Science.gov

Sample records for nonequilibrium molecular-dynamics simulation

  1. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  2. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Radak, Brian K.; Roux, Benoît

    2016-10-01

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.

  3. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  4. Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Guo, Qian; Chung, Pil Seung; Chen, Haigang; Jhon, Myung S.

    2006-04-01

    Molecular rheology of perfluoropolyether (PFPE) systems is particularly important in designing effective lubricants that control the friction and wear in tribological applications. Using the coarse-grained, bead-spring model, equilibrium molecular dynamics based on the Langevin equation in a quiescent flow was first employed to examine the nanostructure of PFPE. Further, by integrating the modified Langevin equation and imposing the Lees-Edwards boundary condition, nonequilibrium molecular dynamics of steady shear was investigated. We observe that the shear viscosity of PFPE system depends strongly on molecular architecture (e.g., molecular weight and endgroup functionality) and external conditions (e.g., temperature and shear rate). Our study of the flow activation energy/entropy and their correlations with nanostructure visualization showed that the PFPE structure was substantially modified.

  5. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  6. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    SciTech Connect

    Bresme, F.; Armstrong, J.

    2014-01-07

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.

  7. Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation.

    PubMed

    Bahrami, Amir Houshang; Jalali, Mir Abbas

    2010-01-14

    Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less than a critical value.

  8. Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices

    PubMed

    Zhang; Isbister; Evans

    2000-04-01

    We study the use of the Evans nonequilibrium molecular dynamics (NEMD) heat flow algorithm for the computation of the heat conductivity in one-dimensional lattices. For the well-known Fermi-Pasta-Ulam model, it is shown that when the heat field strength is greater than a certain critical value (which depends on the system size) solitons can be generated in molecular dynamics simulations starting from random initial conditions. Such solitons are stable and travel with supersonic speeds. For smaller heat fields, no solitons are generated in the molecular dynamics simulations; the heat conductivity obtained via the NEMD algorithm increases monotonically with the size of the system.

  9. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  10. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations.

    PubMed

    Soddemann, Thomas; Dünweg, Burkhard; Kremer, Kurt

    2003-10-01

    We discuss dissipative particle dynamics as a thermostat to molecular dynamics, and highlight some of its virtues: (i) universal applicability irrespective of the interatomic potential; (ii) correct and unscreened reproduction of hydrodynamic correlations; (iii) stabilization of the numerical integration of the equations of motion; and (iv) the avoidance of a profile bias in boundary-driven nonequilibrium simulations of shear flow. Numerical results on a repulsive Lennard-Jones fluid illustrate our arguments.

  11. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.

    PubMed

    Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J

    2012-01-14

    Data for the flow rate of water in carbon nanopores is widely scattered, both in experiments and simulations. In this work, we aim at precisely quantifying the characteristic large slip length and flow rate of water flowing in a planar graphene nanochannel. First, we quantify the slip length using the intrinsic interfacial friction coefficient between water and graphene, which is found from equilibrium molecular dynamics (EMD) simulations. We then calculate the flow rate and the slip length from the streaming velocity profiles obtained using non-equilibrium molecular dynamics (NEMD) simulations and compare with the predictions from the EMD simulations. The slip length calculated from NEMD simulations is found to be extremely sensitive to the curvature of the velocity profile and it possesses large statistical errors. We therefore pose the question: Can a micrometer range slip length be reliably determined using velocity profiles obtained from NEMD simulations? Our answer is "not practical, if not impossible" based on the analysis given as the results. In the case of high slip systems such as water in carbon nanochannels, the EMD method results are more reliable, accurate, and computationally more efficient compared to the direct NEMD method for predicting the nanofluidic flow rate and hydrodynamic boundary condition.

  12. On determining continuum quantities of non-equilibrium processes via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fu, Yao

    In this dissertation, a high-fidelity atomistic-to-continuum link for highly non-equilibrium processes has been established by making several modifications to Hardy's theory. Although Hardy's thermomechanical quantities were derived analytically to conserve mass, momentum and energy, they have not been rigorously tested and validated numerically in the past. Hence the first task was to investigate the effectiveness of ensemble averaging in removing thermal fluctuations and compare with conventional time averaging for fcc crystals simulated using both equilibrium and non-equilibrium molecular dynamics (MD) simulations, where the non-equilibrium process was introduced by a shock impact. It has been found that the ensemble averaging has better convergence than time averaging due to the statistical independence of the thermomechanical quantities computed using ensemble averaging. The second task was to test the validity of Hardy's theory by checking if it is able to conserve mass, momentum and energy numerically. A few highly non-equilibrium processes were simulated using MD, including Gaussian wave and shock impact propagation in 1D and 3D fcc crystals. Based on the test results, a new normalization rule has been proposed so that the computed thermomechanical quantities can conserve the fundamental properties more accurately. To a large extent, Hardy's theory has been found to be valid regardless of the width of the localization function, the interatomic potential and crystal structure, and with and without ensemble averaging. To further test the validity of Hardy's theory for more complex non-equilibrium processes, where plastic deformation is accomplished through dislocation glide and slip band emission, a crack propagation problem in iron crystal with a pre-created center crack is simulated using MD. The computed Hardy's thermomechanical quantities can generally conserve mass, momentum and energy. Exceptions have been found around the crack region, where the

  13. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD-MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD-MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems.

  14. Thermal diode in gas-filled nanogap with heterogeneous surfaces using nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Avanessian, T.; Hwang, G.

    2016-10-01

    A thermal diode serves as a basic building block to design advanced thermal management systems in energy-saving applications. However, the main challenges of existing thermal diodes are poor steady-state performance, slow transient response, and/or extremely difficult manufacturing. In this study, the thermal diode is examined by employing an argon gas-filled nanogap with heterogeneous surfaces in the Knudsen regime, using nonequilibrium molecular dynamics simulation. The asymmetric gas pressure and thermal accommodation coefficients changes are found due to asymmetric adsorptions onto the heterogeneous nanogap with respect to the different temperature gradient directions, and these in turn result in the thermal diode. The maximum degree of diode (or rectification) is Rmax ˜ 7, at the effective gas-solid interaction ratio between the two surfaces of ɛ*= 0.75. This work could pave the way to designing advanced thermal management systems such as thermal switches (transistors).

  15. Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum

    NASA Astrophysics Data System (ADS)

    Hahn, Eric N.; Germann, Timothy C.; Ravelo, Ramon J.; Hammerberg, James E.; Meyers, Marc A.

    2017-01-01

    Ductile tensile failure of tantalum is examined through large scale non-equilibrium molecular dynamics simulations. Several loading schemes including flyer plate impact, decaying shock loading via a frozen piston, and quasi-isentropic (constant strain-rate) expansion are employed to span tensile strain-rates of 108 to 1014 per second. Single crystals of <001> orientation are specifically evaluated to eliminate grain boundary effects. Heterogeneous void nucleation occurs principally at the intersection of deformation twins in single crystals. At high strain rates, multiple spall events occur throughout the material and voids continue to nucleate until relaxation waves arrive from adjacent events. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates near the maximum theoretical spall strength.

  16. A localized momentum constraint for non-equilibrium molecular dynamics simulations.

    PubMed

    Smith, E R; Heyes, D M; Dini, D; Zaki, T A

    2015-02-21

    A method which controls momentum evolution in a sub-region within a molecular dynamics simulation is derived from Gauss's principle of least constraint. The technique for localization is founded on the equations by Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] expressed in a weak form according to the control volume (CV) procedure derived by Smith et al. [Phys. Rev. E. 85, 056705 (2012)]. A term for the advection of molecules appears in the derived constraint and is shown to be essential in order to exactly control the time evolution of momentum in the subvolume. The numerical procedure converges the total momentum in the CV to the target value to within machine precision in an iterative manner. The localized momentum constraint can prescribe essentially arbitrary flow fields in non-equilibrium molecular dynamics simulations. The methodology also forms a rigorous mathematical framework for introducing coupling constraints at the boundary between continuum and discrete systems. This functionality is demonstrated with a boundary-driven flow test case.

  17. On the domain size effect of thermal conductivities from equilibrium and nonequilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zuyuan; Ruan, Xiulin

    2017-01-01

    Equilibrium molecular dynamics (EMD) simulations with the Green-Kubo formula and nonequilibrium molecular dynamics (NEMD) simulations with the Fourier's Law are two widely used methods for calculating thermal conductivities of materials. It is well known that both methods suffer from domain size effects, especially for NEMD. But the underlying mechanisms and their comparison have not been much quantitatively studied before. In this paper, we investigate their domain size effects by using crystalline silicon at 1000 K, graphene at 300 K, and silicene at 300 K as model material systems. The thermal conductivity of silicon from EMD simulations increases normally with the increasing domain size and converges at a size of around 4 ×4 ×4 nm3 . The converging trend agrees well with the wavelength-accumulated thermal conductivity. The thermal conductivities of graphene and silicene from EMD simulations decrease abnormally with the increasing domain size and converge at a size of around 10 ×10 nm2 . We ascribe the anomalous size effect to the fact that as the domain size increases, the effect of more phonon scattering processes (particularly the flexural phonons) dominates over the effect of more phonon modes contributing to the thermal conductivity. The thermal conductivities of the three material systems from NEMD simulations all show normal domain size effects, although their dependences on the domain size differ. The converging trends agree with the mean free path accumulation of thermal conductivity. This study provides new insights that other than some exceptions, the domain size effects of EMD and NEMD are generally associated with wavelength and mean free path accumulations of thermal conductivity, respectively. Since phonon wavelength spans over a much narrower range than mean free path, EMD usually has less significant domain size effect than NEMD.

  18. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2012-07-28

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  19. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressurea)

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2012-07-01

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  20. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulation

    SciTech Connect

    Holian, B.L.

    1998-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations of shock waves in single crystals have shown that, above a threshold strength, strongly shocked crystals deform in a very simple way. Rather than experiencing massive deformation, a simple slippage occurs at the shock front, relieving the peak shear stress, and leaving behind a stacking fault. Later calculations quantified the apparent threshold strength, namely the yield strength of the perfect crystal. Subsequently, pulsed x-ray experiments on shocked single crystals showed relative shifts in diffraction peaks, confirming the authors NEMD observations of stacking faults produced by shockwave passage. With the advent of massively parallel computers, the authors have been able to simulate shock waves in 10-million atom crystals with cross sectional dimensions of 100 x 100 fcc unit cells (compared to earlier 6 x 6 systems). They have seen that the increased cross-section allows the system to slip along all of the available {l_brace}111{r_brace} slip planes, in different places along the now non-planar shock front. These simulations conclusively eliminate the worry that the kind of slippage they have observed is somehow an artifact of transverse periodic boundary conditions. Moreover, they have introduced a piston face that is no longer perfectly flat, mimicking a line or surface inhomogeneity in the unshocked material, and show that for weaker shock waves (below the perfect crystal yield strength), stacking faults can be nucleated by preexisting extended defects.

  1. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  2. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  3. Non-equilibrium molecular dynamics simulation of the unstirred layer in the osmotically driven flow

    NASA Astrophysics Data System (ADS)

    Konno, Keito; Itano, Tomoaki; Seki, Masako

    2015-11-01

    We studied the solvent flows driven by the osmotic pressure difference across the semi-permeable membrane. The flow penetrating from the low concentration side transports away solutes adjacent of the membrane, so that the concentration is reduced significantly only at the vicinity of the membrane. It is expected that the relatively low solute concentration develops into a thin boundary layer in the vicinity of the membrane in the case of absence of external stirring process, which is termed as un-stirred layer (USL). To investigate concentration distribution in USL, we carried out non-equilibrium molecular dynamics simulations. The flows driven by th osmotic pressure are idealized as 2 dimensional hard disk model, which is composed of solvent and solute molecules. The membrane is modeled as a medium composed of stationary parallel rods distributed by a spatial interval, which is less than the diameter of the solute molecules. The following results were obtained from the numerical simulation. First, the thickness of USL, which was estimated from the obtained concentration distribution, is on the order of a length determined by mean free path. Second, USL was semicircle the center of which is on the end of pore of membrane.

  4. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  5. Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. II. Transfer Coefficients.

    PubMed

    Røsjorde, A.; Kjelstrup, S.; Bedeaux, D.; Hafskjold, B.

    2001-08-01

    We present coefficients for transfer of heat and mass across the liquid-vapor interface of a one-component fluid. The coefficients are defined for the Gibbs surface from nonequilibrium thermodynamics and determined by nonequilibrium molecular dynamics simulations. The main conductivity coefficients are found to become large near the critical point, consistent with the disappearance of the surface in this limit. The resistivities of transfer found by molecular dynamics simulations are compared to the values predicted by kinetic theory. The main resistivity to heat transfer is found to agree from the triple point to about halfway to the critical point. The resistivity to mass transfer was used to determine the condensation coefficient, which was found to be practically constant with a value of about 0.82. The resistivity coupling coefficient predicted by simulations also agrees with values predicted by kinetic theory from the triple point until about halfway to the critical point. Copyright 2001 Academic Press.

  6. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  7. Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses.

    PubMed

    Hoang Man, Viet; Van-Oanh, Nguyen-Thi; Derreumaux, Philippe; Li, Mai Suan; Roland, Christopher; Sagui, Celeste; Nguyen, Phuong H

    2016-04-28

    Since the discovery of the plant pathogen tobacco mosaic virus as the first viral entity in the late 1800s, viruses traditionally have been mainly thought of as pathogens for disease-resistances. However, viruses have recently been exploited as nanoplatforms with applications in biomedicine and materials science. To this aim, a large majority of current methods and tools have been developed to improve the physical stability of viral particles, which may be critical to the extreme physical or chemical conditions that viruses may encounter during purification, fabrication processes, storage and use. However, considerably fewer studies are devoted to developing efficient methods to degrade or recycle such enhanced stability biomaterials. With this in mind, we carry out all-atom nonequilibrium molecular dynamics simulation, inspired by the recently developed mid-infrared free-electron laser pulse technology, to dissociate viruses. Adopting the poliovirus as a representative example, we find that the primary step in the dissociation process is due to the strong resonance between the amide I vibrational modes of the virus and the tuned laser frequencies. This process is determined by a balance between the formation and dissociation of the protein shell, reflecting the highly plasticity of the virus. Furthermore, our method should provide a feasible approach to simulate viruses, which is otherwise too expensive for conventional equilibrium all-atom simulations of such very large systems. Our work shows a proof of concept which may open a new, efficient way to cleave or to recycle virus-based materials, provide an extremely valuable tool for elucidating mechanical aspects of viruses, and may well play an important role in future fighting against virus-related diseases.

  8. Thermal Conductivity of GaN Nanotubes Simulated by Nonequilibrium Molecular Dynamics

    SciTech Connect

    Wang, Zhiguo; Gao, Fei; Crocombette, J.-P.; Zu, Xiaotao; Yang, Li; Weber, William J.

    2007-04-15

    Thermal conductivity of GaN nanotubes along the tube axis is investigated over the temperature range of 600K-2300K using homogeneous nonequilibrium molecular dynamics. In general, the thermal conductivity of nanotubes is smaller than that for the bulk GaN single crystal. The thermal conductivity is also found to decrease with temperature and increase with increasing wall thickness of the nanotubes. The change of phonon spectrum and surface inelastic scattering may account for the reduction of thermal conductivity in the nanotubes, while thermal softening and high frequency phonon interactions at high temperatures may provide an explanation for its decrease with increasing temperature.

  9. Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sääskilahti, K.; Oksanen, J.; Tulkki, J.; McGaughey, A. J. H.; Volz, S.

    2016-12-01

    The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon are predicted from the length dependence of the spectrally decomposed heat current (SDHC) obtained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency)- 2 scaling of the room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating localized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement is found with independent molecular dynamics simulations. Weighting the SDHC by the frequency-dependent quantum occupation function provides a simple and convenient method to account for quantum statistics and provides reasonable agreement with the experimentally-measured trend and magnitude.

  10. Variable timestep algorithm for molecular dynamics simulation of non-equilibrium processes

    NASA Astrophysics Data System (ADS)

    Marks, Nigel A.; Robinson, Marc

    2015-06-01

    A simple, yet robust variable timestep algorithm is developed for use in molecular dynamics simulations of energetic processes. Single-particle Kepler orbits are studied to study the relationship between trajectory properties and the critical timestep for constant integration error. Over a wide variety of conditions the magnitude of the maximum force is found to correlate linearly with the inverse critical timestep. Other quantities used in the literature such as the time derivative of the force and the product of the velocity and force also show reasonable correlations, but not to the same extent. Application of the corresponding metric | |Fmax | | Δt in molecular dynamics simulation of radiation damage in graphite shows that the scheme is both straightforward to implement and effective. In tests on a 1 keV cascade the timestep varies by over two orders of magnitude with minimal loss of energy conservation.

  11. Cell list algorithms for nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Dobson, Matthew; Fox, Ian; Saracino, Alexandra

    2016-06-01

    We present two modifications of the standard cell list algorithm that handle molecular dynamics simulations with deforming periodic geometry. Such geometry naturally arises in the simulation of homogeneous, linear nonequilibrium flow modeled with periodic boundary conditions, and recent progress has been made developing boundary conditions suitable for general 3D flows of this type. Previous works focused on the planar flows handled by Lees-Edwards or Kraynik-Reinelt boundary conditions, while the new versions of the cell list algorithm presented here are formulated to handle the general 3D deforming simulation geometry. As in the case of equilibrium, for short-ranged pairwise interactions, the cell list algorithm reduces the computational complexity of the force computation from O(N2) to O(N), where N is the total number of particles in the simulation box. We include a comparison of the complexity and efficiency of the two proposed modifications of the standard algorithm.

  12. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    SciTech Connect

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-08-17

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  13. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  14. Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2016-11-01

    The cavitation of gas bubbles in liquids has been applied to different disciplines in life and natural sciences, and in technologies. To obtain an appropriate theoretical description of effects induced by the bubble cavitation, we develop an all-atom nonequilibrium molecular-dynamics simulation method to simulate bubbles undergoing harmonic oscillation in size. This allows us to understand the mechanism of the bubble cavitation-induced liquid shear stress on surrounding objects. The method is then employed to simulate an Aβ fibril model in the presence of bubbles, and the results show that the bubble expansion and contraction exert water pressure on the fibril. This yields to the deceleration and acceleration of the fibril kinetic energy, facilitating the conformational transition between local free energy minima, and leading to the dissociation of the fibril. Our work, which is a proof-of-concept, may open a new, efficient way to dissociate amyloid fibrils using the bubble cavitation technique, and new venues to investigate the complex phenomena associated with amyloidogenesis.

  15. Modelling of ion permeation in K+ channels by nonequilibrium molecular dynamics simulations: I. Permeation energetics and structure stability.

    PubMed

    Neamţu, A; Suciu, Daniela

    2004-01-01

    Because of the great importance of physiological and pathophysiological processes in which ion channels are involved and because their operation is described by physicochemical laws, there have been many attempts to develop physical models able to describe the membrane permeability and also the structural and functional properties of the channel protein structures. In this study (in two parts) we present a series of simulations on a K+ channel model (KcsA) using Nonequilibrium Molecular Dynamics simulations (NEMD), in order to follow structure stability, permeation energetics and the possibility of obtaining quantitative information about the permeation process using the Linear Response Theory (LRT). On K+ ions were applied external forces to determine them to pass through the channel in a relatively small amount of time, accessible computationally. We ascertained a high resistance of the protein to deformation even in conditions when great forces were applied on ions (the system was far from equilibrium). The estimation of energy profiles in the course of ions passage through the channel demonstrates that these proteins create a conductivity pathway with no energetic barriers for ions movement across the channel (which could be present due to ions dehydration). The dynamic model used demonstrates (as proposed before in the literature after the examination of the static KcsA structure obtained by X-Ray crystallography) that this is due to the interaction of ions with the negatively charged carbonyl oxygens of the main polypeptide chain in the selectivity filter region.

  16. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  17. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics 'smoothed-particle hydrodynamics,' in 1977. It is a likely contributor to 'hybrid' simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  18. Elastic Barrier Dynamical Freezing in Free Energy Calculations: A Way To Speed Up Nonequilibrium Molecular Dynamics Simulations by Orders of Magnitude.

    PubMed

    Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo

    2016-03-08

    An important issue concerning computer simulations addressed to free energy estimates via nonequilibrium work theorems, such as the Jarzynski equality [Phys. Rev. Lett. 1997, 78, 2690], is the computational effort required to achieve results with acceptable accuracy. In this respect, the dynamical freezing approach [Phys. Rev. E 2009, 80, 041124] has been shown to improve the efficiency of this kind of simulations, by blocking the dynamics of particles located outside an established mobility region. In this report, we show that dynamical freezing produces a systematic spurious decrease of the particle density inside the mobility region. As a consequence, the requirements to apply nonequilibrium work theorems are only approximately met. Starting from these considerations, we have developed a simulation scheme, called "elastic barrier dynamical freezing", according to which a stiff potential-energy barrier is enforced at the boundaries of the mobility region, preventing the particles from leaving this region of space during the nonequilibrium trajectories. The method, tested on the calculation of the distance-dependent free energy of a dimer immersed into a Lennard-Jones fluid, provides an accuracy comparable to the conventional steered molecular dynamics, with a computational speedup exceeding a few orders of magnitude.

  19. Anisotropy of the thermal conductivity in a crystalline polymer: Reverse nonequilibrium molecular dynamics simulation of the δ phase of syndiotactic polystyrene

    NASA Astrophysics Data System (ADS)

    Rossinsky, Eddie; Müller-Plathe, Florian

    2009-04-01

    The thermal conductivity of the crystalline δ phase of syndiotactic polystyrene has been investigated by reverse nonequilibrium molecular dynamics simulations. The results are in the expected range. An anisotropy is found for the thermal conductivity, with the component in chain direction being 2.5-3 larger than perpendicular to it. Any increase in the density causes an increase also in the thermal conductivity, particularly in the perpendicular directions. As side results, the simulations confirm an earlier finding on the force field dependence of the thermal conductivity: The thermal conductivity has a tendency to decrease when the number of active degrees of freedom in the system is reduced by the introduction of constraints. This dependence is, however, weaker and more erratic than previously found for molecular liquids and amorphous polymers.

  20. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  1. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    SciTech Connect

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  2. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated.

  3. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.

    PubMed

    Page, Alister J; Isomoto, Tetsushi; Knaup, Jan M; Irle, Stephan; Morokuma, Keiji

    2012-11-13

    The performance of popular molecular dynamics (MD) thermostat algorithms in constant temperature simulations of equilibrium systems is well-known. This is not the case, however, in the context of nonequilibrium chemical systems, such as chemical reactions or nanoscale self-assembly processes. In this work, we investigate the effect of popular thermostat algorithms on the "natural" (i.e., Hamiltonian) dynamics of a nonequilibrium, chemically reacting system. By comparing constant-temperature quantum mechanical MD (QM/MD) simulations of carbon vapor condensation using velocity scaling, Berendsen, Andersen, Langevin, and Nosé-Hoover chain thermostat algorithms with natural NVE simulations, we show that efficient temperature control and reliable reaction dynamics are mutually exclusive in such a system. This problem may be circumvented, however, by placing the reactive system in an inert He atmosphere, which is itself described using NVT MD. We demonstrate that both realistic temperature control and dynamics consistent with natural NVE dynamics can then be obtained simultaneously. In essence, the thermal energy created by the natural dynamics of the NVE subsystem is drained by the thermostat acting on the NVT atmosphere, without adversely affecting the dynamics of the reactive system itself.

  4. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up

  5. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    PubMed

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  6. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    DOE PAGES

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibriummore » due to photoexcitation and emission.« less

  7. Molecular dynamics simulation of pyridine

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił

    2015-04-01

    Molecular Dynamics (MD) simulations are used for the investigation of molecular motions in pyridine in the temperature range 20-480 K under normal pressure. The results obtained are analyzed within the frame of the Mori Zwanzig memory function formalism. An analytical approximation of the first memory function K(t) is applied to predict some dependences on temperature. Experimental results of the Rayleigh scattering of depolarized light from liquid pyridine are used as the main base for the comparison.

  8. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  9. Novel methods for molecular dynamics simulations.

    PubMed

    Elber, R

    1996-04-01

    In the past year, significant progress was made in the development of molecular dynamics methods for the liquid phase and for biological macromolecules. Specifically, faster algorithms to pursue molecular dynamics simulations were introduced and advances were made in the design of new optimization algorithms guided by molecular dynamics protocols. A technique to calculate the quantum spectra of protein vibrations was introduced.

  10. Microwave-driven zeolite-guest systems show athermal effects from nonequilibrium molecular dynamics.

    PubMed

    Blanco, Cristian; Auerbach, Scott M

    2002-06-05

    Nonequilibrium molecular dynamics simulations show that steady-state systems obtained by microwave heating are qualitatively different from those at thermal equilibrium. This difference arises because energy transfer from hotter to colder species is not efficient enough to equilibrate the distribution of energy. Under nonequilibrium conditions, we found that microwave radiation can selectively heat methanol in a binary mixture of methanol-benzene adsorbed in faujasite zeolite. The difference in steady-state temperatures follows the trend Tmethanol > Tbenzene > Tzeolite, which is qualitatively consistent with recent experimental results.

  11. Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture.

    PubMed

    Hafskjold, Bjørn

    2017-01-01

    A binary isotope mixture of Lennard-Jones/spline particles at equilibrium was perturbed by a sudden change in the system's boundary temperatures. The system's response was determined by non-equilibrium molecular dynamics (NEMD). Three transient processes were studied: 1) The propagation of a pressure (shock) wave, 2) heat diffusivity and conduction, and 3) thermal diffusion (the Ludwig-Soret effect). These three processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in liquid, supercritical, and dense gas states with various forms and strengths of the thermal perturbation. The results show that heat was initially transported by two separate mechanisms: 1) heat diffusion as described by the transient heat equation and 2) as a consequence of a pressure wave. The pressure wave travelled faster than the speed of sound, generating a shock wave in the system. Local equilibrium was found in the transient phase, even with very strong perturbations and in the shock front. Although the mass separation due to the Ludwig-Soret effect developed much slower than the pressure and temperature fields in the system at large, it was found that the Soret coefficient could be accurately determined from the initial phase of the transient and close to the heat source. This opens the possibility of a new way to analyse results from transient experiments and thereby minimize effects of gravity and convection due to buoyancy.

  12. Modeling Nanocomposites for Molecular Dynamics (MD) Simulations

    DTIC Science & Technology

    2015-01-01

    Maximum 200 Words) The minimum energy configuration for Molecular Dynamics (MD) simulations is found for a carbon nanotube (CNT)/polymer...Carbon Nanotubes (CNTs), Molecular Dynamics Simulations 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...fiber composites have shown success in improving mechanical properties. Carbon nanotube (CNT)-based nanocomposites have been studied for

  13. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  14. Molecular dynamics simulations of nanostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Zaoshi

    This dissertation is focused on multimillion-atom molecular dynamics (MD) simulations of nanoscale materials. In the past decade, nanoscale materials have made significant commercial impacts, which will potentially lead to the next industrial revolution. The interest lies in the novel and promising features nanoscale materials exhibit due to their confined sizes. However, not all novel behaviors are understood or controllable. Many uncontrollable parameters, e.g. defects and dangling bonds, are known to hinder the performance of nanodevices. Solutions to these problems rely on our understanding of fundamental elements in nanoscience: isolated individual nanostructures and their assemblies. In this dissertation, we will address atomistic foundations of several problems of technological importance in nanoscience. Specifically, three basic problems are discussed: (1) embrittlement of nanocrystalline metal; (2) novel thermo-mechanical behaviors of nanowires (NWs); and (3) planar defect generation in NWs. With a scalable algorithm implemented on massively parallel computing platforms and various data mining methods, MD simulations can provide valuable insights into these problems. An essential role of sulfur segregation-induced amorphization of crystalline nickel was recently discovered experimentally, but the atomistic mechanism of the amorphization remains unexplained. Our MD simulations reveal that the large steric size of sulfur impurity causes strong sulfur-sulfur interaction mediated by lattice distortion, which leads to amorphization near the percolation threshold at the sulfur-sulfur network in nickel crystal. The generality of the mechanism due to the percolation of an impurity network is further confirmed by a model binary system. In our study of novel behaviors of semiconductor NWs, MD simulations construct a rich size-temperature `phase diagram' for the mechanical response of a zinc-oxide NW under tension. For smaller diameters and higher temperatures, novel

  15. Molecular Dynamics Simulation of Supercritical Spray Phenomena

    DTIC Science & Technology

    2008-09-26

    Dynamics of the Rheological and Structural Properties of Linear and Branched Molecules. Simple Shear and Poiseuille Flows ; Instabilities and Slip...Michael Barrucco Publications: "Comparison of Wall Models for the Molecular Dynamics Simulation of Micro flows ," R. D. Branam and M. M...Performance 3. DATES COVERED (From - To) 1 Dec. 2003 - 31 May 2008 4. TITLE AND SUBTITLE Molecular Dynamics Simulation of Supercritical

  16. Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics.

    PubMed

    Xu, J; Kjelstrup, S; Bedeaux, D; Røsjorde, A; Rekvig, L

    2006-07-01

    Non-equilibrium molecular dynamic (NEMD) simulations have been used to study heat and mass transfer across a vapor-liquid interface for a one-component system using a Lennard-Jones spline potential. It was confirmed that the relation between the surface tension and the surface temperature in the non-equilibrium system was the same as in equilibrium (local equilibrium). Interfacial transfer coefficients were evaluated for the surface, which expressed the heat and mass fluxes in temperature and chemical potential differences across the interfacial region (film). In this analysis it was assumed that the Onsager reciprocal relations were valid. In this paper we extend the number of simulations such that we can calculate all four interface film transfer coefficients along the whole liquid-vapor coexistence curve. We do this analysis both for the case where we use the measurable heat flux on the vapor side and for the case where we use the measurable heat flux on the liquid side. The most important result we found is that the coupling coefficients within the accuracy of the calculation are equal. This is the first verification of the validity of the Onsager relations for transport through a surface using molecular dynamics. The interfacial film transfer coefficients are found to be a function of the surface temperature alone. New expressions are given for the kinetic theory values of these coefficients which only depend on the surface temperature. The NEMD values were found to be in good agreement with these expressions.

  17. Molecular dynamics simulations of substitutional diffusion

    SciTech Connect

    Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob

    2016-12-18

    In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.

  18. Molecular dynamics simulations of substitutional diffusion

    DOE PAGES

    Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob

    2016-12-18

    In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less

  19. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  20. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  1. Molecular dynamics on nonequilibrium motion of a colloidal particle driven by an external torque

    NASA Astrophysics Data System (ADS)

    Yoo, Donghwan; Jung, Youngkyun; Kwon, Chulan

    2017-03-01

    We investigate the motion of a colloidal particle driven out of equilibrium by an external torque. We use molecular dynamics simulation as an alternative to the Langevin dynamics. We prepare a heat bath composed of thousands of particles interacting with each other through the Lennard–Jones potential and impose the Langevin thermostat to maintain the heat bath in equilibrium. We consider a single colloidal particle interacting with with the particles of the heat bath also by the Lennard–Jones potential, without applying any types of dissipative or fluctuating forces used in Langevin dynamics. We set up simulation protocol fit for the overdamped limit as in real experiments, by increasing the size and mass of the colloidal particle. We study nonequilibrium fluctuations for work and heat produced incessantly in time and compare the results with those obtained from the previous studies via the overdamped Langevin dynamics. We confirm the Gallavotti–Cohen symmetry and the fluctuation theorem.

  2. Molecular dynamic simulations of ocular tablet dissolution.

    PubMed

    Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire

    2013-11-25

    Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies.

  3. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-09-01

    In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.

  4. Choice of timestep in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fincham, David

    1986-06-01

    In molecular dynamics computer simulation of liquids it is important to use as large a timestep as possible in order to sample phase space rapidly and save on computer expense. The effect of the resulting algorithm errors in the trajectories of the molecules is not well understood. An empirical investigation into this question is reported. Several simulations differing only in the timestep used are compared. It is found that much larger timesteps than usual can be employed without producing significant errors in observed thermodynamic, structural or dynamic properties.

  5. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Sz.; Heyes, D. M.; Dini, D.; Brańka, A. C.

    2016-10-01

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (˜0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  6. Molecular Dynamics Simulations of Acoustic Properties of Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Noguez, Cecilia; Esquivel-Sirvent, Raul; Ramírez-Santiago, Guillermo

    1998-03-01

    Recent experiments of ultrasound waves in colloidal suspensions [1] have found that the acoustic velocity and attenuation exhibit an anomalous behavior close to the solid volume concentration of 40%. Currently, there appears that there is no clear understanding of these results. Motivated by these observations we have carried out extensive non-equilibrium molecular dynamics simulations to study the propagation of pressure waves through a colloidal suspension. The simulations consider the far from equilibrium corrections and calculate the viscosity and attenuation of sound waves traveling in the suspension. These quantities are studied as functions of frecuency and volume fraction. The possible relation between the results from the simulations and the experimental observatios is briefly discussed. [1] R. Esquivel-Sirvent and D. H. Green, Appl. Phys. Lett. 67, 3087 (1995); ibid, Mat. Res. Soc. Symp. 407, p. 99 (1996).

  7. MDLab: a molecular dynamics simulation prototyping environment.

    PubMed

    Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jesús A

    2010-05-01

    Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net.

  8. Molecular Dynamics Simulations of Interface Failure

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Swan, Wm. Trevor, III; Ducatman, Samuel C.

    2007-03-01

    The mechanical integrity of silicon/silicon nitride interfaces is of great importance in their applications in micro electronics and solar cells. Large-scale molecular dynamics simulations are an excellent tool to study mechanical and structural failure of interfaces subjected to externally applied stresses and strains. When pulling the system parallel to the interface, cracks in silicon nitride and slip and pit formation in silicon are typical failure mechanisms. Hypervelocity impact perpendicular to the interface plane leads to structural transformation and delamination at the interface. Influence of system temperature, strain rate, impact velocity, and system size on type and characteristics of failure will be discussed.

  9. Molecular dynamics simulations of dense plasmas

    SciTech Connect

    Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  10. Molecular-dynamics simulations of lead clusters

    NASA Astrophysics Data System (ADS)

    Hendy, S. C.; Hall, B. D.

    2001-08-01

    Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.

  11. Nanodrop contact angles from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim

    2016-11-01

    The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.

  12. Classical Molecular Dynamics Simulation of Nuclear Fuel

    SciTech Connect

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.

  13. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  14. A nonequilibrium molecular dynamics study of the rheology of alkanes

    SciTech Connect

    Gupta, S.A.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. |

    1996-05-01

    We examine the rheological properties of four different alkanes: n-decane, n-hexadecane, n-tetracosane, and squalane. Simulations of Couette flow are performed for a range of shear rates with 100 molecules in each case using a replicated data version of our code. Number of interaction sites ranges from 1000 to 3000. We have performed extremely long simulations required to obtain acceptable statistics at low shear rates. The alkanes show a transition from non-Newtonian to Newtonian behavior as the shear rate decreases to low values. 1 tab, 1 fig, 17 refs.

  15. Molecular Dynamics Simulations of Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Owens, Eli T.; Bachlechner, Martina E.

    2007-03-01

    Outer space silicon solar cells are exposed to impacts with micro meteors that can destroy the surface leading to device failure. A protective coating of silicon nitride will protect against such failure. Large-scale molecular dynamics simulations are used to study how silicon/silicon nitride fails due to hypervelocity impacts. Three impactors made of silicon nitride are studied. Their cross-sectional areas, relative to the target, are as follows: the same as the target, half of the target, and a quarter of the target. Impactor speeds from 5 to 11 km/second yield several modes of failure, such as deformation of the target by the impactor and delimitation of the silicon nitride from the silicon at the interface. These simulations will give a much clearer picture of how solar cells composed of a silicon/silicon nitride interface will respond to impacts in outer space. This will ultimately lead to improved devices with longer life spans.

  16. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  17. Molecular dynamics simulation of fractal aggregate diffusion

    NASA Astrophysics Data System (ADS)

    Pranami, Gaurav; Lamm, Monica H.; Vigil, R. Dennis

    2010-11-01

    The diffusion of fractal aggregates constructed with the method by Thouy and Jullien [J. Phys. A 27, 2953 (1994)10.1088/0305-4470/27/9/012] comprised of Np spherical primary particles was studied as a function of the aggregate mass and fractal dimension using molecular dynamics simulations. It is shown that finite-size effects have a strong impact on the apparent value of the diffusion coefficient (D) , but these can be corrected by carrying out simulations using different simulation box sizes. Specifically, the diffusion coefficient is inversely proportional to the length of a cubic simulation box, and the constant of proportionality appears to be independent of the aggregate mass and fractal dimension. Using this result, it is possible to compute infinite dilution diffusion coefficients (Do) for aggregates of arbitrary size and fractal dimension, and it was found that Do∝Np-1/df , as is often assumed by investigators simulating Brownian aggregation of fractal aggregates. The ratio of hydrodynamic radius to radius of gyration is computed and shown to be independent of mass for aggregates of fixed fractal dimension, thus enabling an estimate of the diffusion coefficient for a fractal aggregate based on its radius of gyration.

  18. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    SciTech Connect

    Cawkwell, M. J. Niklasson, Anders M. N.; Dattelbaum, Dana M.

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  19. Molecular dynamics simulation in virus research

    PubMed Central

    Ode, Hirotaka; Nakashima, Masaaki; Kitamura, Shingo; Sugiura, Wataru; Sato, Hironori

    2012-01-01

    Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virus–host interactions and evolution, and present future perspectives on this technique. PMID:22833741

  20. Molecular Dynamics Simulation of a RNA Aptasensor.

    PubMed

    Ruan, Min; Seydou, Mahamadou; Noel, Vincent; Piro, Benoit; Maurel, François; Barbault, Florent

    2017-04-14

    Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.

  1. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  2. Molecular Dynamics Simulations of Ferroelectric Phase Transitions

    NASA Astrophysics Data System (ADS)

    Yu, Rici; Krakauer, Henry

    1997-03-01

    Based on an analysis of the wavevector dependence of the lattice instabilities in KNbO_3, we proposed a real-space chain-like instability and a scenario of sequential freezing out or onset of coherence of these instabilities, which qualitatively explains the sequence of observed temperature-dependent ferroelectric phases.(R. Yu and H. Krakauer, Phys. Rev. Lett. 74), 4067 (1995). We suggested that this chain-like instability should also be found in BaTiO_3, and this has been subsequently confirmed by Ghosez et al.(P. Ghosez et al.), Proc. 4th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, to be published We will present molecular dynamics simulations on BaTiO_3, using effective Hamiltonians constructed from first-principles calculations,(W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73), 1861 (1994). that reproduce the essential features of diffuse x-ray scattering measurements in the cubic, tetragonal, orthorhombic, and rhombohedral phases. The good agreement supports the interpretation of real-space chain-formation. Simulations for KNbO3 may also be reported.

  3. Nanoscale deicing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  4. Studying the unfolding kinetics of proteins under pressure using long molecular dynamic simulation runs.

    PubMed

    Chara, Osvaldo; Grigera, José Raúl; McCarthy, Andrés N

    2007-12-01

    The usefulness of computational methods such as molecular dynamics simulation has been extensively established for studying systems in equilibrium. Nevertheless, its application to complex non-equilibrium biological processes such as protein unfolding has been generally regarded as producing results which cannot be interpreted straightforwardly. In the present study, we present results for the kinetics of unfolding of apomyoglobin, based on the analysis of long simulation runs of this protein in solution at 3 kbar (1 atm = 1.01325, bar = 101,325 Pa). We hereby demonstrate that the analysis of the data collected within a simulated time span of 0.18 mus suffices for producing results, which coincide remarkably with the available unfolding kinetics experimental data. This not only validates molecular dynamics simulation as a valuable alternative for studying non-equilibrium processes, but also enables a detailed analysis of the actual structural mechanism which underlies the unfolding process of proteins under elusive denaturing conditions such as high pressure.

  5. Coarse-grained protein molecular dynamics simulations.

    PubMed

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-14

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  6. Coarse-grained protein molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-01

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  7. Atomistic molecular dynamics simulations of shock compressed quartz

    NASA Astrophysics Data System (ADS)

    Farrow, M. R.; Probert, M. I. J.

    2011-07-01

    Atomistic non-equilibrium molecular dynamics simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer, and van Santen [Phys. Rev. B 43, 5068 (1991)], 10.1103/PhysRevB.43.5068 to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geometry optimised system of a polar slab in a three-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under representative pressure conditions of the Earth core, but unsuitable for high-pressure shock wave simulations. We also find that the BKS potential incorrectly prefers the β-quartz phase over the α-quartz phase at zero-temperature, and that there is a β → α phase-transition at 6 GPa.

  8. Fiber lubrication: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi

    Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence

  9. Molecular Dynamics Simulation of Disordered Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2004-02-27

    The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.

  10. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  11. Molecular Dynamics Simulations of Thermal Induced Chemistry in TATB

    NASA Astrophysics Data System (ADS)

    Quenneville, Jason; Germann, Timothy

    2006-03-01

    Equilibrium molecular dynamics (MD) simulation of high explosives can provide important information on their thermal decomposition by helping to characterize processes with timescales that are much longer than those attainable with non-equilibrium MD shock studies. A reactive force field is used with MD to probe the chemisty induced by intense heating (`cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). The force field (ReaxFF) was developed by van Duin, Goddard and coworkers^ at CalTech and has already shown promise in predicting the chemistry in small samples of RDX under either shock compression or intense heat. Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. We will show results of 100,000-particle simulations at several temperatures, carried out with the massively parallel GRASP MD software developed at Sandia National Lab. Finally, we will compare the reactions and reaction timescales with those of RDX and HMX. ^ A. C. T. Van Duin, et al, J. Phys. Chem. A, 1005, 9396 (2001).

  12. Shock waves simulated using the dual domain material point method combined with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Duan Z.; Dhakal, Tilak R.

    2017-04-01

    In this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region, such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. To demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.

  13. Shock waves simulated using the dual domain material point method combined with molecular dynamics

    DOE PAGES

    Zhang, Duan Z.; Dhakal, Tilak Raj

    2017-01-17

    Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less

  14. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. Final report, September 15, 1987--March 14, 1997

    SciTech Connect

    Murad, S.

    1997-05-01

    Computer Simulation Studies were carried out using the method of equilibrium and nonequilibrium molecular dynamics (NEMD) to examine a wide range of transport processes in both fluids and fluid mixtures. This included testing a wide range of mixing rules for thermal conductivity and viscosity. In addition a method was developed to calculate the internal rotational contributions to thermal conductivity and the accuracy of current methods for predicting these contributions were examined. These comparisons were then used to suggest possible ways of improving these theories. The method of NEMD was also used to examine the critical enhancements of thermal conductivity. Finally, molecular simulations were carried out to study the various transport coefficients of fluids confined by membranes, as well as important transport processes such as osmosis, and reverse osmosis.

  15. Molecular Dynamics Simulation of the Phonon Conductivity in Cu-Ni Binary Alloy

    NASA Astrophysics Data System (ADS)

    Konishi, Yusuke; Fukushima, Tetsuya; Sato, Kazunori; Asai, Yoshihiro; Katayama-Yoshida, Hiroshi

    2014-03-01

    In 2010, a giant Peltier effect was observed in a Cu-Ni/Au junction. It is considered that this giant Peltier effect is caused by nano-scale phase separation formed in the sputtering process. The giant Peltier coefficient in the Cu-Ni/Au junction indicates the great Seebeck coefficient in Cu-Ni alloy. Although this alloy is a prospective thermoelectric material because of its great Seebeck coefficient, the low phonon thermal conductivity is also necessary for a large thermoelectric coefficient ZT. In order to find conditions for the low phonon conductivity, we calculate the thermal conductivity in Cu-Ni Alloy in various shapes with or without nanostructures by using nonequilibrium molecular dynamics simulation. In this simulation, we use a semi-empirical potential and the reverse nonequilibrium molecular dynamics method.

  16. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics.

    PubMed

    Yong, Xin; Zhang, Lucy T

    2013-02-28

    The thermostats in molecular dynamics (MD) simulations of highly confined channel flow may have significant influences on the fidelity of transport phenomena. In this study, we exploit non-equilibrium MD simulations to generate Couette flows with different combinations of thermostat algorithms and strategies. We provide a comprehensive analysis on the effectiveness of three thermostat algorithms Nosé-Hoover chain (NHC), Langevin (LGV) and dissipative particle dynamics (DPD) when applied in three thermostat strategies, thermostating either walls (TW) or fluid (TF), and thermostating both the wall and fluid (TWTF). Our results of thermal and mechanical properties show that the TW strategy more closely resembles experimental conditions. The TF and TWTF systems also produce considerably similar behaviors in weakly sheared systems, but deviate the dynamics in strongly sheared systems due to the isothermal condition. The LGV and DPD thermostats used in the TF and TWTF systems provide vital ways to yield correct dynamics in coarse-grained systems by tuning the fluid transport coefficients. Using conventional NHC thermostat to thermostat fluid only produces correct thermal behaviors in weakly sheared systems, and breaks down due to significant thermal inhomogeneity in strongly sheared systems.

  17. Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Solomentsev, Gleb Y.; O'Brien, Paul

    2009-07-01

    Nonequilibrium molecular dynamics simulations of various mutants of hen egg white lysozyme have been performed at 300 K and 1 bar in the presence of both external static electric and low-frequency microwave (2.45 GHz) fields of varying intensity. Significant nonthermal field effects were noted, such as marked changes in the protein's secondary structure relative to the zero-field state, depending on the field conditions, mutation, and orientation with respect to the applied field. This occurred primarily as a consequence of alignment of the protein's total dipole moment with the external field, although the dipolar alignment of water molecules in both the solvation layer and the bulk was also found to be influential. Substantial differences in behavior were found for proteins with and without overall net charges, particularly with respect to translational motion. Localized motion and perturbation of hydrogen bonds were also found to be evident for charged residues.

  18. Molecular dynamics simulations of evaporation-induced nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Grest, Gary S.

    2013-02-01

    While evaporating solvent is a widely used technique to assemble nano-sized objects into desired superstructures, there has been limited work on how the assembled structures are affected by the physical aspects of the process. We present large scale molecular dynamics simulations of the evaporation-induced assembly of nanoparticles suspended in a liquid that evaporates in a controlled fashion. The quality of the nanoparticle crystal formed just below the liquid/vapor interface is found to be better at relatively slower evaporation rates, as less defects and grain boundaries appear. This trend is understood as the result of the competition between the accumulation and diffusion times of nanoparticles at the liquid/vapor interface. When the former is smaller, nanoparticles are deposited so fast at the interface that they do not have sufficient time to arrange through diffusion, which leads to the prevalence of defects and grain boundaries. Our results have important implications in understanding assembly of nanoparticles and colloids in non-equilibrium liquid environments.

  19. Multimillion atom molecular dynamics simulations of glasses and ceramic materials

    NASA Astrophysics Data System (ADS)

    Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro

    1999-11-01

    Molecular dynamics simulations are a powerful tool for studying physical and chemical phenomena in materials. In these lectures we shall review the molecular dynamics method and its implementation on parallel computer architectures. Using the molecular dynamics method we will study a number of materials in different ranges of density, temperature, and uniaxial strain. These include structural correlations in silica glass under pressure, crack propagation in silicon nitride films, sintering of silicon nitride nanoclusters, consolidation of nanophase materials, and dynamic fracture. Multimillion atom simulations of oxidation of aluminum nanoclusters and nanoindentation in silicon nitride will also be discussed.

  20. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise

    NASA Astrophysics Data System (ADS)

    Terao, Takamichi; Müller-Plathe, Florian

    2005-02-01

    We developed a nonequilibrium molecular dynamics (NEMD) method for calculating thermal conductivities. In contrast to other NEMD algorithms, here only the heat sink is localized, whereas the heat source can be uniformly distributed throughout the system. The noise due to cutting off the pair forces or to integration errors is such a uniform heat source. In traditional NEMD methods it is normally considered a nuisance factor. The new algorithm accounts for it and uses it. The algorithm is easy to derive, analyse and implement. Moreover, it circumvents the need to calculate energy fluxes. It is tested on the enhanced simple-point charge model for liquid water and reproduces the known thermal conductivity of this model liquid of 0.81Wm-1K-1. It can be generalized to situations, where the thermal noise is replaced by another uniform heat source, or to the inverse situation, where the heat source is localized but the heat sink extends over the entire system.

  1. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise.

    PubMed

    Terao, Takamichi; Müller-Plathe, Florian

    2005-02-22

    We developed a nonequilibrium molecular dynamics (NEMD) method for calculating thermal conductivities. In contrast to other NEMD algorithms, here only the heat sink is localized, whereas the heat source can be uniformly distributed throughout the system. The noise due to cutting off the pair forces or to integration errors is such a uniform heat source. In traditional NEMD methods it is normally considered a nuisance factor. The new algorithm accounts for it and uses it. The algorithm is easy to derive, analyse and implement. Moreover, it circumvents the need to calculate energy fluxes. It is tested on the enhanced simple-point charge model for liquid water and reproduces the known thermal conductivity of this model liquid of 0.81 W m(-1) K(-1). It can be generalized to situations, where the thermal noise is replaced by another uniform heat source, or to the inverse situation, where the heat source is localized but the heat sink extends over the entire system.

  2. Methods for molecular dynamics simulations of protein folding/unfolding in solution.

    PubMed

    Beck, David A C; Daggett, Valerie

    2004-09-01

    All atom molecular dynamics simulations have become a standard method for mapping equilibrium protein dynamics and non-equilibrium events like folding and unfolding. Here, we present detailed methods for performing such simulations. Generic protocols for minimization, solvation, simulation, and analysis derived from previous studies are also presented. As a measure of validation, our water model is compared with experiment. An example of current applications of these methods, simulations of the ultrafast folding protein Engrailed Homeodomain are presented including the experimental evidence used to verify their results. Ultrafast folders are an invaluable tool for studying protein behavior as folding and unfolding events measured by experiment occur on timescales accessible with the high-resolution molecular dynamics methods we describe. Finally, to demonstrate the prospect of these methods for folding proteins, a temperature quench simulation of a thermal unfolding intermediate of the Engrailed Homeodomain is described.

  3. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  4. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  5. Soft-spring wall based non-periodic boundary conditions for non-equilibrium molecular dynamics of dense fluids

    SciTech Connect

    Ghatage, Dhairyashil; Tomar, Gaurav Shukla, Ratnesh K.

    2015-03-28

    Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient.

  6. In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1

    PubMed Central

    Frentrup, Hendrik; Hart, Kyle E.; Colina, Coray M.; Müller, Erich A.

    2015-01-01

    We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers. PMID:25764366

  7. Modelling transient heat conduction in solids at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach

    SciTech Connect

    Jolley, Kenny; Gill, Simon P.A.

    2009-10-20

    A method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics simulations is presented. The method is simple to implement into a conventional molecular dynamics code and independent of the atomistic model employed. It works by regulating the temperature in a thermostatted boundary region by feedback control to achieve the desired temperature at the edge of an inner region where the true atomistic dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilibrium molecular dynamics simulations. Three thermostats are investigated: the global deterministic Nose-Hoover thermostat and two local stochastic thermostats, Langevin and stadium damping. The latter thermostat is introduced to avoid the adverse reflection of phonons that occurs at an abrupt interface. The method is then extended to allow atomistic/continuum models to be thermally coupled concurrently for the analysis of large steady state and transient heat conduction problems. The effectiveness of the algorithm is demonstrated for the example of heat flow down a three-dimensional atomistic rod of uniform cross-section subjected to a variety of boundary conditions.

  8. Nonholonomic Hamiltonian method for molecular dynamics simulations of reacting shocks

    NASA Astrophysics Data System (ADS)

    Bass, Joseph; Fahrenthold, Eric P.

    2017-01-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general the potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new nonholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations, and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted parameters.

  9. Investigation of Ribosomes Using Molecular Dynamics Simulation Methods.

    PubMed

    Makarov, G I; Makarova, T M; Sumbatyan, N V; Bogdanov, A A

    2016-12-01

    The ribosome as a complex molecular machine undergoes significant conformational changes while synthesizing a protein molecule. Molecular dynamics simulations have been used as complementary approaches to X-ray crystallography and cryoelectron microscopy, as well as biochemical methods, to answer many questions that modern structural methods leave unsolved. In this review, we demonstrate that all-atom modeling of ribosome molecular dynamics is particularly useful in describing the process of tRNA translocation, atomic details of behavior of nascent peptides, antibiotics, and other small molecules in the ribosomal tunnel, and the putative mechanism of allosteric signal transmission to functional sites of the ribosome.

  10. Molecular dynamics simulation of aqueous solutions of glycine betaine

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Fornili, Arianna; Sironi, Maurizio; Fornili, Sandro L.

    2003-01-01

    Molecular dynamics simulation is used to investigate hydration properties of glycine betaine in a large range of solute concentrations. Statistical analyses of the system trajectories evidence microscopic details suggesting an interpretation of experimental results recently obtained for aqueous solutions of trimethylamine- N-oxide, a bioprotectant closely related to glycine betaine.

  11. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems

    PubMed Central

    Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus

    2014-01-01

    Background Molecular Dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. Scope of review In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Major Conclusions Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. General Significance Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. PMID:25450171

  12. Semiconductor nanostructure properties. Molecular Dynamic Simulations

    NASA Astrophysics Data System (ADS)

    Podolska, N. I.; Zhmakin, A. I.

    2013-08-01

    The need for research is based on the fact that development of non-planar semiconductor nanosystems and nanomaterials with controlled properties is an important scientific and industrial problem. So, final scientific and technological problem is the creation of adequate modern methods and software for growth and properties simulation and optimization of various III-V (GaAs, InAs, InP, InGaAs etc.) nanostructures (e.g. nanowires) with controlled surface morphology, crystal structure, optical, transport properties etc. Accordingly, now we are developing a specialized computer code for atomistic simulation of structural (distribution of atoms and impurities, elastic and force constants, strain distribution etc.) and thermodynamic (mixing energy, interaction energy, surface energy etc.) properties of the nanostructures. Some simulation results are shown too.

  13. Solvent-Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in Molecular Dynamics Simulation

    SciTech Connect

    Lindner, Benjamin; Petridis, Loukas; Schulz, Roland; Smith, Jeremy C

    2013-01-01

    The precipitation of lignin onto cellulose after pretreatment of lignocellulosic biomass is an obstacle to economically viable cellulosic ethanol production. Here, 750 ns nonequilibrium molecular dynamics simulations are reported of a system of lignin and cellulose in aqueous solution. Lignin is found to strongly associate with itself and the cellulose. However, noncrystalline regions of cellulose are observed to have a lower tendency to associate with lignin than crystalline regions, and this is found to arise from stronger hydration of the noncrystalline chains. The results suggest that the recalcitrance of crystalline cellulose to hydrolysis arises not only from the inaccessibility of inner fibers but also due to the promotion of lignin adhesion.

  14. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  15. Molecular Dynamics Simulations of Network Glasses

    NASA Astrophysics Data System (ADS)

    Drabold, David A.

    The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References

  16. Studying the Unfolding Kinetics of Proteins under Pressure Using Long Molecular Dynamic Simulation Runs

    PubMed Central

    Chara, Osvaldo; Grigera, José Raúl

    2008-01-01

    The usefulness of computational methods such as molecular dynamics simulation has been extensively established for studying systems in equilibrium. Nevertheless, its application to complex non-equilibrium biological processes such as protein unfolding has been generally regarded as producing results which cannot be interpreted straightforwardly. In the present study, we present results for the kinetics of unfolding of apomyoglobin, based on the analysis of long simulation runs of this protein in solution at 3 kbar (1 atm = 1.01325, bar = 101 325 Pa). We hereby demonstrate that the analysis of the data collected within a simulated time span of 0.18 μs suffices for producing results, which coincide remarkably with the available unfolding kinetics experimental data. This not only validates molecular dynamics simulation as a valuable alternative for studying non-equilibrium processes, but also enables a detailed analysis of the actual structural mechanism which underlies the unfolding process of proteins under elusive denaturing conditions such as high pressure. PMID:19669536

  17. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  18. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar; Mandziuk, Margaret; Skeel, Robert D.; Srinivas, K.

    1998-02-01

    The intriguing phenomenon of resonance, a pronounced integrator-induced corruption of a system's dynamics, is examined for simple molecular systems subject to the classical equations of motion. This source of timestep limitation is not well appreciated in general, and certainly analyses of resonance patterns have been few in connection to biomolecular dynamics. Yet resonances are present in the commonly used Verlet integrator, in symplectic implicit schemes, and also limit the scope of current multiple-timestep methods that are formulated as symplectic and reversible. The only general remedy to date has been to reduce the timestep. For this purpose, we derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as useful guidelines in practice for biomolecular simulations. We also devise closely related symplectic implicit schemes for which the limitation on the discretization stepsize is much less severe. Specifically, we design methods to remove third-order, or both the third- and fourth-order, resonances. These severe low-order resonances can lead to instability or very large energies. Our tests on two simple molecular problems (Morse and Lennard-Jones potentials), as well as a 22-atom molecule, N-acetylalanyl-N '-methylamide, confirm this prediction; our methods can delay resonances so that they occur only at larger timesteps (EW method) or are essentially removed (LIM2 method). Although stable for large timesteps by this approach, trajectories show large energy fluctuations, perhaps due to the coupling with other factors that induce instability in complex nonlinear systems. Thus, the methods developed here may be more useful for conformational sampling of biomolecular structures. The analysis presented here for the blocked alanine model emphasizes that one-dimensional analysis of resonances can be applied to a more complex, multimode system to analyze resonance behavior, but that resonance due to frequency coupling is more complex to pinpoint

  19. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  20. Molecular dynamics simulation of carbon disulphide with a Gaussian correction

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2017-02-01

    Molecular Dynamics (MD) simulations of liquid carbon disulphide (CS2) in the temperature range 164-318 K under normal pressure and at experimental density were performed using an expa-6 potential with a Gaussian correction plus electrostatic interactions. This correction allowed to modify the curvature of the potential. The results of the MD simulation are compared with available experimental data. The agreement is good.

  1. Nonequilibrium phenomena in N{sub 2}-cluster-surface collisions: A molecular-dynamics study of fragmentation, lateral jetting, and nonequilibrium energy distributions

    SciTech Connect

    Zimmermann, Steffen; Urbassek, Herbert M.

    2006-12-15

    Using molecular-dynamics simulation, we study the impact of (N{sub 2}){sub 2869} clusters on a flat rigid wall. We study the cluster fragmentation process, the formation of lateral jets, the energy redistribution among the resulting fragments, and the ratio of internal and translational energy of the emerging free molecules as a function of cluster impact energy in the range of 0.076-1520 meV/molecule. We find the fragmentation threshold energy to be in agreement with that found previously for (N{sub 2}){sub 13} clusters; the (scaled) number of fragments, however, increases more slowly with impact energy. Also the energy redistribution of the cluster impact energy among the internal and translational energy of the fragments is similar to that found for the small cluster. This means in particular that free molecules show a strong nonequilibrium energy partitioning in which the internal degrees of freedom are considerably less excited than the translational degrees of freedom. We also find that at impact energies above the fragmentation threshold the angular distribution of fragments is peaked parallel to the surface--i.e., the formation of lateral surface jets.

  2. Molecular dynamics simulation: A tool for exploration and discovery

    NASA Astrophysics Data System (ADS)

    Rapaport, Dennis C.

    2009-03-01

    The exploratory and didactic aspects of science both benefit from the ever-growing role played by computer simulation. One particularly important simulational approach is the molecular dynamics method, used for studying the nature of matter from the molecular to much larger scales. The effectiveness of molecular dynamics can be enhanced considerably by employing visualization and interactivity during the course of the computation and afterwards, allowing the modeler not only to observe the detailed behavior of the systems simulated in different ways, but also to steer the computations in alternative directions by manipulating parameters that govern the actual behavior. This facilitates the creation of potentially rich simulational environments for examining a multitude of complex phenomena, as well as offering an opportunity for enriching the learning process. A series of relatively advanced examples involving molecular dynamics will be used to demonstrate the value of this approach, in particular, atomistic simulations of spontaneously emergent structured fluid flows (the classic Rayleigh--B'enard and Taylor--Couette problems), supramolecular self-assembly of highly symmetric shell structures (involved in the formation of viral capsids), and that most counterintuitive of phenomena, granular segregation (e.g., axial and radial separation in a rotating cylinder).

  3. Description of ferrocenylalkylthiol SAMs on gold by molecular dynamics simulations.

    PubMed

    Goujon, F; Bonal, C; Limoges, B; Malfreyt, P

    2009-08-18

    Molecular dynamics simulations of mixed monolayers consisting of Fc(CH2)12S-/C10S-Au SAMs are carried out to calculate structural (density profiles, angular distributions, positions of atoms) and energetic properties. The purpose of this paper is to explore the possible inhomogeneity of the neutral ferrocene moieties within the monolayer. Five systems have been studied using different grafting densities for the ferrocenylalkylthiolates. The angular distributions are described in terms of the relative contributions from isolated and clustered ferrocene moieties in the binary SAMs. It is shown that the energetic contributions strongly depend on the state of the ferrocene. The ability of molecular dynamics simulations to enable better understanding the SAM structure is illustrated in this work.

  4. Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.

    SciTech Connect

    Lau, E Y; Krishnan, V V

    2007-07-18

    The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.

  5. Molecular Dynamics Simulations of Perylenediimide DNA Base Surrogates.

    PubMed

    Markegard, Cade B; Mazaheripour, Amir; Jocson, Jonah-Micah; Burke, Anthony M; Dickson, Mary N; Gorodetsky, Alon A; Nguyen, Hung D

    2015-09-03

    Perylene-3,4,9,10-tetracarboxylic diimides (PTCDIs) are a well-known class of organic materials. Recently, these molecules have been incorporated within DNA as base surrogates, finding ready applications as probes of DNA structure and function. However, the assembly dynamics and kinetics of PTCDI DNA base surrogates have received little attention to date. Herein, we employ constant temperature molecular dynamics simulations to gain an improved understanding of the assembly of PTCDI dimers and trimers. We also use replica-exchange molecular dynamics simulations to elucidate the energetic landscape dictating the formation of stacked PTCDI structures. Our studies provide insight into the equilibrium configurations of multimeric PTCDIs and hold implications for the construction of DNA-inspired systems from perylene-derived organic semiconductor building blocks.

  6. Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.

    PubMed

    Omelyan, I P

    2006-09-01

    A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations.

  7. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    PubMed

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  8. Molecular dynamics simulations of ordering of polydimethylsiloxane under uniaxial extension

    SciTech Connect

    Lacevic, N M; Gee, R H

    2005-03-11

    Molecular dynamics simulations of a bulk melts of polydimethylsiloxane (PDMS) are utilized to study chain conformation and ordering under constant uniaxial tension. We find that large extensions induce chain ordering in the direction of applied tension. We also find that voids are created via a cavitation mechanism. This study represents a validation of the current model for PDMS and benchmark for the future study of mechanical properties of PDMS melts enriched with fillers under tension.

  9. Understanding mechanical properties of polymer nanocomposites with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sen, Suchira

    Equilibrium Molecular Dynamics (MD) simulations are used extensively to study various aspects of polymer nanocomposite (PNC) behavior in the melt state---the key focus is on understanding mechanisms of mechanical reinforcement. Mechanical reinforcement of the nanocomposite is believed to be caused by the formation of a network-like structure---a result of polymer chains bridging particles to introduce network elasticity. In contrast, in traditional composites, where the particle size range is hundreds of microns and high loadings of particle are used, the dominant mechanism is the formation of a percolated filler structure. The difference in mechanism with varying particle sizes, at similar particle loading, arises from the polymer-particle interfacial area available, which increases dramatically as the particle size decreases. Our interest in this work is to find (a) the kind of polymer-particle interactions necessary to facilitate the formation of a polymer network in a nanocomposite, and (b) the reinforcing characteristics of such a polymer network. We find that very strong polymer-particle binding is necessary to create a reinforcing network. The strength of the binding has to be enough to immobilize polymer on the particle surface for timescales comparable and larger than the terminal relaxation time of the stress of the neat melt. The second finding, which is a direct outcome of very strong binding, is that the method of preparation plays a critical role in determining the reinforcement of the final product. The starting conformations of the polymer chains determine the quality of the network. The strong binding traps the polymer on the particle surface which gets rearranged to a limited extent, within stress relaxation times. Significant aging effects are seen in system relaxation; the inherent non-equilibrium consequences of such strong binding. The effect of the polymer immobilization slows down other relaxation processes. The diffusivity of all chains is

  10. Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics

    PubMed Central

    Mücksch, Christian; Urbassek, Herbert M.

    2013-01-01

    The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces. PMID:23755156

  11. Determining equilibrium constants for dimerization reactions from molecular dynamics simulations.

    PubMed

    De Jong, Djurre H; Schäfer, Lars V; De Vries, Alex H; Marrink, Siewert J; Berendsen, Herman J C; Grubmüller, Helmut

    2011-07-15

    With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and dissociation events, their binding free energy is readily derived from the fraction of time during which the two helices are observed in dimeric form. Exactly how the correct value for the free energy is to be calculated, however, is unclear, and indeed several different and contradictory approaches have been used. In particular, results obtained via Boltzmann statistics differ from those determined via the law of mass action. Here, we develop a theory that resolves this discrepancy. We show that for simulation systems containing two molecules, the dimerization free energy is given by a formula of the form ΔG ∝ ln(P(1) /P(0) ). Our theory is also applicable to high concentrations that typically have to be used in molecular dynamics simulations to keep the simulation system small, where the textbook dilute approximations fail. It also covers simulations with an arbitrary number of monomers and dimers and provides rigorous error estimates. Comparison with test simulations of a simple Lennard Jones system with various particle numbers as well as with reference free energy values obtained from radial distribution functions show full agreement for both binding free energies and dimerization statistics.

  12. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  13. Using collective variables to drive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme

    2013-12-01

    A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.

  14. Molecular dynamics simulation of threshold displacement energies in zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.

    2009-10-15

    Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.

  15. Superionicity in Na3 PO4 : A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yin, Wei-Guo; Liu, Jianjun; Duan, Chun-Gang; Mei, W. N.; Smith, R. W.; Hardy, J. R.

    2004-08-01

    Fast ionic conduction in solid Na3PO4 is studied by use of molecular dynamics simulation based on the modified Lu -Hardy approach. We obtain reasonable agreement with experiment for the structural transition and diffusion of the sodium ions. All the sodium ions are found to contribute comparably to the high ionic conductivity. The results of the simulation are discussed in terms of the relative magnitude of the two proposed transport mechanisms: percolation and paddle-wheel. It appears to us that the percolation mechanism dominates the sodium diffusion.

  16. Molecular Dynamics Simulations of Gas Transport in Polymer Films

    NASA Astrophysics Data System (ADS)

    Whitley, David; Butler, Simon; Adolf, David

    2010-03-01

    Parallel molecular dynamics simulations have been carried out to determine the permeability of O2 and N2 through polyethylene terephthalate, polypropylene and cis(1-4) polybutadiene. The permeability of both mixed and unmixed gas penetrants is studied within films of these well known gas barrier polymers. Results are obtained either through the solubility and diffusion (i.e. P=D*S) or via the permeability directly. Encouraging results are obtained. Additional analysis focuses on ``unmixed/mixed gas'' intracomparisons of the simulated permeability data in addition to corresponding penetrant and host polymer local dynamics.

  17. Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions.

    PubMed Central

    Pandit, Sagar A; Berkowitz, Max L

    2002-01-01

    We performed a molecular dynamics simulation of dipalmitoylphosphatidylserine (DPPS) bilayer with Na+ counterions. We found that hydrogen bonding between the NH group and the phosphate group leads to a reduction in the area per headgroup when compared to the area in dipalmitoylphosphatidylcholine bilayer. The Na+ ions bind to the oxygen in the carboxyl group of serine, thus giving rise to a dipolar bilayer similar to dipalmitoylphosphatidylethanolamine bilayer. The results of the simulation show that counterions play a crucial role in determining the structural and electrostatic properties of DPPS bilayer. PMID:11916841

  18. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  19. Molecular-dynamics simulation of mechanical alloying for the Al50Ti50 alloy

    NASA Astrophysics Data System (ADS)

    Lu, J.; Szpunar, J. A.

    1993-07-01

    The structural ordering development during mechanical alloying of the Al50Ti50 alloy was investigated by using molecular-dynamics computer simulations. Random external forces with both random orientations and magnitudes were used to simulate the mechanical alloying processes and pseudopotential was used as a model for the interaction between the atoms. The results indicate that the final nonequilibrium phase obtained through simulation of mechanical alloying is an amorphous state which can be formed experimentally in the laboratory. The transformation from crystals to amorphous state may locally be a first-order-like phase transition, but statistically it is a gradual phase transition due to the characteristics of random external forces which help atoms to overcome their energetic barrier during the mechanical alloying. This means that the transformation occurs in random sites and is discontinuous.

  20. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics.

  1. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    PubMed

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  2. Petascale Molecular Dynamics Simulations of Polymers and Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael; Brown, W. Michael

    2014-03-01

    The availability of faster and larger supercomputers and more efficient parallel algorithms now enable us to perform unprecedented simulations approaching experimental scales. Here we present two examples of our latest large-scale molecular dynamics simulations using the Titan supercomputer in the Oak Ridge Leadership Computing Facility (OLCF). In the first study, we address the rupture origin of liquid crystal thin films wetting a solid substrate. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation. Importantly, we found evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. In the second study, we used coarse-grained molecular dynamics to simulate the thermal annealing of poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM) blends in the presence of a silicon substrate found in organic solar cells. Our simulations show different phase segregated morphologies dependent on the P3HT chain length and PCBM volume fraction in the blend. Furthermore, the ternary blend of short and long P3HT chains with PCBM affects the vertical phase segregation of PCBM decreasing its concentration in the vicinity of the substrate. U.S. DOE Contract No. DE-AC05-00OR22725.

  3. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  4. Hypervelocity Impact on Interfaces: A Molecular-Dynamics Simulations Study

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Owens, Eli T.; Leonard, Robert H.; Cockburn, Bronwyn C.

    2008-03-01

    Silicon/silicon nitride interfaces are found in micro electronics and solar cells. In either application the mechanical integrity of the interface is of great importance. Molecular-dynamics simulations are performed to study the failure of interface materials under the influence of hypervelocity impact. Silicon nitride plates impacting on silicon/silicon nitride interface targets of different thicknesses result in structural phase transformation and delamination at the interface. Detailed analyses of atomic velocities, bond lengths, and bond angles are used to qualitatively examine the respective failure mechanisms.

  5. Molecular-dynamics simulation of thermal conductivity in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lee, Young Hee; Biswas, R.; Soukoulis, C. M.; Wang, C. Z.; Chan, C. T.; Ho, K. M.

    1991-03-01

    The temperature-dependent thermal conductivity κ(T) of amorphous silicon has been calculated from equilibrium molecular-dynamics simulations using the time correlations of the heat flux operator in which anharmonicity is explicitly incorporated. The Stillinger-Weber two- and three-body Si potential and the Wooten-Weaire-Winer a-Si model were utilized. The calculations correctly predict an increasing thermal conductivity at low temperatures (below 400 K). The κ(T), for T>400 K, is affected by the thermally generated coordination-defect states. Comparisons to both experiment and previous calculations will be described.

  6. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    SciTech Connect

    Mugnai, Mauro L.; Elber, Ron

    2015-01-07

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  7. Limits of hardness at the nanoscale: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Vo, Nhon Q.; Averback, Robert S.; Bellon, Pascal; Caro, Alfredo

    2008-12-01

    Contrary to the often reported findings from molecular dynamics computer simulation that metals soften as their grain sizes fall below 10-15 nm, we do not observe such softening in nanocrystalline specimens when they are first thermally relaxed. We offer a simple model that illustrates that the increased hardening is a consequence of grain-boundary relaxation, which suppresses grain-boundary sliding and forces the material to deform by dislocation glide. These observations provide an explanation for why some experiments observe an inverse Hall-Petch relationship at grain sizes below 10-20 nm while others do not.

  8. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  9. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    NASA Astrophysics Data System (ADS)

    Mugnai, Mauro L.; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  10. Molecular dynamics simulation of hollow thick-walled cylinder collapse

    SciTech Connect

    Nikonov, A. Yu.

    2015-10-27

    The generation and evolution of plastic deformation in a hollow single-crystal cylinder under high-rate axisymmetric loading were studied. An advantage of the proposed loading scheme is that all loading modes are applied simultaneously within the chosen crystallographic plane of the cylinder base and different strain degrees are achieved along the specimen cross section. Molecular dynamics simulation was performed to show that the achievement of a certain strain causes the formation of structural defects on the inner surface of the specimen. The obtained results can be used to explain the main plastic deformation mechanisms of crystalline solids.

  11. Molecular Dynamics Simulation of Telomere and TRF1

    NASA Astrophysics Data System (ADS)

    Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru

    Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.

  12. Molecular dynamics simulations studies of laser ablation in metals

    SciTech Connect

    Roth, Johannes; Sonntag, Steffen; Karlin, Johannes; Paredes, Carolina Trichet; Sartison, Marc; Krauss, Armin; Trebin, Hans-Rainer

    2012-07-30

    An overview of several aspects of our recent molecular dynamics simulations of femtosecond laser ablation is presented. This includes the study of phase diagrams for suitable interactions, analysis of ablated material and bubble formation below threshold, study of two-pulse ablation and the classification of materials with respect to electron properties and electron-phonon coupling in the two-temperature model. A treatment of boundary conditions and of an extended twotemperature model is also included. Most of the results apply to aluminum, others also to copper and iron, and to metals in general.

  13. Thermal stability of marks gold nanoparticles: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Jia, Yanlin; Li, Siqi; Qi, Weihong; Wang, Mingpu; Li, Zhou; Wang, Zhixing

    2017-03-01

    Molecular dynamics (MDs) simulations were used to explore the thermal stability of Au nanoparticles (NPs) with decahedral, cuboctahedral, icosahedral and Marks NPs. According to the calculated cohesive energy and melting temperature, the Marks NPs have a higher cohesive energy and melting temperature compared to these other shapes. The Lindemann index, radial distribution function, deformation parameters, mean square displacement and self-diffusivity have been used to characterize the structure variation during heating. This work may inspire researchers to prepare Marks NPs and apply them in different fields.

  14. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  15. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps.

    PubMed

    Ruggerone, Paolo; Vargiu, Attilio V; Collu, Francesca; Fischer, Nadine; Kandt, Christian

    2013-01-01

    Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  16. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps

    PubMed Central

    Ruggerone, Paolo; Vargiu, Attilio V.; Collu, Francesca; Fischer, Nadine; Kandt, Christian

    2013-01-01

    Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa. PMID:24688701

  17. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning.

    PubMed

    Mugnai, Mauro L; Elber, Ron

    2015-01-07

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system-the diffusion along the backbone torsions of a solvated alanine dipeptide.

  18. Molecular dynamics simulation of bicrystalline metal surface treatment

    SciTech Connect

    Nikonov, A. Yu.

    2015-10-27

    The paper reports the molecular dynamics simulation results on the behavior of a copper crystallite in local frictional contact. The crystallite has a perfect defect-free structure and contains a high-angle grain boundary of type Σ5. The influence of the initial structure on the specimen behavior under loading was analyzed. It is shown that nanoblocks are formed in the subsurface layer. The atomic mechanism of nanofragmentation was studied. A detailed analysis of atomic displacements in the blocks showed that the displacements are rotational. Calculations revealed that the misorientation angle of formed nanoblocks along different directions does not exceed 2 degrees.

  19. A multi-scale approach to molecular dynamics simulations of shock waves

    SciTech Connect

    Reed, E J; Fried, L E; Manaa, M R; Joannopoulos, J D

    2004-09-03

    Study of the propagation of shock waves in condensed matter has led to new discoveries ranging from new metastable states of carbon [1] to the metallic conductivity of hydrogen in Jupiter, [2] but progress in understanding the microscopic details of shocked materials has been extremely difficult. Complications can include the unexpected formation of metastable states of matter that determine the structure, instabilities, and time-evolution of the shock wave. [1,3] The formation of these metastable states can depend on the time-dependent thermodynamic pathway that the material follows behind the shock front. Furthermore, the states of matter observed in the shock wave can depend on the timescale on which observation is made. [4,1] Significant progress in understanding these microscopic details has been made through molecular dynamics simulations using the popular non-equilibrium molecular dynamics (NEMD) approach to atomistic simulation of shock compression. [5] The NEMD method involves creating a shock at one edge of a large system by assigning some atoms at the edge a fixed velocity. The shock propagates across the computational cell to the opposite side. The computational work required by NEMD scales at least quadratically in the evolution time because larger systems are needed for longer simulations to prevent the shock wave from reflecting from the edge of the computational cell and propagating back into the cell. When quantum mechanical methods with poor scaling of computational effort with system size are employed, this approach to shock simulations rapidly becomes impossible.

  20. Molecular dynamics simulations of high speed rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    To understand the molecular behaviour of gases in high speed rarefied conditions, we perform molecular dynamics (MD) numerical experiments using the open source code Open FOAM. We use shear-driven Couette flows as test cases, where the two parallel plates are moving with a speed of Uw in opposite directions with their temperatures set to Tw. The gas rarefaction conditions vary from slip to transition, and compressibility conditions vary from low speed isothermal to hypersonic flow regimes, i.e. Knudsen number (Kn) from 0.01 to 1 and Mach number (Ma) from 0.05 to 10. We measure the molecular velocity distribution functions, the spatial variation of gas mean free path profiles and other macroscopic properties. Our MD results convey that flow properties in the near-wall non-equilibrium region do not merely depend on Kn, but they are also significantly affected by Ma. These results may yield new insight into diffusive transport in rarefied gases at high speeds.

  1. Semi-analytical solution for the generalized absorbing boundary condition in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan

    2017-02-01

    We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.

  2. Molecular-dynamics simulation of a ceramide bilayer

    NASA Astrophysics Data System (ADS)

    Pandit, Sagar A.; Scott, H. Larry

    2006-01-01

    Ceramide is the simplest lipid in the biologically important class of glycosphingolipids. Ceramide is an important signaling molecule and a major component of the strateum corneum layer in the skin. In order to begin to understand the biophysical properties of ceramide, we have carried out a molecular-dynamics simulation of a hydrated 16:0 ceramide lipid bilayer at 368K (5° above the main phase transition). In this paper we describe the simulation and present the resulting properties of the bilayer. We compare the properties of the simulated ceramide bilayer to an earlier simulation of 18:0 sphingomyelin, and we discuss the results as they relate to experimental data for ceramide and other sphingolipids. The most significant differences arise at the lipid/water interface, where the lack of a large ceramide polar group leads to a different electron density and a different electrostatic potential but, surprisingly, not a different overall "dipole potential," when ceramide is compared to sphingomyelin.

  3. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  4. Molecular dynamic simulations of the water absorbency of hydrogels.

    PubMed

    Ou, Xiang; Han, Qiang; Dai, Hui-Hui; Wang, Jiong

    2015-09-01

    A polymer gel can imbibe solvent molecules through surface tension effect. When the solvent happens to be water, the gel can swell to a large extent and forms an aggregate called hydrogel. The large deformation caused by such swelling makes it difficult to study the behaviors of hydrogels. Currently, few molecular dynamic simulation works have been reported on the water absorbing mechanism of hydrogels. In this paper, we first use molecular dynamic simulation to study the water absorbing mechanism of hydrogels and propose a hydrogel-water interface model to study the water absorbency of the hydrogel surface. Also, the saturated water content and volume expansion rate of the hydrogel are investigated by building a hydrogel model with different cross-linking degree and by comparing the water absorption curves under different temperatures. The sample hydrogel model used consists of Polyethylene glycol diglycidyl ether (PEGDGE) as epoxy and the Jeffamine, poly-oxy-alkylene-amines, as curing agent. The conclusions obtained are useful for further investigation on PEGDGE/Jeffamine hydrogel. Moreover, the simulation methods, including hydrogel-water interface modeling, we first propose are also suitable to study the water absorbing mechanism of other hydrogels.

  5. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  6. Molecular dynamics simulations through GPU video games technologies.

    PubMed

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations.

  7. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    SciTech Connect

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-12-12

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  8. Molecular dynamics simulation of TCDD adsorption on organo-montmorillonite.

    PubMed

    Zhu, Runliang; Hu, Wenhao; You, Zhimin; Ge, Fei; Tian, Kaixun

    2012-07-01

    In this work, molecular dynamics simulation was applied to investigate the adsorption of Tetrachlorodibenzo-p-Dioxin (TCDD) on tetramethylammonium (TMA) and tetrapropylammonium (TPA) modified montmorillonite, with the aim of providing novel information for understanding the adsorptive characteristics of organo-montmorillonite toward organic contaminants. The simulation results showed that on both outer surface and interlayer space of TPA modified montmorillonite (TPA-mont), TCDD was adsorbed between the TPA cations with the molecular edge facing siloxane surface. Similar result was observed for the adsorption on the outer surface of TMA modified montmorillonite (TMA-mont). These results indicated that TCDD had stronger interaction with organic cation than with siloxane surface. While in the interlayer space of TMA-mont, TCDD showed a coplanar orientation with the siloxane surfaces, which could be ascribed to the limited gallery height within TMA-mont interlayer. Comparing with TMA-mont, TPA-mont had larger adsorption energy toward TCDD but smaller interlayer space to accommodate TCDD. Our results indicated that molecular dynamics simulation can be a powerful tool in characterizing the adsorptive characteristics of organoclays and provided additional proof that for the organo-montmorillonite synthesized with small organic cations, the available interlayer space rather than the attractive force plays the dominant role for their adsorption capacity toward HOCs.

  9. Lightweight computational steering of very large scale molecular dynamics simulations

    SciTech Connect

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.

  10. Network Visualization of Conformational Sampling during Molecular Dynamics Simulation

    PubMed Central

    Ahlstrom, Logan S.; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T.; Patel, Sunita; Vorontsov, Ivan I.; Tama, Florence; Miyashita, Osamu

    2013-01-01

    Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. PMID:24211466

  11. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    SciTech Connect

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  12. Molecular Dynamics Simulation of Iron — A Review

    NASA Astrophysics Data System (ADS)

    Chui, C. P.; Liu, Wenqing; Xu, Yongbing; Zhou, Yan

    2015-12-01

    Molecular dynamics (MD) is a technique of atomistic simulation which has facilitated scientific discovery of interactions among particles since its advent in the late 1950s. Its merit lies in incorporating statistical mechanics to allow for examination of varying atomic configurations at finite temperatures. Its contributions to materials science from modeling pure metal properties to designing nanowires is also remarkable. This review paper focuses on the progress of MD in understanding the behavior of iron — in pure metal form, in alloys, and in composite nanomaterials. It also discusses the interatomic potentials and the integration algorithms used for simulating iron in the literature. Furthermore, it reveals the current progress of MD in simulating iron by exhibiting some results in the literature. Finally, the review paper briefly mentions the development of the hardware and software tools for such large-scale computations.

  13. Molecular dynamics simulation of friction of hydrocarbon thin films

    SciTech Connect

    Tamura, Hiroyuki; Yoshida, Muneo; Kusakabe, Kenichi

    1999-10-26

    Molecular Dynamics (MD) simulations were performed to investigate the dynamic behavior of hydrocarbon molecules under shear conditions. Frictional properties of cyclohexane, n-hexane, and iso-hexane thin films confirmed between two solid surfaces were calculated. Because the affinity of the solid surfaces in these simulations is strong, slippages occurred at inner parts of the confined films, whereas no slippages were observed at the solid boundaries. The hexagonal closest packing structure was observed for the adsorbed cyclohexane molecular layers. The branched methyl groups in the iso-hexane molecules increase the shear stress between the molecular layers. For the n-hexane monolayer, molecules were observed to roll during the sliding simulations. Rolling of the n-hexane molecules decreased the shear stress.

  14. Molecular dynamics simulations of solutions at constant chemical potential

    NASA Astrophysics Data System (ADS)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  15. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  16. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Laghaei, Rozita; Mousseau, Normand

    2010-04-01

    Expansion of polyglutamine (polyQ) beyond the pathogenic threshold (35-40 Gln) is associated with several neurodegenerative diseases including Huntington's disease, several forms of spinocerebellar ataxias and spinobulbar muscular atrophy. To determine the structure of polyglutamine aggregates we perform replica-exchange molecular dynamics simulations coupled with the optimized potential for effective peptide forcefield. Using a range of temperatures from 250 to 700 K, we study the aggregation kinetics of the polyglutamine monomer and dimer with chain lengths from 30 to 50 residues. All monomers show a similar structural change at the same temperature from α-helical structure to random coil, without indication of any significant β-strand. For dimers, by contrast, starting from random structures, we observe spontaneous formation of antiparallel β-sheets and triangular and circular β-helical structures for polyglutamine with 40 residues in a 400 ns 50 temperature replica-exchange molecular dynamics simulation (total integrated time 20 μs). This ˜32 Å diameter structure reorganizes further into a tight antiparallel double-stranded ˜22 Å nanotube with 22 residues per turn close to Perutz' model for amyloid fibers as water-filled nanotubes. This diversity of structures suggests the existence of polymorphism for polyglutamine with possibly different pathways leading to the formation of toxic oligomers and to fibrils.

  17. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  18. Molecular dynamics simulation of rupture in glassy polymer bridges within filler aggregates

    NASA Astrophysics Data System (ADS)

    Froltsov, Vladimir A.; Klüppel, Manfred; Raos, Guido

    2012-10-01

    We present a series of nonequilibrium molecular dynamics simulations, investigating the rupture mechanisms in glassy polymer films confined between two solid surfaces. Such systems provide a useful model for the strong nonlinear reinforcement of rubber by colloidal filler particles. Depending on the degree of confinement three qualitatively different rupture modes have been found, which originate from the interplay of internal (polymer-polymer) and external (polymer-wall) interactions. In very thin films we observe the formation and stretching of many single-chain bridges between the confining surfaces. Progressing to thicker samples we observe fewer bridges, consisting of bundled polymer chains, and eventually just one large bridge in thick specimens. The yield stress and the elongational modulus of the polymer films have been calculated from the stress-strain curves at various temperatures and confinements and their behavior has been analyzed in terms of polymer-polymer and polymer-surface interaction energies. The thinnest films (5 monomer diameters) are always glassy in our simulations, while the others display a glass transition temperature around 0.50-0.55 (in units ɛ0/kB of the Lennard-Jones interaction energy), depending on their thickness. This range of values, which has been determined using both the nonequilibrium tensile simulations and equilibrium diffusion data, agrees with the transition temperature previously found by shear simulations [Baljon and Robbins, ScienceSCIEAS0036-807510.1126/science.271.5248.482 271, 482 (1996)].

  19. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    SciTech Connect

    Tanaka, Kouichi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki; Kitsunezuka, Masashi; Shinma, Atsushi

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  20. Molecular dynamics simulations of hydrogen diffusion in aluminum

    SciTech Connect

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; Allendorf, M. D.

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear how they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.

  1. Molecular dynamics simulations of hydrogen diffusion in aluminum

    DOE PAGES

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; ...

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less

  2. Flow alignment phenomena in liquid crystals studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Laaksonen, Aatto

    2009-10-01

    The flow alignment of a nematic liquid crystal has been studied as a function of temperature, beginning at high temperature in the nematic phase and down to the nematic-smectic A phase transition. The alignment angle is obtained by estimating the twist viscosities by nonequilibrium molecular dynamics (NEMD) methods. These estimates are cross-checked by evaluating the corresponding equilibrium fluctuation relations. As a further comparison, shear flow simulations are carried out by application of the SLLOD equations of motion (so named because of their close relationship to the Doll's equation of motion, which can be derived from the Doll's tensor Hamiltonian), whereby the alignment angle is obtained directly. All these methods give consistent results for the alignment angle. At low temperatures near the nematic-smectic A transition the system becomes flow unstable. In this region the alignment angle has been calculated as a function of time.

  3. Hot spot and temperature analysis of shocked hydrocarbon polymer foams using molecular dynamics simulation

    SciTech Connect

    Lane, J. Matthew D.; Grest, Gary S.; Mattsson, Thomas R.

    2013-11-01

    Hydrocarbon polymers, foams and nanocomposites are increasingly being subjected to extreme environments. Molecular scale modeling of these materials offers insight into failure mechanisms and complex response. Prior classical molecular dynamics (MD) simulations of the principal shock Hugoniot for two hydrocarbon polymers, polyethylene (PE) and poly (4-methyl-1-pentene) (PMP) have shown good agreement with density functional theory (DFT) calculations and experiments conducted at Sandia National Laboratories. We extended these results to include low-density polymer foams using nonequilibrium MD techniques and found good quantitative agreement with experiment. Here, we have measured the local temperature during void collapse to investigate the formation of hot spots and their relationship to polymer dissociation in foams.

  4. Molecular dynamics simulation of wetting on modified amorphous silica surface

    NASA Astrophysics Data System (ADS)

    Chai, Jingchun; Liu, Shuyan; Yang, Xiaoning

    2009-08-01

    The microscopic wetting of water on amorphous silica surfaces has been investigated by molecular dynamics simulation. Different degrees of surface hydroxylation/silanization were considered. It was observed that the hydrophobicity becomes enhanced with an increase in the degree of surface silanization. A continuous transformation from hydrophilicity to hydrophobicity can be attained for the amorphous silica surfaces through surface modification. From the simulation result, the contact angle can exceed 90° when surface silanization percentage is above 50%, showing a hydrophobic character. It is also found that when the percentage of surface silanization is above 70% on the amorphous silica surface, the water contact angle almost remains unchanged (110-120°). This phenomenon is a little different from the wetting behavior on smooth quartz plates in previous experimental report. This change in the wettability on modified amorphous silica surfaces can be interpreted in terms of the interaction between water molecules and the silica surfaces.

  5. Pasta Elasticity: Molecular dynamics simulations of nuclear pasta deformations

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Horowitz, C. J.; Berry, D. K.

    2015-04-01

    Nuclear pasta is expected in the inner crust of neutron stars at densities near the nuclear saturation density. In this work, the elastic properties of pasta are calculated from large scale molecular dynamics simulations by deforming the simulation volume. Our model uses a semi-classical two-nucleon potential that reproduces nuclear saturation. We report the shear modulus and breaking strain of a variety of pasta phases for different temperatures, densities, and proton fractions. The presence of pasta in neutron stars could have significant effects on crustal oscillations and could be inferred from observations of soft-gamma repeaters. Additionally, these elastic parameters will enable us to improve estimates of the maximum size and lifetime of ``mountains'' on the crust, which could efficiently radiate gravitational waves.

  6. Molecular dynamics simulations of field emission from a planar nanodiode

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2015-03-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  7. Molecular Dynamic Simulations on Surface Tension of Methanol

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla

    2015-04-01

    Molecular dynamic simulations have been performed to study the surface tension of methanol at low temperatures. Six different models of methanol have been studied to compute the surface tension of different models. The models have been used to predict the surface tensions are: OPLS, Gromos 96, H1, J1, J2, and van Leeuwen model. Our results show that the most accurate model compared to true methanol was van Leeuwen model. The results were fitted to a straight line to predict other data of surface tension at specific temperature. The simulation were performed using the Gromacs package at temperatures: 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, and 300 K. This work is supported by JUST.

  8. Molecular dynamics simulation of radiation damage cascades in diamond

    SciTech Connect

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  9. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

    PubMed Central

    2015-01-01

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron–sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein–water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance. PMID:24955078

  10. Homogenous mixing of ionic liquids: molecular dynamics simulations.

    PubMed

    Payal, Rajdeep Singh; Balasubramanian, Sundaram

    2013-12-28

    Binary mixtures of room temperature ionic liquids (IL) with a common cation were investigated using atomistic molecular dynamics (MD) simulations. Two different binary ILs, viz., [C4mim][PF6]-[C4mim][Cl] and [C4mim][PF6]-[C4mim][BF4], were studied with varying fractions of either anion. The coordination environment of an anion around the cation is altered in the presence of another type of anion. The extent of change is larger for anions with much different radii. Atomistic MD and coarse grain MD simulations do not show any evidence for the clustering of like anions at any concentration. The binary liquids are well mixed at the molecular level.

  11. Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt

    NASA Astrophysics Data System (ADS)

    Kong, Bin

    2015-03-01

    Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.

  12. Temperature fluctuations in canonical systems: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hickman, J.; Mishin, Y.

    2016-11-01

    Molecular dynamics simulations of a quasiharmonic solid are conducted to elucidate the meaning of temperature fluctuations in canonical systems and validate a well-known but frequently contested equation predicting the mean square of such fluctuations. The simulations implement two virtual and one physical (natural) thermostat and examine the kinetic, potential, and total energy correlation functions in the time and frequency domains. The results clearly demonstrate the existence of quasiequilibrium states in which the system can be characterized by a well-defined temperature that follows the mentioned fluctuation equation. The emergence of such states is due to the wide separation of time scales between thermal relaxation by phonon scattering and slow energy exchanges with the thermostat. The quasiequilibrium states exist between these two time scales when the system behaves as virtually isolated and equilibrium.

  13. Molecular Dynamics Simulation of MgSiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Lin-xiang, Zhou; L, Zhou X.; J, Hardy R.; Xin, Xu; X, Xu

    1998-06-01

    Using molecular dynamics to simulate MgSiO3 perovskite is performed to investigate its phase transitions and superionicity. These simulations has used parameter-free Gordon-Kim potentials and a novel technique to monitor the motion of ions which clearly demonstrates the sublattice melting of ions O2- and the rotations of SiO6 octahedra. MgSiO3 has to undergo a few of phase transitions, then enter into the cubic phase. In particular, there is a transitional phase between orthorhombic phase and cubic phase. There are a superionic phase and the cubic phase in magnesium-rich silicate perovskite. This superionic phase occurs after the onset of cubic phase before the melting point. The onset temparature Tc for superionicity is about 200-700 K below the melting point Tm, Tc / Tm similar 0.92.

  14. Molecular dynamics simulations of field emission from a planar nanodiode

    SciTech Connect

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2015-03-15

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  15. A model for including thermal conduction in molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Wu, Yue; Friauf, Robert J.

    1989-01-01

    A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.

  16. Quantum molecular dynamics simulations of hydrogen production and solar cells

    NASA Astrophysics Data System (ADS)

    Mou, Weiwei

    The global energy crisis presents two major challenges for scientists around the world: Producing cleaner energy which is sustainable for the environment; And improving the efficiency of energy production as well as consumption. It is crucial and yet elusive to understand the atomistic mechanisms and electronic properties, which are needed in order to tackle those challenges. Quantum molecular dynamics simulations and nonadiabatic quantum molecular dynamics are two of the dominant methods used to address the atomistic and electronic properties in various energy studies. This dissertation is an ensemble of three studies in energy research: (1) Hydrogen production from the reaction of aluminum clusters with water to provide a renewable energy cycle; (2) The photo-excited charge transfer and recombination at a quaterthiophene/zinc oxide interface to improve the power conversion efficiency of hybrid poly(3-hexylthiophene) (P3HT) /ZnO solar cells; and (3) the charge transfer at a rubrene/C60 interface to understand why phenyl groups in rubrene improve the performance of rubrene/C60 solar cells.

  17. Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Stock, Philipp; Monroe, Jacob I; Utzig, Thomas; Smith, David J; Shell, M Scott; Valtiner, Markus

    2017-03-28

    Interactions between hydrophobic moieties steer ubiquitous processes in aqueous media, including the self-organization of biologic matter. Recent decades have seen tremendous progress in understanding these for macroscopic hydrophobic interfaces. Yet, it is still a challenge to experimentally measure hydrophobic interactions (HIs) at the single-molecule scale and thus to compare with theory. Here, we present a combined experimental-simulation approach to directly measure and quantify the sequence dependence and additivity of HIs in peptide systems at the single-molecule scale. We combine dynamic single-molecule force spectroscopy on model peptides with fully atomistic, both equilibrium and nonequilibrium, molecular dynamics (MD) simulations of the same systems. Specifically, we mutate a flexible (GS)5 peptide scaffold with increasing numbers of hydrophobic leucine monomers and measure the peptides' desorption from hydrophobic self-assembled monolayer surfaces. Based on the analysis of nonequilibrium work-trajectories, we measure an interaction free energy that scales linearly with 3.0-3.4 kBT per leucine. In good agreement, simulations indicate a similar trend with 2.1 kBT per leucine, while also providing a detailed molecular view into HIs. This approach potentially provides a roadmap for directly extracting qualitative and quantitative single-molecule interactions at solid/liquid interfaces in a wide range of fields, including interactions at biointerfaces and adhesive interactions in industrial applications.

  18. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange

  19. Molecular dynamics of silicon indentation

    NASA Astrophysics Data System (ADS)

    Kallman, J. S.; Hoover, W. G.; Hoover, C. G.; de Groot, A. J.; Lee, S. M.; Wooten, F.

    1993-04-01

    We use nonequilibrium molecular dynamics to simulate the elastic-plastic deformation of silicon under tetrahedral nanometer-sized indentors. The results are described in terms of a rate-dependent and temperature-dependent phenomenological yield strength. We follow the structural change during indentation with a computer technique that allows us to model the dynamic simulation of diffraction patterns.

  20. Molecular dynamics simulations of ballistic He penetration into W fuzz

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Nordlund, K.; Morgan, T. W.; Westerhof, E.; Thijsse, B. J.; van de Sanden, M. C. M.

    2016-12-01

    Results are presented of large-scale Molecular Dynamics simulations of low-energy He bombardment of W nanorods, or so-called ‘fuzz’ structures. The goal of these simulations is to see if ballistic He penetration through W fuzz offers a more realistic scenario for how He moves through fuzz layers than He diffusion through fuzz nanorods. Instead of trying to grow a fuzz layer starting from a flat piece of bulk W, a new approach of creating a fully formed fuzz structure 0.43 µm thick out of ellipsoidal pieces of W is employed. Lack of detailed experimental knowledge of the 3D structure of fuzz is dealt with by simulating He bombardment on five different structures of 15 vol% W and determining the variation in He penetration for each case. The results show that by far the most important factor determining He penetration is the amount of open channels through which He ions can travel unimpeded. For a more or less even W density distribution He penetration into fuzz falls off exponentially with distance and can thus be described by a ‘half depth’. In a 15 vol% fuzz structure, the half depth can reach 0.18 µm. In the far sparser fuzz structures that were recently reported, the half depth might be 1 µm or more. This means that ballistic He penetration offers a more likely scenario than He diffusion through nanorods for how He moves through fuzz and may provide an adequate explanation for how He penetrates through the thickest fuzz layers reported so far. Furthermore, the exponential decrease in penetration with depth would follow a logarithmic dependence on fluence which is compatible with experiments. A comparison of these results and molecular dynamics calculations carried out in the recoil interaction approximation shows that results for W fuzz are qualitatively very different from conventional stopping power calculations on W with a similarly low but homogeneous density distribution.

  1. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nandi, Prithwish K.; Futera, Zdenek; English, Niall J.

    2016-11-01

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ˜220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  2. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics.

    PubMed

    Nandi, Prithwish K; Futera, Zdenek; English, Niall J

    2016-11-28

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ∼220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  3. Molecular dynamics simulation of pervaporation in zeolite membranes

    NASA Astrophysics Data System (ADS)

    Jia, W.; Murad, S.

    The pervaporation separation of liquid mixtures of water/ethanol and water/methanol using three zeolite (Silicalite, NaA and Chabazite) membranes has been examined using the method of molecular dynamics. The main goal of this study was to identify intermolecular interactions between water, methanol, ethanol and the membrane surface that play a critical role in the separations. This would then allow better membranes to be designed more efficiently and systematically than the trial-and-error procedures often being used. Our simulations correctly exhibited all the qualitative experimental observations for these systems, including the hydrophobic or hydrophilic behaviour of zeolite membranes. The simulations showed that, for Silicalite zeolite, the separation is strongly influenced by the selective adsorption of ethanol. The separation factor, as a consequence, increases almost exponentially as the ethanol composition decreases. For ethanol dehydration in NaA and Chabazite, pore size was found to play a very important role in the separation; very high separation factors were therefore possible. Simulations were also used to investigate the effect of pore structure, feed compositions and operating conditions on the pervaporation efficiency. Finally, our simulations also demonstrated that molecular simulations could serve as a useful screening tool to determine the suitability of a membrane for potential pervaporation separation applications. Simulations can cost only a small fraction of an experiment, and can therefore be used to design experiments most likely to be successful.

  4. Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Levine, Zachary Alan

    Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant

  5. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    PubMed

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  6. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    PubMed Central

    Mugnai, Mauro L.; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide. PMID:25573551

  7. Molecular dynamics simulations of cluster nucleation during inert gas condensation.

    PubMed

    Krasnochtchekov, Pavel; Averback, R S

    2005-01-22

    Molecular dynamics simulations of vapor-phase nucleation of germanium in an argon atmosphere were performed and a unexpected channel of nucleation was observed. This channel, vapor-induced cluster splitting, is important for more refractory materials since the critical nucleus size can fall below the size of a dimer. As opposed to conventional direct vapor nucleation of the dimer, which occurs by three-body collisions, cluster-splitting nucleation is a second-order reaction. The most important cluster-splitting reaction is the collision of a vapor atom and a trimer that leads to the formation of two dimers. The importance of the cluster-splitting nucleation channel relative to the direct vapor nucleation channel is observed to increase with decreasing vapor density and increasing ratio of vapor to carrier gas atoms.

  8. Molecular Dynamics Simulation of Energetic Uranium Recoil Damage in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-10-11

    Defect production and amorphization due to energetic uranium recoils in zircon (ZrSiO4), which is a promising ceramic nuclear waste form, is studied using molecular dynamics simulations with a partial charge model. An algorithm that distinguishes between undamaged crystal, crystalline defects and amorphous regions is used to develop a fundamental understanding of the primary damage state. The amorphous cascade core is separated from the surrounding crystal by a defect-rich region. Small, chemically inhomogeneous amorphous clusters are also produced around the core. The amorphous regions consist of under-coordinated Zr and polymerized Si leading to amorphization and phase separation on a nanometer scale into Zr- and Si-rich regions. This separation could play an important role in the experimentally observed formation of nanoscale ZrO2 in ZrSiO4 irradiated at elevated temperatures.

  9. "Like-charge attraction" between anionic polyelectrolytes: molecular dynamics simulations.

    PubMed

    Molnar, Ferenc; Rieger, Jens

    2005-01-18

    "Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging.

  10. Molecular Dynamics Simulation of FCC Metallic Nanowires: A Review

    NASA Astrophysics Data System (ADS)

    Lao, Jijun; Naghdi Tam, Mehdi; Pinisetty, Dinesh; Gupta, Nikhil

    2013-02-01

    Molecular dynamic simulation studies are reviewed to understand the influence of strain rate, temperature, and cross-section size on the mechanical properties of face-centered cubic (FCC) metallic nanowires (MNWs). The yield stress of FCC MNWs is found to be 100 times higher than that of the corresponding bulk metals. The yield strain and fracture stress of MNWs are also found to be significantly higher compared with those of the bulk metals. The influence of deformation mechanisms (slip and twinning) on the mechanical properties of FCC MNWs is discussed. FCC MNWs are found to exhibit novel structural reorientation, phase transformation, elastic recovery, pseudoelasticity, and shape memory effect. MNWs with body-centered cubic (BCC) and hexagonal closed-packed crystal structures are compared with the FCC MNWs. Pseudoelasticity was also observed in BCC MNWs similar to that of FCC MNWs. Dense nano-twin arrays were found in Mg nanowires despite the high twin boundary energy.

  11. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation

    SciTech Connect

    Keblinski, P.; Phillpot, S.R.; Wolf, D.; Gleiter, H.

    1996-08-01

    A recent molecular dynamics simulation method for growth of fully dense nanocrystalline materials crystallized from melt was used with the Stillinger-Weber three-body potential to synthesize nanocrystalline Si with a grain size up to 75{Angstrom}. Structures of the highly constrained grain boundaries (GBs), triple lines, and point grain junctions were found to be highly disordered and similar to the structure of amorphous Si. These and earlier results for fcc metals suggest that a nanocrystalline microstructure may be viewed as a two-phase system, namely an ordered crystalline phase in the grain interiors connected by an amorphous, intergranular, glue-like phase. Analysis of the structures of bicrystalline GBs in the same materials reveals the presence of an amorphous intergranular equilibrium phase only in the high-energy but not the low-energy GBs, suggesting that only high-energy boundaries are present in nanocrystalline microstructures.

  12. Clustering effects in ionic polymers: Molecular dynamics simulations

    SciTech Connect

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.

  13. Protein unfolding pathways explored through molecular dynamics simulations.

    PubMed

    Daggett, V; Levitt, M

    1993-07-20

    Herein we describe the results of molecular dynamics simulations of the bovine pancreatic trypsin inhibitor (BPTI) in solution at a variety of temperatures both with and without disulfide bonds. The reduced form of the protein unfolded at high temperature to an ensemble of conformations with all the properties of the molten globule state. In this account we outline the structural details of the actual unfolding process between the native and molten globule states. The first steps of unfolding involved expansion of the protein, which disrupted packing interactions. The solvent-accessible surface area also quickly increased. The unfolding was localized mostly to the turn and loop regions of the molecule, while leaving the secondary structure intact. Then, there was more gradual unfolding of the secondary structure and non-native turns became prevalent. This same trajectory was continued and more drastic unfolding occurred that resulted in a relatively compact state devoid of stable secondary structure.

  14. Coarse-graining RNA nanostructures for molecular dynamics simulations

    PubMed Central

    Paliy, Maxim; Melnik, Roderick; Shapiro, Bruce A

    2013-01-01

    A series of coarse-grained models have been developed for study of the molecular dynamics of RNA nanostructures. The models in the series have one to three beads per nucleotide and include different amounts of detailed structural information. Such a treatment allows us to reach, for systems of thousands of nucleotides, a time scale of microseconds (i.e. by three orders of magnitude longer than in full atomistic modeling) and thus to enable simulations of large RNA polymers in the context of bionanotechnology. We find that the three-beads-per-nucleotide models, described by a set of just a few universal parameters, are able to describe different RNA conformations and are comparable in structural precision to the models where detailed values of the backbone P-C4′ dihedrals taken from a reference structure are included. These findings are discussed in the context of RNA conformation classes. PMID:20577037

  15. Diffusion and structure in silica liquid: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hung, P. K.; Hong, N. V.; Vinh, L. T.

    2007-11-01

    Diffusion and structure in liquid silica under pressure have been investigated by a molecular dynamics model of 999 atoms with the inter-atomic potentials of van Beest, Kramer and van Santen. The simulation reveals that silica liquid is composed of the species SiO4, SiO5 and SiO6 with a fraction dependent on pressure. The density as well as volume of voids can be expressed as a linear function of the fraction of those species. Low-density liquid is mainly constructed of SiO4 and has a large number of O- and Si-voids and a large void tube. This tube contains most O-voids and is spread over the whole system. The anomalous diffusion behavior is observed and discussed.

  16. Molecular dynamics simulation of binary mixtures of molten alkali carbonates

    NASA Astrophysics Data System (ADS)

    Tissen, J. T. W. M.; Janssen, G. J. M.; van der Eerden, P.

    Molecular dynamics simulations have been performed on three binary eutectic mixtures: Li/NaCO3 (53-47 mol%), Li/KCO3 (62-38 mol%) and KCO3 (43-57 mol%) at 1200 K. The short-range order in the mixtures differs in many respects from the short-range order found in the pure components. The Li+ ions are coordinated by a smaller number of oxygen atoms, the Na+ and K+ ions by a larger number. The Li+ ions become trapped in their first coordination shell, leaving relatively more space for the larger atoms. This feature is the cause of the often-observed non-additivity of the dynamic properties of these mixtures, such as the Chemla effect in Li/KCO3, the large negative deviations from linear additivity for the electrical conductivity, as well as the dependence of the self-diffusion coefficient of the cations on the Li2CO3 content.

  17. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  18. A random rotor molecule: Vibrational analysis and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.

    2012-12-01

    Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4″″-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2″-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.

  19. Molecular dynamics simulation of annealed ZnO surfaces

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  20. Clustering effects in ionic polymers: Molecular dynamics simulations

    DOE PAGES

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less

  1. Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin.

    PubMed Central

    Leenders, R; van Gunsteren, W F; Berendsen, H J; Visser, A J

    1994-01-01

    Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin in water have been performed in a sphere of 1.4-nm radius surrounded by a restrained shell of 0.8 nm. The flavin binding site, comprising the active site of the flavodoxin, was in the center of the sphere. No explicit information about protein-bound water molecules was included. An analysis is made of the motional characteristics of residues located in the active site. Positional fluctuations, hydrogen bonding patterns, dihedral angle transitions, solvent behavior, and time-dependent correlations are examined. The 375-ps trajectories show that both oxidized and reduced protein-bound flavins are immobilized within the protein matrix, in agreement with earlier obtained time-resolved fluorescence anisotropy data. The calculated time-correlated behavior of the tryptophan residues reveals significant picosecond mobility of the tryptophan side chain located close to the reduced isoalloxazine part of the flavin. PMID:8011895

  2. Molecular-dynamics simulation of two-dimensional thermophoresis

    PubMed

    Paredes; Idler; Hasmy; Castells; Botet

    2000-11-01

    A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.

  3. Molecular dynamics computer simulation of permeation in solids

    SciTech Connect

    Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.; Ford, D.M.

    1997-12-31

    In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8 {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.

  4. Molecular dynamics simulations of lysozyme in water/sugar solutions

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2008-04-01

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  5. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields.

    PubMed

    Trinh, Thuat T; Vlugt, Thijs J H; Kjelstrup, Signe

    2014-10-07

    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

  6. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields

    NASA Astrophysics Data System (ADS)

    Trinh, Thuat T.; Vlugt, Thijs J. H.; Kjelstrup, Signe

    2014-10-01

    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

  7. Systematic Coarse-graining of Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Voth, Gregory

    2015-03-01

    Coarse-grained (CG) models can provide a computationally efficient means to study biomolecular and other soft matter processes involving large numbers of atoms that are correlated over distance scales of many covalent bond lengths and at long time scales. Systematic variational coarse-graining methods based on information from molecular dynamics simulations of finer-grained (e.g., all-atom) models provide attractive tools for the systematic development of CG models. Examples include the multiscale coarse-graining (MS-CG) and relative entropy minimization methods, and results from the former theory will be presented in this talk. In addition, a new approach will be presented that is appropriate for the ``ultra coarse-grained'' (UCG) regime, e.g., at a coarse-grained resolution that is much coarser than one amino acid residue per CG particle in a protein. At this level of coarse-graining, one is faced with the possible existence of multiple metastable states ``within'' the CG sites for a given UCG model configuration. I will therefore describe newer systematic variational UCG methods specifically designed to CG entire protein domains and subdomains into single effective CG particles. This is accomplished by augmenting existing effective particle CG schemes to allow for discrete state transitions and configuration-dependent resolution. Additionally, certain aspects of this work connect back to single-state force matching and open up new avenues for method development. This general body of theory and algorithm provides a formal statistical mechanical basis for the coarse-graining of fine-grained molecular dynamics simulation data at various levels of CG resolution. Representative applications will be described as time allows.

  8. Continuum and molecular-dynamics simulation of nanodroplet collisions.

    PubMed

    Bardia, Raunak; Liang, Zhi; Keblinski, Pawel; Trujillo, Mario F

    2016-05-01

    The extent to which the continuum treatment holds in binary droplet collisions is examined in the present work by using a continuum-based implicit surface capturing strategy (volume-of-fluid coupled to Navier-Stokes) and a molecular dynamics methodology. The droplet pairs are arranged in a head-on-collision configuration with an initial separation distance of 5.3 nm and a velocity of 3 ms^{-1}. The size of droplets ranges from 10-50 nm. Inspecting the results, the collision process can be described as consisting of two periods: a preimpact phase that ends with the initial contact of both droplets, and a postimpact phase characterized by the merging, deformation, and coalescence of the droplets. The largest difference between the continuum and molecular dynamics (MD) predictions is observed in the preimpact period, where the continuum-based viscous and pressure drag forces significantly overestimate the MD predictions. Due to large value of Knudsen number in the gas (Kn_{gas}=1.972), this behavior is expected. Besides the differences between continuum and MD, it is also observed that the continuum simulations do not converge for the set of grid sizes considered. This is shown to be directly related to the initial velocity profile and the minute size of the nanodroplets. For instance, for micrometer-size droplets, this numerical sensitivity is not an issue. During the postimpact period, both MD and continuum-based simulations are strikingly similar, with only a moderate difference in the peak kinetic energy recorded during the collision process. With values for the Knudsen number in the liquid (Kn_{liquid}=0.01 for D=36nm) much closer to the continuum regime, this behavior is expected. The 50 nm droplet case is sufficiently large to be predicted reasonably well with the continuum treatment. However, for droplets smaller than approximately 36 nm, the departure from continuum behavior becomes noticeably pronounced, and becomes drastically different for the 10 nm

  9. Molecular Dynamics Simulations of Hugoniot Relations for Poly[methyl methacrylate

    DTIC Science & Technology

    2011-11-01

    Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] by Tanya L. Chantawansri, Edward F. C. Byrd, Betsy M. Rice...Ground, MD 21005-5066 ARL-TR-5819 November 2011 Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ...4. TITLE AND SUBTITLE Molecular Dynamics Simulations of Hugoniot Relations for Poly[ methyl methacrylate ] 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  10. Thermostat artifacts in replica exchange molecular dynamics simulations.

    PubMed

    Rosta, Edina; Buchete, Nicolae-Viorel; Hummer, Gerhard

    2009-01-01

    We explore the effects of thermostats in replica exchange molecular dynamics (REMD) simulations. For thermostats that do not produce a canonical ensemble, REMD simulations are found to distort the configuration-space distributions. For bulk water, we find small deviations of the average potential energies, the buildup of tails in the potential energy distributions, and artificial correlations between the energies at different temperatures. If a solute is present, as in protein folding simulations, its conformational equilibrium can be altered. In REMD simulations of a helix-forming peptide with a weak-coupling (Berendsen) thermostat, we find that the folded state is overpopulated by about 10% at low temperatures, and underpopulated at high temperatures. As a consequence, the enthalpy of folding deviates by almost 3 kcal/mol from the correct value. The reason for this population shift is that non-canonical ensembles with narrowed potential energy fluctuations artificially bias toward replica exchanges between low-energy folded structures at the high temperature and high-energy unfolded structures at the low temperature. We conclude that REMD simulations should only be performed in conjunction with thermostats that produce a canonical ensemble.

  11. Acoustic properties in glycerol glass-former: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Remi; Pezeril, Thomas; Institut des Materiaux et Molecules du Mans Team

    2013-03-01

    Study of high-frequency collective dynamics around TeraHertz region in glass former has been a subject of intense investigations and debates over the past decade. In particular, the presence of the Boson peak characteristic of glassy material and its relation to other glass anomalies. Recently, experiments and simulations have underlined possible relation between Boson peak and transverse acoustic modes in glassy materials. In particular, simulations of simple Lennard Jones glass former have shown a relation between Ioffe-Regel criterion in transverse modes and Boson peak. We present here molecular dynamics simulation on high frequency dynamics of glycerol. In order to study mesoscopic order (0.5-5nm-1), we made use of large simulation box containing 80000 atoms. Analysis of collective longitudinal and transverse acoustic modes shows striking similarities in comparison with simulation of Lennard-Jones particles. In particular, it seems that a connection may exist between Ioffe-Regel criterion for transverse modes and Bose Peak frequency. However,in our case we show that this connection may be related with structural correlation arising from molecular clusters.

  12. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.

    PubMed

    Tadano, T; Gohda, Y; Tsuneyuki, S

    2014-06-04

    A systematic method to calculate anharmonic force constants of crystals is presented. The method employs the direct-method approach, where anharmonic force constants are extracted from the trajectory of first-principles molecular dynamics simulations at high temperature. The method is applied to Si where accurate cubic and quartic force constants are obtained. We observe that higher-order correction is crucial to obtain accurate force constants from the trajectory with large atomic displacements. The calculated harmonic and anharmonic force constants are, then, combined with the Boltzmann transport equation (BTE) and non-equilibrium molecular dynamics (NEMD) methods in calculating the thermal conductivity. The BTE approach successfully predicts the lattice thermal conductivity of bulk Si, whereas NEMD shows considerable underestimates. To evaluate the linear extrapolation method employed in NEMD to estimate bulk values, we analyze the size dependence in NEMD based on BTE calculations. We observe strong nonlinearity in the size dependence of NEMD in Si, which can be ascribed to acoustic phonons having long mean-free-paths and carrying considerable heat. Subsequently, we also apply the whole method to a thermoelectric material Mg2Si and demonstrate the reliability of the NEMD method for systems with low thermal conductivities.

  13. Molecular dynamics simulations: Parameter evaluation, application and development

    NASA Astrophysics Data System (ADS)

    Zhou, Jin

    Molecular dynamics (MD) simulation is a theoretical technique for investigating the physical properties of a wide variety of molecules. This dissertation contains my studies on three important parts of the MD simulation: evaluation of parameters in empirical energy functions widely used in MD simulations, application of MD simulation on experimentally interested biological molecules and development of new methods for constraint dynamics simulations. All the work in this thesis made use of CHARMM as an MD simulation tool. The MD simulation uses empirical energy functions parameterized by a set of parameters. These parameters play an important role in the quality of the simulations. I evaluated nine parameter sets from Harvard University and Molecular Simulations, Inc. for protein simulations by the MD simulations of hydrated form of carboxy- myoglobin and interleukin-1/beta, which are rich in two typical protein structure motifs, helix and β sheet structures respectively. It is found that some sets are good at representing helical structure proteins while others are good at β sheet proteins. But all of them need improvement on representing motions at low temperature. Experimental evidence indicates that the 1A coiled-coil domains of the Intermediate Filament (IF) proteins consisting of coiled human keratins 1 and 10 (K1 and K10) are 'hot spots' for substitutional mutations. Some of these mutations are correlated to the human skin diseases-epidermolytic hyperkeratiosis (EH) and epidermolysis bullosa simplex (EBS). The MD simulation technique is used here for the first time to model and simulate these proteins to elucidate the molecular-level effects of these mutations. Lacking the experimental crystal structures, the initial structure of 1A domain of the wild type Intermediate Filament protein and its mutants were modeled from scratch to reproduce the well- known properties of the proteins of this kind followed by identical MD simulations. The important result is

  14. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  15. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD.

  16. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  17. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over

  18. Molecular Dynamics Simulation of Membranes and a Transmembrane Helix

    NASA Astrophysics Data System (ADS)

    Duong, Tap Ha; Mehler, Ernest L.; Weinstein, Harel

    1999-05-01

    Three molecular dynamics (MD) simulations of 1.5-ns length were carried out on fully hydrated patches of dimyristoyl phosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. The simulations were performed using different ensembles and electrostatic conditions: a microcanonical ensemble or constant pressure-temperature ensemble, with or without truncated electrostatic interactions. Calculated properties of the membrane patches from the three different protocols were compared to available data from experiments. These data include the resulting overall geometrical dimensions, the order characteristics of the lipid hydrocarbon chains, as well as various measures of the conformations of the polar head groups. The comparisons indicate that the simulation carried out within the microcanonical ensemble with truncated electrostatic interactions yielded results closest to the experimental data, provided that the initial equilibration phase preceding the production run was sufficiently long. The effects of embedding a non-ideal helical protein domain in the membrane patch were studied with the same MD protocols. This simulation was carried out for 2.5 ns. The protein domain corresponds to the seventh transmembrane segment (TMS7) of the human serotonin 5HT 2Areceptor. The peptide is composed of two α-helical segments linked by a hinge domain around a perturbing Asn-Pro motif that produces at the end of the simulation a kink angle of nearly 80° between the two helices. Several aspects of the TMS7 structure, such as the bending angle, backbone Φ and Ψ torsion angles, the intramolecular hydrogen bonds, and the overall conformation, were found to be very similar to those determined by NMR for the corresponding transmembrane segment of the tachykinin NK-1 receptor. In general, the simulations were found to yield structural and dynamic characteristics that are in good agreement with experiment. These findings support the application of simulation methods to the study

  19. Molecular dynamics simulations of He bubble nucleation at grain boundaries.

    PubMed

    Zhang, Yongfeng; Millett, Paul C; Tonks, Michael; Zhang, Liangzhe; Biner, Bulent

    2012-08-01

    The nucleation behavior of He bubbles in single-crystal (sc) and nano-grain body-centered-cubic (bcc) Mo is simulated using molecular dynamics (MD) simulations, focusing on the effects of the grain boundary (GB) structure. In sc Mo, the nucleation behavior of He bubbles depends on irradiation conditions. He bubbles nucleate by either clustering of He atoms with pre-existing vacancies or self-interstitial-atom (SIA) punching without initial vacancies. In nano-grain Mo, strong precipitation of He at the GBs is observed, and the density, size and spatial distribution of He bubbles vary with the GB structure. The corresponding He bubble density is higher in nano-grain Mo than that in sc Mo and the average bubble size is smaller. In the GB plane, He bubbles distribute along the dislocation cores for GBs consisting of GB dislocations and randomly for those without distinguishable dislocation structures. The simulation results in nano-grain Mo are in agreement with previous experiments in metal nano-layers, and they are further explained by the effect of excess volume associated with the GBs.

  20. Molecular dynamics simulation of thionated hen egg white lysozyme.

    PubMed

    Huang, Wei; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-08-01

    Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 3(10)-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom-atom distance bounds and (3)J((H)(N)(H)(α))-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited.

  1. Molecular dynamics simulation of thionated hen egg white lysozyme

    PubMed Central

    Huang, Wei; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-01-01

    Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 310-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom–atom distance bounds and 3JHNHα-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited. PMID:22653637

  2. Molecular dynamics simulation of liquid water: Hybrid density functionals

    SciTech Connect

    Todorova, T; Seitsonen, A; Hutter, J; Kuo, W; Mundy, C

    2005-09-12

    The structure, dynamical and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta functional, four gradient corrected functionals, the local density and Hartree-Fock approximation. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and under-structured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller averaged numbers of hydrogen bonds and similar hydrogen bond populations as pure density functionals. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than from the corresponding pure density functionals.

  3. Molecular Dynamics Simulations of Ion Equilibration in Ultracold Neutral Plasmas

    NASA Astrophysics Data System (ADS)

    Maksimovic, Nikola; Langin, Thomas; Strickler, Trevor; Killian, Thomas

    2015-11-01

    Understanding transport and equilibration in strongly coupled plasmas is important for modeling plasmas found in extreme environments like inertial confinement fusion plasmas and interiors of gas-giant planets. We use molecular dynamics simulations of Yukawa one component plasmas under periodic boundary conditions to study the evolution of strongly coupled ultracold neutral plasmas (UNPs) at early times. Simulations provide access to observable quantities in strongly coupled plasmas, namely correlation functions. Experimentally, the average velocity of an ion subset with a skewed velocity profile has been used to measure velocity autocorrelation functions and provide access to diffusion coefficients and other transport processes in UNPs. Using the simulation, we verify the experimental measurements of average velocities of ion subsets in UNPs and confirm their agreement with the velocity autocorrelation function. Finally, we examine the collective mode behavior of the ions during their equilibration phase by calculating the longitudinal current correlation function at various times during equilibration. This allows us to study the collective mode coupling behavior of the equilibration of ions in UNPs and its dependence on screening parameter.

  4. Molecular dynamics simulation of graphene bombardment with Si ion

    NASA Astrophysics Data System (ADS)

    Qin, Xin-Mao; Gao, Ting-Hong; Yan, Wan-Jun; Guo, Xiao-Tian; Xie, Quan

    2014-03-01

    Molecular dynamics simulations with Tersoff-Ziegler-Biersack-Littmark (Tersoff-ZBL) potential and adaptive intermolecular reactive empirical bond order (AIREBO) potential are performed to study the effect of irradiated graphene with silicon ion at several positions and energy levels of 0.1-1000 eV. The simulations reveal four processes: absorption, replacement, transmission and damage. At energies below 110 eV, the dominant process is absorption. For atom in group (a), the process that takes place is replacement, in which the silicon ion removes one carbon atom and occupies the place of the eliminated atom at the incident energy of 72-370 eV. Transmission is present at energies above 100 eV for atom in group (d). Damage is a very important process in current bombardment, and there are four types of defects: single vacancy, replacement-single vacancy, double vacancy and nanopore. The simulations provide a fundamental understanding of the silicon bombardment of graphene, and the parameters required to develop graphene-based devices by controlling defect formation.

  5. Energy conservation in molecular dynamics simulations of classical systems.

    PubMed

    Toxvaerd, Søren; Heilmann, Ole J; Dyre, Jeppe C

    2012-06-14

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete "Verlet" algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence of a "shadow Hamiltonian" H [S. Toxvaerd, Phys. Rev. E 50, 2271 (1994)], i.e., a Hamiltonian close to the original H with the property that the discrete positions of the Verlet algorithm for H lie on the analytic trajectories of H. The shadow Hamiltonian can be obtained from H by an asymptotic expansion in the time step length. Here we use the first non-trivial term in this expansion to obtain an improved estimate of the discrete values of the energy. The investigation is performed for a representative system with Lennard-Jones pair interactions. The simulations show that inclusion of this term reduces the standard deviation of the energy fluctuations by a factor of 100 for typical values of the time step length. Simulations further show that the energy is conserved for at least one hundred million time steps provided the potential and its first four derivatives are continuous at the cutoff. Finally, we show analytically as well as numerically that energy conservation is not sensitive to round-off errors.

  6. A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E.

    2009-12-10

    A novel combined Event-Driven/Time-Driven (ED/TD) algorithm to speed-up the Molecular Dynamics simulation of rarefied gases using realistic spherically symmetric soft potentials is presented. Due to the low density regime, the proposed method correctly identifies the time that must elapse before the next interaction occurs, similarly to Event-Driven Molecular Dynamics. However, each interaction is treated using Time-Driven Molecular Dynamics, thereby integrating Newton's Second Law using the sufficiently small time step needed to correctly resolve the atomic motion. Although infrequent, many-body interactions are also accounted for with a small approximation. The combined ED/TD method is shown to correctly reproduce translational relaxation in argon, described using the Lennard-Jones potential. For densities between {rho}=10{sup -4}kg/m{sup 3} and {rho}=10{sup -1}kg/m{sup 3}, comparisons with kinetic theory, Direct Simulation Monte Carlo, and pure Time-Driven Molecular Dynamics demonstrate that the ED/TD algorithm correctly reproduces the proper collision rates and the evolution toward thermal equilibrium. Finally, the combined ED/TD algorithm is applied to the simulation of a Mach 9 shock wave in rarefied argon. Density and temperature profiles as well as molecular velocity distributions accurately match DSMC results, and the shock thickness is within the experimental uncertainty. For the problems considered, the ED/TD algorithm ranged from several hundred to several thousand times faster than conventional Time-Driven MD. Moreover, the force calculation to integrate the molecular trajectories is found to contribute a negligible amount to the overall ED/TD simulation time. Therefore, this method could pave the way for the application of much more refined and expensive interatomic potentials, either classical or first-principles, to Molecular Dynamics simulations of shock waves in rarefied gases, involving vibrational nonequilibrium and chemical reactivity.

  7. Hybrid molecular dynamics simulation for plasma induced damage analysis

    NASA Astrophysics Data System (ADS)

    Matsukuma, Masaaki

    2016-09-01

    In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam

  8. Molecular dynamics simulation of silicate glasses and their surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Xianglong

    1999-12-01

    The bulk and surface structures of vitreous silica and silicate glasses have been modeled using the molecular dynamics technique. An extensive preliminary study, on the influences of different potential models and of different simulation approaches on the final bulk and surface structures, concludes that good result can be obtained using the constant volume simulation with a modified pair-wise potential from van Beest and coworkers, together with alkali-oxygen potential models developed in this study. Glass structures with the reliability factors, Rchi of 7.2% for vitreous silica and 5.6% for sodium silicate have been achieved. The environments of O, Si and Na in silicate glasses have been thoroughly examined. Considerable similarities in local structures exist between crystalline and the simulated glass structures. It is found that our simulated glasses more resemble high-pressured experimental glasses, which is implied by the existence of fivefold silicon species. Based on bulk structures studied, glass surfaces were created by a fracture process. It is speculated that surface defect concentrations depend on the topological characteristics of the network structure, and are essential for the viability of surfaces. Analysis of local structures for difference species implies that the sodium silicate surfaces resemble more the Na-rich regions in the bulk structures. An efficient algorithm for finding primitive rings in a topological network has been developed. Analysis using this algorithm shows that reconstruction of Na-rich regions occurs on extending simulation size, demonstrating simulation size influence on modeled glass structures. Finally, our detailed analysis of Si-O-Si bond angle distributions demonstrates that vitreous silica glass has a broader Si-O-Si BAD, whilst sodium silicate glasses favor narrower distributions.

  9. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  10. Molecular Dynamics Simulations of Diffusion in a Silica Melt

    NASA Astrophysics Data System (ADS)

    Gemmell, A.; Fraser, D.; Refson, K.

    2003-12-01

    Computer modelling of silicate melts enables the study of pressure-temperature conditions not easily obtainable by traditional experimentation (e.g. 1). Diffusion in melts under various conditions is critical to our understanding of a variety of processes such as melt crystallisation, magma mixing and the behaviour of trace elements during magma ascent that underpins the field of igneous petrogenesis. It can also provide information on melt structure via diffusion mechanisms and their activation energies. In the present paper, the magnitude and mechanism of diffusion of silicon and oxygen in molten silica has been investigated by molecular dynamics using a modified BKS potential (2). A range of melt temperatures and pressures were studied with a view to understanding the relationship between temperature, pressure, diffusion and melt structure. At each P-T point studied, the system was equilibrated for between 1 million and 40 million 1fs steps depending on the conditions, with data collection over the same time range. The potential was adjusted to overcome problems with instability in the particle velocities at high temperature. The simulations were run at the Oxford University Supercomputing centre, UK. Systems of 144, 288, 576 and 1152 particles were investigated. In addition, two different sets of periodic boundary conditions were used - cubic and truncated octahedral. The latter was found to provide a better ratio of simulated time to compute time. The present data extend the range of data available and indicate a pronounced non-linearity in the temperature dependence of diffusion, as shown by plots of log10D with 1/T. The second derivative is greatest around 3500K. At least two different diffusion mechanisms may operate at lower and higher temperatures with differing activation energies. Comparison with previous molecular dynamics data shows broad agreement with most studies. Although the data presented do include some low temperature runs, comparison with

  11. The Art of Molecular Dynamics Simulation (by D. C. Rapaport)

    NASA Astrophysics Data System (ADS)

    Molner, Stephen P.

    1999-02-01

    Cambridge University Press: New York, 1996. 400 pp. ISBN 0 521 44561 2. $74.95. This book describes the extremely powerful techniques of molecular dynamics simulation. The techniques involve solving the classical many-body problems in contexts relevant to the study of matter at the atomic level. The method allows the prediction of static and dynamics properties of substances directly from the underlying interactions between molecules. This is, of course, a very broad subject and the author has adopted a dual approach in that the text is partly tutorial and also contains a large number of computer programs for practical use. Rapaport has adopted the attitude of trying the simplest method first. Atoms are modeled as point particles interacting through point potentials. Molecules are represented by atoms with orientation dependent forces, or as extended structures each containing several interaction sites. The molecules may be rigid, flexible, or somewhere in between, and if there are internal degrees of freedom there will be internal forces as well. The intent of the book is not to discuss the design of molecular models, but rather to make use of existing models, and from a pedagogical viewpoint the simpler the model the better. The aim of the book is to demonstrate the general methodology of molecular dynamics simulation by example, not to review the large body of literature covering the many different kinds of models developed for specific applications. The text is partly tutorial, but also contains a large number of computer programs for practical use. This volume will serve as an introduction to the subject for beginners and as a reference manual for the more experienced practitioner. The material covers a wide range of practical methods and real applications and is organized as a series of case studies. The typical case study includes a summary of the theoretical background used for the formulation of the computational approach. That is described by either a

  12. Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Salsbury, Freddie R.

    2015-01-01

    ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.

  13. Molecular dynamics simulations of polymer crystallization via self-seeding

    NASA Astrophysics Data System (ADS)

    Luo, Chuanfu; Sommer, Jens-Uwe

    2010-03-01

    We use large scale molecular dynamics (MD) to simulate the processes of polymer crystallization with a coarse-grained model. In total we are able to simulate 1000 polymer chains made of 1000 monomers each, a system large enough to compare to experimental relevant, entangled melts. It is found that some micro crystalline domains (MCDs) can survive slightly above the apparent melting temperature after a consistent cooling and reheating cycle. We chose the stablest MCD as a baby seed and let it grow at a constant quenched temperature. A single lamella can be formed via this self-seeding process. We observe the growth pathway and analyze the chain dynamics especially at the growth front.[4pt] [1] C. Luo and J. Sommer, Comp Phys. Comm. 180, 1382 (2009)[0pt] [2] C. Luo and J. Sommer, Phys. Rev. Lett. 102, 147801 (2009)[0pt] [3] J-J. Xu, Y. Ma, W.B. Hu, M. Rehahn and G. Reiter, Nature Materials 8, 348 (2009)

  14. Molecular dynamics simulation of dipalmitoylphosphatidylcholine membrane with cholesterol sulfate.

    PubMed Central

    Smondyrev, A M; Berkowitz, M L

    2000-01-01

    Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments. PMID:10733950

  15. The collapsing bubble in a liquid by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Heyes, D. M.; Powles, J. G.

    Molecular dynamics simulations have been made of a collapsing bubble or cavity in a simple liquid. Simulations of a Lennard-Jones liquid reveal that the collapsing process takes place in a series of stages. First, the 'hottest' molecules from the high kinetic energy tail in the Maxwell-Boltzmann distribution diffuse into the empty cavity. This is followed by a gradual filling in of the cavity until the density in the centre is a little lower than that of the bulk liquid. The system eventually reaches a final new equilibrium liquid state through a subsequent slower equilibration phase. The bubble fills in an oscillatory manner, by partly filling in, and then partially emptying, and so on, with ever decreasing amplitude towards the final uniform liquid state. These density oscillations are more obvious in systems with a larger bubble. Similar oscillations are observed in the kinetic energy of the molecules at selected radii from the centre of the initial bubble. The maximum temperature occurs typically at the end of the initial fillingin stage during which the density of the core undergoes a vapour-to-liquid phase transition, the released latent heat probably contributing to the temperatures achieved in this region. The average maximum temperature found in the smallest system examined is about nine times the critical temperature, which is about 6000K for water, thus suggesting a simple mechanism for producing molecules with the sorts of kinetic energies and lifetimes required for sonoluminescence.

  16. Energetics of a heat engine: a molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Tadele, Kumneger; Tatek, Yergou B.; Bekele, Mulugeta

    2016-11-01

    We perform a classical molecular dynamics simulation study of a heat engine operating between two heat reservoirs and performing a Carnot-like cycle in a finite time over a wide range of process rates. The working substance of the heat engine is made of highly concentrated interacting Lennard-Jones particles with the aim to simulate a real gas. The piston speed and temperature ratio of the cold and hot heat reservoirs are used as control parameters whereas efficiency and power output per cycle are the physical quantities of interest. The variation of these quantities as a function of the independent parameters is studied with the objective to investigate the validity of relevant theoretical predictions. For instance, for small process rates, the linear dependence of the heat engine efficiency with temperature ratio, in agreement with theory, has been demonstrated. Finally, a unified optimization criterion is applied to determine optimum operation conditions of the engine that make the best trade-off between efficiency and power output.

  17. Self-pinning of a nanosuspension droplet: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shi, Baiou; Webb, Edmund B.

    2016-07-01

    Results are presented from molecular dynamics simulations of Pb(l) nanodroplets containing dispersed Cu nanoparticles (NPs) and spreading on solid surfaces. Three-dimensional simulations are employed throughout, but droplet spreading and pinning are reduced to two-dimensional processes by modeling cylindrical NPs in cylindrical droplets; NPs have radius RNP≅3 nm while droplets have initial R0≅42 nm . At low particle loading explored here, NPs in sufficient proximity to the initial solid-droplet interface are drawn into advancing contact lines; entrained NPs eventually bind with the underlying substrate. For relatively low advancing contact angle θadv, self-pinning on entrained NPs occurs; for higher θadv, depinning is observed. Self-pinning and depinning cases are compared and forces on NPs at the contact line are computed during a depinning event. Though significant flow in the droplet occurs in close proximity to the particle during depinning, resultant forces are relatively low. Instead, forces due to liquid atoms confined between the particles and substrate dominate the forces on NPs; that is, for the NP size studied here, forces are interface dominated. For pinning cases, a precursor wetting film advances ahead of the pinned contact line but at a significantly slower rate than for a pure droplet. This is because the precursor film is a bilayer of liquid atoms on the substrate surface but it is instead a monolayer film as it crosses over pinning particles; thus, mass delivery to the bilayer structure is impeded.

  18. Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems.

    PubMed

    Chiu, Matt; Herbordt, Martin C

    2010-11-01

    The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on the MD kernel computation: determining the short-range force between particle pairs. In one part of the study, we systematically explore the design space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine simplifications and find that some have little effect on simulation quality. In the other part, we present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a standard optimization in MD codes. There are several innovations, including a novel partitioning of the particle space, and new methods for filtering and mapping work onto the pipelines. As a consequence, highly efficient filtering can be implemented with only a small fraction of the FPGA's resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs highly competitive for MD.

  19. Orbital-Free Molecular Dynamics Simulations at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Kress, J. D.; Collins, L. A.; Ticknor, C.

    2015-06-01

    Large-scale molecular dynamics (MD) simulations in an orbital-free (OF) density-functional theory (DFT) formulation have been performed for pure and mixed species over a broad range of temperatures (T) and densities (ρ) that includes the warm, dense matter and high-energy density physics regimes. A finite-temperature Thomas-Fermi-Dirac form with a local-density exchange-correlation potential and a regularized electron-ion interaction represents the quantum nature of the electrons. In particular, we examine the efficacy of the OFMD approach as an effective bridge between Kohn-Sham DFT MD at low temperatures and simple, fully-ionized plasma models at high temperatures. Comparisons against intermediate-range constructions such as the Yukawa and one-component plasmas are also made. We examine the mass transport (diffusion, viscosity) properties of various systems, ranging from light to heavy elements, including lithium hydride (LiH), mixtures of LiH with uranium, mixtures of deuterium-tritium (DT) with plutonium and mixtures of DT with plastic (CH). The OFMD mass transport results have been fitted to simple functions of ρ and T suitable for use in hydrodynamics simulation codes.

  20. Molecular Dynamics Simulations of Fracture of Model Epoxies

    SciTech Connect

    STEVENS,MARK J.

    2000-01-18

    The failure of thermosetting polymer adhesives is an important problem which particularly lacks understanding from the molecular viewpoint. While linear elastic fracture mechanics works well for such polymers far from the crack tip, the method breaks down near the crack tip where large plastic deformation occurs and the molecular details become important [1]. Results of molecular dynamics simulations of highly crosslinked polymer networks bonded to a solid surface are presented here. Epoxies are used as the guide for modeling. The focus of the simulations is the network connectivity and the interfacial strength. In a random network, the bond stress is expected to vary, and the most stressed bonds will break first [2]. Crack initiation should occur where a cluster of highly constrained bonds exists. There is no reason to expect crack initiation to occur at the interface. The results to be presented show that the solid surface limits the interfacial bonding resulting in stressed interfacial bonds and interfacial fracture. The bonds in highly-crosslinked random networks do not become stressed as expected. The sequence of molecular structural deformations that lead to failure has been determined and found to be strongly dependent upon the network connectivity. The structure of these networks and its influence on the stress-strain behavior will be discussed in general. A set of ideal, ordered networks have been constructed to manipulate the deformation sequence to achieve different fracture modes (i.e. cohesive vs. adhesive).

  1. Post-processing interstitialcy diffusion from molecular dynamics simulations

    SciTech Connect

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-15

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.

  2. GPU-enabled molecular dynamics simulations of ankyrin kinase complex

    NASA Astrophysics Data System (ADS)

    Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran

    2014-10-01

    The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.

  3. Virtual-Wall Model for Molecular Dynamics Simulation.

    PubMed

    Qian, Lijuan; Tu, Chengxu; Bao, Fubing; Zhang, Yonghao

    2016-12-09

    A large number of molecules are usually required to model atomic walls in molecular dynamics simulations. A virtual-wall model is proposed in this study to describe fluid-wall molecular interactions, for reducing the computational time. The infinite repetition of unit cell structures within the atomic wall causes the periodicity of the force acting on a fluid molecule from the wall molecules. This force is first calculated and then stored in the memory. A fluid molecule appearing in the wall force field is subjected to the force from the wall molecules. The force can then be determined by the position of the molecule relative to the wall. This model avoids excessive calculations of fluid-wall interactions and reduces the computational time drastically. The time reduction is significant for small fluid density and channel height. The virtual-wall model is applied to Poiseuille and Couette flows, and to a flow in a channel with a rough surface. Results of the virtual and atomic wall simulations agree well with each other, thereby indicating the usefulness of the virtual-wall model. The appropriate bin size and cut-off radius in the virtual-wall model are also discussed.

  4. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations.

    PubMed

    Michaud-Agrawal, Naveen; Denning, Elizabeth J; Woolf, Thomas B; Beckstein, Oliver

    2011-07-30

    MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com.

  5. The superspreading mechanism unveiled via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Theodorakis, Panagiotis; Muller, Erich; Craster, Richard; Matar, Omar

    2014-11-01

    Superspreading, by which aqueous droplets laden with specific surfactants wet hydrophobic substrates, is an unusual and dramatic phenomenon. This is attributed to various factors, e.g., a particular surfactant geometry, Marangoni flow, unique solid-fluid interactions, however, direct evidence for a plausible mechanism for superspreading has not yet been provided. Here, we use molecular dynamics simulations of a coarse-grained model with force fields obtained from the SAFT- γ equation of state to capture the superspreading mechanism of water drops with surfactants on model surfaces. Our simulations highlight and monitor the main features of the molecular behavior that lead to the superspreading mechanism, and reproduce and explain the experimentally-observed characteristic maxima of the spreading rate of the droplet vs. surfactant concentration and wettability. We also present a comparison between superspreading and non-superspreading surfactants underlining the main morphological and energetic characteristics of superspreaders. We believe that this is the first time a plausible superspreading mechanism based on a microscopic description is proposed; this will enable the design of surfactants with enhanced spreading ability specifically tailored for applications. EPSRC Grant Number EP/J010502/1.

  6. Molecular Dynamics Simulations of Spinodal-Assisted Polymer Crystallization

    SciTech Connect

    Gee, R H; Lacevic, N M; Fried, L

    2005-07-08

    Large scale molecular dynamics simulations of bulk melts of polar (poly(vinylidene fluoride) (pVDF)) polymers are utilized to study chain conformation and ordering prior to crystallization under cooling. While the late stages of polymer crystallization have been studied in great detail, recent theoretical and experimental evidence indicates that there are important phenomena occurring in the early stages of polymer crystallization that are not understood to the same degree. When the polymer melt is quenched from a temperature above the melting temperature to the crystallization temperature, crystallization does not occur instantaneously. This initial interval without crystalline order is characterized as an induction period. It has been thought of as a nucleation period in the classical theories of polymer crystallization, but recent experiments, computer simulations, and theoretical work suggest that the initial period in polymer crystallization is assisted by a spinodal decomposition type mechanism. In this study we have achieved physically realistic length scales to study early stages of polymer ordering, and show that spinodal-assisted ordering prior to crystallization is operative in polar polymers suggesting general applicability of this process.

  7. Enhanced molecular dynamics for simulating porous interphase layers in batteries.

    SciTech Connect

    Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan

    2009-10-01

    Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.

  8. Molecular dynamics simulations of He bubble nucleation at grain boundaries

    SciTech Connect

    Yongfeng Zhang; Paul C Millett; Michael Tonks; Liangzhe Zhang; Bulent Biner

    2012-08-01

    The nucleation behavior of He bubbles in nano-grained body-centered-cubic (BCC) Mo is simulated using molecular dynamics (MD) simulations with a bicrystal model, focusing on the effect of grain boundary (GB) structure. Three types of GBs, the (100) twist S29, the ?110? symmetrical tilt (tilt angle of 10.1?), and the (112) twin boundaries, are studied as representatives of random GB, low angle GB with misfit dislocations, and special sigma boundaries. With the same amount of He, more He clusters form in nano-grained Mo with smaller average size compared to that in bulk. The effects of the GB structure originate from the excess volume in GBs. Trapping by excess volume results in reduction in mobility of He atoms, which enhances the nucleation with higher density of bubbles, and impedes the growth of He bubbles by absorption of mobile He atoms. Furthermore, the distribution of excess volume in GBs determines the distribution of He clusters. The effect of GBs becomes less pronounced with increasing vacancy concentration in the matrix.

  9. Path-integral molecular dynamics simulation of diamond

    NASA Astrophysics Data System (ADS)

    Ramírez, Rafael; Herrero, Carlos P.; Hernández, Eduardo R.

    2006-06-01

    Diamond is studied by path-integral molecular dynamics simulations of the atomic nuclei in combination with a tight-binding Hamiltonian to describe its electronic structure and total energy. This approach allows us to quantify the influence of quantum zero-point vibrations and finite temperatures on both the electronic and vibrational properties of diamond. The electron-phonon coupling mediated by the zero-point vibration reduces the direct electronic gap of diamond by 10%. The calculated decrease of the direct gap with temperature shows good agreement with the experimental data available up to 700K . Anharmonic vibrational frequencies of the crystal have been obtained from a linear-response approach based on the path integral formalism. In particular, the temperature dependence of the zone-center optical phonon has been derived from the simulations. The anharmonicity of the interatomic potential produces a red shift of this phonon frequency. At temperatures above 500K , this shift is overestimated in comparison to available experimental data. The predicted temperature shift of the elastic constant c44 displays reasonable agreement with the available experimental results.

  10. Car-Parrinello molecular dynamics simulation of Fe 3+ (aq).

    PubMed

    Amira, Sami; Spångberg, Daniel; Zelin, Viktor; Probst, Michael; Hermansson, Kersti

    2005-07-28

    The optimized geometry and energetic properties of Fe(D2O)n 3+ clusters, with n = 4 and 6, have been studied with density-functional theory calculations and the BLYP functional, and the hydration of a single Fe 3+ ion in a periodic box with 32 water molecules at room temperature has been studied with Car-Parrinello molecular dynamics and the same functional. We have compared the results from the CPMD simulation with classical MD simulations, using a flexible SPC-based water model and the same number of water molecules, to evaluate the relative strengths and weaknesses of the two MD methods. The classical MD simulations and the CPMD simulations both give Fe-water distances in good agreement with experiment, but for the intramolecular vibrations, the classical MD yields considerably better absolute frequencies and ion-induced frequency shifts. On the other hand, the CPMD method performs considerably better than the classical MD in describing the intramolecular geometry of the water molecule in the first hydration shell and the average first shell...second shell hydrogen-bond distance. Differences between the two methods are also found with respect to the second-shell water orientations. The effect of the small box size (32 vs 512 water molecules) was evaluated by comparing results from classical simulations using different box sizes; non-negligible effects are found for the ion-water distance and the tilt angles of the water molecules in the second hydration shell and for the O-D stretching vibrational frequencies of the water molecules in the first hydration shell.

  11. Molecular dynamics simulation of solvated protein at high pressure.

    PubMed

    Kitchen, D B; Reed, L H; Levy, R M

    1992-10-20

    We have completed a molecular dynamics simulation of protein (bovine pancreatic trypsin inhibitor, BPTI) in solution at high pressure (10 kbar). The structural and energetic effects of the application of high pressure to solvated protein are analyzed by comparing the results of the high-pressure simulation with a corresponding simulation at low pressure. The volume of the simulation cell containing one protein molecule plus 2943 water molecules decreases by 24.7% at high pressure. This corresponds to a compressibility for the protein solution of beta = 1.8 x 10(-2) kbar-1. The compressibility of the protein is estimated to be about one-tenth that of bulk water, while the protein hydration layer water is found to have a greater compressibility as compared to the bulk, especially for water associated with hydrophobic groups. The radius of gyration of BPTI decreases by 2% and there is a one third decrease in the protein backbone atomic fluctuations at high pressure. We have analyzed pressure effects on the hydration energy of the protein. The total hydration energy is slightly (4%) more favorable at high pressure even though the surface accessibility of the protein has decreased by a corresponding amount. Large pressure-induced changes in the structure of the hydration shell are observed. Overall, the solvation shell waters appear more ordered at high pressure; the pressure-induced ordering is greatest for nonpolar surface groups. We do not observe evidence of pressure-induced unfolding of the protein over the 100-ps duration of the high-pressure simulation. This is consistent with the results of high-pressure optical experiments on BPTI.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Molecular dynamics simulations of DNA-polycation complexes

    NASA Astrophysics Data System (ADS)

    Ziebarth, Jesse; Wang, Yongmei

    2008-03-01

    A necessary step in the preparation of DNA for use in gene therapy is the packaging of DNA with a vector that can condense DNA and provide protection from degrading enzymes. Because of the immunoresponses caused by viral vectors, there has been interest in developing synthetic gene therapy vectors, with polycations emerging as promising candidates. Molecular dynamics simulations of the DNA duplex CGCGAATTCGCG in the presence of 20 monomer long sequences of the polycations, poly-L-lysine (PLL) and polyethyleneimine (PEI), with explicit counterions and TIP3P water, are performed to provide insight into the structure and formation of DNA polyplexes. After an initial separation of approximately 50 å, the DNA and polycation come together and form a stable complex within 10 ns. The DNA does not undergo any major structural changes upon complexation and remains in the B-form. In the formed complex, the charged amine groups of the polycation mainly interact with DNA phosphate groups, and rarely occupy electronegative sites in either the major or minor grooves. Differences between complexation with PEI and PLL will be discussed.

  13. Molecular dynamics simulations of alkyl substituted nanographene crystals

    NASA Astrophysics Data System (ADS)

    Ziogos, Orestis George; Theodorou, Doros Nicolas

    2015-09-01

    Discotic polyaromatic molecules, similar to nanometric graphene flakes, constitute an interesting class of materials for organic electronic applications. Grafting flexible side chains around the periphery of such molecules enhances their processability and gives rise to diverse behaviours, such as the manifestation of liquid-crystalline character and anisotropic mechanical response. In this work, we examine by means of molecular dynamics simulations the properties of molecular crystals comprised of alkyl-substituted hexa-peri-hexabenzocoronene mesogens. Pristine and mono-substituted systems by hydrogen or iodine atoms are modelled, with variable side chain length. A general structural and mechanical robustness to peripheral substitution is reported, with the mesogens forming tightly packed molecular wires even at elevated temperature and pressure. In their discotic ordering, the molecules present relatively low translational mobility, a beneficial phenomenon for charge transport. A thermotropic dependence of the mechanical response is identified, with the systems behaving differently in their room-temperature crystalline phase and in their liquid-crystalline phase at elevated temperatures. The melting process is also examined, elucidating an initial negative expansion along a high symmetry direction and the existence of a metastable state, before falling into the final liquid-crystalline state. Dedicated to Professor Jean-Pierre Hansen, with deepest appreciation of his outstanding contributions to liquid and soft matter theory.

  14. Molecular dynamics simulations of polymer transport in nanocomposites

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel; Kumar, Sanat K.

    2005-04-01

    Molecular dynamics simulations on the Kremer-Grest bead-spring model of polymer melts are used to study the effect of spherical nanoparticles on chain diffusion. We find that chain diffusivity is enhanced relative to its bulk value when polymer-particle interactions are repulsive and is reduced when polymer-particle interactions are strongly attractive. In both cases chain diffusivity assumes its bulk value when the chain center of mass is about one radius of gyration Rg away from the particle surface. This behavior echoes the behavior of polymer melts confined between two flat surfaces, except in the limit of severe confinement where the surface influence on polymer mobility is more pronounced for flat surfaces. A particularly interesting fact is that, even though chain motion is strongly speeded up in the presence of repulsive boundaries, this effect can be reversed by pinning one isolated monomer onto the surface. This result strongly stresses the importance of properly specifying boundary conditions when the near surface dynamics of chains are studied.

  15. Hidden Markov models from molecular dynamics simulations on DNA.

    PubMed

    Thayer, Kelly M; Beveridge, D L

    2002-06-25

    An enhanced bioinformatics tool incorporating the participation of molecular structure as well as sequence in protein DNA recognition is proposed and tested. Boltzmann probability models of sequence-dependent DNA structure from all-atom molecular dynamics simulations were obtained and incorporated into hidden Markov models (HMMs) that can recognize molecular structural signals as well as sequence in protein-DNA binding sites on a genome. The binding of catabolite activator protein (CAP) to cognate DNA sequences was used as a prototype case for implementation and testing of the method. The results indicate that even HMMs based on probabilistic roll/tilt dinucleotide models of sequence-dependent DNA structure have some capability to discriminate between known CAP binding and nonbinding sites and to predict putative CAP binding sites in unknowns. Restricting HMMs to sequence only in regions of strong consensus in which the protein makes base specific contacts with the cognate DNA further improved the discriminatory capabilities of the HMMs. Comparison of results with controls based on sequence only indicates that extending the definition of consensus from sequence to structure improves the transferability of the HMMs, and provides further supportive evidence of a role for dynamical molecular structure as well as sequence in genomic regulatory mechanisms.

  16. Maintain rigid structures in Verlet based cartesian molecular dynamics simulations.

    PubMed

    Tao, Peng; Wu, Xiongwu; Brooks, Bernard R

    2012-10-07

    An algorithm is presented to maintain rigid structures in Verlet based cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.

  17. Molecular Dynamics Simulations of Nanoparticles Coated with Charged Polymers

    NASA Astrophysics Data System (ADS)

    Wen, Chengyuan; Cheng, Shengfeng

    Polymer coating is frequently used to stabilize colloidal and nano-sized particles. We employ molecular dynamics simulations to study nanoparticles coated with polymer chains that contain ionizable groups. In a polar solvent, the chains become charged with counterions dissociated. In the computational model, we treat the solvent as a uniform dielectric background and use the bead-spring model for the polymer chains. Counterions are explicitly included as mobile beads. The nanoparticle is modeled as a layer of sites uniformly distributed on a spherical surface with a certain fraction of sites serving as the tether points of the grafted polymer brush. We vary the grafting density and calculate the distribution of polymer beads and counterions around the nanoparticle. Our results indicate that charged chains adopt extended conformations because of their mutual repulsions. We further study the interactions between two polymer-coated nanoparticles and obtain the potential of mean force. We also find an interesting transition of a confined single layer of such polymer-coated nanoparticles into two layers when the confinement is removed. Results show that the brush-brush contact has a nonuniform distribution and the nanoparticles tend to form dipole-like structures.

  18. Molecular dynamics simulations of the mammalian glutamate transporter EAAT3.

    PubMed

    Heinzelmann, Germano; Kuyucak, Serdar

    2014-01-01

    Excitatory amino acid transporters (EAATs) are membrane proteins that enable sodium-coupled uptake of glutamate and other amino acids into neurons. Crystal structures of the archaeal homolog GltPh have been recently determined both in the inward- and outward-facing conformations. Here we construct homology models for the mammalian glutamate transporter EAAT3 in both conformations and perform molecular dynamics simulations to investigate its similarities and differences from GltPh. In particular, we study the coordination of the different ligands, the gating mechanism and the location of the proton and potassium binding sites in EAAT3. We show that the protonation of the E374 residue is essential for binding of glutamate to EAAT3, otherwise glutamate becomes unstable in the binding site. The gating mechanism in the inward-facing state of EAAT3 is found to be different from that of GltPh, which is traced to the relocation of an arginine residue from the HP1 segment in GltPh to the TM8 segment in EAAT3. Finally, we perform free energy calculations to locate the potassium binding site in EAAT3, and find a high-affinity site that overlaps with the Na1 and Na3 sites in GltPh.

  19. Kinetic distance and kinetic maps from molecular dynamics simulation.

    PubMed

    Noé, Frank; Clementi, Cecilia

    2015-10-13

    Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly interconverting states. Here, we build upon diffusion map theory and define a kinetic distance metric for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here, we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine. We find that the total kinetic variance (TKV) is an excellent indicator of model quality and can be used to rank different input feature sets.

  20. Protein Under Pressure: Molecular Dynamics Simulation of the Arc Repressor

    SciTech Connect

    Trzesniak, Daniel Rodrigo F.; Lins, Roberto D.; van Gunsteren, Wilfred F.

    2006-10-01

    Experimental nuclear magnetic resonance results for the Arc Repressor have shown that this dimeric protein dissociates into a molten globule at high pressure. This structural change is accompanied by a modification of the hydrogenbonding pattern of the intermolecular -sheet: it changes its character from intermolecular to intramolecular with respect to the two monomers. Molecular dynamics simulations of the Arc Repressor, as a monomer and a dimer, at elevated pressure have been performed with the aim to study this hypothesis and to identify the major structural and dynamical changes of the protein under such conditions. The monomer appears less stable than the dimer. However, the complete dissociation has not been seen because of the long timescale needed to observe this phenomenon. In fact, the protein structure altered very little when increasing the pressure. It became slightly compressed and the dynamics of the side-chains and the unfolding process slowed down. Increasing both, temperature and pressure, a tendency of conversion of intermolecular into intramolecular hydrogen bonds in the -sheet region has been detected, supporting the mentioned hypothesis. Also, the onset of denaturation of the separated chains was observed.

  1. Dynamic transitions in molecular dynamics simulations of supercooled silicon

    NASA Astrophysics Data System (ADS)

    Mei, Xiaojun; Eapen, Jacob

    2013-04-01

    Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.

  2. Molecular dynamics simulation of photodissociation of carbon monoxide from hemoglobin

    SciTech Connect

    Henry, E.R.; Levitt, M.; Eaton, W.A.

    1985-04-01

    A molecular dynamics simulation of the photodissociation of carbon monoxide from the alpha subunit of hemoglobin is described. To initiate photodissociation, trajectories of the liganded molecule were interrupted, the iron-carbon monoxide bond was broken, and the parameters of the iron-nitrogen bonds were simultaneously altered to produce a deoxyheme conformation. Heme potential functions were used that reproduce the energies and forces for the iron out-of-plane motion obtained from quantum mechanical calculations. The effect of the protein on the rate and extent of the displacement of the iron from the porphyrin plane was assessed by comparing the results with those obtained for an isolated complex of heme with imidazole and carbon monoxide. The half-time for the displacement of the iron from the porphyrin plane was found to be 50-150 fs for both the protein and the isolated complex. These results support the interpretation of optical absorption studies using 250-fs laser pulses that the iron is displaced from the porphyrin plane within 350 fs in both hemoglobin and a free heme complex in solution.

  3. Phonon properties of graphene derived from molecular dynamics simulations

    PubMed Central

    Koukaras, Emmanuel N.; Kalosakas, George; Galiotis, Costas; Papagelis, Konstantinos

    2015-01-01

    A method that utilises atomic trajectories and velocities from molecular dynamics simulations has been suitably adapted and employed for the implicit calculation of the phonon dispersion curves of graphene. Classical potentials widely used in the literature were employed. Their performance was assessed for each individual phonon branch and the overall phonon dispersion, using available inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, accounts for anharmonic effects and non-bonding interactions with a general environment, and it is applicable under finite temperatures. The temperature dependence of the phonon dispersion curves has been examined with emphasis on the doubly degenerate Raman active Γ-E2g phonon at the zone centre, where experimental results are available. The potentials used show diverse behaviour. The Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, and gives a first-order temperature coefficient of χ = −0.05 cm−1/K for the Γ-E2g shift in agreement with reported experimental values. PMID:26316252

  4. Recovering position-dependent diffusion from biased molecular dynamics simulations

    SciTech Connect

    Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez

    2014-02-28

    All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica{sup ®} package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics . Given known free energy and D, the package can also generate diffusive trajectories.

  5. Homology model and molecular dynamics simulation of carp ovum cystatin.

    PubMed

    Su, Yuan-Chen; Lin, Jin-Chung; Liu, Hsuan-Liang

    2005-01-01

    In this study, a homology model of carp ovum cystatin was constructed based on the crystal structure of chicken egg white cystatin. The results of amino acid sequence alignment indicate that these two proteins exhibit 36.11% of sequence identity. The resultant homology model reveals that carp ovum cystatin shares similar folds as chicken egg white cystatin, particularly in the conserved regions of Q48-V49-G52 and P98-W99 and the locations of two disulfide bonds, C67-C76 and C90-C110. However, the results of 1 ns molecular dynamics simulations show that carp ovum cystatin exhibits less structural integrity than chicken egg white cystatin in explicit water at 300 K. The relatively hydrophilic Met62 of carp ovum cystatin, corresponding to the hydrophobic Leu68 of human cystatin C and Ile66 of chicken egg white cystatin, may destabilize the hydrophobic core and form a dimeric structure more easily through domain swapping. A total of 16 positively charged residues are equally distributed on the surface of carp ovum cystatin, resulting in agglutination with the negatively charged spermatozoa via electrostatic interaction. Thus, carp ovum cystatin is considered to be important in preventing carp eggs from polyspermy.

  6. Protein under pressure: molecular dynamics simulation of the arc repressor.

    PubMed

    Trzesniak, Daniel; Lins, Roberto D; van Gunsteren, Wilfred F

    2006-10-01

    Experimental nuclear magnetic resonance results for the Arc Repressor have shown that this dimeric protein dissociates into a molten globule at high pressure. This structural change is accompanied by a modification of the hydrogen-bonding pattern of the intermolecular beta-sheet: it changes its character from intermolecular to intramolecular with respect to the two monomers. Molecular dynamics simulations of the Arc Repressor, as a monomer and a dimer, at elevated pressure have been performed with the aim to study this hypothesis and to identify the major structural and dynamical changes of the protein under such conditions. The monomer appears less stable than the dimer. However, the complete dissociation has not been seen because of the long timescale needed to observe this phenomenon. In fact, the protein structure altered very little when increasing the pressure. It became slightly compressed and the dynamics of the side-chains and the unfolding process slowed down. Increasing both, temperature and pressure, a tendency of conversion of intermolecular into intramolecular hydrogen bonds in the beta-sheet region has been detected, supporting the mentioned hypothesis. Also, the onset of denaturation of the separated chains was observed.

  7. Cold-active enzymes studied by comparative molecular dynamics simulation.

    PubMed

    Spiwok, Vojtech; Lipovová, Petra; Skálová, Tereza; Dusková, Jarmila; Dohnálek, Jan; Hasek, Jindrich; Russell, Nicholas J; Králová, Blanka

    2007-04-01

    Enzymes from cold-adapted species are significantly more active at low temperatures, even those close to zero Celsius, but the rationale of this adaptation is complex and relatively poorly understood. It is commonly stated that there is a relationship between the flexibility of an enzyme and its catalytic activity at low temperature. This paper gives the results of a study using molecular dynamics simulations performed for five pairs of enzymes, each pair comprising a cold-active enzyme plus its mesophilic or thermophilic counterpart. The enzyme pairs included alpha-amylase, citrate synthase, malate dehydrogenase, alkaline protease and xylanase. Numerous sites with elevated flexibility were observed in all enzymes; however, differences in flexibilities were not striking. Nevertheless, amino acid residues common in both enzymes of a pair (not present in insertions of a structure alignment) are generally more flexible in the cold-active enzymes. The further application of principle component analysis to the protein dynamics revealed that there are differences in the rate and/or extent of opening and closing of the active sites. The results indicate that protein dynamics play an important role in catalytic processes where structural rearrangements, such as those required for active site access by substrate, are involved. They also support the notion that cold adaptation may have evolved by selective changes in regions of enzyme structure rather than in global change to the whole protein.

  8. Thermophoresis in liquids: a molecular dynamics simulation study.

    PubMed

    Han, Minsub

    2005-04-01

    Thermophoresis in liquids is studied by molecular dynamics simulation (MD). A theory is developed that divides the problem in the way consistent with the characteristic scales. MD is then conducted to obtain the solution of each problem, which is to be all combined for macroscopic predictions. It is shown that when the temperature gradient is applied to the nonconducting liquid bath that contains neutral particles, there occurs a pressure gradient tangential to the particle surface at the particle-liquid interface. This may induce the flow in the interfacial region and eventually the particle to move. This applies to the material system that interacts through van der Waals forces and may be a general source of the thermophoresis phenomenon in liquids. The particle velocity is linearly proportional to the temperature gradient. And, in a large part of the given temperature range, the particle motion is in the direction toward the cold end and decreases with respect to the temperature. It is also shown that the particle velocity decreases or even reverses its sign in the lowest limit of the temperature range or with a particle of relatively weak molecular interactions with the liquid. The characteristics of the phenomenon are analyzed in molecular details.

  9. Oleic acid phase behavior from molecular dynamics simulations.

    PubMed

    Janke, J Joel; Bennett, W F Drew; Tieleman, D Peter

    2014-09-09

    Fatty acid aggregation is important for a number of diverse applications: from origins of life research to industrial applications to health and disease. Experiments have characterized the phase behavior of oleic acid mixtures, but the molecular details are complex and hard to probe with many experiments. Coarse-grained molecular dynamics computer simulations and free energy calculations are used to model oleic acid aggregation. From random dispersions, we observe the aggregation of oleic acid monomers into micelles, vesicles, and oil phases, depending on the protonation state of the oleic acid head groups. Worm-like micelles are observed when all the oleic acid molecules are deprotonated and negatively charged. Vesicles form spontaneously if significant amounts of both neutral and negative oleic acid are present. Oil phases form when all the fatty acids are protonated and neutral. This behavior qualitatively matches experimental observations of oleic acid aggregation. To explain the observed phase behavior, we use umbrella sampling free energy calculations to determine the stability of individual monomers in aggregates compared to water. We find that both neutral and negative oleic acid molecules prefer larger aggregates, but neutral monomers prefer negatively charged aggregates and negative monomers prefer neutral aggregates. Both neutral and negative monomers are most stable in a DOPC bilayer, with implications on fatty acid adsorption and cellular membrane evolution. Although the CG model qualitatively reproduces oleic acid phase behavior, we show that an updated polarizable water model is needed to more accurately predict the shift in pKa for oleic acid in model bilayers.

  10. Pressure denaturation of apomyoglobin: a molecular dynamics simulation study.

    PubMed

    McCarthy, Andrés N; Grigera, J Raúl

    2006-03-01

    The effect of pressure on the structure and mobility of Sperm Wale Apomyoglobin was studied by Molecular Dynamics computer simulation at 1 bar and 3 kbar (1 atm=1.01325 bar=101.325 kPa). The results are in good agreement with the available experimental data, allowing further analysis of other features of the effect of pressure on the protein solution. From the analysis of Secondary Structures (SS) along the trajectories it is observed that alpha-helixes are favoured under pressure at the expense of bends, turns and 3-helixes. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. The studies of tertiary structure show important conformational changes. The evolution of the Solvent Accessed Surface (SAS) with pressure shows a notorious increase due almost completely to a biased raise in the hydrophobic area exposed, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions.

  11. Modeling of RNA nanotubes using molecular dynamics simulation.

    PubMed

    Badu, S R; Melnik, R; Paliy, M; Prabhakar, S; Sebetci, A; Shapiro, B A

    2014-11-01

    In this study, we construct novel RNA nanoclusters, RNA nanotubes made of several nanorings up to the size of 20 nm, utilizing the molecular dynamics simulation, and study their structural properties [i.e., the root mean square deviation, the radius of gyration and the radial distribution function (RDF)] in physiological solutions that can be used for drug delivery into the human body. The patterns of energy and temperature variations of the systems are also discussed. Furthermore, we study the concentration of ions around the tube as a function of time at a particular temperature. We have found that when the temperature increases, the number of ions increases within a certain distance of the tube. We report that the number of ions within this distance around the tubes decreases in quenched runs. This indicates that some ions evaporate with decrease in temperature, as has been observed in the case of the nanoring. RDF plots also demonstrate a similar trend with temperature, as was found in the case of RNA nanorings.

  12. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE PAGES

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; ...

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  13. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    PubMed

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  14. Combining docking and molecular dynamic simulations in drug design.

    PubMed

    Alonso, Hernán; Bliznyuk, Andrey A; Gready, Jill E

    2006-09-01

    A rational approach is needed to maximize the chances of finding new drugs, and to exploit the opportunities of potential new drug targets emerging from genomic and proteomic initiatives, and from the large libraries of small compounds now readily available through combinatorial chemistry. Despite a shaky early history, computer-aided drug design techniques can now be effective in reducing costs and speeding up drug discovery. This happy outcome results from development of more accurate and reliable algorithms, use of more thoughtfully planned strategies to apply them, and greatly increased computer power to allow studies with the necessary reliability to be performed. Our review focuses on applications and protocols, with the main emphasis on critical analysis of recent studies where docking calculations and molecular dynamics (MD) simulations were combined to dock small molecules into protein receptors. We highlight successes to demonstrate what is possible now, but also point out drawbacks and future directions. The review is structured to lead the reader from the simpler to more compute-intensive methods. Thus, while inexpensive and fast docking algorithms can be used to scan large compound libraries and reduce their size, more accurate but expensive MD simulations can be applied when a few selected ligand candidates remain. MD simulations can be used: during the preparation of the protein receptor before docking, to optimize its structure and account for protein flexibility; for the refinement of docked complexes, to include solvent effects and account for induced fit; to calculate binding free energies, to provide an accurate ranking of the potential ligands; and in the latest developments, during the docking process itself to find the binding site and correctly dock the ligand a priori.

  15. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958), 10.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α -particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  16. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    SciTech Connect

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; Knott, Brandon C.; Beckham, Gregg T.; Yasuoka, Kenji; Wu, David T.; Amadeu K. Sum

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP) methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.

  17. Nucleation rate analysis of methane hydrate from molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Barnes, Brian C; Suh, Donguk; Knott, Brandon C; Beckham, Gregg T; Yasuoka, Kenji; Wu, David T; Sum, Amadeu K

    2015-01-01

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP) methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates calculated by MFPT and SP methods are within 5%, and the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.

  18. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.

    PubMed

    Castillo-Tejas, Jorge; Alvarado, Juan F J; González-Alatorre, Guillermo; Luna-Bárcenas, Gabriel; Sanchez, Isaac C; Macias-Salinas, Ricardo; Manero, Octavio

    2005-08-01

    Nonequilibrium molecular-dynamics simulations are performed for linear and branched chain molecules to study their rheological and structural properties under simple shear and Poiseuille flows. Molecules are described by a spring-monomer model with a given intermolecular potential. The equations of motion are solved for shear and Poiseuille flows with Lees and Edward's [A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1972)] periodic boundary conditions. A multiple time-scale algorithm extended to nonequilibrium situations is used as the integration method, and the simulations are performed at constant temperature using Nose-Hoover [S. Nose, J. Chem. Phys. 81, 511 (1984)] dynamics. In simple shear, molecules with flow-induced ellipsoidal shape, having significant segment concentrations along the gradient and neutral directions, exhibit substantial flow resistance. Linear molecules have larger zero-shear-rate viscosity than that of branched molecules, however, this behavior reverses as the shear rate is increased. The relaxation time of the molecules is associated with segment concentrations directed along the gradient and neutral directions, and hence it depends on structure and molecular weight. The results of this study are in qualitative agreement with other simulation studies and with experimental data. The pressure (Poiseuille) flow is induced by an external force F(e) simulated by confining the molecules in the region between surfaces which have attractive forces. Conditions at the boundary strongly influence the type of the slip flow predicted. A parabolic velocity profile with apparent slip on the wall is predicted under weakly attractive wall conditions, independent of molecular structure. In the case of strongly attractive walls, a layer of adhered molecules to the wall produces an abrupt distortion of the velocity profile which leads to slip between fluid layers with magnitude that depends on the molecular structure. Finally, the molecular deformation

  19. Improvement in Empirical Potential Functions for Increasing the Utility of Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Yamashita, Takefumi

    Accurate modeling of potential functions is critical for realistic molecular dynamics (MD) simulations. In this study, improvement in potential functions is discussed by revisiting the multistate empirical valence bond (MS-EVB) method and the FUJI force field. The MS-EVB method enables simulation of dynamic chemical reactions in various situations. In this study, excess protons in water under shear were investigated by combining the MS-EVB method with the non-equilibrium MD technique. It was found that the orientation of the hydronium-like moiety is considerably more anisotropic under shear than that of the water molecule. Separately, the FUJI force field includes main-chain torsional parameters carefully derived on the basis of high-level ab initio calculations. To further demonstrate that the use of the FUJI force field improves the accuracy of MD results beyond previously reported examples, the conformational distribution of the Ala dipeptide was investigated. The results obtained using the FUJI force field agreed more closely with the experimental results than those obtained using other standard force fields. Interestingly, the MD trajectories with the FUJI force field undergo the Y conformation more frequently than those with other popular force fields. Furthermore, it was found that the choice of force field affects the structures of an antigen-antibody complex obtained using MD simulations. These improvements in the force fields essentially extend the range of applications for the MD simulation method.

  20. Grain boundary migration in metals: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Hao

    Grain boundary migration is key to materials microstructural processes such as grain growth and recrystallization. Quantitative boundary dynamic data is difficult to obtain, yet important for quantitative prediction of microstructural evolution and understanding migration fundamentals. Our molecular dynamics simulations first focus on curvature driven grain boundary migration to extract the reduced mobility and activation energy for migration as a function of boundary misorientation in aluminum. Simulation results are in good agreement with experimental observations except that the activation energy for migration found is much smaller than in experiment. This discrepancy led to a more systematic study of the absolute mobility and atomistic level mechanism for boundary migration. To study the mobility of a flat, fully defined boundary, we developed a strain-energy-anisotropy-driven migration simulation method. We applied this method to a series of Sigma5 [010] asymmetric tilt grain boundaries and extracted the absolute mobility as a function of temperature and inclination. Simulation results suggest that the mobility is a sensitive function of temperature and inclination. The boundary mobility tends to be minimized when one of the grain boundary planes has low Miller indices. Meanwhile, the comparison between grain boundary mobility, grain boundary self-diffusivity and energy suggests strong correlation at special inclinations, when one of the boundary planes is a high symmetry plane. In addition, we derive the grain boundary stiffness and reduced mobility as a function of boundary inclination. The grain boundary stiffness exhibits a large anisotropy, which is of the same order of magnitude as that of the grain boundary mobility. However, these two anisotropies nearly cancel, leaving the reduced mobility nearly isotropic. Finally, we identify the migration mechanism through frequent quenches and analysis of the atomic displacements, local and global excess volume

  1. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Römer, F.; Kraska, T.

    2007-12-01

    Homogeneous nucleation and growth of zinc from supersaturated vapor are investigated by nonequilibrium molecular dynamics simulations in the temperature range from 400to800K and for a supersaturation ranging from logS =2 to 11. Argon is added to the vapor phase as carrier gas to remove the latent heat from the forming zinc clusters. A new parametrization of the embedded atom method for zinc is employed for the interaction potential model. The simulation data are analyzed with respect to the nucleation rates and the critical cluster sizes by two different methods, namely, the threshold method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)] and the mean first passage time method for nucleation by Wedekind et al. [J. Chem. Phys. 126, 134103 (2007)]. The nucleation rates obtained by these methods differ approximately by one order of magnitude. Classical nucleation theory fails to describe the simulation data as well as the experimental data. The size of the critical cluster obtained by the mean first passage time method is significantly larger than that obtained from the nucleation theorem.

  2. Diffusion behavior in a liquid-liquid interfacial crystallization by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kitayama, Akira; Yamanaka, Shinya; Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2009-11-01

    Interfacial crystallization, such as surface crystallization in solution (solid-liquid) and liquid-liquid crystallization, gives us an asymmetric reaction field and is a technique for morphology control of crystals. In the liquid-liquid crystallization, the concentration distribution of solute ions and solvent molecules at the liquid-liquid interface directly relates to nucleation, crystal growth, and crystal morphology. Nonequilibrium molecular dynamics (MD) simulations have been performed at interfaces in NaCl solution/1-butanol and KCl solution/1-butanol system in order to clarify diffusion behavior of solute ions and solvent molecules. As simulation results, the hydrated solute ions were dehydrated with the diffusion of water from solution phase into 1-butanol phase. The different dehydration behaviors between NaCl and KCl solution can be also obtained from MD simulation results. Aggregated ions or clusters were formed by the dehydration near the solution/1-butanol interface. By comparison on the normalized number of total solute ions, the size and number of generated cluster in KCl solution/1-butanol interface are larger than those in the NaCl system. This originates in the difference hydration structures in the each solute ion.

  3. Molecular dynamics simulations of shock waves using the absorbing boundary condition: A case study of methane

    NASA Astrophysics Data System (ADS)

    Bolesta, Alexey V.; Zheng, Lianqing; Thompson, Donald L.; Sewell, Thomas D.

    2007-12-01

    We report a method that enables long-time molecular dynamics (MD) simulations of shock wave loading. The goal is to mitigate the severe interference effects that arise at interfaces or free boundaries when using standard nonequilibrium MD shock wave approaches. The essence of the method is to capture between two fixed pistons the material state at the precise instant in time when the shock front, initiated by a piston with velocity up at one end of the target sample, traverses the contiguous boundary between the target and a second, stationary piston located at the opposite end of the sample, at which point the second piston is also assigned velocity up and the simulation is continued. Thus, the target material is captured in the energy-volume Hugoniot state resulting from the initial shock wave, and can be propagated forward in time to monitor any subsequent chemistry, plastic deformation, or other time-dependent phenomena compatible with the spatial scale of the simulation. For demonstration purposes, we apply the method to shock-induced chemistry in methane based on the adaptive intermolecular reactive empirical bond order force field [S. J. Stuart , J. Chem. Phys. 112, 6472 (2000)].

  4. A steady-state non-equilibrium molecular dynamics approach for the study of evaporation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Müller-Plathe, Florian; Yahia-Ouahmed, Méziane; Leroy, Frédéric

    2013-10-01

    Two non-equilibrium methods (called bubble method and splitting method, respectively) have been developed and tested to study the steady state evaporation of a droplet surrounded by its vapor, where the evaporation continuously occurs at the vapor-liquid interface while the droplet size remains constant. In the bubble method, gas molecules are continuously reinserted into a free volume (represented by a bubble) located at the centre of mass of the droplet to keep the droplet size constant. In the splitting method, a molecule close to the centre of mass of the droplet is split into two: In this way, the droplet size is also maintained during the evaporation. By additional local thermostats confined to the area of insertion, the effect of frequent insertions on properties such as density and temperature can be limited to the immediate insertion area. Perturbations are not observed in other parts of the droplet. In the end, both the bubble method and the splitting method achieve steady-state droplet evaporation. Although these methods have been developed using an isolated droplet, we anticipate that they will find a wide range of applications in the study of the evaporation of isolated films and droplets or thin films on heated substrates or under confinement. They can in principle also be used to study the steady-state of other physical processes, such as the diffusion or permeation of gas molecules or ions in a pressure gradient or a concentration gradient.

  5. Molecular dynamics simulations of nanoindentation and nanoscratching of silicon carbide

    NASA Astrophysics Data System (ADS)

    Noreyan, Alisa A.

    Parallel molecular dynamics simulations were carried out to investigate the interaction between a diamond indenter and silicon carbide during nanoindentation and nanoscratching. The dependence of the critical depth and pressure for the elastic-to-plastic transition on indentation velocity, tip size, and workpiece temperature was studied along with the nature of the deformation due to indentation and scratching. The two most widely used polytypes---cubic silicon carbide (3C-SiC) and hexagonal silicon carbide (6H-SiC)---were considered while the Si-terminated (001) ((0001)) surface was used in each case. Simulations were implemented using the Tersoff SiC potential, which accurately reproduces the lattice and elastic constants of 3C-SiC and 6H-SiC. Nanoindentation experiments were also carried out for 6H-SiC. For the 3C polytype, both the critical pressure and indentation depth for the elastic-to-plastic transition were found to decrease with increasing indenter size over the nanoscale range of indenter sizes used in our simulations. As a result, the measured hardness was found to be significantly higher than obtained experimentally for significantly larger indenter sizes. In addition, for indentation depths beyond the critical depth a phase transition to the rocksalt structure was observed. A similar phase transition was observed for the 6H polytype, but the transition pressure was found to be somewhat higher than for 3C-SiC. Both of these results are in good agreement with experimental results for bulk SiC. Thus, for nanoscale indentation of 3C and 6H-SiC, the onset of plastic behavior is related to the existence of a phase transition under the indenter tip. For the 6H case a weak dependence on indentation velocity was also observed. This claim was also confirmed by nanoindentation experiments, in which the strain rate sensitivity of mono-crystal 6H was investigated. Simulations of the nanoscratching of 3C-SiC were also carried out. Significant anisotropy in the

  6. Shock response of nanoporous Cu--A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    2015-06-01

    Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.

  7. Molecular dynamics simulations on the hydration of fluoroalcohols

    NASA Astrophysics Data System (ADS)

    Kinugawa, Kenichi; Nakanishi, Koichiro

    1988-11-01

    Molecular dynamics (MD) calculations have been carried out for aqueous solutions of isopropyl alcohol (IPA) and its fluorinated compounds, 1,1,1-trifluoro-2-propanol (TFIPA) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIPA). The simulated systems were canonical ensembles containing 216 molecules in each, one of which was alcohol and the temperature was set to 298.15 K. The MCY (Matsuoka-Clementi-Yoshimine) potential was used for water-water interaction, whereas new potential functions were determined for alcohol-water interactions, on the basis of ab initio molecular orbital calculations on more than 1100 different dimeric configurations for each alcohol-water pair. The static properties of solvent water in the vicinity of each functional group of solute were obtained from MD calculations. It is found that the promotion of water structure and the increase of hydrogen bond between water molecules occurs not only near the fluoroalkyl group but also even near hydroxyl group of fluoroalcohols. Furthermore, the alcohol-water interaction is stronger for fluoroalcohols than for aliphatic alcohols, owing to the electronegativity and the electron withdrawing effect of fluorine atoms. The enthalpies of hydration for fluoroalcohols include the contributions from these features of both water-water and alcohol-water interactions. This is not the case for the hydration of aliphatic alcohols, and is the reason for the lack of regular change of enthalpies of hydration with the degree of the substitution of CH3 by the CF3 group. The hydration of IPA is similar to that of other aliphatic alcohols; hydrophobic hydration near the apolar group and the energetic unstabilization of water near the hydroxyl group are observed.

  8. Molecular dynamics simulations of water within models of ion channels.

    PubMed

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-04-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.

  9. Amorphous silicene—a view from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Van Hoang, Vo; Long, N. T.

    2016-05-01

    Models of amorphous silicene (a-silicene) containing 104 atoms are obtained by cooling from the melt via molecular dynamics (MD) simulation. The evolution of various kinds of structural and thermodynamic behavior in models upon cooling from the melt is found, including total energy, radial distribution function (RDF), interatomic distance, coordination number, and ring and bond-angle distributions. We also show the buckling distribution and a 2D visualization of the atomic configurations. The diffraction pattern shows that a glass state is indeed formed in the system. The glass transition temperature of 2D silicon ({{T}\\text{g}}=1350 K) has a reasonable value compared to that of its 3D counterpart. Calculations show that although most atoms in a-silicene obtained at 300 K have a three-fold coordination and mainly evolve into six-fold rings, a-silicene also contains various structural defects including those not found in crystalline silicene (c-silicene) such as adatoms, clusters of small-membered rings, large-membered rings and local linear defects. The concentration of defects in a-silicene is much higher than that of the crystalline version. We find that buckling is not unique for all the atoms in the model. The strong distorted structure of a-silicene compared to that of the crystalline version may lead to physico-chemical properties, including the possibility of opening the band gap in the former compared to the zero band gap of the latter. Note that due to the fixed length being equal to buckling of 0.44 Å in the z direction with the elastic reflection behavior boundary, our models are relevant for a-silicene formed in confinement between two planar simple hard walls.

  10. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  11. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  12. Molecular Dynamics Simulations of Responsive Semi-Fluorinated Interfaces

    NASA Astrophysics Data System (ADS)

    Pierce, Flint

    2010-03-01

    Responsive polymeric thin films with controlled surface energies, dielectric constants and structure are critical for a variety of emerging nano and micro-scale technologies including fluidics, electro-optical devices and biotechnology. Introducing nanometer sized fluorinated segments offers a means to tune the polymer properties while significantly enhancing chemical and thermal stability. The interfacial structure and dynamics of multiblock semi fluorinated copolymers at their liquid/vapor interface and at interfaces with water and protonated alkanes has been studied using explicit atom molecular dynamic simulations. For semifluorinated diblocks H3C(CH2)n-1(CF2)m-1CF3 of varying fluorine content, fluorinated groups proliferate and reside longer at the liquid/vapor interface as expected for the lower surface tension components. Aqueous interfaces of these diblocks are sharp and well defined with an enhanced density of protonated groups owing to their reduced hydrophobicity in comparison to fluorinated groups. The enhancement increases with temperature. Protonated alkanes are found to be mutually miscible with the semifluorinated diblock copolymers. Similar surface behavior is observed in semifluorinated multiblock copolymers of the form H-[(CH2)n (CF2)n]m-F where m varies from 3 to 48 with nxm=48. The fluorine enhancement at the liquid-vapor interface depends on both the temperature and block length, with the longest blocks showing the greatest enhancement. Due to mutual phobicity of protonated and fluorinated groups, nm-scale fluorine and hydrogen rich regions occur at the surfaces of these materials, with sizes that also depend on block length and temperature. Work in collaboration with Dvora Perahia and Gary S. Grest.

  13. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  14. Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.

    PubMed

    Kenward, Martin; Slater, Gary W

    2008-11-01

    We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.

  15. Dual-resolution molecular dynamics simulation of antimicrobials in biomembranes

    PubMed Central

    Orsi, Mario; Noro, Massimo G.; Essex, Jonathan W.

    2011-01-01

    Triclocarban and triclosan, two potent antibacterial molecules present in many consumer products, have been subject to growing debate on a number of issues, particularly in relation to their possible role in causing microbial resistance. In this computational study, we present molecular-level insights into the interaction between these antimicrobial agents and hydrated phospholipid bilayers (taken as a simple model for the cell membrane). Simulations are conducted by a novel ‘dual-resolution’ molecular dynamics approach which combines accuracy with efficiency: the antimicrobials, modelled atomistically, are mixed with simplified (coarse-grain) models of lipids and water. A first set of calculations is run to study the antimicrobials' transfer free energies and orientations as a function of depth inside the membrane. Both molecules are predicted to preferentially accumulate in the lipid headgroup–glycerol region; this finding, which reproduces corresponding experimental data, is also discussed in terms of a general relation between solute partitioning and the intramembrane distribution of pressure. A second set of runs involves membranes incorporated with different molar concentrations of antimicrobial molecules (up to one antimicrobial per two lipids). We study the effects induced on fundamental membrane properties, such as the electron density, lateral pressure and electrical potential profiles. In particular, the analysis of the spontaneous curvature indicates that increasing antimicrobial concentrations promote a ‘destabilizing’ tendency towards non-bilayer phases, as observed experimentally. The antimicrobials' influence on the self-assembly process is also investigated. The significance of our results in the context of current theories of antimicrobial action is discussed. PMID:21131331

  16. Boundary-controlled barostats for slab geometries in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gattinoni, C.; Maćkowiak, Sz.; Heyes, D. M.; Brańka, A. C.; Dini, D.

    2014-10-01

    Molecular dynamics simulation barostat schemes are derived for achieving a given normal pressure for a thin liquid or solid layer confined between two parallel walls. This work builds on the boundary-controlled barostat scheme of Lupkowski and van Swol [J. Chem. Phys. 93, 737 (1990), 10.1063/1.459524]. Two classes of barostat are explored, one in which the external load is applied to a virtual regular lattice to which the wall atoms are bound using a tethering potential. The other type of barostat applies the external force directly to the wall atoms, which are not tethered. The extent to which the wall separation distribution is Gaussian is shown to be an effective measure of the quality of the barostat. The first class of barostat can suffer from anomalous dynamical signatures, even resonances, which are sensitive to the effective mass of the virtual lattice, whose value lacks any rigorous definition. The second type of barostat performs much better under equilibrium and wall-sliding nonequilibrium conditions and in not being so prone to resonance instabilities in the wall separation and does not require so many largely arbitrary parameters. The results of exploratory simulations which characterize the dynamical response of the model systems for both dry and wet or lubricated systems using the different barostats are presented. The barostats which have an inherent damping mechanism, such as the ones analogous to a damped harmonic oscillator, reduce the occurrence of large fluctuations and resonances in the separation between the two walls, and they also achieve a new target pressure more quickly. Near a nonequilibrium phase boundary the attributes of the barostat can have a marked influence on the observed behavior.

  17. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  18. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Medical Research and Materiel Command, Fort Detrick, Maryland #Department of Cell Biology and Biochemistry , U.S. Army Medical Research Institute of...Molecular dynamics of n- alkanes ," J. Comput. Phys., vol. 23, pp. 327-341, 1977. [24] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M

  19. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  20. Extended Lagrangian quantum molecular dynamics simulations of shock-induced chemistry in hydrocarbons

    SciTech Connect

    Sanville, Edward J; Bock, Nicolas; Challacombe, William M; Cawkwell, Marc J; Niklasson, Anders M N; Dattelbaum, Dana M; Sheffield, Stephen; Sewell, Thomas D

    2010-01-01

    A set of interatomic potentials for hydrocarbons that are based upon the self-consistent charge transfer tight-binding approximation to density functional theory have been developed and implemented into the quantum molecular dynamics code ''LATTE''. The interatomic potentials exhibit an outstanding level of transferability and have been applied in molecular dynamics simulations of tert-butylacetylene under thermodynamic conditions that correspond to its single-shock Hugoniot. We have achieved precise conservation of the total energy during microcanonical molecular dynamics trajectories under incomplete convergence via the extended Lagrangian Born-Oppenheimer molecular dynamics formalism. In good agreement with the results of a series of flyer-plate impact experiments, our SCC-TB molecular dynamics simulations show that tert-butylactylene molecules polymerize at shock pressures around 6.1 GPa.

  1. Molecular dynamics simulation study of binary fullerene mixtures

    NASA Astrophysics Data System (ADS)

    Ruberto, R.; Abramo, M. C.; Caccamo, C.

    2004-10-01

    We report constant-pressure molecular dynamics (MD) simulations of binary C60/Cn fullerene-mixtures ( n=70 , 76, 84, 96) modeled in terms of a spherically symmetric two-body potential. By starting from a liquid configuration of the system, we cool mixtures down to freezing and beyond, until room temperature is reached, in order to verify the formation of solid solutions, namely, of configurations characterized by a unique crystalline lattice whose sites are randomly occupied by the two component fullerene species. We first explore the entire concentration range of the C60x/C70(1-x)(0simulate forms substitutional solid solutions over a wide range of concentrations except for 0.3⩽x⩽0.5 ; over such an interval, it turns out that the initially liquid mixture can be supercooled down to relatively low temperatures, until eventually a glassy phase is formed. The study is then extended to fullerene mixtures of molecular diameter ratio α=σC60/σCn smaller than in C60/C70 (where α=0.93 ), as is the case for C60/C76 (α=0.89) , C60/C84(α=0.85) and C60/C96 (α=0.79) . The effect of the size mismatch between the two species is dramatic: The solid immiscibility region rapidly expands even upon a tiny reduction of α , with formation of an amorphous phase at sufficiently low temperature, as found for the C60/C70 mixture. For the smallest α(C60/C96) cocrystallization of the two components turns out to be forbidden over the whole concentration axis. A mapping of the MD evidences of the fullerene mixtures’ phase behavior onto the phase diagram of binary hard-sphere mixtures (determined by other authors) turns out to be worthwhile and enlightnening. In particular, size ratio effects and the onset of glassy phases emerge in qualitative good agreement

  2. Easy GROMACS: A Graphical User Interface for GROMACS Molecular Dynamics Simulation Package

    NASA Astrophysics Data System (ADS)

    Dizkirici, Ayten; Tekpinar, Mustafa

    2015-03-01

    GROMACS is a widely used molecular dynamics simulation package. Since it is a command driven program, it is difficult to use this program for molecular biologists, biochemists, new graduate students and undergraduate researchers who are interested in molecular dynamics simulations. To alleviate the problem for those researchers, we wrote a graphical user interface that simplifies protein preparation for a classical molecular dynamics simulation. Our program can work with various GROMACS versions and it can perform essential analyses of GROMACS trajectories as well as protein preparation. We named our open source program `Easy GROMACS'. Easy GROMACS can give researchers more time for scientific research instead of dealing with technical intricacies.

  3. Molecular dynamics simulations of ice nucleation by electric fields.

    PubMed

    Yan, J Y; Patey, G N

    2012-07-05

    Molecular dynamics simulations are used to investigate heterogeneous ice nucleation in model systems where an electric field acts on water molecules within 10-20 Å of a surface. Two different water models (the six-site and TIP4P/Ice models) are considered, and in both cases, it is shown that a surface field can serve as a very effective ice nucleation catalyst in supercooled water. Ice with a ferroelectric cubic structure nucleates near the surface, and dipole disordered cubic ice grows outward from the surface layer. We examine the influences of temperature and two important field parameters, the field strength and distance from the surface over which it acts, on the ice nucleation process. For the six-site model, the highest temperature where we observe field-induced ice nucleation is 280 K, and for TIP4P/Ice 270 K (note that the estimated normal freezing points of the six-site and TIP4P/Ice models are ∼289 and ∼270 K, respectively). The minimum electric field strength required to nucleate ice depends a little on how far the field extends from the surface. If it extends 20 Å, then a field strength of 1.5 × 10(9) V/m is effective for both models. If the field extent is 10 Å, then stronger fields are required (2.5 × 10(9) V/m for TIP4P/Ice and 3.5 × 10(9) V/m for the six-site model). Our results demonstrate that fields of realistic strength, that act only over a narrow surface region, can effectively nucleate ice at temperatures not far below the freezing point. This further supports the possibility that local electric fields can be a significant factor influencing heterogeneous ice nucleation in physical situations. We would expect this to be especially relevant for ice nuclei with very rough surfaces where one would expect local fields of varying strength and direction.

  4. Atomistic molecular dynamics simulations of model C36 fullerite

    NASA Astrophysics Data System (ADS)

    Abramo, Maria C.; Caccamo, C.

    2008-02-01

    We report atomistic molecular dynamics investigations of a model C36 fullerite in which the fullerene molecules are modeled as rigid cages over which the carbon atoms occupy fixed interaction sites, distributed in space according to the experimentally known atomic positions in the molecule. Carbon sites belonging to different molecules are assumed to interact via a 12-6 Lennard-Jones-type potential; the parameters of the latter are employed in the framework of a molecular dynamics fitting procedure, through which the ambient condition physical quantities characterizing the hcp structure of solid C36 are eventually reproduced. We discuss applications of the adopted modelization to the C36 phases in a temperature range spanning from 300to1500K, and compare the obtained results to the available data for C36 and other fullerenes, and to the predictions of the well known Girifalco central potential modelization of interactions in fullerenes, as applied to the C36 case.

  5. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  6. Carbon dioxide in silicate melts: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Guillot, Bertrand; Sator, Nicolas

    2011-04-01

    We have performed a series of molecular dynamics simulations aimed at the evaluation of the solubility of CO 2 in silicate melts of natural composition (from felsic to ultramafic). In making in contact within the simulation cell a supercritical CO 2 phase with a silicate melt of a given composition, we have been able to evaluate (i) the solubility of CO 2 in the P- T range 1473-2273 K and 20-150 kbar, (ii) the density change experienced by the CO 2-bearing melt, (iii) the respective concentrations of CO 2 and CO32- species in the melt, (iv) the lifetime and the diffusivity of these species and (v) the structure of the melt around the carbonate groups. The main results are the following: (1) The solubility of CO 2 increases markedly with the pressure in the three investigated melts (a rhyolite, a mid-ocean ridge basalt and a kimberlite) from about ˜2 wt% CO 2 at 20 kbar to ˜25 wt% at 100 kbar and 2273 K. The solubility is found to be weakly dependent on the melt composition (as far as the present compositions are concerned) and it is only at very high pressure (above ˜100 kbar) that a clear hierarchy between solubilities occurs (rhyolite < MORB < kimberlite). Furthermore at a given pressure the calculated solubility is negatively correlated with the temperature. (2) In CO 2-saturated melts, the proportion of carbonate ions (CO32-) is positively correlated with the pressure at isothermal condition and is negatively correlated with the temperature at isobaric condition (and vice versa for molecular CO 2). Furthermore, at fixed ( P, T) conditions the proportion of carbonate ions is higher in CO 2-undersaturated melts than in the CO 2-saturated melt. Although the proportion of molecular CO 2 decreases when the degree of depolymerization of the melt increases, it is still significant in CO 2-saturated basic and ultrabasic compositions at high temperatures. This finding is at variance with experimental data on CO 2-bearing glasses which show no evidence of molecular CO

  7. Exploiting molecular dynamics in Nested Sampling simulations of small peptides

    NASA Astrophysics Data System (ADS)

    Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor

    2016-04-01

    Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.

  8. Xenon Implantation in Nanodiamonds: In Situ Transmission Electron Microscopy Study and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Hinks, J.; Marks, N.; Greaves, G.; Donnelly, S.; Fisenko, A. V.; Kiwi, M.

    2016-08-01

    We present results of the first investigation of the Xe implantation process into nanodiamonds of various sizes studied in situ in transmission electron microscope (TEM), complemented by advanced molecular dynamics simulations.

  9. Full molecular dynamics simulations of liquid water and carbon tetrachloride for two-dimensional Raman spectroscopy in the frequency domain

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Ito, Hironobu; Tanimura, Yoshitaka

    2016-12-01

    Frequency-domain two-dimensional (2D) Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid molecular dynamics (MD) simulation algorithm. An appropriate representation of the 2D Raman spectrum obtained from MD simulations provides an easy-to-understand depiction of structural and dynamical properties. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently. Moreover, the MD simulation results allow us to visualize the molecular structure and dynamics by comparing the accurately calculated spectrum with experimental result.

  10. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  11. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  12. Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model

    NASA Astrophysics Data System (ADS)

    Koči, L.; Bringa, E. M.; Ivanov, D. S.; Hawreliak, J.; McNaney, J.; Higginbotham, A.; Zhigilei, L. V.; Belonoshko, A. B.; Remington, B. A.; Ahuja, R.

    2006-07-01

    Using nonequilibrium molecular dynamics (MD) simulations we study shock-induced melting in Ni with an embedded atom method (EAM). Dynamic melting is probed by the pair correlation function, and we find a melting lattice temperature of Tmelt=6400±300K for a melting pressure of Pmelt=275±10GPa . When a combined MD+TTM (two-temperature model) approach is used to include electronic heat conduction and electron-phonon coupling, Pmelt and Tmelt change. For a given pressure, the temperature behind the shock decreases due to electronic heat diffusion into the cold, unshocked material. This cooling of the material behind the shock slightly increases the melting pressure compared to simulations without electronic heat conduction and electron-phonon coupling. The decrease in the temperature behind the shock front is enhanced if the electron-phonon coupling is artificially made larger. We also explore the feasibility of using x-ray diffraction to detect melting.

  13. Thermal conductance of carbon nanotube contacts: Molecular dynamics simulations and general description of the contact conductance

    NASA Astrophysics Data System (ADS)

    Salaway, Richard N.; Zhigilei, Leonid V.

    2016-07-01

    The contact conductance of carbon nanotube (CNT) junctions is the key factor that controls the collective heat transfer through CNT networks or CNT-based materials. An improved understanding of the dependence of the intertube conductance on the contact structure and local environment is needed for predictive computational modeling or theoretical description of the effective thermal conductivity of CNT materials. To investigate the effect of local structure on the thermal conductance across CNT-CNT contact regions, nonequilibrium molecular dynamics (MD) simulations are performed for different intertube contact configurations (parallel fully or partially overlapping CNTs and CNTs crossing each other at different angles) and local structural environments characteristic of CNT network materials. The results of MD simulations predict a stronger CNT length dependence present over a broader range of lengths than has been previously reported and suggest that the effect of neighboring junctions on the conductance of CNT-CNT junctions is weak and only present when the CNTs that make up the junctions are within the range of direct van der Waals interaction with each other. A detailed analysis of the results obtained for a diverse range of intertube contact configurations reveals a nonlinear dependence of the conductance on the contact area (or number of interatomic intertube interactions) and suggests larger contributions to the conductance from areas of the contact where the density of interatomic intertube interactions is smaller. An empirical relation accounting for these observations and expressing the conductance of an arbitrary contact configuration through the total number of interatomic intertube interactions and the average number of interatomic intertube interactions per atom in the contact region is proposed. The empirical relation is found to provide a good quantitative description of the contact conductance for various CNT configurations investigated in the MD

  14. Effect of surface roughness and size of beam on squeeze-film damping—Molecular dynamics simulation study

    SciTech Connect

    Kim, Hojin; Strachan, Alejandro

    2015-11-28

    We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with prior direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.

  15. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures

    PubMed Central

    šponer, Jiří; Cang, Xiaohui; Cheatham, Thomas E.

    2013-01-01

    The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids. PMID:22525788

  16. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons.

    PubMed

    Liu, Hao; Zhang, Yin; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X T

    2017-02-01

    We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D_{2} molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.

  17. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Zhang, Yin; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X. T.

    2017-02-01

    We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007), 10.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D2 molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.

  18. Dual control cell reaction ensemble molecular dynamics: A method for simulations of reactions and adsorption in porous materials

    NASA Astrophysics Data System (ADS)

    Lísal, Martin; Brennan, John K.; Smith, William R.; Siperstein, Flor R.

    2004-09-01

    We present a simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing in a porous material. The method is a combination of the reaction ensemble Monte Carlo method and the dual control volume grand canonical molecular dynamics technique. The method, termed the dual control cell reaction ensemble molecular dynamics method, allows for the calculation of both equilibrium and nonequilibrium transport properties in porous materials such as diffusion coefficients, permeability, and mass flux. Control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the thermodynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane reaction within a nanoscale reactor model in the presence of a semipermeable membrane that was modeled as a porous material similar to silicalite. We studied the effects of the membrane structure and porosity on the reaction species permeability by considering three different membrane models. We also studied the effects of an imposed pressure gradient across the membrane on the mass flux of the reaction species. Conversion of syngas (H2/CO) increased significantly in all the nanoscale membrane reactor models considered. A brief discussion of further potential applications is also presented.

  19. Dual control cell reaction ensemble molecular dynamics: a method for simulations of reactions and adsorption in porous materials.

    PubMed

    Lisal, Martin; Brennan, John K; Smith, William R; Siperstein, Flor R

    2004-09-08

    We present a simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing in a porous material. The method is a combination of the reaction ensemble Monte Carlo method and the dual control volume grand canonical molecular dynamics technique. The method, termed the dual control cell reaction ensemble molecular dynamics method, allows for the calculation of both equilibrium and nonequilibrium transport properties in porous materials such as diffusion coefficients, permeability, and mass flux. Control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the thermodynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane reaction within a nanoscale reactor model in the presence of a semipermeable membrane that was modeled as a porous material similar to silicalite. We studied the effects of the membrane structure and porosity on the reaction species permeability by considering three different membrane models. We also studied the effects of an imposed pressure gradient across the membrane on the mass flux of the reaction species. Conversion of syngas (H2/CO) increased significantly in all the nanoscale membrane reactor models considered. A brief discussion of further potential applications is also presented.

  20. Estimation of tangential momentum accommodation coefficient using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Finger, George Wayne

    The Tangential Momentum Accommodation Coefficient (TMAC) is used to improve the accuracy of fluid flow calculations in the slip flow regime. Under such conditions the continuum assumption that a fluid velocity at a solid surface is equal to the surface velocity is inaccurate because relatively significant fluid "slip" occurs at the surface. In this work, Molecular Dynamics techniques are used to study the impacts of individual gas atoms upon solid surfaces to understand how approach velocity, crystal geometry and interatomic forces affect the scattering of the gas atoms, specifically from the perspective of tangential momentum. The gas - solid impacts were modeled using Lennard Jones potentials. Solid surfaces were modeled with approximately 3 atoms wide by 3 atoms deep by 40 or more atoms long. The crystal surface was modeled as a Face Centered Cubic (100). The gas was modeled as individual free gas atoms. Gas approach angles were varied from 10° to 70° from normal. Gas speed was either specified directly or by way of a ratio relationship with the Lennard-Jones energy potential (Energy Ratio). For each impact the initial and final tangential momenta were determined and after a series of many impacts, a value of TMAC was calculated for those conditions. The modeling was validated with available experimental data for He gas atoms at 1770 m/s impacting Cu over angles ranging from 10° to 70°. The model agreed within 3% of the experimental values and correctly predicted that the coefficient changes with angle of approach. Molecular Dynamics results estimate TMAC values from a high of 1.2 to a low of 0.25, generally estimating a higher coefficient at the smaller angles. TMAC values above 1.0 indicate backscattering, which has been experimentally observed in numerous instances. Increasing the Energy Ratio above a value of 5 tends to decrease the coefficient at all angles. Adsorbed layers atop a surface influence the coefficient similar to their Energy Ratio. The

  1. Hypercrosslinked polystyrene networks: An atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure

    SciTech Connect

    Lazutin, A. A.; Glagolev, M. K.; Vasilevskaya, V. V.; Khokhlov, A. R.

    2014-04-07

    An algorithm involving classical molecular dynamics simulations with mapping and reverse mapping procedure is here suggested to simulate the crosslinking of the polystyrene dissolved in dichloroethane by monochlorodimethyl ether. The algorithm comprises consecutive stages: molecular dynamics atomistic simulation of a polystyrene solution, the mapping of atomistic structure onto coarse-grained model, the crosslink formation, the reverse mapping, and finally relaxation of the structure dissolved in dichloroethane and in dry state. The calculated values of the specific volume and the elastic modulus are in reasonable quantitative correspondence with experimental data.

  2. Molecular dynamics simulation of the burning front propagation in PETN

    NASA Astrophysics Data System (ADS)

    Yanilkin, A. V.; Sergeev, O. V.

    2014-05-01

    One of the models of detonation development in condensed explosives under shock loading is the concept of "hot spots." According to this model, the reaction initially starts at various defects and inhomogeneities, where energy is localized during shock wave propagation. In such a region the reaction may start and the heat flux sufficient for the ignition of the adjacent layers of matter may be formed. If the reaction propagates fast enough, the merging of the burning fronts from several hot spots may lead to detonation. So there is an interest in determining the burning propagation rate from the hot spot in various conditions. In this work we investigate the propagation of plane burning front from initially heated layer in PETN single crystal using molecular dynamics method with the reactive force field (ReaxFF). The burning rate depends on the direction in crystal. The kinetics of chemical transformations is considered. The dependence of the burning front propagation rate along [100] direction on the external pressure in the pressure range from normal to 30 GPa is calculated, it is shown that it grows linearly in the considered range from 50 m/s to 320 m/s. The results are compared with the data from experiments and quantum chemical calculations.

  3. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-06-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  4. Molecular dynamics simulation of the burning front propagation in PETN

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Sergeev, Oleg; Computational materials science Team

    2013-06-01

    One of the models of detonation development in condensed explosives under shock loading is the concept of ``hot spots.'' According to this model, the reaction initially starts at various defects and inhomogeneities, where energy is localized during shock wave propagation. In such a region the exothermic reaction may start with heat yield sufficient for the ignition of the adjacent layers of matter. If the reaction propagates fast enough, the merging of the burning fronts from several hot spots may lead to detonation. So there is an interest in determining the burning propagation rate from the hot spot in various conditions. In this work we investigate the propagation of plane burning front from initially heated layer in PETN single crystal using molecular dynamics method with reaction force field (ReaxFF). It is shown that the burning rate depends on the direction in crystal. The kinetics of chemical transformations is considered, main reaction paths are determined. The dependence of the burning front propagation rate on the external pressure in the pressure range of normal to 30 GPa is calculated, it is shown that it grows linearly in the considered range from 50 m/s to 320 m/s. The results are compared with the data from experiments and quantum chemical calculations.

  5. Molecular dynamics simulations of a membrane protein/amphipol complex.

    PubMed

    Perlmutter, Jason D; Popot, Jean-Luc; Sachs, Jonathan N

    2014-10-01

    Amphipathic polymers known as "amphipols" provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical approaches. Given the sensitivity of membrane proteins to their environment, it is important to examine what effects amphipols may have on the structure and dynamics of the proteins they complex. Here we present the first molecular dynamics study of an amphipol-stabilized membrane protein, using Escherichia coli OmpX as a model. We begin by describing the structure of the complexes formed by supplementing OmpX with increasing amounts of A8-35, in order to determine how the amphipol interacts with the transmembrane and extramembrane surfaces of the protein. We then compare the dynamics of the protein in either A8-35, a detergent, or a lipid bilayer. We find that protein dynamics on all accessible length scales is restrained by A8-35, which provides a basis to understanding some of the stabilizing and functional effects of amphipols that have been experimentally observed.

  6. Molecular dynamics simulation of anionic clays containing glutamic acid

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Ni, Zheming; Yao, Ping; Li, Yuan

    2010-08-01

    Supra-molecular structure of glutamic acid intercalated ZnAl layered double hydroxides (Glu-ZnAl-LDH) was modeled by molecular dynamics (MD) methods. Hydrogen bonding, hydration and swelling properties of Glu-LDH have been investigated. For Nw < 8, interlayer spacing dc increased slowly. For Nw ⩾ 8, the variation of dc followed the linear equation dc = 0.432 Nw + 8.837 ( R2 = 0.9983). The hydration energy gradually increased as water content increased until Nw = 36. Glu-LDH exhibited a tendency to adsorb water continuously at high water content. Hydration of Glu-LDH occurred as follows: Water molecules initially formed hydrogen bond with layers and anions. When A-W type H-bonds gradually reached a saturation state, water molecules continued to form hydrogen bonds with the hydroxyls of the layers. The L-W type H-bonds gradually substituted the L-A type H-bonds and Glu anions moved to the center of an interlayer and then separated with the layers. Last, a well-ordered structural water layer was formed on the surface hydroxyls of Glu-LDH. The lower releasing content of Glu-LDH maybe was influenced by the lower balance hydration energy and existence of L-A type H-bonds in high water content.

  7. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    PubMed

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  8. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Landry, E. S.; McGaughey, A. J. H.

    2009-10-01

    The accuracies of two theoretical expressions for thermal boundary resistance are assessed by comparing their predictions to independent predictions from molecular dynamics (MD) simulations. In one expression (RE) , the phonon distributions are assumed to follow the equilibrium, Bose-Einstein distribution, while in the other expression (RNE) , the phonons are assumed to have nonequilibrium, but bulk-like distributions. The phonon properties are obtained using lattice dynamics-based methods, which assume that the phonon interface scattering is specular and elastic. We consider (i) a symmetrically strained Si/Ge interface, and (ii) a series of interfaces between Si and “heavy-Si,” which differs from Si only in mass. All of the interfaces are perfect, justifying the assumption of specular scattering. The MD-predicted Si/Ge thermal boundary resistance is temperature independent and equal to 3.1×10-9m2-K/W below a temperature of ˜500K , indicating that the phonon scattering is elastic, as required for the validity of the theoretical calculations. At higher-temperatures, the MD-predicted Si/Ge thermal boundary resistance decreases with increasing temperature, a trend we attribute to inelastic scattering. For the Si/Ge interface and the Si/heavy-Si interfaces with mass ratios greater than two, RE is in good agreement with the corresponding MD-predicted values at temperatures where the interface scattering is elastic. When applied to a system containing no interface, RE is erroneously nonzero due to the assumption of equilibrium phonon distributions on either side of the interface. While RNE is zero for a system containing no interface, it is 40%-60% less than the corresponding MD-predicted values for the Si/Ge interface and the Si/heavy-Si interfaces at temperatures where the interface scattering is elastic. This inaccuracy is attributed to the assumption of bulk-like phonon distributions on either side of the interface.

  9. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  10. Molecular dynamics simulation of coarse grained models of gel and proteins

    NASA Astrophysics Data System (ADS)

    Takasu, Masako; Sugiyama, Hiromu; Hirata, Yosuke; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota

    2015-12-01

    Polymers and proteins have both similarities and differences with conformation and order formation. We perform molecular dynamics simulation of gelation process and also of aggregation of proteins. By discussing the results of the simulation, we obtain some insight into the difference of order formation of polymers and proteins.

  11. Ab initio molecular dynamics simulations of a binary system of ionic liquids.

    PubMed

    Brüssel, Marc; Brehm, Martin; Voigt, Thomas; Kirchner, Barbara

    2011-08-14

    This work presents first insights into the structural properties of a binary mixture of ionic liquids from the perspective of ab initio molecular dynamics simulations. Simulations were carried out for a one-to-one mixture of 1-ethyl-3-methyl-imidazolium thiocyanate and 1-ethyl-3-methyl-imidazolium chloride and compared to pure 1-ethyl-3-methyl-imidazolium thiocyanate.

  12. Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture

    SciTech Connect

    Feng, Wei; Xu, Luting; Li, Xin-Qi; Fang, Weihai; Yan, YiJing

    2014-07-15

    Mixed-quantum-classical molecular dynamics simulation implies an effective quantum measurement on the electronic states by the classical motion of atoms. Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.

  13. A Modified Shake Algorithm for Maintaining Rigid Bonds in Molecular Dynamics Simulations of Large Molecules

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Boris, J. P.; Oran, E. S.; Chandrasekhar, I.; Nagumo, M.

    1989-12-01

    We present a new modification of the SHAKE algorithm, MSHAKE, that maintains fixed distances in molecular dynamics simulations of polyatomic molecules. The MSHAKE algorithm, which is applied by modifying the leapfrog algorithm to include forces of constraint, computes an initial estimate of constraint forces, then iteratively corrects the constraint forces required to maintain the fixed distances. Thus MSHAKE should always converge more rapidly than SHAKE. Further, the explicit determination of the constraint forces at each timestep makes MSHAKE convenient for use in molecular dynamics simulations where bond stress is a significant dynamical quantity.

  14. Molecular dynamics simulations of simple fluids confined in realistic models of nanoporous carbons

    NASA Astrophysics Data System (ADS)

    Pikunic, J.; Gubbins, K. E.

    2003-09-01

    We present molecular dynamics simulations in the micro-canonical ensemble of a Lennard-Jones model of nitrogen confined in realistic models for saccharose-based carbons developed in our previous work. We calculate the velocity autocorrelation function and mean-squared displacement, and the self-diffusivities from the latter. We observe that the self-diffusivity increases with temperature and exhibits a maximum with loading or adsorbate density. To the best of our knowledge, a maximum in self-diffusivities has not been observed in molecular dynamics simulations of fluids confined in slit pores.

  15. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…

  16. Nanoscale heat transport via electrons and phonons by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hua

    Nanoscale heat transport has become a crucial research topic due to the growing importance of nanotechnology for manufacturing, energy conversion, medicine and electronics. Thermal transport properties at the nanoscale are distinct from the macroscopic ones since the sizes of nanoscale features, such as free surfaces and interfaces, are comparable to the wavelengths and mean free paths of the heat carriers (electrons and phonons), and lead to changes in thermal transport properties. Therefore, understanding how the nanoscale features and energy exchange between the heat carriers affect thermal transport characteristics are the goals of this research. Molecular dynamics (MD) is applied in this research to understand the details of nanoscale heat transport. The advantage of MD is that the size effect, anharmonicity, atomistic structure, and non-equilibrium behavior of the system can all be captured since the dynamics of atoms are described explicitly in MD. However, MD neglects the thermal role of electrons and therefore it is unable to describe heat transport in metal or metal-semiconductor systems accurately. To address this limitation of MD, we develop a method to simulate electronic heat transport by implementing electronic degrees of freedom to MD. In this research, nanoscale heat transport in semiconductor, metal, and metal-semiconductor systems is studied. Size effects on phonon thermal transport in SiGe superlattice thin films and nanowires are studied by MD. We find that, opposite to the macroscopic trend, superlattice thin films can achieve lower thermal conductivity than nanowires at small scales due to the change of phonon nature caused by adjusting the superlattice periodic length and specimen length. Effects of size and electron-phonon coupling rate on thermal conductivity and thermal interface resistivity in Al and model metal-semiconductor systems are studied by MD with electronic degrees of freedom. The results show that increasing the specimen

  17. Emergence of hydrogen bonds from molecular dynamics simulation of substituted N-phenylthiourea-catechol oxidase complex.

    PubMed

    Park, Kyung-Lae

    2017-01-01

    A series of N-phenylthiourea derivatives was built starting from the X-ray structure in the molecular mechanics framework and the interaction profile in the complex with the catechol oxidase was traced using molecular dynamics simulation. The results showed that the geometry and interactions between ligand and receptor were highly related to the position of the substituted side chains of phenyl moiety. At the end of molecular dynamics run, a concentrated multicenter hydrogen bond was created between the substituted ligand and receptor. The conformation of the ligand itself were also restricted in the receptor pocket. Furthermore, the simulation time of 50 ns were found to be long enough to explore the relevant conformational space and the stationary behavior of the molecular dynamic could be observed.

  18. First Principals and Classical Molecular Dynamics Simulations of Solvated Benzene

    SciTech Connect

    Allesch, M; Lightstone, F; Schwegler, E; Galli, G

    2007-09-11

    We have performed extensive ab initio and classical MD simulations of benzene in water in order to examine the unique solvation structures that are formed. Qualitative differences between classical and ab initio MD simulations are found and the importance of various technical simulation parameters is examined. Our comparison indicates that non-polarizable classical models are not capable of describing the solute-water interface correctly if local interactions become energetically comparable to water hydrogen bonds. In addition, a comparison is made between a rigid water model and fully flexible water within ab initio MD simulations which shows that both models agree qualitatively for this challenging system.

  19. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  20. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  1. Force field parameters for S-nitrosocysteine and molecular dynamics simulations of S-nitrosated thioredoxin.

    PubMed

    Han, Sanghwa

    2008-12-12

    Estimation of structural perturbation induced by S-nitrosation is important to understand the mode of cellular signal transduction mediated by nitric oxide. Crystal structures of S-nitrosated proteins have been solved only for a few cases, however, so that molecular dynamics simulation may provide an alternative tool for probing structural perturbation. In this study AMBER-99 force field parameters for S-nitrosocysteine were developed and applied to molecular dynamics simulations of S-nitrosated thioredoxin. Geometry optimization at the level of HF/6-31G * was followed by a restrained electrostatic potential charge-fitting to obtain the atomic charges of S-nitrosocysteine. Force constants for bonds and angles were obtained from generalized AMBER force field. Torsional force constants for CC-SN and CS-NO were determined by fitting the torsional profiles obtained from geometry optimization with those from molecular mechanical energy minimization. Finally molecular dynamics simulations were performed with theses parameters on oxidized and reduced thioredoxin with and without S-nitrosocysteine. In all cases the root-mean-square deviations of alpha-carbons yielded well-behaved trajectories. The CC-SH dihedral angle which fluctuated severely during the simulation became quiet upon S-nitrosation. In conclusion the force field parameters developed in this study for S-nitrosocysteine appear to be suitable for molecular dynamics simulations of S-nitrosated proteins.

  2. Infinite swapping replica exchange molecular dynamics leads to a simple simulation patch using mixture potentials.

    PubMed

    Lu, Jianfeng; Vanden-Eijnden, Eric

    2013-02-28

    Replica exchange molecular dynamics (REMD) becomes more efficient as the frequency of swap between the temperatures is increased. Recently Plattner et al. [J. Chem. Phys. 135, 134111 (2011)] proposed a method to implement infinite swapping REMD in practice. Here we introduce a natural modification of this method that involves molecular dynamics simulations over a mixture potential. This modification is both simple to implement in practice and provides a better, energy based understanding of how to choose the temperatures in REMD to optimize efficiency. It also has implications for generalizations of REMD in which the swaps involve other parameters than the temperature.

  3. Global and local properties used as analyses tools for molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Anderson, Jonas T.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Schiffbauer, Jarrod E.; Burky, Melissa R.; Ducatman, Samuel C.; Guffey, Eric J.; Serrano Ramos2, Fernando

    2006-03-01

    Molecular dynamics simulations have been used to study mechanical failure in realistic interface materials. Averaging over the individual atoms' contributions yields local and global information including displacements, bond angles, strains, stress tensor components, and pair distribution functions. A combined analysis of global and local properties facilitates detailed insight in the mechanisms of failure, which will eventually guide on how to prevent failure of interfaces.

  4. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    SciTech Connect

    Liu, Xiang-Yang; Andersson, Anders David

    2016-11-07

    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  5. Discussion of "A Molecular Dynamics Simulation Study of the Cavitation Pressure in Liquid Al"

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2013-03-01

    The recent report by Hoyt and Potter using molecular dynamics to simulate cavitation in liquid aluminum selects an unusually low value for the interatomic potential, which leads to an unusually low value for the tensile strength of liquid Al. A revised value for the interatomic potential results in a cavitation pressure consistent with other estimates of this parameter.

  6. 27ps DFT Molecular Dynamics Simulation of a-maltose: A Reduced Basis Set Study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DFT molecular dynamics simulations are time intensive when carried out on carbohydrates such as alpha-maltose, requiring up to three or more weeks on a fast 16-processor computer to obtain just 5ps of constant energy dynamics. In a recent publication [1] forces for dynamics were generated from B3LY...

  7. Early stage of critical clusters growth in phenomenological and molecular dynamics simulation models

    NASA Astrophysics Data System (ADS)

    Puzyrewski, Romuald; Rybicki, Jarosław; Białoskórski, Michał

    2006-12-01

    The growth of critical clusters is discussed in the paper according to the classical and molecular dynamics (MD) approaches. A new formula for molecule numbers in critical clusters has been derived within the framework of the classical approach. A set of equations controlling the early stage of growth in a neighborhood of a critical size is presented. As far as molecular dynamics simulation is concerned, a computational technique based on the DL_POLY code is described in brief. Computation results are presented concerning cluster formation of H 2O vapor, distribution of clusters versus time, cluster growth and radial density distribution of isolated clusters. A comparison with the classical results is made for a case of dense vapor, where the mechanism of strong condensation is predominant. The Hertz-Knudsen formula seems to be verified by the molecular dynamics results.

  8. Comparative study on methodology in molecular dynamics simulation of nucleation

    NASA Astrophysics Data System (ADS)

    Julin, Jan; Napari, Ismo; Vehkamäki, Hanna

    2007-06-01

    Gas-liquid nucleation of 1000 Lennard-Jones atoms is simulated to evaluate temperature regulation methods and methods to obtain nucleation rate. The Berendsen and the Andersen thermostats are compared. The Berendsen thermostat is unable to control the temperature of clusters larger than the critical size. Independent of the thermostating method the velocities of individual atoms and the translational velocities of clusters up to at least six atoms are accurately described by the Maxwell velocity distribution. Simulations with the Andersen thermostat yield about two times higher nucleation rates than those with the Berendsen thermostat. Nucleation rate is extracted from the simulations by direct observation of times of nucleation onset and by the method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)]. Compared to the direct observation, the nucleation rates obtained from the method of Yasuoka and Matsumoto are higher by a factor of 3.

  9. Mechanical properties of lipid bilayers from molecular dynamics simulation

    PubMed Central

    Venable, Richard M.; Brown, Frank L.H.; Pastor, Richard W.

    2015-01-01

    Lipid areas (Aℓ), bilayer area compressibilities (KA), bilayer bending constants (KC), and monolayer spontaneous curvatures (c0) from simulations using the CHARMM36 force field are reported for 12 representative homogenous lipid bilayers. Aℓ (or their surrogate, the average deuterium order parameter in the “plateau region” of the chain) agree very well with experiment, as do the KA. Simulated KC are in near quantitative agreement with vesicle flicker experiments, but are somewhat larger than KC from x-ray, pipette aspiration, and neutron spin echo for saturated lipids. Spontaneous curvatures of bilayer leaflets from the simulations are approximately 30% smaller than experimental values of monolayers in the inverse hexagonal phase. PMID:26238099

  10. Anisotropic atomic motions in high-resolution protein crystallography molecular dynamics simulations.

    PubMed

    Burden, Conrad J; Oakley, Aaron J

    2007-06-11

    Molecular dynamics (MD) simulations using empirical force fields are popular for the study of proteins. In this work, we compare anisotropic atomic fluctuations in nanosecond-timescale MD simulations with those observed in an ultra-high-resolution crystal structure of crambin. In order to make our comparisons, we have developed a compact graphical technique for assessing agreement between spatial atomic distributions determined by MD simulations and observed anisotropic temperature factors.

  11. Molecular Dynamics Simulations to Clarify the Concentration Dependency of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Nishikawa, Naohiro; Sakae, Yoshitake; Okamoto, Yuko

    We examined the concentration dependency of amyloid protein aggregation by using several molecular dynamics simulations, which were performed with different concentrations for each system. For these simulations, we used a fragment of amyloid-β, which is believed to be the cause of Alzheimer's disease, as our simulation system. We found that high concentration of amyloid peptides promotes the formation of β-structures which is the origin of amyloid fibrils.

  12. Simulation of the 2-dimensional Drude’s model using molecular dynamics method

    SciTech Connect

    Naa, Christian Fredy; Amin, Aisyah; Ramli,; Suprijadi,; Djamal, Mitra; Wahyoedi, Seramika Ari; Viridi, Sparisoma

    2015-04-16

    In this paper, we reported the results of the simulation of the electronic conduction in solids. The simulation is based on the Drude’s models by applying molecular dynamics (MD) method, which uses the fifth-order predictor-corrector algorithm. A formula of the electrical conductivity as a function of lattice length and ion diameter τ(L, d) cand be obtained empirically based on the simulation results.

  13. An Undergraduate Laboratory Activity on Molecular Dynamics Simulations

    ERIC Educational Resources Information Center

    Spitznagel, Benjamin; Pritchett, Paige R.; Messina, Troy C.; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we…

  14. Molecular dynamics algorithm enforcing energy conservation for microcanonical simulations.

    PubMed

    Salueña, Clara; Avalos, Josep Bonet

    2014-05-01

    A reversible algorithm [enforced energy conservation (EEC)] that enforces total energy conservation for microcanonical simulations is presented. The key point is the introduction of the discrete-gradient method to define the forces from the conservative potentials, instead of the direct use of the force field at the actual position of the particle. We have studied the performance and accuracy of the EEC in two cases, namely Lennard-Jones fluid and a simple electrolyte model. Truncated potentials that usually induce inaccuracies in energy conservation are used. In particular, the reaction field approach is used in the latter. The EEC is able to preserve energy conservation for a long time, and, in addition, it performs better than the Verlet algorithm for these kinds of simulations.

  15. Molecular dynamics simulations of cesium adsorption on illite nanoparticles.

    PubMed

    Lammers, Laura N; Bourg, Ian C; Okumura, Masahiko; Kolluri, Kedarnath; Sposito, Garrison; Machida, Masahiko

    2017-03-15

    The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs ((134)Cs, (135)Cs, (137)Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer. Our simulation results are broadly consistent with affinities and selectivities that have been inferred from surface complexation models. Cation exchange on the basal planes is thermodynamically ideal, but exchange on edge surfaces and within interlayers shows complex, thermodynamically non-ideal behavior. The basal planes are weakly Cs-selective, while edges and interlayers have much higher affinity for Cs. The dynamics of NaCs exchange are rapid for both cations on the basal planes, but considerably slower for Cs localized on edge surfaces. In addition to new insights into Cs adsorption and exchange with Na on illite, we report the development of a methodology capable of simulating fully-flexible clay mineral nanoparticles with stable edge surfaces using a well-tested interatomic potential model.

  16. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  17. Effectively explore metastable states of proteins by adaptive nonequilibrium driving simulations

    NASA Astrophysics Data System (ADS)

    Wan, Biao; Xu, Shun; Zhou, Xin

    2017-03-01

    Nonequilibrium drivings applied in molecular dynamics (MD) simulations can efficiently extend the visiting range of protein conformations, but might compel systems to go far away from equilibrium and thus mainly explore irrelevant conformations. Here we propose a general method, called adaptive nonequilibrium simulation (ANES), to automatically adjust the external driving on the fly, based on the feedback of the short-time average response of system. Thus, the ANES approximately keeps the local equilibrium but efficiently accelerates the global motion. We illustrate the capability of the ANES in highly efficiently exploring metastable conformations in the deca-alanine peptide and find that the 0.2 -μ s ANES approximately captures the important states and folding and unfolding pathways in the HP35 solution by comparing with the result of the recent 398 -μ s equilibrium MD simulation on Anton [S. Piana et al., Proc. Natl. Acad. Sci. USA 109, 17845 (2012), 10.1073/pnas.1201811109].

  18. Striped gold nanoparticles: New insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Velachi, Vasumathi; Bhandary, Debdip; Singh, Jayant K.; Cordeiro, M. Natália D. S.

    2016-06-01

    Recent simulations have improved our knowledge of the molecular-level structure and hydration properties of mixed self-assembled monolayers (SAMs) with equal and unequal alkyl thiols at three different arrangements, namely, random, patchy, and Janus. In our previous work [V. Vasumathi et al., J. Phys. Chem. C 119, 3199-3209 (2015)], we showed that the bending of longer thiols over shorter ones clearly depends on the thiols' arrangements and chemical nature of their terminal groups. In addition, such a thiol bending revealed to have a strong impact on the structural and hydration properties of SAMs coated on gold nanoparticles (AuNPs). In this paper, we extend our previous atomistic simulation study to investigate the bending of longer thiols by increasing the stripe thickness of mixed SAMs of equal and unequal lengths coated on AuNPs. We study also the effect of stripe thickness on the structural morphology and hydration of the coated SAMs. Our results show that the structural and hydration properties of SAMs are affected by the stripe thickness for mixtures of alkyl thiols with unequal chain length but not for equal length. Hence, the stability of the stripe configuration depends on the alkyl's chain length, the length difference between the thiol mixtures, and solvent properties.

  19. Molecular dynamics simulation of nitric oxide in myoglobin

    USGS Publications Warehouse

    Lee, Myung Won; Meuwly, Markus

    2012-01-01

    The infrared (IR) spectroscopy and ligand migration of photodissociated nitric oxide (NO) in and around the active sites in myoglobin (Mb) are investigated. A distributed multipolar model for open-shell systems is developed and used, which allows one to realistically describe the charge distribution around the diatomic probe molecule. The IR spectra were computed from the trajectories for two conformational substates at various temperatures. The lines are narrow (width of 3–7 cm–1 at 20–100 K), in agreement with the experimental observations where they have widths of 4–5 cm–1 at 4 K. It is found that within one conformational substate (B or C) the splitting of the spectrum can be correctly described compared with recent experiments. Similar to photodissociated CO in Mb, additional substates exist for NO in Mb, which are separated by barriers below 1 kcal/mol. Contrary to full quantum mechanical calculations, however, the force field and mixed QM/MM simulations do not correctly describe the relative shifts between the B- and C-states relative to gas-phase NO. Free energy simulations establish that NO preferably localizes in the distal site and the barrier for migration to the neighboring Xe4 pocket is ΔGB→C = 1.7–2.0 kcal/mol. The reverse barrier is ΔGB←C = 0.7 kcal/mol, which agrees well with the experimental value of 0.7 kcal/mol, estimated from kinetic data.

  20. Molecular dynamics simulation of amorphization in forsterite by cosmic rays

    SciTech Connect

    Devanathan, Ram; Durham, Philip; Du, Jincheng; Corrales, Louis R.; Bringa, Eduardo M.

    2007-02-16

    We have examined cosmic ray interactions with silicate dust grains by simulating a thermal spike in a 1.25 million atom forsterite (Mg2SiO4) crystal with periodic boundaries. Spikes were generated by giving a kinetic energy of 1 or 2 eV to every atom within a cylinder of radius 1.73 nm along the [001] direction. An amorphous track of radius ~3 nm was produced for the 2 eV/atom case, but practically no amorphization was produced for 1 eV/atom because of effective dynamic annealing. Chemical segregation was not observed in the track. These results agree with recent experimental studies of ion irradiation effects in silicates, and indicate that cosmic rays can cause the amorphization of interstellar dust.

  1. Virus capsid dissolution studied by microsecond molecular dynamics simulations.

    PubMed

    Larsson, Daniel S D; Liljas, Lars; van der Spoel, David

    2012-01-01

    Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis.

  2. Calibrating elastic parameters from molecular dynamics simulations of capsid proteins

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Henley, Christopher

    2008-03-01

    Virus capsids are modeled with elastic network models in which a handful of parameters determine transitions in assembly [1] and morphology [2]. We introduce an approach to compute these parameters from the microscopic structure of the proteins involved. We consider each protein as one or a few rigid bodies with very general interactions, which we parameterize by fitting the simulated equilibrium fluctuations (relative translations and rotations) of a pair of proteins (or fragments) to a 6-dimensional Gaussian. We can then compose these generalized springs into the global capsid structure to determine the continuum elastic parameters. We demonstrate our approach on HIV capsid protein and compare our results with the observed lattice structure (from cryo-EM [3] and AFM indentation studies). [1] R. Zandi et al, PNAS 101 (2004) 15556. [2] J. Lidmar, L. Mirny, and D. R. Nelson, PRE 68 (2003) 051910. [3] B. K. Ganser-Pornillos et al, Cell 131 (2007) 70.

  3. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  4. Classical and ab-initio molecular dynamic simulation of an amorphous silica surface

    NASA Astrophysics Data System (ADS)

    Mischler, C.; Kob, W.; Binder, K.

    2002-08-01

    We present the results of a classical molecular dynamic simulation as well as of an ab-initio molecular dynamic simulation of an amorphous silica surface. In the case of the classical simulation we use the potential proposed by van Beest et al. (BKS) whereas the ab-initio simulation is done with a Car-Parrinello method (CPMD). We find that the surfaces generated by BKS have a higher concentration of defects (e.g., concentration of two-membered rings) than those generated with CPMD. In addition also the distribution functions of the angles and of the distances are different for the short rings. Hence we conclude that whereas the BKS potential is able to correctly reproduce the surface on the length scale beyond ≈5 Å, it is necessary to use an ab-initio method to reliably predict the structure at small scales.

  5. Multilevel summation with B-spline interpolation for pairwise interactions in molecular dynamics simulations

    PubMed Central

    Wolff, Matthew A.; Xia, Jianlin; Schulten, Klaus

    2016-01-01

    The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation method (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle–mesh Ewald method falls short. PMID:27004867

  6. Application of molecular dynamics simulations for structural studies of carbon nanotubes.

    PubMed

    Bródka, A; Kołoczek, J; Burian, A

    2007-01-01

    Molecular dynamics studies based on the Brenner-Tersoff second-generation reactive empirical bond order potential and the Lennard-Jones carbon-carbon potential for intra- and inter-layer interactions have been performed for carbon nanotubes. These potentials reproduce reasonably the carbon-carbon distances and inter-layer spacing. The structure factors and the reduced radial distribution functions computed from the cartesian coordinates, resulting from energy minimisation and molecular dynamics simulations at 2 K and 300 K have been obtained for two models of two- and five-wall carbon nanotubes containing defects in the form of five and seven membered carbon rings. The results of computations have been compared with experimental data obtained from neutron and X-ray diffraction. The energy relaxation and the molecular dynamics simulations at 2 K and 300 K with appropriate values of the Debye-Waller factor lead practically to the same results which are in a good agreement with the experimental data indicating that molecular dynamics reproduce all structure features of the investigated carbon nanotubes together with thermal oscillations. Possible applications of this approach for other carbon nanotubes and related materials have been also discussed.

  7. Infrared optical properties of α quartz by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gangemi, Fabrizio; Gangemi, Roberto; Carati, Andrea; Maiocchi, Alberto; Galgani, Luigi

    2016-11-01

    This paper is concerned with theoretical estimates of the refractive-index curves for quartz, obtained by the Kubo formulæ in the classical approximation, through MD simulations for the motions of the ions. Two objectives are considered. The first one is to understand the role of nonlinearities in situations where they are very large, as at the α\\text-β structural phase transition. We show that, on the one hand, they do not play an essential role in connection with the form of the spectra in the infrared. On the other hand, they play an essential role in introducing a chaoticity which involves a definite normal mode. This might explain why that mode is Raman active in the α phase, but not in the β phase. The second objective concerns whether it is possible in a microscopic model to obtain normal mode frequencies, or peak frequencies in the optical spectra, that are in good agreement with the experimental data for quartz. Notwithstanding a lot of effort, we were unable to find results agreeing better than about 6%, as apparently also occurs in the whole available literature. We interpret this fact as indicating that some essential qualitative feature is lacking in all models which consider, as the present one, only short-range repulsive potentials and unretarded long-range electric forces.

  8. Optimization of large amorphous silicon and silica structures for molecular dynamics simulations of energetic impacts

    NASA Astrophysics Data System (ADS)

    Samela, Juha; Norris, Scott A.; Nordlund, Kai; Aziz, Michael J.

    2011-07-01

    A practical method to create optimized amorphous silicon and silica structures for molecular dynamics simulations is developed and tested. The method is based on the Wooten, Winer, and Weaire algorithm and combination of small optimized blocks to larger structures. The method makes possible to perform simulations of either very large cluster hypervelocity impacts on amorphous targets or small displacements induced by low energy ion impacts in silicon.

  9. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation

    SciTech Connect

    Petridis, Loukas; Pingali, Sai Venkatesh; Urban, Volker; Heller, William T; O'Neill, Hugh Michael; Foston, Marcus B; Ragauskas, Arthur J; Smith, Jeremy C

    2011-01-01

    Lignin, a major polymeric component of plant cell walls, forms aggregates in vivo and poses a barrier to cellulosic ethanol production. Here, neutron scattering experiments and molecular dynamics simulations reveal that lignin aggregates are characterized by a surface fractal dimension that is invariant under change of scale from 1 1000 A. The simulations also reveal extensive water penetration of the aggregates and heterogeneous chain dynamics corresponding to a rigid core with a fluid surface.

  10. Simulation of a silica glass from combined classical and ab initio molecular-dynamics

    NASA Astrophysics Data System (ADS)

    Benoit, Magali; Ispas, Simona; Jund, Philippe; Jullien, Rémi

    1999-11-01

    We present structural and electronic characteristics of a vitreous silica glass obtained from combined classical and Car-Parrinello (CP) molecular-dynamics (MD) simulations. The equilibration of the liquid, quench and relaxation of the glass are performed classically using the van Beest et al. (BKS) potential and the resulting configuration is used as input for the CP simulation. A remarkable stability of the CP dynamics is observed justifying this procedure and validating the BKS potential.

  11. Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Namboori, P. K. Krishnan; Vasavi, C. S.; Gopal, K. Varun; Gopakumar, Deepa; Ramachandran, K. I.; Narayanan, B. Sabarish

    2010-10-01

    Nanofluids are nanotechnology-based heat transfer fluids obtained by suspending nanometer-sized particles in conventional heat transfer fluids in a stable manner. In many of the physical phenomena such as boiling and properties such as latent heat, thermal conductivity and heat transfer coefficient, there is significant change on addition of nanoparticles. These exceptional qualities of Nanofluids mainly depend on the atomic level mechanisms, which in turn govern all mechanical properties like strength, Young's modulus, Poisson's ratio, compressibility etc. Control over the fundamental thermo physical properties of the working medium will help to understand these unique phenomena of nanofluids to a great extent. Macroscopic modeling approaches, which are based on conventional relations of thermodynamics, have been proved to be incompetent to explain this difference. Atomistic `modeling and simulation' has been emerged out as an efficient alternative for this. The enhancement of thermal conductivity of water by suspending nanoparticle inclusions has been experimented and proved to be an effective method of enhancing convective heat dissipation. This work mainly deals with characterization of the thermal conductivity of nanofluids. Nano particle sized aluminium oxide; copper oxide and titanium dioxide have been taken in this work for the analysis of thermal conductivity. The effect of thermal conductivity on parameters like volume concentration of the fluid, nature of particle material and size of the particle has been computationally formulated. It has been found that there is an increase in effective thermal conductivity of the fluid by the addition of nanomaterials ascertaining an improvement in the heat transfer behavior of nanofluids. This facilitates the reduction in size of such heat transfer systems (radiators) and lead to increased energy and fuel efficiency, lower pollution and improved reliability.

  12. Molecular dynamics simulations of D2O ice photodesorption

    NASA Astrophysics Data System (ADS)

    Arasa, C.; Andersson, S.; Cuppen, H.; van Dishoeck, E. F.; Kroes, G. J.

    2011-05-01

    We present results of MD calculations performed to study the photodissociation of D2O in an amorphous ice at different ice temperatures in order to investigate isotope effects on the photodesorption processes. In dense interstellar clouds, small dust particles of micrometer silicates are covered by ice mantles, mainly consisting of H2O and also of CO, CO2. Previous MD calculations of H2O ice at Tice=10-90 K show that the photodesorption of H while OH remains trapped is the main outcome in the first three monolayers (MLs). On the other hand, the H and OH photofragments released recombine or are trapped at separate positions in the deeper MLs and can react with other species in the ice. Desorption and trapping probabilities have been calculated following photoexcitation of D2O amorphous ice at 10, 20, 60 and 90 K, and the main conclusions agree with previous calculations of H2O ice. But, the average D photodesorption probability is smaller than that of the H atom, whereas the average OD radical photodesorption probability is larger than that of OH, and the average D2O photodesorption probability is larger than that for H2O due to the D2O kick-out mechanism. The total (OD + D2O) yield has been compared with experiments and the total (OH + H2O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D2O ice than when we compare with calculated yields for H2O ice.

  13. Molecular Dynamics Simulations of the Thermal Conductivity of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, M.; Srivastava, Deepak; Govindan,T. R. (Technical Monitor)

    2000-01-01

    Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.

  14. Conformational properties of penicillins: quantum chemical calculations and molecular dynamics simulations of benzylpenicillin.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L

    2003-11-30

    Herein, we present theoretical results on the conformational properties of benzylpenicillin, which are characterized by means of quantum chemical calculations (MP2/6-31G* and B3LYP/6-31G*) and classical molecular dynamics simulations (5 ns) both in the gas phase and in aqueous solution. In the gas phase, the benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group oriented axially is the most favored one. Both intramolecular CH. O and dispersion interactions contribute to stabilize the axial conformer with respect to the equatorial one. In aqueous solution, a molecular dynamics simulation predicts a relative population of the axial:equatorial conformers of 0.70:0.30 in consonance with NMR experimental data. Overall, the quantum chemical calculations as well as the simulations give insight into substituent effects, the conformational dynamics of benzylpenicillin, the frequency of ring-puckering motions, and the correlation of side chain and ring-puckering motions.

  15. Reflecting boundary conditions for classical molecular dynamics simulations of nonideal plasmas

    NASA Astrophysics Data System (ADS)

    Lavrinenko, Ya S.; Morozov, I. V.; Valuev, I. A.

    2016-11-01

    The influence of boundary conditions on results of the classical molecular dynamics simulations of nonideal electron-ion plasma is analyzed. A comprehensive study is performed for the convergence of per-particle potential energy and pressure with the number of particles using both the nearest image method (periodic boundaries) and harmonic reflective boundaries. As a result an error caused by finiteness of the simulation box is estimated. Moreover the electron oscillations given by the spectra of the current autocorrelation function are analyzed for both types of the boundary conditions. Nonideal plasmas with the nonideality parameter in range 0.26-2.6 is considered. To speed up the classical molecular dynamics simulations the graphics accelerators code is used.

  16. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  17. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    PubMed

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  18. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-09-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  19. Theoretical studies of amorphous silicon and hydrogenated amorphous silicon with molecular dynamics simulations

    SciTech Connect

    Kwon, I.

    1991-12-20

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have been studied with molecular dynamics simulations. The structural, vibrational, and electronic properties of these materials have been studied with computer-generated structural models and compare well with experimental observations. The stability of a-si and a-Si:H have been studied with the aim of understanding microscopic mechanisms underlying light-induced degradation in a-Si:H (the Staebler-Wronski effect). With a view to understanding thin film growth processes, a-Si films have been generated with molecular dynamics simulations by simulating the deposition of Si-clusters on a Si(111) substrate. A new two- and three-body interatomic potential for Si-H interactions has been developed. The structural properties of a-Si:H networks are in good agreement with experimental measurements. The presence of H atoms reduces strain and disorder relative to networks without H.

  20. Molecular Dynamics Simulation of Electron-Ion Temperature Relaxation in Dense Hydrogen: Electronic Quantum Effects

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Dai, Jiayu; Zhao, Zengxiu

    2016-10-01

    The electron-ion temperature relaxation is an important non-equilibrium process in the generation of dense plasmas, particularly in Inertial Confinement Fusion. Classical molecular dynamics considers electrons as point charges, ignoring important quantum processes. We use an Electron Force Field (EFF) method to study the temperature relaxation processes, considering the nuclei as semi-classical point charges and assume electrons as Gaussian wave packets which includes the influences of the size and the radial motion of electrons. At the same time, a Pauli potential is used to describe the electronic exchange effect. At this stage, quantum effects such as exchange, tunneling can be included in this model. We compare the results from EFF and classical molecular dynamics, and find that the relaxation time is much longer with including quantum effects, which can be explained directly by the deference of collision cross sections between quantum particles and classical particles. Further, the final thermal temperature of electron and ion is different compared with classical results that the electron quantum effects cannot be neglected.

  1. Ensemble Sampling vs. Time Sampling in Molecular Dynamics Simulations of Thermal Conductivity

    SciTech Connect

    Gordiz, Kiarash; Singh, David J.; Henry, Asegun

    2015-01-29

    In this report we compare time sampling and ensemble averaging as two different methods available for phase space sampling. For the comparison, we calculate thermal conductivities of solid argon and silicon structures, using equilibrium molecular dynamics. We introduce two different schemes for the ensemble averaging approach, and show that both can reduce the total simulation time as compared to time averaging. It is also found that velocity rescaling is an efficient mechanism for phase space exploration. Although our methodology is tested using classical molecular dynamics, the ensemble generation approaches may find their greatest utility in computationally expensive simulations such as first principles molecular dynamics. For such simulations, where each time step is costly, time sampling can require long simulation times because each time step must be evaluated sequentially and therefore phase space averaging is achieved through sequential operations. On the other hand, with ensemble averaging, phase space sampling can be achieved through parallel operations, since each ensemble is independent. For this reason, particularly when using massively parallel architectures, ensemble sampling can result in much shorter simulation times and exhibits similar overall computational effort.

  2. Ensemble Sampling vs. Time Sampling in Molecular Dynamics Simulations of Thermal Conductivity

    DOE PAGES

    Gordiz, Kiarash; Singh, David J.; Henry, Asegun

    2015-01-29

    In this report we compare time sampling and ensemble averaging as two different methods available for phase space sampling. For the comparison, we calculate thermal conductivities of solid argon and silicon structures, using equilibrium molecular dynamics. We introduce two different schemes for the ensemble averaging approach, and show that both can reduce the total simulation time as compared to time averaging. It is also found that velocity rescaling is an efficient mechanism for phase space exploration. Although our methodology is tested using classical molecular dynamics, the ensemble generation approaches may find their greatest utility in computationally expensive simulations such asmore » first principles molecular dynamics. For such simulations, where each time step is costly, time sampling can require long simulation times because each time step must be evaluated sequentially and therefore phase space averaging is achieved through sequential operations. On the other hand, with ensemble averaging, phase space sampling can be achieved through parallel operations, since each ensemble is independent. For this reason, particularly when using massively parallel architectures, ensemble sampling can result in much shorter simulation times and exhibits similar overall computational effort.« less

  3. Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Norman, Paul Erik

    The goal of this work is to model the heterogeneous recombination of atomic oxygen on silica surfaces, which is of interest for accurately predicting the heating on vehicles traveling at hypersonic speeds. This is accomplished by creating a finite rate catalytic model, which describes recombination with a set of elementary gas-surface reactions. Fundamental to a description of surface catalytic reactions are the in situ chemical structures on the surface where recombination can occur. Using molecular dynamics simulations with the Reax GSISiO potential, we find that the chemical sites active in direct gas-phase reactions on silica surfaces consist of a small number of specific structures (or defects). The existence of these defects on real silica surfaces is supported by experimental results and the structure and energetics of these defects have been verified with quantum chemical calculations. The reactions in the finite rate catalytic model are based on the interaction of molecular and atomic oxygen with these defects. Trajectory calculations are used to find the parameters in the forward rate equations, while a combination of detailed balance and transition state theory are used to find the parameters in the reverse rate equations. The rate model predicts that the oxygen recombination coefficient is relatively constant at T (300-1000 K), in agreement with experimental results. At T > 1000 K the rate model predicts a drop off in the oxygen recombination coefficient, in disagreement with experimental results, which predict that the oxygen recombination coefficient increases with temperature. A discussion of the possible reasons for this disagreement, including non-adiabatic collision dynamics, variable surface site concentrations, and additional recombination mechanisms is presented. This thesis also describes atomistic simulations with Classical Trajectory Calculation Direction Simulation Monte Carlo (CTC-DSMC), a particle based method for modeling non-equilibrium

  4. A Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices

    PubMed Central

    Hall, Benjamin A; Halim, Khairul Abd; Buyan, Amanda; Emmanouil, Beatrice; Sansom, Mark S P

    2016-01-01

    The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analysed via coarse-grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of family of helix sequences. We illustrate this software via analysis of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analysis of these ensembles of simulations we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application we use CGMD simulations to examine self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase, and analyse the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins. PMID:26580541

  5. OOPSE: an object-oriented parallel simulation engine for molecular dynamics.

    PubMed

    Meineke, Matthew A; Vardeman, Charles F; Lin, Teng; Fennell, Christopher J; Gezelter, J Daniel

    2005-02-01

    OOPSE is a new molecular dynamics simulation program that is capable of efficiently integrating equations of motion for atom types with orientational degrees of freedom (e.g. "sticky" atoms and point dipoles). Transition metals can also be simulated using the embedded atom method (EAM) potential included in the code. Parallel simulations are carried out using the force-based decomposition method. Simulations are specified using a very simple C-based meta-data language. A number of advanced integrators are included, and the basic integrator for orientational dynamics provides substantial improvements over older quaternion-based schemes.

  6. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT

    PubMed Central

    Kirmizialtin, Serdal; Hennelly, Scott P.; Schug, Alexander; Onuchic, Jose N.; Sanbonmatsu, Karissa Y.

    2016-01-01

    Integration and calibration of molecular dynamics simulations with experimental data remains a challenging endeavor. We have developed a novel method to integrate chemical probing experiments with molecular simulations of RNA molecules by using a native structure-based model. Selective 2’-hydroxyl acylation by primer extension (SHAPE) characterizes the mobility of each residue in the RNA. Our method, SHAPE-FIT, automatically optimizes the potential parameters of the forcefield according to measured reactivities from SHAPE. The optimized parameter set allows simulations of dynamics highly consistent with SHAPE probing experiments. Such atomistic simulations, thoroughly grounded in experiment, can open a new window on RNA structure-function relations. PMID:25726467

  7. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method

    SciTech Connect

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree–Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  8. Impact of the timestep in some molecular dynamics simulations on compression of granular systems.

    PubMed

    Tejada, Ignacio G; Jimenez, Rafael

    2014-03-01

    We conduct two-dimensional molecular dynamics simulations to study the statistical distribution of the force-moment (defined as stress multiplied by volume) of static granular packings under external isotropic compression. To that end, we generate packings by compressing initially ordered lattices using irregular, randomly generated, walls. Velocity-Verlet algorithm and linear spring-dashpot interactions are employed. With this specific method, the obtained statistical distributions of the force-moment are similar for different initial packings. However they depend on the timestep selection within a range of values. This shows that inadequate molecular dynamic simulations may provide different classes of solutions for the same physical process, and this could cause problems to validate theoretical approaches based on statistical mechanics.

  9. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis.

    PubMed

    Fattebert, Jean-Luc; Lau, Edmond Y; Bennion, Brian J; Huang, Patrick; Lightstone, Felice C

    2015-12-08

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale first-principles molecular dynamics simulations and applied them to the study of the enzymatic reaction catalyzed by acetylcholinesterase. We carried out density functional theory calculations for a quantum-mechanical (QM) subsystem consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM subsystem is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite-temperature sampling by first-principles molecular dynamics for the acylation reaction of acetylcholine catalyzed by acetylcholinesterase. Our calculations show two energy barriers along the reaction coordinate for the enzyme-catalyzed acylation of acetylcholine. The second barrier (8.5 kcal/mol) is rate-limiting for the acylation reaction and in good agreement with experiment.

  10. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  11. The Effect of Water on the Work of Adhesion at Epoxy Interfaces by Molecular Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Frankland, S.J.V.; Clancy, T.C.

    2009-01-01

    Molecular dynamics simulation can be used to explore the detailed effects of chemistry on properties of materials. In this paper, two different epoxies found in aerospace resins are modeled using molecular dynamics. The first material, an amine-cured tetrafunctional epoxy, represents a composite matrix resin, while the second represents a 177 C-cured adhesive. Surface energies are derived for both epoxies and the work of adhesion values calculated for the epoxy/epoxy interfaces agree with experiment. Adding water -- to simulate the effect of moisture exposure -- reduced the work of adhesion in one case, and increased it in the other. To explore the difference, the various energy terms that make up the net work of adhesion were compared and the location of the added water was examined.

  12. Microsecond molecular dynamics simulations of stress relaxation and slow quench in silica melts and glasses

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.

    2014-03-01

    Quench rates and stress relaxation in molecular dynamics simulations of glasses are usually studied on time-scales which are many orders of magnitude faster that those in experiment. We present results from relaxation of hydrostatic compressive stress in silica glass using classical molecular dynamics simulations. Structural variation will be discussed as a function of quench rate for glasses quenched 2 to 3 orders of magnitude slower than previously reported. Stress relaxation curves plotted in log t show time-temperature superposition holds over a wide-range of temperatures for 3% initial volume compression. Silica melts and glasses were modeled with the BKS interatomic potential and were produced through a melt-quench process. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE PAGES

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  14. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    SciTech Connect

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; Huang, Patrick; Lightstone, Felice C.

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholine catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.

  15. Efficient molecular dynamics simulations of multiple radical center systems based on the fragment molecular orbital method.

    PubMed

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree-Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  16. Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel

    2003-03-01

    SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.

  17. Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations.

    PubMed

    Henry, Eric R; Best, Robert B; Eaton, William A

    2013-10-29

    Advances in computing have enabled microsecond all-atom molecular dynamics trajectories of protein folding that can be used to compare with and test critical assumptions of theoretical models. We show that recent simulations by the Shaw group (10, 11, 14, 15) are consistent with a key assumption of an Ising-like theoretical model that native structure grows in only a few regions of the amino acid sequence as folding progresses. The distribution of mechanisms predicted by simulating the master equation of this native-centric model for the benchmark villin subdomain, with only two adjustable thermodynamic parameters and one temperature-dependent kinetic parameter, is remarkably similar to the distribution in the molecular dynamics trajectories.

  18. Simulations of one- and two-electron systems by Bead-Fourier path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.

    2005-07-01

    The Bead-Fourier path integral molecular dynamics technique introduced earlier [S. D. Ivanov, A. P. Lyubartsev, and A. Laaksonen, Phys. Rev. E 67 066710 (2003)] is applied for simulation of electrons in the simplest molecules: molecular hydrogen, helium atom, and their ions. Special attention is paid to the correct description of electrons in the core region of a nucleus. In an attempt to smooth the Coulomb potential at small distances, a recipe is suggested. The simulation results are in excellent agreement with the analytical solution for the "harmonic helium atom", as well as with the vibrational potential of the H2 molecule and He ionization energies. It is demonstrated, that the Bead-Fourier path integral molecular dynamics technique is able to provide the accuracy required for the description of electron structure and chemical bonds in cases when electron exchange effects need not be taken into account.

  19. Molecular Simulation Of Nonequilibrium Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Schwartzentruber, T. E.; Valentini, P.; Tump, P.

    2011-05-01

    Large-scale conventional time-driven molecular dynamics (MD) simulations of normal shock waves are performed for monatomic argon and argon-helium mixtures. For pure argon, near perfect agreement between MD and direct simulation Monte Carlo (DSMC) results using the variable-hard-sphere model are found for density and temperature profiles as well as for velocity distribution functions throughout the shock. MD simulation results for argon are also in excellent agreement with experimental shock thickness data. Preliminary MD simulation results for argon-helium mixtures are in qualitative agreement with experimental density and temperature profile data, where separation between argon and helium density profiles due to disparate atomic mass is observed. Since conventional time-driven MD simulation of dilute gases is computationally inefficient, a combined Event-Driven/Time-Driven MD algorithm is presented. The ED/TD-MD algorithm computes impending collisions and advances molecules directly to their next collision while evaluating the collision using conventional time-driven MD with an arbitrary interatomic potential. The method timestep thus approaches the mean-collision- time in the gas, while also detecting and simulating multi-body collisions with a small approximation. Extension of the method to diatomic and small polyatomic molecules is detailed, where center-of-mass velocities and extended cutoff radii are used to advance molecules to impend- ing collisions. Only atomic positions are integrated during collisions and molecule sorting algorithms are em- ployed to determine if atoms are bound in a molecule after a collision event. Rotational relaxation to equilibrium for a low density diatomic gas is validated by comparison with large-scale conventional time-driven MD simulation, where the final rotational distribution function is verified to be the correct Boltzmann rotational energy distribution.

  20. Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations

    NASA Astrophysics Data System (ADS)

    Gu, Kai; Watkins, Charles B.; Koplik, Joel

    2010-03-01

    A multiscale hybrid method for coupling the direct simulation Monte Carlo (DSMC) method to the nonequilibrium molecular dynamics (NEMD) method is introduced. The method addresses Knudsen layer type gas flows within a few mean free paths of an interface or about an object with dimensions of the order of a few mean free paths. It employs the NEMD method to resolve nanoscale phenomena closest to the interface along with coupled DSMC simulation of the remainder of the Knudsen layer. The hybrid DSMC/NEMD method is a particle based algorithm without a buffer zone. It incorporates a new, modified generalized soft sphere (MGSS) molecular collision model to improve the poor computational efficiency of the traditional generalized soft sphere GSS model and to achieve DSMC compatibility with Lennard-Jones NEMD molecular interactions. An equilibrium gas, a Fourier thermal flow, and an oscillatory Couette flow, are simulated to validate the method. The method shows good agreement with Maxwell-Boltzmann theory for the equilibrium system, Chapman-Enskog theory for Fourier flow, and pure DSMC simulations for oscillatory Couette flow. Speedup in CPU time of the hybrid solver is benchmarked against a pure NEMD solver baseline for different system sizes and solver domain partitions. Finally, the hybrid method is applied to investigate interaction of argon gas with solid surface molecules in a parametric study of the influence of wetting effects and solid molecular mass on energy transfer and thermal accommodation coefficients. It is determined that wetting effect strength and solid molecular mass have a significant impact on the energy transfer between gas and solid phases and thermal accommodation coefficient.

  1. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation.

    PubMed

    Hasegawa, Taisuke

    2016-11-07

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  2. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Taisuke

    2016-11-01

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  3. Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Schneemilch, M.; Quirke, N.

    2016-11-01

    A novel method is presented for the calculation of adhesion energies of lipid bilayers on solid surfaces from molecular dynamics simulation. We illustrate the method with a fully atomistic model comprising a gold surface and an adsorbed lipid bilayer. We use our technique to scale the lipid-surface interactions to reproduce the experimental value for adsorption of DMPC bilayers on gold surfaces. Finally we estimate the entropic contribution to the free energy change on adsorption of the bilayer.

  4. Quantum and classical molecular dynamics simulation of boron carbide behavior under pressure

    NASA Astrophysics Data System (ADS)

    Korotaev, P.; Kuksin, A.; Pokatashkin, P.; Yanilkin, A.

    2017-01-01

    We present the study of boron carbide behavior under pressure using a multiscale approach. Both quantum and classical molecular dynamics simulations are implemented at this work. Specific phase transitions of boron carbide: chain bending and disordering are discussed and stress-phase diagram is constructed. Interatomic angular dependent potential is obtained. We present a study of grain slipping along amorphous zones, as this phenomenon is to be investigated for the construction of the microscopic model of deformation under shock wave loading.

  5. Molecular dynamics simulation aiming at interfacial characteristics of polymer chains on nanotubes with different layers

    NASA Astrophysics Data System (ADS)

    Li, Kun; Gu, Boqin; Zhu, Wanfu

    2017-03-01

    A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.

  6. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  7. Microstructure of the poiseuille flow in a model nanofluid by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Razmara, N.

    2015-09-01

    The microscopic behavior of nanofluids in the Poiseuille flow in a nanochannel is examined by means of molecular dynamics simulation through visual observations and statistic analysis. For nanofluid flows inside the nanochannel, a clustering effect is observed during the time evolution of the system. The cluster moves along the centerline of the nanochannel due to the maximum velocity in the middle part of the Poiseuille flow. The attractive force is believed to be the primary culprit behind the agglomeration of nanoparticles.

  8. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package.

    PubMed

    Smith, W; Forester, T R

    1996-06-01

    DL_POLY_2.0 is a general-purpose parallel molecular dynamics simulation package developed at Daresbury Laboratory under the auspices of the Council for the Central Laboratory of the Research Councils. Written to support academic research, it has a wide range of applications and is designed to run on a wide range of computers: from single processor workstations to parallel supercomputers. Its structure, functionality, performance, and availability are described.

  9. A Linked-Cell Domain Decomposition Method for Molecular Dynamics Simulation on a Scalable Multiprocessor

    DOE PAGES

    Yang, L. H.; Brooks III, E. D.; Belak, J.

    1992-01-01

    A molecular dynamics algorithm for performing large-scale simulations using the Parallel C Preprocessor (PCP) programming paradigm on the BBN TC2000, a massively parallel computer, is discussed. The algorithm uses a linked-cell data structure to obtain the near neighbors of each atom as time evoles. Each processor is assigned to a geometric domain containing many subcells and the storage for that domain is private to the processor. Within this scheme, the interdomain (i.e., interprocessor) communication is minimized.

  10. Dispersion curves from short-time molecular dynamics simulation. 1. Diatomic chain results

    SciTech Connect

    Noid, D.W.; Broocks, B.T.; Gray, S.K.; Marple, S.L.

    1988-06-16

    The multiple signal classification method (MUSIC) for frequency estimation is used to compute the frequency dispersion curves of a diatomic chain from the time-dependent structure factor. In this paper, the authors demonstrate that MUSIC can accurately determine the frequencies from very short time trajectories. MUSIC is also used to show how the frequencies can vary in time, i.e., along a trajectory. The method is ideally suited for analyzing molecular dynamics simulations of large systems.

  11. Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations.

    PubMed

    Koopman, E A; Lowe, C P

    2006-05-28

    The Lowe-Andersen thermostat is a momentum conserving and Galilean invariant analog of the Andersen thermostat. Like the Andersen thermostat it has the advantage of being local. We show that by using a minimal thermostat interaction radius in a molecular dynamics simulation, it perturbs the system dynamics to a far lesser extent than the Andersen method. This alleviates a well known drawback of the Andersen thermostat by allowing high thermostatting rates without the penalty of significantly suppressed diffusion in the system.

  12. Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at High Temperature

    DTIC Science & Technology

    2007-07-01

    size-scalable cluster approach with SixOy clusters of increasing size cleaved from the β- cristobalite unit cell. In this study the hybrid Hartree...values of the β- cristobalite cell and extending the Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at... cristobalite surface is reported as a function of the distance of the N atom from the Si active atom. The dashed line shows the interaction

  13. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  14. Water Transport in Aquaporins: Osmotic Permeability Matrix Analysis of Molecular Dynamics Simulations

    PubMed Central

    Hashido, Masanori; Kidera, Akinori; Ikeguchi, Mitsunori

    2007-01-01

    Single-channel osmotic water permeability (pf) is a key quantity for investigating the transport capability of the water channel protein, aquaporin. However, the direct connection between the single scalar quantity pf and the channel structure remains unclear. In this study, based on molecular dynamics simulations, we propose a pf-matrix method, in which pf is decomposed into contributions from each local region of the channel. Diagonal elements of the pf matrix are equivalent to the local permeability at each region of the channel, and off-diagonal elements represent correlated motions of water molecules in different regions. Averaging both diagonal and off-diagonal elements of the pf matrix recovers pf for the entire channel; this implies that correlated motions between distantly-separated water molecules, as well as adjacent water molecules, influence the osmotic permeability. The pf matrices from molecular dynamics simulations of five aquaporins (AQP0, AQP1, AQP4, AqpZ, and GlpF) indicated that the reduction in the water correlation across the Asn-Pro-Ala region, and the small local permeability around the ar/R region, characterize the transport efficiency of water. These structural determinants in water permeation were confirmed in molecular dynamics simulations of three mutants of AqpZ, which mimic AQP1. PMID:17449664

  15. Molecular dynamics simulation with weak coupling to heat and material baths

    NASA Astrophysics Data System (ADS)

    Eslami, Hossein; Mojahedi, Fatemeh; Moghadasi, Jalil

    2010-08-01

    A method for performing molecular dynamics simulation in the grand canonical ensemble is developed. The molecular dynamics, with coupling to an external bath, simulation method of [Berendsen et al., J. Chem. Phys. 81, 3684 (1984)] is extended for this purpose. Here the physical system of interest consists of real indistinguishable particles plus one fractional particle, whose potential energy of interaction with the rest of particles is scaled by a coupling parameter, ranging dynamically between zero and one. This coupling changes the number of particles in the system gradually and dynamically, depending on the target values of the excess chemical potential, temperature, and volume. A nonlinear scaling scheme has been adopted to scale the potential energy of interaction of the fractional particle with the rest of the system. The method has been employed to predict the density of compressed Lennard-Jones fluid, compatible with the target values of temperature and the excess chemical potential, over a wide range of temperatures and densities. The method has further been applied to do molecular dynamics simulation in the grand canonical ensemble for water and to predict its vapor-liquid phase coexistence point. The results obtained using this method are in complete agreement with previously reported results in the literature.

  16. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039

  17. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  18. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    PubMed

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  19. A mixed quantum-classical molecular dynamics study of anti-tetrol and syn-tetrol dissolved in liquid chloroform II: infrared emission spectra, vibrational excited-state lifetimes, and nonequilibrium hydrogen-bond dynamics.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2013-11-21

    The effect of vibrational excitation and relaxation of the hydroxyl stretch on the hydrogen-bond structure and dynamics of stereoselectively synthesized syn-tetrol and anti-tetrol dissolved in deuterated chloroform are investigated via a mixed quantum-classical molecular dynamics simulation. Emphasis is placed on the changes in hydrogen-bond structure upon photoexcitation and the nonequilibrium hydrogen-bond dynamics that follows the subsequent relaxation from the excited to the ground vibrational state. The propensity to form hydrogen bonds is shown to increase upon photoexcitation of the hydroxyl stretch, thereby leading to a sizable red-shift of the infrared emission spectra relative to the corresponding absorption spectra. The vibrational excited state lifetimes are calculated within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, and found to be sensitive reporters of the underlying hydrogen-bond structure. The energy released during the relaxation from the excited to the ground state is shown to break hydrogen bonds involving the relaxing hydroxyl. The spectral signature of this nonequilibrium relaxation process is analyzed in detail.

  20. Communication: Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Kremer, K.; Potestio, R.

    2016-10-01

    We present an accurate and efficient method to obtain Kirkwood-Buff (KB) integrals in the thermodynamic limit from small-sized molecular dynamics simulations. By introducing finite size effects into integral equations of statistical mechanics, we derive an analytical expression connecting the KB integrals of the bulk system with the fluctuations of the number of molecules in the corresponding closed system. We validate the method by calculating the activity coefficients of aqueous urea mixtures and the KB integrals of Lennard-Jones fluids. Moreover, our results demonstrate how to identify simulation conditions under which computer simulations reach the thermodynamic limit.

  1. Molecular Dynamics Simulation of Defect Production in Collision Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2005-01-01

    Defect production in collision cascades in zircon has been examined by molecular dynamics simulations using a partial charge model combined with the Ziegler-Biersack-Littmark potential. U, Zr, Si and O recoils with energies ranging from 250 eV to 5 keV were simulated in the NVE ensemble. To obtain good statistics, 5-10 cascades in randomly chosen directions were simulated for each ion and energy. The damage consists of mainly Si and O Frenkel pairs, a smaller number of Zr Frenkel pairs, and Zr on Si antisite defects. Defect production, interstitial clustering, ion beam mixing and Si-O-Si polymerization increase with PKA mass and energy.

  2. Molecular dynamics simulations of soliton-like structures in a dusty plasma medium

    SciTech Connect

    Tiwari, Sanat Kumar Das, Amita; Sen, Abhijit; Kaw, Predhiman

    2015-03-15

    The existence and evolution of soliton-like structures in a dusty plasma medium are investigated in a first principles approach using molecular dynamic (MD) simulations of particles interacting via a Yukawa potential. These localized structures are found to exist in both weakly and strongly coupled regimes with their structures becoming sharper as the correlation effects between the dust particles get stronger. A surprising result, compared to fluid simulations, is the existence of rarefactive soliton-like structures in our non-dissipative system, a feature that arises from the charge conjugation symmetry property of the Yukawa fluid. Our simulation findings closely resemble many diverse experimental results reported in the past.

  3. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies.

    PubMed

    Feller, S E; Yin, D; Pastor, R W; MacKerell, A D

    1997-11-01

    A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure.

  4. Seeking new mutation clues from Bacillus licheniformis amylase by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Tao

    2009-07-01

    Amylase is one of the most important industrial enzymes in the world. Researchers have been searching for a highly thermal stable mutant for many years, but most focus on point mutations of one or few nitrogenous bases. According to this molecular dynamic simulation of amylase from Bacillus licheniformis (BLA), the deletion of some nitrogenous bases would be more efficacious than point mutations. The simulation reveals strong fluctuation of the BLA structure at optimum temperature. The fluctuation of the outer domains of BLA is stronger than that of the core domain. Molecular simulation provides a clue to design thermal stable amylases through deletion mutations in the outer domain.

  5. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    SciTech Connect

    Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  6. Multicomponent ballistic transport in narrow single wall carbon nanotubes: analytic model and molecular dynamics simulations.

    PubMed

    Mutat, T; Adler, J; Sheintuch, M

    2011-01-28

    The transport of gas mixtures through molecular-sieve membranes such as narrow nanotubes has many potential applications, but there remain open questions and a paucity of quantitative predictions. Our model, based on extensive molecular dynamics simulations, proposes that ballistic motion, hindered by counter diffusion, is the dominant mechanism. Our simulations of transport of mixtures of molecules between control volumes at both ends of nanotubes give quantitative support to the model's predictions. The combination of simulation and model enable extrapolation to longer tubes and pore networks.

  7. Multicomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mutat, T.; Adler, J.; Sheintuch, M.

    2011-01-01

    The transport of gas mixtures through molecular-sieve membranes such as narrow nanotubes has many potential applications, but there remain open questions and a paucity of quantitative predictions. Our model, based on extensive molecular dynamics simulations, proposes that ballistic motion, hindered by counter diffusion, is the dominant mechanism. Our simulations of transport of mixtures of molecules between control volumes at both ends of nanotubes give quantitative support to the model's predictions. The combination of simulation and model enable extrapolation to longer tubes and pore networks.

  8. Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Kubicki, J. D.; Stolper, E. M.

    1993-01-01

    Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).

  9. Comment on ``Modified nonequilibrium molecular dynamics for fluid flows with energy conservation'' [J. Chem. Phys. 106, 5615 (1997)

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Hoover, Wm. G.; Hoover, C. G.; Holian, Brad Lee; Posch, Harald A.; Morriss, Gary P.

    1998-03-01

    In their recent paper and the associated Response to this Comment, Tuckerman et al. dispute the form of the Liouville equation, as proposed by Liouville in 1838. They go on to introduce a definition of the entropy which is at variance with Boltzmann's H-function and with Gibbs' definition of entropy. They argue that their "entropy" is a constant of the motion, equal to its initial equilibrium value regardless of the imposition of external fields. We argue that the analysis of Tuckerman et al. is incorrect and that issues raised by Tuckerman et al. are not at all new but have already been correctly incorporated into nonequilibrium statistical mechanics.

  10. Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.

    2007-01-01

    The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.

  11. Molecular Dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  12. Structural features of binary mixtures of supercritical CO2 with polar entrainers by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gurina, D. L.; Antipova, M. L.; Petrenko, V. E.

    2013-10-01

    Computer simulations of supercritical carbon dioxide and its mixtures with polar cosolvents: water, methanol, and ethanol (concentration, 0.125 mole fractions) at T = 318 K and ρ = 0.7 g/cm3 are performed. Atom-atom radial distribution functions are calculated by classical molecular dynamics, while the probability distributions of relative orientation of CO2 molecules in the first and second coordination spheres describing the geometry of the nearest environment of CO2 molecules and the trajectories of cosolvent molecules are found using Car-Parrinello molecular dynamics. Based on the latter, the conclusions regarding structure and interactions of polar entrainers in their mixtures with supercritical CO2 are made. It is shown that the microstructure of carbon dioxide varies only slightly upon the introduction of cosolvents.

  13. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  14. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    SciTech Connect

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.; Levashov, P. R.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  15. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Deng, Shaozhong; Xue, Changfeng; Baumketner, Andriy; Jacobs, Donald; Cai, Wei

    2013-07-01

    This paper extends the image charge solvation model (ICSM) [Y. Lin, A. Baumketner, S. Deng, Z. Xu, D. Jacobs, W. Cai, An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions, J. Chem. Phys. 131 (2009) 154103], a hybrid explicit/implicit method to treat electrostatic interactions in computer simulations of biomolecules formulated for spherical cavities, to prolate spheroidal and triaxial ellipsoidal cavities, designed to better accommodate non-spherical solutes in molecular dynamics (MD) simulations. In addition to the utilization of a general truncated octahedron as the MD simulation box, central to the proposed extension is an image approximation method to compute the reaction field for a point charge placed inside such a non-spherical cavity by using a single image charge located outside the cavity. The resulting generalized image charge solvation model (GICSM) is tested in simulations of liquid water, and the results are analyzed in comparison with those obtained from the ICSM simulations as a reference. We find that, for improved computational efficiency due to smaller simulation cells and consequently a less number of explicit solvent molecules, the generalized model can still faithfully reproduce known static and dynamic properties of liquid water at least for systems considered in the present paper, indicating its great potential to become an accurate but more efficient alternative to the ICSM when bio-macromolecules of irregular shapes are to be simulated.

  16. On the simulation of protein folding by short time scale molecular dynamics and distributed computing.

    PubMed

    Fersht, Alan R

    2002-10-29

    There are proposals to overcome the current incompatibilities between the time scales of protein folding and molecular dynamics simulation by using a large number of short simulations of only tens of nanoseconds (distributed computing). According to the principles of first-order kinetic processes, a sufficiently large number of short simulations will include, de facto, a small number of long time scale events that have proceeded to completion. But protein folding is not an elementary kinetic step: folding has a series of early conformational steps that lead to lag phases at the beginning of the kinetics. The presence of these lag phases can bias short simulations toward selecting minor pathways that have fewer or faster lag steps and so miss the major folding pathways. Attempts to circumvent the lags by using loosely coupled parallel simulations that search for first-order transitions are also problematic because of the difficulty of detecting transitions in molecular dynamics simulations. Nevertheless, the procedure of using parallel independent simulations is perfectly valid and quite feasible once the time scale of simulation proceeds past the lag phases into a single exponential region.

  17. Molecular dynamics simulations as a complement to nuclear magnetic resonance and X-ray diffraction measurements.

    PubMed

    Feller, Scott E

    2007-01-01

    Advances in the field of atomic-level membrane simulations are being driven by continued growth in computing power, improvements in the available potential energy functions for lipids, and new algorithms that implement advanced sampling techniques. These developments are allowing simulations to assess time- and length scales wherein meaningful comparisons with experimental measurements on macroscopic systems can be made. Such comparisons provide stringent tests of the simulation methodologies and force fields, and thus, advance the simulation field by pointing out shortcomings of the models. Extensive testing against available experimental data suggests that for many properties modern simulations have achieved a level of accuracy that provides substantial predictive power and can aid in the interpretation of experimental data. This combination of closely coupled laboratory experiments and molecular dynamics simulations holds great promise for the understanding of membrane systems. In the following, the molecular dynamics method is described with particular attention to those aspects critical for simulating membrane systems and to the calculation of experimental observables from the simulation trajectory.

  18. Multifluid nonequilibrium simulation of arcjet thrusters

    NASA Astrophysics Data System (ADS)

    Miller, Scott Alan

    1994-01-01

    A detailed numerical model has been developed to study the gas dynamic flow in an electrothermal arcjet thruster. This two-temperature, Navier-Stokes model consistently incorporates viscosity, heat conduction, ohmic dissipation, collisional energy transfer between electrons and heavy species, ambipolar diffusion, nonequilibrium dissociation and ionization, and radiation. The fluid equations are solved by Mac Cormack's method while an iterative procedure is used to relax an electric potential equation, from which the current distribution in the thruster is obtained. Using hydrogen propellant, solutions are achieved for a range of input parameters and the underlying physics and internal structures of these arcjet flows are revealed. In particular, a mechanism for self-sustaining anodic arc attachment is identified. It is found that ambipolar diffusion from the arc core coupled with enhanced nonequilibrium dissociation and ionization in the outer flow provide enough charge carriers for the current to pass self-consistently between the arc core and the anode wall. Numerical solutions are compared with experimental results from the German TT1 radiatively-cooled arcjet thruster. Calculated discharge voltage is within 1-2% to 10% of experimental measurements, and predicted specific impulse is within 5-10% agreement over a range of applied currents and mass flow rates. In addition, flow solutions are used to explain observed trends in performance as quantities such as the specific power and mass flow rate are varied. An anode thermal model is constructed which yields more accurate predictions of the inlet gas and electrode wall temperatures, and this model is coupled to the arcjet flow solver in order to obtain a more self-consistent solution. Finally, a simplified stability analysis of the near-anode arc attachment region is performed. It is found that a localized ionization instability may be initiated in this region, but that the system is stable under the flow

  19. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework

    NASA Astrophysics Data System (ADS)

    Angelikopoulos, Panagiotis; Papadimitriou, Costas; Koumoutsakos, Petros

    2012-10-01

    We present a Bayesian probabilistic framework for quantifying and propagating the uncertainties in the parameters of force fields employed in molecular dynamics (MD) simulations. We propose a highly parallel implementation of the transitional Markov chain Monte Carlo for populating the posterior probability distribution of the MD force-field parameters. Efficient scheduling algorithms are proposed to handle the MD model runs and to distribute the computations in clusters with heterogeneous architectures. Furthermore, adaptive surrogate models are proposed in order to reduce the computational cost associated with the large number of MD model runs. The effectiveness and computational efficiency of the proposed Bayesian framework is demonstrated in MD simulations of liquid and gaseous argon.

  20. Effects of Atomistic Domain Size on Hybrid Lattice Boltzmann-Molecular Dynamics Simulations of Dense Fluids

    NASA Astrophysics Data System (ADS)

    Dupuis, A.; Koumoutsakos, P.

    We present a convergence study for a hybrid Lattice Boltzmann-Molecular Dynamics model for the simulation of dense liquids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The velocity field from the atomistic domain is introduced as forcing terms to the Lattice Boltzmann model of the continuum while the mean field of the continuum imposes mean field conditions for the atomistic domain. In the present paper we investigate the effect of varying the size of the atomistic subdomain in simulations of two dimensional flows of liquid argon past carbon nanotubes and assess the efficiency of the method.

  1. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework.

    PubMed

    Angelikopoulos, Panagiotis; Papadimitriou, Costas; Koumoutsakos, Petros

    2012-10-14

    We present a Bayesian probabilistic framework for quantifying and propagating the uncertainties in the parameters of force fields employed in molecular dynamics (MD) simulations. We propose a highly parallel implementation of the transitional Markov chain Monte Carlo for populating the posterior probability distribution of the MD force-field parameters. Efficient scheduling algorithms are proposed to handle the MD model runs and to distribute the computations in clusters with heterogeneous architectures. Furthermore, adaptive surrogate models are proposed in order to reduce the computational cost associated with the large number of MD model runs. The effectiveness and computational efficiency of the proposed Bayesian framework is demonstrated in MD simulations of liquid and gaseous argon.

  2. Water harvesting using a conducting polymer: A study by molecular dynamics simulation

    SciTech Connect

    Ostwal, Mayur M.; Sahimi, Muhammad; Tsotsis, Theodore T.

    2009-06-15

    The results of extensive molecular simulations of adsorption and diffusion of water vapor in polyaniline, made conducting by doping it with HCl or HBr over a broad range of temperatures, are reported. The atomistic model of the polymers was generated using energy minimization, equilibrium molecular dynamics simulations, and two different force fields. The computed sorption isotherms are in excellent agreement with the experimental data. The computed activation energies for the diffusion of water molecules in the polymers also compare well with what has been reported in the literature. The results demonstrate the potential of conducting polyaniline for water harvesting from air.

  3. Liquid-Liquid Phase Transformation in Silicon: Evidence from First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2007-11-01

    We report results of first principles molecular dynamics simulations that confirm early speculations on the presence of liquid-liquid phase transition in undercooled silicon. However, we find that structural and electronic properties of both low-density liquid (LDL) and high-density liquid (HDL) phases are quite different from those obtained by empirical calculations, the difference being more pronounced for the HDL phase. The discrepancy between quantum and classical simulations is attributed to the inability of empirical potentials to describe changes in chemical bonds induced by density and temperature variations.

  4. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory.

    PubMed

    Schlesinger, Daniel; Sellberg, Jonas A; Nilsson, Anders; Pettersson, Lars G M

    2016-03-28

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  5. Carbon dioxide capture in 2-aminoethanol aqueous solution from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš

    2017-03-01

    The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.

  6. Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals

    PubMed Central

    2014-01-01

    In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature. PMID:25426007

  7. Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Şopu, D.; Ritter, Y.; Gleiter, H.; Albe, K.

    2011-03-01

    In this study, we characterize the mechanical properties of Cu64Zr36 nanoglasses under tensile load by means of large-scale molecular dynamics simulations and compare the deformation behavior to the case of a homogeneous bulk glass. The simulations reveal that interfaces act as precursors for the formation of multiple shear bands. In contrast, a bulk metallic glass under uniaxial tension shows inhomogeneous plastic flow confined in one dominant shear band. The results suggest that controlling the microstructure of a nanoglass can pave the way for tuning the mechanical properties of glassy materials.

  8. X-Ray Diffraction From Shocked Crystals: Experiments and Predications of Molecular Dynamics Simulations

    SciTech Connect

    Rosolankova, K; Kalantar, D H; Belak, J F; Bringa, E M; Caturla, M J; Hawreliak, J; Holian, B L; Kadau, K; Lomdahl, P S; Germann, T C; Ravelo, R; Sheppard, J; Wark, J S

    2003-09-24

    When a crystal is subjected to shock compression beyond its Hugoniot Elastic Limit (HEL), the deformation it undergoes is composed of elastic and plastic strain components. In situ time-dependent X-ray diffraction, which allows direct measurement of lattice spacings, can be used to investigate such phenomena. This paper presents recent experimental results of X-ray diffraction from shocked fcc crystals. Comparison is made between experimental data and simulated X-ray diffraction using a post-processor to Molecular Dynamics (MD) simulations of shocked fcc crystals.

  9. An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation

    SciTech Connect

    Soules, T F; Gilmer, G H; Matthews, M J; Stolken, J S; Feit, M D

    2010-10-21

    We compare force fields (FF's) that have been used in molecular dynamic (MD) simulations of silica in order to assess their applicability for use in simulating IR-laser damage mitigation. Although pairwise FF?s obtained by fitting quantum mechanical calculations such as the BKS and CHIK potentials have been shown to reproduce many of the properties of silica including the stability of silica polymorphs and the densification of the liquid, we show that melting temperatures and fictive temperatures are much too high. Softer empirical force fields give liquid and glass properties at experimental temperatures but may not predict all properties important to laser mitigation experiments.

  10. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGES

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  11. RedMDStream: Parameterization and Simulation Toolbox for Coarse-Grained Molecular Dynamics Models

    PubMed Central

    Leonarski, Filip; Trylska, Joanna

    2015-01-01

    Coarse-grained (CG) models in molecular dynamics (MD) are powerful tools to simulate the dynamics of large biomolecular systems on micro- to millisecond timescales. However, the CG model, potential energy terms, and parameters are typically not transferable between different molecules and problems. So parameterizing CG force fields, which is both tedious and time-consuming, is often necessary. We present RedMDStream, a software for developing, testing, and simulating biomolecules with CG MD models. Development includes an automatic procedure for the optimization of potential energy parameters based on metaheuristic methods. As an example we describe the parameterization of a simple CG MD model of an RNA hairpin. PMID:25902423

  12. Molecular dynamics simulations of tension-compression asymmetry in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Bin; Shao, Shaofeng; Yao, Yijun

    2017-04-01

    Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8-11.9 nm. The simulation results show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries.

  13. Single-asperity contributions to multi-asperity wear simulated with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Eder, S. J.; Cihak-Bayr, U.; Bianchi, D.

    2016-03-01

    We use a molecular dynamics approach to simulate the wear of a rough ferrite surface due to multiple hard, abrasive particles under variation of normal pressure, grinding direction, and particle geometry. By employing a clustering algorithm that incorporates some knowledge about the grinding process such as the main grinding direction, we can break down the total wear volume into contributions from the individual abrasive particles in a time-resolved fashion. The resulting analysis of the simulated grinding process allows statements on wear particle generation, distribution, and stability depending on the initial topography, the grinding angle, the normal pressure, as well as the abrasive shape and orientation with respect to the surface.

  14. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon

    2013-12-01

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  15. Molecular dynamics simulation of vapour-liquid nucleation of water with constant energy

    NASA Astrophysics Data System (ADS)

    Duška, Michal; Němec, Tomáš; Hrubý, Jan; Vinš, Václav; Planková, Barbora

    2015-05-01

    The paper describes molecular dynamics study of nucleation of water in NVE ensemble. The numerical simulation was performed with the DL_POLY. The metastable steam consisting of 10976 water molecules with TIP4P/2005 potential was driven on the desired energy level by a simulation at constant temperature, and then the nucleation at constant energy was studied for several tens of nanoseconds, which was sufficient for clusters to evolve at hundred molecules size. The results were compared with the previously published results and the classical nucleation theory predictions.

  16. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-08-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface.

  17. Parallel implementation of three-dimensional molecular dynamic simulation for laser-cluster interaction

    SciTech Connect

    Holkundkar, Amol R.

    2013-11-15

    The objective of this article is to report the parallel implementation of the 3D molecular dynamic simulation code for laser-cluster interactions. The benchmarking of the code has been done by comparing the simulation results with some of the experiments reported in the literature. Scaling laws for the computational time is established by varying the number of processor cores and number of macroparticles used. The capabilities of the code are highlighted by implementing various diagnostic tools. To study the dynamics of the laser-cluster interactions, the executable version of the code is available from the author.

  18. Dielectric relaxation of ethylene carbonate and propylene carbonate from molecular dynamics simulations

    DOE PAGES

    Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; ...

    2015-11-24

    Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.

  19. Molecular dynamics simulation of a binary mixture near the lower critical point.

    PubMed

    Pousaneh, Faezeh; Edholm, Olle; Maciołek, Anna

    2016-07-07

    2,6-lutidine molecules mix with water at high and low temperatures but in a wide intermediate temperature range a 2,6-lutidine/water mixture exhibits a miscibility gap. We constructed and validated an atomistic model for 2,6-lutidine and performed molecular dynamics simulations of 2,6-lutidine/water mixture at different temperatures. We determined the part of demixing curve with the lower critical point. The lower critical point extracted from our data is located close to the experimental one. The estimates for critical exponents obtained from our simulations are in a good agreement with the values corresponding to the 3D Ising universality class.

  20. A new battery-charging method suggested by molecular dynamics simulations.

    PubMed

    Abou Hamad, Ibrahim; Novotny, M A; Wipf, D O; Rikvold, P A

    2010-03-20

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li(+) ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li(+) ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  1. Path-integral molecular dynamics simulations for water anion clusters (HO)5- and (DO)5-

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Yoshikawa, Takehiro; Motegi, Haruki; Shiga, Motoyuki

    2009-11-01

    Quantum path-integral molecular dynamics simulations have been performed for the (HO)5- and (DO)5- anion clusters on the basis of a semiempirical one-electron pseudopotential-polarization model. Due to larger zero-point vibrational amplitudes for H atoms than that of D atoms, hydrogen-bond lengths in the (HO)5- cluster are slightly larger than those in (DO)5-. The distribution of the vertical detachment energies for (HO)5- also show a broader feature than that for (DO)5-. The present PIMD simulations thus demonstrate the importance of nuclear quantum effects in water anion clusters.

  2. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  3. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  4. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.

    PubMed

    Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut

    2016-03-08

    In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.

  5. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations.

    PubMed

    Cunha, Keila C; Rusu, Victor H; Viana, Isabelle F T; Marques, Ernesto T A; Dhalia, Rafael; Lins, Roberto D

    2015-06-01

    Molecular dynamics and de novo techniques, associated to quality parameter sets, have excelled at determining the structure of small proteins with high accuracy. To achieve a detailed description of protein conformations, these methods must critically assess the thermodynamic features of the molecular ensembles. Here, a comparison of the conformational ensemble generated by molecular dynamics and de novo techniques were carried out for six Top7-based proteins carrying gp41 HIV-1 epitopes. The native Top7, a highly stable computationally designed protein, was used as benchmark. Structural stability, flexibility, and secondary structure content were assessed. The consistency of the latter was compared to experimental circular dichroism spectra for all proteins. While both methods are capable to identify the stable from unstable chimeric proteins, the sampled conformational space and flexibility differ significantly in both methods. Molecular dynamics simulations seem to better describe secondary structure content and identify regions responsible for conformational instability. The de novo method, as implemented in Rosetta-a prime tool for protein design, overestimates secondary structure content. On the other hand, its empirical energy function is capable to predict the threshold for protein stability.

  6. Molecular-dynamics simulations of crosslinking and confinement effects on structure, segmental mobility and mechanics of filled elastomers

    NASA Astrophysics Data System (ADS)

    Davris, Theodoros; Lyulin, Alexey V.

    2016-05-01

    The significant drop of the storage modulus under uniaxial deformation (Payne effect) restrains the performance of the elastomer-based composites and the development of possible new applications. In this paper molecular-dynamics (MD) computer simulations using LAMMPS MD package have been performed to study the mechanical properties of a coarse-grained model of this family of nanocomposite materials. Our goal is to provide simulational insights into the viscoelastic properties of filled elastomers, and try to connect the macroscopic mechanics with composite microstructure, the strength of the polymer-filler interactions and the polymer mobility at different scales. To this end we simulate random copolymer films capped between two infinite solid (filler aggregate) walls. We systematically vary the strength of the polymer-substrate adhesion interactions, degree of polymer confinement (film thickness), polymer crosslinking density, and study their influence on the equilibrium and non-equilibrium structure, segmental dynamics, and the mechanical properties of the simulated systems. The glass-transition temperature increases once the mesh size became smaller than the chain radius of gyration; otherwise it remained invariant to mesh-size variations. This increase in the glass-transition temperature was accompanied by a monotonic slowing-down of segmental dynamics on all studied length scales. This observation is attributed to the correspondingly decreased width of the bulk density layer that was obtained in films whose thickness was larger than the end-to-end distance of the bulk polymer chains. To test this hypothesis additional simulations were performed in which the crystalline walls were replaced with amorphous or rough walls.

  7. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II. Spike models for sputtering yield

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Johnson, R. E.; Dutkiewicz, Ł .

    1999-05-01

    Thermal spike models have been used to calculate the yields for electronic sputtering of condensed-gas solids by fast ions. In this paper molecular dynamics (MD) calculations are carried out to describe the evolution of solid Ar and O 2 following the excitation of a cylindrical track in order to test spike models. The calculated sputtering yields were found to depend linearly on the energy deposition per unit path length, d E/d x, at the highest d E/d x. This is in contrast to the spike models and the measured yields for a number of condensed-gas solids which depend quadratically on d E/d x at high d E/d x. In paper I [E.M. Bringa, R.E. Johnson, Nucl. Instr. and Meth. B 143 (1998) 513] we showed that the evolution of energy from the cylindrical track was, typically, not diffusive, as assumed in the spike models. Here we show that it is the description of the radial transport and the absence of energy transport to the surface, rather than the treatment of the ejection process, that accounts for the difference between the analytic spike models and the MD calculations. Therefore, the quadratic dependence on d E/d x of the measured sputtering yield reflects the nature of the energizing process rather than the energy transport. In this paper we describe the details of the sputtering process and compare the results here for crystalline samples to the earlier results for amorphous solids.

  8. Molecular Dynamics and Monte Carlo simulations in the microcanonical ensemble: Quantitative comparison and reweighting techniques.

    PubMed

    Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard

    2015-10-07

    Molecular Dynamics (MD) and Monte Carlo (MC) simulations are the most popular simulation techniques for many-particle systems. Although they are often applied to similar systems, it is unclear to which extent one has to expect quantitative agreement of the two simulation techniques. In this work, we present a quantitative comparison of MD and MC simulations in the microcanonical ensemble. For three test examples, we study first- and second-order phase transitions with a focus on liquid-gas like transitions. We present MD analysis techniques to compensate for conservation law effects due to linear and angular momentum conservation. Additionally, we apply the weighted histogram analysis method to microcanonical histograms reweighted from MD simulations. By this means, we are able to estimate the density of states from many microcanonical simulations at various total energies. This further allows us to compute estimates of canonical expectation values.

  9. Molecular Dynamics Simulations of Trichomonas vaginalis Ferredoxin Show a Loop-Cap Transition

    SciTech Connect

    Weksberg, Tiffany E; Lynch, Gillian C; Krause, Kurt; Pettitt, Bernard M

    2007-05-01

    The crystal structure of the oxidized Trichomonas vaginalis ferredoxin (Tvfd) showed a unique crevice that exposed the redox center. Here we have examined the dynamics and solvation of the active site of Tvfd using molecular dynamics simulations of both the reduced and oxidized states. The oxidized simulation stays true to the crystal form with a heavy atom root mean-squared deviation of 2Å . However, within the reduced simulation of Tvfd a profound loop-cap transition into the redox center occurred within 6-ns of the start of the simulation and remained open throughout the rest of the 20-ns simulation. This large opening seen in the simulations supports the hypothesis that the exceptionally fast electron transfer rate between Tvfd and the drug metronidazole is due to the increased access of the antibiotic to the redox center of the protein and not due to the reduction potential.

  10. Molecular Dynamics Simulations of Trichomonas vaginalis Ferredoxin Show a Loop-Cap Transition.

    SciTech Connect

    Weksberg, Tiffany E; Lynch, Gillian C; Krause, Kurt; Pettitt, Bernard M

    2007-05-01

    The crystal structure of the oxidized Trichomonas vaginalis ferredoxin (Tvfd) showed a unique crevice that exposed the redox center. Here we have examined the dynamics and solvation of the active site of Tvfd using molecular dynamics simulations of both the reduced and oxidized states. The oxidized simulation stays true to the crystal form with a heavy atom root mean-squared deviation of 2Å. However, within the reduced simulation of Tvfd a profound loop-cap transition into the redox center occurred within 6-ns of the start of the simulation and remained open throughout the rest of the 20-ns simulation. This large opening seen in the simulations supports the hypothesis that the exceptionally fast electron transfer rate between Tvfd and the drug metronidazole is due to the increased access of the antibiotic to the redox center of the protein and not due to the reduction potential.

  11. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  12. Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins.

    PubMed

    Kukol, Andreas

    2009-03-10

    United-atom force fields for molecular dynamics (MD) simulations provide a higher computational efficiency, especially in lipid membrane simulations, with little sacrifice in accuracy, when compared to all-atom force fields. Excellent united-atom lipid models are available, but in combination with depreciated protein force fields. In this work, a united-atom model of the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine has been built with standard parameters of the force field GROMOS96 53a6 that reproduces the experimental area per lipid of a lipid bilayer within 3% accuracy to a value of 0.623 ± 0.011 nm(2) without the assumption of a constant surface area or the inclusion of surface pressure. In addition, the lateral self-diffusion constant and deuterium order parameters of the acyl chains are in agreement with experimental data. Furthermore, models for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) result in areas per lipid of 0.625 nm(2) (DMPC), 0.693 nm(2) (POPC), and 0.700 nm(2) (POPG) from 40 ns MD simulations. Experimental lateral self-diffusion coefficients are reproduced satisfactorily by the simulation. The lipid models can form the basis for molecular dynamics simulations of membrane proteins with current and future versions of united-atom protein force fields.

  13. MDWiZ: a platform for the automated translation of molecular dynamics simulations.

    PubMed

    Rusu, Victor H; Horta, Vitor A C; Horta, Bruno A C; Lins, Roberto D; Baron, Riccardo

    2014-03-01

    A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines.

  14. Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models.

    PubMed

    Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona

    2013-01-17

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient

  15. Molecular dynamics simulation for PBR pebble tracking simulation via a random walk approach using Monte Carlo simulation.

    PubMed

    Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P

    2012-05-01

    Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose.

  16. Molecular Dynamics Simulation Suggests Possible Interaction Patterns at Early Steps of β2-Microglobulin Aggregation

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Viglino, Paolo; Zuccato, Pierfrancesco; Pieri, Lidia; Faccioli, Pietro; Bellotti, Vittorio; Esposito, Gennaro

    2007-01-01

    Early events in aggregation of proteins are not easily accessible by experiments. In this work, we perform a 5-ns molecular dynamics simulation of an ensemble of 27 copies of β2-microglobulin in explicit solvent. During the simulation, the formation of intermolecular contacts is observed. The simulation highlights the importance of apical residues and, in particular, of those at the N-terminus end of the molecule. The most frequently found pattern of interaction involves a head-to-head contact arrangement of molecules. Hydrophobic contacts appear to be important for the establishment of long-lived (on the simulation timescale) contacts. Although early events on the pathway to aggregation and fibril formation are not directly related to the end-state of the process, which is reached on a much longer timescale, simulation results are consistent with experimental data and in general with a parallel arrangement of intermolecular β-strand pairs. PMID:17158575

  17. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  18. Transport properties of carbon dioxide and ammonia in water - ethylene glycol mixtures from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Iskrenova, Eugeniya; Patnaik, Soumya S.

    2015-03-01

    The endothermic decomposition of ammonium carbamate has been proposed as a novel heat sink mechanism for aircraft thermal management (Johnson et al. SAE Technical Paper 2012-01-2190, 2012, doi:10.4271/2012-01-2190]). The products of this decomposition are carbon dioxide and ammonia which need to be efficiently removed in order to better control the decomposition reaction. Molecular dynamics simulations can provide insight into the transport properties of carbon dioxide and ammonia in the carrier fluid. In this work, an extensive set of molecular dynamics simulations was performed to better quantify the concentration dependence of solubility and diffusivity of carbon dioxide and ammonia in water, ethylene glycol, and their mixtures at standard temperature and pressure and at elevated temperature. The simulation results confirm the experimental observations that ammonia is more soluble than carbon dioxide in either water or ethylene glycol and that both carbon dioxide and ammonia are more soluble in ethylene glycol than in water. The simulations of water - ethylene glycol mixtures show that increasing the molar fraction of ethylene glycol leads to increased solubility of carbon dioxide and ammonia in the mixture. The authors gratefully acknowledge the DoD High Performance Computing Centers for computational resources.

  19. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  20. Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2017-01-03

    In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less