and the examples discussed here pertain to nanoscale fluid dynamics and mass transport, the methodologies presented are rather general and can be easily adopted to applications in convective heat transfer.

  9. Nonequilibrium Kondo transport through a quantum dot in a magnetic field

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Grifoni, Milena

    2013-07-01

    We analyze the universal transport properties of a strongly interacting quantum dot in the Kondo regime when the quantum dot is placed in an external magnetic field. The quantum dot is described by the asymmetric Anderson model with the spin degeneracy removed by the magnetic field resulting in Zeeman splitting. Using an analytical expression for the tunneling density of states found from a Keldysh effective field theory, we obtain in the whole energy range the universal differential conductance and analytically demonstrate its Fermi-liquid and logarithmic behavior at low and high energies, respectively, as a function of the magnetic field. We also show results on the zero-temperature differential conductance as a function of the bias voltage at different magnetic fields as well as results on finite-temperature effects out of equilibrium and at a finite magnetic field. The modern nonequilibrium experimental issues of the critical magnetic field, at which the zero bias maximum of the differential conductance starts to split into two maxima, as well as the distance between these maxima as a function of the magnetic field, are also addressed.

  10. Heating of nonequilibrium electrons by laser radiation in solid transparent dielectrics

    SciTech Connect

    Nikiforov, A. M. Epifanov, A. S.; Garnov, S. V.

    2011-01-15

    A computer simulation of the heating of nonequilibrium electrons by an intense high-frequency electromagnetic field leading to the bulk damage of solid transparent dielectrics under single irradiation has been carried out. The dependences of the avalanche ionization rate on threshold field strength have been derived. Using the Fokker-Planck equation with a flux-doubling boundary condition is shown to lead to noticeable errors even at a ratio of the photon energy to the band gap {approx}0.1. The series of dependences of the critical fields on pulse duration have been constructed for various initial lattice temperatures and laser wavelengths, which allow the electron avalanche to be identified as a limiting breakdown mechanism. The ratio of the energy stored in the electron subsystem to the excess (with respect to the equilibrium state) energy of the phonon subsystem by the end of laser pulse action has been calculated both with and without allowance for phonon heating. The influence of phonon heating on the impact avalanche ionization rate is analyzed.

  11. Heating of nonequilibrium electrons by laser radiation in solid transparent dielectrics

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. M.; Epifanov, A. S.; Garnov, S. V.

    2011-01-01

    A computer simulation of the heating of nonequilibrium electrons by an intense high-frequency electromagnetic field leading to the bulk damage of solid transparent dielectrics under single irradiation has been carried out. The dependences of the avalanche ionization rate on threshold field strength have been derived. Using the Fokker-Planck equation with a flux-doubling boundary condition is shown to lead to noticeable errors even at a ratio of the photon energy to the band gap ˜0.1. The series of dependences of the critical fields on pulse duration have been constructed for various initial lattice temperatures and laser wavelengths, which allow the electron avalanche to be identified as a limiting breakdown mechanism. The ratio of the energy stored in the electron subsystem to the excess (with respect to the equilibrium state) energy of the phonon subsystem by the end of laser pulse action has been calculated both with and without allowance for phonon heating. The influence of phonon heating on the impact avalanche ionization rate is analyzed.

  12. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Moore, Joel E.

    2016-06-01

    We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.

  13. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  14. Observation of quasi-periodic frequency sweeping in electron cyclotron emission of nonequilibrium mirror-confined plasma

    NASA Astrophysics Data System (ADS)

    Viktorov, M. E.; Shalashov, A. G.; Mansfeld, D. A.; Golubev, S. V.

    2016-12-01

    Chirping frequency patterns have been observed in the electron cyclotron emission from strongly nonequilibrium plasma confined in a table-top mirror magnetic trap. Such patterns are typical for the formation of nonlinear phase-space structures in a proximity of the wave-particle resonances of a kinetically unstable plasma, also known as the “holes and clumps” mechanism. Our data provides the first experimental evidence for the acting of this mechanism in the electron cyclotron frequency domain.

  15. Electronic transport in gadolinium atomic-size contacts

    NASA Astrophysics Data System (ADS)

    Olivera, B.; Salgado, C.; Lado, J. L.; Karimi, A.; Henkel, V.; Scheer, E.; Fernández-Rossier, J.; Palacios, J. J.; Untiedt, C.

    2017-02-01

    We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2/e2 h . Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s , p , and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.

  16. Electronic Transport in Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Young, Andrea F.; Kim, Philip

    2011-03-01

    The elementary excitations of monolayer graphene, which behave as massless Dirac particles, make it a fascinating venue in which to study relativistic quantum phenomena. One notable example is Klein tunneling, a phenomena in which electrons convert to holes to tunnel through a potential barrier. However, the omnipresence of charged impurities in substrate-supported samples keep the overall charge distribution nonuniform, obscuring much of this "Dirac" point physics in large samples. Using local gates, one can create tunable heterojunctions in graphene, isolating the contribution of small regions of the samples to transport. In this review, we give an overview of quantum transport theory and experiment on locally gated graphene heterostructures, with an emphasis on bipolar junctions.

  17. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    NASA Astrophysics Data System (ADS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-04-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  18. Fluctuation capture in dense gases and liquids - trapping, detrapping and non-equilibrium transport

    NASA Astrophysics Data System (ADS)

    Cocks, Daniel; White, Ron

    2016-09-01

    When charged particles travel through a background of a dense gas or liquid the correlations in the fluid significantly modify the transport of the charged particle. In particular, a new process becomes available, in which the particle is captured into a local fluctuation (bubble or cluster) of the fluid. The trapping has an influence on all transport coefficients, especially annihilation rates of positrons and positronium. Understanding fluctuation capture is important in medical diagnostics, therapy and particle detectors in the low-energy regime, but has so far been unable to be accounted for in transport simulations. We present a new framework that produces energy-resolved ``capture cross sections'' σcap(ɛ) along with ``waiting time distributions'' Θ(t) which allow transport theories to include capture as a process. We demonstrate good agreement between our ab initio calculations and experimental measurements of electrons and positrons in dense noble-gas fluids.

  19. Coordinating Electron Transport Chains to an Electron Donor.

    PubMed

    Villegas, Carmen; Wolf, Maximilian; Joly, Damien; Delgado, Juan Luis; Guldi, Dirk M; Martín, Nazario

    2015-10-16

    Two electron transport chains (2 and 3) featuring two fullerenes with different electron acceptor strengths have been synthesized, characterized, and coordinated to a light harvesting/electron donating zinc porphyrin. Electrochemical assays corroborate the redox gradients along the designed electron transport chains, and complementary absorption and fluorescence titrations prove the assembly of ZnP-2 and ZnP-3 hybrids.

  20. Thermal Transport and Nonequilibrium Temperature Drop Across a Magnetic Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Bachman, Michael; Czerner, Michael; Heiliger, Christian

    2015-07-01

    In the field of spin caloritronics, spin-dependent transport phenomena are observed in a number of current experiments where a temperature gradient across a nanostructured interface is applied. The interpretation of these experiments is not clear as both phonons and electrons may contribute to thermal transport. Therefore, it still remains an open question how the temperature drop across a magnetic nanostructured interface arises microscopically. We answer this question for the case of a magnetic tunnel junction (MTJ) where the tunneling magneto-Seebeck effect occurs. Our explanation may be extended to other types of nanostructured interfaces. We explicitly calculate phonon and electron thermal conductance across Fe /MgO /Fe MTJs in an ab initio approach using a Green function method. Furthermore, we are able to calculate the electron and phonon temperature profile across the Fe /MgO /Fe MTJ by estimating the electron-phonon interaction in the Fe leads. Our results show that there is an electron-phonon temperature imbalance at the Fe-MgO interfaces. As a consequence, a revision of the interpretation of current experimental measurements may be necessary.

  1. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy

    PubMed Central

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A.; Murray, Christopher B.; Su, Dong

    2016-01-01

    Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance. PMID:27157119

  2. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.

    PubMed

    Kumar, S Bala; Jalil, M B A; Tan, S G; Liang, Gengchiau

    2010-09-22

    We developed a unified mesoscopic transport model for graphene nanoribbons, which combines the nonequilibrium Green's function (NEGF) formalism with the real-space π-orbital model. Based on this model, we probe the spatial distribution of electrons under a magnetic field, in order to obtain insights into the various signature Hall effects in disordered armchair graphene nanoribbons (AGNR). In the presence of a uniform perpendicular magnetic field (B[Symbol: see text]-field), a perfect AGNR shows three distinct spatial current profiles at equilibrium, depending on its width. Under nonequilibrium conditions (i.e. in the presence of an applied bias), the net electron flow is restricted to the edges and occurs in opposite directions depending on whether the Fermi level lies within the valence or conduction band. For electrons at an energy level below the conduction window, the B[Symbol: see text]-field gives rise to local electron flux circulation, although the global flux is zero. Our study also reveals the suppression of electron backscattering as a result of the edge transport which is induced by the B[Symbol: see text]-field. This phenomenon can potentially mitigate the undesired effects of disorder, such as bulk and edge vacancies, on the transport properties of AGNR. Lastly, we show that the effect of [Formula: see text]-field on electronic transport is less significant in the multimode compared to the single-mode electron transport.

  3. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  4. Nonequilibrium thermodynamics formalism for Marcus theory of heterogeneous and self-exchange electron-transfer rate constants.

    PubMed

    Sethi, Richa; Sangaranarayanan, M V

    2008-05-08

    The cross-exchange electron-transfer rate constant expression of Marcus is derived from the Flux-force formalism of non-equilibrium thermodynamics. The relationship governing the Onsager's phenomenological coefficients for cross-exchange and self-exchange electron-transfer processes is deduced. Onsager's phenomenological coefficient pertaining to the Butler-Volmer equation is derived and estimated from the experimental exchange current densities. The correlation between the heterogeneous and the homogeneous electron-transfer rate constants derived by Marcus is analyzed in terms of the corresponding phenomenological coefficients.

  5. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Liu, Jie

    2016-10-01

    We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.

  6. Electron transport in ferromagnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Sungbae

    As the size of a physical system decreases toward the nanoscale, quantum mechanical effects such as the discretization of energy levels and the interactions of the electronic spins become readily observable. To understand what happens within submicrometer scale samples is one of the goals of modern condensed matter physics. Electron transport phenomena drew a lot of attention over the past two decades or so, not only because quantum corrections to the classical transport theory, but also they allow us to probe deeply into the microscopic nature of the system put to test. Although a significant amount of research was done in the past and thus extended our understanding in this field, most of these works were concentrated on simpler examples. Electron transport in strongly correlated systems is still a field that needs to be explored more thoroughly. In fact, experimental works that have been done so far to characterize coherence physics in correlated systems such as ferromagnetic metals are far from conclusive. One reason ferromagnetic samples draw such attention is that there exist correlations that lead to excitations (e.g. spin waves, domain wall motions) not present in normal metals, and these new environmental degrees of freedom can have profound effects on decoherence processes. In this thesis, three different types of magnetic samples were examined: a band ferromagnetism based metallic ferromagnet, permalloy, a III-V diluted ferromagnetic semiconductor with ferromagnetism from a hole-mediated exchange interaction, and magnetite nanocrystals and films. The first observation of time-dependent universal conductance fluctuations (TD-UCF) in permalloy is presented and our observations lead to three major conclusions. First, the cooperon contribution to the conductance is suppressed in this material. This is consistent with some theoretical expectations, and implies that weak localization will be suppressed as well. Second, we see evidence that domain wall motion

  7. Real-time simulation of nonequilibrium transport of magnetization in large open quantum spin systems driven by dissipation

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Hebenstreit, F.; Jiang, F.-J.; Wiese, U.-J.

    2015-09-01

    Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-1/2 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.

  8. A simple approach for electron-electron scattering in nonequilibrium Green's function simulations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Winge, David O.; Franckie, Martin; Verozzi, Claudio; Wacker, Andreas; Pereira, Mauro F.

    2016-10-01

    Regardless of all the success of Mid Infrared Quantum Cascade Lasers (QCLs), they still do not operate at room temperature in the THz range. The main temperature degrading mechanism for THz QCLs is not known in time of writing this abstract and it is still a topic of debate by the community [S. Khanal et al, J. Opt. 16 094001, 2014]. This is a challenge to theory and it is crucial to treat all possible scattering channels with the same mathematical footing. A summary of different methods for simulating these structures is found in [C. Jirauschek et al, Appl. Phys. Rev. 1 011307, 2014]. In this work we include and study the effects of electron-electron scattering via the Single Plasmon Pole Approximation (SPPA). In this approximation we capture both the static limit as well as dynamic effects. This gives an energy dependent (non-local in time) interaction beyond the Hartree-Fock approximation. This has been studied in a similar model with promising results [T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, 2009], and with this work we want to adapt the idea into the model described in Ref. [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, 2013]. We start by summarizing the theory underlying the SPPA and we show how it is implemented in the context of our formalism, by showing good agreement with the results for a four well quantum cascade laser [M. Amanti et al, New J. Phys. 11 125022, 2009].

  9. Electron-phonon nonequilibrium during ultrashort pulsed laser heating of metals

    NASA Astrophysics Data System (ADS)

    Smith, Andrew Neil

    2001-10-01

    Ultrashort pulsed lasers have repeatedly been demonstrated as an effective tool for the observation of transport properties on atomistic time and length scales. Accordingly, the number of applications of these types of lasers as diagnostic tools is rapidly increasing. To effectively use these tools, precise knowledge of the energy deposition mechanism is absolutely necessary. The accepted model for ultrashort pulsed laser heating is the ``Two Temperature Model'' which assumes equilibrium electron and phonon distributions that are not in equilibrium with each other. Recently the applicability of the ``Two Temperature Model'' has received some scrutiny for very low and very high intensity application. This model gave rise to the electron-phonon coupling factor, which, when combined with the temperature difference between the two systems, represents the rate of energy transfer for small perturbations in temperature. However, numerous applications use moderate to high intensity ultrashort pulses, which create far more than small perturbations in temperature. In this investigation the temperature dependence of the electron-phonon coupling factor, electron heat capacity, and thermal conductivity are examined for significant changes in the electron temperature. Experimental results are presented for transient thermoreflectance data taken at moderate fluences. A significant discrepancy is apparent between the two temperature model and the experimental data taken on Au. This problem was originally thought to arise from increased electron- phonon coupling for moderate changes in the electron temperature. Investigation into the temperature dependence of the electron-phonon coupling factor did not support this hypothesis. It was discovered that the discrepancy was due to a nonlinear relationship between changes in the electron temperature and changes in reflectance. The incident probe energy used when taking the experimental data was 1.5 eV, which is significantly less than

  10. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. Final report, September 15, 1987--March 14, 1997

    SciTech Connect

    Murad, S.

    1997-05-01

    Computer Simulation Studies were carried out using the method of equilibrium and nonequilibrium molecular dynamics (NEMD) to examine a wide range of transport processes in both fluids and fluid mixtures. This included testing a wide range of mixing rules for thermal conductivity and viscosity. In addition a method was developed to calculate the internal rotational contributions to thermal conductivity and the accuracy of current methods for predicting these contributions were examined. These comparisons were then used to suggest possible ways of improving these theories. The method of NEMD was also used to examine the critical enhancements of thermal conductivity. Finally, molecular simulations were carried out to study the various transport coefficients of fluids confined by membranes, as well as important transport processes such as osmosis, and reverse osmosis.

  11. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise Noel

    An Electromagnetic Pulse (EMP) can severely disrupt the use of electronic devices in its path causing a significant amount of infrastructural damage. EMP can also cause breakdown of the surrounding atmosphere during lightning discharges. This makes modeling EMP phenomenon an important research effort in many military and atmospheric physics applications. EMP events include high-energy Compton electrons or photoelectrons that ionize air and produce low energy conduction electrons. A sufficient number of conduction electrons will damp or alter the EMP through conduction current. Therefore, it is important to understand how conduction electrons interact with air in order to accurately predict the EMP evolution and propagation in the air. It is common for EMP simulation codes to use an equilibrium ohmic model for computing the conduction current. Equilibrium ohmic models assume the conduction electrons are always in equilibrium with the local instantaneous electric field, i.e. for a specific EMP electric field, the conduction electrons instantaneously reach steady state without a transient process. An equilibrium model will work well if the electrons have time to reach their equilibrium distribution with respect to the rise time or duration of the EMP. If the time to reach equilibrium is comparable or longer than the rise time or duration of the EMP then the equilibrium model would not accurately predict the conduction current necessary for the EMP simulation. This is because transport coefficients used in the conduction current calculation will be found based on equilibrium reactions rates which may differ significantly from their non-equilibrium values. We see this deficiency in Los Alamos National Laboratory's EMP code, CHAP-LA (Compton High Altitude Pulse-Los Alamos), when modeling certain EMP scenarios at high altitudes, such as upward EMP, where the ionization rate by secondary electrons is over predicted by the equilibrium model, causing the EMP to short

  12. Microwave-Induced Oscillations in Magnetocapacitance: Direct Evidence for Nonequilibrium Occupation of Electronic States

    NASA Astrophysics Data System (ADS)

    Dorozhkin, S. I.; Kapustin, A. A.; Umansky, V.; von Klitzing, K.; Smet, J. H.

    2016-10-01

    In a two-dimensional electron system, microwave radiation may induce giant resistance oscillations. Their origin has been debated controversially and numerous mechanisms based on very different physical phenomena have been invoked. However, none of them have been unambiguously experimentally identified, since they produce similar effects in transport studies. The capacitance of a two-subband system is sensitive to a redistribution of electrons over energy states, since it entails a shift of the electron charge perpendicular to the plane. In such a system, microwave-induced magnetocapacitance oscillations have been observed. They can only be accounted for by an electron distribution function oscillating with energy due to Landau quantization, one of the quantum mechanisms proposed for the resistance oscillations.

  13. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  14. Nonequilibrium quantum transport coefficients and transient dynamics of full counting statistics in the strong-coupling and non-Markovian regimes

    NASA Astrophysics Data System (ADS)

    Cerrillo, Javier; Buser, Maximilian; Brandes, Tobias

    2016-12-01

    Nonequilibrium transport properties of quantum systems have recently become experimentally accessible in a number of platforms in so-called full-counting experiments that measure transient and steady-state nonequilibrium transport dynamics. We show that the effect of the measurement back-action can be exploited to establish general relationships between transport coefficients in the transient regime which take the form of fluctuation-dissipation theorems in the steady state. This result becomes most conspicuous in the transient dynamics of open quantum systems under strong-coupling to non-Markovian environments in nonequilibrium settings. In order to explore this regime, a new simulation method based in a hierarchy of equations of motion has been developed. We instantiate our proposal with the study of energetic conductance between two baths connected via a few level system.

  15. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  16. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  17. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    SciTech Connect

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  18. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.

    2015-09-01

    The effects of surface functionalization on the electronic transport properties of the MXene compound Ti3C2 are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Fluorinated, oxidized and hydroxylated surfaces are considered and the obtained results are compared with the ones for the pristine MXene. It is found that the surface termination has a considerable impact on the electronic transport in MXene. For example, the fluorinated sample shows the largest transmission, whereas surface oxidation results in a considerable reduction of the electronic transmission. The current in the former sample can be up to 4 times larger for a given bias voltage as compared to the case of bare MXene. The increased transmission originates from the extended electronic states and smaller variations of the electrostatic potential profile. Our findings can be useful in designing MXene-based anode materials for energy storage applications, where enhanced electronic transport will be an asset.

  19. Nonequilibrium transport in the Anderson-Holstein model with interfacial screening

    NASA Astrophysics Data System (ADS)

    Perfetto, Enrico; Stefanucci, Gianluca

    Image charge effects in nanoscale junctions with strong electron-phonon coupling open the way to unexplored physical scenarios. Here we present a comprehensive study of the transport properties of the Anderson-Holstein model in the presence of dot-lead repulsion. We propose an accurate many-body approach to deal with the simultaneous occurrence of the Franck-Condon blockade and the screening-induced enhancement of the polaron mobility. Remarkably, we find that a novel mechanism of negative differential conductance origins from the competition between the charge blocking due to the electron-phonon interaction and the charge deblocking due to the image charges. An experimental setup to observe this phenomenon is discussed. References [1]E. Perfetto, G. Stefanucci and M. Cini, Phys. Rev. B 85, 165437 (2012). [2] E. Perfetto and G. Stefanucci, Phys. Rev. B 88, 245437 (2013). [3] E. Perfetto and G. Stefanucci, Journal of Computational Electronics 14, 352 (2015). E.P. and G.S. acknowledge funding by MIUR FIRB Grant No. RBFR12SW0J.

  20. Coupled electron-photon radiation transport

    SciTech Connect

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-17

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport.

  1. TRHD: Three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids

    NASA Astrophysics Data System (ADS)

    Sijoy, C. D.; Chaturvedi, S.

    2015-05-01

    Three-temperature (3T), unstructured-mesh, non-equilibrium radiation hydrodynamics (RHD) code have been developed for the simulation of intense thermal radiation or high-power laser driven radiative shock hydrodynamics in two-dimensional (2D) axis-symmetric geometries. The governing hydrodynamics equations are solved using a compatible unstructured Lagrangian method based on a control volume differencing (CVD) scheme. A second-order predictor-corrector (PC) integration scheme is used for the temporal discretization of the hydrodynamics equations. For the radiation energy transport, frequency averaged gray model is used in which the flux-limited diffusion (FLD) approximation is used to recover the free-streaming limit of the radiation propagation in optically thin regions. The proposed RHD model allows to have different temperatures for the electrons and ions. In addition to this, the electron and thermal radiation temperatures are assumed to be in non-equilibrium. Therefore, the thermal relaxation between the electrons and ions and the coupling between the radiation and matter energies are required to be computed self-consistently. For this, the coupled flux limited electron heat conduction and the non-equilibrium radiation diffusion equations are solved simultaneously by using an implicit, axis-symmetric, cell-centered, monotonic, nonlinear finite volume (NLFV) scheme. In this paper, we have described the details of the 2D, 3T, non-equilibrium RHD code developed along with a suite of validation test problems to demonstrate the accuracy and performance of the algorithms. We have also conducted a performance analysis with different linearity preserving interpolation schemes that are used for the evaluation of the nodal values in the NLFV scheme. Finally, in order to demonstrate full capability of the code implementation, we have presented the simulation of laser driven thin Aluminum (Al) foil acceleration. The simulation results are found to be in good agreement

  2. Plasmonic hot electron transport drives nano-localized chemistry

    PubMed Central

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S.; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A.

    2017-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry. PMID:28348402

  3. Plasmonic hot electron transport drives nano-localized chemistry.

    PubMed

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2017-03-28

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

  4. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    DOE PAGES

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibriummore » due to photoexcitation and emission.« less

  5. Kinetics of band bending and electron affinity at GaAs(001) surface with nonequilibrium cesium overlayers

    SciTech Connect

    Zhuravlev, A. G.; Savchenko, M. L.; Paulish, A. G.; Alperovich, V. L.; Scheibler, H. E.; Jaroshevich, A. S.

    2013-12-04

    The dosage dependences of surface band bending and effective electron affinity under cesium deposition on the Ga-rich GaAs(001) surface, along with the relaxation of these electronic properties after switching off the Cs source are experimentally studied by means of modified photoreflectance spectroscopy and photoemission quantum yield spectroscopy. At small Cs coverages, below half of a monolayer, additional features in the dosage dependence and subsequent downward relaxation of the photoemission current are determined by the variations of band bending. At coverages above half of a monolayer the upward relaxation of the photocurrent is caused supposedly by the decrease of the electron affinity due to restructuring in the nonequilibrium cesium overlayer.

  6. Real-space method for highly parallelizable electronic transport calculations

    NASA Astrophysics Data System (ADS)

    Feldman, Baruch; Seideman, Tamar; Hod, Oded; Kronik, Leeor

    2014-07-01

    We present a real-space method for first-principles nanoscale electronic transport calculations. We use the nonequilibrium Green's function method with density functional theory and implement absorbing boundary conditions (ABCs, also known as complex absorbing potentials, or CAPs) to represent the effects of the semi-infinite leads. In real space, the Kohn-Sham Hamiltonian matrix is highly sparse. As a result, the transport problem parallelizes naturally and can scale favorably with system size, enabling the computation of conductance in relatively large molecular junction models. Our use of ABCs circumvents the demanding task of explicitly calculating the leads' self-energies from surface Green's functions, and is expected to be more accurate than the use of the jellium approximation. In addition, we take advantage of the sparsity in real space to solve efficiently for the Green's function over the entire energy range relevant to low-bias transport. We illustrate the advantages of our method with calculations on several challenging test systems and find good agreement with reference calculation results.

  7. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    PubMed Central

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-01-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case. PMID:26472080

  8. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  9. Theoretical study of electronic transport properties of a graphene-silicene bilayer

    SciTech Connect

    Berdiyorov, G. R.; Bahlouli, H.; Peeters, F. M.

    2015-06-14

    Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.

  10. Electron Transport in Water Vapour

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoru; Satoh, Kohki; Itoh, Hidenori

    2015-09-01

    Sets of electron collision cross sections for water vapour previously reported are examined by comparing calculated electron swarm parameters with measured parameters. Further, reliable cross section set of water vapour is estimated by the electron swarm method using Monte Carlo simulation to ensure the accuracy of the swarm parameter calculation. The values of an electron drift velocity, a longitudinal diffusion coefficient, and an effective ionisation coefficient calculated from Yousfi and Benabdessadok's set and those calculated from Itikawa and Mason's set do not necessarily agree with measured data. A new cross section set of water vapour, which consists of three kinds of rotational excitation, two kinds of vibrational excitation, three kinds of electron attachment, twenty-six kinds of electronic excitation, and six kinds of ionisation cross sections, and an elastic collision cross section, is estimated, and an anisotropic electron scattering for elastic and rotational excitation collision is considered. The swarm parameters calculated from the estimated cross section set is in good agreement with measured data in a wide range of reduced electric field.

  11. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-07-01

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  12. The Moving Lines on Electron Spectra as Charge Reflexes on Non-equilibrium States of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Mishchuk, Oleg A.

    2016-04-01

    The experimental results present the phenomenon of moving lines on electron spectra which are linked spatially and in time with the localization and durability of the processes of new surface producing in folds and grain boundaries. This effect was also realized for a thin-layer composite "organic on metal films on dielectric substrate" in modeling non-equilibrium conditions which are created by the intensive electron beam pulse impact. It was found that the nature of the inceptive adsorption layer, in addition to the metal film, determines the initial positions of moving lines on the spectra. The main accents in these investigations were in observations of appearance of the moving lines, dynamics of their displacements on the spectra, final stages when these lines vanished, and finding the general regularities between the spontaneous and induced events.

  13. The Moving Lines on Electron Spectra as Charge Reflexes on Non-equilibrium States of Nanostructured Surfaces.

    PubMed

    Mishchuk, Oleg A

    2016-12-01

    The experimental results present the phenomenon of moving lines on electron spectra which are linked spatially and in time with the localization and durability of the processes of new surface producing in folds and grain boundaries. This effect was also realized for a thin-layer composite "organic on metal films on dielectric substrate" in modeling non-equilibrium conditions which are created by the intensive electron beam pulse impact. It was found that the nature of the inceptive adsorption layer, in addition to the metal film, determines the initial positions of moving lines on the spectra. The main accents in these investigations were in observations of appearance of the moving lines, dynamics of their displacements on the spectra, final stages when these lines vanished, and finding the general regularities between the spontaneous and induced events.

  14. Electron distribution functions and transport in laser-produced hot spots

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Batishchev, Oleg; Brantov, A. V.; Bychenkov, V. Yu.; Capjack, C. E.; Sydora, R.

    2002-11-01

    The geometry of a laser hot spot is fundamental to the randomized laser beams and several single beam interaction experiments. Localized inverse Bremsstrahlung (IB) heating of the plasma and heat transport away from a hot spot produce nonequilibrium electron distribution functions (EDF) [1,2]. We have performed series of Fokker-Planck (FP) simulations and analytical studies to characterize EDF for a wide range of laser intensities and hot spot sizes. The FP code includes variations on the fast time scale of electromagnetic wave oscillations, self-consistent ambipolar electric field, nonlinear electron-electron and electron-ion collisions. Plasma inhomogeneity is described in one spatial dimension. Nonequilibrium EDF evolve due to competing effects of IB heating which flattens the bulk of the EDF, electron-electron collisions which drive the system towards equilibrium and nonlocal spatial transport which enhances high energy tails in the EDF. We have investigated anisotropy of EDF and threshold conditions for the excitation of return current ion wave instability. [1] S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002). [2] O. V. Batishchev, et al. Phys. Plasmas 9, 2302 (2002).

  15. Communication: Electronic and transport properties of molecular junctions under a finite bias: A dual mean field approach

    SciTech Connect

    Liu, Shuanglong; Feng, Yuan Ping; Zhang, Chun

    2013-11-21

    We show that when a molecular junction is under an external bias, its properties cannot be uniquely determined by the total electron density in the same manner as the density functional theory for ground state properties. In order to correctly incorporate bias-induced nonequilibrium effects, we present a dual mean field (DMF) approach. The key idea is that the total electron density together with the density of current-carrying electrons are sufficient to determine the properties of the system. Two mean fields, one for current-carrying electrons and the other one for equilibrium electrons can then be derived. Calculations for a graphene nanoribbon junction show that compared with the commonly used ab initio transport theory, the DMF approach could significantly reduce the electric current at low biases due to the non-equilibrium corrections to the mean field potential in the scattering region.

  16. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    SciTech Connect

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.

  17. Transport experiments with Dirac electrons

    NASA Astrophysics Data System (ADS)

    Checkelsky, Joseph George

    This thesis presents transport experiments performed on solid state systems in which the behavior of the charge carriers can be described by the Dirac equation. Unlike the massive carriers in a typical material, in these systems the carriers behave like massless fermions with a photon-like dispersion predicted to greatly modify their spin and charge transport properties. The first system studied is graphene, a crystalline monolayer of carbon arranged in a hexagonal lattice. The band structure calculated from the hexagonal lattice has the form of the massless Dirac Hamiltonian. At the charge neutral Dirac point, we find that application of a magnetic field drives a transition to an insulating state. We also study the thermoelectric properties of graphene and find that the states near the Dirac point have a unique response compared to those at higher charge density. The second system is the 3D topological insulator Bi2Se3, where a Dirac-like dispersion for states on the 2D surface of the insulating 3D crystal arises as a result of the topology of the 3D bands and time reversal symmetry. To access the transport properties of the 2D states, we suppress the remnant bulk conduction channel by chemical doping and electrostatic gating. In bulk crystals we find strong quantum corrections to transport at low temperature when the bulk conduction channel is maximally suppressed. In microscopic crystals we are able better to isolate the surface conduction channel properties. We identify in-gap conducting states that have relatively high mobility compared to the bulk and exhibit weak anti-localization, consistent with predictions for protected 2D surface states with strong spin-orbit coupling.

  18. The Electron Transport Chain: An Interactive Simulation

    ERIC Educational Resources Information Center

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  19. Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors

    SciTech Connect

    Lü, Jing-Tao; Zhou, Hangbo; Jiang, Jin-Wu; Wang, Jian-Sheng

    2015-05-15

    The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.

  20. Non-equilibrium molecular simulations of simple fluid transport at fluid-solid interfaces and fluidic behaviors at nanoscale

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    Nano fluidics has shown promising potential for applications that could significantly impact our daily life, such as energy harvest, lab on a chip, desalination, etc. Current techniques to realize nano fluidic ideas are still very limited due to manufacturing technology. Although sub-micron fabrication techniques are undergoing rapid development recently, scientists and engineers are still not able to access actual nanometric systems. This reason prompts the development of computational tools to reveal physical principles underlying nano fluidic phenomena. Among various numerical approaches ranging from macroscopic to microscopic, molecular dynamics stands out because of its ability to faithfully model both equilibrium and non-equilibrium nanosystems by involving an appropriate amount of molecular details. The results from molecular dynamics simulations could elucidate essential physics and benefit designs of practical nano fluidic systems. This thesis attempts to provide the theoretical foundation for modeling nano fluidic systems, by investigating nanoscale fluid behaviors and nanoscale fluid-solid interfacial physics and transport for simple fluids via molecular dynamics simulations. Boundary-driven-shear, homogeneous-shear and reverse non-equilibrium molecular dynamics methods are implemented to generate non-equilibrium systems. The fundamental fluid behaviors such as velocity profile, temperature distribution and rheological material functions under steady planar shear are explored comprehensively by each method corresponding to different perspectives. The influences of nanoscale confinement are analyzed from the comparison among these methods. The advantages and disadvantages of each method are clarified, which provide guidance to conduct appropriate molecular dynamics simulations for nano fluidics. Further studies on the intrinsic slip of smooth solid surfaces is realized by the boundary-driven-shear method. Inspired by previous hypothesis of momentum

  1. Electron transport through single carbon nanotubes

    SciTech Connect

    Schenkel, Thomas; Chai, G.; Heinrich, H.; Chow, L.; Schenkel, T.

    2007-08-01

    We report on the transport of energetic electrons through single, well aligned multi-wall carbon nanotubes (CNT). Embedding of CNTs in a protective carbon fiber coating enables the application of focused ion beam based sample preparation techniques for the non-destructive isolation and alignment of individual tubes. Aligned tubes with lengths of 0.7 to 3 mu m allow transport of 300 keV electrons in a transmission electron microscope through their hollow cores at zero degree incident angles and for a misalignment of up to 1 degree.

  2. Multidimensional Deterministic Electron Transport Calculations

    DTIC Science & Technology

    1992-05-01

    inlllnlnilinlmmm nMI MII n~lA - Is - -The SMART scattering matrix is not tied to a particular angular flux distribution . -There is considerable numerical...Both expressions are derived by performing an uncollided electron balance over the i’th path length cell. The uncollided flux is then distributed to the...OIS1UTInOIAVALAIT Y STAIEMENT LDIOSTRIUTION CODE Approved for public release; distribution unlimited. 13. A8STRACTO"d noww Fast and accurate techniques for

  3. Electron transport in real time from first-principles.

    PubMed

    Morzan, Uriel N; Ramírez, Francisco F; González Lebrero, Mariano C; Scherlis, Damián A

    2017-01-28

    While the vast majority of calculations reported on molecular conductance have been based on the static non-equilibrium Green's function formalism combined with density functional theory (DFT), in recent years a few time-dependent approaches to transport have started to emerge. Among these, the driven Liouville-von Neumann equation [C. G. Sánchez et al., J. Chem. Phys. 124, 214708 (2006)] is a simple and appealing route relying on a tunable rate parameter, which has been explored in the context of semi-empirical methods. In the present study, we adapt this formulation to a density functional theory framework and analyze its performance. In particular, it is implemented in an efficient all-electron DFT code with Gaussian basis functions, suitable for quantum-dynamics simulations of large molecular systems. At variance with the case of the tight-binding calculations reported in the literature, we find that now the initial perturbation to drive the system out of equilibrium plays a fundamental role in the stability of the electron dynamics. The equation of motion used in previous tight-binding implementations with massive electrodes has to be modified to produce a stable and unidirectional current during time propagation in time-dependent DFT simulations using much smaller leads. Moreover, we propose a procedure to get rid of the dependence of the current-voltage curves on the rate parameter. This method is employed to obtain the current-voltage characteristic of saturated and unsaturated hydrocarbons of different lengths, with very promising prospects.

  4. Electron transport in real time from first-principles

    NASA Astrophysics Data System (ADS)

    Morzan, Uriel N.; Ramírez, Francisco F.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2017-01-01

    While the vast majority of calculations reported on molecular conductance have been based on the static non-equilibrium Green's function formalism combined with density functional theory (DFT), in recent years a few time-dependent approaches to transport have started to emerge. Among these, the driven Liouville-von Neumann equation [C. G. Sánchez et al., J. Chem. Phys. 124, 214708 (2006)] is a simple and appealing route relying on a tunable rate parameter, which has been explored in the context of semi-empirical methods. In the present study, we adapt this formulation to a density functional theory framework and analyze its performance. In particular, it is implemented in an efficient all-electron DFT code with Gaussian basis functions, suitable for quantum-dynamics simulations of large molecular systems. At variance with the case of the tight-binding calculations reported in the literature, we find that now the initial perturbation to drive the system out of equilibrium plays a fundamental role in the stability of the electron dynamics. The equation of motion used in previous tight-binding implementations with massive electrodes has to be modified to produce a stable and unidirectional current during time propagation in time-dependent DFT simulations using much smaller leads. Moreover, we propose a procedure to get rid of the dependence of the current-voltage curves on the rate parameter. This method is employed to obtain the current-voltage characteristic of saturated and unsaturated hydrocarbons of different lengths, with very promising prospects.

  5. Nanoscale heat transport via electrons and phonons by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hua

    Nanoscale heat transport has become a crucial research topic due to the growing importance of nanotechnology for manufacturing, energy conversion, medicine and electronics. Thermal transport properties at the nanoscale are distinct from the macroscopic ones since the sizes of nanoscale features, such as free surfaces and interfaces, are comparable to the wavelengths and mean free paths of the heat carriers (electrons and phonons), and lead to changes in thermal transport properties. Therefore, understanding how the nanoscale features and energy exchange between the heat carriers affect thermal transport characteristics are the goals of this research. Molecular dynamics (MD) is applied in this research to understand the details of nanoscale heat transport. The advantage of MD is that the size effect, anharmonicity, atomistic structure, and non-equilibrium behavior of the system can all be captured since the dynamics of atoms are described explicitly in MD. However, MD neglects the thermal role of electrons and therefore it is unable to describe heat transport in metal or metal-semiconductor systems accurately. To address this limitation of MD, we develop a method to simulate electronic heat transport by implementing electronic degrees of freedom to MD. In this research, nanoscale heat transport in semiconductor, metal, and metal-semiconductor systems is studied. Size effects on phonon thermal transport in SiGe superlattice thin films and nanowires are studied by MD. We find that, opposite to the macroscopic trend, superlattice thin films can achieve lower thermal conductivity than nanowires at small scales due to the change of phonon nature caused by adjusting the superlattice periodic length and specimen length. Effects of size and electron-phonon coupling rate on thermal conductivity and thermal interface resistivity in Al and model metal-semiconductor systems are studied by MD with electronic degrees of freedom. The results show that increasing the specimen

  6. Electronic Transport in Ultrathin Heterostructures.

    DTIC Science & Technology

    1981-10-01

    rqgion consisting of twelve - 50-A GaAs wells alter- Compounds. St. Lois . 1978. edited by C. M. Wolfe asting with thirteen - I0-A AlAs barriers. The ex...alloy range energy range comparable (and competitive) with III-V al- (x < x, -0.45), an obvious limit to the heterobarrier height loys . or energy-gap...International, Electronics Research Center, Anaheim, CA 92803, U.S.A. (Received 3 November 1980 by J. Tauc ) Data are presented on MO-CVD AlGa I, As

  7. Wind tunnel measurements of scale-by-scale energy transfer, dissipation, advection and production/transport in equilibrium and nonequilibrium decaying turbulence

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; Vassilicos, Christos

    2012-11-01

    The cornerstone assumption that Cɛ ≡ ɛL /u3 ~ constant was found to breakdown in certain nonequilibrium regions of decaying grid-generated turbulence with wide power-law near -5/3 spectra where the behaviour of Cɛ is, instead, very close to Cɛ ~ ReL- 1 (Valente & Vassilicos, 2012 [Phys. Rev. Lett. 108, 214503]). We investigate nonequilibrium turbulence by measuring with two cross wire anemometers the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence. For the nonequilibrium case it is shown that the production and transport terms are negligible for scales smaller than about a third of L. For both cases it is shown that the peak of the scale-by-scale energy transfer scales as u3 / L which is the expected behaviour for equilibrium turbulence. However, for the nonequilibrium case this implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the equilibrium case. P. V. acknowledges the financial support from Fundação para a Ciência e a Tecnologia (SFRH/BD/61223/2009, cofinanced by POPH/FSE).

  8. Quasiclassical theory of charge transport in disordered interacting electron systems

    NASA Astrophysics Data System (ADS)

    Schwab, P.; Raimondi, R.

    2003-10-01

    We consider the corrections to the Boltzmann theory of electrical transport arising from the Coulomb interaction in disordered conductors. In this article the theory is formulated in terms of quasiclassical Green's functions. We demonstrate that the formalism is equivalent to the conventional diagrammatic technique by deriving the well-known Altshuler-Aronov corrections to the conductivity. Compared to the conventional approach, the quasiclassical theory has the advantage of being closer to the Boltzmann theory, and also allows description of interaction effects in the transport across interfaces, as well as non-equilibrium phenomena in the same theoretical framework. As an example, by applying the Zaitsev boundary conditions which were originally developed for superconductors, we obtain the P(E)-theory of the Coulomb blockade in tunnel junctions. Furthermore we summarize recent results obtained for the non-equilibrium transport in thin films, wires and fully coherent conductors.

  9. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    PubMed

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  10. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    PubMed Central

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-01-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging. PMID:27991496

  11. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae.

    PubMed

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-19

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner-this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  12. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    NASA Astrophysics Data System (ADS)

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  13. Electron transport property of cobalt-centered porphyrin-armchair graphene nanoribbon (AGNR) junction

    SciTech Connect

    Mondal, Rajkumar; Sarkar, Utpal

    2015-06-24

    We have investigated the electron transport properties of Cobalt-centered (Co-centered) porphyrin molecule using the density functional theory and non-equilibrium greens function method. Here we have reported transmission coefficient as well as current voltage characteristics of Co-centered porphyrine molecule connected between armchair graphene nanoribbons. It has been found that at low bias region i.e., 0 V to 0.3 V it does not contribute any current. Gradual increase of bias voltage results different order of magnitude of current in different bias region.

  14. A time-asymptotic one equation non-equilibrium model for reactive transport in a two phase porous medium

    NASA Astrophysics Data System (ADS)

    Yohan, D.; Gerald, D.; Magali, G.; Michel, Q.

    2008-12-01

    The general problem of transport and reaction in multiphase porous media has been a subject of extensive studies during the last decades. For example, biologically mediated porous media have seen a long history of research from the environmental engineering point of view. Biofilms (aggregate of microorganisms coated in a polymer matrix generated by bacteria) have been particularly examined within the context of bioremediation in the subsurface zone. Five types of models may be used to describe these kinds of physical system: 1) one-equation local mass equilibrium models when the assumption of local mass equilibrium is valid 2) two equations models when the assumption of local mass equilibrium is not valid 3) one equation non-equilibrium models 4) mixed models coupling equations solved at two different scales 5) one equation time-asymptotic models. In this presentation, we use the method of volume averaging with closure to extend the time- asymptotic model at the Darcy scale to the reactive case. Closure problems are solved for simple unit cells, and the macro-scale model is validated against pore-scale simulations.

  15. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  16. Defect engineering of the electronic transport through cuprous oxide interlayers

    PubMed Central

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work. PMID:27256905

  17. Comparative investigation of electronic transport across three-dimensional nanojunctions

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Zhang, X.-G.; Fry, J. N.; Cheng, Hai-Ping

    2017-02-01

    We show the thickness-dependent transition from metallic conduction to tunneling in three-dimensional (3D) Ag/Si/Ag nanojunctions through layer-by-layer electronic structure and quantum transport calculations. The transmission coefficients are calculated quantum mechanically within the framework of density functional theory in conjunction with nonequilibrium Green's function techniques. Thin junctions show nearly metallic character with no energy gap opening in Si layers due to the metal-induced interface states, and the transmission is independent of the stacking order of Si layers. An energy gap reemerges for Si layers deeply buried within thick junction, and the decay rate of transmission in this insulating region depends on the stacking order. Complex band analysis indicates that the decay of transmission is not determined by a single exponential constant but also depends on the available number of evanescent states. Calculating the electric resistance from the transmission coefficient requires a 3D generalization of the Landauer formula, which is not unique. We examine two approaches, the Landauer-Büttiker formula, with and without subtraction of the Sharvin resistance, and a semiclassical Boltzmann equation with boundary conditions defined by the transmission coefficients at the junction. We identify an empirical upper limit of ˜0.05 per channel in the transmission coefficient, below which the Landauer-Büttiker formula without the Sharvin resistance correction remains a good approximation. In the high transmission limit, the Landauer-Büttiker formula with Sharvin correction and the semiclassical Boltzmann method reach fair agreement.

  18. Defect engineering of the electronic transport through cuprous oxide interlayers

    NASA Astrophysics Data System (ADS)

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-06-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  19. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  20. Numerical solution of the electron transport equation

    NASA Astrophysics Data System (ADS)

    Woods, Mark

    The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.

  1. A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels

    DTIC Science & Technology

    2011-01-01

    sized sediment transport model. Avalanching If the slope of a non-cohesive bed i becomes larger than the angle of repose r , the bed...material will slide (avalanche) to form a new slope approximately equal to the angle of repose . The process of avalanching is simulated by enforcing i r...equation of angle of repose and the continuity equation between two adjacent cells and summing over all neighboring cells of p:    tan sgn

  2. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes.

    PubMed

    Jellali, S; Diamantopoulos, E; Kallali, H; Bennaceur, S; Anane, M; Jedidi, N

    2010-01-01

    The release of excess nitrogen-containing compounds into groundwater is a major concern in aquifer recharge by the Soil Aquifer Treatment (SAT) process. Ammonium (NH(4)(+)) is one of the most nocive and common nitrogen compounds in wastewaters. In order to assess the risk of wastewater use for aquifer recharge, NH(4)(+)adsorption onto Souhil wadi soil sampled from the SAT pilot plant (Nabeul, Tunisia) was studied using laboratory columns experiments. Several experiments were conducted using aqueous synthetic solutions under different aqueous ammonium concentrations and flow rates. Furthermore, a real wastewater solution was used to test the effect of competitive cations contents on NH(4)(+) adsorption. Afterwards, the Hydrus-1D model was used in inverse mode to simulate the ammonium transport through the Souhil wadi soil. For the synthetic solutions, the adsorbed ammonium amount varied from 1 to 30.7 mg kg(-1) for aqueous ammonium concentrations between 4.9 and 36.4 mg L(-1). The linear isotherm model was found to be the most suitable for describing this adsorption. The flow rate decrease from 45 to 15 mL min(-1) induced an increase in the ammonium adsorption capacity by 49%. Indeed, the lesser the flow rate is, the longer the residence time and the higher the exchange between the aqueous solution and soil matrix. The use of wastewater instead of aqueous synthetic solution decreased about 7 times the Souhil wadi adsorption capacity of ammonium because of its relatively high concentrations of competitive ions such as calcium and magnesium. The use of the Hydrus-1D model showed that the chemical non-equilibrium model was the best to simulate the ammonium transport through the laboratory soil columns.

  3. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  4. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  5. Modeling electronic quantum transport with machine learning

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole

    2014-06-01

    We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system's representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability in dealing with transport problems of undulatory nature.

  6. The electronic transport behavior of hybridized zigzag graphene and boron nitride nanoribbons

    SciTech Connect

    Zhou, Yuhong; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli; Ye, Cong

    2014-03-21

    In this present work, we have investigated the electronic transport properties of the hybridized structure constructed by the zigzag graphene and boron-nitride (BN) nanoribbons (Z-B{sub n}N{sub m}C{sub p}, n + m + p = 16) through employing nonequilibrium Green's functions in combination with the density-functional theory. The results demonstrate that the electronic transport properties of the hybridized Z-B{sub n}N{sub m}C{sub p} nanoribbons are strongly dependent on the width of boron-nitride or graphene nanoribbons. When the numbers of n and m are not equal, the negative differential resistance behavior is observed, which can be modulated by varying the width of BN nanoribbons. The conductance of the hybridized Z-B{sub n}N{sub m}C{sub p} nanoribbons with odd numbers of zigzag carbon chains also increases by the width of BN nanoribbons.

  7. Non-equilibrium electron features in X-ray emission spectrum from inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Thorn, D.; Schneider, M. B.; Bradley, D.; Kilkenny, J. D.

    2016-10-01

    An X-ray spectrometer proposed for the National Ignition Facility will infer the imploded core electron temperature from the free-free continuum spectra of the emitted photons with energies of 15 to 30 keV. In this range reabsorption rates are low so one might expect a rather unambiguous temperature measurement from the spectrum slope at the higher energy cut-off. It can be noticed, however, that the harder X-ray radiation is emitted by the tail of the electron distribution. The mean- free-path for the suprathermal electrons is much larger than for their thermal counterparts, making this tail to deviate from Maxwellian and obscuring interpretation of the data. We utilize solutions for the reduced kinetic equation to investigate modification to the X-ray spectra due to suprathermal electrons' deviation from equilibrium. The logarithmic slope of the spectrum from the depleted electron distribution is found to increasingly drop at higher photon energies compared to the case of perfectly Maxwellian electrons. Interpreting the spectrum from a depleted distribution with assumption of Maxwellian electrons enforced gives the electron temperature lower than the actual one. The newly predicted effects are further enhanced in the presence of hydrodynamic mix. This work is performed under the auspices of the U.S. Department of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  8. Self-consistent electron transport in tokamaks

    SciTech Connect

    Gatto, R.; Chavdarovski, I.

    2007-09-15

    Electron particle, momentum, and energy fluxes in axisymmetric toroidal devices are derived from a version of the action-angle collision operator that includes both diffusion and drag in action-space [D. A. Hitchcock, R. D. Hazeltine, and S. M. Mahajan, Phys. Fluids 26, 2603 (1983); H. E. Mynick, J. Plasma Phys. 39, 303 (1988)]. A general result of the theory is that any contribution to transport originating directly from the toroidal frequency of the particle motion is constrained to be zero when the electron temperature is equal to the ion temperature. In particular, this constraint applies to those components of the particle and energy fluxes that are proportional to the magnetic shear, independent of the underlying turbulence and of whether the particles are trapped or untrapped. All the total fluxes describing collisionless transport of passing electrons in steady-state magnetic turbulence contain contributions proportional to the conventional thermodynamic drives, which are always outward, and contributions proportional to the magnetic shear, which have both magnitude and sign dependent on the ion-electron temperature ratio. The turbulent generalization of Ohm's law includes a hyper-resistive term, which flattens the current density profile on a fast time scale, and a turbulent electric field, which can have both signs depending on the electron-ion temperature ratio.

  9. Electron transport fluxes in potato plateau regime

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  10. Electronic transport in arrays of gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    We examine electronic transport through two-dimensional arrays of gold nanocrystals. Recently developed techniques of particle synthesis and array self-assembly provide ordered (and disordered) monolayers of six-nanometer diameter gold nanocrystals on substrates with in-plane electrodes. These well-characterized superlattices allow investigation of basic questions about electronic conduction in metal quantum dot assemblies, answers to which have previously remained elusive. We first address the relation between current and voltage. Central to transport is the Coulomb blockade, the energetic cost of adding a single electron to a nanocrystal. Theoretical studies suggest power-law scaling of current beyond a threshold voltage in Coulomb blockade dominated systems. In ordered arrays, our data follow a power-law form, but with a scaling exponent significantly higher than the theoretical prediction. In disordered arrays, power-law scaling is violated; we explain that disorder disturbs the branching of current-carrying paths responsible for power-law conduction. Second, we examine the effect of temperature on transport. We find a large low-temperature regime (up to about 100 K) in which thermal energy acts only to linearly suppress the threshold voltage, leaving the current scale unaffected. We provide a simple, analytic model of thermally assisted tunneling which quantitatively describes the data. Third, we develop a simple and novel technique to tune the interparticle electronic couplings of the arrays---deposition of small amounts of germanium on the monolayers. The germanium dopant lowers the voltage threshold, and also increases conductivity. It also increases the temperature dependence of transport, suggesting the introduction of trapped states between the gold nanocrystal cores.

  11. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  12. Electronic transport in methylated fragments of DNA

    SciTech Connect

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  13. Electronic transport in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.

    2002-04-01

    Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping

  14. Runaway electron transport via tokamak microturbulence

    SciTech Connect

    Hauff, T.; Jenko, F.

    2009-10-15

    The mechanisms found for the magnetic transport of fast ions in the work of Hauff et al. [Phys. Rev. Lett. 102, 075004 (2009)] are extended to the diffusion of runaway electrons. Due to their smaller mass and larger energy, they behave strongly relativistically, for which reason the scaling laws defined previously have to be modified. It is found that due to these changes, the regime of constant magnetic transport does not exist anymore, but diffusivity scales with E{sup -1} for magnetic transport, or even with E{sup -2} in the case that finite gyroradius effects become important. It is shown that the modified analytical approaches are able to explain the surprisingly small values found in experiments, although it cannot be excluded that possibly other reduction mechanisms are present at the same time.

  15. NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Park, Chul; Liu, Yen; Arnold, James O.; Paterson, John A.

    1996-01-01

    This document is the User's Manual for a new version of the NEQAIR computer program, NEQAIR96. The program is a line-by-line and a line-of-sight code. It calculates the emission and absorption spectra for atomic and diatomic molecules and the transport of radiation through a nonuniform gas mixture to a surface. The program has been rewritten to make it easy to use, run faster, and include many run-time options that tailor a calculation to the user's requirements. The accuracy and capability have also been improved by including the rotational Hamiltonian matrix formalism for calculating rotational energy levels and Hoenl-London factors for dipole and spin-allowed singlet, doublet, triplet, and quartet transitions. Three sample cases are also included to help the user become familiar with the steps taken to produce a spectrum. A new user interface is included that uses check location, to select run-time options and to enter selected run data, making NEQAIR96 easier to use than the older versions of the code. The ease of its use and the speed of its algorithms make NEQAIR96 a valuable educational code as well as a practical spectroscopic prediction and diagnostic code.

  16. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence

    NASA Astrophysics Data System (ADS)

    Yuan, Ze; Chen, Zhi-Dong; Zhang, Jin-Yu; He, Yu; Zhang, Ming; Yu, Zhi-Ping

    2009-11-01

    The non-equilibrium Green's function (NEGF) technique provides a solid foundation for the development of quantum mechanical simulators. However, the convergence is always of great concern. We present a general analytical formalism to acquire the accurate derivative of electron density with respect to electrical potential in the framework of NEGF. This formalism not only provides physical insight on non-local quantum phenomena in device simulation, but also can be used to set up a new scheme in solving the Poisson equation to boost the performance of convergence when the NEGF and Poisson equations are solved self-consistently. This method is illustrated by a simple one-dimensional example of an N++ N+ N++ resistor. The total simulation time and iteration number are largely reduced.

  17. Shadowgraph Analysis of Non-equilibrium Fluctuations for Measuring Transport Properties in Microgravity in the GRADFLEX Experiment

    NASA Astrophysics Data System (ADS)

    Croccolo, Fabrizio; Giraudet, Cédric; Bataller, Henri; Cerbino, Roberto; Vailati, Alberto

    2016-08-01

    In a fluid system driven out of equilibrium by the presence of a gradient, fluctuations become long-ranged and their intensity diverges at large spatial scales. This divergence is prevented by vertical confinement and, in a stable configuration, by gravity. Gravity and confinement also affect the dynamics of non-equilibrium fluctuations (NEFs). In fact, small wavelength fluctuations decay diffusively, while the decay of long wavelength ones is either dominated by buoyancy or by confinement. In normal gravity, from the analysis of the dynamics one can extract the diffusion coefficients as well as other transport properties. For example, in a thermodiffusion experiment one can measure the Soret coefficient. Under microgravity, the relaxation of fluctuations occurs by diffusion only and this prevents the determination of the Soret coefficient of a binary mixture from the study of the dynamics. In this work we propose an innovative self-referencing optical method for the determination of the thermal diffusion ratio of a binary mixture that does not require previous knowledge of the temperature difference applied to the sample. The method relies on the determination of the ratio between the mean squared amplitude of concentration and temperature fluctuations. We investigate data from the GRADFLEX experiment, an experiment flown onboard the Russian satellite FOTON M3 in 2007. The investigated sample is a suspension of polystyrene polymer chains (MW=9,100g/mol, concentration 1.8wt %) in toluene, stressed by different temperature gradients. The use of a quantitative shadowgraph technique allows to perform measurements in the absence of delicate alignment and calibration procedures. The statics of the concentration and temperature NEFs are obtained and their ratio is computed. At large wave vectors the ratio becomes constant and is shown to be proportional to the thermal diffusion ratio of the sample.

  18. Electronic transport properties in graphene oxide frameworks

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  19. Enhancing and optimizing electronic transport in biphenyl derivative single-molecule junctions attached to carbon nanotubes electrodes

    NASA Astrophysics Data System (ADS)

    Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2017-02-01

    We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.

  20. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines

    SciTech Connect

    Yang, Lin; Tan, Xiaohua; Wan, Xiang; Chen, Lei; Jin, Dazhi; Qian, Muyang; Li, Gongping

    2014-04-28

    Two Stark broadening parameters including FWHM (full width at half maximum) and FWHA (full width at half area) of isotope hydrogen alpha lines are simultaneously introduced to determine the electron density of a pulsed vacuum arc jet. To estimate the gas temperature, the rotational temperature of the C{sub 2} Swan system is fit to 2500 ± 100 K. A modified Boltzmann-plot method with b{sub i}-factor is introduced to determine the modified electron temperature. The comparison between results of atomic and ionic lines indicates the jet is in partial local thermodynamic equilibrium and the electron temperature is close to 13 000 ± 400 K. Based on the computational results of Gig-Card calculation, a simple and precise interpolation algorithm for the discrete-points tables can be constructed to obtain the traditional n{sub e}-T{sub e} diagnostic maps of two Stark broadening parameters. The results from FWHA formula by the direct use of FWHM = FWHA and these from the diagnostic map are different. It can be attributed to the imprecise FWHA formula form and the deviation between FWHM and FWHA. The variation of the reduced mass pair due to the non-equilibrium effect contributes to the difference of the results derived from two hydrogen isotope alpha lines. Based on the Stark broadening analysis in this work, a corrected method is set up to determine n{sub e} of (1.10 ± 0.08) × 10{sup 21} m{sup −3}, the reference reduced mass μ{sub 0} pair of (3.30 ± 0.82 and 1.65 ± 0.41), and the ion kinetic temperature of 7900 ± 1800 K.

  1. NEQAIRv14.0 Release Notes: Nonequilibrium and Equilibrium Radiative Transport Spectra Program

    NASA Technical Reports Server (NTRS)

    Brandis, Aaron Michael; Cruden, Brett A.

    2014-01-01

    NEQAIR v14.0 is the first parallelized version of NEQAIR. Starting from the last version of the code that went through the internal software release process at NASA Ames (NEQAIR 2008), there have been significant updates to the physics in the code and the computational efficiency. NEQAIR v14.0 supersedes NEQAIR v13.2, v13.1 and the suite of NEQAIR2009 versions. These updates have predominantly been performed by Brett Cruden and Aaron Brandis from ERC Inc at NASA Ames Research Center in 2013 and 2014. A new naming convention is being adopted with this current release. The current and future versions of the code will be named NEQAIR vY.X. The Y will refer to a major release increment. Minor revisions and update releases will involve incrementing X. This is to keep NEQAIR more in line with common software release practices. NEQAIR v14.0 is a standalone software tool for line-by-line spectral computation of radiative intensities and/or radiative heat flux, with one-dimensional transport of radiation. In order to accomplish this, NEQAIR v14.0, as in previous versions, requires the specification of distances (in cm), temperatures (in K) and number densities (in parts/cc) of constituent species along lines of sight. Therefore, it is assumed that flow quantities have been extracted from flow fields computed using other tools, such as CFD codes like DPLR or LAURA, and that lines of sight have been constructed and written out in the format required by NEQAIR v14.0. There are two principal modes for running NEQAIR v14.0. In the first mode NEQAIR v14.0 is used as a tool for creating synthetic spectra of any desired resolution (including convolution with a specified instrument/slit function). The first mode is typically exercised in simulating/interpreting spectroscopic measurements of different sources (e.g. shock tube data, plasma torches, etc.). In the second mode, NEQAIR v14.0 is used as a radiative heat flux prediction tool for flight projects. Correspondingly, NEQAIR has

  2. Studies of runaway electron transport in TEXT

    SciTech Connect

    Wang, Pei-Wen.

    1991-12-01

    The transport of runaway electrons is studied by a plasma position shift experiment and by imposing an externally applied perturbing magnetic field on the edge. The perturbing magnetic field can produce either magnetic islands or, with overlapping islands, a stochastic field. Hard X-ray signals are then measured and compared with analytic and numerical model results. Diffusion coefficients in the edge, {approximately}10{sup 4} cm{sup 2}/sec, and inside the plasma, {approximately}10{sup 2} {minus} 10{sup 3} cm{sup 2}/sec, are estimated. The averaged drift effects are small and the intrinsic magnetic fluctuations are estimated to be < (b{sub r}/B{sub 0}){sup 2} > {approximately}1-{sup {minus}10} at the edge and decreasing inward. Runaway electrons are a good diagnostic of the magnetic fluctuations. It is considered that the magnetic fluctuations have a negligible effect on electron thermal diffusion in the edge plasma.

  3. On electron transport through Geobacter biofilms.

    PubMed

    Bond, Daniel R; Strycharz-Glaven, Sarah M; Tender, Leonard M; Torres, César I

    2012-06-01

    Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve.

  4. Electronic transport in graphene-based heterostructures

    SciTech Connect

    Tan, J. Y.; Avsar, A.; Balakrishnan, J.; Taychatanapat, T.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Koon, G. K. W.; Özyilmaz, B.; Watanabe, K.; Taniguchi, T.

    2014-05-05

    While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS{sub 2}) and molybdenum disulfide (MoS{sub 2})) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO{sub 2} substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS{sub 2} substrates (G/WS{sub 2}) are equally promising for high quality electronic transport (μ ∼ 38 000 cm{sup 2}/V s at room temperature), followed by G/MoS{sub 2} (μ ∼ 10 000 cm{sup 2}/V s) and G/GaSe (μ ∼ 2200 cm{sup 2}/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS{sub 2} and G/MoS{sub 2} heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.

  5. Atomistic modeling of electronic structure and transport in disordered nanostructures

    NASA Astrophysics Data System (ADS)

    Kharche, Neerav

    As the Si-CMOS technology approaches the end of the International Technology Roadmap for Semiconductors (ITRS), the semiconductor industry faces a formidable challenge to continue the transistor scaling according to Moore's law. To continue the scaling of classical devices, alternative channel materials such as SiGe, carbon nanotubes, nanowires, and III-V based materials are being investigated along with novel 3D device geometries. Researchers are also investigating radically new quantum computing devices, which are expected to perform calculations faster than the existing classical Si-CMOS based structures. Atomic scale disorders such as interface roughness, alloy randomness, non-uniform strain, and dopant fluctuations are routinely present in the experimental realization of such devices. These disorders now play an increasingly important role in determining the electronic structure and transport properties as device sizes enter the nanometer regime. This work employs the atomistic tight-binding technique, which is ideally suited for modeling systems with local disorders on an atomic scale. High-precision multi-million atom electronic structure calculations of (111) Si surface quantum wells and (100) SiGe/Si/SiGe heterostructure quantum wells are performed to investigate the modulation of valley splitting induced by atomic scale disorders. The calculations presented here resolve the existing discrepancies between theoretically predicted and experimentally measured valley splitting, which is an important design parameter in quantum computing devices. Supercell calculations and the zone-unfolding method are used to compute the bandstructures of inhomogeneous nanowires made of AlGaAs and SiGe and their connection with the transmission coefficients computed using non-equilibrium Green's function method is established. A unified picture of alloy nanowires emerges, in which the nanodevice (transmission) and nanomaterials (bandstructure) viewpoints complement each other

  6. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction

    SciTech Connect

    Golubev, Dmitri; Kuzmin, Leonid

    2001-06-01

    The operation of the hot-electron bolometer with normal metal-insulator-superconductor (NIS) tunnel junction as a temperature sensor is analyzed theoretically. The responsivity and the noise equivalent power (NEP) of the bolometer are obtained numerically for typical experimental parameters. Relatively simple approximate analytical expressions for these values are derived. The time constant of the device is also found. We demonstrate that the effect of the electron cooling by the NIS junction, which serves as a thermometer, can improve the sensitivity. This effect is also useful in the presence of the finite background power load. We discuss the effect of the correlation of the shot noise and the heat flow noise in the NIS junction. {copyright} 2001 American Institute of Physics.

  7. Screening and sheath formation in a nonequilibrium mixed Cairns-Tsallis electron distribution

    NASA Astrophysics Data System (ADS)

    Bouzit, Omar; Gougam, Leila Ait; Tribeche, Mouloud

    2015-05-01

    The effects of electron nonextensivity for a given nonthermality state, on Debye shielding and electrostatic sheath formation are examined. A physically meaningful Cairns-Tsallis distribution is outlined and a generalized expression for the Debye screening length λD q , α is obtained. It is shown that an increase of the entropic index q causes λD q , α to decrease whatever the amount of plasma nonthermality α. In addition, smaller pertinent values of q along with relatively higher values of α provide larger values of λD q , α . The shielded electrostatic potential falls off as a function of distance more slowly as α increases, a result somewhat analogous to the dynamical shielding decrease (albeit in a different context) of a free charge as it begins to move. Moreover, smaller pertinent values of q along with relatively higher values of α are found to involve higher ion drift speed v i 0 for proper sheath formation. As α increases, the sheath electrostatic potential-gradient d Ψ s / d ξ becomes abruptly steep slowing down the energetic electrons leakage to the wall. Moreover, the sheath thickness broadens as the electron nonthermality strengthens.

  8. Screening and sheath formation in a nonequilibrium mixed Cairns-Tsallis electron distribution

    SciTech Connect

    Bouzit, Omar; Gougam, Leila Ait; Tribeche, Mouloud

    2015-05-15

    The effects of electron nonextensivity for a given nonthermality state, on Debye shielding and electrostatic sheath formation are examined. A physically meaningful Cairns-Tsallis distribution is outlined and a generalized expression for the Debye screening length λ{sub D}{sup q,α} is obtained. It is shown that an increase of the entropic index q causes λ{sub D}{sup q,α} to decrease whatever the amount of plasma nonthermality α. In addition, smaller pertinent values of q along with relatively higher values of α provide larger values of λ{sub D}{sup q,α}. The shielded electrostatic potential falls off as a function of distance more slowly as α increases, a result somewhat analogous to the dynamical shielding decrease (albeit in a different context) of a free charge as it begins to move. Moreover, smaller pertinent values of q along with relatively higher values of α are found to involve higher ion drift speed v{sub i0} for proper sheath formation. As α increases, the sheath electrostatic potential-gradient dΨ{sub s}/dξ becomes abruptly steep slowing down the energetic electrons leakage to the wall. Moreover, the sheath thickness broadens as the electron nonthermality strengthens.

  9. Ab initio transport calculations of molecular wires with electron-phonon couplings

    NASA Astrophysics Data System (ADS)

    Hirose, Kenji; Kobayashi, Nobuhiko

    2009-03-01

    Understanding of electron transport through nanostructures becomes important with the advancement of fabrication process to construct atomic-scale devices. Due to the drastic change of transport properties by contact conditions to electrodes in local electric fields, first-principles calculation approaches are indispensable to understand and characterize the transport properties of nanometer-scale molecular devices. Here we study the transport properties of molecular wires between metallic electrodes, especially focusing on the effects of contacts to electrodes and of the electron-phonon interactions. We use an ab initio calculation method based on the scattering waves, which are obtained by the recursion-transfer-matrix (RTM) method, combined with non-equilibrium Green's function (NEGF) method including the electron-phonon scatterings. We find that conductance shows exponential behaviors as a function of the length of molecular wires due to tunneling process determined by the HOMO-LUMO energy gap. From the voltage drop behaviors inside the molecular wires, we show that the contact resistances are dominant source for the bias drop and thus are related to local heating. We will present the electron-phonon coupling effects at contact on the inelastic scattering and discuss on the local heating and local temperature, comparing them with those of metallic atomic wires.

  10. Spatial interferences in the electron transport of heavy-fermion materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-feng; Liu, Yu; Song, Hai-Feng; Yang, Yi-feng

    2016-08-01

    The scanning tunneling microscopy/spectroscopy and the point contact spectroscopy represent major progress in recent heavy-fermion research. Both have revealed important information on the composite nature of the emergent heavy-electron quasiparticles. However, a detailed and thorough microscopic understanding of the similarities and differences in the underlying physical processes of these techniques is still lacking. Here we study the electron transport in the normal state of the periodic Anderson lattice by using the Keldysh nonequilibrium Green's function technique. In addition to the well-known Fano interference between the conduction and f -electron channels, our results further reveal the effect of spatial interference between different spatial paths at the interface on the differential conductance and their interesting interplay with the band features such as the hybridization gap and the Van Hove singularity. We find that the spatial interference leads to a weighted average in the momentum space for the electron transport and could cause suppression of the electronic band features under certain circumstances. In particular, it reduces the capability of probing the f -electron spectral weight near the edges of the hybridization gap for large interface depending on the Fermi surface of the lead. Our results indicate an intrinsic inefficiency of the point contact spectroscopy in probing the f electrons.

  11. Unconventional dc Transport in Rashba Electron Gases.

    PubMed

    Brosco, Valentina; Benfatto, Lara; Cappelluti, Emmanuele; Grimaldi, Claudio

    2016-04-22

    We discuss the transport properties of a disordered two-dimensional electron gas with strong Rashba spin-orbit coupling. We show that in the high-density regime where the Fermi energy overcomes the energy associated with spin-orbit coupling, dc transport is accurately described by a standard Drude's law, due to a nontrivial compensation between the suppression of backscattering and the relativistic correction to the quasiparticle velocity. On the contrary, when the system enters the opposite dominant spin-orbit regime, Drude's paradigm breaks down and the dc conductivity becomes strongly sensitive to the spin-orbit coupling strength, providing a suitable tool to test the entanglement between spin and charge degrees of freedom in these systems.

  12. Electron Transport in Short Peptide Single Molecules

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha

    We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.

  13. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy

    DOE PAGES

    He, Kai; Zhang, Sen; Li, Jing; ...

    2016-05-09

    In this study, spinel transition metal oxides are an important class of materials that are being considered as electrodes for lithium-ion batteries, due to their low cost and high theoretical capacity. The lithiation of these compounds is known to undergo a two-step reaction, whereby intercalation and conversion occur in a sequential fashion. These two reactions are known to have distinct reaction dynamics, but it is unclear how the kinetics of these processes affect the overall electrochemical response. Here, we explore the lithiation of nanosized magnetite (Fe3O4) by employing a new strain-sensitive, bright-field scanning transmission electron microscopy approach.

  14. Study of transport of laser-driven relativistic electrons in solid materials

    NASA Astrophysics Data System (ADS)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  15. The role of nonequilibrium charge in generation of the thermopower in extrinsic semiconductors

    SciTech Connect

    Konin, A.

    2011-05-15

    A theory of the thermopower is developed with consideration for the nonequilibrium charge produced in a p-type semiconductor and metal contacts. It is shown that the thermopower is generated due to redistribution of the nonequilibrium charge between the metal contacts and semiconductor via transport of nonequilibrium electrons from the metal to the semiconductor through one of the surfaces and from the semiconductor to the metal through the other surface. In a p-type semiconductor sample with thickness smaller than the diffusion length, at certain surface parameters, the thermopower nonlinearly depends on the temperature difference.

  16. Electronic transport in Pd nanocluster devices

    NASA Astrophysics Data System (ADS)

    Ayesh, A. I.

    2011-03-01

    Palladium nanoclusters with an average diameter of 6.7 nm are prepared by magnetron sputtering and inert gas condensation technique. The nanoclusters are deposited between a pair of electrodes defined by optical lithography to create the device. The electronic transport in the devices is investigated by systematic current-voltage measurements. It is demonstrated through fitting the conductance-temperature profile into a conductance model that the conductance in the device is dominated by tunneling. The fitting provides meaningful physical parameters such as the number of nanoclusters within the conduction path, and it shows that some of the nanoclusters are fused together.

  17. Electronic and Ionic Transport in Polymers.

    DTIC Science & Technology

    1988-04-06

    PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION Defense Advanced (if applicable) Research Projects Agency DARPA 1100014-86-K-0769 8c ADDRESS...include Area Code) I22c. OFFiC_: SYM80L Dr. JoAnn Millikan (202) 696-4410 1 DO FORM 1473,84 -MAR 83 APR eaition may be usea until exnaustea. SECURITY...3811 Cognizant ONR Scientific Officer: Dr. JoAnn Millikan Contract No.: N00014-86-K-0769 Short Title of Work: "Electronic and Ionic Transport in Polymers

  18. Terminal group effect of electrode-molecule interface on electron transport

    NASA Astrophysics Data System (ADS)

    Kala, C. Peferencial; Thiruvadigal, D. John; Priya, P. Aruna

    2012-06-01

    The effect of terminal groups on the electron transport through metal-molecule-metal system has been investigated using nonequilibrium Green's function (NEGF) formalism combined with extended Huckel theory (EHT). Au-molecule-Au junctions are constructed with borazine(BN-ring) and BCN ring as core molecule and sulphur (S), Oxygen(O), and cyano-group (CN) as terminal group. The results demonstrate that the terminal groups modifying the transport behaviors of these systems in a controlled way. Our result shows that cyano-group is the best terminal group to couple borazine to Au electrode and oxygen is the best one to couple BCN to Au electrode. Furthermore, the results of borazine systems are compared with that of BCN systems and are discussed.

  19. Phase controlled swapping effect in electron transport through asymmetric parallel coupled quantum dot system

    NASA Astrophysics Data System (ADS)

    Brogi, Bharat Bhushan; Chand, Shyam; Ahluwalia, P. K.

    2015-03-01

    We present a theoretical study of the role of asymmetry and magnetic flux on electronic transport through various configurations of coupled quantum dot system, by using Non-Equilibrium Green Function formalism. Transport properties (Transmission Probability, Current-Voltage Characteristics and Differential Conductance) of the different configurations of coupled quantum dot system have been studied by self-consistent approach, in the presence of on-dot Coulomb interaction. Fano effect, appearing in Transmission probability, has been explored during transition of the system from series to symmetric parallel configuration and in response to the variation in magnetic flux threading the system. The results show Fano peaks for asymmetric and symmetric parallel configurations. By adjusting the magnetic flux, swapping effect in Fano peaks appears due to the exchange of states, which sustains despite strong Coulomb blockade effect. The transmission probability spectrum shows mirror symmetry whenever the sum of two values of magnetic flux threading the system is 2 π.

  20. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy

    SciTech Connect

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao -Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A.; Murray, Christopher B.; Su, Dong

    2016-05-09

    In this study, spinel transition metal oxides are an important class of materials that are being considered as electrodes for lithium-ion batteries, due to their low cost and high theoretical capacity. The lithiation of these compounds is known to undergo a two-step reaction, whereby intercalation and conversion occur in a sequential fashion. These two reactions are known to have distinct reaction dynamics, but it is unclear how the kinetics of these processes affect the overall electrochemical response. Here, we explore the lithiation of nanosized magnetite (Fe3O4) by employing a new strain-sensitive, bright-field scanning transmission electron microscopy approach.

  1. Nonequilibrium processes.

    PubMed

    Polanyi, J C

    1971-08-01

    Nonequilibrium phenomena have been studied for over half a century, particularly as a means to understanding the mechanism of energy transfer. Application of the insights and techniques of molecular physics to chemistry has resulted in a view of chemistry as constituting an aspect of the study of strong collisions, and chemical reaction as a special type of energy transfer. Increasing use has been made in experimental work of nonequilibrium environments for the study of chemical processes. The nature and purpose of such experiments are reviewed here, very briefly, and an attempt is made to point to areas that appear ripe for development over the coming decade.

  2. GW approach to electron-electron interactions within the Anderson impurity model: Kondo correlated quantum transport through two coupled molecules

    NASA Astrophysics Data System (ADS)

    Aksu, H.; Goker, A.

    2017-03-01

    We invoke the nonequilibrium self-consistent GW method within the Anderson impurity model to investigate the dynamical effects occurring in a nanojunction comprised of two coupled molecules. Contrary to the previous single impurity model calculations based on the GW approximation, we observe that the density of states manages to capture both the Kondo resonance and the Breit-Wigner resonances associated with the HOMO and LUMO levels of the molecule. Moreover, the prominence of the Kondo resonance grows dramatically upon switching from the intermediate to the weak coupling regime involving large U / Γ values. The conductance is calculated as a function of the HOMO level and the applied bias across the molecular nanojunction. Calculated conductance curves deviate from the monotonic decay behaviour as a function of the bias when the half-filling condition is not met. The importance of the effect of the molecule-molecule coupling for the electron transport phenomena is also investigated.

  3. Non-equilibrium Properties of a Pumped-Decaying Bose-Condensed Electron-Hole Gas in the BCS-BEC Crossover Region

    NASA Astrophysics Data System (ADS)

    Hanai, R.; Littlewood, P. B.; Ohashi, Y.

    2016-05-01

    We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.

  4. Non-Equilibrium Electron And Ion Temperature Measurements In Omega Direct-Drive Implosions

    SciTech Connect

    Koch, J. A.; Miles, A.; Hsing, W.; Lee, R. W.; Scott, H.; Stewart, R.; Tommasini, R.; Frenje, J.; Li, C.; Petrasso, R.; Glebov, V.

    2009-09-10

    We have performed experiments at the Omega Laser Facility at the University of Rochester/Laboratory for Laser Energetics to measure time-resolved electron temperature (Te) and ion temperature (Ti) in high-temperature implosions. These experiments use direct laser drive on thin glass shells filled with a mixture of D, {sup 3}He, Kr, and Xe, and use neutron and proton emission to diagnose Ti and x-ray emission to diagnose Te. The Kr dopant serves as an optically-thin tracer for Te measurements via K-shell spectroscopy, while the Xe dopant enhances radiation losses and serves as an energy sink due to ionization. Important results include the observation of an order-of-magnitude increase in areal density with a low concentration of Xe, the observation of double-peaked Ti and x-ray emission time profiles indicative of separate shock and compression phases, and generally good agreement with hydrodynamic simulations of the temperature histories. We describe the experiments, the results, and the supporting hydrodynamics simulations.

  5. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  6. Density and localized states' impact on amorphous carbon electron transport mechanisms

    NASA Astrophysics Data System (ADS)

    Caicedo-Dávila, S.; Lopez-Acevedo, O.; Velasco-Medina, J.; Avila, A.

    2016-12-01

    This work discusses the electron transport mechanisms that we obtained as a function of the density of amorphous carbon (a-C) ultra-thin films. We calculated the density of states (total and projected), degree of electronic states' localization, and transmission function using the density functional theory and nonequilibrium Green's functions method. We generated 25 sample a-C structures using ab-initio molecular dynamics within the isothermal-isobaric ensemble. We identified three transport regimes as a function of the density, varying from semimetallic in low-density samples ( ≤2.4 g/cm3) to thermally activated in high-density ( ≥2.9 g/cm3) tetrahedral a-C. The middle-range densities (2.4 g/cm3 ≤ρ≤ 2.9 g/cm3) are characterized by resonant tunneling and hopping transport. Our findings offer a different perspective from the tight-binding model proposed by Katkov and Bhattacharyya [J. Appl. Phys. 113, 183712 (2013)], and agree with experimental observations in low-dimensional carbon systems [see S. Bhattacharyya, Appl. Phys. Lett. 91, 21 (2007)]. Identifying transport regimes is crucial to the process of understanding and applying a-C thin film in electronic devices and electrode coating in biosensors.

  7. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Luo, Y.; Heimerle, M.; Fischer, W.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, W.

    2010-08-03

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP6 and IP8. Each electron lens has several sub-systems, including electron gun, electron collector, superconducting main solenoid (SM), diagnostics system and power supply system. In addition to these systems, beam transport system which can transport electron beam from electron gun side to collector side is also needed.

  8. AC transport and full-counting statistics of molecular junctions in the weak electron-vibration coupling regime

    NASA Astrophysics Data System (ADS)

    Ueda, A.; Utsumi, Y.; Tokura, Y.; Entin-Wohlman, O.; Aharony, A.

    2017-03-01

    The coupling of the charge carriers passing through a molecule bridging two bulky conductors with local vibrational modes of the molecule gives rise to distinct features in the electronic transport properties on one hand and to nonequilibrium features in the vibrations' properties, e.g., their population, on the other. Here we explore theoretically a generic model for a molecular junction biased by an arbitrary dc voltage in the weak-coupling regime. We succinctly summarize parts of our past work related to the signature of the electron-vibration interaction on the full-counting statistics of the current fluctuations (i.e., the cumulant generating-function of the current correlations). In addition, we provide a novel account of the response to an ac field exerted on the junction (on top of the dc bias voltage); in particular, we study the nonequilibrium distribution and the displacement fluctuations of the vibrational modes. Remarkably, we find a behavior pattern that cannot be accounted for by classical forced oscillations. The calculations use the technique of nonequilibrium Green's functions and treat the electron-vibration coupling in perturbation theory, within the random-phase approximation when required.

  9. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    SciTech Connect

    Li, An-Ping; Clark, Kendal W; Zhang, Xiaoguang; Gu, Gong; He, Guowei; Feenstra, Randall

    2014-01-01

    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  10. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  11. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  12. Magnetospheric models for electron acceleration and transport in the heliosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Baker, D. N.

    1993-01-01

    Electron transport and acceleration processes in the earth's magnetosphere have correspondences to analogous processes affecting electrons in the solar magnetosphere (i.e., heliosphere). Energetic electrons in planetary magnetospheres and the heliosphere are test particles probing transport and acceleration dynamics with minimal effects on dominant magnetic field configurations. Parallels are discussed relating to electron entry into the magnetospheres from interplanetary and interstellar space, circulatory transport processes, and acceleration by electric fields in boundary regions including shocks and magnetotails.

  13. Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage.

    PubMed

    Wang, Chun-Rong; Nguyen, Jenny; Lu, Qing-Bin

    2009-08-19

    DNA damage is a central mechanism in the pathogenesis and treatment of human diseases, notably cancer. Little is known about reductive DNA damage in causing genetic mutations during oncogenesis and killing cancer cells during radiotherapy. The prehydrated electron (e(-)(pre)) has the highest yield among all the radicals generated in cells during ionizing radiation and has subpicosecond lifetimes (10(-13) s) and energies below 0 eV, but its role in DNA damage is unknown. In this work, our real-time measurements by femtosecond time-resolved laser spectroscopy have revealed that while adenine and cytosine can effectively trap an e(-)(pre) to form stable anions, thymidine and especially guanine are highly susceptible to dissociative electron transfer of e(-)(pre), leading to bond dissociation in DNA. Our finding demonstrates a dissociative electron transfer pathway for reductive DNA damage that might be related to various diseases such as cancer and stroke. Moreover, this finding challenges the conventional notion that damage to the genome is mainly induced by the oxidizing OH* radical and might eventually lead to improved radiotherapy of cancer and radioprotection of humans.

  14. Non-equilibrium and equilibrium sorption with a linear-sorption isotherm during mass transport through an infinite, porous medium: some analytical solutions

    SciTech Connect

    Carnahan, C.L.; Remer, J.S.

    1981-04-01

    Analytical solutions have been developed for the problem of solute transport in a steady, three dimensional field of groundwater flow with non-equilibrium mass transfer of a radioactive species between fluid and solid phases and with anisotropic hydrodynamic dispersion. Interphase mass transport is described by a linear rate expression. Solutions are presented also for the case of equilibrium distribution of solute between fluid and solid phases. Three types of release from a point source were considered: instantaneous release of a finite mass of solute, continuous release at an exponentially decaying rate, and release for a finite period of time. Graphical displays of computational results for point-source solutions show the expected variation of sorptive retardation effects progressing from the case of no sorption, through several cases of non-equilibrium sorption, to the case of equilibrium sorption. The point-source solutions can be integrated over finite regions of a space to provide analytical solutions for regions of solute release having finite spatial extents and various geometrical shapes, thus considerably extending the utility of the point-source solutions.

  15. Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. II. Transfer Coefficients.

    PubMed

    Røsjorde, A.; Kjelstrup, S.; Bedeaux, D.; Hafskjold, B.

    2001-08-01

    We present coefficients for transfer of heat and mass across the liquid-vapor interface of a one-component fluid. The coefficients are defined for the Gibbs surface from nonequilibrium thermodynamics and determined by nonequilibrium molecular dynamics simulations. The main conductivity coefficients are found to become large near the critical point, consistent with the disappearance of the surface in this limit. The resistivities of transfer found by molecular dynamics simulations are compared to the values predicted by kinetic theory. The main resistivity to heat transfer is found to agree from the triple point to about halfway to the critical point. The resistivity to mass transfer was used to determine the condensation coefficient, which was found to be practically constant with a value of about 0.82. The resistivity coupling coefficient predicted by simulations also agrees with values predicted by kinetic theory from the triple point until about halfway to the critical point. Copyright 2001 Academic Press.

  16. Ion age transport: developing devices beyond electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  17. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II. Spike models for sputtering yield

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Johnson, R. E.; Dutkiewicz, Ł .

    1999-05-01

    Thermal spike models have been used to calculate the yields for electronic sputtering of condensed-gas solids by fast ions. In this paper molecular dynamics (MD) calculations are carried out to describe the evolution of solid Ar and O 2 following the excitation of a cylindrical track in order to test spike models. The calculated sputtering yields were found to depend linearly on the energy deposition per unit path length, d E/d x, at the highest d E/d x. This is in contrast to the spike models and the measured yields for a number of condensed-gas solids which depend quadratically on d E/d x at high d E/d x. In paper I [E.M. Bringa, R.E. Johnson, Nucl. Instr. and Meth. B 143 (1998) 513] we showed that the evolution of energy from the cylindrical track was, typically, not diffusive, as assumed in the spike models. Here we show that it is the description of the radial transport and the absence of energy transport to the surface, rather than the treatment of the ejection process, that accounts for the difference between the analytic spike models and the MD calculations. Therefore, the quadratic dependence on d E/d x of the measured sputtering yield reflects the nature of the energizing process rather than the energy transport. In this paper we describe the details of the sputtering process and compare the results here for crystalline samples to the earlier results for amorphous solids.

  18. Electron transport through magnetic quantum point contacts

    NASA Astrophysics Data System (ADS)

    Day, Timothy Ellis

    Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the

  19. Effects of Cu deficiency on photosynthetic electron transport

    SciTech Connect

    Droppa, M.; Terry, N.; Horvath, G.

    1984-04-01

    The role of copper (Cu) in photosynthetic electron transport was explored by using Cu deficiency in sugar beet as an experimental approach. Copper influenced electron transport at two sites in addition to plastocyanin. Under mild deficiency (0.84 nmol of Cu per cm/sup 2/ of leaf area), electron transport between the two photosystems (PS) is inhibited but not electron transport within PS I or PS II measured separately. The chlorophyll/plastoquinone ratio was normal in Cu-deficient plants. However, the breakpoint in the Arrhenius plot of electron transport was shifted towards a higher temperature. It is concluded that Cu is necessary to maintain the appropriate membrane fluidity to ensure the mobility of plastoquinone molecules to transfer electrons between the two photosystems. Under severe deficiency (0.22 nmol of Cu per cm/sup 2/ of leaf area) both PS II and PS I electron transports were inhibited and to the same extent. PS II electron transport activity could not be restored by adding artifical electron donors. Polypeptides with M/sub r/s of 28,000 and 13,500 were missing in Cu-deficient chloroplast membranes. In PS II particles prepared from normal chloroplasts of spinach, 2 atoms of Cu per reaction center are present. We conclude that Cu influences PS II electron transport either directly, by participation in electron transfer as a constituent of an electron carrier, or indirectly, via the polypeptide composition of the membrane in the PS II complex.

  20. Effect of H2 and NH3 Adsorption on Electronic Transport Properties of SiC Nanowires: A DFT Analysis

    NASA Astrophysics Data System (ADS)

    Vasumathi, R.; Thayumanavan, A.; Sriram, S.

    2017-02-01

    Silicon carbide (SiC) nanowire structures with and without hydrogen (H2) and ammonia (NH3) molecules have been constructed and optimized using density functional theory to study their electronic and transport properties. The adsorption energies calculated for the SiC nanowire structures reveal that the adsorption process of H2 and NH3 molecules is endothermic in nature. Nonequilibrium Green's function transport theory is employed to study the electronic transport properties of the SiC nanowire devices with and without H2 and NH3 molecules. The voltage-current (V-I) characteristic shows negative differential resistance (NDR) behavior for all the SiC nanowire devices when bias voltage is applied. It is inferred that the NDR behavior is due to shift of quasibound states near the Fermi level because of the applied bias voltage. This observed NDR behavior may be useful for fabrication of nanoelectronic devices.

  1. Electron scattering and transport in liquid argon

    SciTech Connect

    Boyle, G. J.; Cocks, D. G.; White, R. D.; McEachran, R. P.

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  2. Electronic Transport in Novel Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Gannett, William Joy

    Graphene, a single sheet of sp2-bonded carbon atoms, is a two-dimensional material with an array of unique electronic, chemical, and mechanical properties. Applications including high performance transistors, chemical sensors, and composite materials have already been demonstrated. The introduction of chemical vapor deposition growth of monolayer graphene was an important step towards scalability of such devices. In addition to scalability, the exploration and application of these properties require the fabrication of high quality devices with low carrier scattering. They also require the development of unique geometries and materials combinations to exploit the highly tunable nature of graphene. This dissertation presents the synthesis of materials, fabrication of devices, and measurement of those devices for three previously unexplored types of graphene devices. The first type of device is a field effect transistor made from chemical vapor deposited (CVD) graphene on hexagonal boron nitride (hBN) substrates. We demonstrate a significant improvement in carrier mobility from hBN substrates and are able to explore the sources of scattering in CVD graphene. The second type of device, fluorinated graphene transistors, allows us to examine doping and disorder effects from fluorination of the graphene crystal as well as electronic transport through unfluorinated folds in the graphene. With the third type of device we demonstrate a new route to graphene nanoribbon devices using both hBN flakes and BN nanotubes that may reduce disorder and allow precise measurements of quantum phenomena in graphene nanoribbons.

  3. Modulation of the electronic transport properties of silicon nanotubes via hydrogenation ratio

    NASA Astrophysics Data System (ADS)

    Yamacli, Serhan

    2016-12-01

    In this work, electronic transport properties of hydrogenated silicon nanotubes (SiNTs) are studied using first-principles methods. Metallic (4, 4) and (7, 7) SiNTs are simulated using density functional theory combined with non-equilibrium Green’s function formalism. The current-voltage characteristics of these nanotubes are obtained for various hydrogenation ratios considering that hydrogenation provides stability to SiNT structures as studied in the literature. The transmission spectra of the investigated SiNT structures are also given and discussed in order to analyse and extend the obtained current-voltage behaviours. It is shown that the electronic transport properties of SiNTs can be modulated by their hydrogenation ratio and the same type of SiNT shows conducting, non-conducting and negative differential resistance characteristic with different hydrogenation ratios. Obtained results show that the electronic transport behaviours of SiNTs can be adjusted flexibly with hydrogenation which opens new possibilities to SiNT circuit design.

  4. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Electronic Transport Calculations Using Maximally-Localized Wannier Functions

    NASA Astrophysics Data System (ADS)

    Wang, Neng-Ping

    2011-01-01

    I present a method to calculate the ballistic transport properties of atomic-scale structures under bias. The electronic structure of the system is calculated using the Kohn-Sham scheme of density functional theory (DFT). The DFT eigenvectors are then transformed into a set of maximally localized Wannier functions (MLWFs) [N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) 12847]. The MLWFs are used as a minimal basis set to obtain the Hamitonian matrices of the scattering region and the adjacent leads, which are needed for transport calculation using the nonequilibrium Green's function formalism. The coupling of the scattering region to the semi-infinite leads is described by the self-energies of the leads. Using the nonequilibrium Green's function method, one calculates self-consistently the charge distribution of the system under bias and evaluates the transmission and current through the system. To solve the Poisson equation within the scheme of MLWFs I introduce a computationally efficient method. The method is applied to a molecular hydrogen contact in two transition metal monatomic wires (Cu and Pt). It is found that for Pt the I-V characteristics is approximately linear dependence, however, for Cu the I-V characteristics manifests a linear dependence at low bias voltages and exhibits apparent nonlinearity at higher bias voltages. I have also calculated the transmission in the zero bias voltage limit for a single CO molecule adsorbed on Cu and Pt monatomic wires. While a chemical scissor effect occurs for the Cu monatomic wire with an adsorbed CO molecule, it is absent for the Pt monatomic wire due to the contribution of d-orbitals at the Fermi energy.

  5. Electronic transport through carbon nanotubes - effect of contacts, topological defects, dopants and chemisorbed impurities

    SciTech Connect

    Maiti, A; Hoekstra, J; Andzelm, J; Govind, N; Ricca, A; Svizhenko, A; Mehrez, H; Anantram, M P

    2005-02-11

    Electronics based on carbon nanotubes (CNT) has received a lot of attention recently because of its tremendous application potential, such as active components and interconnects in nanochips, nanoelectromechanical systems (NEMS), display devices, and chemical and biological sensors. However, as with most nanoelectronic systems, successful commercial deployment implies structural control at the molecular level. To this end, it is clearly necessary to understand the effect of contacts, topological defects, dopants, and chemisorbed atoms and molecules on the electronic transport through CNT's. This paper summarizes our computational efforts to address some of the above questions. Examples include: wetting properties and bonding strength of metal contacts on the CNT surface, the effect of Stone-Wales defects on the chemisorption of O{sub 2} and NH3, and how such chemisorbed species and defects effect the electronic transmission and conductance. Our approach is based on first-principles density functional theory (DFT) to compute equilibrium structures, and nonequilibrium Green's function (NEGF) methods, using both DFT and semi-empirical tight-binding formalisms, for computing electronic transport properties.

  6. Electron transport chain defects in heart failure.

    PubMed

    Casademont, Jordi; Miró, Oscar

    2002-04-01

    In recent years, the possibility that disorders of cardiac metabolism play a role in the mechanisms that lead to ventricular dilatation and dysfunction in heart failure has attracted much attention. Electron transport chain is constituted by a series of multimeric protein complexes, located in the inner mitochondrial membranes, whose genes are distributed over both nuclear and mitochondrial DNA. Its normal function is essential to provide the energy for cardiac function. Many studies have described abnormalities in mitochondrial DNA genes encoding for electron transport chain (ETC) in dilated cardiomyopathies. In some cases, heart failure is one more or less relevant symptom among other multisystem manifestations characteristic of mitochondrial encephalomyopathies, being heart failure imputable to a primary mitochondrial disease. In the case of idiopathic dilated cardiomyopathies (IDC), many mitochondrial abnormalities have also been described using hystological, biochemical or molecular studies. The importance of such findings is under debate. The great variability in the mitochondrial abnormalities described has prompted the proposal that mitochondrial dysfunction could be a secondary phenomenon in IDC, and not a primary one. Among other possible explanations for such findings, the presence of an increased oxidative damage due to a free radical excess has been postulated. In this setting, the dysfunction of ETC could be a consequence, but also a cause of the presence of an increased free radical damage. Independently of its origin, ETC dysfunction may contribute to the persistence and worsening of heart failure. If this hypothesis, still to be proven, was certain, the modulation of cardiac metabolism could be an interesting approach to treat IDC. The precise mechanisms that lead to ventricular dilatation and dysfunction in heart failure are still nowadays poorly understood. Circumstances such as cytotoxic insults, viral infections, immune abnormalities

  7. Structural, electronic, mechanical, and transport properties of phosphorene nanoribbons: Negative differential resistance behavior

    NASA Astrophysics Data System (ADS)

    Maity, Ajanta; Singh, Akansha; Sen, Prasenjit; Kibey, Aniruddha; Kshirsagar, Anjali; Kanhere, Dilip G.

    2016-08-01

    Structural, electronic, mechanical, and transport properties of two different types of phosphorene nanoribbons are calculated within the density functional theory and nonequilibrium Green's function formalisms. Armchair nanoribbons turn out to be semiconductors at all widths considered. Zigzag nanoribbons are metallic in their layer-terminated structure, but undergo Peierls-like transition at the edges. Armchair nanoribbons have smaller Young's modulus compared to a monolayer, while zigzag nanoribbons have larger Young's modulus. Edge reconstruction further increases the Young's modulus of zigzag nanoribbons. A two-terminal device made of zigzag nanoribbons show negative differential resistance behavior that is robust with respect to edge reconstruction. We have also calculated the I -V characteristics for two nonzero gate voltages. The results show that the zigzag nanoribbons display strong p -type character.

  8. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  9. Charge Transport Characterization of Novel Electronic Materials.

    NASA Astrophysics Data System (ADS)

    Marcy, Henry Orlando, 5th.

    1990-01-01

    The work presented includes analysis of electronic transport data and related measurements for the following types of materials: molecular metals and conducting polymers based upon phthalocyanine (Pc) building blocks, new composites of conducting polymers with inorganic polymeric and layered materials, and both bulk and thin film samples of the high -T_{rm c} ceramic superconductors. To successfully study such a wide spectrum of materials, the charge transport instrumentation has evolved into multiple computer-controlled experimental arrangements which process data for temperature dependent ac and dc conductivity, thermoelectric power, critical current density, and other measurements, over the temperature range of 1.5 K to 400 K. The phthalocyanine-based molecular metals and conducting polymers exhibit some of the highest reported conductivities for environmentally stable organic conductors, and possess a unique structure which is inherently resistant to large structural transformations upon donor/acceptor doping. These properties are demonstrated primarily by results for Ni(Pc)(ClO_4) _{rm y} and { (Si(Pc)O) X_{rm y}}_{rm n}. The rigidly-enforced structure of the latter system of materials allows for controllable tuning of the band-filling and hence, the charge transport properties of an organic conductor, from insulating to metal-like behavior, without any major structural alterations of the polymeric backbone. Other types of polymeric samples for which results are presented consist of composite fibers formed from the rigid rod polymers, Kevlar and PBT, "alloyed" with the (Pc)-based conducting polymers, and new microlaminates formed by intercalating various conducting polymers into the van der Waals gap of inorganic, layered host materials. Significant success has been achieved in the fabrication of superconducting films of Y-Ba-Cu-O, Bi-Sr(Pb)-Ca-Cu -O, and Tl-Ba-Ca-Cu-O by organometallic chemical vapor deposition. Results are also presented for films prepared

  10. Transition in Electron Transport in a Cylindrical Hall Thruster

    SciTech Connect

    J.B. Parker, Y. Raitses, and N.J. Fisch

    2010-06-02

    Through the use of high-speed camera and Langmuir probe measurements in a cylindrical Hall thruster, we report the discovery of a rotating spoke of increased plasma density and light emission which correlates with increased electron transport across the magnetic field. As cathode electron emission is increased, a sharp transition occurs where the spoke disappears and electron transport decreases. This suggests that a significant fraction of the electron current might be directed through the spoke.

  11. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  12. The induction of microsomal electron transport enzymes.

    PubMed

    Waterman, M R; Estabrook, R W

    1983-01-01

    Liver endoplasmic reticulum contains as NADPH-dependent electron transport complex where the family of hemeproteins, termed cytochrome P-450, serve as catalysts for the oxidation of a variety of different organic chemicals. The content and inventory of the types of cytochrome P-450 is readily modified following in vivo treatment of animals with 'inducing agents' such as barbiturates, steroids and polycyclic hydrocarbons. Recent studies have applied the methods of molecular biology to evaluate changes in the transcription and translation of genomic information occurring concomitant with the initiation of synthesis of various types of cytochrome P-450. The ability to isolate unique cytochrome P-450 proteins and to prepare specific antibodies now permits the study of in vitro translation of mRNA and the preparation of specific cDNAs. The present review summarizes the historic background leading to current concepts of cytochrome P-450 induction and describes recent advances in our knowledge of the regulation of cytochrome P-450 synthesis in the liver.

  13. Electron injection and transport mechanism in organic devices based on electron transport materials

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Xu, Wei; Khizar-ul-Haq; Zhang, Xiao Wen; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.

    2008-11-01

    Electron injection and transport in organic devices based on electron transport (ET) materials, such as 4,7- diphyenyl-1,10-phenanthroline (Bathophenanthroline BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) and bipyridyl oxadiazole compound 1,3-bis [2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene (Bpy-OXD), have been reported. The devices are composed of ITO/ET materials (BPhen, BCP Bpy-OXD)/cathodes, where cathodes = Au, Al and Ca. Current-voltage characteristics of each ET material are performed as a function of cathodes. We have found that Ca and Al exhibit quite different J-V characteristics compared with the gold (Au) cathode. The current is more than one order of magnitude higher for the Al cathode and more than three orders of magnitude higher for Ca compared with that of the Au cathode at ~8 V for all ET materials. This is because of the relatively low energy barrier at the organic/metal interface for Ca and Al cathodes. Electron-only devices with the Au cathode show that the electron transfer limitation is located at the organic/cathode interface and the Fowler-Nordheim mechanism is qualitatively consistent with experimental data at high voltages. With Ca and Al cathodes, electron conduction is preponderant and is bulk limited. A power law dependence J ~ Vm with m > 2 is consistent with the model of trap-charge limited conduction. The total electron trap density is estimated to be ~5 × 1018 cm-3. The critical voltage (Vc) is found to be ~45 V and is almost independent of the materials.

  14. Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit

    NASA Astrophysics Data System (ADS)

    Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.

    2016-10-01

    The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.

  15. Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.

    2015-12-01

    MXenes are found to be promising electrode materials for energy storage applications. Recent theoretical and experimental studies indicate the possibility of using these novel low dimensional materials for metal-ion batteries. Herein, we use density-functional theory in combination with the nonequilibrium Green's function formalism to study the effect of lithium and sodium ion adsorption on the electronic transport properties of the MXene, Ti3C2. Oxygen, hydroxyl and fluorine terminated species are considered and the obtained results are compared with the ones for the pristine MXene. We found that the ion adsorption results in reduced electronic transport in the pristine MXene: depending on the type of the ions and the bias voltage, the current in the system can be reduced by more than 30%. On the other hand, transport properties of the oxygen terminated sample can be improved by the ion adsorption: for both types of ions the current in the system can be increased by more than a factor of 4. However, the electronic transport is less affected by the ions in fluorinated and hydroxylated samples. These two samples show enhanced electronic transport as compared to the pristine MXene. The obtained results are explained in terms of electron localization in the system.

  16. Investigation of Terminal Group Effect on Electron Transport Through Open Molecular Structures

    NASA Astrophysics Data System (ADS)

    C. Preferencial, Kala; P. Aruna, Priya; John Thiruvadigal, D.

    2013-05-01

    The effect of terminal groups on the electron transport through metal-molecule-metal system has been investigated using nonequilibrium Green's function (NEGF) formalism combined with extended Huckel theory (EHT). Au-molecule-Au junctions are constructed with borazine and BCN unit structure as core molecule and sulphur (S), oxygen (O), selenium (Se) and cyano-group (CN) as terminal groups. The electron transport characteristics of the borazine and BCN molecular systems are analyzed through the transmission spectra and the current-voltage curve. The results demonstrate that the terminal groups modifying the transport behaviors of these systems in a controlled way. Our result shows that, selenium is the best linker to couple borazine to Au electrode and oxygen is the best one to couple BCN to Au electrode. Furthermore, the results of borazine systems are compared with that of BCN molecular systems and are discussed. Simulation results show that the conductance through BCN molecular systems is four times larger than the borazine molecular systems. Negative differential resistance behavior is observed with borazine-CN system and the saturation feature appears in BCN systems.

  17. NON-EQUILIBRIUM MODELING OF THE FE XVII 3C/3D LINE RATIO IN AN INTENSE X-RAY FREE-ELECTRON LASER EXCITED PLASMA

    SciTech Connect

    Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.; Fontes, C. J.

    2015-03-01

    Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe xvii 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe xvii spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

  18. Modeling small-scale physical non-equilibrium and large-scale preferential fluid and solute transport in a structured soil

    SciTech Connect

    Gwo, J.P.; Jardine, P.M.; Wilson, G.V.; Yeh, G.-T.

    1994-09-01

    The deviation of non-reactive solute transport from that predicted by classical convection-dispersion equations is usually attributed to physical non-equilibrium caused by small- and large-scale pore structures in porous media. Diffusion of fluid and solute into micropores or rock matrix may occur locally, while fluid and solutes can also be channeled preferentially through interconnected macropores or fractures. A multiple-pore-region (MPR) approach with local advective-diffusive mass exchange is adopted to simulate soil column tracer breakthrough and field-scale tracer releases in the Melton Branch Subsurface Transport Facility within the Oak Ridge Reservation, Tennessee. The soil column simulation indicates that both inter-region mass exchange and intra-region convection-dispersion contribute to small-scale solute transport in approximately the same order of magnitude. The field-scale study suggests that advective mass exchange has minor effect on subsurface hydrographs, and that large diffusive mass exchange may retain tracers near the source area. Comparison of modeling results and field data suggests that subsurface bedding planes on the field site may be the cause of large-scale heterogeneity and preferential mass transport.

  19. Nonequilibrium conductivity at quantum critical points

    NASA Astrophysics Data System (ADS)

    Berridge, A. M.; Green, A. G.

    2013-12-01

    Quantum criticality provides an important route to revealing universal nonequilibrium behavior. A canonical example of a critical point is the Bose-Hubbard model, which we study under the application of an electric field. A Boltzmann transport formalism and ɛ expansion are used to obtain the nonequilibrium conductivity and current noise. This approach allows us to explicitly identify how a universal nonequilibrium steady state is maintained, by identifying the rate-limiting step in balancing Joule heating and dissipation to a heat bath. It also reveals that the nonequilibrium distribution function is very far from a thermal distribution.

  20. Electron Transport in Bacillus popilliae1

    PubMed Central

    Pepper, Rollin E.; Costilow, Ralph N.

    1965-01-01

    Pepper, Rollin E. (Michigan State University, East Lansing), and Ralph N. Costilow. Electron transport in Bacillus popilliae. J. Bacteriol. 89:271–276. 1965.—Bacillus popilliae was found to be unique among aerobic microorganisms in that it was deficient in a hydrogen peroxide-scavenging system. Neither catalase nor peroxidase was found. At the same time, a system for producing hydrogen peroxide during oxidation of reduced nicotinamide adenine dinucleotide (NADH2) was consistently present in the soluble fraction of extracts of cells from older cultures. Cells harvested from 9-hr cultures did not produce a significant amount of peroxide. The soluble NADH2 oxidase was apparently a flavoprotein, since it was stimulated by flavin nucleotides, insensitive to cyanide and azide, and inhibited by Atabrine. Also, difference spectra demonstrated the presence of a reducible flavin in the soluble fraction of cell extracts. The particulate fraction of cell extracts was shown by difference spectra to contain cytochrome b1; the strong inhibition of NADH2 oxidation by cyanide, azide, and carbon monoxide indicated that a terminal cytochrome oxidase was also present. This system was also flavin-dependent, since it was strongly inhibited by Atabrine. The specific activity of the NADH2 oxidase in the particulate fraction was lower in extracts of cells from older cultures than in those from exponentially growing cultures. Cytochrome c was not found in extracts of these cells. It is believed that the increased participation of the hydrogen peroxide-generating NADH2 oxidase in cells of older cultures may be responsible for the rapid loss in cell viability noted in stationary-phase cultures. PMID:14255689

  1. Magnetic turbulent electron transport in a reversed field pinch

    SciTech Connect

    Schoenberg, K.; Moses, R.

    1990-01-01

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs.

  2. Nonequilibrium noise in transport across a tunneling contact between ν =2/3 fractional quantum Hall edges

    NASA Astrophysics Data System (ADS)

    Shtanko, O.; Snizhko, K.; Cheianov, V.

    2014-03-01

    In a recent experimental paper [Bid et al., Nature 466, 585 (2010), 10.1038/nature09277] a qualitative confirmation of the existence of upstream neutral modes at the ν =2/3 quantum Hall edge was reported. Using the chiral Luttinger liquid theory of the quantum Hall edge we develop a quantitative model of the experiment of Bid et al. A good quantitative agreement of our theory with the experimental data reinforces the conclusion of the existence of the upstream neutral mode. Our model also enables us to extract important quantitative information about nonequilibrium processes in Ohmic and tunneling contacts from the experimental data. In particular, for ν =2/3, we find a power-law dependence of the neutral mode temperature on the charge current injected from the Ohmic contact.

  3. Nonequilibrium green function approach to elastic and inelastic spin-charge transport in topological insulator-based heterostructures and magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad

    Current and future technological needs increasingly motivate the intensive scientific research of the properties of materials at the nano-scale. One of the most important domains in this respect at present concerns nano-electronics and its diverse applications. The great interest in this domain arises from the potential reduction of the size of the circuit components, maintaining their quality and functionality, and aiming at greater efficiency, economy, and storage characteristics for the corresponding physical devices. The aim of this thesis is to present a contribution to the analysis of the electronic charge and spin transport phenomena that occur at the quantum level in nano-structures. This thesis spans the areas of quantum transport theory through time-dependent systems, electron-boson interacting systems and systems of interest to spintronics. A common thread in the thesis is to develop the theoretical foundations and computational algorithms to numerically simulate such systems. In order to optimize the numerical calculations I resort to different techniques (such as graph theory in finding inverse of a sparse matrix, adaptive grids for integrations and programming languages (e.g., MATLAB and C++) and distributed computing tools (MPI, CUDA). Outline of the Thesis: After giving an introduction to the topics covered in this thesis in Chapter 1, I present the theoretical foundations to the field of non-equilibrium quantum statistics in Chapter 2. The applications of this formalism and the results are covered in the subsequent chapters as follows: Spin and charge quantum pumping in time-dependent systems: Covered in Chapters 3, 4 and 5, this topics was initially motivated by experiments on measuring voltage signal from a magnetic tunnel junction (MTJ) exposed to a microwave radiation in ferromagnetic resonance (FMR) condition. In Chapter 3 we found a possible explanation for the finite voltage signal measured from a tunnel junction consisting of only a single

  4. Electron Transport in Graphene From a Diffusion-Drift Perspective

    DTIC Science & Technology

    2010-02-24

    IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 3, MARCH 2010 681 Electron Transport in Graphene From a Diffusion-Drift Perspective Mario G...Ancona,Member, IEEE Abstract—A diffusion–drift treatment of electron and hole transport in macroscopic graphene is presented. The various ma- terial...applied to a variety of situations involving field-effect devices that are of potential technological interest. Both single and multilayer graphene are

  5. Electronic transport in organometallic perovskite CH{sub 3}NH{sub 3}PbI{sub 3}: The role of organic cation orientations

    SciTech Connect

    Berdiyorov, G. R. El-Mellouhi, F.; Madjet, M. E.; Rashkeev, S. N.; Alharbi, F. H.

    2016-02-01

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.

  6. Gate controlled electronic transport in monolayer MoS{sub 2} field effect transistor

    SciTech Connect

    Zhou, Y. F.; Wang, B.; Yu, Y. J.; Wei, Y. D. E-mail: jianwang@hku.hk; Xian, H. M.; Wang, J. E-mail: jianwang@hku.hk

    2015-03-14

    The electronic spin and valley transport properties of a monolayer MoS{sub 2} are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Due to the presence of strong Rashba spin orbit interaction (RSOI), the electronic valence bands of monolayer MoS{sub 2} are split into spin up and spin down Zeeman-like texture near the two inequivalent vertices K and K′ of the first Brillouin zone. When the gate voltage is applied in the scattering region, an additional strong RSOI is induced which generates an effective magnetic field. As a result, electron spin precession occurs along the effective magnetic field, which is controlled by the gate voltage. This, in turn, causes the oscillation of conductance as a function of the magnitude of the gate voltage and the length of the gate region. This current modulation due to the spin precession shows the essential feature of the long sought Datta-Das field effect transistor (FET). From our results, the oscillation periods for the gate voltage and gate length are found to be approximately 2.2 V and 20.03a{sub B} (a{sub B} is Bohr radius), respectively. These observations can be understood by a simple spin precessing model and indicate that the electron behaviors in monolayer MoS{sub 2} FET are both spin and valley related and can easily be controlled by the gate.

  7. Nonequilibrium functional renormalization group for interacting quantum systems.

    PubMed

    Jakobs, Severin G; Meden, Volker; Schoeller, Herbert

    2007-10-12

    We propose a nonequilibrium version of functional renormalization within the Keldysh formalism by introducing a complex-valued flow parameter in the Fermi or Bose functions of each reservoir. Our cutoff scheme provides a unified approach to equilibrium and nonequilibrium situations. We apply it to nonequilibrium transport through an interacting quantum wire coupled to two reservoirs and show that the nonequilibrium occupation induces new power law exponents for the conductance.

  8. Effect of tubular chiralities of single-walled ZnO nanotubes on electronic transport

    NASA Astrophysics Data System (ADS)

    Han, Qin; Liu, Zhenghui; Zhou, Liping; Yu, Yiqing; Wu, Xuemei

    2017-04-01

    The electronic transport properties of single-walled ZnO nanotubes with different chiralities are investigated by nonequilibrium Green's function combined with density functional theory. In this paper we consider three representative ZnO nanotubes, namely (3, 3) armchair, (5, 0) zigzag, and (4, 2) chiral, with a similar diameter of about 5.4 Å. Short nanotubes exhibit good conductance behavior. As the tube length increases, the conductance decreases at low bias and the nanotubes indicate semiconducting behavior. The current-voltage characteristics of the nanotubes longer than 3 nm depend weakly on the length of the tubes. The armchair and chiral ZnO nanotubes with the same length and diameter have almost overlapped current-voltage curves. The electron transport behaviors are analyzed in terms of the transmission spectra, density of states and charge population of these nanotubes. The results indicate that the resonant peaks above the Fermi level are responsible for electric currents. However, the zigzag ZnO nanotubes exhibit asymmetric current-voltage curves attributed to the built-in polarization field and give larger current than the armchair and chiral nanotubes at the same bias. The features explored here strongly suggest that the ZnO nanotubes are stable, flexible structures, which are valuable in Nano-Electromechanical System.

  9. The effect of molecular mobility on electronic transport in carbon nanotube-polymer composites and networks

    SciTech Connect

    Shenogin, Sergei; Lee, Jonghoon; Voevodin, Andrey A.; Roy, Ajit K.

    2014-12-21

    A multiscale modeling approach to the prediction of electrical conductivity in carbon nanotube (CNT)–polymer composite materials is developed, which takes into account thermally activated molecular mobility of the matrix and the CNTs. On molecular level, a tight-binding density functional theory and non-equilibrium Green's function method are used to calculate the static electron transmission function in the contact between two metallic carbon nanotubes that corresponds to electron transport at 0 K. For higher temperatures, the statistical distribution of effective contact resistances is considered that originates from thermal fluctuations of intermolecular distances caused by molecular mobility of carbon nanotube and the polymer matrix. Based on this distribution and using effective medium theory, the temperature dependence of macroscopic electrical resistivity for CNT-polymer composites and CNT mats is calculated. The predicted data indicate that the electrical conductivity of the CNT-polymer composites increases linearly with temperature above 50 K, which is in a quantitative agreement with the experiments. Our model predicts a slight nonlinearity in temperature dependence of electric conductivity at low temperatures for percolated composites with small CNT loading. The model also explains the effect of glass transition and other molecular relaxation processes in the polymer matrix on the composite electrical conductivity. The developed multiscale approach integrates the atomistic charge transport mechanisms in percolated CNT-polymer composites with the macroscopic response and thus enables direct comparison of the prediction with the measurements of macroscopic material properties.

  10. The effect of molecular mobility on electronic transport in carbon nanotube-polymer composites and networks

    NASA Astrophysics Data System (ADS)

    Shenogin, Sergei; Lee, Jonghoon; Voevodin, Andrey A.; Roy, Ajit K.

    2014-12-01

    A multiscale modeling approach to the prediction of electrical conductivity in carbon nanotube (CNT)-polymer composite materials is developed, which takes into account thermally activated molecular mobility of the matrix and the CNTs. On molecular level, a tight-binding density functional theory and non-equilibrium Green's function method are used to calculate the static electron transmission function in the contact between two metallic carbon nanotubes that corresponds to electron transport at 0 K. For higher temperatures, the statistical distribution of effective contact resistances is considered that originates from thermal fluctuations of intermolecular distances caused by molecular mobility of carbon nanotube and the polymer matrix. Based on this distribution and using effective medium theory, the temperature dependence of macroscopic electrical resistivity for CNT-polymer composites and CNT mats is calculated. The predicted data indicate that the electrical conductivity of the CNT-polymer composites increases linearly with temperature above 50 K, which is in a quantitative agreement with the experiments. Our model predicts a slight nonlinearity in temperature dependence of electric conductivity at low temperatures for percolated composites with small CNT loading. The model also explains the effect of glass transition and other molecular relaxation processes in the polymer matrix on the composite electrical conductivity. The developed multiscale approach integrates the atomistic charge transport mechanisms in percolated CNT-polymer composites with the macroscopic response and thus enables direct comparison of the prediction with the measurements of macroscopic material properties.

  11. Terahertz electromodulation spectroscopy of electron transport in GaN

    NASA Astrophysics Data System (ADS)

    Engelbrecht, S. G.; Arend, T. R.; Zhu, T.; Kappers, M. J.; Kersting, R.

    2015-03-01

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  12. Terahertz electromodulation spectroscopy of electron transport in GaN

    SciTech Connect

    Engelbrecht, S. G.; Arend, T. R.; Kersting, R.; Zhu, T.; Kappers, M. J.

    2015-03-02

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  13. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange

  14. Molecular electronics: some views on transport junctions and beyond.

    PubMed

    Joachim, Christian; Ratner, Mark A

    2005-06-21

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.

  15. Analysis of electron transport in the plasma of thermionic converters

    SciTech Connect

    Stoenescu, M.L.; Heinicke, P.H.

    1980-03-01

    Electron transport coefficients of a gaseous ensemble are expressed analytically as function of density, and are expressed analytically as function of temperature up to an unknown function which has to be evaluated for each specific electron-neutral atom cross section. In order to complete the analytical temperature dependence one may introduce a polynomial expansion of the function or one may derive the temperature dependence of a set of coefficients, numbering thirteen for a third approximation transport evaluation, which completely determine the transport coefficients. The latter approach is used for determining the electron transport coefficients of a cesium plasma for any ion neutral composition and any temperature between 500/sup 0/K and 3500/sup 0/K. The relation between the transport coefficients of a fully and partly ionized gas is readily available and shows that, in the classical formalism, electron-ion and electron-neutral resistivities are not additive. The present form of the transport coefficients makes possible an accurate numerical integration of transport equations eliminating lengthy computations which are frequently inaccessible. It thus provides a detailed knowledge of spatial distribution of particle and energy transport and makes possible the determination of one of the three internal voltage drops, surface barrier, sheath and plasma, which are linked together experimentally by current density versus voltage characteristics of thermionic converters.

  16. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    cosmos collapsed from the uniform plasma stage into stars and empty space, practically nothing is in real equilibrium only in local equilibrium. How wrong we were. As our focus turned to anti particles, positrons and positronium, we realized that even in those early stages there was major non-equilibrium between matter and anti matter originating from the earliest stages of the Big Bang. Thus it is safe to correct the famous quote by the renowned natural philosopher Sheldon Cooper into: 'If you know the laws of [non-equilibrium] physics anything is possible'. From the matter-anti-matter ratio in the universe to life itself. But do we really need such farfetched introductory remarks to justify our scientific choices? It suffices to focus on non-equilibrium plasmas and transport of pollutants in the air and see how many new methods for diagnostics and treatment have been proposed for medicine in the past 10 years. So in addition to the past major achievements such as plasma etching for integrated circuit production, the field is full of possibilities and truly, almost anything is possible. We hope that some of the papers presented here summarize well how we learn about the laws of non-equilibrium physics in the given context of plasmas and air pollution and how we open new possibilities for further understanding and further applications. A wide range of topics is covered in this volume. This time we start with elementary collisional processes and a review of the data for excitation of polyatomic molecules obtained by the binary collision experiments carried out at the Institute of Physics in Belgrade by the group of Bratislav Marinković. A wide range of activities on the foundation of gaseous positronics ranging from new measurements in the binary regime to the simulation of collective transport in dense gases is presented by James Sullivan and coworkers. This work encompasses three continents, half a dozen groups and several lectures at the workshops while also covering

  17. Fast electron generation and transport in a turbulent, magnetized plasma

    SciTech Connect

    Stoneking, Matthew Randall

    1994-05-01

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 x 106 m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 x 1011 cm-3 independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a~0.9, but rises the level of the expected total particle losses inside r/a~0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST.

  18. Hot electron transport and current sensing

    NASA Astrophysics Data System (ADS)

    Abraham, Mathew Cheeran

    The effect of hot electrons on momentum scattering rates in a two-dimensional electron gas is critically examined. It is shown that with hot electrons it is possible to explore the temperature dependence of individual scattering mechanisms not easily probed under equilibrium conditions; both the Bloch-Gruneisen (BG) phonon scattering phenomena and the reduction in impurity scattering are clearly observed. The theoretical calculations are consistent with the results obtained from hot electrons experiments. As a function of bias current, a resistance peak is formed in a 2DEG if the low temperature impurity limited mobilities muI( T = 0) is comparable to muph(TBG ) the phonon limited mobility at the critical BG temperature. In this case, as the bias current is increased, the electron temperature Te rises due to Joule heating and the rapid increase in phonon scattering can be detected before the effect of the reduction in impurity scattering sets in. If muI(T = 0) << muph(TBG), there is no peak in resistance because the impurity scattering dominates sufficiently and its reduction has a much stronger effect on the total resistance than the rise in phonon scattering. Furthermore, knowing the momentum relaxation rates allows us to analyze the possible interplay between electron-electron and electron-boundary scattering. The prediction that a Knudsen to Poiseuille (KP) transition similar to that of a classical gas can occur in electron flow [26] is examined for the case of a wire defined in a 2DEG. Concurrently, an appropriate current imaging technique to detect this transition is sought. A rigorous evaluation of magnetic force microscopy (MFM) as a possible candidate to detect Poiseuille electronic flow was conducted, and a method that exploits the mechanical resonance of the MFM cantilever was implemented to significantly improve its current sensitivity.

  19. Electron transport-dependent taxis in Rhodobacter sphaeroides.

    PubMed

    Gauden, D E; Armitage, J P

    1995-10-01

    Rhodobacter sphaeroides showed chemotaxis to the terminal electron acceptors oxygen and dimethyl sulfoxide, and the responses to these effectors were shown to be influenced by the relative activities of the different electron transport pathways. R. sphaeroides cells tethered by their flagella showed a step-down response to a decrease in the oxygen or dimethyl sulfoxide concentration when using them as terminal acceptors. Bacteria using photosynthetic electron transport, however, showed a step-down response to oxygen addition. Addition of the proton ionophore carbonyl cyanide 4-trifluoromethoxyphenylhydrazone did not cause a transient behavioral response, although it decreased the electrochemical proton gradient (delta p) and increased the rate of electron transport. However, removal of the ionophore, which caused an increase in delta p and a decrease in the electron transport rate, resulted in a step-down response. Together, these data suggest that behavioral responses of R. sphaeroides to electron transport effectors are caused by changes in the rate of electron transport rather than changes in delta p.

  20. Non-nuclear Electron Transport Channels in Hollow Molecules

    SciTech Connect

    Zhao, Jin; Petek, Hrvoje

    2014-08-15

    Electron transport in inorganic semiconductors and metals occurs through delocalized bands formed by overlapping electron orbitals. Strong correlation of electronic wave functions with the ionic cores couples the electron and lattice motions, leading to efficient interaction and scattering that degrades coherent charge transport. By contrast, unoccupied electronic states at energies near the vacuum level with diffuse molecular orbitals may form nearly-free-electron bands with density maxima in non-nuclear interstitial voids, which are subject to weaker electron-phonon interaction. The position of such bands typically above the frontier orbitals, however, renders them unstable with respect to electronic interband relaxation and therefore unsuitable for charge transport. Through electronic-structure calculations, we engineer stable, non-nuclear, nearly-free-electron conduction channels in low-dimensional molecular materials by tailoring their electrostatic and polarization potentials. We propose quantum structures of graphane-derived Janus molecular sheets with spatially isolated conducting and insulating regions that potentially exhibit emergent electronic properties, as a paradigm for molecular-scale non-nuclear charge conductors; we also describe tuning of their electronic properties by application of external fields and calculate their electron–acoustic-phonon interaction.

  1. Nonequilibrium detonation of composite explosives

    SciTech Connect

    Nichols III, A.L.

    1997-07-01

    The effect of nonequilibrium diffusional flow on detonation velocities in composite explosives is examined. Detonation conditions are derived for complete equilibrium, temperature and pressure equilibrium, and two forms of pressure equilibrium. Partial equilibria are associated with systems which have not had sufficient time for transport to smooth out the gradients between spatially separate regions. The nonequilibrium detonation conditions are implemented in the CHEQ equation of state code. We show that the detonation velocity decreases as the non-chemical degrees of freedom of the explosive are allowed to equilibrate. It is only when the chemical degrees of freedom are allowed to equilibrate that the detonation velocity increases.

  2. Transport of electrons in lead oxide studied by CELIV technique

    NASA Astrophysics Data System (ADS)

    Semeniuk, O.; Juska, G.; Oelerich, J. O.; Jandieri, K.; Baranovskii, S. D.; Reznik, A.

    2017-01-01

    Although polycrystalline lead oxide (PbO) has a long history of application in optoelectronics and imaging, the transport mechanism for electrons in this material has not yet been clarified. Using the photo-generated charge extraction by linear increasing voltage (photo-CELIV) technique, we provide the temperature- and field-dependences of electron mobility in poly-PbO. It is found that electrons undergo dispersive transport, i.e. their mobility decreases in the course of time. Multiple trapping of electrons from the conduction band into the developed band tail is revealed as the dominant transport mechanism. This differs dramatically from the dispersive transport of holes in the same material, dominated by topological factors and not by energy disorder.

  3. High-field electron transport in GaN under crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Kochelap, V. A.; Korotyeyev, V. V.; Syngayivska, G. I.; Varani, L.

    2015-10-01

    High-field electron transport studied in crossed electric and magnetic fields in bulk GaN with doping of 1016 cm-3, compensation around 90% at the low lattice temperature (30 K). It was found the range of the magnetic and electric fields where the non-equilibrium electron distribution function has a complicated topological structure in the momentum space with a tendency to the formation of the inversion population. Field dependences of dissipative and Hall components of the drift velocity were calculated for the samples with short- and open- circuited Hall contacts in wide ranges of applied electric (0 — 20 kV/cm) and magnetic (1 — 10 T) fields. For former sample, field dependences of dissipative and Hall components of the drift velocity have a non-monotonic behavior. The dissipative component has the inflection point which corresponds to the maximum point of the Hall component. For latter sample, the drift velocity demonstrate a usual sub-linear growth without any critical points. We found that GaN samples with controlled resistance of the Hall circuit can be utilized as a electronic high-power switch.

  4. Transport of runaway and thermal electrons due to magnetic microturbulence

    SciTech Connect

    Mynick, H.E.; Strachan, J.D.

    1981-04-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are displaced from the magnetic surfaces. Comparison with experimental data from LT-3, Ormak, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy.

  5. Simulation of electron thermal transport in H-mode discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-03-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  6. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  7. SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2012-09-20

    During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

  8. Nano-structured electron transporting materials for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  9. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-28

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  10. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  11. Study of Electron Transport and Amplification in Diamond

    SciTech Connect

    Ben-Zvi, Ilan; Muller, Erik

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  12. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  13. Coherent electron transport in a helical nanotube

    NASA Astrophysics Data System (ADS)

    Liang, Guo-Hua; Wang, Yong-Long; Du, Long; Jiang, Hua; Kang, Guang-Zhen; Zong, Hong-Shi

    2016-09-01

    The quantum dynamics of carriers bound to helical tube surfaces is investigated in a thin-layer quantization scheme. By numerically solving the open-boundary Schrödinger equation in curvilinear coordinates, geometric effect on the coherent transmission spectra is analysed in the case of single propagating mode as well as multimode. It is shown that, the coiling endows the helical nanotube with different transport properties from a bent cylindrical surface. Fano resonance appears as a purely geometric effect in the conductance, the corresponding energy of quasibound state is obviously influenced by the torsion and length of the nanotube. We also find new plateaus in the conductance. The transport of double-degenerate mode in this geometry is reminiscent of the Zeeman coupling between the magnetic field and spin angular momentum in quasi-one-dimensional structure.

  14. Electronic transport and scattering times in tungsten-decorated graphene

    NASA Astrophysics Data System (ADS)

    Elias, Jamie A.; Henriksen, Erik A.

    2017-02-01

    The electronic transport properties of a monolayer graphene device have been studied before and after the deposition of a dilute coating of tungsten adatoms on the surface. For coverages up to 2.5% of a monolayer, we find tungsten adatoms simultaneously donate electrons to graphene and reduce the carrier mobility, impacting the zero- and finite-field transport properties. Two independent transport analyses suggest the adatoms lie nearly 1 nm above the surface. The presence of adatoms is also seen to impact the low-field magnetoresistance, altering the signatures of weak localization.

  15. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  16. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Chao; Xin, Zi-Hua; Feng, Li-Ya

    2010-02-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.

  17. A Deterministic Computational Procedure for Space Environment Electron Transport

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.

    2010-01-01

    A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.

  18. Electron transport through nuclear pasta in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.

    2015-10-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so-called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  19. PREFACE: Progress in Nonequilibrium Green's Functions IV

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael; Balzer, Karsten

    2010-04-01

    This is the fourth volume1 of articles on the theory of Nonequilibrium Green's functions (NEGF) and their modern application in various fields such as plasma physics, semiconductor physics, molecular electronics and high energy physics. It contains 23 articles written by experts in many-body theory and quantum transport who summarize recent progress in their respective area of research. The articles are based on talks given at the interdisciplinary conference Progress in Nonequilibrium Green's functions IV which was held 17-21 August 2009 at the University of Glasgow, Scotland. This conference continues the tradition of the previous meetings which started in 1999 and which aimed at an informal exchange across field boundaries. The previous meetings and the earlier proceedings proved to be very stimulating not only for young researchers but also for experienced scientists, and we are convinced that this fourth volume will be as successful as the previous ones. As before, this volume includes only extended review-type papers which are written in a way that they are understandable to a broad interdisciplinary audience. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administrated by the Editors assuring highest scientific standards. In the review process some papers were substantially revised and improved and some were rejected. This conference would not have been possible without the remarkable work of the local organizing team around John Barker and Scott Roy and the generous financial support from the University of Glasgow and the Deutsche Forschungsgemeinschaft via SFB-Transregio 24. Michael Bonitz and Karsten Balzer Kiel, February 2010 1 The first two volumes are Progress in Nonequilibrium Green's functions, M Bonitz (ed) and Progress in Nonequilibrium Green's functions II, M Bonitz and D Semkat (eds), which were published by World Scientific (Singapore), in 2000 and 2003, respectively (ISBN

  20. Ghost transmission: How large basis sets can make electron transport calculations worse

    SciTech Connect

    Herrmann, Carmen; Solomon, Gemma C.; Subotnik, Joseph E.; Mujica, Vladimiro; Ratner, Mark A.

    2010-01-01

    The Landauer approach has proven to be an invaluable tool for calculating the electron transport properties of single molecules, especially when combined with a nonequilibrium Green’s function approach and Kohn–Sham density functional theory. However, when using large nonorthogonal atom-centered basis sets, such as those common in quantum chemistry, one can find erroneous results if the Landauer approach is applied blindly. In fact, basis sets of triple-zeta quality or higher sometimes result in an artificially high transmission and possibly even qualitatively wrong conclusions regarding chemical trends. In these cases, transport persists when molecular atoms are replaced by basis functions alone (“ghost atoms”). The occurrence of such ghost transmission is correlated with low-energy virtual molecular orbitals of the central subsystem and may be interpreted as a biased and thus inaccurate description of vacuum transmission. An approximate practical correction scheme is to calculate the ghost transmission and subtract it from the full transmission. As a further consequence of this study, it is recommended that sensitive molecules be used for parameter studies, in particular those whose transmission functions show antiresonance features such as benzene-based systems connected to the electrodes in meta positions and other low-conducting systems such as alkanes and silanes.

  1. Electron transport in micro to nanoscale solid state networks

    NASA Astrophysics Data System (ADS)

    Fairbanks, Matthew Stetson

    This dissertation focuses on low-dimensional electron transport phenomena in devices ranging from semiconductor electron 'billiards' to semimetal atomic clusters to gold nanoparticles. In each material system, the goal of this research is to understand how carrier transport occurs when many elements act in concert. In the semiconductor electron billiards, magnetoconductance fluctuations, the result of electron quantum interference within the device, are used as a probe of electron transport through arrays of one, two, and three connected billiards. By combining two established analysis techniques, this research demonstrates a novel method for determining the quantum energy level spacing in each of the arrays. That information in turn shows the extent (and limits) of the phase-coherent electron wavefunction in each of the devices. The use of the following two material systems, the semimetal atomic clusters and the gold nanoparticles, is inspired by the electron billiard results. First, the output of the simple, rectangular electron billiards, the magnetoconductance fluctuations, is quite generally found to be fractal. This research addresses the question of what output one might expect from a device with manifestly fractal geometry by simulating the electrical response of fractal resistor networks and by outlining a method to implement such devices in fractal aggregates of semimetal atomic clusters. Second, in gold nanoparticle arrays, the number of array elements can increase by orders of magnitude over the billiard arrays, all with the potential to stay in a similar, phase-coherent transport regime. The last portion of this dissertation details the fabrication of these nanoparticle-based devices and their electrical characteristics, which exhibit strong evidence for electron transport in the Coulomb-blockade regime. A sketch for further 'off-blockade' experiments to realize magnetoconductance fluctuations, i.e. phase-coherent electron phenomena, is presented.

  2. Treating electron transport in MCNP{sup trademark}

    SciTech Connect

    Hughes, H.G.

    1996-12-31

    The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. The theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.

  3. Dissipative dynamics of a quantum two-state system in presence of nonequilibrium quantum noise

    NASA Astrophysics Data System (ADS)

    Mann, Niklas; Brüggemann, Jochen; Thorwart, Michael

    2016-12-01

    We analyze the real-time dynamics of a quantum two-state system in the presence of nonequilibrium quantum fluctuations. The latter are generated by a coupling of the two-state system to a single electronic level of a quantum dot which carries a nonequilibrium tunneling current. We restrict to the sequential tunneling regime and calculate the dynamics of the two-state system, of the dot population, and of the nonequilibrium charge current on the basis of a diagrammatic perturbative method valid for a weak tunneling coupling. We find a nontrivial dependence of the relaxation and dephasing rates of the two-state system due to the nonequilibrium fluctuations which is directly linked to the structure of the unperturbed central system. In addition, a Heisenberg-Langevin-equation of motion allows us to calculate the correlation function of the nonequilibrium fluctuations. By this, we obtain a generalized nonequilibrium fluctuation relation which includes the equilibrium fluctuation-dissipation theorem in the limit of zero transport voltage. A straightforward extension to the case with a time-periodic ac voltage is shown.

  4. Topological transport in Dirac electronic systems: A concise review

    NASA Astrophysics Data System (ADS)

    Song, Hua-Ding; Sheng, Dian; Wang, An-Qi; Li, Jin-Guang; Yu, Da-Peng; Liao, Zhi-Min

    2017-03-01

    Various novel physical properties have emerged in Dirac electronic systems, especially the topological characters protected by symmetry. Current studies on these systems have been greatly promoted by the intuitive concepts of Berry phase and Berry curvature, which provide precise definitions of the topological orders. In this topical review, transport properties of topological insulator (Bi2Se3), topological Dirac semimetal (Cd3As2) and topological insulator-graphene heterojunction are presented and discussed. Perspectives about transport properties of two-dimensional topological nontrivial systems, including topological edge transport, topological valley transport and topological Weyl semimetals, are provided.

  5. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  6. Monte Carlo simulations of electron transport in strongly attaching gases

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Miric, Jasmina; Simonovic, Ilija; Bosnjakovic, Danko; Dujko, Sasa

    2016-09-01

    Extensive loss of electrons in strongly attaching gases imposes significant difficulties in Monte Carlo simulations at low electric field strengths. In order to compensate for such losses, some kind of rescaling procedures must be used. In this work, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The discrete rescaling procedure is based on duplication of electrons randomly chosen from the remaining swarm at certain discrete time steps. The continuous rescaling procedure employs a dynamically defined fictitious ionization process with the constant collision frequency chosen to be equal to the attachment collision frequency. These procedures should not in any way modify the distribution function. Monte Carlo calculations of transport coefficients for electrons in SF6 and CF3I are performed in a wide range of electric field strengths. However, special emphasis is placed upon the analysis of transport phenomena in the limit of lower electric fields where the transport properties are strongly affected by electron attachment. Two important phenomena arise: (1) the reduction of the mean energy with increasing E/N for electrons in SF6, and (2) the occurrence of negative differential conductivity in the bulk drift velocity of electrons in both SF6 and CF3I.

  7. First principles study on the electronic transport properties of C60 and B80 molecular bridges

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Hao, H.; Lan, J.; Wang, X. L.; Shi, X. Q.; Zeng, Z.

    2014-08-01

    The electronic transport properties of molecular bridges constructed by C60 and B80 molecules which have the same symmetry are investigated by first principles calculations combined with a non-equilibrium Green's function technique. It is found that, like C60, monomer B80 is a good conductor arising from the charge transfer from the leads to the molecule, while the dimer (B80)2 and (C60)2 are both insulators due to the potential barrier formed at the molecule-molecule interface. Our further study shows that, although both the homogeneous dimer (B80)2 and (C60)2 display poor conductivity, the heterogeneous dimer B80C60 shows a very high conductance as a result from the decreased HOMO-LUMO gap and the excess charge redistribution. Finally, we find that the conductivity of both (B80)2 and (C60)2 can be significantly improved by electron doping, for example, by doping C in (B80)2 and doping N in (C60)2.

  8. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  9. Electronic Structure and Transport in Magnetic Multilayers

    SciTech Connect

    2008-02-18

    ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed as inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.

  10. Evidence for global electron transportation into the jovian inner magnetosphere.

    PubMed

    Yoshioka, K; Murakami, G; Yamazaki, A; Tsuchiya, F; Kimura, T; Kagitani, M; Sakanoi, T; Uemizu, K; Kasaba, Y; Yoshikawa, I; Fujimoto, M

    2014-09-26

    Jupiter's magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves.

  11. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: the soil (heat-moisture-vapor) HMV-Model Version 1

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2015-11-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMV-model, a 1-D (one-dimensional) non-equilibrium (liquid-vapor phase change) model of soil evaporation that simulates the coupled simultaneous transport of heat, soil moisture, and water vapor. This model is intended for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. It employs a linearized Crank-Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations, which were obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m-2. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. Some unusual aspects of the model that were found to be extremely important to the model's performance include (1) a dynamic (temperature and moisture potential dependent) condensation coefficient associated with the evaporative source term, (2) an infrared radiation component to the soil's thermal conductivity, and (3) a dynamic residual soil moisture. This last term, which is parameterized as a function of temperature and soil water potential, is incorporated into the water retention curve and hydraulic conductivity functions in order to improve the model's ability to capture the evaporative dynamics of the strongly bound soil moisture, which requires temperatures well beyond 150 °C to fully evaporate. The model also includes film flow, although this phenomenon did not contribute much to the model's overall performance. In general, the model simulates the laboratory-observed temperature dynamics quite well, but is less precise (but

  12. Unification of trap-limited electron transport in semiconducting polymers.

    PubMed

    Nicolai, H T; Kuik, M; Wetzelaer, G A H; de Boer, B; Campbell, C; Risko, C; Brédas, J L; Blom, P W M

    2012-10-01

    Electron transport in semiconducting polymers is usually inferior to hole transport, which is ascribed to charge trapping on isolated defect sites situated within the energy bandgap. However, a general understanding of the origin of these omnipresent charge traps, as well as their energetic position, distribution and concentration, is lacking. Here we investigate electron transport in a wide range of semiconducting polymers by current-voltage measurements of single-carrier devices. We observe for this materials class that electron transport is limited by traps that exhibit a gaussian energy distribution in the bandgap. Remarkably, the electron-trap distribution is identical for all polymers considered: the number of traps amounts to 3 × 10(23) traps per m(3) centred at an energy of ~3.6 eV below the vacuum level, with a typical distribution width of ~0.1 eV. This indicates that the electron traps have a common origin that, we suggest, is most likely related to hydrated oxygen complexes. A consequence of this finding is that the trap-limited electron current can be predicted for any polymer.

  13. Recovery of SINIS turnstile accuracy in a strongly nonequilibrium regime

    NASA Astrophysics Data System (ADS)

    Khaymovich, I. M.; Basko, D. M.

    2016-10-01

    We perform a theoretical study of nonequilibrium effects in charge transport through a hybrid single-electron transistor based on a small normal metal (N) island with the gate-controlled number of electrons, tunnel-coupled to voltage-biased superconducting (S) electrodes (SINIS). Focusing on the turnstile mode of the transistor operation with the gate voltage driven periodically, and electrons on the island being out of equilibrium, we find that the current quantization accuracy is a nonmonotonic function of the relaxation rate ΓF of the distribution function F (ɛ ) on the island due to tunneling, as compared to the drive frequency f , electron-electron 1 /τe e , and electron-phonon 1 /τe p h relaxation rates. Surprisingly, in the strongly nonequilibrium regime, f ≫ΓF≫τee -1,τep h -1 , the turnstile current plateau is recovered, similarly to the ideal equilibrium regime, τep h -1≫ΓF . The plateau is destroyed in the quasiequilibrium regime when the electron-electron relaxation is faster than tunneling.

  14. Thermochemical nonequilibrium in atomic hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Scott, R. K.

    1972-01-01

    A numerical study of the nonequilibrium flow of atomic hydrogen in a cascade arc was performed to obtain insight into the physics of the hydrogen cascade arc. A rigorous mathematical model of the flow problem was formulated, incorporating the important nonequilibrium transport phenomena and atomic processes which occur in atomic hydrogen. Realistic boundary conditions, including consideration of the wall electrostatic sheath phenomenon, were included in the model. The governing equations of the asymptotic region of the cascade arc were obtained by writing conservation of mass and energy equations for the electron subgas, an energy conservation equation for heavy particles and an equation of state. Finite-difference operators for variable grid spacing were applied to the governing equations and the resulting system of strongly coupled, stiff equations were solved numerically by the Newton-Raphson method.

  15. Effect of dephasing on DNA sequencing via transverse electronic transport

    SciTech Connect

    Zwolak, Michael; Krems, Matt; Pershin, Yuriy V; Di Ventra, Massimiliano

    2009-01-01

    We study theoretically the effects of dephasing on DNA sequencing in a nanopore via transverse electronic transport. To do this, we couple classical molecular dynamics simulations with transport calculations using scattering theory. Previous studies, which did not include dephasing, have shown that by measuring the transverse current of a particular base multiple times, one can get distributions of currents for each base that are distinguishable. We introduce a dephasing parameter into transport calculations to simulate the effects of the ions and other fluctuations. These effects lower the overall magnitude of the current, but have little effect on the current distributions themselves. The results of this work further implicate that distinguishing DNA bases via transverse electronic transport has potential as a sequencing tool.

  16. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan.

    PubMed

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P; Sanz, Alberto

    2016-04-12

    Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.

  17. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M.; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P.; Sanz, Alberto

    2016-01-01

    Summary Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging. PMID:27076081

  18. Signatures of the electronic nature of pairing in high-T(c) superconductors obtained by non-equilibrium boson spectroscopy.

    PubMed

    Krasnov, Vladimir M; Katterwe, Sven-Olof; Rydh, Andreas

    2013-01-01

    Understanding the pairing mechanism that gives rise to high-temperature superconductivity is one of the longest-standing problems of condensed-matter physics. Almost three decades after its discovery, even the question of whether or not phonons are involved remains a point of contention to some. Here we describe a technique for determining the spectra of bosons generated during the formation of Cooper pairs on recombination of hot electrons as they tunnel between the layers of a cuprate superconductor. The results obtained indicate that the bosons that mediate pairing decay over micrometre-scale distances and picosecond timescales, implying that they propagate at a speed of around 10⁶ m s⁻¹. This value is more than two orders of magnitude greater than the phonon propagation speed but close to Fermi velocity for electrons, suggesting that the pairing mechanism is mediated by unconventional repulsive electron-electron, rather than attractive electron-phonon, interactions.

  19. Progress in Simulating Turbulent Electron Thermal Transport in NSTX

    SciTech Connect

    Guttenfelder, Walter; Kaye, S. M.; Ren, Y.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Peterson, J. L.; Nevins, W. M.; Candy, J.; Yuh, H.

    2013-07-17

    Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing (MT) turbulence in a high-beta NSTX H-mode discharge predict experimental levels of electron thermal transport that are dominated by magnetic flutter and increase with collisionality, roughly consistent with energy confinement times in dimensionless collisionality scaling experiments. Electron temperature gradient (ETG) simulations predict significant electron thermal transport in some low and high beta discharges when ion scales are suppressed by E x B shear. Although the predicted transport in H-modes is insensitive to variation in collisionality (inconsistent with confinement scaling), it is sensitive to variations in other parameters, particularly density gradient stabilization. In reversed shear (RS) Lmode discharges that exhibit electron internal transport barriers, ETG transport has also been shown to be suppressed nonlinearly by strong negative magnetic shear, s<<0. In many high beta plasmas, instabilities which exhibit a stiff beta dependence characteristic of kinetic ballooning modes (KBM) are sometimes found in the core region. However, they do not have a distinct finite beta threshold, instead transitioning gradually to a trapped electron mode (TEM) as beta is reduced to zero. Nonlinear simulations of this "hybrid" TEM/KBM predict significant transport in all channels, with substantial contributions from compressional magnetic perturbations. As multiple instabilities are often unstable simultaneously in the same plasma discharge, even on the same flux surface, unique parametric dependencies are discussed which may be useful for distinguishing the different mechanisms experimentally.

  20. Coherently driven, ultrafast electron-phonon dynamics in transport junctions

    SciTech Connect

    Szekely, Joshua E.; Seideman, Tamar

    2014-07-28

    Although the vast majority of studies of transport via molecular-scale heterojunctions have been conducted in the (static) energy domain, experiments are currently beginning to apply time domain approaches to the nanoscale transport problem, combining spatial with temporal resolution. It is thus an opportune time for theory to develop models to explore both new phenomena in, and new potential applications of, time-domain, coherently driven molecular electronics. In this work, we study the interaction of a molecular phonon with an electronic wavepacket transmitted via a conductance junction within a time-domain model that treats the electron and phonon on equal footing and spans the weak to strong electron-phonon coupling strengths. We explore interference between two coherent energy pathways in the electronic subspace, thus complementing previous studies of coherent phenomena in conduction junctions, where the stationary framework was used to study interference between spatial pathways. Our model provides new insights into phase decoherence and population relaxation within the electronic subspace, which have been conventionally treated by density matrix approaches that often rely on phenomenological parameters. Although the specific case of a transport junction is explored, our results are general, applying also to other instances of coupled electron-phonon systems.

  1. Electron cross-sections and transport in liquids and biomolecules

    NASA Astrophysics Data System (ADS)

    White, Ronald; Casey, M.; Cocks, D.; Konvalov, D.; Brunger, M. J.; Garcia, G.; Petrovic, Z.; McEachran, R.; Buckman, S. J.; de Urquijo, J.

    2016-09-01

    Modelling of electron induced processes in plasma medicine and radiation damage is reliant on accurate self-consistent sets of cross-sections for electrons in tissue. These cross-sections (and associated transport theory) must accurately account not only the electron-biomolecule interactions but also for the soft-condensed nature of tissue. In this presentation, we report on recent swarm experiments for electrons in gaseous water and tetrahydrofuran using the pulsed-Townsend experiment, and the associated development of self-consistent cross-section sets that arise from them. We also report on the necessary modifications to gas-phase cross-sections required to accurately treat electron transport in liquids. These modifications involve the treatment of coherent scattering and screening of the electron interaction potential as well as the development of a new transport theory to accommodate these cross-sections. The accuracy of the ab-initio cross-sections is highlighted through comparison of theory and experiment for electrons in liquid argon and xenon.

  2. Quantum Transport in Solids: Two-Electron Processes.

    DTIC Science & Technology

    1995-07-01

    The central objective of this research program has been to study theoretically the underlying principles of quantum transport in solids. The area of...research investigated has emphasized the understanding of two electron processes in quantum transport . The problems have been treated analytically to...the extent possible through the use of dynamical localized Wannier functions. These results have been and are being incorporated in a full quantum

  3. Quantum Transport in Solids: Two-Electron Processes.

    DTIC Science & Technology

    1995-06-01

    The central objective of this research program has been to study theoretically the underlying principles of quantum transport in solids. The area of...research investigated has emphasized the understanding of two electron processes in quantum transport . The problems have been treated analytically to...the extent possible through the use of dynamical localized Wannier functions. These results have been and are being incorporated in a full quantum

  4. Collective microdynamics and noise suppression in dispersive electron beam transport

    SciTech Connect

    Gover, Avraham; Dyunin, Egor; Duchovni, Tamir; Nause, Ariel

    2011-12-15

    A general formulation is presented for deep collective interaction micro-dynamics in dispersive e-beam transport. In the regime of transversely coherent interaction, the formulation is applicable to both coherent and random temporal modulation of the electron beam. We demonstrate its use for determining the conditions for suppressing beam current noise below the classical shot-noise level by means of transport through a dispersive section with a small momentum compaction parameter.

  5. Simulation of electron transport in quantum well devices

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Gullapalli, K. K.; Reddy, V. R.; Neikirk, D. P.

    1992-01-01

    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior.

  6. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  7. Origin of electronic transport of lithium phthalocyanine iodine crystal

    SciTech Connect

    Koike, Noritake; Oda, Masato; Shinozuka, Yuzo

    2013-12-04

    The electronic structures of Lithium Phthalocyanine Iodine are investigated using density functional theory. Comparing the band structures of several model crystals, the metallic conductivity of highly doped LiPcI{sub x} can be explained by the band of doped iodine. These results reveal that there is a new mechanism for electronic transport of doped organic semiconductors that the dopant band plays the main role.

  8. Study of Electron Transport and Amplification in Diamond

    SciTech Connect

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  9. Electron transport in EBT in the low collision frequency limit

    SciTech Connect

    Hastings, D.E.

    1984-06-01

    A variational principle formulation is used to calculate the electron neoclassical transport coefficients in a bumpy torus for the low collisionality regime. The electron radial drift is calculated as a function of the plasma position and the poloidal electric field which is determined self-consistently. A bounce-averaged differential collision operator is used and the results are compared to previous treatments using a BGK operator.

  10. Dynamics of charge transfer: Rate processes formulated with nonequilibrium Green's functions

    SciTech Connect

    Yeganeh, Sina; Ratner, Mark A.; Mujica, Vladimiro

    2007-04-28

    The authors examine the connection between electron transport under bias in a junction and nonadiabatic intramolecular electron transfer (ET). It is shown that under certain assumptions it is possible to define a stationary current that allows the computation of the intramolecular transfer rate using the same formalism that is employed in the description of transport. They show that the nonequilibrium Green's function formalism of quantum transport can be used to calculate the ET rate. The formal connection between electron transport and electron transfer is made, and they work out the simple case of an electronic level coupled to a vibrational mode representing a thermal bath and show that the result is the same as expected from a Fermi golden rule treatment, and in the high-temperature limit yields the Marcus electron transfer theory. The usefulness of this alternative formulation of rates is discussed.

  11. Electron transport in magnetrons by a posteriori Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Costin, C.; Minea, T. M.; Popa, G.

    2014-02-01

    Electron transport across magnetic barriers is crucial in all magnetized plasmas. It governs not only the plasma parameters in the volume, but also the fluxes of charged particles towards the electrodes and walls. It is particularly important in high-power impulse magnetron sputtering (HiPIMS) reactors, influencing the quality of the deposited thin films, since this type of discharge is characterized by an increased ionization fraction of the sputtered material. Transport coefficients of electron clouds released both from the cathode and from several locations in the discharge volume are calculated for a HiPIMS discharge with pre-ionization operated in argon at 0.67 Pa and for very short pulses (few µs) using the a posteriori Monte Carlo simulation technique. For this type of discharge electron transport is characterized by strong temporal and spatial dependence. Both drift velocity and diffusion coefficient depend on the releasing position of the electron cloud. They exhibit minimum values at the centre of the race-track for the secondary electrons released from the cathode. The diffusion coefficient of the same electrons increases from 2 to 4 times when the cathode voltage is doubled, in the first 1.5 µs of the pulse. These parameters are discussed with respect to empirical Bohm diffusion.

  12. Role of Inelastic Electron–Phonon Scattering in Electron Transport through Ultra-Scaled Amorphous Phase Change Material Nanostructures

    SciTech Connect

    Liu, Jie; Xu, Xu; Anantram, M.P.

    2014-09-01

    The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.

  13. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    SciTech Connect

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin -ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.

  14. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  15. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  16. Fluctuating-bias controlled electron transport in molecular junctions

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; MacKinnon, Angus; Kantorovich, Lev

    2016-05-01

    We consider the problem of transport through a multiterminal molecular junction in the presence of a stochastic bias, which can also be used to describe transport through fluctuating molecular energy levels. To describe these effects, we first make a simple extension of our previous work [Phys. Rev. B 91, 125433 (2015), 10.1103/PhysRevB.91.125433] to show that the problem of tunneling through noisy energy levels can be mapped onto the problem of a noisy driving bias, which appears in the Kadanoff-Baym equations for this system in an analogous manner to the driving term in the Langevin equation for a classical circuit. This formalism uses the nonequilibrium Green's function method to obtain analytically closed formulas for transport quantities within the wide-band limit approximation for an arbitrary time-dependent bias and it is automatically partition free. We obtain exact closed formulas for both the colored and white noise-averaged current at all times. In the long-time limit, these formulas possess a Landauer-Büttiker-type structure which enables the extraction of an effective transmission coefficient for the transport. Expanding the Fermi function into a series of simple poles, we find an exact formal relation between the parameters which characterize the bias fluctuations and the poles of the Fermi function. This enables us to describe the effect of the temperature and the strength of the fluctuations on the averaged current which we interpret as a quantum analog to the classical fluctuation-dissipation theorem. We use these results to convincingly refute some recent results on the multistability of the current through a fluctuating level, simultaneously verifying that our formalism satisfies some well-known theorems on the asymptotic current. Finally, we present numerical results for the current through a molecular chain which demonstrate a transition from nonlinear to linear I -V characteristics as the strength of fluctuations is increased, as well as a

  17. Signatures of the electronic nature of pairing in high-Tc superconductors obtained by non-equilibrium boson spectroscopy

    PubMed Central

    Krasnov, Vladimir M.; Katterwe, Sven-Olof; Rydh, Andreas

    2013-01-01

    Understanding the pairing mechanism that gives rise to high-temperature superconductivity is one of the longest-standing problems of condensed-matter physics. Almost three decades after its discovery, even the question of whether or not phonons are involved remains a point of contention to some. Here we describe a technique for determining the spectra of bosons generated during the formation of Cooper pairs on recombination of hot electrons as they tunnel between the layers of a cuprate superconductor. The results obtained indicate that the bosons that mediate pairing decay over micrometre-scale distances and picosecond timescales, implying that they propagate at a speed of around 106 m s−1. This value is more than two orders of magnitude greater than the phonon propagation speed but close to Fermi velocity for electrons, suggesting that the pairing mechanism is mediated by unconventional repulsive electron–electron, rather than attractive electron–phonon, interactions. PMID:24336159

  18. Nonequilibrium electronic phenomena and the chemical energy accommodation during heterogeneous recombination of atomic hydrogen on the manganese doped willemite

    NASA Astrophysics Data System (ADS)

    Grankin, D. V.; Grankin, V. P.; Styrov, V. V.; Sushchikh, M.

    2016-03-01

    The surface chemiluminescence of Zn2SiO4-Mn phosphor (λmax = 525 nm) has been studied under excitation by exoergic interaction of H-atoms with its surface. We have found that the pre-irradiation of the Zn2SiO4-Mn by UV light results in the transient increase in the luminescence intensity by two orders of magnitude. On the other hand, deposition of Pd-nanoparticles on the surface leads to luminescence quenching. These two effects are associated with the energy accommodation in the gas-surface interaction via electronic channel by the filled electron traps of the insulating phosphor or by metallic electrons of the Pd-nanoparticles.

  19. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    SciTech Connect

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  20. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    DOE PAGES

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; ...

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less

  1. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  2. Molecular modeling of inelastic electron transport in molecular junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Kula, Mathias; Luo, Yi

    2008-09-01

    A quantum chemical approach for the modeling of inelastic electron tunneling spectroscopy of molecular junctions based on scattering theory is presented. Within a harmonic approximation, the proposed method allows us to calculate the electron-vibration coupling strength analytically, which makes it applicable to many different systems. The calculated inelastic electron transport spectra are often in very good agreement with their experimental counterparts, allowing the revelation of detailed information about molecular conformations inside the junction, molecule-metal contact structures, and intermolecular interaction that is largely inaccessible experimentally.

  3. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  4. ELECTRONIC AND TRANSPORT PROPERTIES OF THERMOELECTRIC Ru2Si3

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Parker, David

    2013-08-01

    We report calculations of the doping and temperature dependent thermopower of Ru2Si3 based on Boltzmann transport theory and the first principles electronic structure. We find that the performance reported to date can be significantly improved by optimization of the doping level and that ultimately n-type should have higher ZT than p-type.

  5. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  6. Investigation of electron beam transport in a helical undulator

    SciTech Connect

    Jeong, Y.U.; Lee, B.C.; Kim, S.K.

    1995-12-31

    Lossless transport of electrons through the undulator is essential for CW operation of the FELs driven by recirculating electrostatic accelerators. We calculate the transport ratio of an electron beam in a helical undulator by using a 3-D simulation code and compare the results with the experimental results. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The 3-D distribution of the magnetic field of a practical permanent-magnet helical undulator is measured and is used in the calculations. The major parameters of the undutlator are : period = 32 mm, number of periods = 20, number of periods in adiabatic region = 3.5, magnetic field strength = 1.3 kG. The transport ratio is very sensitive to the injection condition of the electron beam such as the emittance, the diameter, the divergence, etc.. The injection motion is varied in the experiments by changing the e-gun voltage or the field strength of the focusing magnet located at the entrance of the undulator. It is confirmed experimentally and with simulations that most of the beam loss occurs at the adiabatic region of the undulator regardless of the length of the adiabatic region The effect of axial guiding magnetic field on the beam finish is investigated. According to the simulations, the increase of the strength of axial magnetic field from 0 to 1 kG results in the increase of the transport ratio from 15 % to 95%.

  7. Pulse-Periodic Regimes of Kinetic Instabilities in the Non-Equilibrium Plasma of an Electron Cyclotron Resonance Discharge Maintained by Continuous-Wave Radiation of a 24 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Mansfeld, D. A.; Viktorov, M. E.; Vodopyanov, A. V.

    2017-01-01

    We have experimentally discovered an instability, which manifests itself as precipitations of hot electrons occurring synchronously with generation of bursts of electromagnetic radiation, in the plasma of an electron cyclotron resonance discharge maintained by a high-power, continuous-wave radiation of a 24 GHz gyrotron, for the first time. The observed instability has the kinetic nature and is determined by the formation of the non-equilibrium velocity distribution of hot particles. Two possible explanations are proposed for the mechanism of wave excitation in a two-component plasma with a stationary source of non-equilibrium particles. The results of the studies performed are of interest for modeling of the dynamics of magnetospheric cyclotron masers.

  8. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  9. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  10. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  11. Crystallization of germanium-carbon alloys -- Structure and electronic transport

    SciTech Connect

    John, T.M.; Blaesing, J.; Veit, P.; Druesedau, T.

    1997-07-01

    Amorphous Ge{sub 1{minus}x}C{sub x} alloys were deposited by rf-magnetron sputtering from a germanium target in methane-argon atmosphere. Structural investigations were performed by means of wide and small angle X-ray scattering, X-ray reflectometry and cross-sectional transmission electron microscopy. The electronic transport properties were characterized using Hall-measurements and temperature depended conductivity. The results of X-ray techniques together with the electron microscopy clearly prove the existence of a segregation of the electronic conductivity in the as-prepared films follows the Mott' T{sup {minus}1/4} law, indicating transport by a hopping process. After annealing at 870 K, samples with x {le} 0.4 show crystallization of the Ge-clusters with a crystallite size being a function of x. After Ge-crystallization, the conductivity increases by 4 to 5 orders of magnitude. Above room temperature, electronic transport is determined by a thermally activated process. For lower temperatures, the {sigma}(T) curves show a behavior which is determined by the crystallite size and the free carrier concentration, both depending on the carbon content.

  12. Stopping and transport of fast electrons in superdense matter

    SciTech Connect

    Okabayashi, A.; Habara, H.; Yabuuchi, T.; Iwawaki, T.; Tanaka, K. A.

    2013-08-15

    Studied is the stopping and transport of relativistic fast electrons in the vicinity of compressed dense plasma core relevant to fast ignition. Electromagnetic cascade Monte-Carlo is coupled to 2D-PIC simulation. The 2D PIC simulates input electron energy spectrum and angular dependence. The electron energy distributions after passing through the plasma core are calculated at different viewing angles, which well agree with the experiment below several MeV energy range. The implications of calculated results as to collisional damping on several MeV electrons are discussed with the theory based on the stopping power model. The spatial distribution of plasma temperature is also estimated via deposited energy by fast electrons, showing the strong heating at the core surface.

  13. Electron transport mechanisms in polymer-carbon sphere composites

    NASA Astrophysics Data System (ADS)

    Nieves, Cesar A.; Ramos, Idalia; Pinto, Nicholas J.; Zimbovskaya, Natalya A.

    2016-07-01

    A set of uniform carbon microspheres (CSs) whose diameters have the order of 0.125 μm to 10 μm was prepared from aqueous sucrose solution by means of hydrothermal carbonization of sugar molecules. A pressed pellet was composed by mixing CSs with polyethylene oxide (PEO). Electrical characterization of the pellet was carried out showing Ohmic current-voltage characteristics and temperature-dependent conductivity in the range of 80 K electron transport. It was shown that thermally induced electron tunneling between adjacent spheres may take on an important part in the electron transport through the CS/PEO composites.

  14. Ultrafast electron transport in graphene and magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Turchinovich, Dmitry

    2016-03-01

    Ultrafast terahertz spectroscopy is an ideal tool for observation of dynamics of charge, lattice and spin in solids on the most elementary timescale: in the regime ωτ ~ 1, where ω is the electromagnetic wave oscillation frequency, and τ is the characteristic timescale at which the fundamental phenomena in the three subsystems comprising the solid occur. In this paper two case studies will be discussed. (i) Ultrafast electron transport in graphene. We will show, that the free-carrier conductivity of graphene in arbitrary ultrafast, (sub-)picosecond electric fields is defined by the thermodynamic balance maintained within the electronic structure of graphene acting as thermalized electron gas. Within this simple thermodynamic picture, the electron gas quasi-instantaneously increases its temperature by absorbing the energy of driving ultrafast electric field, and at the same time cools down via a time-retarded, few picosecond-long process of phonon emission. The asymmetry in electron heating and cooling dynamics leads to heat accumulation in the electron population of graphene, concomitantly lowering the chemical potential for hotter electrons, and thereby reducing the intraband conductivity of graphene - an effect crucially important for understanding of ultrafast graphene transistors and photodetectors. (ii) We will also discuss the fundamental observation of spin-controlled electron conduction of Fermilevel electrons in ferromagnetic metals, and will directly quantify the Mott picture of conduction in ferromagnets - the effect directly employed in modern magnetic sensor technologies such as giant magnetoresistance.

  15. Assessment of nonequilibrium radiation computation methods for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra

    1993-01-01

    The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.

  16. Vibronic coupling effect on the electron transport through molecules

    NASA Astrophysics Data System (ADS)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  17. Current Issues in Electron and Positron Transport Theory

    NASA Astrophysics Data System (ADS)

    Robson, Robert

    2007-10-01

    In this paper we review the current status of transport theory for low energy electrons or positrons in gases, in the context of both kinetic theory and fluid modelling. In particular, we focus on the following issues: (i) Muliterm vs two-term representation of the velocity distribution function in solution of Boltzmann's equation; (ii) the effect of non-conservative collisions (attachment, ionization, positron annihilation) on transport properties; (iii) the enduring electron- hydrogen vibrational cross section controversy and possible implications for the Boltzmann equation itself; (iv) closure of the fluid equations and the heat flux ansatz; and (v) correct use of swarm transport coefficients in fluid modelling of low temperature plasmas. Both hydrodynamic and non-hydrodynamic examples will be given, with attention focussed on the Franck-Hertz experiment, particularly the ``window'' of fields in which oscillations of transport properties are produced, and the way in which electric and magnetic fields combine to affect transport properties. In collaboration with co-authors Z. LJ. Petrovi'c, Institute of Physics Belgrade, and R.D. White, James Cook University.

  18. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  19. Electron transport in ultra-thin films and ballistic electron emission microscopy.

    PubMed

    Claveau, Y; Di Matteo, S; de Andres, P L; Flores, F

    2017-03-22

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh's non-equilibrium Green's function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space ([Formula: see text]) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  20. Nonequilibrium structural condition in the medical TiNi-based alloy surface layer treated by electron beam

    SciTech Connect

    Neiman, Aleksei A. Lotkov, Aleksandr I.; Meisner, Ludmila L. Semin, Viktor O.; Koval, Nikolai N.; Teresov, Anton D.

    2014-11-14

    The research is devoted to study the structural condition and their evolution from the surface to the depth of TiNi specimens treated by low-energy high-current electron beams with surface melting at a beam energy density E = 10 J/cm{sup 2}, number of pulses N = 10, and pulse duration τ = 50 μs. Determined thickness of the remelted layer, found that it has a layered structure in which each layer differs in phase composition and structural phase state. Refinement B2 phase lattice parameters in local areas showed the presence of strong inhomogeneous lattice strain.

  1. Theoretical descriptions of electron transport through single molecules: Developing design tools for molecular electronic devices

    NASA Astrophysics Data System (ADS)

    Carroll, Natalie R.

    There are vast numbers of organic compounds that could be considered for use in molecular electronics. Hence there is a need for efficient and economical screening tools. Here we develop theoretical methods to describe electron transport through individual molecules, the ultimate goal of which is to establish design tools for molecular electronic devices. To successfully screen a compound for its use as a device component requires a proper representation of the quantum mechanics of electron transmission. In this work we report the development of tools for the description of electron transmission that are: Charge self-consistent, valid in the presence of a finite applied potential field and (in some cases) explicitly time-dependent. In addition, the tools can be extended to any molecular system, including biosystems, because they are free of restrictive parameterizations. Two approaches are explored: (1) correlation of substituent parameter values (sigma), (commonly found in organic chemistry textbooks) to properties associated with electron transport, (2) explicit tracking of the time evolution of the wave function of a nonstationary electron. In (1) we demonstrate that the a correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. In (2) we employ a time-dependent description of electron transport through molecular junctions. To date, the great majority of theoretical treatments of electron transport in molecular junctions have been of the time-independent variety. Time dependence, however, is critical to such properties as switching speeds in binary computer components and alternating current conductance, so we explored methods based on time-dependent quantum mechanics. A molecular junction is modeled as a single molecule sandwiched between two clusters of close-packed metal atoms or other donor and acceptor groups. The time dependence of electron transport is investigated by initially

  2. Transport of the plasma sheet electrons to the geostationary distances

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Amariutei, O. A.; Shprits, Y.; Liemohn, M. W.

    2012-12-01

    The transport and acceleration of low energy electrons (10-250 keV) from the plasma sheet to the geostationary orbit were investigated. Two moderate storm events, which occurred on November 6-7, 1997 and June 12-14, 2005, were modeled using the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM) with the boundary set at 10 RE in the plasma sheet. The output of the IMPTAM model was compared to the observed electron fluxes in four energy ranges measured onboard the LANL spacecraft by the SOPA instrument. It was found that the large-scale convection in combination with substorm-associated impulsive fields are the drivers of the transport of plasma sheet electrons from 10 RE to geostationary orbit at 6.6 RE during storm times. The addition of radial diffusion had no significant influence on the modeled electron fluxes. At the same time, comparison between the modeled electron fluxes and observed ones showed two orders of difference most likely due to inaccuracy of electron boundary conditions and omission of the important loss processes due to wave-particle interactions. This did not allow us to accuractly reproduce the dynamics of 150-225 keV electron fluxes. The choice of the large-scale convection electric field model used in simulations did not significantly influence on the modeled electron fluxes, since there is not much difference between the equipotential contours given by the Volland-Stern and Boyle et al. [1997] models at the distances from 10 to 6.6 RE in the plasma sheet. Using the TS05 model for the background magnetic field instead of the T96 model resulted in larger deviations of the modeled electron fluxes from the observed ones due to specific features of the TS05 model. The increase in the modeled electron fluxes can be as large as three orders of magnitude when substorm-associated electromagnetic fields were taken into account. The obtained model distribution of low energy electron fluxes can be used as an input to the radiation

  3. Transport of the plasma sheet electrons to the geostationary distances

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Amariutei, O. A.; Shprits, Y. Y.; Liemohn, M. W.

    2013-01-01

    Abstract<p label="1">The <span class="hlt">transport</span> and acceleration of low-energy <span class="hlt">electrons</span> (50-250 keV) from the plasma sheet to the geostationary orbit were investigated. Two moderate storm events, which occurred on 6-7 November 1997 and 12-14 June 2005, were modeled using the Inner Magnetosphere Particle <span class="hlt">Transport</span> and Acceleration model (IMPTAM) with the boundary set at 10 RE in the plasma sheet. The output of the IMPTAM was compared to the observed <span class="hlt">electron</span> fluxes in four energy ranges (50-225 keV) measured by the Synchronous Orbit Particle Analyzer instrument onboard the Los Alamos National Laboratory spacecraft. It was found that the large-scale convection in combination with substorm-associated impulsive fields is the drivers of the <span class="hlt">transport</span> of plasma sheet <span class="hlt">electrons</span> from 10 RE to geostationary orbit at 6.6 RE during storm times. The addition of radial diffusion had no significant influence on the modeled <span class="hlt">electron</span> fluxes. At the same time, the modeled <span class="hlt">electron</span> fluxes are one (two) order(s) smaller than the observed ones for 50-150 keV (150-225 keV) <span class="hlt">electrons</span>, respectively, most likely due to inaccuracy of <span class="hlt">electron</span> boundary conditions. The loss processes due to wave-particle interactions were not considered. The choice of the large-scale convection electric field model used in simulations did not have a significant influence on the modeled <span class="hlt">electron</span> fluxes, since there is not much difference between the equipotential contours given by the Volland-Stern and the Boyle et al. (1997) models at distances from 10 to 6.6 RE in the plasma sheet. Using the TS05 model for the background magnetic field instead of the T96 model resulted in larger deviations of the modeled <span class="hlt">electron</span> fluxes from the observed ones due to specific features of the TS05 model. The increase in the modeled <span class="hlt">electron</span> fluxes can be as large as two orders of magnitude when substorm-associated electromagnetic fields were taken into account. The obtained model distribution of low-energy <span class="hlt">electron</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1096488','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1096488"><span>LDRD project 151362 : low energy <span class="hlt">electron</span>-photon <span class="hlt">transport</span>.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James</p> <p>2013-09-01</p> <p>At sufficiently high energies, the wavelengths of <span class="hlt">electrons</span> and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve <span class="hlt">transport</span> at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-<span class="hlt">transport</span> expert, a solid-state physicist, and two DFT experts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B54D..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B54D..01N"><span>Extracellular <span class="hlt">Electron</span> <span class="hlt">Transport</span> (EET): Metal Cycling in Extreme Places</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nealson, K. H.</p> <p>2014-12-01</p> <p>Extracellular <span class="hlt">electron</span> <span class="hlt">transport</span>, or EET, is the process whereby bacteria either donate <span class="hlt">electrons</span> to an <span class="hlt">electron</span> acceptor (usually insoluble), or take up <span class="hlt">electrons</span> from and <span class="hlt">electron</span> donor (usually insoluble) that is located outside the cell. Iron cycling is inherently linked to EET, as both reduced iron (<span class="hlt">electron</span> donors), and oxidized iron (<span class="hlt">electron</span> acceptors) can be found as insoluble minerals, and require specialized molecular machines to accomplish these extracellular geobiological reactions. Bacteria in the group Shewanella are able to catalyze EET in both directions, and are involved with a number of different iron conversions, but are not good role models for extreme conditions - to our knowledge there are no shewanellae that are tolerant to extremes of temperature or pH, the two usual. This being said, when cells are energy starved via limitation for <span class="hlt">electron</span> acceptors, they respond by turning on the system(s) for EET. Thus, in this presentation the known mechanism(s) of EET will be discussed, along with recent findings and reports of EET-capable organisms from a variety of extreme environments. From these data, I put forward the hypothesis that there are many microbes (many of them from extreme environments) that will be resistant to cultivation by "standard microbiological methods", yet lend themselves well to cultivation via electrochemical methods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Nanot..27m5302S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Nanot..27m5302S"><span>Geometric effects in the <span class="hlt">electronic</span> <span class="hlt">transport</span> of deformed nanotubes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, Fernando; Fumeron, Sébastien; Berche, Bertrand; Moraes, Fernando</p> <p>2016-04-01</p> <p>Quasi-two-dimensional systems may exibit curvature, which adds three-dimensional influence to their internal properties. As shown by da Costa (1981 Phys. Rev. A 23 1982-7), charged particles moving on a curved surface experience a curvature-dependent potential which greatly influence their dynamics. In this paper, we study the <span class="hlt">electronic</span> ballistic <span class="hlt">transport</span> in deformed nanotubes. The one-<span class="hlt">electron</span> Schrödinger equation with open boundary conditions is solved numerically with a flexible MAPLE code made available as supplementary data. We find that the curvature of the deformations indeed has strong effects on the <span class="hlt">electron</span> dynamics, suggesting its use in the design of nanotube-based <span class="hlt">electronic</span> devices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22051363','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22051363"><span>Spatially resolved study of primary <span class="hlt">electron</span> <span class="hlt">transport</span> in magnetic cusps</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hubble, Aimee A.; Foster, John E.</p> <p>2012-01-15</p> <p>Spatially resolved primary <span class="hlt">electron</span> current density profiles were measured using a planar Langmuir probe in the region above a magnetic cusp in a small ion thruster discharge chamber. The probe current maps obtained were used to study the <span class="hlt">electron</span> collection mechanics in the cusp region in the limit of zero gas flow and no plasma production, and they allowed for the visualization of primary <span class="hlt">electron</span> <span class="hlt">transport</span> through the cusp. Attenuation coefficients and loss widths were calculated as a function of probe distance above the anode at various operating conditions. Finally, the collection mechanics between two magnetic cusps were studied and compared. It was found that primary <span class="hlt">electron</span> collection was dominated by the upstream magnet ring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........34D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........34D"><span>A Static and Dynamic Investigation of Quantum Nonlinear <span class="hlt">Transport</span> in Highly Dense and Mobile 2D <span class="hlt">Electron</span> Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dietrich, Scott</p> <p></p> <p>Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of <span class="hlt">electron</span> <span class="hlt">transport</span> in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear <span class="hlt">transport</span> that gives rise to <span class="hlt">non-equilibrium</span> <span class="hlt">electron</span> states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional <span class="hlt">electrons</span> placed in a quantizing magnetic field. This study presents the observation of several nonlinear <span class="hlt">transport</span> mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of <span class="hlt">electrons</span> in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of <span class="hlt">electron-electron</span> interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers <span class="hlt">electron-electron</span> interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of <span class="hlt">electron</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/3847','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/3847"><span>The macro response Monte Carlo method for <span class="hlt">electron</span> <span class="hlt">transport</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Svatos, M M</p> <p>1998-09-01</p> <p>The main goal of this thesis was to prove the feasibility of basing <span class="hlt">electron</span> depth dose calculations in a phantom on first-principles single scatter physics, in an amount of time that is equal to or better than current <span class="hlt">electron</span> Monte Carlo methods. The Macro Response Monte Carlo (MRMC) method achieves run times that are on the order of conventional <span class="hlt">electron</span> <span class="hlt">transport</span> methods such as condensed history, with the potential to be much faster. This is possible because MRMC is a Local-to-Global method, meaning the problem is broken down into two separate <span class="hlt">transport</span> calculations. The first stage is a local, in this case, single scatter calculation, which generates probability distribution functions (PDFs) to describe the <span class="hlt">electron</span>'s energy, position and trajectory after leaving the local geometry, a small sphere or "kugel" A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV) and sizes (0.025 cm to 0.1 cm in radius). The second <span class="hlt">transport</span> stage is a global calculation, where steps that conform to the size of the kugels in the library are taken through the global geometry. For each step, the appropriate PDFs from the MRMC library are sampled to determine the <span class="hlt">electron</span>'s new energy, position and trajectory. The <span class="hlt">electron</span> is immediately advanced to the end of the step and then chooses another kugel to sample, which continues until <span class="hlt">transport</span> is completed. The MRMC global stepping code was benchmarked as a series of subroutines inside of the Peregrine Monte Carlo code. It was compared to Peregrine's class II condensed history <span class="hlt">electron</span> <span class="hlt">transport</span> package, EGS4, and MCNP for depth dose in simple phantoms having density inhomogeneities. Since the kugels completed in the library were of relatively small size, the zoning of the phantoms was scaled down from a clinical size, so that the energy deposition algorithms for spreading dose across 5-10 zones per kugel could be tested. Most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/503467','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/503467"><span>Fabrication and <span class="hlt">electronic</span> <span class="hlt">transport</span> studies of single nanocrystal systems</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Klein, David Louis</p> <p>1997-05-01</p> <p>Semiconductor and metallic nanocrystals exhibit interesting <span class="hlt">electronic</span> <span class="hlt">transport</span> behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of <span class="hlt">electronic</span> states in these systems. This thesis describes several techniques for the <span class="hlt">electronic</span> study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that <span class="hlt">electronic</span> investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create <span class="hlt">electronic</span> devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single <span class="hlt">electron</span> transistor is presented. This device is fabricated using a hybrid scheme which combines <span class="hlt">electron</span> beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the <span class="hlt">transport</span> behavior of CdSe nanocrystals as a result of its <span class="hlt">electronic</span> structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SuMi...47..648S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SuMi...47..648S"><span>Influence of the microstructure on the charge <span class="hlt">transport</span> in semiconductor gas discharge <span class="hlt">electronic</span> devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadiq, Y.; Aktas, K.; Acar, S.; Salamov, B. G.</p> <p>2010-06-01</p> <p>Experimental results with nonlinear features and hysteresis characteristics in the pre-breakdown Townsend discharge regime is studied experimentally for a planar microstructure with a GaAs photocathode, an interelectrode gap thickness of 445 μm and gas pressure in the range 28-66 Torr. An investigation of the effect of the voltage amplitude on the dynamics of transient processes in the semiconductor gas discharge microstructure was made to explain the mechanism of the current decay. A linearly increasing voltage (i.e. 3 V s and 5 V s voltage rate) was applied to the system to study current instability. The nonlinear <span class="hlt">transport</span> mechanism of carriers through the cross-section of the discharge gap i.e. the appearance of the spatio-temporal self-organization of a nonlinear dissipative system, <span class="hlt">non-equilibrium</span> <span class="hlt">electron</span> motion and autocatalytic effect of carrier accumulation in the gas layer attributed to decrease of current with the increase of applied voltage. It is established that the pre-breakdown current decreases anomalously with increase of the feeding voltage and illumination intensity on the photocathode. The current density change through the cross-section of the discharge gap, i.e. the appearance of the spatio-temporal self-organization of nonlinear dissipative systems, causes these observed effects. On the other hand, the oscillatory current with non-monotonic N-shaped and hysteresis peculiarities in post-breakdown region is known to be related to a nonlinear mechanism of carrier <span class="hlt">transport</span> in the semiconductor material caused by EL2 defect centres.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvB..83x1404R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvB..83x1404R"><span>Single-<span class="hlt">electron</span> heat diode: Asymmetric heat <span class="hlt">transport</span> between <span class="hlt">electronic</span> reservoirs through Coulomb islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruokola, Tomi; Ojanen, Teemu</p> <p>2011-06-01</p> <p>We introduce a functional nanoscale device, a single-<span class="hlt">electron</span> heat diode, consisting of two quantum dots or metallic islands coupled to <span class="hlt">electronic</span> reservoirs by tunnel contacts. <span class="hlt">Electron</span> <span class="hlt">transport</span> through the system is forbidden but the capacitive coupling between the two dots allows <span class="hlt">electronic</span> fluctuations to transmit heat between the reservoirs. When the reservoir temperatures are biased in the forward direction, heat flow is enabled by a four-step sequential tunneling cycle, while in the reverse-biased configuration this process is suppressed due to Coulomb blockade effects. In an optimal setup the leakage heat current in the reverse direction is only a few percent of the forward current.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/20860240','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/20860240"><span>Nonlocal <span class="hlt">electron</span> <span class="hlt">transport</span> in magnetized plasmas with arbitrary atomic number</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bennaceur-Doumaz, D.; Bendib, A.</p> <p>2006-09-15</p> <p>The numerical solution of the steady-state <span class="hlt">electron</span> Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the <span class="hlt">electron-electron</span> collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The <span class="hlt">transport</span> coefficients are deduced and used to close a complete set of nonlocal <span class="hlt">electron</span> fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant <span class="hlt">transport</span> coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the <span class="hlt">electron</span>-ion mean-free-path.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApPhL.101n1603A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApPhL.101n1603A"><span><span class="hlt">Electron</span> <span class="hlt">transporting</span> water-gated thin film transistors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al Naim, Abdullah; Grell, Martin</p> <p>2012-10-01</p> <p>We demonstrate an <span class="hlt">electron-transporting</span> water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high <span class="hlt">electron</span> mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94l5118W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94l5118W"><span>Interlayer <span class="hlt">electronic</span> <span class="hlt">transport</span> in CaMnBi2 antiferromagnet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Aifeng; Graf, D.; Wu, Lijun; Wang, Kefeng; Bozin, E.; Zhu, Yimei; Petrovic, C.</p> <p>2016-09-01</p> <p>We report interlayer <span class="hlt">electronic</span> <span class="hlt">transport</span> in CaMnBi2 single crystals. Quantum oscillations and angular magnetoresistance suggest coherent <span class="hlt">electronic</span> conduction and valley polarized conduction of Dirac states. The small cyclotron mass, high mobility of carriers, and nontrivial Berry's phase are consistent with the presence of Dirac fermions on the side wall of the warped cylindrical Fermi surface. Similarly to SrMnBi2, which features an anisotropic Dirac cone, our results suggest that magnetic-field-induced changes in interlayer conduction are also present in layered bismuth-based materials with a zero-energy line in momentum space created by the staggered alkaline earth atoms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1345748-interlayer-electronic-transport-camnbi2-antiferromagnet','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1345748-interlayer-electronic-transport-camnbi2-antiferromagnet"><span>Interlayer <span class="hlt">electronic</span> <span class="hlt">transport</span> in CaMnBi2 antiferromagnet</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Aifeng; Graf, D.; Wu, Lijun; ...</p> <p>2016-09-12</p> <p>Here, we report interlayer <span class="hlt">electronic</span> <span class="hlt">transport</span> in CaMnBi2 single crystals. Quantum oscillations and angular magnetoresistance suggest coherent <span class="hlt">electronic</span> conduction and valley polarized conduction of Dirac states. Furthermore, the small cyclotron mass, high mobility of carriers, and nontrivial Berry's phase are consistent with the presence of Dirac fermions on the side wall of the warped cylindrical Fermi surface. Similarly to SrMnBi2 , which features an anisotropic Dirac cone, our results suggest that magnetic-field-induced changes in interlayer conduction are also present in layered bismuth-based materials with a zero-energy line in momentum space created by the staggered alkaline earth atoms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JaJAP..51d5104Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JaJAP..51d5104Y"><span>AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: <span class="hlt">Non-Equilibrium</span> Green's Function Simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Takahiro; Sasaoka, Kenji; Watanabe, Satoshi</p> <p>2012-04-01</p> <p>We theoretically investigate the emittance and dynamic dissipation of a nanoscale interconnect consisting of a metallic single-walled carbon nanotube using the <span class="hlt">non-equilibrium</span> Green's function technique for AC <span class="hlt">electronic</span> <span class="hlt">transport</span>. We show that the emittance and dynamic dissipation depend strongly on the contact conditions of the interconnect and that the power consumption can be reduced by adjusting the contact conditions. We propose an appropriate condition of contact that yields a high power factor and low apparent power.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=246107','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=246107"><span>Lipophilic chelator inhibition of <span class="hlt">electron</span> <span class="hlt">transport</span> in Escherichia coli.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Crane, R T; Sun, I L; Crane, F L</p> <p>1975-01-01</p> <p>The lipophilic chelator bathophenanthroline inhibits <span class="hlt">electron</span> <span class="hlt">transport</span> in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition. PMID:1092663</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CP....326..138X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CP....326..138X"><span>Redox-gated <span class="hlt">electron</span> <span class="hlt">transport</span> in electrically wired ferrocene molecules</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Xiaoyin; Brune, Daniel; He, Jin; Lindsay, Stuart; Gorman, Christopher B.; Tao, Nongjian</p> <p>2006-07-01</p> <p>We have synthesized cysteamine-terminated ferrocene molecules and determined the dependence of the <span class="hlt">electron</span> <span class="hlt">transport</span> properties of the molecules on their redox states by measuring the current through the molecules as a function of the electrode potential. The current fluctuates over a large range, but its average value increases with the potential. We attribute the current fluctuation and its increase with the potential to the switching of the molecules from low-conductance reduced state to high-conductance oxidized state.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22493833','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22493833"><span><span class="hlt">Transport</span> of solar <span class="hlt">electrons</span> in the turbulent interplanetary magnetic field</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ablaßmayer, J.; Tautz, R. C.; Dresing, N.</p> <p>2016-01-15</p> <p>The turbulent <span class="hlt">transport</span> of solar energetic <span class="hlt">electrons</span> in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic <span class="hlt">transport</span> phase. In that sense, the model complements the main other approach in which a <span class="hlt">transport</span> equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PlST...17..749Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PlST...17..749Y"><span>Thermochemical <span class="hlt">Nonequilibrium</span> 2D Modeling of Nitrogen Inductively Coupled Plasma Flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani</p> <p>2015-09-01</p> <p>Two-dimensional (2D) numerical simulations of thermochemical <span class="hlt">nonequilibrium</span> inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved <span class="hlt">electron</span>-vibration relaxation time was used to model the internal energy exchange between <span class="hlt">electron</span> and heavy particles. The third-order accuracy <span class="hlt">electron</span> <span class="hlt">transport</span> properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical <span class="hlt">nonequilibrium</span> process. The flow characteristics such as thermal <span class="hlt">nonequilibrium</span>, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal <span class="hlt">nonequilibrium</span> model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/598594','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/598594"><span>Modeling <span class="hlt">electron</span> heat <span class="hlt">transport</span> during magnetic field buildup in SSPX</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hua, D.D.; Hooper, E.B.; Fowler, T.K.</p> <p>1997-10-01</p> <p>A model for spheromak magnetic field buildup and <span class="hlt">electron</span> thermal <span class="hlt">transport</span>, including a thermal diffusivity associated with magnetic turbulence during helicity injection is applied to a SSPX equilibrium, with a maximum final magnetic field of 1.3 T. Magnetic field-buildup times of 1.0 X 10-3, 5.0 X 10-4 and 1.0 X 10-4 s were used in the model to examine their effects on <span class="hlt">electron</span> thermal <span class="hlt">transport</span>. It is found that at <span class="hlt">transport</span> run time of 4 x 10-3 s, the fastest buildup-time results in the highest final temperature profile, with a core temperature of 0.93 kev while requiring the lowest input energy at 140 KJ. The results show that within the model the most rapid buildup rate generates the highest <span class="hlt">electron</span> temperature at the fastest rate and at the lowest consumption of energy. However, the peak power requirements are large (> 600 MW for the fastest buildup case examined).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998SPIE.3327..423J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998SPIE.3327..423J"><span>Isolation systems for <span class="hlt">electronic</span> black-box <span class="hlt">transportation</span> to orbit</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jedrich, Nicholas M.; Pendleton, Scott C.</p> <p>1998-06-01</p> <p>Servicing the Hubble Space Telescope (HST) requires the safe <span class="hlt">transportation</span> of <span class="hlt">electronic</span> Orbital Replacement Units (ORUs) on the Space <span class="hlt">Transportation</span> System (STS) to replace or enhance the capability of existing units. The delicate design of these <span class="hlt">electronic</span> ORUs makes it imperative to provide isolation from the STS launch random vibration, while maintaining fundamental modes above the transient load environment. Two methods were developed and used exclusively, on Servicing Mission 2 (SM2), to isolate the ORUs from the environmental launch loads imposed by the STS. The first load isolation system utilizes a refined open/closed cell foam design to provide the required damping and corner frequency, while the second method uses an innovative Viscoelastic Material (VEM) design. This paper addresses both systems as initially designed including finite element (FE) model analysis of the VEM system. Vibration testing of prototype systems and modifications to the design resulting from test will be discussed. The final design as flown on HST SM2 with recommendations for future applications of these technologies in <span class="hlt">transporting</span> <span class="hlt">electronic</span> black boxes to orbit will conclude the paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22415564','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22415564"><span>The role of <span class="hlt">electron</span>-impact vibrational excitation in <span class="hlt">electron</span> <span class="hlt">transport</span> through gaseous tetrahydrofuran</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Duque, H. V.; Do, T. P. T.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au</p> <p>2015-03-28</p> <p>In this paper, we report newly derived integral cross sections (ICSs) for <span class="hlt">electron</span> impact vibrational excitation of tetrahydrofuran (THF) at intermediate impact energies. These cross sections extend the currently available data from 20 to 50 eV. Further, they indicate that the previously recommended THF ICS set [Garland et al., Phys. Rev. A 88, 062712 (2013)] underestimated the strength of the <span class="hlt">electron</span>-impact vibrational excitation processes. Thus, that recommended vibrational cross section set is revised to address those deficiencies. <span class="hlt">Electron</span> swarm <span class="hlt">transport</span> properties were calculated with the amended vibrational cross section set, to quantify the role of <span class="hlt">electron</span>-driven vibrational excitation in describing the macroscopic swarm phenomena. Here, significant differences of up to 17% in the <span class="hlt">transport</span> coefficients were observed between the calculations performed using the original and revised cross section sets for vibrational excitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22486307','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22486307"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in VO{sub 2}—Experimentally calibrated Boltzmann <span class="hlt">transport</span> modeling</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y. E-mail: mchan@anl.gov; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish E-mail: mchan@anl.gov</p> <p>2015-12-28</p> <p>Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of <span class="hlt">electronic</span> <span class="hlt">transport</span> in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model <span class="hlt">electronic</span> <span class="hlt">transport</span> properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band <span class="hlt">transport</span> using the Boltzmann <span class="hlt">transport</span> equations. We synthesized high quality VO{sub 2} films and measured the <span class="hlt">transport</span> quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable <span class="hlt">transport</span> properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......149T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......149T"><span>Charge <span class="hlt">transport</span> and injection in amorphous organic <span class="hlt">electronic</span> materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tse, Shing Chi</p> <p></p> <p>This thesis presents how we use various measuring techniques to study the charge <span class="hlt">transport</span> and injection in organic <span class="hlt">electronic</span> materials. Understanding charge <span class="hlt">transport</span> and injection properties in organic solids is of vital importance for improving performance characteristics of organic <span class="hlt">electronic</span> devices, including organic-light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field effect transistors (OFETs). The charge <span class="hlt">transport</span> properties of amorphous organic materials, commonly used in organic <span class="hlt">electronic</span> devices, are investigated by the means of carrier mobility measurements. Transient electroluminescence (EL) technique was used to evaluate the <span class="hlt">electron</span> mobility of an <span class="hlt">electron</span> <span class="hlt">transporting</span> material--- tris(8-hydroxyquinoline) aluminum (Alq3). The results are in excellent agreement with independent time-of-flight (TOF) measurements. Then, the effect of dopants on <span class="hlt">electron</span> <span class="hlt">transport</span> was also examined. TOF technique was also used to examine the effects of tertiary-butyl (t-Bu) substitutions on anthracene derivatives (ADN). All ADN compounds were found to be ambipolar. As the degree of t-Bu substitution increases, the carrier mobilities decrease progressively. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap. In addition, from TOF measurements, two naphthylamine-based hole <span class="hlt">transporters</span>, namely, N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'diamine (NPB) and 4,4',4"-tris(n-(2-naphthyl)-n-phenyl-amino)-triphenylamine (2TNATA) were found to possess <span class="hlt">electron-transporting</span> (ET) abilities. An organic light-emitting diode that employed NPB as the ET material was demonstrated. The <span class="hlt">electron</span> conducting mechanism of NPB and 2TNATA in relation to the hopping model will be discussed. Furthermore, the ET property of NPB applied in OLEDs will also be examined. Besides transient EL and TOF techniques, we also use dark-injection space-charge-limited current</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25909689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25909689"><span>Theoretical investigations into the <span class="hlt">electronic</span> structures and <span class="hlt">electron</span> <span class="hlt">transport</span> properties of fluorine and carbonyl end-functionalized quarterthiophenes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Qian; Duan, Yuai; Gao, Hong-Ze; Su, Zhong-Мin; Geng, Yun</p> <p>2015-06-01</p> <p>In this work, we concentrate on systematic investigation on the fluorination and carbonylation effect on <span class="hlt">electron</span> <span class="hlt">transport</span> properties of thiophene-based materials with the aim of seeking and designing <span class="hlt">electron</span> <span class="hlt">transport</span> materials. Some relative factors, namely, frontier molecular orbital (FMO), vertical <span class="hlt">electron</span> affinity (VEA), <span class="hlt">electron</span> reorganization energy (λele), <span class="hlt">electron</span> transfer integral (tele), <span class="hlt">electron</span> drift mobility (μele) and band structures have been calculated and discussed based on density functional theory. The results show that the introduction of fluorine atoms and carbonyl group especially for the latter could effectively increase EA and reduce λele, which is beneficial to the improvement of <span class="hlt">electron</span> <span class="hlt">transport</span> performance. Furthermore, these introductions could also affect the tele by changing molecular packing manner and distribution of FMO. Finally, according to our calculation, the 3d system is considered to be a promising <span class="hlt">electron</span> <span class="hlt">transport</span> material with small λele, high <span class="hlt">electron</span> <span class="hlt">transport</span> ability and good ambient stability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.144l4105R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.144l4105R"><span>Distribution of tunnelling times for quantum <span class="hlt">electron</span> <span class="hlt">transport</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rudge, Samuel L.; Kosov, Daniel S.</p> <p>2016-03-01</p> <p>In <span class="hlt">electron</span> <span class="hlt">transport</span>, the tunnelling time is the time taken for an <span class="hlt">electron</span> to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for <span class="hlt">electron</span> <span class="hlt">transport</span> through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an <span class="hlt">electron</span> jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23173952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23173952"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> in a GaPSb film.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lo, Shun-Tsung; Lin, Hung En; Wang, Shu-Wei; Lin, Huang-De; Chin, Yu-Chung; Lin, Hao-Hsiung; Lin, Jheng-Cyuan; Liang, Chi-Te</p> <p>2012-11-23</p> <p>We have performed <span class="hlt">transport</span> measurements on a gallium phosphide antimonide (GaPSb) film grown on GaAs. At low temperatures (T), <span class="hlt">transport</span> is governed by three-dimensional Mott variable range hopping (VRH) due to strong localization. Therefore, <span class="hlt">electron-electron</span> interactions are not significant in GaPSb. With increasing T, the coexistence of VRH conduction and the activated behavior with a gap of 20 meV is found. The fact that the measured gap is comparable to the thermal broadening at room temperature (approximately 25 meV) demonstrates that <span class="hlt">electrons</span> can be thermally activated in an intrinsic GaPSb film. Moreover, the observed carrier density dependence on temperature also supports the coexistence of VRH and the activated behavior. It is shown that the carriers are delocalized either with increasing temperature or magnetic field in GaPSb. Our new experimental results provide important information regarding GaPSb which may well lay the foundation for possible GaPSb-based device applications such as in high-<span class="hlt">electron</span>-mobility transistor and heterojunction bipolar transistors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25099864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25099864"><span>Energy level control: toward an efficient hot <span class="hlt">electron</span> <span class="hlt">transport</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu</p> <p>2014-08-07</p> <p>Highly efficient hot <span class="hlt">electron</span> <span class="hlt">transport</span> represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot <span class="hlt">electron</span> capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot <span class="hlt">electron</span> transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot <span class="hlt">electron</span>/hole <span class="hlt">transport</span> efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4124467','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4124467"><span>Energy level control: toward an efficient hot <span class="hlt">electron</span> <span class="hlt">transport</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu</p> <p>2014-01-01</p> <p>Highly efficient hot <span class="hlt">electron</span> <span class="hlt">transport</span> represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot <span class="hlt">electron</span> capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot <span class="hlt">electron</span> transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot <span class="hlt">electron</span>/hole <span class="hlt">transport</span> efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738282"><span>Control of <span class="hlt">electronic</span> <span class="hlt">transport</span> in graphene by electromagnetic dressing</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kristinsson, K.; Kibis, O. V.; Morina, S.; Shelykh, I. A.</p> <p>2016-01-01</p> <p>We demonstrated theoretically that the renormalization of the <span class="hlt">electron</span> energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) <span class="hlt">electronic</span> <span class="hlt">transport</span> in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control <span class="hlt">electronic</span> properties of graphene with light. PMID:26838371</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92b2109K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92b2109K"><span><span class="hlt">Nonequilibrium</span> is different</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirkpatrick, T. R.; Dorfman, J. R.</p> <p>2015-08-01</p> <p><span class="hlt">Nonequilibrium</span> and equilibrium fluid systems differ due to the existence of long-range correlations in <span class="hlt">nonequilibrium</span> that are not present in equilibrium, except at critical points. Here we examine fluctuations of the temperature, of the pressure tensor, and of the heat current in a fluid maintained in a <span class="hlt">nonequilibrium</span> stationary state (NESS) with a fixed temperature gradient, a system in which the <span class="hlt">nonequilibrium</span> correlations are especially long-ranged. For this particular NESS, our results show that (i) the mean-squared fluctuations in <span class="hlt">nonequilibrium</span> differ markedly in their system-size scaling compared to their equilibrium counterparts, and (ii) there are large, nonlocal correlations of the normal stress in this NESS. These terms provide important corrections to the fluctuating normal stress in linearized Landau-Lifshitz fluctuating hydrodynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4876473','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4876473"><span>Implementation of Outstanding <span class="hlt">Electronic</span> <span class="hlt">Transport</span> in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan</p> <p>2016-01-01</p> <p>A theoretical investigation of the unique <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through <span class="hlt">non-equilibrium</span> Green’s function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic <span class="hlt">electronic</span> devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the <span class="hlt">transport</span> properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias. PMID:27211110</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27211110','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27211110"><span>Implementation of Outstanding <span class="hlt">Electronic</span> <span class="hlt">Transport</span> in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan</p> <p>2016-05-23</p> <p>A theoretical investigation of the unique <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through <span class="hlt">non-equilibrium</span> Green's function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic <span class="hlt">electronic</span> devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the <span class="hlt">transport</span> properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1086379','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1086379"><span>Effect of Salts and <span class="hlt">Electron</span> <span class="hlt">Transport</span> on the Conformation of Isolated Chloroplasts. II. <span class="hlt">Electron</span> Microscopy 1</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Izawa, Seikichi; Good, Norman E.</p> <p>1966-01-01</p> <p>Spinach chloroplasts isolated in media containing salts and the rare chloroplasts which are still within their envelopes alike retain grana similar to those seen in chloroplasts in situ. Chloroplasts isolated in low-salt media lose their grana without losing any chlorophyll. These grana-free chloroplasts are considerably swollen and consist almost entirely of continuous sheets of paired-membrane structures. These double structures, the lamellae, are only loosely held together, primarily at the edges, by tenuous material which does not react with permanganate. Addition of salts (methylamine hydrochloride, NaCl, MgCl2) to the grana-free low-salt chloroplasts provide strong interlamellar attractions. These attractions result in a stacking of the lamellae which is sometimes almost random but sometimes results in regular structures indistinguishable from the original grana. The phosphorylation-uncoupler atebrin causes further swelling of the chloroplasts in the absence of <span class="hlt">electron</span> <span class="hlt">transport</span> by increasing the space between the paired membranes of the lamellae. The rapid <span class="hlt">electron</span> <span class="hlt">transport</span> (Hill reaction) made possible by atebrin-uncoupling is associated with a great decrease in chloroplast volume. This decrease results from a collapsing together of the widely separated lamellar membrane pairs. The pairs approach each other so closely that they usually appear as a single membrane when viewed with the <span class="hlt">electron</span> microscope. The much slower <span class="hlt">electron</span> <span class="hlt">transport</span> which occurs in the absence of uncouplers is associated with a similar but smaller decrease in the space between the lamellar membrane pairs. Chloroplasts swell during the rapid <span class="hlt">electron</span> <span class="hlt">transport</span> made possible by the phosphorylation-uncoupler methylamine. This swelling is accompanied by a degree of membrane distortion which precludes an interpretation of the mechanism. As with atebrin-faciliated <span class="hlt">electron</span> <span class="hlt">transport</span>, obviously paired membranes disappear but it is not yet clear whether this is by association or</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..MARW35003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..MARW35003R"><span>Tools for Studying <span class="hlt">Electron</span> and Spin <span class="hlt">Transport</span> in Single Molecules</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ralph, Daniel C.</p> <p>2005-03-01</p> <p>Experiments in the field of single-molecule <span class="hlt">electronics</span> are challenging in part because it can be very difficult to control and characterize the device structure. Molecules contacted by metal electrodes cannot easily be imaged by microscopy techniques. Moreover, if one attempts to characterize the device structure simply by measuring a current-voltage curve, it is easy to mistake nonlinear <span class="hlt">transport</span> across a bare tunnel junction or a metallic short for a molecular signal. I will discuss the development of a set of experimental test structures that enable the properties of a molecular device to be tuned controllably in-situ, so that the <span class="hlt">transport</span> mechanisms can be studied more systematically and compared with theoretical predictions. My collaborators and I are developing the means to use several different types of such experimental "knobs" in coordination: electrostatic gating to shift the energy levels in a molecule, mechanical motion to adjust the molecular configuration or the molecule-electrode coupling strength, illumination with light to promote <span class="hlt">electrons</span> to excited states or to make and break chemical bonds, and the use of ferromagnetic electrodes to study spin-polarized <span class="hlt">transport</span>. Our work so far has provided new insights into Kondo physics, the coupling between a molecule's <span class="hlt">electronic</span> and mechanical degrees of freedom, and spin <span class="hlt">transport</span> through a molecule between magnetic electrodes. Collaborators: Radek Bialczak, Alex Champagne, Luke Donev, Jonas Goldsmith, Jacob Grose, Janice Guikema, Jiwoong Park, Josh Parks, Abhay Pasupathy, Jason Petta, Sara Slater, Burak Ulgut, Alexander Soldatov, H'ector Abruña, and Paul McEuen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE33C0502P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE33C0502P"><span>Modeling High Altitude EMP using a <span class="hlt">Non-Equilibrium</span> <span class="hlt">Electron</span> Swarm Model to Monitor Conduction <span class="hlt">Electron</span> Evolution (LA-UR-15-26151)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pusateri, E. N.; Morris, H. E.; Nelson, E.; Ji, W.</p> <p>2015-12-01</p> <p>Electromagnetic pulse (EMP) events in the atmosphere are important physical phenomena that occur through both man-made and natural processes, such as lightning, and can be disruptive to surrounding electrical systems. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. In EMP, low-energy conduction <span class="hlt">electrons</span> are produced from Compton <span class="hlt">electron</span> or photoelectron ionizations with air. These conduction <span class="hlt">electrons</span> continue to interact with the surrounding air and alter the EMP waveform. Many EMP simulation codes use an equilibrium ohmic model for computing the conduction current. The equilibrium model works well when the equilibration time is short compared to the rise time or duration of the EMP. However, at high altitude, the conduction <span class="hlt">electron</span> equilibration time can be comparable to or longer than the rise time or duration of the EMP. This matters, for example, when calculating the EMP propagating upward toward a satellite. In these scenarios, the equilibrium ionization rate becomes very large for even a modest electric field. The ohmic model produces an unphysically large number of conduction <span class="hlt">electrons</span> that prematurely and abruptly short the EMP in the simulation code. An <span class="hlt">electron</span> swarm model, which simulates the time evolution of conduction <span class="hlt">electrons</span>, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an <span class="hlt">electron</span> swarm model in an environment characterized by electric field and pressure previously in Pusateri et al. (2015). This swarm model has been integrated into CHAP-LA, a state-of-the-art EMP code developed by researchers at Los Alamos National Laboratory, which previously calculated conduction current using an ohmic model. We demonstrate the EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high altitude EMP modeling obtained by employing the swarm model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21544794','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21544794"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in oligo-para-phenylene junctions attached to carbon nanotube electrodes: Transition-voltage spectroscopy and chirality</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Brito Silva, C. A. Jr.; Silva, S. J. S. da; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.</p> <p>2011-06-15</p> <p>We have investigated, by means of a <span class="hlt">nonequilibrium</span> Green's function method coupled to density functional theory, the <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of molecular junctions composed of oligo-para-phenylene (with two, three, four, and five phenyl rings) covalently bridging the gap between metallic carbon nanotubes electrodes. We have found that the current is strongly correlated to a purely geometrical chiral parameter, both on-resonance and off-resonance. The Fowler-Nordheim plot exhibits minima, V{sub min}, that occur whenever the tail of a resonant transmission peak enters in the bias window. This result corroborates the scenario in which the coherent <span class="hlt">transport</span> model gives the correct interpretation to transition voltage spectroscopy (TVS). We have shown that V{sub min} corresponds to voltages where a negative differential resistance (NDR) occurs. The finding that V{sub min} corresponds to voltages that exhibit NDR, which can be explained only in single-molecule junctions within the coherent <span class="hlt">transport</span> model, further confirms the applicability of such models to adequately interpret TVS. The fact that the electrodes are organic is at the origin of differences in the behavior of V{sub min} if compared to the case of molecular junctions with nonorganic contacts treated so far.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvB..91l5419M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvB..91l5419M"><span><span class="hlt">Electron</span>-vibron coupling effects on <span class="hlt">electron</span> <span class="hlt">transport</span> via a single-molecule magnet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha</p> <p>2015-03-01</p> <p>We investigate how the <span class="hlt">electron</span>-vibron coupling influences <span class="hlt">electron</span> <span class="hlt">transport</span> via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and <span class="hlt">electron</span>-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential <span class="hlt">electron</span> tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable <span class="hlt">electron</span>-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar <span class="hlt">electron</span>-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant <span class="hlt">electron</span>-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and <span class="hlt">electron</span>-vibron coupling in <span class="hlt">electron</span> <span class="hlt">transport</span> via the Fe4. Similar behavior can be observed in <span class="hlt">transport</span> via other anisotropic magnetic molecules.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=217209','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=217209"><span>Aerotaxis in Salmonella typhimurium: role of <span class="hlt">electron</span> <span class="hlt">transport</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Laszlo, D J; Taylor, B L</p> <p>1981-01-01</p> <p>Sensory transduction in aerotaxis required <span class="hlt">electron</span> <span class="hlt">transport</span>, in contrast to chemotaxis, which is independent of <span class="hlt">electron</span> <span class="hlt">transport</span>. Assays for aerotaxis were developed by employing spatial and temporal oxygen gradients imposed independently of respiration. By varying the step increase in oxygen concentration in the temporal assay, the dose-response relationship was obtained for aerotaxis in Salmonella typhimurium. A half-maximal response at 0.4 microM oxygen and inhibition by 5 mM KCN suggested that the "receptor" for aerotaxis is cytochrome o. The response was independent of adenosine triphosphate formation via oxidative phosphorylation but did correlate with changes in membrane potential monitored with the fluorescent cyanine dye diS-C3-(5). Nitrate and fumarate, which are alternative <span class="hlt">electron</span> acceptors for the respiratory chain in S. typhimurium, inhibited aerotaxis when nitrate reductase and fumarate reductase were induced. These results support the hypothesis that taxis to oxygen, nitrate, and fumarate is mediated by the <span class="hlt">electron</span> <span class="hlt">transport</span> system and by changes in the proton motive force. Aerotaxis was normal in Escherichia coli mutants that were defective in the tsr, tar, or trg genes; in S. typhimurium, oxygen did not stimulate methylation of the products of these genes. A cheC mutant which shows an inverse response to chemoattractants also gave an inverse response to oxygen. Therefore, aerotaxis is transduced by a distinct and unidentified signally protein but is focused into the common chemosensory pathway before the step involving the cheC product. When S. typhimurium became anaerobic, the decreased proton motive force from glycolysis supported slow swimming but not tumbling, indicating that a minimum proton motive force was required for tumbling. The bacteria rapidly adapted to the anaerobic condition and resumed tumbling after about 3 min. The adaptation period was much shorter when the bacteria had been previously grown anaerobically. Images PMID</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..90t5416W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..90t5416W"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> in multiterminal networks of Majorana bound states</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas L.</p> <p>2014-11-01</p> <p>We investigate <span class="hlt">electron</span> <span class="hlt">transport</span> through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary <span class="hlt">transport</span> processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in <span class="hlt">electronic</span> <span class="hlt">transport</span>. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/accomplishments/documents/fullText/ACC0141.pdf','DOE-RDACC'); return false;" href="http://www.osti.gov/accomplishments/documents/fullText/ACC0141.pdf"><span>Helium, Iron and <span class="hlt">Electron</span> Particle <span class="hlt">Transport</span> and Energy <span class="hlt">Transport</span> Studies on the TFTR Tokamak</span></a></p> <p><a target="_blank" href="http://www.osti.gov/accomplishments/fieldedsearch.html">DOE R&D Accomplishments Database</a></p> <p>Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))</p> <p>1993-03-01</p> <p>Results from helium, iron, and <span class="hlt">electron</span> <span class="hlt">transport</span> on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal <span class="hlt">transport</span> analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the <span class="hlt">electron</span> channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the <span class="hlt">electron</span> heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to <span class="hlt">electron</span> heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal <span class="hlt">transport</span> is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/950776','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/950776"><span>Momentum <span class="hlt">Transport</span> in <span class="hlt">Electron</span>-Dominated Spherical Torus Plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kaye, S. M.; Solomon, W.; Bell, R. E.; LeBlanc, B. P.; Levinton, F.; Menard, J.; Rewoldt, G.; Sabbagh, S.; Wang, W.; Yuh, H.</p> <p>2009-02-24</p> <p>The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km/s and ExB shearing rates up to 1 MHz. This level of ExB shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g., ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an <span class="hlt">electron</span>-dominated <span class="hlt">transport</span> regime. Analysis of experiments using n=3 magnetic fields to change plasma rotation indicate that local rotation shear influences local <span class="hlt">transport</span> coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low-k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities up to 40 m/s and perturbative momentum diffusivities of up to 4 m2/s, which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low-k turbulence drives the inward momentum pinch. Thus, in Spherical Tori (STs), while the neoclassical ion energy <span class="hlt">transport</span> effects can be relatively high and dominate the ion energy <span class="hlt">transport</span>, the neoclassical momentum <span class="hlt">transport</span> effects are near zero, meaning that <span class="hlt">transport</span> of momentum is dominated by any low-k turbulence that exists.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.774a2103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.774a2103P"><span><span class="hlt">Transport</span> properties of copper with excited <span class="hlt">electron</span> subsystem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrov, Yu V.; Migdal, K. P.; Knyazev, D. V.; Inogamov, N. A.; Levashov, P. R.</p> <p>2016-11-01</p> <p>We have investigated <span class="hlt">transport</span> properties of an <span class="hlt">electron</span> subsystem of copper heated by a femtosecond laser pulse. These properties change greatly in comparison with the room temperature solid metal. The <span class="hlt">electron</span> temperature and pressure profiles significantly depend on these properties in bulk laser targets according to the two-temperature (2T) model. These profiles at the 2T stage are responsible for shock and rarefaction waves' formation. We have developed the analytical model of electroconductivity and heat conductivity of copper which takes into account changes of density, <span class="hlt">electron</span> and ion temperatures. The model is based on the solution of the Boltzmann equation in the relaxation time approximation for consideration of <span class="hlt">electron</span> collisions. Also we have carried out the first-principles calculations using the Kubo-Greenwood theory, methods of pseudopotential and linear augmented plane waves which are necessary to evaluate <span class="hlt">electron</span> wavefunctions. We have provided the check of convergence of all parameters of our first-principles calculations. The results of our analytical model for electro- and heat conductivities are in good agreement with the data obtained using the linearized augmented plane wave (LAPW) method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14..683B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14..683B"><span>Long-distance <span class="hlt">electron</span> <span class="hlt">transport</span> occurs globally in marine sediments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.</p> <p>2017-02-01</p> <p>Recently, long filamentous bacteria have been reported conducting <span class="hlt">electrons</span> over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance <span class="hlt">electron</span> <span class="hlt">transport</span> links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance <span class="hlt">electron</span> <span class="hlt">transport</span>, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SSEle..53.1009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SSEle..53.1009S"><span><span class="hlt">Transport</span> properties in semiconductor-gas discharge <span class="hlt">electronic</span> devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.</p> <p>2009-09-01</p> <p>Nonlinear electrical <span class="hlt">transport</span> of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear <span class="hlt">transport</span> properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to <span class="hlt">electron</span> capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and <span class="hlt">electron</span> mobility based on well-understood transferred <span class="hlt">electron</span> effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..MARL11009E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..MARL11009E"><span>Molecular orbital theory of ballistic <span class="hlt">electron</span> <span class="hlt">transport</span> through molecules</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ernzerhof, Matthias; Rocheleau, Philippe; Goyer, Francois</p> <p>2009-03-01</p> <p><span class="hlt">Electron</span> <span class="hlt">transport</span> through molecules occurs, for instance, in STM imaging and in conductance measurements on molecular <span class="hlt">electronic</span> devices (MEDs). To model these phenomena, we use a non-Hermitian model Hamiltonian [1] for the description of open systems that exchange current density with their environment. We derive qualitative, molecular-orbital-based rules relating molecular structure and conductance. We show how side groups attached to molecular conductors [2] can completely suppress the conductance. We discuss interference effects in aromatic molecules [3] that can also inhibit <span class="hlt">electron</span> <span class="hlt">transport</span>. Rules are developed [1] for the prediction of Fano resonances. All these phenomena are explained with a molecular orbital theory [1,4] for molecules attached to macroscopic reservoirs. [1] F. Goyer, M. Ernzerhof, and M. Zhuang, JCP 126, 144104 (2007); M. Ernzerhof, JCP 127, 204709 (2007). [2] M. Ernzerhof, M. Zhuang, and P. Rocheleau, JCP 123, 134704 (2005); G. C. Solomon, D Q. Andrews, R P. Van Duyne, and M A. Ratner, JACS 130, 7788 (2008). [3] M. Ernzerhof, H. Bahmann, F. Goyer, M. Zhuang, and P. Rocheleau, JCTC 2, 1291 (2006); G. C. Solomon, D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, JCP 129, 054701 (2008). [4] B.T. Pickup, P.W. Fowler, CPL 459, 198 (2008); P. Rocheleau and M. Ernzerhof, JCP, submitted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARC29008C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARC29008C"><span><span class="hlt">Nonequilibrium</span> spin texture within a thin layer below the surface of current-carrying topological insulator Bi2 Se3 : A first-principles quantum <span class="hlt">transport</span> study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Po-Hao; Nikolic, Branislav; Markussen, Troels; Smidstrup, Søren; Stokbro, Kurt</p> <p></p> <p>Using extension of <span class="hlt">nonequilibrium</span> Green function combined with density functional theory (NEGF+DFT) formalism to situations involving noncollinear spins and spin-orbit coupling, we investigate microscopic details (on the 1 ° A scale) of <span class="hlt">nonequilibrium</span> spin density S(r) driven by unpolarized charge current injection into a ballistic thin film of Bi 2 Se 3 as prototypical topological insulator (TI) material. We find large nonzero component of S(r) in the direction transverse to current flow on the metallic surfaces of TI, as well as within few bulk atomic layers near the surfaces because of penetration of evanescent wavefunctions from the metallic surfaces into the bulk. In addition, an order of magnitude smaller components emerge in the perpendicular (within surfaces and nearly bulk regions of TI) and longitudinal (within bulk region of TI near its surface) directions, thereby creating a complex <span class="hlt">nonequilibrium</span> spin texture. We also demonstrate how DFT calcula- tions with properly optimized local orbital basis set can precisely match putatively more accurate calculations with plane wave basis set for the supercell of Bi 2 Se 3 . P.-H.C. and B.K.N. were supported by NSF Grant No. 281 FQ ECCS 1509094. The supercomputing time was provided by 282 XSEDE, which is supported by NSF Grant No. ACI-1053575. 283 QuantumWise acknowledges support from the Danish Inno-284 vation Fund Grant No.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10183507','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10183507"><span>Studies of local <span class="hlt">electron</span> heat <span class="hlt">transport</span> on TFTR</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Fredrickson, E.D.; Chang, Z.Y.; Janos, A.; McGuire, K.M.; Scott, S.; Taylor, G.</p> <p>1993-08-16</p> <p>The anomalously fast relaxation of the perturbations to the <span class="hlt">electron</span> temperature profile caused by a sawtooth crash has been studied extensively on TFTR. We will show that on a short timescale the heat pulse is not simply diffusive as has been generally assumed, but that modeling of the heat pulse requires a transient enhancement in {chi}{sub e} following the sawtooth crash. It will be shown that the time-dependent enhancement in {chi}{sub e} predicted by non-linear thermal <span class="hlt">transport</span> models, i.e., incremental {chi} models or the Rebut-Lallia-Watkins <span class="hlt">transport</span> model, is much smaller than that required to explain the anomalies in the heat pulse propagation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhPl....7.2810B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhPl....7.2810B"><span>Linear delta-f simulations of nonlocal <span class="hlt">electron</span> heat <span class="hlt">transport</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunner, S.; Valeo, E.; Krommes, J. A.</p> <p>2000-07-01</p> <p>Nonlocal <span class="hlt">electron</span> heat <span class="hlt">transport</span> calculations are carried out by making use of some of the techniques developed previously for extending the δf method to <span class="hlt">transport</span> time scale simulations [S. Brunner, E. Valeo, and J. Krommes, Phys. Plasmas 6, 4504 (1999)]. By considering the relaxation of small amplitude temperature perturbations of an homogeneous Maxwellian background, only the linearized Fokker-Planck equation has to be solved, and direct comparisons can be made with the equivalent, nonlocal hydrodynamic approach [V. Yu. Bychenkov et al., Phys. Rev. Lett. 75, 4405 (1995)]. A quasineutrality-conserving algorithm is derived for computing the self-consistent electric fields driving the return currents. In the low-collisionality regime, results illustrate the importance of taking account of nonlocality in both space and time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/5197113','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/5197113"><span>Conservative differencing of the <span class="hlt">electron</span> Fokker-Planck <span class="hlt">transport</span> equation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Langdon, A.B.</p> <p>1981-01-12</p> <p>We need to extend the applicability and improve the accuracy of kinetic <span class="hlt">electron</span> <span class="hlt">transport</span> codes. In this paper, special attention is given to modelling of e-e collisions, including the dominant contributions arising from anisotropy. The electric field and spatial gradient terms are also considered. I construct finite-difference analogues to the Fokker-Planck integral-differential collision operator, which conserve the particle number, momentum and energy integrals (sums) regardless of the coarseness of the velocity zoning. Such properties are usually desirable, but are especially useful, for example, when there are spatial regions and/or time intervals in which the plasma is cool, so that the collision operator acts rapidly and the velocity distribution is poorly resolved, yet it is crucial that gross conservation properties be respected in hydro-<span class="hlt">transport</span> applications, such as in the LASNEX code. Some points are raised concerning spatial differencing and time integration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984PhRvB..29.6879H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984PhRvB..29.6879H"><span>Intersoliton hopping <span class="hlt">transport</span> of <span class="hlt">electrons</span> in molecular crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, I. A.; Conwell, E. M.</p> <p>1984-06-01</p> <p>Quarter-filled-band quasi-one-dimensional compounds which exhibit large Coulomb repulsion between two <span class="hlt">electrons</span> on the same site ("large U") can support the formation of fractionally charged solitons. <span class="hlt">Electron</span> hopping between solitons may contribute substantially to <span class="hlt">transport</span> in these materials. We calculate the intersoliton <span class="hlt">electron</span> hopping rate for transitions mediated by intramolecular phonons and by acoustic phonons. Acoustic phonons are found to be much less effective and are expected to contribute significantly only when intramolecular phonons are not excited or cannot satisfy conservation of energy. For the case of intramolecular phonons, we consider both hopping of an <span class="hlt">electron</span> from a soliton pinned by an impurity to a second soliton which then becomes pinned, and hopping between a pair of solitons, one of which remains free to move. [Owing to the large on-chain dielectric constant (~ 100-1000) in these materials, the solitons are probably not bound except at low temperatures.] The transition rates are used to find the hopping mobility for <span class="hlt">electrons</span> in the soliton levels. Evaluation of the mobility due to the different hopping mechanisms for (N-methylphenazinium)0.54(phenazine)0.46 tetracyanoquinodimethane [(NMP)0.54(Phen)0.46-(TCNQ)] at a temperature of 100 K suggests that, unlike the polyacetylene case, the predominant process at temperatures >~100 K is on-chain hopping, due to the large interchain distances involved. We find a mobility at 100 K of 0.06-1.03 cm2/V sec due to on-chain hopping, mediated by intramolecular phonons, between pinned and free solitons. This mobility should increase at higher temperatures. The thermoelectric power due to the various <span class="hlt">electron</span> hopping processes is calculated as well. We find that for hopping processes involving transitions between pinned and free solitons there is a term in the thermopower involving the soliton pinning energy, in addition to the usual term involving <span class="hlt">electronic</span> energy levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/971443','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/971443"><span>Electrokinesis is a microbial behavior that requires extracellular <span class="hlt">electron</span> <span class="hlt">transport</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Harris, Howard W.; El-Naggar, Mohamed Y.; Bretschger, Orianna; Ward, Melissa J.; Romine, Margaret F.; Obraztsova, Anna; Nealson, Kenneth H.</p> <p>2010-01-05</p> <p>Shewanella species are widespread in nature, enjoying a cosmopolitan distribution in marine,freshwater, sedimentary and soil environments (1), and have attracted considerable attention in recent years because of their ability to reduce an extensive number of different <span class="hlt">electron</span> 3 acceptors, including the solid (oxy)hydroxides of iron and manganese, such as Fe(OH)3 and MnO2, using one or more proposed mechanisms of extracellular <span class="hlt">electron</span> <span class="hlt">transport</span> (EET) (2, 3). The EET ability of Shewanella species is consistent with their ability to generate electric current in microbial fuel cells in the absence of exogenous <span class="hlt">electron</span> shuttles (4). Various strategies of extracellular <span class="hlt">electron</span> transfer have been proposed in metal-reducing microbes, including naturally-occurring (2) or biogenic (5-7) soluble mediators that ‘shuttle’ <span class="hlt">electrons</span> from cells to acceptors, as well as direct transfer using multiheme cytochromes located on the cell exterior (8) and transfer via conductive nanowires (9-11). S. oneidensis MR-1 features several proteins that are involved with the <span class="hlt">transport</span> of <span class="hlt">electrons</span> to the exterior of the cell where they play an important role with regard to the reduction of solid <span class="hlt">electron</span> acceptors such as metal oxides. These include two outer-membrane decaheme c-type cytochromes (MtrC and OmcA), a membrane spanning protein (MtrB), and two periplasmic multi-heme c-type cytochromes (MtrA and CymA). Deletion of the genes encoding any of these proteins leads to phenotypes that are greatly inhibited with regard to metal-oxide reduction and current production in microbial fuel cells (MFCs) (12, 13). The mutation of genes that code for proteins involved in the movement of cytochromes to the outer membrane also results in loss of metal-reducing phenotypes (13). The shewanellae are highly motile, by virtue of a single polar flagellum, and individual S. oneidensis MR-1 cells have been tracked swimming at speeds of up to, and sometimes over, 100 μm/sec, although the average</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.........6B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.........6B"><span>Nanoscale <span class="hlt">transport</span> of <span class="hlt">electrons</span> and ions in water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boynton, Paul Christopher</p> <p></p> <p>The following dissertation discusses the theoretical study of water on the nanoscale, often involved with essential biological molecules such as DNA and proteins. First I introduce the study of water on the nanoscale and how experimentalists approach confinement with nanopores and nanogaps. Then I discuss the theoretical method we choose for understanding this important biological medium on the molecular level, namely classical molecular dynamics. This leads into <span class="hlt">transport</span> mechanisms that utilize water on the nanoscale, in our case <span class="hlt">electronic</span> and ionic <span class="hlt">transport</span>. On the scale of mere nanometers or less <span class="hlt">electronic</span> <span class="hlt">transport</span> in water enters the tunneling regime, requiring the use of a quantum treatment. In addition, I discuss the importance of water in ionic <span class="hlt">transport</span> and its known effects on biological phenomena such as ion selectivity. Water also has great influence over DNA and proteins, which are both introduced in the context of nanopore sequencing. Several techniques for nanopore sequencing are examined and the importance of protein sequencing is explained. In Chapter 2, we study the effect of volumetric constraints on the structure and <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of distilled water in a nanopore with embedded electrodes. Combining classical molecular dynamics simulations with quantum scattering theory, we show that the structural motifs water assumes inside the pore can be probed directly by tunneling. In Chapter 3, we propose an improvement to the original sequencing by tunneling method, in which N pairs of electrodes are built in series along a synthetic nanochannel. Each current time series for each nucleobase is cross-correlated together, reducing noise in the signals. We show using random sampling of data from classical molecular dynamics, that indeed the sequencing error is significantly reduced as the number of pairs of electrodes, N, increases. In Chapter 4, we propose a new technique for de novo protein sequencing that involves translocating a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22269317','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22269317"><span>Study of <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of doped 8AGNR</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Sharma, Uma Shankar; Srivastava, Anurag; Verma, U. P.</p> <p>2014-04-24</p> <p>The <span class="hlt">electronic</span> and <span class="hlt">transport</span> properties of 8-armchair graphene nanoribbon (8AGNR) with defect at different sites are investigated by performing first-principles calculations based on density functional theory (DFT). The calculated results show that the 8AGNR are semiconductor. The introduction of 3d transition metals, creates the nondegenerate states in the conduction band, makes 8AGNR metallic. The computed transmission spectrum confirms that AGNR are semiconducting in nature and their band gap remain unchanged and localized states appear when there is vacancy in their structures, and the conductance decreases due to defects compared with the pristine nanoribbon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21612543','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21612543"><span>Calculation of <span class="hlt">electronic</span> <span class="hlt">transport</span> coefficients of Ag and Au plasma</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Apfelbaum, E. M.</p> <p>2011-12-15</p> <p>The thermoelectric <span class="hlt">transport</span> coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of {rho} < or approx. 1 g/cm{sup 3}. The plasma composition was calculated using a corresponding system of coupled mass action laws, including the atom ionization up to +4. For momentum cross sections of <span class="hlt">electron</span>-atom scattering we used the most accurate expressions available. The results of our modeling have been compared with other researchers' data whenever possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11088933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11088933"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> in argon in crossed electric and magnetic fields</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ness; Makabe</p> <p>2000-09-01</p> <p>An investigation of <span class="hlt">electron</span> <span class="hlt">transport</span> in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..MARZ37013T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..MARZ37013T"><span>Theory of <span class="hlt">electron</span>-vibration coupling in the <span class="hlt">electron</span> <span class="hlt">transport</span> of molecular bridges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsukada, Masaru; Mitsutake, Kunihiro</p> <p>2006-03-01</p> <p><span class="hlt">Electron</span> <span class="hlt">transport</span> through molecules connecting nano-electrodes is the key issue for molecular devices. The competition and coexistence of the coherent and dissipative <span class="hlt">transport</span> are unresolved issue, in spite of its importance. In this work, this problem is investigated by a novel theoretical approach of an ab initio molecular orbital model with combining polaron effect. When carriers are injected into molecules from electrodes, the structure of the molecule changes, which leads the coupling term of the <span class="hlt">electron</span>/hole and the molecular vibration. The model Hamiltonian for the thiophene oligomer is solved by a variational approach, and a mixed states of dressed polaron with molecular orbital states mediated by the phonon cloud is found. The former and latter are predominant for small or large transfer integral, respectively. The excited states can be calculated in the same framework as the ground state. The overall carrier <span class="hlt">transport</span> properties can be analyzed by solving the master equation with the transition rate estimated by the golden rule including the phonon degrees of freedom. In this theoretical approach, the coherent and dissipative <span class="hlt">electron</span> <span class="hlt">transport</span> through molecular bridges can be described in a uniform systematic way.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3896775','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3896775"><span>Orthogonally modulated molecular <span class="hlt">transport</span> junctions for resettable <span class="hlt">electronic</span> logic gates</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meng, Fanben; Hervault, Yves-Marie; Shao, Qi; Hu, Benhui; Norel, Lucie; Rigaut, Stéphane; Chen, Xiaodong</p> <p>2014-01-01</p> <p>Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced <span class="hlt">electronic</span> functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular <span class="hlt">transport</span> junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable <span class="hlt">electronic</span> logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design. PMID:24394717</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyE...82..129F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyE...82..129F"><span>Reprint of : Time dependent <span class="hlt">electronic</span> <span class="hlt">transport</span> in chiral edge channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fève, G.; Berroir, J.-M.; Plaçais, B.</p> <p>2016-08-01</p> <p>We study time dependent <span class="hlt">electronic</span> <span class="hlt">transport</span> along the chiral edge channels of the quantum Hall regime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can be derived from a lumped element description of the circuit. At higher frequencies, the propagation equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Coulomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractionalization process, affects the propagation of a single <span class="hlt">electron</span> in the circuit. All the above-mentioned topics are illustrated by experimental realizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.146i2302K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.146i2302K"><span>Structure dependent spin selectivity in <span class="hlt">electron</span> <span class="hlt">transport</span> through oligopeptides</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiran, Vankayala; Cohen, Sidney R.; Naaman, Ron</p> <p>2017-03-01</p> <p>The chiral-induced spin selectivity (CISS) effect entails spin-selective <span class="hlt">electron</span> transmission through chiral molecules. In the present study, the spin filtering ability of chiral, helical oligopeptide monolayers of two different lengths is demonstrated using magnetic conductive probe atomic force microscopy. Spin-specific nanoscale <span class="hlt">electron</span> <span class="hlt">transport</span> studies elucidate that the spin polarization is higher for 14-mer oligopeptides than that of the 10-mer. We also show that the spin filtering ability can be tuned by changing the tip-loading force applied on the molecules. The spin selectivity decreases with increasing applied force, an effect attributed to the increased ratio of radius to pitch of the helix upon compression and increased tilt angles between the molecular axis and the surface normal. The method applied here provides new insights into the parameters controlling the CISS effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........43H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........43H"><span>An <span class="hlt">Electronic</span> Structure Approach to Charge Transfer and <span class="hlt">Transport</span> in Molecular Building Blocks for Organic Optoelectronics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendrickson, Heidi Phillips</p> <p></p> <p> technological design and development. Time dependent perturbation theory, employed by <span class="hlt">non-equilibrium</span> Green's function formalism, is utilized to study the effect of quantum coherences on <span class="hlt">electron</span> <span class="hlt">transport</span> and the effect of symmetry breaking on the <span class="hlt">electronic</span> spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......110K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......110K"><span>Theoretical studies of scanning tunneling microsopy and <span class="hlt">electron</span> <span class="hlt">transport</span> through nanostructures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khoo, Khoonghong</p> <p></p> <p>-phonon coupling to this mode. To calculate <span class="hlt">transport</span> properties across <span class="hlt">non-equilibrium</span> aperiodic systems, we developed a method that combines DFT calculation techniques with the scattering-state formalism in Chapter Five. The semi-infinite nature of the leads is accounted for by using scattering-state wavefunctions to represent <span class="hlt">electron</span> states and the chemical potential difference between the leads is reproduced by introducing shifts in the bulk-lead Hartree potential corresponding to the applied bias. This scattering-state method was then applied in Chapter Six to investigate a recent negative differential resistance (NDR) measurement, postulated to originate from current carried by a carbon atomic wire bridging carbon nanotube leads. Our calculations show that such junctions exhibit NDR and display clear even-odd behavior in the size of their currents, lending support to the postulate of carbon chain mediated NDR. In Chapter Seven, we applied our scattering-state method to study <span class="hlt">electron</span> <span class="hlt">transport</span> across a single hydrogen molecule sandwiched between Pd and Pt contacts. Substituting Pt contacts with Pd is found to result in a dramatic reduction in conductance, consistent with two recent break junction experiments. The computed drop in conductance is explained in terms of a qualitative change in <span class="hlt">transport</span> behavior between the two systems. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.717a2043O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.717a2043O"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> estimated from <span class="hlt">electron</span> spectra using <span class="hlt">electron</span> spectrometer in LFEX laser target experiments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozaki, T.; Hata, M.; Matsuo, K.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Sakagami, H.; Sunahara, A.; Nagatomo, H.; Johzaki, T.; Yogo, A.; Morace, A.; Zhang, Z.; Shiraga, H.; Sakata, S.; Nagai, T.; Abe, Y.; Lee, S.; Nakai, M.; Nishimura, H.; Azechi, H.; FIREX Group; GXII-LFEX Group</p> <p>2016-05-01</p> <p>Hot <span class="hlt">electrons</span> which are generated from targets irradiated by a high-intense laser are measured by two <span class="hlt">electron</span> spectrometers (ESMs). However, total <span class="hlt">electron</span> energy observed by the ESM is only less than 1%. Hot <span class="hlt">electrons</span> are confined by self-fields due to the huge current. When an external magnetic field of several hundred Tesla is applied during the laser irradiation on targets, the ESM signals always increase. In the simulation, the same result can be obtained. The reason is that the Alfvén limit can be mitigated due to the external longitudinal magnetic field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/763897','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/763897"><span>Interfacial Charge <span class="hlt">Transport</span> in Organic <span class="hlt">Electronic</span> Materials: the Key to a New <span class="hlt">Electronics</span> Technology</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Smith, D.L.; Campbell, I.H.; Davids, P.S.; Heller, C.M.; Laurich, B.K.; Crone, B.K.; Saxena, A.; Bishop, A.R.; Ferraris, J.P.; Yu, Z.G.</p> <p>1999-06-04</p> <p>This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The primary aim of this project is to obtain a basic scientific understanding of electrical <span class="hlt">transport</span> processes at interfaces that contain an organic <span class="hlt">electronic</span> material. Because of their processing advantages and the tunability of their <span class="hlt">electronic</span> properties, organic <span class="hlt">electronic</span> materials are revolutionizing major technological areas such as information display. We completed an investigation of the fundamental <span class="hlt">electronic</span> excitation energies in the prototype conjugated polymer MEH-PPV. We completed a combined theoretical/experimental study of the energy relation between charged excitations in a conjugated polymer and the metal at a polymer/metal interface. We developed a theoretical model that explains injection currents at polymer/metal interfaces. We have made electrical measurements on devices fabricated using the conjugated polymer MEH-PPV a nd a series of metals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6430994','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6430994"><span><span class="hlt">Nonequilibrium</span> molecular dynamics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )</p> <p>1990-11-01</p> <p>The development of <span class="hlt">nonequilibrium</span> molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..95c5430R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..95c5430R"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in disordered MoS2 nanoribbons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.</p> <p>2017-01-01</p> <p>We study the <span class="hlt">electronic</span> structure and <span class="hlt">transport</span> properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the <span class="hlt">electronic</span> properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the <span class="hlt">transport</span> properties of nanoribbons within the bulk gap energy window.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/477761','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/477761"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> in coupled double quantum wells and wires</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Harff, N.E.; Simmons, J.A.; Lyo, S.K.</p> <p>1997-04-01</p> <p>Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra degree of <span class="hlt">electronic</span> freedom in the growth direction, giving rise to new <span class="hlt">transport</span> phenomena not found in single <span class="hlt">electron</span> layers. This report describes work done on coupled DQWs subject to inplane magnetic fields B{sub {parallel}}, and is based on the lead author`s doctoral thesis, successfully defended at Oregon State University on March 4, 1997. First, the conductance of closely coupled DQWs in B{sub {parallel}} is studied. B{sub {parallel}}-induced distortions in the dispersion, the density of states, and the Fermi surface are described both theoretically and experimentally, with particular attention paid to the dispersion anticrossing and resulting partial energy gap. Measurements of giant distortions in the effective mass are found to agree with theoretical calculations. Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to agree exceptionally well with the data. Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting <span class="hlt">transport</span> effects in these devices. Difficulties in sample fabrication have to date prevented experimental verification. However, recently developed techniques to overcome these difficulties are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25071080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25071080"><span>Dirac model of <span class="hlt">electronic</span> <span class="hlt">transport</span> in graphene antidot barriers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomsen, M R; Brun, S J; Pedersen, T G</p> <p>2014-08-20</p> <p>In order to use graphene for semiconductor applications, such as transistors with high on/off ratios, a band gap must be introduced into this otherwise semimetallic material. A promising method of achieving a band gap is by introducing nanoscale perforations (antidots) in a periodic pattern, known as a graphene antidot lattice (GAL). A graphene antidot barrier (GAB) can be made by introducing a 1D GAL strip in an otherwise pristine sheet of graphene. In this paper, we will use the Dirac equation (DE) with a spatially varying mass term to calculate the <span class="hlt">electronic</span> <span class="hlt">transport</span> through such structures. Our approach is much more general than previous attempts to use the Dirac equation to calculate scattering of Dirac <span class="hlt">electrons</span> on antidots. The advantage of using the DE is that the computational time is scale invariant and our method may therefore be used to calculate properties of arbitrarily large structures. We show that the results of our Dirac model are in quantitative agreement with tight-binding for hexagonal antidots with armchair edges. Furthermore, for a wide range of structures, we verify that a relatively narrow GAB, with only a few antidots in the unit cell, is sufficient to give rise to a <span class="hlt">transport</span> gap.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/1343313','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/1343313"><span>ecode - <span class="hlt">Electron</span> <span class="hlt">Transport</span> Algorithm Testing v. 1.0</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene; Laub, Thomas W.; Crawford, Martin J; Kenseck, Ronald P.; Prinja, Anil</p> <p>2016-10-05</p> <p>ecode is a Monte Carlo code used for testing algorithms related to <span class="hlt">electron</span> <span class="hlt">transport</span>. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochastic Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple <span class="hlt">electron</span> <span class="hlt">transport</span> models). No production of secondary particles is implemented, and no photon physics is implemented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/787905','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/787905"><span>Simulations of <span class="hlt">Electron</span> <span class="hlt">Transport</span> in Laser Hot Spots</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>S. Brunner; E. Valeo</p> <p>2001-08-30</p> <p>Simulations of <span class="hlt">electron</span> <span class="hlt">transport</span> are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial <span class="hlt">transport</span>, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the <span class="hlt">electron</span> plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2756358','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2756358"><span>Effect of Noise on DNA Sequencing via Transverse <span class="hlt">Electronic</span> <span class="hlt">Transport</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Krems, Matt; Zwolak, Michael; Pershin, Yuriy V.; Di Ventra, Massimiliano</p> <p>2009-01-01</p> <p>Abstract Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in <span class="hlt">electronic</span> dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides—a result we expect to be a common feature of <span class="hlt">transport</span> in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse <span class="hlt">electronic</span> <span class="hlt">transport</span> measurements for DNA sequencing. PMID:19804730</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARF29007L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARF29007L"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in graphene sheets in a random magnetic field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewenkopf, Caio; Burgos, Rhonald; Warnes, Jesus; Lima, Leandro</p> <p>2014-03-01</p> <p>We present a theoretical study of the effect of ripples and strain fields in the <span class="hlt">transport</span> properties of diffusive deposited graphene flakes. Defects in the crystalline structure, adsorbed atomic impurities and charge inhomogeneities at the substrate are believed to be the dominant disorder sources for the <span class="hlt">electronic</span> <span class="hlt">transport</span> in graphene at low temperatures. We show that intrinsic ripples also effect the conductivity, in particular, its quantum corrections. To this end, we analyze recent experimental results on the conductivity of rippled monolayer graphene sheets subjected to a strong magnetic field parallel to the graphene-substrate interface, B∥ [M. B. Lundeberg and J. A. Folk, Phys. Rev. Lett. 105, 146804 (2010)]. In this setting, B∥ gives rise to a random magnetic field normal to graphene sheet, that depends on the local curvature of the smooth disordered ripples. The analysis of the weak localization corrections of the magnetoconductance allows to establish the dependence of <span class="hlt">electronic</span> dephasing rate on the magnitude of the random magnetic field. We compare the results for B∥ with the conductivity and weak localization corrections due to the pseudo-magnetic fields originated by intrinsic ripples and strain fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..GECMW6035D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..GECMW6035D"><span>Third order <span class="hlt">transport</span> coefficients for <span class="hlt">electrons</span> and positrons in gases</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dujko, Sasa; Simonovic, Ilija; White, Ronald; Petrovic, Zoran</p> <p>2016-09-01</p> <p>Third order <span class="hlt">transport</span> coefficients (the skewness tensor) of the <span class="hlt">electron</span> and positron swarms, in atomic and molecular gases, are investigated. The knowledge of the skewness tensor is necessary for the conversion of the hydrodynamic <span class="hlt">transport</span> coefficients to the arrival time and steady-state Townsend <span class="hlt">transport</span> data as well as for the determination of the deviations of the spatial density profiles from an ideal Gaussian. In this work, we investigate the structure and symmetries along individual elements of the skewness tensor by the group projector method. Individual components of the skewness tensor are calculated using a Monte Carlo simulation technique and multi term theory for solving the Boltzmann equation. Results obtained by these two methods are in excellent agreement. We extend previous studies by considering the sensitivity of the skewness components to explicit and implicit effects of non-conservative collisions, post-ionization energy partitioning, and inelastic collisions. The errors of the two term approximation for solving the Boltzmann equation are highlighted. We also investigate the influence of a magnetic field on the skewness tensor in varying configurations of electric and magnetic fields. Among many interesting points, we have observed a strong correlation between the skewness and diffusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT.......246M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT.......246M"><span>Low-dimensional <span class="hlt">electron</span> <span class="hlt">transport</span> in mesoscopic semiconductor devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Theodore Peyton</p> <p></p> <p>Recent advances in solid state materials engineering have led to mesoscopic devices with feature sizes that approach the fundamental quantum wavelength of charge carriers in the solid, allowing for the experimental observation of quantum interference. By confining carriers to a single quantum state in one or more dimensions, the degrees of freedom for charge <span class="hlt">transport</span> can be reduced to achieve new device functionality. This dissertation focuses on mesoscopic <span class="hlt">electron</span> billiards that combine the aspects of zero, one, and two-dimensional <span class="hlt">transport</span> into one system. Low-temperature measurement of billiards fabricated within a relatively defect-free semiconductor heterostructure results in ballistic <span class="hlt">transport</span>, where the <span class="hlt">electron</span> waves follow classical trajectories and the confining walls play a major role in determining the <span class="hlt">electron</span> interference. Billiards have been traditionally formed by applying a bias to patterned surface gates atop an AlGaAs/GaAs heterostructure. Within this system, fractal fluctuations in the billiard conductance are observed as a function of an applied external magnetic field. These fluctuations are tied to quantum interference via an empirical parameter that describes the resolution of energy levels within the billiard. To investigate whether fractal fluctuations are a robust phenomenon intrinsic to billiard-like structures, this study centers on billiards defined by etching walls into a GaInAs/InP heterostructure, departing from the traditional system in both the type of confinement and material system used. It is expected that etched walls will provide a steeper confinement profile leading to well-defined device shapes. Conductance measurements through the one-dimensional leads that couple <span class="hlt">electrons</span> into the billiard are utilized in combination with a self-consistent Schrodinger/Poisson solution to demonstrate a steeper confinement potential. Experiments are also carried out to determine whether fractal fluctuations persist when billiards are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1889S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1889S"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> in the solar wind -results from numerical simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Håkan; Marsch, Eckart; Helander, Per</p> <p></p> <p>A conventional fluid approach is in general insufficient for a correct description of <span class="hlt">electron</span> <span class="hlt">trans-port</span> in weakly collisional plasmas such as the solar wind. The classical Spitzer-Hürm theory is a not valid when the Knudsen number (the mean free path divided by the length scale of tem-perature variation) is greater than ˜ 10-2 . Despite this, the heat <span class="hlt">transport</span> from Spitzer-Hürm a theory is widely used in situations with relatively long mean free paths. For realistic Knud-sen numbers in the solar wind, the <span class="hlt">electron</span> distribution function develops suprathermal tails, and the departure from a local Maxwellian can be significant at the energies which contribute the most to the heat flux moment. To accurately model heat <span class="hlt">transport</span> a kinetic approach is therefore more adequate. Different techniques have been used previously, e.g. particle sim-ulations [Landi, 2003], spectral methods [Pierrard, 2001], the so-called 16 moment method [Lie-Svendsen, 2001], and approximation by kappa functions [Dorelli, 2003]. In the present study we solve the Fokker-Planck equation for <span class="hlt">electrons</span> in one spatial dimension and two velocity dimensions. The distribution function is expanded in Laguerre polynomials in energy, and a finite difference scheme is used to solve the equation in the spatial dimension and the velocity pitch angle. The ion temperature and density profiles are assumed to be known, but the electric field is calculated self-consistently to guarantee quasi-neutrality. The kinetic equation is of a two-way diffusion type, for which the distribution of particles entering the computational domain in both ends of the spatial dimension must be specified, leaving the outgoing distributions to be calculated. The long mean free path of the suprathermal <span class="hlt">electrons</span> has the effect that the details of the boundary conditions play an important role in determining the particle and heat fluxes as well as the electric potential drop across the domain. Dorelli, J. C., and J. D. Scudder, J. D</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23331168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23331168"><span>When <span class="hlt">electron</span> transfer meets <span class="hlt">electron</span> <span class="hlt">transport</span> in redox-active molecular nanojunctions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe</p> <p>2013-02-13</p> <p>A scanning electrochemical microscope (SECM) was used to arrange two microelectrodes face-to-face separated by a micrometric gap. Polyaniline (PANI) was deposited electrochemically from the SECM tip side until it bridged the two electrodes. The junctions obtained were characterized by following the current through the PANI as a function of its electrochemical potential measured versus a reference electrode acting as a gate electrode in a solid-state transistor. PANI nanojunctions showed conductances below 100 nS in the oxidized state, indicating control of the charge <span class="hlt">transport</span> within the whole micrometric gap by a limited number of PANI wires. The SECM configuration makes it possible to observe in the same experiment and in the same current range the <span class="hlt">electron</span>-transfer and <span class="hlt">electron-transport</span> processes. These two phenomena are distinguished here and characterized by following the variation of the current with the bias voltage and the scan rate. The <span class="hlt">electron</span>-transfer current changes with the scan rate, while the charge-<span class="hlt">transport</span> current varies with the bias voltage. Finally, despite the initially micrometric gap, a junction where the conductance is controlled by a single oligoaniline strand is achieved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5234070','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5234070"><span>Topologically protected modes in <span class="hlt">non-equilibrium</span> stochastic systems</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Murugan, Arvind; Vaikuntanathan, Suriyanarayanan</p> <p>2017-01-01</p> <p><span class="hlt">Non-equilibrium</span> driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in <span class="hlt">non-equilibrium</span> statistical mechanics. Here we report that steady states of systems with <span class="hlt">non-equilibrium</span> fluxes can support topologically protected boundary modes that resemble similar modes in <span class="hlt">electronic</span> and mechanical systems. Akin to their <span class="hlt">electronic</span> and mechanical counterparts, topological-protected boundary steady states in <span class="hlt">non-equilibrium</span> systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use <span class="hlt">non-equilibrium</span> driving to achieve robust function. PMID:28071644</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...813881M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...813881M"><span>Topologically protected modes in <span class="hlt">non-equilibrium</span> stochastic systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murugan, Arvind; Vaikuntanathan, Suriyanarayanan</p> <p>2017-01-01</p> <p><span class="hlt">Non-equilibrium</span> driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in <span class="hlt">non-equilibrium</span> statistical mechanics. Here we report that steady states of systems with <span class="hlt">non-equilibrium</span> fluxes can support topologically protected boundary modes that resemble similar modes in <span class="hlt">electronic</span> and mechanical systems. Akin to their <span class="hlt">electronic</span> and mechanical counterparts, topological-protected boundary steady states in <span class="hlt">non-equilibrium</span> systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use <span class="hlt">non-equilibrium</span> driving to achieve robust function.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28071644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28071644"><span>Topologically protected modes in <span class="hlt">non-equilibrium</span> stochastic systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murugan, Arvind; Vaikuntanathan, Suriyanarayanan</p> <p>2017-01-10</p> <p><span class="hlt">Non-equilibrium</span> driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in <span class="hlt">non-equilibrium</span> statistical mechanics. Here we report that steady states of systems with <span class="hlt">non-equilibrium</span> fluxes can support topologically protected boundary modes that resemble similar modes in <span class="hlt">electronic</span> and mechanical systems. Akin to their <span class="hlt">electronic</span> and mechanical counterparts, topological-protected boundary steady states in <span class="hlt">non-equilibrium</span> systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use <span class="hlt">non-equilibrium</span> driving to achieve robust function.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......352S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......352S"><span><span class="hlt">Electronic</span> structure and quantum <span class="hlt">transport</span> properties of metallic and semiconducting nanowires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simbeck, Adam J.</p> <p></p> <p>The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired <span class="hlt">electronic</span> characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the <span class="hlt">electronic</span> and quantum <span class="hlt">transport</span> properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the <span class="hlt">electronic</span> and <span class="hlt">transport</span> characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of <span class="hlt">electronic</span> and <span class="hlt">transport</span> trends, but also in engineering the <span class="hlt">electronic</span> structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum <span class="hlt">transport</span> properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. <span class="hlt">Non-equilibrium</span> Green's function based <span class="hlt">transport</span> calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22314296','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22314296"><span>First principles study on the <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of C{sub 60} and B{sub 80} molecular bridges</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Zheng, X. H. Hao, H.; Lan, J.; Wang, X. L.; Shi, X. Q.; Zeng, Z.</p> <p>2014-08-21</p> <p>The <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of molecular bridges constructed by C{sub 60} and B{sub 80} molecules which have the same symmetry are investigated by first principles calculations combined with a <span class="hlt">non-equilibrium</span> Green's function technique. It is found that, like C{sub 60}, monomer B{sub 80} is a good conductor arising from the charge transfer from the leads to the molecule, while the dimer (B{sub 80}){sub 2} and (C{sub 60}){sub 2} are both insulators due to the potential barrier formed at the molecule-molecule interface. Our further study shows that, although both the homogeneous dimer (B{sub 80}){sub 2} and (C{sub 60}){sub 2} display poor conductivity, the heterogeneous dimer B{sub 80}C{sub 60} shows a very high conductance as a result from the decreased HOMO-LUMO gap and the excess charge redistribution. Finally, we find that the conductivity of both (B{sub 80}){sub 2} and (C{sub 60}){sub 2} can be significantly improved by <span class="hlt">electron</span> doping, for example, by doping C in (B{sub 80}){sub 2} and doping N in (C{sub 60}){sub 2}.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4448654','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4448654"><span><span class="hlt">Nonequilibrium</span> fluctuations as a distinctive feature of weak localization</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barone, C.; Romeo, F.; Pagano, S.; Attanasio, C.; Carapella, G.; Cirillo, C.; Galdi, A.; Grimaldi, G.; Guarino, A.; Leo, A.; Nigro, A.; Sabatino, P.</p> <p>2015-01-01</p> <p>Two-dimensional materials, such as graphene, topological insulators, and two-dimensional <span class="hlt">electron</span> gases, represent a technological playground to develop coherent <span class="hlt">electronics</span>. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical <span class="hlt">transport</span>, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of <span class="hlt">nonequilibrium</span> universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy. PMID:26024506</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JChPh.124c4708J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JChPh.124c4708J"><span>A generalized quantum chemical approach for elastic and inelastic <span class="hlt">electron</span> <span class="hlt">transports</span> in molecular <span class="hlt">electronics</span> devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Jun; Kula, Mathias; Luo, Yi</p> <p>2006-01-01</p> <p>A generalized quantum chemical approach for <span class="hlt">electron</span> <span class="hlt">transport</span> in molecular devices is developed. It allows one to treat devices where the metal electrodes and the molecule are either chemically or physically bonded on equal footing. An extension to include the vibration motions of the molecule has also been implemented which has produced the inelastic <span class="hlt">electron</span>-tunneling spectroscopy of molecular <span class="hlt">electronics</span> devices with unprecedented accuracy. Important information about the structure of the molecule and of metal-molecule contacts that are not accessible in the experiment are revealed. The calculated current-voltage (I-V) characteristics of different molecular devices, including benzene-1,4-dithiolate, octanemonothiolate [H(CH2)8S], and octanedithiolate [S(CH2)8S] bonded to gold electrodes, are in very good agreement with experimental measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22262617','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22262617"><span><span class="hlt">Electron-electron</span> interaction, weak localization and spin valve effect in vertical-<span class="hlt">transport</span> graphene devices</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei; Liu, Guangtong</p> <p>2014-04-14</p> <p>We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of <span class="hlt">electron</span> and spin <span class="hlt">transport</span> were performed across the combined channels containing the vertical and horizontal components. The presence of <span class="hlt">electron-electron</span> interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21611547','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21611547"><span>Heat <span class="hlt">transport</span> in active harmonic chains</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Zheng, Mei C.; Ellis, Fred M.; Kottos, Tsampikos; Fleischmann, Ragnar; Geisel, Theo; Prosen, Tomaz</p> <p>2011-08-15</p> <p>We show that a harmonic lattice model with amplifying and attenuating elements, when coupled to two thermal baths, exhibits unique heat <span class="hlt">transport</span> properties. Some of these novel features include anomalous <span class="hlt">nonequilibrium</span> steady-state heat currents, negative differential thermal conductance, as well as nonreciprocal heat <span class="hlt">transport</span>. We find that when these elements are arranged in a PT-symmetric manner, the domain of existence of the <span class="hlt">nonequilibrium</span> steady state is maximized. We propose an <span class="hlt">electronic</span> experimental setup based on resistive-inductive-capacitive (RLC) transmission lines, where our predictions can be tested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22482256','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22482256"><span>Density-dependent <span class="hlt">electron</span> <span class="hlt">transport</span> and precise modeling of GaN high <span class="hlt">electron</span> mobility transistors</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth</p> <p>2015-10-12</p> <p>We report on the direct measurement of two-dimensional sheet charge density dependence of <span class="hlt">electron</span> <span class="hlt">transport</span> in AlGaN/GaN high <span class="hlt">electron</span> mobility transistors (HEMTs). Pulsed IV measurements established increasing <span class="hlt">electron</span> velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based <span class="hlt">electron</span> velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the <span class="hlt">electron</span> velocity with strong <span class="hlt">electron</span>-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850022467','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850022467"><span><span class="hlt">Nonequilibrium</span> air radiation (Nequair) program: User's manual</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Park, C.</p> <p>1985-01-01</p> <p>A supplement to the data relating to the calculation of <span class="hlt">nonequilibrium</span> radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (<span class="hlt">Nonequilibrium</span> Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and <span class="hlt">electrons</span>, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21180303','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21180303"><span>Correlation between <span class="hlt">Electron</span> <span class="hlt">Transport</span> and Shear Alfven Activity in the National Spherical Torus Experiment</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Gorelenkov, N.; Fredrickson, E.; Kaye, S.; Mazzucato, E.</p> <p>2009-03-20</p> <p>We report the observation of a correlation between shear Alfven eigenmode activity and <span class="hlt">electron</span> <span class="hlt">transport</span> in plasma regimes where the <span class="hlt">electron</span> temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central <span class="hlt">electron</span> <span class="hlt">transport</span> show intense, broadband global Alfven eigenmode (GAE) activity in the 0.5-1.1 MHz range, while plasmas with low <span class="hlt">transport</span> are essentially GAE-free. The first theoretical assessment of a GAE-<span class="hlt">electron</span> <span class="hlt">transport</span> connection indicates that overlapping modes can resonantly couple to the bulk thermal <span class="hlt">electrons</span> and induce their stochastic diffusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/984468','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/984468"><span>Anomalous <span class="hlt">Electron</span> <span class="hlt">Transport</span> Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.</p> <p>2010-07-13</p> <p>We report on the simulations of recently observed correlations of the core <span class="hlt">electron</span> <span class="hlt">transport</span> with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the <span class="hlt">electron</span> <span class="hlt">transport</span> of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the <span class="hlt">electron</span> <span class="hlt">transport</span> properties. The simulations exhibit thermal <span class="hlt">electron</span> <span class="hlt">transport</span> induced by <span class="hlt">electron</span> drift orbit stochasticity in the presence of multiple core localized GAE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1009202','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1009202"><span>Hot <span class="hlt">Electron</span> Generation and <span class="hlt">Transport</span> Using K(alpha) Emission</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Akli, K U; Stephens, R B; Key, M H; Bartal, T; Beg, F N; Chawla, S; Chen, C D; Fedosejevs, R; Freeman, R R; Friesen, H; Giraldez, E; Green, J S; Hey, D S; Higginson, D P; Hund, J; Jarrott, L C; Kemp, G E; King, J A; Kryger, A; Lancaster, K; LePape, S; Link, A; Ma, T; Mackinnon, A J; MacPhee, A G; McLean, H S; Murphy, C; Norreys, P A; Ovchinnikov, V; Patel, P K; Ping, Y; Sawada, H; Schumacher, D; Theobald, W; Tsui, Y Y; Van Woerkom, L D; Wei, M S; Westover, B; Yabuuchi, T</p> <p>2009-10-15</p> <p>We have conducted experiments on both the Vulcan and Titan laser facilities to study hot <span class="hlt">electron</span> generation and <span class="hlt">transport</span> in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40{micro}m diameter wire emulating a 40{micro}m fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of prepulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26196817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26196817"><span>Pauli-Heisenberg Oscillations in <span class="hlt">Electron</span> Quantum <span class="hlt">Transport</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thibault, Karl; Gabelli, Julien; Lupien, Christian; Reulet, Bertrand</p> <p>2015-06-12</p> <p>We measure the current fluctuations emitted by a normal-metal-insulator-normal-metal tunnel junction with a very wide bandwidth, from 0.3 to 13 GHz, down to very low temperature T=35  mK. This allows us to perform the spectroscopy (i.e., measure the frequency dependence) of thermal noise (no dc bias, variable temperature) and shot noise (low temperature, variable dc voltage bias). Because of the very wide bandwidth of our measurement, we deduce the current-current correlator in the time domain. We observe the thermal decay of this correlator as well as its oscillations with a period h/eV, a direct consequence of the effect of the Pauli and Heisenberg principles in quantum <span class="hlt">electron</span> <span class="hlt">transport</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25c7309H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25c7309H"><span>Velocity modulation of <span class="hlt">electron</span> <span class="hlt">transport</span> through a ferromagnetic silicene junction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huai-Hua, Shao; Dan, Guo; Ben-Liang, Zhou; Guang-Hui, Zhou</p> <p>2016-03-01</p> <p>We address velocity-modulation control of <span class="hlt">electron</span> wave propagation in a normal/ferromagnetic/normal silicene junction with local variation of Fermi velocity, where the properties of charge, valley, and spin <span class="hlt">transport</span> through the junction are investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley- and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can be realized by adjusting the local application of a gate voltage and exchange field on the junction. Project supported by the National Natural Science Foundation of China (Grant No. 11274108).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.F5008Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.F5008Q"><span><span class="hlt">Electronic</span> measurement of strain effects on spin <span class="hlt">transport</span> in silicon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qing, Lan; Tinkey, Holly; Appelbaum, Ian</p> <p></p> <p>Spin <span class="hlt">transport</span> in silicon is limited by the Elliott-Yafet spin relaxation mechanism, which is driven by scattering between degenerate conduction band valleys. Mechanical strain along a valley axis partially breaks this degeneracy, and will ultimately quench intervalley spin relaxation for transitions between states on orthogonal axes. Using a custom-designed and constructed strain probe, we study the effects of uniaxial compressive strain along the < 100 > direction on ballistic tunnel junction devices used to inject spin-polarized <span class="hlt">electrons</span> into silicon. The effects of strain-induced valley splitting will be presented and compared to our theoretical model. This work is supported by the Office of Naval Research under Contract No. N000141410317, the National Science Foundation under Contract No. ECCS-1231855, the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013, and the Maryland NanoCenter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhPro..75..948D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhPro..75..948D"><span>Relativistic Effects on <span class="hlt">Electron</span> <span class="hlt">Transport</span> in Magnetic Alloys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drchal, Václav; Kudrnovský, Josef; Turek, Ilja</p> <p></p> <p>We study the relativistic effects on <span class="hlt">electron</span> <span class="hlt">transport</span> in spin-polarized metals and random alloys on ab initio level using the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method. We employ a Kubo linear-response approach adapted to disordered multisublattice systems in which the chemical disorder is described in terms of the coherent potential approximation (CPA). The CPA vertex corrections are included. We calculate both the Fermi surface and Fermi sea terms of the full conductivity tensor. We find that in cubic ferromagnetic 3d transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) the Fermi sea term in the anomalous Hall conductivity is small in comparison with the Fermi surface term, however, in more complicated structures, such as hexagonal Co and selected Co-based Heusler alloys, it becomes important. We find an overall good agreement between the theory and experimental data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARC26001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARC26001B"><span><span class="hlt">Electron</span> <span class="hlt">Transport</span> Simulations of 4-Terminal Crossed Graphene Nanoribbons Devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandimarte, Pedro; Papior, Nick R.; Engelund, Mads; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel</p> <p></p> <p>Recently, it has been reported theoretically a current switching mechanism by voltage control in a system made by two perpendicular 14-armchair graphene nanoribbons (GNRs). In order to investigate the possibilities of using crossed GNRs as ON/OFF devices, we have studied their <span class="hlt">electronic</span> and <span class="hlt">transport</span> properties as function structural parameters determining the crossing. Our calculations were performed with TranSIESTA code, which has been recently generalized to consider N >= 1 arbitrarily distributed electrodes at finite bias. We find that the transmission along each individual GNR and among them strongly depends on the stacking. For a 60° rotation angle, the lattice matching in the crossing region provokes a strong scattering effect that translates into an increased interlayer transmission. FP7 FET-ICT PAMS-project (European Commission, contract 610446), MINECO (Grant MAT2013-46593-C6-2-P) and Basque Dep. de Educación, UPV/EHU (Grant IT-756-13).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22492133','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22492133"><span>Conformation dependent <span class="hlt">electronic</span> <span class="hlt">transport</span> in a DNA double-helix</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kundu, Sourav Karmakar, S. N.</p> <p>2015-10-15</p> <p>We present a tight-binding study of conformation dependent <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......107L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......107L"><span>Quantum chaos and <span class="hlt">electron</span> <span class="hlt">transport</span> properties in a quantum waveguide</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Hoshik</p> <p></p> <p>We numerically investigate <span class="hlt">electron</span> <span class="hlt">transport</span> properties in an <span class="hlt">electron</span> waveguide which can be constructed in 2DEG of the heterostructure of GaAs and AlGaAs. We apply R-matrix theory to solve a Schrodinger equation and construct a S-matrix, and we then calculate conductance of an <span class="hlt">electron</span> waveguide. We study single impurity scattering in a waveguide. A delta-function model as a single impurity is very attractive, but it has been known that delta-function potential does not give a convergent result in two or higher space dimensions. However, we find that it can be used as a single impurity in a waveguide with the truncation of the number of modes. We also compute conductance for a finite size impurity by using R-matrix theory. We propose an appropriate criteria for determining the cut-off mode for a delta-function impurity that reproduces the conductance of a waveguide when a finite impurity presents. We find quantum scattering echoes in a ripple waveguide. A ripple waveguide (or cavity) is widely used for quantum chaos studies because it is easy to control a particle's dynamics. Moreover we can obtain an exact expression of Hamiltonian matrix with for the waveguide using a simple coordinate transformation. Having an exact Hamiltonian matrix reduces computation time significantly. It saves a lot of computational needs. We identify three families of resonance which correspond to three different classical phase space structures. Quasi bound states of one of those resonances reside on a hetero-clinic tangle formed by unstable manifolds and stable manifolds in the phase space of a corresponding classical system. Resonances due to these states appear in the conductance in a nearly periodic manner as a function of energy. Period from energy frequency gives a good agreement with a prediction of the classical theory. We also demonstrate wavepacket dynamics in a ripple waveguide. We find quantum echoes in the transmitted probability of a wavepacket. The period of echoes also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986PhRvB..34.2158K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986PhRvB..34.2158K"><span><span class="hlt">Transport</span> of <span class="hlt">electron</span>-hole plasma in germanium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirch, S. J.; Wolfe, J. P.</p> <p>1986-08-01</p> <p>Time-resolved luminescence imaging techniques are used to observe the spectral and spatial evolution of laser-generated <span class="hlt">electron</span>-hole plasma in Ge. Both pulsed and cw excitation conditions are examined above and below the critical temperature for <span class="hlt">electron</span>-hole liquid formation, Tc(LG). For Q-switched Nd-doped yttrium aluminum garnet laser excitation, the <span class="hlt">transport</span> behavior is qualitatively similar above and below Tc(LG), although the luminescence spectrum undergoes significant changes in this temperature range. A rapid initial expansion (v~105 cm/s) is followed by a period of slower growth which gradually reduces as the carriers recombine. The initial velocity for pulsed excitation increases monotonically as the crystal temperature is lowered and saturates near the phonon sound velocity for high-energy excitation. These observations are consistent with phonon-wind driven <span class="hlt">transport</span>. For intense Q-switched excitation, the motion is characterized by three regimes: (1) During the laser pulse the plasma expands as a large drop with near-unity filling fraction. (2) Expansion at near-sonic velocity continues after the peak of the laser pulse due to a ``prompt'' pulse of ballistic phonons produced by the carrier thermalization process. (3) After this intense phonon wind passes the carrier distribution, the expansion velocity abruptly decreases, but the plasma continues to expand more slowly under the influence of a ``hot spot'' produced at the excitation point. The sound barrier observed on these time scales (>=30 ns) can be explained in terms of nonlinear damping of the plasma motion near the sound velocity. For cw excitation, the expansion is observed to occur at much lower velocities (v~104 cm/s). These expansion rates are much too low to require the inclusion of a drifted Fermi distribution in the spectral analysis as has been previously suggested. Instead, based upon a careful study of corresponding spectral data, an alternative explanation for these spectra is</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT.......167B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT.......167B"><span>Characterization of ionic <span class="hlt">transport</span> in polymer and <span class="hlt">electronic</span> <span class="hlt">transport</span> in disordered selenium and ceramic materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandyopadhyay, Subhasish</p> <p></p> <p>In this thesis, the properties of <span class="hlt">electronic</span> conduction in vanadium (donor) and scandium (acceptor) doped Ba0.7Sr0.3TiO3 ceramics, amorphous Selenium and ionic conduction in polyester polyol based polyurethane have been investigated. The leakage current of bulk vanadium (donor) and scandium (acceptor) doped Ba0.7Sr0.3TiO3 ceramics structures measured using gold electrical contacts have been characterized and analyzed. Vanadium doping reduces the ohmic leakage current that dominates the <span class="hlt">transport</span> characteristics up to 5 kV/cm. The Arrhenius activation energy is 0.18, 0.20 and 0.23 eV for 1, 2 and 4 at % V-doped samples, respectively. Above this field, the current-voltage characteristics exhibit discontinuous current transitions associated with trap filling by <span class="hlt">electronic</span> carriers. At higher fields, trap controlled space charge limited conduction (SCLC) is observed with an effective mobility of 4+/-1x10-7 cm2/V s, characteristic of <span class="hlt">electronic</span> <span class="hlt">transport</span> process that involves quasi equilibrium between conduction in the band and trapping. In contrast, the leakage current of Sc-doped samples increases with impurity concentration and exhibits a 0.60 eV activation energy. In this case, the limiting current conduction mechanism is the <span class="hlt">transport</span> of holes over the electrostatic barrier at grain boundaries. Comparison of these results to those on similarly-doped homoepitaxial SrTiO3 thin-films deposited on single-crystal and bicrystal substrates helped to identify the characteristics of <span class="hlt">transport</span> in the bulk and across grain boundaries for this class of materials. Electrical, thermal and Li <span class="hlt">transport</span> properties have been measured for polyester polyol and isocyanate-based polyurethanes doped with Lithium trifluoromethanesulfonimide (LiTFSI) and Lithium perchlorate (LiClO4) Electrical conductivities are estimated at 10-5--10-6 S/cm near 300 K. The conductivities show Vogel-Tammann-Fulcher (VTF) behavior over a wide temperature ranges. Differential scanning calorimetry (DSC) shows</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22493896','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22493896"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> in molecular junctions with graphene as protecting layer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hüser, Falco; Solomon, Gemma C.</p> <p>2015-12-07</p> <p>We present ab initio <span class="hlt">transport</span> calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the <span class="hlt">electronic</span> transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the <span class="hlt">transport</span> properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21036127','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21036127"><span>Small fields: <span class="hlt">Nonequilibrium</span> radiation dosimetry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Das, Indra J.; Ding, George X.; Ahnesjoe, Anders</p> <p>2008-01-15</p> <p>Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to <span class="hlt">nonequilibrium</span> conditions created as a consequence of the secondary <span class="hlt">electron</span> track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged <span class="hlt">electron</span> tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the <span class="hlt">nonequilibrium</span> radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JaJAP..44..523L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JaJAP..44..523L"><span>Intrinsic <span class="hlt">Electronic</span> <span class="hlt">Transport</span> through Alkanedithiol Self-Assembled Monolayer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Takhee; Wang, Wenyong; Reed, Mark A.</p> <p>2005-01-01</p> <p><span class="hlt">Electronic</span> <span class="hlt">transport</span> through an alkanedithiol self-assembled monolayer (SAM) is investigated using a nanometer scale device. Temperature-independent current-voltage characteristics are observed, indicating tunneling is the main conduction mechanism. The measured current-voltage characteristics are analyzed with a metal-insulator-metal tunneling model. The inelastic <span class="hlt">electron</span> tunneling spectroscopy (IETS) study on the octanedithiol device clearly shows the vibrational signatures of molecules. The pronounced IETS peaks correspond to vibrational modes perpendicular to the junction interface, which include the stretching modes of Au-S (at 33 mV) and C-C (at 133 mV), and wagging mode of CH2 (at 158 mV). Intrinsic linewidths are determined as 1.69 (upper limit), 3.73± 0.98, and 13.5± 2.4 meV for Au-S, C-C streching modes, and CH2 wagging mode, respectively. The observed peak intensities and peak widths are in good agreement with theoretical predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14507427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14507427"><span>Endosymbiosis and the design of eukaryotic <span class="hlt">electron</span> <span class="hlt">transport</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berry, Stephan</p> <p>2003-09-30</p> <p>The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their <span class="hlt">electron</span> <span class="hlt">transport</span> chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic <span class="hlt">electron</span> acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1178203','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1178203"><span>Fast <span class="hlt">electron</span> <span class="hlt">transport</span> in lower-hybrid current drive</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kupfer, K.; Bers, A.</p> <p>1991-01-01</p> <p>We generalize the quasilinear-Fokker-Planck formulation for lower-hybrid current drive to include the wave induced radial <span class="hlt">transport</span> of fast <span class="hlt">electrons</span>. Toroidal ray tracing shows that the wave fields in the plasma develop a large poloidal component associated with the upshift in k1l and the filling of the "spectral gap". These fields lead to an enhanced radial E x B drift of resonant <span class="hlt">electrons</span>. Two types of radial flows are obtained: an outward convective flow driven by the asymmetry in the poloidal wave spectrum, and a diffusive flow proportional to the width of the poloidal spectrum. Simulations of Alcator C and JT60, show that the radial convection velocity has a broad maximum of nearly 1 m/sec and is independent of the amplitude of fields. In both cases, the radial diffusion is found to be highly localized near the magnetic axis. For JT60, the peak of the diffusion profile can be quite large, nearly 1 m2/sec.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50a5205Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50a5205Z"><span>Cross-field <span class="hlt">transport</span> of <span class="hlt">electrons</span> at the magnetic throat in an annular plasma reactor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yunchao; Charles, Christine; Boswell, Rod</p> <p>2017-01-01</p> <p>Cross-field <span class="hlt">transport</span> of <span class="hlt">electrons</span> has been studied at the magnetic throat of the annular Chi-Kung reactor. This annular configuration allows the creation of a low pressure argon plasma with two distinct <span class="hlt">electron</span> heating locations by independently operating a radio-frequency antenna surrounding the outer source tube, or an antenna housed inside the inner source tube. The two antenna cases show opposite variation trends in radial profiles of <span class="hlt">electron</span> energy probability function, <span class="hlt">electron</span> density, plasma potential and <span class="hlt">electron</span> temperature. The momentum and energy <span class="hlt">transport</span> coefficients are obtained from the <span class="hlt">electron</span> energy probability functions, and the related <span class="hlt">electron</span> fluxes follow the path of <span class="hlt">electron</span> cooling across the magnetic throat.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26512795','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26512795"><span>Detailed Monte Carlo Simulation of <span class="hlt">electron</span> <span class="hlt">transport</span> and <span class="hlt">electron</span> energy loss spectra.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Attarian Shandiz, M; Salvat, F; Gauvin, R</p> <p>2016-11-01</p> <p>A computer program for detailed Monte Carlo simulation of the <span class="hlt">transport</span> of <span class="hlt">electrons</span> with kinetic energies in the range between about 0.1 and about 500 keV in bulk materials and in thin solid films is presented. Elastic scattering is described from differential cross sections calculated by the relativistic (Dirac) partial-wave expansion method with different models of the scattering potential. Inelastic interactions are simulated from an optical-data model based on an empirical optical oscillator strength that combines optical functions of the solid with atomic photoelectric data. The generalized oscillator strength is built from the adopted optical oscillator strength by using an extension algorithm derived from Lindhard's dielectric function for a free-<span class="hlt">electron</span> gas. It is shown that simulated backscattering fractions of <span class="hlt">electron</span> beams from bulk (semi-infinite) specimens are in good agreement with experimental data for beam energies from 0.1 keV up to about 100 keV. Simulations also yield transmitted and backscattered fractions of <span class="hlt">electron</span> beams on thin solid films that agree closely with measurements for different film thicknesses and incidence angles. Simulated most probable deflection angles and depth-dose distributions also agree satisfactorily with measurements. Finally, <span class="hlt">electron</span> energy loss spectra of several elemental solids are simulated and the effects of the beam energy and the foil thickness on the signal to background and signal to noise ratios are investigated. SCANNING 38:475-491, 2016. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22220220','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22220220"><span>Langmuir probe measurements in a time-fluctuating-highly ionized <span class="hlt">non-equilibrium</span> cutting arc: Analysis of the <span class="hlt">electron</span> retarding part of the time-averaged current-voltage characteristic of the probe</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Prevosto, L.; Mancinelli, B.; Kelly, H.</p> <p>2013-12-15</p> <p>This work describes the application of Langmuir probe diagnostics to the measurement of the <span class="hlt">electron</span> temperature in a time-fluctuating-highly ionized, <span class="hlt">non-equilibrium</span> cutting arc. The <span class="hlt">electron</span> retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the <span class="hlt">electron</span> current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged <span class="hlt">electron</span> temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged <span class="hlt">electron</span> temperature. In particular, an averaged <span class="hlt">electron</span> temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such <span class="hlt">electron</span> temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24387432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24387432"><span>Langmuir probe measurements in a time-fluctuating-highly ionized <span class="hlt">non-equilibrium</span> cutting arc: analysis of the <span class="hlt">electron</span> retarding part of the time-averaged current-voltage characteristic of the probe.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prevosto, L; Kelly, H; Mancinelli, B</p> <p>2013-12-01</p> <p>This work describes the application of Langmuir probe diagnostics to the measurement of the <span class="hlt">electron</span> temperature in a time-fluctuating-highly ionized, <span class="hlt">non-equilibrium</span> cutting arc. The <span class="hlt">electron</span> retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the <span class="hlt">electron</span> current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged <span class="hlt">electron</span> temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged <span class="hlt">electron</span> temperature. In particular, an averaged <span class="hlt">electron</span> temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such <span class="hlt">electron</span> temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PlPhR..42..713G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PlPhR..42..713G"><span>Simulation of <span class="hlt">electron</span> beam formation and <span class="hlt">transport</span> in a gas-filled <span class="hlt">electron</span>-optical system with a plasma emitter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.</p> <p>2016-07-01</p> <p>The results of computer simulations of the <span class="hlt">electron</span>-optical system of an <span class="hlt">electron</span> gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the <span class="hlt">electron</span> beam formation and <span class="hlt">transport</span>. The <span class="hlt">electron</span> trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and <span class="hlt">transport</span> are described. Recommendations for optimizing the <span class="hlt">electron</span>-optical system with a plasma emitter are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApPhL.109o2904O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApPhL.109o2904O"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> and dielectric breakdown in silicon nitride using a charge <span class="hlt">transport</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogden, Sean P.; Lu, Toh-Ming; Plawsky, Joel L.</p> <p>2016-10-01</p> <p>Silicon nitride is an important material used in the <span class="hlt">electronics</span> industry. As such, the <span class="hlt">electronic</span> <span class="hlt">transport</span> and reliability of these materials are important to study and understand. We report on a charge <span class="hlt">transport</span> model to predict leakage current and failure trends based on previously published data for a stoichiometric silicon nitride dielectric. Failure occurs when the defect density increases to a critical value of approximately 6 × 1025 traps/m3. The model's parameters are determined using voltage ramp data only, and yet, the model is also able to predict constant voltage stress failure over a time scale ranging from minutes to months. The successful fit of the model to the experimental data validates our assumption that the dominant defect in the dielectric is the Si dangling bond, located approximately 2.2 eV below the conduction band. A comparison with previous SiCOH simulations shows SiN and SiCOH have similar defect-related material properties. It is also speculated that, based on the estimated parameter values of 2.75 eV for the defect formation activation energy, the materials' TDDB wear-out are caused by broken Si-H bonds, resulting in Si dangling bond defects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24061333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24061333"><span><span class="hlt">Electron</span> <span class="hlt">transport</span> through 5-substituted pyrimidines in DNA: <span class="hlt">electron</span> affinities of uracil and cytosine derivatives differently affect the apparent efficiencies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ito, Takeo; Kurihara, Ryohsuke; Utsumi, Nihiro; Hamaguchi, Yuta; Tanabe, Kazuhito; Nishimoto, Sei-ichi</p> <p>2013-11-11</p> <p>We investigated excess <span class="hlt">electron</span> <span class="hlt">transport</span> (EET) in DNA containing cytosine derivatives. By arranging the derivatives according to their <span class="hlt">electron</span> affinities, the apparent EET efficiency was successfully regulated. Unexpectedly, however, providing gradients of <span class="hlt">electron</span> affinity by inserting 5-fluorocytosine did not always enhance EET.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/1287449','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/1287449"><span><span class="hlt">Electron</span> <span class="hlt">Transport</span> Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Dunietz, Barry D.</p> <p>2016-08-09</p> <p>The goal of the research program is to reliably describe <span class="hlt">electron</span> <span class="hlt">transport</span> and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop <span class="hlt">electronic</span> structure models to study (1) photoinduced <span class="hlt">electron</span> transfer and <span class="hlt">transport</span> processes in organic semiconducting materials, and (2) charge and heat <span class="hlt">transport</span> through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CoTPh..59..121B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CoTPh..59..121B"><span>Simulation Study of the <span class="hlt">Electron</span> and Hole <span class="hlt">Transport</span> in a CNTFET</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bahari, A.; Amiri, M.</p> <p>2013-01-01</p> <p>In this work we have investigated <span class="hlt">electron</span> and hole <span class="hlt">transport</span> through zig zag carbon nanotubes by solving Boltzmann <span class="hlt">Transport</span> Equation (BTE). We find that the mobility of <span class="hlt">electrons</span> is rather greater than holes. Carbo nanotubes with longer diameter can carry higher current. Normally, <span class="hlt">transport</span> of <span class="hlt">electrons</span> (or holes) is dominated by scattering events, which relax the carrier momentum in an effort to bring the conducting material to equilibrium.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA521300','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA521300"><span>Scaled-Up <span class="hlt">Nonequilibrium</span> Air Plasmas</span></a></p> <p><a target="_blank" href="https://publicaccess.dtic.mil/psm/api/service/search/search">DTIC Science & Technology</a></p> <p></p> <p>2009-10-01</p> <p>electrode pairs will be tested to increase the plasma volume. In addition, thermionic cathodes (LaCrO3, LaB6) will be examined to enhance the <span class="hlt">electron</span>...measure the cathode fall in the glow discharge regime. Current density, electric field strength and other important plasma parameters will be...thermal <span class="hlt">nonequilibrium</span>, and together with electrical discharge characteristics, estimating the <span class="hlt">electron</span> density and reduced electric field strength (E/N</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23176467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23176467"><span>A long way to the electrode: how do Geobacter cells <span class="hlt">transport</span> their <span class="hlt">electrons</span>?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonanni, Pablo Sebastián; Schrott, Germán David; Busalmen, Juan Pablo</p> <p>2012-12-01</p> <p>The mechanism of <span class="hlt">electron</span> <span class="hlt">transport</span> in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in <span class="hlt">electron</span> <span class="hlt">transport</span> to the electrode remains to be elucidated and a consensus on the mechanism of <span class="hlt">electron</span> <span class="hlt">transport</span> has not been reached. In the present paper, to understand the state of the art in the topic, <span class="hlt">electron</span> <span class="hlt">transport</span> from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments. Furthermore, crucial data still required to achieve a deeper understanding are highlighted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAP...115t3714A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAP...115t3714A"><span>Local atomic order, <span class="hlt">electronic</span> structure and <span class="hlt">electron</span> <span class="hlt">transport</span> properties of Cu-Zr metallic glasses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonowicz, J.; Pietnoczka, A.; Pekała, K.; Latuch, J.; Evangelakis, G. A.</p> <p>2014-05-01</p> <p>We studied atomic and <span class="hlt">electronic</span> structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical <span class="hlt">electronic</span> density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free <span class="hlt">electron</span> (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction <span class="hlt">electrons</span>. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that <span class="hlt">electron</span> <span class="hlt">transport</span> properties of Cu-Zr MGs are dominated by localization effects rather than by <span class="hlt">electronic</span> structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22304308','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22304308"><span>Local atomic order, <span class="hlt">electronic</span> structure and <span class="hlt">electron</span> <span class="hlt">transport</span> properties of Cu-Zr metallic glasses</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Antonowicz, J. Pietnoczka, A.; Pękała, K.; Latuch, J.; Evangelakis, G. A.</p> <p>2014-05-28</p> <p>We studied atomic and <span class="hlt">electronic</span> structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical <span class="hlt">electronic</span> density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free <span class="hlt">electron</span> (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction <span class="hlt">electrons</span>. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that <span class="hlt">electron</span> <span class="hlt">transport</span> properties of Cu-Zr MGs are dominated by localization effects rather than by <span class="hlt">electronic</span> structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Nanot..27H5503P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Nanot..27H5503P"><span>Surface trap mediated <span class="hlt">electronic</span> <span class="hlt">transport</span> in biofunctionalized silicon nanowires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.</p> <p>2016-08-01</p> <p>Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface <span class="hlt">electronic</span> <span class="hlt">transport</span> in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as <span class="hlt">electronic</span> applications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22341856','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22341856"><span>Study of <span class="hlt">electronic</span> <span class="hlt">transport</span> in gamma ray exposed nanowires</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Gehlawat, Devender Chauhan, R.P.</p> <p>2014-01-01</p> <p>Graphical abstract: A sharp decline in the I–V characteristics of Cu (and Cd) nanowires was experimentally observed after the gamma ray exposure of nanowires. Irradiation induced transformations in the granular properties and the resonance state of electron–phonon coupling beyond a particular value of external field may be accountable for observed shape of I–V characteristics in gamma ray exposed nanowires. - Highlights: • Cu and Cd nanowires were synthesized by technique of electrodeposition in templates. • The nanowires were exposed to different doses of gamma ray photons. • A sharp decline in the current in I–V characteristics (IVC) was observed. • Structural deviation in terms of granular orientations was also analysed. • The electron–phonon coupling may be responsible for observed sharp decline in IVC. - Abstract: One dimensional nanostructures provide the most restricted and narrow channel for the <span class="hlt">transport</span> of charge carriers and therefore 1D structures preserve their significance from the viewpoint of <span class="hlt">electronic</span> devices. The net radiation effect on nanomaterials is expected to be more (due to their increased reactivity and lesser bulk volume) than their bulk counterparts. Radiation often modifies the structure and simultaneously the other physical properties of materials. In this manner, the irradiation phenomenon could be counted as a strong criterion to induce changes in the structural and electrical properties of nanowires. We have studied the effect of gamma rays on the <span class="hlt">electronic</span> flow through Cu and Cd nanowires by plotting their I–V characteristics (IVC). The IVC of gamma ray exposed nanowires was found to be a combination of the linear and nonlinear regions and a decreasing pattern in the electrical conductivity (calculated from the linear portion of IVC) was observed as we increased the dose of gamma rays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22492391','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22492391"><span>Effects of line defects on spin-dependent <span class="hlt">electronic</span> <span class="hlt">transport</span> of zigzag MoS{sub 2} nanoribbons</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Li, Xin-Mei; Yang, Kai-Wei; Zhang, Dan; Ding, Jia-Feng; Xu, Hui; Long, Meng-Qiu; Cui, Li-Ling</p> <p>2016-01-15</p> <p>The nonlinear spin-dependent <span class="hlt">transport</span> properties in zigzag molybdenum-disulfide nanoribbons (ZMNRs) with line defects are investigated systematically using <span class="hlt">nonequilibrium</span> Green’s function method combined with density functional theory. The results show that the line defects can enhance the <span class="hlt">electronic</span> transfer ability of ZMNRs. The types and locations of the line defects are found critical in determining the spin polarization and the current-voltage (I-V) characteristics of the line defected ZMNRs. For the same defect type, the total currents of the ribbons with the line defects in the centers are lager than those on the edges. And for the same location, the total currents of the systems with the sulfur (S) line defect are larger than the according systems with the molybdenum (Mo) line defect. All the considered systems present magnetism properties. And in the S line defected systems, the spin reversal behaviors can be observed. In both the spin-up and spin-down states of the Mo line defected systems, there are obvious negative differential resistance behaviors. The mechanisms are proposed for these phenomena.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22306196','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22306196"><span>Random paths and current fluctuations in <span class="hlt">nonequilibrium</span> statistical mechanics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Gaspard, Pierre</p> <p>2014-07-15</p> <p>An overview is given of recent advances in <span class="hlt">nonequilibrium</span> statistical mechanics about the statistics of random paths and current fluctuations. Although statistics is carried out in space for equilibrium statistical mechanics, statistics is considered in time or spacetime for <span class="hlt">nonequilibrium</span> systems. In this approach, relationships have been established between <span class="hlt">nonequilibrium</span> properties such as the <span class="hlt">transport</span> coefficients, the thermodynamic entropy production, or the affinities, and quantities characterizing the microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate. This overview presents results for classical systems in the escape-rate formalism, stochastic processes, and open quantum systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/40204621','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/40204621"><span>Experimental Characterization of the <span class="hlt">Electron</span> Heat <span class="hlt">Transport</span> in Low-Density ASDEX Upgrade Plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ryter, F.; Imbeaux, F.; Leuterer, F.; Fahrbach, H.-U.; Suttrop, W.; ASDEX Upgrade Team</p> <p>2001-06-11</p> <p>The <span class="hlt">electron</span> heat <span class="hlt">transport</span> is investigated in ASDEX Upgrade conventional L -mode plasmas with pure <span class="hlt">electron</span> heating provided by <span class="hlt">electron</span>-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that <span class="hlt">electron</span> heat <span class="hlt">transport</span> exhibits a clear threshold in {nabla}T{sub e}/T{sub e} and also suggest that it has a gyro-Bohm character.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPPI3002M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPPI3002M"><span><span class="hlt">Electron</span> turbulence and <span class="hlt">transport</span> in large magnetic islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morton, Lucas</p> <p>2016-10-01</p> <p>Magnetic islands, observed in both reversed-field pinches (RFPs) and tokamaks, often display unexpected turbulence and <span class="hlt">transport</span> characteristics. For the first time in an RFP, the high repetition rate Thomson scattering diagnostic on MST has captured a 2D image of the rotating <span class="hlt">electron</span> temperature structure of a magnetic island in a single discharge. MHD modeling using edge magnetic signals implies a 16 cm wide m,n =1,6 tearing mode island which completely overlaps a 5.5 cm n =7 island (12 cm between island centers). The 3D field is partially chaotic, but still reflective of the n =6 island structure. The measured temperature structure matches the shape and location of the n =6 partially chaotic (or `remnant') island. Contrary to the usual assumption that islands have flat internal temperature, the <span class="hlt">electron</span> temperature is peaked inside the remnant magnetic island due to ohmic heating. The temperature peaking implies a local effective perpendicular conductivity 10-40 m2/s inside the remnant island. This agrees quantitatively with an effective perpendicular conductivity of 16 m2/s estimated using the magnetic diffusion coefficient (evaluated at the <span class="hlt">electron</span> mean free path) calculated from the modeled chaotic field. Statistical analysis of measurement ensembles with lower time resolution implies that remnant island heating is common in MST discharges. To investigate the role of turbulence near a magnetic island, the 2D structure of long-wavelength density turbulence has been mapped around a large applied static m,n =2,1 L-mode island in the DIII-D tokamak. The turbulence exhibits intriguing spatial structure. Fluctuations are enhanced several-fold (compared to the no-island case) on the inboard side of the X-point, but not on the outboard side of the X-point and are also reduced near the O-point. This work is supported by the NSF and US DOE under DE-FC02-04ER54698, and DE-FG02-89ER53296.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5381704','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5381704"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in two-dimensional high dielectric constant nanosystems</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.</p> <p>2015-01-01</p> <p>There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing <span class="hlt">electronic</span> <span class="hlt">transport</span> scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials. PMID:25860804</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1200859-electronic-transport-two-dimensional-high-dielectric-constant-nanosystems','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1200859-electronic-transport-two-dimensional-high-dielectric-constant-nanosystems"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in two-dimensional high dielectric constant nanosystems</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...</p> <p>2015-04-10</p> <p>There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing <span class="hlt">electronic</span> <span class="hlt">transport</span> scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1200859','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1200859"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in two-dimensional high dielectric constant nanosystems</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.</p> <p>2015-04-10</p> <p>There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing <span class="hlt">electronic</span> <span class="hlt">transport</span> scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6067021','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6067021"><span>Considerations of beta and <span class="hlt">electron</span> <span class="hlt">transport</span> in internal dose calculations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bolch, W.E.; Poston, J.W. Sr. . Dept. of Nuclear Engineering)</p> <p>1990-12-01</p> <p>Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial <span class="hlt">transport</span> of <span class="hlt">electron</span> and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6067078','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6067078"><span>Considerations of beta and <span class="hlt">electron</span> <span class="hlt">transport</span> in internal dose calculations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bolch, W.E.; Poston, J.W. Sr.</p> <p>1990-12-01</p> <p>Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial <span class="hlt">transport</span> of <span class="hlt">electron</span> and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94w5448P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94w5448P"><span>Spin-polarized <span class="hlt">electron</span> <span class="hlt">transport</span> through helicene molecular junctions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Ting-Rui; Guo, Ai-Min; Sun, Qing-Feng</p> <p>2016-12-01</p> <p>Recently, the spin-selectivity effect of chiral molecules has been attracting extensive and growing interest among the scientific communities. Here, we propose a model Hamiltonian to study spin-dependent <span class="hlt">electron</span> <span class="hlt">transport</span> through helicene molecules which are connected by two semi-infinite graphene nanoribbons and try to elucidate a recent experiment of the spin-selectivity effect observed in the helicene molecules. The results indicate that the helicene molecules can present a significant spin-filtering effect in the case of extremely weak spin-orbit coupling, which is three orders of magnitude smaller than the hopping integral. The underlying physics is attributed to intrinsic chiral symmetry of the helicene molecules. When the chirality is switched from the right-handed species to the left-handed species, the spin polarization is reversed exactly. These results are consistent with a recent experiment [V. Kiran et al., Adv. Mater. 28, 1957 (2016), 10.1002/adma.201504725]. In addition, the spin-filtering effect of the helicene molecules is robust against molecular lengths, dephasing strengths, and space position disorder. This theoretical work may motivate further studies on chiral-induced spin selectivity in molecular systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...5E9667O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...5E9667O"><span><span class="hlt">Electronic</span> <span class="hlt">transport</span> in two-dimensional high dielectric constant nanosystems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.</p> <p>2015-04-01</p> <p>There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing <span class="hlt">electronic</span> <span class="hlt">transport</span> scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990071231','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990071231"><span>Inner Magnetospheric Superthermal <span class="hlt">Electron</span> <span class="hlt">Transport</span>: Photoelectron and Plasma Sheet <span class="hlt">Electron</span> Sources</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, T. E.</p> <p>1998-01-01</p> <p>Two time-dependent kinetic models of superthermal <span class="hlt">electron</span> <span class="hlt">transport</span> are combined to conduct global calculations of the nonthermal <span class="hlt">electron</span> distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the en- tire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet <span class="hlt">electrons</span> (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal <span class="hlt">electron</span> distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8) eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal <span class="hlt">electrons</span>. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhPl...23g3512Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhPl...23g3512Z"><span>Analysis of <span class="hlt">non-equilibrium</span> phenomena in inductively coupled plasma generators</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, W.; Lani, A.; Panesi, M.</p> <p>2016-07-01</p> <p>This work addresses the modeling of <span class="hlt">non-equilibrium</span> phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while <span class="hlt">transport</span> properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical <span class="hlt">non-equilibrium</span> (TCNEQ) formulation. In the TCNEQ model, thermal <span class="hlt">non-equilibrium</span> between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The <span class="hlt">electronic</span> states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of <span class="hlt">non-equilibrium</span> of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in <span class="hlt">non-equilibrium</span> for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=Biochemistry&pg=7&id=EJ1068668','ERIC'); return false;" href="http://eric.ed.gov/?q=Biochemistry&pg=7&id=EJ1068668"><span>Using Adobe Flash Animations of <span class="hlt">Electron</span> <span class="hlt">Transport</span> Chain to Teach and Learn Biochemistry</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Teplá, Milada; Klímová, Helena</p> <p>2015-01-01</p> <p>Teaching the subject of the <span class="hlt">electron</span> <span class="hlt">transport</span> chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "<span class="hlt">Electron</span> <span class="hlt">Transport</span> Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21910905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21910905"><span>Tuning the <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of grapheme through functionalisation with fluorine.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Withers, Freddie; Russo, Saverio; Dubois, Marc; Craciun, Monica F</p> <p>2011-09-12</p> <p>We demonstrate the possibility to tune the <span class="hlt">electronic</span> <span class="hlt">transport</span> properties of graphene mono-layers and multi-layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe a transition from <span class="hlt">electronic</span> <span class="hlt">transport</span> through Mott variable range hopping (VRH) in two dimensions to Efros-Shklovskii VRH. Multi-layer fluorinated graphene with high concentration of fluorine show two-dimensional Mott VRH <span class="hlt">transport</span>, whereas CF0.28 multi-layer flakes exhibit thermally activated <span class="hlt">transport</span> through near neighbour hopping. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different <span class="hlt">electronic</span> properties in graphene materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22854975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22854975"><span><span class="hlt">Electronic</span> structure and quantum <span class="hlt">transport</span> properties of trilayers formed from graphene and boron nitride.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhong, Xiaoliang; Amorim, Rodrigo G; Scheicher, Ralph H; Pandey, Ravindra; Karna, Shashi P</p> <p>2012-09-07</p> <p>We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the <span class="hlt">non-equilibrium</span> Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state <span class="hlt">electronic</span> structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the <span class="hlt">electronic</span> band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title41-vol3/pdf/CFR-2010-title41-vol3-sec102-118-65.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title41-vol3/pdf/CFR-2010-title41-vol3-sec102-118-65.pdf"><span>41 CFR 102-118.65 - Can my agency receive <span class="hlt">electronic</span> billing for payment of <span class="hlt">transportation</span> services?</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... <span class="hlt">electronic</span> billing for payment of <span class="hlt">transportation</span> services? 102-118.65 Section 102-118.65 Public Contracts and... <span class="hlt">Transportation</span> Services § 102-118.65 Can my agency receive <span class="hlt">electronic</span> billing for payment of <span class="hlt">transportation</span>... to use <span class="hlt">electronic</span> billing for the procurement and billing of <span class="hlt">transportation</span> services....</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title41-vol3/pdf/CFR-2011-title41-vol3-sec102-118-65.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title41-vol3/pdf/CFR-2011-title41-vol3-sec102-118-65.pdf"><span>41 CFR 102-118.65 - Can my agency receive <span class="hlt">electronic</span> billing for payment of <span class="hlt">transportation</span> services?</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... <span class="hlt">electronic</span> billing for payment of <span class="hlt">transportation</span> services? 102-118.65 Section 102-118.65 Public Contracts and... <span class="hlt">Transportation</span> Services § 102-118.65 Can my agency receive <span class="hlt">electronic</span> billing for payment of <span class="hlt">transportation</span>... to use <span class="hlt">electronic</span> billing for the procurement and billing of <span class="hlt">transportation</span> services....</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-02/pdf/2012-7804.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-02/pdf/2012-7804.pdf"><span>77 FR 19747 - Notice of <span class="hlt">Transportation</span> Services' Transition from Paper to <span class="hlt">Electronic</span> Fare Media</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-02</p> <p>... Office of the Secretary of <span class="hlt">Transportation</span> Notice of <span class="hlt">Transportation</span> Services' Transition from Paper to... implementation of <span class="hlt">electronic</span> distribution, and a limited paper voucher process, allows for the most effective and... distributed the qualified <span class="hlt">transportation</span> fringe benefit to participating Federal employees via a paper...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="https://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="https://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.science.gov"><img src="https://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="https://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>