Science.gov

Sample records for nonfibrotic lung tissue

  1. Iron deposition and increased alveolar septal capillary density in nonfibrotic lung tissue are associated with pulmonary hypertension in idiopathic pulmonary fibrosis.

    PubMed

    Kim, Kyung-Hee; Maldonado, Fabien; Ryu, Jay H; Eiken, Patrick W; Hartman, Thomas E; Bartholmai, Brian J; Decker, Paul A; Yi, Eunhee S

    2010-04-14

    Early diagnosis of pulmonary hypertension (PH) in idiopathic pulmonary fibrosis (IPF) has potential prognostic and therapeutic implications but can be difficult due to the lack of specific clinical manifestations or accurate non-invasive tests. Histopathologic parameters correlating with PH in IPF are also not known. Remodeling of postcapillary pulmonary vessels has been reported in the nonfibrotic areas of explanted lungs from IPF patients. We hypothesized that iron deposition and increased alveolar capillaries, the findings often seen in postcapillary PH, might predict the presence of clinical PH, independent of the severity of fibrosis or ventilatory dysfunction in IPF patients. To test this hypothesis, we examined the association between these histologic parameters and the degree of PH, with consideration of the severity of disease in IPF. Iron deposition and alveolar septal capillary density (ASCD) were evaluated on histologic sections with hematoxylin-eosin, iron, elastin and CD34 stainings. Percentage of predicted forced vital capacity (FVC%) was used for grading pulmonary function status. Fibrosis score assessed on high resolution computed tomography (HRCT) was used for evaluating overall degree of fibrosis in whole lungs. Right ventricular systolic pressure (RVSP) by transthoracic echocardiography was used for the estimation of PH. Univariate and multivariate regression analyses were performed. A cohort of 154 patients was studied who had the clinicopathological diagnosis of IPF with surgical lung biopsies or explants during the period of 1997 to 2006 at Mayo Clinic Rochester. In univariate analysis, RVSP in our IPF cases was associated with both iron deposition and ASCD (p < 0.001). In multivariate analysis with FVC% and HRCT fibrosis score included, iron deposition (p = 0.02), but not ASCD (p = 0.076), maintained statistically significant association with RVSP. FVC% was associated with RVSP on univariate analysis but not on multivariate analysis, while

  2. Lung Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis Exhibit Genome-Wide Differences in DNA Methylation Compared to Fibroblasts from Nonfibrotic Lung

    PubMed Central

    Huang, Steven K.; Scruggs, Anne M.; McEachin, Richard C.; White, Eric S.; Peters-Golden, Marc

    2014-01-01

    Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These

  3. Idiopathic pulmonary fibrosis is associated with increased impedance measures of reflux compared to non-fibrotic disease among pre-lung transplant patients.

    PubMed

    Gavini, S; Finn, R T; Lo, W-K; Goldberg, H J; Burakoff, R; Feldman, N; Chan, W W

    2015-09-01

    Gastroesophageal reflux (GER) has been associated with idiopathic pulmonary fibrosis (IPF), although the mechanism remains unclear. Gastroesophageal reflux/microaspiration may lead to lung fibrosis, while increased pulmonary workload may also worsen GER. Comparing the GER profile of IPF patients to chronic obstructive pulmonary disease (COPD) patients with similar lung function may help delineate the role of GER in IPF pathogenesis. This was a retrospective cohort study of IPF and COPD patients undergoing pre-lung transplant multichannel intraluminal impedance and pH study (MII-pH) off acid suppression at a tertiary center in 2008-2014. Patients with prior fundoplication were excluded. Baseline demographics, pulmonary function test, and MII-pH results were recorded. Univariate analyses were performed using Fisher's exact (binary variables) and Student's t (continuous variables) tests. Logistic regression was performed to adjust for potential confounders. A total of 90 subjects (54 IPF, 36 COPD) met inclusion criteria. Compared to COPD, IPF patients had increased total reflux episodes (65.9 vs 46.1, p = 0.02), proximal reflux episodes (30.3 vs 20.3, p = 0.04), and prevalence of abnormal total reflux episodes (38.9% vs 16.7%, p = 0.02). On multivariate analyses, abnormal total reflux episodes (OR: 4.9, p = 0.05) and bolus reflux exposure time (OR: 4, p = 0.04) remained significantly associated with IPF. Abnormal reflux was significantly more prevalent among IPF patients after controlling for lung disease severity. Gastroesophageal reflux/microaspiration likely plays a role in fibrosis in IPF. A significant portion of IPF patients had increased non-acid reflux. Therapies aiming to prevent reflux of gastric contents may be more beneficial than antisecretory medications alone in these patients. © 2015 John Wiley & Sons Ltd.

  4. [Human lung connective tissue in postnatal ontogeny].

    PubMed

    Kasimtsev, A A; Nikolaev, V G

    1993-01-01

    Changes of the connective tissue structures, appearing during all postnatal ontogenesis stages were studied in 147 human lung specimens of different age groups (from newborns up to 82-year-olds). Qualitative and quantitative composition of connective tissue structures changes with the age which leads to the lateral aggregation of the fibers and growth of the general mass of the connective tissue. Heterochronia of the age variability manifestations in different regions of the lung framework was demonstrated. The original age transformations of connective tissue structures are characteristic for the basal lung regions. With the exception of perivasal connective tissue, similar changes in the region of the lung apexes appear 3-5 years later. This gives an opportunity to distinguish three anatomic zones in the lungs in an apico-basal direction, characterising the local nature of the age changes manifestations.

  5. Aberrant nonfibrotic parenchyma in idiopathic pulmonary fibrosis is correlated with decreased β-catenin inhibition and increased Wnt5a/b interaction.

    PubMed

    Rydell-Törmänen, Kristina; Zhou, Xiao-Hong; Hallgren, Oskar; Einarsson, Jonas; Eriksson, Leif; Andersson-Sjöland, Annika; Westergren-Thorsson, Gunilla

    2016-03-01

    Idiopathic pulmonary fibrosis (IPF), an insidious disease with grave prognosis, is characterized by heterogeneous fibrosis with densely fibrotic areas surrounded by nonfibrotic normal-looking tissue, believed to reflect a temporal development. The etiology is incompletely elucidated, but aberrant wound healing is believed to be involved. Embryonic signaling pathways, including Wnt signaling, are reactivated in wound healing, and we therefore aimed to investigate Wnt signaling, and hypothesized that Wnt signaling would correspond to degree of fibrosis. Material from 10 patients with IPF were included (four diagnostic biopsies and six donated lungs) and compared to healthy controls (n = 7). We investigated markers of Wnt signaling (β-catenin, Wnt3a, ICAT, Wnt5a/b, DAAM1 and NLK) histologically in lung parenchyma with variable degree of fibrosis. Our results suggest that Wnt signaling is significantly altered (P < 0.05) already in normal-looking parenchyma. The expression of Wnt3a and ICAT decreased (both P < 0.01) in IPF compared to healthy lungs, whereas β-catenin, Wnt5a/b, DAAM1 and NLK increased (P < 0.05 for all). ICAT is further decreased in dense fibrosis compared to normal-looking parenchyma in IPF (P < 0.001). On the basis of our results, we conclude that from a Wnt perspective, there is no normal parenchyma in IPF, and Wnt signaling corresponds to degree of fibrosis. In addition, β-catenin and Wnt5a appears coupled, and decreased inhibition of β-catenin may be involved. We suggest that the interaction between β-catenin, ICAT, and Wnt5a/b may represent an important research area and potential target for therapeutic intervention. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Lung tissue mechanics as an emergent phenomenon.

    PubMed

    Suki, Béla; Bates, Jason H T

    2011-04-01

    The mechanical properties of lung parenchymal tissue are both elastic and dissipative, as well as being highly nonlinear. These properties cannot be fully understood, however, in terms of the individual constituents of the tissue. Rather, the mechanical behavior of lung tissue emerges as a macroscopic phenomenon from the interactions of its microscopic components in a way that is neither intuitive nor easily understood. In this review, we first consider the quasi-static mechanical behavior of lung tissue and discuss computational models that show how smooth nonlinear stress-strain behavior can arise through a percolation-like process in which the sequential recruitment of collagen fibers with increasing strain causes them to progressively take over the load-bearing role from elastin. We also show how the concept of percolation can be used to link the pathologic progression of parenchymal disease at the micro scale to physiological symptoms at the macro scale. We then examine the dynamic mechanical behavior of lung tissue, which invokes the notion of tissue resistance. Although usually modeled phenomenologically in terms of collections of springs and dashpots, lung tissue viscoelasticity again can be seen to reflect various types of complex dynamic interactions at the molecular level. Finally, we discuss the inevitability of why lung tissue mechanics need to be complex.

  7. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary.

  8. Strategies for Whole Lung Tissue Engineering

    PubMed Central

    Calle, Elizabeth A.; Ghaedi, Mahboobe; Sundaram, Sumati; Sivarapatna, Amogh; Tseng, Michelle K.

    2014-01-01

    Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function. PMID:24691527

  9. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  10. Radioprotection of Lung Tissue by Soy Isoflavones

    PubMed Central

    Hillman, Gilda G.; Singh-Gupta, Vinita; Lonardo, Fulvio; Hoogstra, David J.; Abernathy, Lisa M.; Yunker, Christopher K.; Rothstein, Shoshana E.; Rakowski, Joseph; Sarkar, Fazlul H.; Gadgeel, Shirish; Konski, Andre A.; Joiner, Michael C.

    2013-01-01

    Introduction Radiation-induced pneumonitis and fibrosis have restricted radiotherapy for lung cancer. In a pre-clinical lung tumor model, soy isoflavones showed the potential to enhance radiation damage in tumor nodules and simultaneously protect normal lung from radiation injury. We have further dissected the role of soy isoflavones in the radioprotection of lung tissue. Methods Naïve Balb/c mice were treated with oral soy isoflavones for 3 days before and up to 4 months after radiation. Radiation was administered to the left lung at 12 Gy. Mice were monitored for toxicity and breathing rates at 2, 3 and 4 months after radiation. Lung tissues were processed for histology for in situ evaluation of response. Results Radiation caused damage to normal hair follicles, leading to hair loss in the irradiated left thoracic area. Supplementation with soy isoflavones protected mice against radiation-induced skin injury and hair loss. Lung irradiation also caused an increase in mouse breathing rate that was more pronounced by 4 months after radiation, probably due to late effects of radiation-induced injury to normal lung tissue. However, this effect was mitigated by soy isoflavones. Histological examination of irradiated lungs revealed a chronic inflammatory infiltration involving alveoli and bronchioles and a progressive increase in fibrosis. These adverse effects of radiation were alleviated by soy isoflavones. Conclusion Soy isoflavones given pre- and post-radiation protected the lungs against adverse effects of radiation including skin injury, hair loss, increased breathing rates, inflammation, pneumonitis and fibrosis, providing evidence for a radioprotective effect of soy. PMID:24077456

  11. Integrative Quantitative Proteomics Unveils Proteostasis Imbalance in Human Hepatocellular Carcinoma Developed on Nonfibrotic Livers*

    PubMed Central

    Negroni, Luc; Taouji, Said; Arma, Daniela; Pallares-Lupon, Nestor; Leong, Kristen; Beausang, Lee Anne; Latterich, Martin; Bossé, Roger; Balabaud, Charles; Schmitter, Jean-Marie; Bioulac-Sage, Paulette; Zucman-Rossi, Jessica; Rosenbaum, Jean; Chevet, Eric

    2014-01-01

    Proteomics-based clinical studies represent promising resources for the discovery of novel biomarkers or for unraveling molecular mechanisms underlying particular diseases. Here, we present a discovery study of hepatocellular carcinoma developed on nonfibrotic liver (nfHCC) that combines complementary quantitative iTRAQ-based proteomics and phosphoproteomics approaches. Using both approaches, we compared a set of 24 samples (18 nfHCC versus six nontumor liver tissue). We identified 43 proteins (67 peptides) differentially expressed and 32 peptides differentially phosphorylated between the experimental groups. The functional analysis of the two data sets pointed toward the deregulation of a protein homeostasis (proteostasis) network including the up-regulation of the Endoplasmic Reticulum (ER) resident HSPA5, HSP90B1, PDIA6, and P4HB and of the cytosolic HSPA1B, HSP90AA1, HSPA9, UBC, CNDP2, TXN, and VCP as well as the increased phosphorylation of the ER resident calnexin at Ser583. Antibody-based validation approaches (immunohistochemistry, immunoblot, Alphascreen®, and AMMP®) on independent nfHCC tumor sets (up to 77 samples) confirmed these observations, thereby indicating a common mechanism occurring in nfHCC tumors. Based on these results we propose that adaptation to proteostasis imbalance in nfHCC tumors might confer selective advantages to those tumors. As such, this model could provide an additional therapeutic opportunity for those tumors arising on normal liver by targeting the tumor proteostasis network. Data are available via ProteomeXchange with identifier PXD001253. PMID:25225353

  12. Integrative quantitative proteomics unveils proteostasis imbalance in human hepatocellular carcinoma developed on nonfibrotic livers.

    PubMed

    Negroni, Luc; Taouji, Said; Arma, Daniela; Pallares-Lupon, Nestor; Leong, Kristen; Beausang, Lee Anne; Latterich, Martin; Bossé, Roger; Balabaud, Charles; Schmitter, Jean-Marie; Bioulac-Sage, Paulette; Zucman-Rossi, Jessica; Rosenbaum, Jean; Chevet, Eric

    2014-12-01

    Proteomics-based clinical studies represent promising resources for the discovery of novel biomarkers or for unraveling molecular mechanisms underlying particular diseases. Here, we present a discovery study of hepatocellular carcinoma developed on nonfibrotic liver (nfHCC) that combines complementary quantitative iTRAQ-based proteomics and phosphoproteomics approaches. Using both approaches, we compared a set of 24 samples (18 nfHCC versus six nontumor liver tissue). We identified 43 proteins (67 peptides) differentially expressed and 32 peptides differentially phosphorylated between the experimental groups. The functional analysis of the two data sets pointed toward the deregulation of a protein homeostasis (proteostasis) network including the up-regulation of the Endoplasmic Reticulum (ER) resident HSPA5, HSP90B1, PDIA6, and P4HB and of the cytosolic HSPA1B, HSP90AA1, HSPA9, UBC, CNDP2, TXN, and VCP as well as the increased phosphorylation of the ER resident calnexin at Ser583. Antibody-based validation approaches (immunohistochemistry, immunoblot, Alphascreen(®), and AMMP(®)) on independent nfHCC tumor sets (up to 77 samples) confirmed these observations, thereby indicating a common mechanism occurring in nfHCC tumors. Based on these results we propose that adaptation to proteostasis imbalance in nfHCC tumors might confer selective advantages to those tumors. As such, this model could provide an additional therapeutic opportunity for those tumors arising on normal liver by targeting the tumor proteostasis network. Data are available via ProteomeXchange with identifier PXD001253.

  13. Stereology and morphometry of lung tissue.

    PubMed

    Mühlfeld, Christian; Knudsen, Lars; Ochs, Matthias

    2013-01-01

    This chapter deals with the stereological quantification of structural characteristics of the lung. The aim of design-based stereological methods is the unbiased and efficient estimation of structural features without making any assumptions on the underlying nature of the biological sample. The methods are based on rigorous sampling of location and orientation, the application of appropriate test systems, and the controlling of the precision of the estimates. Here, we describe the workflow from the fixation of the lung over the processing of the tissue samples to gaining estimates on the structural properties of the lung. Specifically, this chapter deals with methods for estimating the reference volume, sampling location, and sampling orientation, estimating volumes and surface areas of alveolar compartments, estimating total alveolar number, performing stereology at light and electron microscopic level, and dealing with technical problems such as tissue shrinkage. The procedures are illustrated using a worked example from the authors' own laboratory.

  14. Analysis of Lung Tissue Using Ion Beams

    NASA Astrophysics Data System (ADS)

    Alvarez, J. L.; Barrera, R.; Miranda, J.

    2002-08-01

    In this work a comparative study is presented of the contents of metals in lung tissue from healthy patients and with lung cancer, by means of two analytical techniques: Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS). The samples of cancerous tissue were taken from 26 autopsies made to individuals died in the National Institute of Respiratory Disease (INER), 22 of cancer and 4 of other non-cancer biopsies. When analyzing the entirety of the samples, in the cancerous tissues, there were increments in the concentrations of S (4%), K (635%), Co (85%) and Cu (13%). Likewise, there were deficiencies in the concentrations of Cl (59%), Ca (6%), Fe (26%) and Zn (7%). Only in the cancerous tissues there were appearances of P, Ca, Ti, V, Cr, Mn, Ni, Br and Sr. The tissue samples were classified according to cancer types (adenocarcinomas, epidermoides and of small cell carcinoma), personal habits (smokers and alcoholic), genetic predisposition and residence place. There was a remarkable decrease in the concentration of Ca and a marked increment in the Cu in the epidermoide tissue samples with regard to those of adenocarcinoma or of small cells cancer. Also, decrements were detected in K and increments of Fe, Co and Cu in the sample belonging to people that resided in Mexico City with regard to those that resided in the State of Mexico.

  15. Computational model of OCT in lung tissue

    NASA Astrophysics Data System (ADS)

    Reed, David C.; DiMarzio, Charles A.

    2010-02-01

    Lung research may have significant impact on human health. As two examples, recovery from collapse of the alveoli and the severe post surgery declines in forced vital capacity in patients under the effects of anesthesia are both poorly understood. Optical imaging is important to lung research for its inherently high resolution. Microscopy and color imaging are fundamentals of medicine, but interior lung tissue is usually viewed either endoscopically or ex vivo, stained slices. Techniques such as confocal microscopy and optical coherence tomography (OCT) have become increasingly popular in medical imaging because of their sectioning and depth penetration. Since OCT has the ability to achieve higher depth penetration than confocal it is more widely used in lung imaging, despite the difficulty of interpreting the images due to the poor numerical aperture (NA). To understand light propagation through the highly reflective and refractive surfaces of the lung, we developed a Finite-Difference Time Domain (FDTD) simulation. FDTD solves a discrete approximation to Maxwell's equations. Initial simulations have shown that structure up to 30 - 40μm below the surface is clearly visible. Deeper structures are hard to interpret, because of light scattering, compounded by speckle associated with coherent detection. Further simulations and experimental imaging may lead to improved collection and processing of images at deeper levels.

  16. Some connective tissue disorders of the lung.

    PubMed Central

    Turner-Warwick, M.

    1988-01-01

    Many connective tissue disorders involve the lungs. The same clinical syndrome may be associated with several distinctive types of pathology in different patients. Fibrosing alveolitis is a common feature of a number of different syndromes. An hypothesis is set out in schematic form which may help to account for some of these differences and emphasizes the potential importance of the pulmonary vasculature in pathogenesis. Images Figure 3 Figure 4 Figure 5 Figure 8 Figure 9 PMID:3074281

  17. A classification framework for lung tissue categorization

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Iavindrasana, Jimison; Hidki, Asmâa; Cohen, Gilles; Geissbuhler, Antoine; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2008-03-01

    We compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) but also normal tissue. The evaluated classifiers are Naive Bayes, k-Nearest Neighbor (k-NN), J48 decision trees, Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. Those are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 87.9% with high class-specific precision on testing sets of 423 ROIs.

  18. Circulating cytokines in sarcoidosis: Phenotype-specific alterations for fibrotic and non-fibrotic pulmonary disease

    PubMed Central

    Patterson, Karen C.; Franek, Beverly S.; Müller-Quernheim, Joachim; Sperling, Anne I.; Sweiss, Nadera J.; Niewold, Timothy B.

    2013-01-01

    Aims Sarcoidosis is a granulomatous disease of unknown etiology marked by tremendous clinical heterogeneity. Many patients enter remission with good long-term outcomes. Yet, chronic disease is not uncommon, and this important phenotype remains understudied. Identified alterations in local and circulating cytokines—specifically targeted for study, and often in the acute phase of disease—have informed our growing understanding of the immunopathogenesis of sarcoidosis. Our aim was to evaluate a broad panel of circulating cytokines in patients with chronic sarcoidosis. Among those with chronic disease, pulmonary fibrosis occurs in only a subset. To gain more insight into the determinants of the fibrotic response, we also determined if the phenotypes of fibrotic and non-fibrotic pulmonary sarcoidosis have distinct cytokine profiles. Results In patients with sarcoidosis compared to controls, IL-5 was decreased, and IL-7 was increased. Both of these comparisons withstood rigorous statistical correction for multiple comparisons. GM-CSF met a nominal level of significance. We also detected an effect of phenotype, where IL-5 was significantly decreased in non-fibrotic compared to fibrotic pulmonary sarcoidosis, and compared to controls. Compared to controls, there was a trend towards a significant increase in IL-7 in fibrotic, but not in non-fibrotic pulmonary sarcoidosis. In contrast, compared to controls, there was a trend towards a significant increase in GM-CSF in non-fibrotic, but not in fibrotic pulmonary sarcoidosis. Conclusions In a comprehensive evaluation of circulating cytokines in sarcoidosis, we found IL-5, IL-7, and GM-CSF to be altered. These findings provide a window into the immunopathogenesis of sarcoidosis. IL-7 is a novel sarcoidosis cytokine and, as a master regulator of lymphocytes, is an attractive target for further studies. By observing an effect of phenotype upon cytokine patterns, we also identify specific immune alterations which may

  19. The radiological properties of a novel lung tissue substitute.

    PubMed

    Traub, R J; Olsen, P C; McDonald, J C

    2006-01-01

    Lung phantoms have been manufactured using commercially available, polyurethane foam products. Some of these materials are no longer available; therefore, a new lung tissue substitute was developed. The elemental composition and radiological properties of the new lung tissue substitute are described in this paper. Because the lung tissue substitute will be used to manufacture phantom lungs that will be used to evaluate chest counting systems, it is necessary to know the radiological properties of the material. These properties must be compared with reference materials and materials that have been used for lung phantoms in the past. The radiological properties of interest include the electron density, mean excitation energy, electron stopping power and photon mass attenuation coefficients. In all these properties, the calculated values for the new lung tissue substitute closely matched the calculated values of ICRU Publication 44 lung tissue. Good agreement was also found when the new lung tissue substitute was compared with the Griffith lung tissue substitute described by the ICRU. The new material was determined to be an excellent lung tissue substitute.

  20. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jhih; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2009-07-01

    We utilize multiphoton microscopy for the label-free diagnosis of noncancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from humans. Our results show that the combination of second-harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from noncancerous lung tissues. Specifically, noncancerous lung tissues are largely fibrotic in structure, while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55+/-0.23 and 0.87+/-0.15, respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13, respectively. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from noncancerous tissues.

  1. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  2. Inhaled cellulosic and plastic fibers found in human lung tissue.

    PubMed

    Pauly, J L; Stegmeier, S J; Allaart, H A; Cheney, R T; Zhang, P J; Mayer, A G; Streck, R J

    1998-05-01

    We report the results of studies undertaken to determine whether inhaled plant (i.e., cellulosic; e.g., cotton) and plastic (e.g., polyester) fibers are present in human lungs and, if so, whether inhaled fibers are also present in human lung cancers. Specimens of lung cancer of different histological types and adjacent nonneoplastic lung tissue were obtained from patients undergoing a lung resection for removal of a tumor. With the protection of a laminar flow hood and safeguards to prevent contamination by extraneous fibers, fresh, nonfixed, and nonstained samples of lung tissue were compressed between two glass microscope slides. Specimens in these dual slide chambers were examined with a microscope configured to permit viewing with white light, fluorescent light, polarizing light, and phase-contrast illumination. Near-term fetal bovine lungs and nonlung human tumors were used as controls. In contrast to the observations of these control tissues, morphologically heterogeneous fibers were seen repetitively in freshly excised human lung tissue using polarized light. Inhaled fibers were present in 83% of nonneoplastic lung specimens (n = 67/81) and in 97% of malignant lung specimens (n = 32/33). Thus, of the 114 human lung specimens examined, fibers were observed in 99 (87%). Examination of histopathology slides of lung tissue with polarized light confirmed the presence of inhaled cellulosic and plastic fibers. Of 160 surgical histopathology lung tissue slides, 17 were selected for critical examination; of these, fibers were identified in 13 slides. The inhalation of mineral (e.g., asbestos) fibers has been described by many investigators; we believe, however, that this is the first report of inhaled nonmineral (e.g., plant and plastic) fibers. These bioresistant and biopersistent cellulosic and plastic fibers are candidate agents contributing to the risk of lung cancer.

  3. Lung stem and progenitor cells in tissue homeostasis and disease.

    PubMed

    Leeman, Kristen T; Fillmore, Christine M; Kim, Carla F

    2014-01-01

    The mammalian lung is a complex organ containing numerous putative stem/progenitor cell populations that contribute to region-specific tissue homeostasis and repair. In this review, we discuss recent advances in identifying and studying these cell populations in the context of lung homeostasis and disease. Genetically engineered mice now allow for lineage tracing of several lung stem and progenitor cell populations in vivo during different types of lung injury repair. Using specific sets of cell surface markers, these cells can also be isolated from murine and human lung and tested in 3D culture systems and in vivo transplant assays. The pathology of devastating lung diseases, including lung cancers, is likely in part due to dysregulation and dysfunction of lung stem cells. More precise characterization of stem cells with identification of new, unique markers; improvement in isolation and transplant techniques; and further development of functional assays will ultimately lead to new therapies for a host of human lung diseases. In particular, lung cancer biology may be greatly informed by findings in normal lung stem cell biology as evidence suggests that lung cancer is a disease that begins in, and may be driven by, neoplastic lung stem cells. © 2014 Elsevier Inc. All rights reserved.

  4. Trace element concentration distributions in breast, lung and colon tissues

    NASA Astrophysics Data System (ADS)

    Majewska, Urszula; Banas, Dariusz; Braziewicz, Janusz; Gózdz, Stanislaw; Kubala-Kukus, Aldona; Kucharzewski, Marek

    2007-07-01

    The concentrations of Fe, Cu, Zn and Se in cancerous and benign tissues of breast, lung and intestine (colon) have been determined. In the cases when the element concentration has not been determined in all samples the Kaplan-Meier method has been used for the reconstruction of the original concentration distributions and estimation of the true mean concentrations and medians. Finally, the log-rank test has been applied to compare the elemental concentration distributions between cancerous and benign tissues of the same organ, between cancerous tissues and between benign tissues taken from different organs. Comparing benign and malignant neoplastic tissues, statistically significant differences have been found between Fe and Se concentration distributions of breast as well as for Cu and Zn in the case of lung tissues and in the case of colon tissues for Zn. The concentrations of all elements have been found to be statistically different in cancer tissues as well as in benign ones when comparing the different organs, i.e. groups 'breast-colon' and 'breast-lung'. Concentrations of Fe and Cu have been found to be statistically different in lung and colon cancerous tissues. For benign tissues of lung and colon a statistically significant difference has been found only for Zn.

  5. Extravascular Lung Water and Tissue Perfusion Biomarkers After Lung Resection Surgery Under a Normovolemic Fluid Protocol.

    PubMed

    Assaad, Sherif; Kyriakides, Tassos; Tellides, George; Kim, Anthony W; Perkal, Melissa; Perrino, Albert

    2015-08-01

    The optimal fluid management for lung resection surgery remains undefined. Concern related to postoperative pulmonary edema has led to the practice of fluid restriction. This practice risks hypovolemia and tissue hypoperfusion. The authors examined the extravascular lung water accumulation and tissue perfusion biomarkers under protective lung ventilation and normovolemia. A prospective observational study. A single-center study. Forty patients aged 18 years or older undergoing lung resection surgery. Patients were maintained on protective lung ventilation and a normovolemic fluid protocol. Hemodynamic variables, including global end-diastolic volume index, cardiac index, and extravascular lung water index, together with tissue perfusion biomarkers, including serum creatinine, lactic acid, central venous oxygen saturation, and brain natriuretic peptide, were measured perioperatively. Parametric or nonparametric techniques were used to assess changes of these parameters over 72 hours postoperatively. The global end-diastolic volume index was maintained; cardiac index was increased, without a significant change in extravascular lung water index. Acute kidney injury based on AKIN criteria occurred in 3 patients (7.5%), and in 1 patient (2.5 %) based on RIFLE criteria. Lactic acid and central venous oxygen saturation remained within normal limits, and brain natriuretic peptide showed an insignificant increase. In patients undergoing lesser lung resections, a fluid protocol targeting normovolemia together with protective lung ventilation did not increase extravascular lung water. These results suggest further study to identify the optimal fluid regimen to mitigate pulmonic and extrapulmonic complications after lung resection. Published by Elsevier Inc.

  6. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jr; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2010-02-01

    In this work, we utilized multiphoton microscopy for the label-free diagnosis of non-cancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from human. Our results show that the combination of second harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from non-cancerous lung tissues. Specifically, non-cancerous lung tissues are largely fibrotic in structure while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI or SAAID) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55 +/-0.23 and 0.87+/-0.15 respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13 respectively. Intrinsic fluorescence ratio (FAD/NADH) of SCC and non-cancerous tissues are 0.40+/-0.05 and 0.53+/-0.05 respectively, the redox ratio of SCC diminishes significantly, indicating that increased cellular metabolic activity. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from non-cancerous tissues. With additional development, multiphoton microscopy may be used for the clinical diagnosis of lung cancers.

  7. Extracellular concentrations of fosfomycin in lung tissue of septic patients.

    PubMed

    Matzi, Veronika; Lindenmann, Jörg; Porubsky, Christian; Kugler, Sylvia A; Maier, Alfred; Dittrich, Peter; Smolle-Jüttner, Freyja M; Joukhadar, Christian

    2010-05-01

    The present investigation explored the ability of fosfomycin to penetrate lung tissue of septic patients by utilizing the microdialysis technique. After microdialysis probe insertion into healthy and infected lung tissue, a single intravenous dose of 4 g of fosfomycin was administered. The mean C(max), T(max), AUC(0-4) and AUC(0-infinity) for healthy lung were 131.6 +/- 110.6 mg/L, 1.1 +/- 0.4 h, 242.4 +/- 101.6 mgxh/L and 367.6 +/- 111.9 mgxh/L, respectively. The corresponding values for infected lung were 107.5 +/- 60.2 mg/L, 1.4 +/- 0.5 h, 203.5 +/- 118.4 mgxh/L and 315.1 +/- 151.2 mgxh/L. The half-life of fosfomycin ranged from 2.2 to 2.7 h between compartments. The magnitude of lung tissue penetration, as determined by the ratios of the AUC(0-infinity) for lung to the AUC(0-infinity) for plasma, was 0.63 +/- 0.31 and 0.53 +/- 0.31 for healthy and infected lung, respectively. We conclude that fosfomycin achieves antimicrobially effective concentrations in infected lung tissue.

  8. Trace element load in cancer and normal lung tissue

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś , A.; Braziewicz, J.; Banaś , D.; Majewska, U.; Góź Dź , S.; Urbaniak, A.

    1999-04-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described.

  9. A lung dosimetry model of vapor uptake and tissue disposition.

    PubMed

    Asgharian, B; Price, O T; Schroeter, J D; Kimbell, J S; Singal, M

    2012-02-01

    Inhaled vapors may be absorbed at the alveolar-capillary membrane and enter arterial blood flow to be carried to other organs of the body. Thus, the biological effects of inhaled vapors depend on vapor uptake in the lung and distribution to the rest of the body. A mechanistic model of vapor uptake in the human lung and surrounding tissues was developed for soluble and reactive vapors during a single breath. Lung uptake and tissue disposition of inhaled formaldehyde, acrolein, and acetaldehyde were simulated for different solubilities and reactivities. Formaldehyde, a highly reactive and soluble vapor, was estimated to be taken up by the tissues in the upper tracheobronchial airways with shallow penetration into the lung. Vapors with moderate solubility such as acrolein and acetaldehyde were estimated to penetrate deeper into the lung, reaching the alveolar region where absorbed vapors had a much higher probability of passing through the thin alveolar-capillary membrane to reach the blood. For all vapors, tissue concentration reached its maximum at the end of inhalation at the air-tissue interface. The depth of peak concentration moved within the tissue layer due to vapor desorption during exhalation. The proposed vapor uptake model offers a mechanistic approach for calculations of lung vapor uptake, air:tissue flux, and tissue concentration profiles within the respiratory tract that can be correlated to local biological response in the lung. In addition, the uptake model provides the necessary input for pharmacokinetic models of inhaled chemicals in the body, thus reducing the need for estimating requisite parameters.

  10. Solubility of Freon 22 in human blood and lung tissue

    SciTech Connect

    Varene, N.; Choukroun, M.L.; Marthan, R.; Varene, P.

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  11. Decellularization of human and porcine lung tissues for pulmonary tissue engineering.

    PubMed

    O'Neill, John D; Anfang, Rachel; Anandappa, Annabelle; Costa, Joseph; Javidfar, Jeffrey; Wobma, Holly M; Singh, Gopal; Freytes, Donald O; Bacchetta, Matthew D; Sonett, Joshua R; Vunjak-Novakovic, Gordana

    2013-09-01

    The only definitive treatment for end-stage organ failure is orthotopic transplantation. Lung extracellular matrix (LECM) holds great potential as a scaffold for lung tissue engineering because it retains the complex architecture, biomechanics, and topologic specificity of the lung. Decellularization of human lungs rejected from transplantation could provide "ideal" biologic scaffolds for lung tissue engineering, but the availability of such lungs remains limited. The present study was designed to determine whether porcine lung could serve as a suitable substitute for human lung to study tissue engineering therapies. Human and porcine lungs were procured, sliced into sheets, and decellularized by three different methods. Compositional, ultrastructural, and biomechanical changes to the LECM were characterized. The suitability of LECM for cellular repopulation was evaluated by assessing the viability, growth, and metabolic activity of human lung fibroblasts, human small airway epithelial cells, and human adipose-derived mesenchymal stem cells over a period of 7 days. Decellularization with 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) showed the best maintenance of both human and porcine LECM, with similar retention of LECM proteins except for elastin. Human and porcine LECM supported the cultivation of pulmonary cells in a similar way, except that the human LECM was stiffer and resulted in higher metabolic activity of the cells than porcine LECM. Porcine lungs can be decellularized with CHAPS to produce LECM scaffolds with properties resembling those of human lungs, for pulmonary tissue engineering. We propose that porcine LECM can be an excellent screening platform for the envisioned human tissue engineering applications of decellularized lungs. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury.

    PubMed

    Luecke, Thomas; Roth, Harry; Herrmann, Peter; Joachim, Alf; Weisser, Gerald; Pelosi, Paolo; Quintel, Michael

    2003-11-01

    To examine the effects of positive end-expiratory pressure (PEEP) on extravascular lung water (EVLW), lung tissue, and lung volume. Experimental animal study at a university research facility. Fifteen adult sheep. All animals were studied before and after saline washout-induced lung injury while ventilated with sequentially increasing PEEP (0, 7, 14, or 21 cmH(2)O). Lung volume was determined by computed tomography and EVLW by the thermal dye dilution technique. Saline washout significantly increased lung tissue volume (21+/-3 to 37+/-5 ml/kg) and EVLW (9+/-2 to 36+/-9 ml/kg). While increasing levels of PEEP reduced EVLW (30+/-7, 24+/-8, and 18+/-4 ml/kg), lung tissue volume remained constant. Total lung volume significantly increased (50+/-8 ml/kg at PEEP 0 to 77+/-12 ml/kg at PEEP 21). Nonaerated lung volume significantly decreased and was closely correlated with the changes in EVLW ( r=0.67). In addition, a highly significant correlation was found between PEEP-induced decrease in nonaerated lung volume and decrease in transpulmonary shunt ( r=0.83). The main findings are as follows: (a) PEEP effectively decreases EVLW. (b) The decrease in EVLW is closely correlated with the PEEP-induced decrease in nonaerated lung volume, making EVLW a valuable bedside parameter indicating alveolar recruitment, similar to measurements of transpulmonary shunt. (c) As excess tissue volume remained constant, however, EVLW may not be suitable to reflect overall severity of lung disease

  13. Lung cancer tissue diagnosis in poor lung function: addressing the ongoing percutaneous lung biopsy FEV1 paradox using Heimlich valve.

    PubMed

    Abdullah, R; Tavare, A N; Creamer, A; Creer, D; Vancheeswaran, R; Hare, S S

    2016-08-01

    Many centres continue to decline percutaneous lung biopsy (PLB) in patients with poor lung function (particularly FEV1 <1 L) due to the theoretically increased risk of pneumothorax. This practice limits access to novel lung cancer therapies and minimally invasive surgical techniques. Our retrospective single-centre analysis of 212 patients undergoing PLB, all performed prospectively and blinded to lung function, demonstrates that using ambulatory Heimlich valve chest drain (HVCD) to treat significant postbiopsy pneumothorax facilitates safe, diagnostic, early discharge lung biopsy irrespective of lung function with neither FEV1 <1 L nor transfer coefficient for carbon monoxide (TLCO) <40% predicted shown to be independent predictors of HVCD insertion or pneumothorax outcomes. Incorporating ambulatory HVCD into standard PLB practice thereby elegantly bridges the gap that currently exists between tissue diagnosis in patients with poor lung function and the advanced therapeutic options available for this cohort.

  14. Proteomic analysis of lung tissue by DIGE

    USDA-ARS?s Scientific Manuscript database

    Lungs perform an essential physiological function, mediated by a complex series of events that involve the coordination of multiple cell types to support not only gaseous exchange, but homeostasis and protection from infection. Guinea pigs are an important animal disease model for a number of infect...

  15. On the behaviour of lung tissue under tension and compression

    NASA Astrophysics Data System (ADS)

    Andrikakou, Pinelopi; Vickraman, Karthik; Arora, Hari

    2016-11-01

    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min‑1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response.

  16. On the behaviour of lung tissue under tension and compression

    PubMed Central

    Andrikakou, Pinelopi; Vickraman, Karthik; Arora, Hari

    2016-01-01

    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min−1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response. PMID:27819358

  17. Association Between RT-Induced Changes in Lung Tissue Density and Global Lung Function

    SciTech Connect

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2009-07-01

    Purpose: To assess the association between radiotherapy (RT)-induced changes in computed tomography (CT)-defined lung tissue density and pulmonary function tests (PFTs). Methods and Materials: Patients undergoing incidental partial lung RT were prospectively assessed for global (PFTs) and regional (CT and single photon emission CT [SPECT]) lung function before and, serially, after RT. The percent reductions in the PFT and the average changes in lung density were compared (Pearson correlations) in the overall group and subgroups stratified according to various clinical factors. Comparisons were also made between the CT- and SPECT-based computations using the Mann-Whitney U test. Results: Between 1991 and 2004, 343 patients were enrolled in this study. Of these, 111 patients had a total of 203 concurrent post-RT evaluations of changes in lung density and PFTs available for the analyses, and 81 patients had a total of 141 concurrent post-RT SPECT images. The average increases in lung density were related to the percent reductions in the PFTs, albeit with modest correlation coefficients (range, 0.20-0.43). The analyses also indicated that the association between lung density and PFT changes is essentially equivalent to the corresponding association with SPECT-defined lung perfusion. Conclusion: We found a weak quantitative association between the degree of increase in lung density as defined by CT and the percent reduction in the PFTs.

  18. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds

    PubMed Central

    Nakayama, Karina H.; Lee, C. Chang I.; Batchelder, Cynthia A.; Tarantal, Alice F.

    2013-01-01

    Initial steps in establishing an optimal strategy for functional bioengineered tissues is generation of three-dimensional constructs containing cells with the appropriate organization and phenotype. To effectively utilize rhesus monkey decellularized kidney scaffolds, these studies evaluated two key parameters: (1) residual scaffold components after decellularization including proteomics analysis, and (2) the use of undifferentiated human embryonic stem cells (hESCs) for recellularization in order to explore cellular differentiation in a tissue-specific manner. Sections of kidney and lung were selected for a comparative evaluation because of their similar pattern of organogenesis. Proteomics analysis revealed the presence of growth factors and antimicrobial proteins as well as stress proteins and complement components. Immunohistochemistry of recellularized kidney scaffolds showed the generation of Cytokeratin+ epithelial tubule phenotypes throughout the scaffold that demonstrated a statistically significant increase in expression of kidney-associated genes compared to baseline hESC gene expression. Recellularization of lung scaffolds showed that cells lined the alveolar spaces and demonstrated statistically significant upregulation of key lung-associated genes. However, overall expression of kidney and lung-associated markers was not statistically different when the kidney and lung recellularized scaffolds were compared. These results suggest that decellularized scaffolds have an intrinsic spatial ability to influence hESC differentiation by physically shaping cells into tissue-appropriate structures and phenotypes, and that additional approaches may be needed to ensure consistent recellularization throughout the matrix. PMID:23717553

  19. The Field of Tissue Injury in the Lung and Airway

    PubMed Central

    Steiling, Katrina; Ryan, John; Brody, Jerome S.; Spira, Avrum

    2009-01-01

    The concept of field cancerization was first introduced over six decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, non-neoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potential molecular origins of field cancerization and the field of injury following cigarette smoke exposure in lung and airway epithelia are critical to understanding the impact of the field of injury on clinical diagnostics and therapeutics for smoking-induced lung disease. PMID:19138985

  20. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance

    PubMed Central

    Lowe, Kevin; Alvarez, Diego F.; King, Judy A.; Stevens, Troy

    2010-01-01

    Objective Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Design Prospective, randomized, controlled study. Setting Research laboratory. Subjects One hundred twenty male CD40 rats. Interventions To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Measurements Static and dynamic lung mechanics and hemodynamics were measured continuously. Main Results Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased pressure over time sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Conclusions Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure. PMID:20400904

  1. Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue.

    PubMed

    Goldman, R; Enewold, L; Pellizzari, E; Beach, J B; Bowman, E D; Krishnan, S S; Shields, P G

    2001-09-01

    Tobacco smoke is a major source of human exposure to polycyclic aromatic hydrocarbons (PAHs). The concentration of PAHs in lung tissue would reflect an individual's dose, and its variation could perhaps reflect cancer risk. Eleven PAHs were measured in 70 lung tissue samples from cancer-free autopsy donors by gas chromatography-mass spectrometry. There were 37 smokers and 33 nonsmokers as estimated by serum cotinine concentration. The sum of PAH concentrations was higher in smokers (P = 0.01), and there was a dose-response relationship for greater smoking (P < 0.01). Smoking increased the concentration of five PAHs including benzo(a)pyrene, which increased approximately 2-fold. The risk for increasing carcinogenic PAHs (odds ratio, 8.20; 95% confidence interval, 2.39-28.09) was 3-fold compared with noncarcinogenic PAHs (odds ratio, 2.61; 95% confidence interval, 0.75-9.12). A higher concentration of PAHs was detected in the lung tissue of males, although the estimated smoking was similar in males and females. Race was not associated with PAH concentrations overall, but PAH concentrations appeared to be higher in African-American males than in any other group. Age was weakly correlated with an increase in fluoranthene and pyrene. The measurement of PAHs in human lung tissue can be used to estimate the actual dose to the target organ.

  2. Relationship Between Diseased Lung Tissues on Computed Tomography and Motion of Fiducial Marker Near Lung Cancer

    SciTech Connect

    Onodera, Yuya; Nishioka, Noriko; Yasuda, Koichi; Fujima, Noriyuki; Torres, Mylin; Kamishima, Tamotsu; Ooyama, Noriko; Onimaru, Rikiya; Terae, Satoshi; Ooizumi, Satoshi; Nishimura, Masaharu; Shirato, Hiroki

    2011-04-01

    Purpose: For lung cancer patients with poor pulmonary function because of emphysema or fibrosis, it is important to predict the amplitude of internal tumor motion to minimize the irradiation of the functioning lung tissue before undergoing stereotactic body radiotherapy. Methods and Materials: Two board-certified diagnostic radiologists independently assessed the degree of pulmonary emphysema and fibrosis on computed tomography scans in 71 patients with peripheral lung tumors before real-time tumor-tracking radiotherapy. The relationships between the computed tomography findings of the lung parenchyma and the motion of the fiducial marker near the lung tumor were investigated. Of the 71 patients, 30 had normal pulmonary function, and 29 had obstructive pulmonary dysfunction (forced expiratory volume in 1 s/forced vital capacity ratio of <70%), 6 patients had constrictive dysfunction (percentage of vital capacity <80%), and 16 had mixed dysfunction. Results: The upper region was associated with smaller tumor motion, as expected (p = .0004), and the presence of fibrosis (p = .088) and pleural tumor contact (p = .086) were weakly associated with tumor motion. The presence of fibrotic changes in the lung tissue was associated with smaller tumor motion in the upper region (p <.05) but not in the lower region. The findings of emphysema and pulmonary function tests were not associated with tumor motion. Conclusion: Tumors in the upper lung region with fibrotic changes have smaller motion than those in the upper region of the lungs without fibrotic changes. The tumor motion in the lower lung region was not significantly different between patients with and without lung fibrosis. Emphysema was not associated with the amplitude of tumor motion.

  3. Distribution of lung tissue hysteresis during free breathing.

    PubMed

    White, Benjamin; Zhao, Tianyu; Lamb, James; Wuenschel, Sara; Bradley, Jeffrey; El Naqa, Issam; Low, Daniel

    2013-04-01

    To characterize and quantify free breathing lung tissue motion distributions. Forty seven patient data sets were acquired using a 4DCT protocol consisting of 25 ciné scans at abutting couch positions on a 16-slice scanner. The tidal volume of each scan was measured by simultaneously acquiring spirometry and an abdominal pneumatic bellows. The concept of a characteristic breath was developed to manage otherwise natural breathing pattern variations. The characteristic breath was found by first dividing the breathing traces into individual breaths, from maximum exhalation to maximum exhalation. A linear breathing drift model was assumed and the drift removed for each breath. Breaths that exceeded one standard deviation in period or amplitude were removed from further analysis. A characteristic breath was defined by normalizing each breath to a common amplitude, aligning the peak inhalation times for all of the breaths, and determining the average time at each tidal volume, keeping inhalation and exhalation separate. Breathing motion trajectories were computed using a previously published five-dimensional lung tissue trajectory model which expresses the position of internal lung tissue, X, as: X(v,f:X0)=X0+α(X0)v+β(X0)f, where X0 is the internal lung tissue position at zero tidal volume and zero airflow, the scalar values v and f are the measured tidal volume and airflow, respectively, and the vectors α and β are fitted free parameters. In order to characterize the motion patterns, the trajectory elongations were examined throughout the subject's lungs. Elongation was defined here by generating a rectangular bounding box with one side parallel to the α vector and the box oriented in the plane defined by the α and β motion vectors. Hysteresis motion was defined as the ratio of the box dimensions aligned orthogonal to and parallel to the α vector. The 15th and 85th percentile of the elongation were used to characterize tissue trajectory hysteresis. The 15th and

  4. Impact of Statins on Gene Expression in Human Lung Tissues

    PubMed Central

    Lane, Jérôme; van Eeden, Stephan F.; Obeidat, Ma’en; Sin, Don D.; Tebbutt, Scott J.; Timens, Wim; Postma, Dirkje S.; Laviolette, Michel; Paré, Peter D.; Bossé, Yohan

    2015-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin

  5. Mucosa associated lymphoid tissue lymphoma of lung: a case report.

    PubMed

    Gangopadhyay, Subir; Deb, Asit Ranjan; Aich, Ranen Karti; Chakraborty, Sudipto; Das, Diptimoy; Dee, Abhijit

    2010-07-01

    Mucosa associated lymphoid tissue lymphoma is a rare disease particularly when occurring in the lungs. In 1983, Issacson and Wright first described it as a distinct clinicopathological entity. A 39-year-old woman was suffering from mucosa associated lymphoid tissue lymphoma of the lung and was treated with moderate dose radiotherapy only. Six months after treatment the woman is symptom free and without any evidence of relapse. The disease undergoes a very indolent course and local form of treatment like surgery or radiotherapy is effective though radiotherapy is probably associated with higher local control rate and event free survival particularly in early stages. But for diagnostic purpose thoracotomy is generally required in pulmonary variety. Due to rarity of cases it is almost impossible to compare surgery with radiotherapy in mucosa associated lymphoid tissue lymphoma disorder in a prospective manner. Radiotherapy is the preferred mode of treatment either alone or in combination with surgery.

  6. The Lung Tissue Microbiome in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Sze, Marc A.; Dimitriu, Pedro A.; Hayashi, Shizu; Elliott, W. Mark; McDonough, John E.; Gosselink, John V.; Cooper, Joel; Sin, Don D.; Mohn, William W.

    2012-01-01

    Rationale: Based on surface brushings and bronchoalveolar lavage fluid, Hilty and coworkers demonstrated microbiomes in the human lung characteristic of asthma and chronic obstructive pulmonary disease (COPD), which have now been confirmed by others. Objectives: To extend these findings to human lung tissue samples. Methods: DNA from lung tissue samples was obtained from nonsmokers (n = 8); smokers without COPD (n = 8); patients with very severe COPD (Global Initiative for COPD [GOLD] 4) (n = 8); and patients with cystic fibrosis (CF) (n = 8). The latter served as a positive control, with sterile water as a negative control. All bacterial community analyses were based on polymerase chain reaction amplifying 16S rRNA gene fragments. Total bacterial populations were measured by quantitative polymerase chain reaction and bacterial community composition was assessed by terminal restriction fragment length polymorphism analysis and pyrotag sequencing. Measurement and Main Results: Total bacterial populations within lung tissue were small (20–1,252 bacterial cells per 1,000 human cells) but greater in all four sample groups versus the negative control group (P < 0.001). Terminal restriction fragment length polymorphism analysis and sequencing distinguished three distinct bacterial community compositions: one common to the nonsmoker and smoker groups, a second to the GOLD 4 group, and the third to the CF-positive control group. Pyrotag sequencing identified greater than 1,400 unique bacterial sequences and showed an increase in the Firmicutes phylum in GOLD 4 patients versus all other groups (P < 0.003) attributable to an increase in the Lactobacillus genus (P < 0.0007). Conclusions: There is a detectable bacterial community within human lung tissue that changes in patients with very severe COPD. PMID:22427533

  7. Immune surveillance of the lung by migrating tissue monocytes

    PubMed Central

    Rodero, Mathieu P; Poupel, Lucie; Loyher, Pierre-Louis; Hamon, Pauline; Licata, Fabrice; Pessel, Charlotte; Hume, David A; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI: http://dx.doi.org/10.7554/eLife.07847.001 PMID:26167653

  8. [Study of remanent magnetization of the human body: lung and liver tissues].

    PubMed

    Sakai, H; Wang, H; Murai, Y; Soukejima, S; Kagamimori, S

    2001-07-01

    In this study, we used lung and liver tissue specimens distracted from tissue to investigate remanant magnetization, and found that specimens with a volume of 6 mm3 had an intensity of 10(-10) Am2, which was significantly stronger than the noise level of the superconducting magnetometer. This finding indicates that both lung and liver tissues contain magnetic materials. We speculated that biological magnetite is the magnetic material in these tissues. In addition, we found that lung tissue specimens with strong magnetization had correspondingly strong magnetized findings in the liver tissue specimens. In a comparison of magnetization in lung cancer tissue specimens and normal lung tissue, no significant relationship was noted, but two of the lung cancer tissue specimens showed strong magnetization. The number of lung cancer specimens studies was insufficient to investigate the relation between the magnetization (accumulation of magnetic materials) and lung cancer, and further studies are necessary. The magnetic properties of two lung cancer tissue specimens showing strong magnetization were further investigated, and an alternating field demagnetization experiment showed that their magnetization was composed of a unit stable vector, which indicates that the lung tissue may have been magnetized after the accumulation of magnetic materials. The Wohlfarth ratio (Moskowitz et al., 1989) of them was less than 0.5, which suggests that magnetic materials are distributed in clusters in lung tissue.

  9. Critical transition in tissue homeostasis accompanies murine lung senescence.

    PubMed

    Calvi, Carla L; Podowski, Megan; D'Alessio, Franco R; Metzger, Shana L; Misono, Kaori; Poonyagariyagorn, Hataya; Lopez-Mercado, Armando; Ku, Therese; Lauer, Thomas; Cheadle, Christopher; Talbot, C Conover; Jie, Chunfa; McGrath-Morrow, Sharon; King, Landon S; Walston, Jeremy; Neptune, Enid R

    2011-01-01

    Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of

  10. Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom.

    PubMed

    Company, F Z; Allen, B J

    1998-09-01

    Recent advances in synchrotron generated x-ray beams with a high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed technique takes advantage of the hypothesized repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (up to 20 x 20 cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings.

  11. Interpretation of autoantibody positivity in interstitial lung disease and lung-dominant connective tissue disease.

    PubMed

    Pereira, Daniel Antunes Silva; Kawassaki, Alexandre de Melo; Baldi, Bruno Guedes

    2013-01-01

    The initial evaluation of patients with interstitial lung disease (ILD) primarily involves a comprehensive, active search for the cause. Autoantibody assays, which can suggest the presence of a rheumatic disease, are routinely performed at various referral centers. When interstitial lung involvement is the condition that allows the definitive diagnosis of connective tissue disease and the classical criteria are met, there is little debate. However, there is still debate regarding the significance, relevance, specificity, and pathophysiological role of autoimmunity in patients with predominant pulmonary involvement and only mild symptoms or formes frustes of connective tissue disease. The purpose of this article was to review the current knowledge of autoantibody positivity and to discuss its possible interpretations in patients with ILD and without clear etiologic associations, as well as to enhance the understanding of the natural history of an allegedly new disease and to describe the possible prognostic implications. We also discuss the proposition of a new term to be used in the classification of ILDs: lung-dominant connective tissue disease.

  12. Interpretation of autoantibody positivity in interstitial lung disease and lung-dominant connective tissue disease*

    PubMed Central

    Pereira, Daniel Antunes Silva; Kawassaki, Alexandre de Melo; Baldi, Bruno Guedes

    2013-01-01

    The initial evaluation of patients with interstitial lung disease (ILD) primarily involves a comprehensive, active search for the cause. Autoantibody assays, which can suggest the presence of a rheumatic disease, are routinely performed at various referral centers. When interstitial lung involvement is the condition that allows the definitive diagnosis of connective tissue disease and the classical criteria are met, there is little debate. However, there is still debate regarding the significance, relevance, specificity, and pathophysiological role of autoimmunity in patients with predominant pulmonary involvement and only mild symptoms or formes frustes of connective tissue disease. The purpose of this article was to review the current knowledge of autoantibody positivity and to discuss its possible interpretations in patients with ILD and without clear etiologic associations, as well as to enhance the understanding of the natural history of an allegedly new disease and to describe the possible prognostic implications. We also discuss the proposition of a new term to be used in the classification of ILDs: lung-dominant connective tissue disease. PMID:24473767

  13. [The biological significance of FHIT protein expression in lung cancer and precancerous tissues detected by tissue microarray].

    PubMed

    Yuan, Ling; Wang, Xinyun; Zheng, Haiyan

    2007-06-20

    Fragile histidine triad (FHIT) is a candidate tumor suppressor gene. Aberrant expression of FHIT has been observed in multiple carcinomas induced by environmental carcinogens, especially in lung cancer. In this study, the expression of FHIT protein in lung cancer progression tissue microarray was detected and their roles in oncogenesis and progression of lung cancer were discussed. The expression of FHIT protein in tissue microarray with 270 cores was detected by SP immunohistochemistry method, in which there were 89 cases of primary lung cancer, 12 cases of lymph node metastasis of lung cancer, 12 cases of precancerous lesion and 10 cases of normal lung tissue, and the clinicopathological features of lung cancer were analyzed. The expression of FHIT was localized in the cytoplasm. Loss of FHIT expression in primary cancers, precancerous lesion and lymph node metastasis of lung cancer was 46.1%, 41.7% and 50.0% respectively, while 0 in 10 cases of normal tissues. A significant difference of FHIT expression was observed among four groups (P < 0.05). Loss of FHIT expression in precancerous lesion, primary lung cancer and lymph node metastasis of lung cancer was significantly higher than that in normal lung tissue (P < 0.05). The difference among precancerous lesion, primary lung cancer and lymph node metastasis of lung cancer groups was not statistically significant (P > 0.05). Loss of FHIT expression was related to tumor histologicol types, degree of cell differentiation and the smoking history of patients (P < 0.05), but not to sex, age, gross appearance types, TNM stages, or lymph node metastasis (P > 0.05). The protein expression level of FHIT is reduced in primary cancers and precancerous tissues, especially in most squamous cell carcinomas, poorly differentiated group and the patients with a smoking history. These results indicate that loss of FHIT expression might correlate with carcinogenesis, development of lung cancer and the carcinogenesis induced by

  14. [Determination of thirty three elements in lung cancer tissues of patients with lung cancer by microwave digestion-ICP-MS].

    PubMed

    Zhang, Lin-Lin; Ma, Qian-Li; Huang, Yun-Chao; Wu, Guo-Ping; Wei, Fu-Sheng

    2009-12-01

    A method for determining 33 elements in lung tissues of patients with lung cancer was developed by using vacuum freeze-drying microwave digestion-ICP-MS. The lung tissue samples were treated by vacuum freeze-drying equipment. After microwave digestion in HNO3-H2O2 solution system, the samples were diluted with the method of constant volume. Under the optimized conditions the samples were analyzed by ICP-MS. The double internal standard elements Rh and Re were used to compensate for matrix suppression effect and sensitivity drift. The analytical results showed that the detection limits of the 33 elements were 0.01-0.45 ng x mL(-1). The national standard reference material GBW(E)080193 bovine liver was analyzed by the described method and the measured element values accorded with the standard values or the reference values. The relative standard deviation (RSD) of the method was 2.1%-14.3%. The recovery rates of the studied elements were 90.1%-117.5%. The contents of 33 elements in lung cancer tissues, paracancerous lung tissues and benign lung tissues of 6 patients with lung cancer were determined by the method. It was indicated that the method is rapid, simple and accurate for determining multi-elements in human lung tissue and other biological samples.

  15. Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium

    NASA Astrophysics Data System (ADS)

    Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.

    2008-03-01

    The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the

  16. Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression

    DTIC Science & Technology

    2009-04-01

    will be performed using mice in which lung fibrosis is induced by intraoral delivery of bleomycin and will focus on mice in which periostin...tissue of mice in which lung injury/ fibrosis had been induced using bleomycin (Fig. 1). In normal lung tissue, periostin is uniformly expressed in...further understand the role of periostin in the progression of lung fibrosis , we treated control mice and periostin knockout mice with bleomycin

  17. Connective Tissue Disease-Associated Interstitial Lung Diseases: Unresolved Issues.

    PubMed

    Aparicio, Irene Jarana; Lee, Joyce S

    2016-06-01

    Interstitial lung disease (ILD) complicating connective tissue disorders, such as scleroderma and rheumatoid arthritis, is associated with significant morbidity and mortality. Progress has been made in our understanding of these collective diseases; however, there are still many unanswered questions. In this review, we describe the current views on epidemiology, clinical presentation, treatment, and prognosis in patients with connective tissue disease (CTD)-associated ILD. We also highlight several areas that remain unresolved and in need of further investigation, including interstitial pneumonia with autoimmune features, histopathologic phenotype, and pharmacologic management. A multidisciplinary and multidimensional approach to diagnosis, management, and investigation of CTD-associated ILD patients is essential to advance our understanding of the epidemiology and pathobiology of this challenging group of diseases.

  18. Connective Tissue Disease-associated Interstitial Lung Disease: A review

    PubMed Central

    Gutsche, Markus; Rosen, Glenn D.; Swigris, Jeffrey J.

    2012-01-01

    Interstitial lung disease (ILD) is commonly encountered in patients with connective tissue diseases (CTD). Besides the lung parenchyma, the airways, pulmonary vasculature and structures of the chest wall may all be involved, depending on the type of CTD. As a result of this so-called multi-compartment involvement, airflow limitation, pulmonary hypertension, vasculitis and extrapulmonary restriction can occur alongside fibro-inflammatory parenchymal abnormalities in CTD. Rheumatoid arthritis (RA), systemic sclerosis (SSc), poly-/dermatomyositis (PM/DM), Sjögren’s syndrome (SjS), systemic lupus erythematosus (SLE), and undifferentiated (UCTD) as well as mixed connective tissue disease (MCTD) can all be associated with the development of ILD. Non-specific interstitial pneumonia (NSIP) is the most commonly observed histopathological pattern in CTD-ILD, but other patterns including usual interstitial pneumonia (UIP), organizing pneumonia (OP), diffuse alveolar damage (DAD) and lymphocytic interstitial pneumonia (LIP) may occur. Although the majority of patients with CTD-ILD experience stable or slowly advancing ILD, a small yet significant group exhibits a more severe and progressive course. Randomized placebo-controlled trials evaluating the efficacy of immunomodulatory treatments have been conducted only in SSc-associated ILD. However, clinical experience suggests that a handful of immunosuppressive medications are potentially effective in a sizeable portion of patients with ILD caused by other CTDs. In this manuscript, we review the clinical characteristics and management of the most common CTD-ILDs. PMID:23125954

  19. Quantification of Regional Interstitial Lung Disease from CT-derived Fractional Tissue Volume: A Lung Tissue Research Consortium Study

    PubMed Central

    Yilmaz, Cuneyt; Watharkar, Snehal S.; de Leon, Alberto Diaz; Garcia, Christine K.; Patel, Nova C.; Jordan, Kirk G.; Hsia, Connie C.W.

    2011-01-01

    Rationale and Objectives Evaluation of chest CT is usually qualitative or semi-quantitative, resulting in subjective descriptions often by different observers over time and imprecise determinations of disease severity within distorted lobes. There is a need for standardized imaging biomarkers to quantify regional disease, maximize diagnostic yield, and facilitate multi-center comparisons. We applied lobe-based voxelwise image analysis to derive regional air (Vair) and tissue (Vtissue) volumes and fractional tissue volume (FTV=tissue/[tissue+air] volume) as internally standardized parameter for assessing interstitial lung disease (ILD). Materials and Methods High-resolution CT was obtained at supine and prone end-inspiration and supine end-expiration in 29 patients with ILD and 20 normal subjects. Lobar Vair, Vtissue, and FTV were expressed along standard coordinate axes. Results In normal subjects from end-inspiration to end-expiration, total Vair declined 43%, FTV increased ~80% while Vtissue remained unchanged. With increasing ILD, Vair declined and Vtissue rose in all lobes; FTV increased with a peripheral-to-central progression inversely correlated to spirometry and lung diffusing capacity (R2=0.57–0.75, prone end-inspiration). Inter- and intra-lobar coefficients of variation (CVs) of FTV increased 84–148% in mild-to-moderate ILD, indicating greater spatial heterogeneity, then normalized in severe ILD. Analysis of discontinuous images incurs <3% error compared to consecutive images. Conclusions These regional attenuation-based biomarkers could quantify heterogeneous parenchymal disease in distorted lobes, detect mild ILD involvement in all lobes and describe the pattern of disease progression. The next step would be to study a larger series, examine reproducibility and follow longitudinal changes in correlation with clinical and functional indices. PMID:21596593

  20. Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor.

    PubMed

    Shaver, Ciara M; Grove, Brandon S; Putz, Nathan D; Clune, Jennifer K; Lawson, William E; Carnahan, Robert H; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2015-11-01

    Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI.

  1. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    PubMed

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  2. Autocrine lysophosphatidic acid signaling activates β-catenin and promotes lung allograft fibrosis.

    PubMed

    Cao, Pengxiu; Aoki, Yoshiro; Badri, Linda; Walker, Natalie M; Manning, Casey M; Lagstein, Amir; Fearon, Eric R; Lama, Vibha N

    2017-04-03

    Tissue fibrosis is the primary cause of long-term graft failure after organ transplantation. In lung allografts, progressive terminal airway fibrosis leads to an irreversible decline in lung function termed bronchiolitis obliterans syndrome (BOS). Here, we have identified an autocrine pathway linking nuclear factor of activated T cells 2 (NFAT1), autotaxin (ATX), lysophosphatidic acid (LPA), and β-catenin that contributes to progression of fibrosis in lung allografts. Mesenchymal cells (MCs) derived from fibrotic lung allografts (BOS MCs) demonstrated constitutive nuclear β-catenin expression that was dependent on autocrine ATX secretion and LPA signaling. We found that NFAT1 upstream of ATX regulated expression of ATX as well as β-catenin. Silencing NFAT1 in BOS MCs suppressed ATX expression, and sustained overexpression of NFAT1 increased ATX expression and activity in non-fibrotic MCs. LPA signaling induced NFAT1 nuclear translocation, suggesting that autocrine LPA synthesis promotes NFAT1 transcriptional activation and ATX secretion in a positive feedback loop. In an in vivo mouse orthotopic lung transplant model of BOS, antagonism of the LPA receptor (LPA1) or ATX inhibition decreased allograft fibrosis and was associated with lower active β-catenin and dephosphorylated NFAT1 expression. Lung allografts from β-catenin reporter mice demonstrated reduced β-catenin transcriptional activation in the presence of LPA1 antagonist, confirming an in vivo role for LPA signaling in β-catenin activation.

  3. Lung tissues in systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension

    PubMed Central

    Hsu, Eileen; Shi, Haiwen; Jordan, Rick M.; Lyons-Weiler, James; Pilewski, Joseph M.; Feghali-Bostwick, Carol A.

    2010-01-01

    Objective Pulmonary complications in systemic sclerosis (SSc), including pulmonary fibrosis (PF) and pulmonary arterial hypertension (PAH), are the leading cause of mortality. We compared the molecular fingerprint of SSc lung tissues and matching primary lung fibroblasts to those of normal donors, and patients with idiopathic pulmonary fibrosis (IPF) and idiopathic pulmonary arterial hypertension (IPAH). Methods Lung tissues were obtained from 33 patients with SSc who underwent lung transplantation. Tissues and cells from a subgroup of SSc patients with predominantly PF or PAH were compared to those from normal donors, patients with IPF, or IPAH. Microarray data was analyzed using Efficiency Analysis for determination of optimal data processing methods. Real time PCR and immunohistochemistry were used to confirm differential levels of mRNA and protein, respectively. Results We identified a consensus of 242 and 335 genes that were differentially expressed in lungs and primary fibroblasts, respectively. Enriched function groups in SSc-PF and IPF lungs included fibrosis, insulin-like growth factor signaling and caveolin-mediated endocytosis. Functional groups shared by SSc-PAH and IPAH lungs included antigen presentation, chemokine activity, and IL-17 signaling. Conclusion Using microarray analysis on carefully phenotyped SSc and comparator lung tissues, we demonstrated distinct molecular profiles in tissues and fibroblasts of patients with SSc-associated lung disease compared to idiopathic forms of lung disease. Unique molecular signatures were generated that are disease- (SSc) and phenotype- (PF vs PAH) specific. These signatures provide new insights into pathogenesis and potential therapeutic targets for SSc lung disease. PMID:21360508

  4. Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software analysis.

    PubMed

    Henne, Erik; Anderson, Joseph C; Lowe, Norma; Kesten, Steven

    2012-05-14

    Quantification of lung tissue via analysis of computed tomography (CT) scans is increasingly common for monitoring disease progression and for planning of therapeutic interventions. The current study evaluates the quantification of human lung tissue mass by software analysis of a CT to physical tissue mass measurements. Twenty-two ex vivo lungs were scanned by CT and analyzed by commercially available software. The lungs were then dissected into lobes and sublobar segments and weighed. Because sublobar boundaries are not visually apparent, a novel technique of defining sublobar segments in ex vivo tissue was developed. The tissue masses were then compared to measurements by the software analysis. Both emphysematous (n = 14) and non-emphysematous (n = 8) bilateral lungs were evaluated. Masses (Mean ± SD) as measured by dissection were 651 ± 171 g for en bloc lungs, 126 ± 60 g for lobar segments, and 46 ± 23 g for sublobar segments. Masses as measured by software analysis were 598 ± 159 g for en bloc lungs, 120 ± 58 g for lobar segments, and 45 ± 23 g for sublobar segments. Correlations between measurement methods was above 0.9 for each segmentation level. The Bland-Altman analysis found limits of agreement at the lung, lobe and sublobar levels to be -13.11% to -4.22%, -13.59% to 4.24%, and -45.85% to 44.56%. The degree of concordance between the software mass quantification to physical mass measurements provides substantial evidence that the software method represents an appropriate non-invasive means to determine lung tissue mass.

  5. Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung.

    PubMed

    Donnenberg, Vera S; Landreneau, Rodney J; Pfeifer, Melanie E; Donnenberg, Albert D

    2013-01-01

    Single cell analysis and cell sorting has enabled the study of development, growth, differentiation, repair and maintenance of "liquid" tissues and their cancers. The application of these methods to solid tissues is equally promising, but several unique technical challenges must be addressed. This report illustrates the application of multidimensional flow cytometry to the identification of candidate stem/progenitor populations in non-small cell lung cancer and paired normal lung tissue. Seventeen paired tumor/normal lung samples were collected at the time of surgical excision and processed immediately. Tissues were mechanically and enzymatically dissociated into single cell suspension and stained with a panel of antibodies used for negative gating (CD45, CD14, CD33, glycophorin A), identification of epithelial cells (intracellular cytokeratin), and detection of stem/progenitor markers (CD44, CD90, CD117, CD133). DAPI was added to measure DNA content. Formalin fixed paraffin embedded tissue samples were stained with key markers (cytokeratin, CD117, DAPI) for immunofluorescent tissue localization of populations detected by flow cytometry. Disaggregated tumor and lung preparations contained a high proportion of events that would interfere with analysis, were they not eliminated by logical gating. We demonstrate how inclusion of doublets, events with hypodiploid DNA, and cytokeratin+ events also staining for hematopoietic markers reduces the ability to quantify epithelial cells and their precursors. Using the lung cancer/normal lung data set, we present an approach to multidimensional data analysis that consists of artifact removal, identification of classes of cells to be studied further (classifiers) and the measurement of outcome variables on these cell classes. The results of bivariate analysis show a striking similarity between the expression of stem/progenitor markers on lung tumor and adjacent tumor-free lung.

  6. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  7. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  8. Detection of reactive oxygen metabolites in malignant and adjacent normal tissues of patients with lung cancer.

    PubMed

    Okur, Hacer Kuzu; Yuksel, Meral; Lacin, Tunc; Baysungur, Volkan; Okur, Erdal

    2013-01-17

    Different types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis. Several studies have emphasized the formation of ROMs in ischemic tissues and in cases of inflammation. The increased amounts of ROMs in tumor tissues can either be because of their causative effects or because they are produced by the tumor itself. Our study aimed to investigate and compare the levels of ROMs in tumor tissue and adjacent lung parenchyma obtained from patients with lung cancer. Fifteen patients (all male, mean age 63.6 ± 9 years) with non-small cell lung cancer were enrolled in the study. All patients were smokers. Of the patients with lung cancer, twelve had epidermoid carcinoma and three had adenocarcinoma. During anatomical resection of the lung, tumor tissue and macroscopically adjacent healthy lung parenchyma (control) that was 5 cm away from the tumor were obtained. The tissues were freshly frozen and stored at -20°C. The generation of ROMs was monitored using luminol- and lucigenin-enhanced chemiluminescence (CL) techniques. Both luminol (specific for (.)OH, H(2)O(2), and HOCl(-)) and lucigenin (selective for O(2)(.)(-)) CL measurements were significantly higher in tumor tissues than in control tissues (P <0.001). Luminol and lucigenin CL measurements were 1.93 ± 0.71 and 2.5 ± 0.84 times brighter, respectively, in tumor tissues than in the adjacent parenchyma (P = 0.07). In patients with lung cancer, all ROM levels were increased in tumor tissues when compared with the adjacent lung tissue. Because the increase in lucigenin concentration, which is due to tissue ischemia, is higher than the increase in luminol, which is directly related to the presence and severity of inflammation, ischemia may be more important than inflammation for tumor development in patients with lung cancer.

  9. Detection of reactive oxygen metabolites in malignant and adjacent normal tissues of patients with lung cancer

    PubMed Central

    2013-01-01

    Background Different types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis. Several studies have emphasized the formation of ROMs in ischemic tissues and in cases of inflammation. The increased amounts of ROMs in tumor tissues can either be because of their causative effects or because they are produced by the tumor itself. Our study aimed to investigate and compare the levels of ROMs in tumor tissue and adjacent lung parenchyma obtained from patients with lung cancer. Methods Fifteen patients (all male, mean age 63.6 ± 9 years) with non-small cell lung cancer were enrolled in the study. All patients were smokers. Of the patients with lung cancer, twelve had epidermoid carcinoma and three had adenocarcinoma. During anatomical resection of the lung, tumor tissue and macroscopically adjacent healthy lung parenchyma (control) that was 5 cm away from the tumor were obtained. The tissues were freshly frozen and stored at −20°C. The generation of ROMs was monitored using luminol- and lucigenin-enhanced chemiluminescence (CL) techniques. Results Both luminol (specific for .OH, H2O2, and HOCl-) and lucigenin (selective for O2.-) CL measurements were significantly higher in tumor tissues than in control tissues (P <0.001). Luminol and lucigenin CL measurements were 1.93 ± 0.71 and 2.5 ± 0.84 times brighter, respectively, in tumor tissues than in the adjacent parenchyma (P = 0.07). Conclusion In patients with lung cancer, all ROM levels were increased in tumor tissues when compared with the adjacent lung tissue. Because the increase in lucigenin concentration, which is due to tissue ischemia, is higher than the increase in luminol, which is directly related to the presence and severity of inflammation, ischemia may be more important than inflammation for tumor development in patients with lung cancer. PMID:23327412

  10. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    PubMed

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels.

  11. Fluorescence spectroscopy and cryoimaging of rat lung tissue mitochondrial redox state

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Audi, S.; Staniszewski, K.; Maleki, S.; Ranji, M.

    2011-07-01

    The objective of this study was to demonstrate the utility of optical cryoimaging and fluorometry to evaluate tissue redox state of the mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavin Adenine Dinucleotide) in intact rat lungs. The ratio (NADH/FAD), referred to as mitochondrial redox ratio (RR), is a measure of the lung tissue mitochondrial redox state. Isolated rat lungs were connected to a ventilation-perfused system. Surface NADH and FAD fluorescence signals were acquired before and after lung perfusion in the absence (control perfusate) or presence of potassium cyanide (KCN, complex IV inhibitor) to reduce the mitochondrial respiratory chain (state 5 respiration). Another group of lungs were perfused with control perfusate or KCN-containing perfusate as above, after which the lungs were deflated and frozen rapidly for subsequent 3D cryoimaging. Results demonstrate that lung treatment with KCN increased lung surface NADH signal by 22%, decreased FAD signal by 8%, and as result increased RR by 31% as compared to control perfusate (baseline) values. Cryoimaging results also show that KCN increased mean lung tissue NADH signal by 37%, decreased mean FAD signal by 4%, and increased mean RR by 47%. These results demonstrate the utility of these optical techniques to evaluate the effect of pulmonary oxidative stress on tissue mitochondrial redox state in intact lungs.

  12. Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease

    NASA Astrophysics Data System (ADS)

    Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi

    2009-02-01

    Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.

  13. Expression of IRAK1 in lung cancer tissues and its clinicopathological significance: a microarray study.

    PubMed

    Zhang, Xiuling; Dang, Yiwu; Li, Ping; Rong, Minhua; Chen, Gang

    2014-01-01

    The interleukin-1 receptor associated kinases 1 (IRAK1) is a down stream effector molecule of the toll like receptor (TLR) signaling pathway, which is involved in inflammation, autoimmunity and cancer. However, the role of IRAK1 in lung cancer remains unclarified. Herein, we investigated the protein expression and the clinicopathological significance of IRAK1 in 3 formalin-fixed paraffin-embedded lung cancer tissue microarrays by using immunohistochemistry, which included 365 tumor and 30 normal lung tissues. We found that the expression of IRAK1 in lung cancer was significantly higher compared with that in normal lung tissues (P=0.002). Receiver operating characteristic (ROC) curves were generated to evaluate the power of IRAK1 to distinguish lung cancer from non-cancerous lung tissue. The area under curve (AUC) of ROC of IRAK1 was 0.643 (95% CI 0.550~0.735, P=0.009). Additionally, IRAK1 expression was related to clinical TNM stage (r=0.241, P < 0.001), lymph node metastasis (r=0.279, P < 0.001) and tumor size (r=0.299, P < 0.001) in lung cancer. In the subgroup of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), the positive rates of IRAK1 were both higher than that in the normal lung tissues (P=0.003, P=0.002, respectively). Further spearman analysis showed that IRAK1 protein in NSCLC was positive correlated with clinical TNM stage (r=0.222, P < 0.001), lymph node metastasis (r=0.277, P < 0.001), tumor size (r=0.292, P < 0.001) and distal metastasis (r=0.110, P=0.043). In conclusion, the expression of IRAK1 protein might be valuable in identifying patients with increased risks of lung cancer and might act as a target for diagnosis and gene therapy for lung cancer.

  14. Detection of respiratory pathogens in porcine lung tissue and lavage fluid.

    PubMed

    Moorkamp, Lars; Nathues, Heiko; Spergser, Joachim; Tegeler, Regina; Grosse Beilage, Elisabeth

    2008-02-01

    The objective of this study was to compare the detection rate of bacterial agents in bronchoalveolar lavage fluid (BALF), taken without visual control, to that in affected lung tissue obtained from the same pig at necropsy. BALF and affected lung tissue were examined for Mycoplasma hyopneumoniae using PCR, and standard cultural methods were used for Actinobacillus pleuropneumoniae, Bordetella bronchiseptica, Haemophilus parasuis, Pasteurella multocida and Streptococcus suis. All pigs with a history of respiratory symptoms were submitted as live animals for routine diagnostic examination. In each animal the site of lavage, marked by injecting methylene blue, differed from the site of pneumonic lesions. M. hyopneumoniae was detected more frequently in lung tissue than in BALF in cases with moderate or severe lung lesions. The detection rates of M. hyopneumoniae were higher in the BALF of pigs with mild lesions. Cultural examination of BALF was at least as satisfactory as affected lung tissue for detecting B. bronchiseptica, H. parasuis and P. multocida.

  15. Clinic application of tissue engineered bronchus for lung cancer treatment

    PubMed Central

    Liu, Ruijun; Chen, Xiaoke; Wu, Jingxiang; Pan, Yinggen; Lu, Shun; Weder, Walter; Luo, Qingquan

    2017-01-01

    Background Delayed revascularization process and substitute infection remain to be key challenges in tissue engineered (TE) airway reconstruction. We propose an “in-vivo bioreactor” design, defined as an implanted TE substitutes perfused with an intra-scaffold medium flow created by an extracorporeal portable pump system for in situ organ regeneration. The perfusate keeps pre-seeded cells alive before revascularization. Meanwhile the antibiotic inside the perfusate controls topical infection. Methods A stage IIIA squamous lung cancer patient received a 5-cm TE airway substitute, bridging left basal segment bronchus to carina, with the in-vivo bioreactor design to avoid left pneumonectomy. Continuous intra-scaffold Ringer’s-gentamicin perfusion lasted for 1 month, together with orthotopic peripheral total nucleated cells (TNCs) injection twice a week. Results The patient recovered uneventfully. Bronchoscopy follow-up confirmed complete revascularization and reepithelialization four months postoperatively. Perfusate waste test demonstrated various revascularization growth factors secreted by TNCs. The patient received two cycles of chemotherapy and 30 Gy radiotherapy thereafter without complications related to the TE substitute. Conclusions In-vivo bioreactor design combines the traditionally separated in vitro 3D cell-scaffold culture system and the in vivo regenerative processes associated with TE substitutes, while treating the recipients as bioreactors for their own TE prostheses. This design can be applied clinically. We also proved for the first time that TE airway substitute is able to tolerate chemo-radiotherapy and suitable to be used in cancer treatment. PMID:28203403

  16. Combinational feature optimization for classification of lung tissue images

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Zhukov, Tatyana; Zhang, Jianying; Tockman, Melvyn; Qian, Wei

    2010-03-01

    A novel approach to feature optimization for classification of lung carcinoma using tissue images is presented. The methodology uses a combination of three characteristics of computational features: F-measure, which is a representation of each feature towards classification, inter-correlation between features and pathology based information. The metadata provided from pathological parameters is used for mapping between computational features and biological information. Multiple regression analysis maps each category of features based on how pathology information is correlated with the size and location of cancer. Relatively the computational features represented the tumor size better than the location of the cancer. Based on the three criteria associated with the features, three sets of feature subsets with individual validation are evaluated to select the optimum feature subset. Based on the results from the three stages, the knowledgebase produces the best subset of features. An improvement of 5.5% was observed for normal Vs all abnormal cases with Az value of 0.731 and 74/114 correctly classified. The best Az value of 0.804 with 66/84 correct classification and improvement of 21.6% was observed for normal Vs adenocarcinoma.

  17. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    PubMed

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells.

    PubMed

    Ogawa, Hiroyuki; Koyanagi-Aoi, Michiyo; Otani, Kyoko; Zen, Yoh; Maniwa, Yoshimasa; Aoi, Takashi

    2017-09-26

    In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them "lung cancer organoids". We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.

  19. Development of LC-QTOF-MS method for human lung tissue fingerprinting. A preliminary application to nonsmall cell lung cancer.

    PubMed

    Ciborowski, Michal; Kisluk, Joanna; Pietrowska, Karolina; Samczuk, Paulina; Parfieniuk, Ewa; Kowalczyk, Tomasz; Kozlowski, Miroslaw; Kretowski, Adam; Niklinski, Jacek

    2017-09-01

    The major histologic subtypes of non-small cell lung cancer (NSCLC) include adenocarcinoma (ADC), squamous cell lung carcinoma (SCC), and large-cell carcinoma (LCC). Clinical trials of targeted agents and newer chemotherapy agents yielded differences in outcomes according to histologic subgroups providing a rationale for histology-based treatment in NSCLC. Currently, NSCLC subtyping is performed based on histopathological examinations and immunohistochemistry. However available methods leave about 10% of NSCLC cases as not otherwise specified. The purpose of this study was development of an LC-QTOF-MS method for human lung tissue metabolic fingerprinting that could discriminate NSCLC histological subtypes and propose biomarkers candidates that could support proper NSCLC diagnosis. Metabolites were extracted with acetonitrile or methanol/ethanol and different chromatographic conditions were tested. In the final method 10 mg of lung tissue was homogenized with 50% methanol and metabolites were extracted with acetonitrile. Metabolites were separated on C8-RP and HILIC columns. About 3500 and 2000 of metabolic features (in both ion modes) were detected with good repeatability (CV < 20%) by RP and HILIC methods, respectively. Lung tumor and control tissue samples obtained from NSCLC patients were analyzed with developed methodology. Acylcarnitines, fatty acids, phospholipids, and amino acids were found more abundant in tumor as compared to control tissue. Acylcarnitines, lysophospholipids, creatinine, creatine, and alanine were identified as potential targets enabling classification of NSCLC subtypes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues

    PubMed Central

    Yu, Yen-Rei A.; Hotten, Danielle F.; Malakhau, Yuryi; Volker, Ellen; Ghio, Andrew J.; Noble, Paul W.; Kraft, Monica; Hollingsworth, John W.; Gunn, Michael D.

    2016-01-01

    Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined flow cytometry panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue is currently lacking. The objective of this study was to develop a flow cytometry–based panel for human BAL and lung tissue. We obtained and performed flow cytometry/sorting on human BAL cells and lung tissue. Confocal images were obtained from lung tissue using antibodies for cluster of differentiation (CD)206, CD169, and E cadherin. We defined a multicolor flow panel for human BAL and lung tissue that identifies major leukocyte populations. These include macrophage (CD206+) subsets and other CD206− leukocytes. The CD206− cells include: (1) three monocyte (CD14+) subsets, (2) CD11c+ dendritic cells (CD14−, CD11c+, HLA-DR+), (3) plasmacytoid dendritic cells (CD14−, CD11c−, HLA-DR+, CD123+), and (4) other granulocytes (neutrophils, mast cells, eosinophils, and basophils). Using this panel on human lung tissue, we defined two populations of pulmonary macrophages: CD169+ and CD169− macrophages. In lung tissue, CD169− macrophages were a prominent cell type. Using confocal microscopy, CD169+ macrophages were located in the alveolar space/airway, defining them as alveolar macrophages. In contrast, CD169− macrophages were associated with airway/alveolar epithelium, consistent with interstitial-associated macrophages. We defined a flow cytometry panel in human BAL and lung tissue that allows identification of multiple immune cell types and delineates alveolar from interstitial-associated macrophages. This study has important implications for defining myeloid cells in human lung samples. PMID:26267148

  1. Production of decellularized porcine lung scaffolds for use in tissue engineering†

    PubMed Central

    Balestrini, Jenna L.; Gard, Ashley L.; Liu, Angela; Leiby, Katherine L.; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A.; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpella, Stuart G.; Niklason, Laura E.

    2015-01-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual PMID:26426090

  2. Expression and clinicopathological implication of DcR3 in lung cancer tissues: a tissue microarray study with 365 cases.

    PubMed

    Zhang, Yu; Luo, Jie; He, Rongquan; Huang, Wenting; Li, Zuyun; Li, Ping; Dang, Yiwu; Chen, Gang; Li, Shikang

    2016-01-01

    Decoy receptor 3 (DcR3) has been reported to be involved in different cancers. However, few related researches have been accomplished on the role of DcR3 in lung cancer. To explore the expression level and clinicopathological implication of DcR3 protein in lung cancer tissues. Immunohistochemistry was used to examine DcR3 protein expression in lung cancer (n=365) and normal lung tissues (n=26). The relationships between DcR3 expression and clinical parameters were further investigated. Furthermore, the diagnostic and clinicopathological value of DcR3 mRNA was analyzed based on The Cancer Genome Atlas database in lung cancer patients. Compared to normal lung tissues, DcR3 expression was significantly higher in lung cancer (P=0.007) tissues, including small-cell lung cancer (P=0.001) and non-small-cell lung cancer (P=0.008). In addition, DcR3 expression was related to tumor-node-metastasis (TNM) stage (P<0.001), tumor diameter (P=0.007), distant metastasis (P<0.001), and lymph node metastasis (P<0.001) in lung cancers. When concerning non-small-cell lung cancer, consistent correlations between DcR3 expression and TNM stage (P<0.001), tumor diameter (P=0.019), distant metastasis (P<0.001), and lymph node metastasis (P<0.001) were found. Simultaneously, in small-cell lung cancer, TNM stage (P=0.004) and lymph node metastasis (P=0.005) were also associated with DcR3 expression. Additionally, receiver operator characteristic curve revealed that the area under curve (AUC) of DcR3 was 0.637 (95% confidence interval [CI] 0.531-0.742) for lung cancer. Furthermore, DcR3 was overexpressed in both adenocarcinoma and squamous cell carcinoma tissues than in noncancerous lung tissues (all P<0.0001) based on the data from The Cancer Genome Atlas. AUC of DcR3 was 0.726 (95% CI 0.644-0.788) for lung adenocarcinoma patients and 0.647 (95% CI 0.566-0.728) for squamous cell carcinoma patients. DcR3 expression was also related to the overall survival (P<0.001) and disease-free survival

  3. Expression and clinicopathological implication of DcR3 in lung cancer tissues: a tissue microarray study with 365 cases

    PubMed Central

    Zhang, Yu; Luo, Jie; He, Rongquan; Huang, Wenting; Li, Zuyun; Li, Ping; Dang, Yiwu; Chen, Gang; Li, Shikang

    2016-01-01

    Background Decoy receptor 3 (DcR3) has been reported to be involved in different cancers. However, few related researches have been accomplished on the role of DcR3 in lung cancer. Objective To explore the expression level and clinicopathological implication of DcR3 protein in lung cancer tissues. Materials and methods Immunohistochemistry was used to examine DcR3 protein expression in lung cancer (n=365) and normal lung tissues (n=26). The relationships between DcR3 expression and clinical parameters were further investigated. Furthermore, the diagnostic and clinicopathological value of DcR3 mRNA was analyzed based on The Cancer Genome Atlas database in lung cancer patients. Results Compared to normal lung tissues, DcR3 expression was significantly higher in lung cancer (P=0.007) tissues, including small-cell lung cancer (P=0.001) and non-small-cell lung cancer (P=0.008). In addition, DcR3 expression was related to tumor-node-metastasis (TNM) stage (P<0.001), tumor diameter (P=0.007), distant metastasis (P<0.001), and lymph node metastasis (P<0.001) in lung cancers. When concerning non-small-cell lung cancer, consistent correlations between DcR3 expression and TNM stage (P<0.001), tumor diameter (P=0.019), distant metastasis (P<0.001), and lymph node metastasis (P<0.001) were found. Simultaneously, in small-cell lung cancer, TNM stage (P=0.004) and lymph node metastasis (P=0.005) were also associated with DcR3 expression. Additionally, receiver operator characteristic curve revealed that the area under curve (AUC) of DcR3 was 0.637 (95% confidence interval [CI] 0.531–0.742) for lung cancer. Furthermore, DcR3 was overexpressed in both adenocarcinoma and squamous cell carcinoma tissues than in noncancerous lung tissues (all P<0.0001) based on the data from The Cancer Genome Atlas. AUC of DcR3 was 0.726 (95% CI 0.644–0.788) for lung adenocarcinoma patients and 0.647 (95% CI 0.566–0.728) for squamous cell carcinoma patients. DcR3 expression was also related to

  4. Imaging lung tissue oscillations using high-speed X-ray velocimetry.

    PubMed

    Thurgood, Jordan; Dubsky, Stephen; Uesugi, Kentaro; Curtis, Michael; Samarage, Chaminda R; Thompson, Bruce; Zosky, Graeme; Fouras, Andreas

    2016-01-01

    This work utilized synchrotron imaging to achieve a regional assessment of the lung's response to imparted oscillations. The forced oscillation technique is increasingly being used in clinical and research settings for the measurement of lung function. During the forced oscillation technique, pressure oscillations are imparted to the lungs via the subjects' airway opening and the response is measured. This provides information about the mechanical properties of the airways and lung tissue. The quality of measurements is dependent upon the input signal penetrating uniformly throughout the lung. However, the penetration of these signals is not well understood. The development and use of a novel image-processing technique in conjunction with synchrotron-based imaging was able to regionally assess the lungs' response to input pressure oscillation signals in anaesthetized mice. The imaging-based technique was able to quantify both the power and distribution of lung tissue oscillations during forced oscillations of the lungs. It was observed that under forced oscillations the apices had limited lung tissue expansion relative to the base. This technique could be used to optimize input signals used for the forced oscillation technique or potentially as a diagnostic tool itself.

  5. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features.

    PubMed

    Yu, Guoqin; Gail, Mitchell H; Consonni, Dario; Carugno, Michele; Humphrys, Michael; Pesatori, Angela C; Caporaso, Neil E; Goedert, James J; Ravel, Jacques; Landi, Maria Teresa

    2016-07-28

    The human lung tissue microbiota remains largely uncharacterized, although a number of studies based on airway samples suggest the existence of a viable human lung microbiota. Here we characterized the taxonomic and derived functional profiles of lung microbiota in 165 non-malignant lung tissue samples from cancer patients. We show that the lung microbiota is distinct from the microbial communities in oral, nasal, stool, skin, and vagina, with Proteobacteria as the dominant phylum (60 %). Microbiota taxonomic alpha diversity increases with environmental exposures, such as air particulates, residence in low to high population density areas, and pack-years of tobacco smoking and decreases in subjects with history of chronic bronchitis. Genus Thermus is more abundant in tissue from advanced stage (IIIB, IV) patients, while Legionella is higher in patients who develop metastases. Moreover, the non-malignant lung tissues have higher microbiota alpha diversity than the paired tumors. Our results provide insights into the human lung microbiota composition and function and their link to human lifestyle and clinical outcomes. Studies among subjects without lung cancer are needed to confirm our findings.

  6. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  7. Morphogenetic implications of peristaltic fluid-tissue dynamics in the embryonic lung.

    PubMed

    Bokka, Kishore K; Jesudason, Edwin C; Warburton, David; Lubkin, Sharon R

    2015-10-07

    Peristalsis begins in the lung as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can deform tissues and transport fluid far from the immediately adjacent tissues. Stretching of embryonic tissues and sensation of internal fluid flows have been shown to have potent morphogenetic effects. We hypothesize that these effects are at work in lung morphogenesis. To place that hypothesis in a quantitative framework, we analyze a model of the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We find that if the airway is closed, deformations are synchronized; by contrast, if the trachea is open, maximal occlusion precedes maximal pressure. We perform a parametric analysis of how occlusion, stretch, and flow depend on tissue stiffnesses, smooth muscle force, tissue shape and size, and fluid viscosity. We find that most of these relationships are governed by simple ratios.

  8. High extracellular levels of cefpirome in unaffected and infected lung tissue of patients.

    PubMed

    Lindenmann, Jörg; Kugler, Sylvia A; Matzi, Veronika; Porubsky, Christian; Maier, Alfred; Dittrich, Peter; Graninger, Wolfgang; Smolle-Jüttner, Freyja M; Joukhadar, Christian

    2011-01-01

    the objective of the present investigation was to measure the extracellular concentrations of cefpirome in unaffected and infected lung tissue of septic patients. a single intravenous dose of 30 mg/kg total body weight of cefpirome was administered to eight patients every 12 h prior to insertion of microdialysis probes into lung tissue. the median (minimum, maximum) peak concentration (C(max)), time to C(max) (T(max)), area under the concentration-time curve from 0 to 4 h (AUC(0-4)) and AUC(0-∞) of unbound cefpirome for unaffected lung were 48 (32, 107) mg/L, 0.83 (0.17, 3.17) h, 117 (60, 177) mg · h/L and 182 (80, 382) mg · h/L, respectively. The corresponding values for infected lung tissue were 45 (6, 122) mg/L, 1.17 (0.83, 2.83) h, 92 (17, 253) mg · h/L and 206 (49, 379) mg · h/L, respectively. The median apparent terminal elimination half-lives (t(½z)) of cefpirome were 2.61, 3.05 and 3.39 h for plasma, unaffected lung and infected lung, respectively. The median ratios of the AUC(0)(-∞) for lung to the AUC(0)(-∞) for plasma were 0.63 (0.19, 1.55) and 0.46 (0.32, 0.98) for unaffected and infected lung, respectively. we provide strong evidence that cefpirome penetrates effectively into the extracellular space fluid of lung tissue. Under steady-state conditions, the median concentrations of cefpirome in plasma, unaffected lung and infected lung exceeded the MICs of the majority of relevant bacteria over the entire dosing interval of up to 12 h after intravenous administration of a dose of 30 mg/kg total body weight.

  9. Nickel accumulation in lung tissues is associated with increased risk of p53 mutation in lung cancer patients.

    PubMed

    Chiou, Yu-Hu; Wong, Ruey-Hong; Chao, Mu-Rong; Chen, Chih-Yi; Liou, Saou-Hsing; Lee, Huei

    2014-10-01

    Occupational exposure to nickel compounds has been associated with lung cancer. The correlation between high nickel levels and increased risk of lung cancer has been previously reported in a case-control study. This study assessed whether nickel exposure increased the occurrence of p53 mutations due to DNA repair inhibition by nickel. A total of 189 lung cancer patients were enrolled to determine nickel levels in tumor-adjacent normal lung tissues and p53 mutation status in lung tumors through atomic absorption spectrometry and direct sequencing, respectively. Nickel levels in p53 mutant patients were significantly higher than those in p53 wild-type patients. When patients were divided into high- and low-nickel subgroups by median nickel level, the high-nickel subgroup of patients had an odds ratio (OR) of 3.25 for p53 mutation risk relative to the low-nickel subgroup patients. The OR for p53 mutation risk of lifetime non-smokers, particularly females, in the high-nickel subgroup was greater than that in the low-nickel subgroup. To determine whether nickel affected DNA repair capacity, we conducted the host cell reactivation assay in A549 and H1975 lung cancer cells and showed that the DNA repair activity was reduced by nickel chloride in a dose-dependent manner. This was associated with elevated production of hydrogen peroxide-induced 8-oxo-deoxyguanosine. Therefore, increased risk of p53 mutation due to defective DNA repair caused by high nickel levels in lung tissues may be one mechanism by which nickel exposure contributes to lung cancer development, especially in lifetime female non-smokers.

  10. Coming to terms with tissue engineering and regenerative medicine in the lung

    PubMed Central

    Tschumperlin, Daniel J.; Stenmark, Kurt R.

    2015-01-01

    Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424

  11. Biochemical and connective tissue changes in cyclophosphamide-induced lung fibrosis in rats.

    PubMed

    Venkatesan, N; Punithavathi, D; Chandrakasan, G

    1998-10-01

    The present investigation was designed to characterize the biochemical and connective tissue components and to correlate the significance of morphological and biochemical perturbations in cyclophosphamide (CP)-induced lung fibrosis in rats. Lung fibrosis was induced in male Wistar rats by intraperitoneal injection of 20 mg/100 g body weight of CP, and their pneumotoxic derangements were characterized during an early destructive phase followed by a proliferative and synthetic phase. Serum angiotensin-converting enzyme (ACE) activity was higher in CP-treated rats at days 2, 3, 5, 7, and 11, but there was a significant decrease in lung ACE activity during the same time period. Elevated levels of beta-glucuronidase activity were observed in the lung lavage fluid of CP-administered rats days 2, 3, 5, and 7. Lung myeloperoxidase activity was higher in CP rats. Of significance was the presence of collagenase and collagenolytic cathepsin in the lavage fluid of CP rats, when compared with the barely detectable levels in controls. A similar increase in these enzyme activities was also noticed in the lung tissue of CP rats during the same experimental period. Lavage fluid hydroxyproline content was higher in CP rats when compared with controls. Similarly, lung protein and DNA levels were elevated significantly after treatment with CP. The pulmonary histamine and serotonin contents were significantly higher in CP rats. The incorporation of [3H]thymidine into lung total DNA, [3H]proline into lung hydroxyproline, and [35S]sulphate into lung glycosaminoglycan, measured as indicators of lung DNA, collagen, and glycosaminoglycan synthesis, respectively, was also higher in CP groups. Increased levels of hydroxyproline, elastin, hexosamine, total hexose, fucose, sialic acid, and uronic acid in the lungs of rats 14, 28, and 42 days after CP insult were characterized as biomarkers of CP-induced interstitial changes. These findings indicate that CP-induced lung fibrosis results in

  12. Innate lymphoid cells promote lung tissue homeostasis following acute influenza virus infection

    PubMed Central

    Monticelli, Laurel A.; Sonnenberg, Gregory F.; Abt, Michael C.; Alenghat, Theresa; Ziegler, Carly G.K.; Doering, Travis A.; Angelosanto, Jill M.; Laidlaw, Brian J.; Yang, Cliff Y.; Sathaliyawala, Taheri; Kubota, Masaru; Turner, Damian; Diamond, Joshua M.; Goldrath, Ananda W.; Farber, Donna L.; Collman, Ronald G.; Wherry, E. John; Artis, David

    2012-01-01

    Innate lymphoid cells (ILCs), a recently identified heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine but whether ILCs can influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed CD90, CD25, CD127 and T1-ST2. Strikingly, mouse ILCs accumulated in the lung following influenza virus infection and depletion of ILCs resulted in loss of airway epithelial integrity, decreased lung function and impaired airway remodeling. These defects could be restored by administration of the lung ILC product amphiregulin. Collectively, these results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis following influenza virus infection. PMID:21946417

  13. Microstructural Analysis of Peripheral Lung Tissue through CPMG Inter-Echo Time R2 Dispersion

    PubMed Central

    Kurz, Felix T.; Kampf, Thomas; Buschle, Lukas R.; Schlemmer, Heinz-Peter; Heiland, Sabine; Bendszus, Martin; Ziener, Christian H.

    2015-01-01

    Since changes in lung microstructure are important indicators for (early stage) lung pathology, there is a need for quantifiable information of diagnostically challenging cases in a clinical setting, e.g. to evaluate early emphysematous changes in peripheral lung tissue. Considering alveoli as spherical air-spaces surrounded by a thin film of lung tissue allows deriving an expression for Carr-Purcell-Meiboom-Gill transverse relaxation rates R2 with a dependence on inter-echo time, local air-tissue volume fraction, diffusion coefficient and alveolar diameter, within a weak field approximation. The model relaxation rate exhibits the same hyperbolic tangent dependency as seen in the Luz-Meiboom model and limiting cases agree with Brooks et al. and Jensen et al. In addition, the model is tested against experimental data for passively deflated rat lungs: the resulting mean alveolar radius of RA = 31.46 ± 13.15 μm is very close to the literature value (∼34 μm). Also, modeled radii obtained from relaxometer measurements of ageing hydrogel foam (that mimics peripheral lung tissue) are in good agreement with those obtained from μCT images of the same foam (mean relative error: 0.06 ± 0.01). The model’s ability to determine the alveolar radius and/or air volume fraction will be useful in quantifying peripheral lung microstructure. PMID:26544068

  14. Microstructural Analysis of Peripheral Lung Tissue through CPMG Inter-Echo Time R2 Dispersion.

    PubMed

    Kurz, Felix T; Kampf, Thomas; Buschle, Lukas R; Schlemmer, Heinz-Peter; Heiland, Sabine; Bendszus, Martin; Ziener, Christian H

    2015-01-01

    Since changes in lung microstructure are important indicators for (early stage) lung pathology, there is a need for quantifiable information of diagnostically challenging cases in a clinical setting, e.g. to evaluate early emphysematous changes in peripheral lung tissue. Considering alveoli as spherical air-spaces surrounded by a thin film of lung tissue allows deriving an expression for Carr-Purcell-Meiboom-Gill transverse relaxation rates R2 with a dependence on inter-echo time, local air-tissue volume fraction, diffusion coefficient and alveolar diameter, within a weak field approximation. The model relaxation rate exhibits the same hyperbolic tangent dependency as seen in the Luz-Meiboom model and limiting cases agree with Brooks et al. and Jensen et al. In addition, the model is tested against experimental data for passively deflated rat lungs: the resulting mean alveolar radius of RA = 31.46 ± 13.15 μm is very close to the literature value (∼34 μm). Also, modeled radii obtained from relaxometer measurements of ageing hydrogel foam (that mimics peripheral lung tissue) are in good agreement with those obtained from μCT images of the same foam (mean relative error: 0.06 ± 0.01). The model's ability to determine the alveolar radius and/or air volume fraction will be useful in quantifying peripheral lung microstructure.

  15. Lung cancer development in patients with connective tissue disease–related interstitial lung disease

    PubMed Central

    Enomoto, Yasunori; Inui, Naoki; Yoshimura, Katsuhiro; Nishimoto, Koji; Mori, Kazutaka; Kono, Masato; Fujisawa, Tomoyuki; Enomoto, Noriyuki; Nakamura, Yutaro; Iwashita, Toshihide; Suda, Takafumi

    2016-01-01

    Abstract Previous studies have reported that patients with idiopathic pulmonary fibrosis occasionally develop lung cancer (LC). However, in connective tissue disease (CTD)-related interstitial lung disease (ILD), there are few data regarding the LC development. The aim of the present study was to evaluate the clinical significance of LC development in patients with CTD-ILD. A retrospective review of our database of 562 patients with ILD between 2000 and 2014 identified 127 patients diagnosed with CTD-ILD. The overall and cumulative incidences of LC were calculated. In addition, the risk factors and prognostic impact of LC development were evaluated. The median age at the ILD diagnosis was 63 years (range 37–84 years), and 73 patients (57.5%) were female. The median follow-up period from the ILD diagnosis was 67.4 months (range 10.4–322.1 months). During the period, 7 out of the 127 patients developed LC (overall incidence 5.5%). The cumulative incidences at 1, 3, and 5 years were 0.0%, 1.8%, and 2.9%, respectively. The risk of LC development was significantly higher in patients with higher smoking pack-year (odds ratio [OR] 1.028; 95% confidence interval [CI] 1.008–1.049; P = 0.007) and emphysema on chest high-resolution computed tomography (OR 14.667; 95% CI 2.871–74.926; P = 0.001). The median overall survival time after developing LC was 7.0 months (95% CI 4.9–9.1 months), and the most common cause of death was LC, not ILD. According to the Cox proportional hazard model analysis with time-dependent covariates, patients who developed LC showed significantly poorer prognosis than those who did not (hazard ratio 87.86; 95% CI 19.56–394.67; P < 0.001). In CTD-ILD, clinicians should be careful with the risk of LC development in patients with a heavy smoking history and subsequent emphysema. Although not so frequent, the complication could be a poor prognostic determinant. PMID:27977621

  16. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues.

    PubMed

    Foronjy, Robert F; Majka, Susan M

    2012-12-01

    Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.

  17. Proteogenomic Analysis of Human Chromosome 9-Encoded Genes from Human Samples and Lung Cancer Tissues

    PubMed Central

    Ahn, Jung-Mo; Kim, Min-Sik; Kim, Yong-In; Jeong, Seul-Ki; Lee, Hyoung-Joo; Lee, Sun Hee; Paik, Young-Ki; Pandey, Akhilesh; Cho, Je-Yoel

    2014-01-01

    The Chromosome-centric Human Proteome Project (C-HPP) was recently initiated as an international collaborative effort. Our team adopted chromosome 9 (Chr 9) and performed a bioinformatics and proteogenomic analysis to catalog Chr 9-encoded proteins from normal tissues, lung cancer cell lines and lung cancer tissues. Approximately 74.7% of the Chr 9 genes of the human genome were identified, which included approximately 28% of missing proteins (46 of 162) on Chr 9 compared with the list of missing proteins from the neXtProt master table (2013-09). In addition, we performed a comparative proteomics analysis between normal lung and lung cancer tissues. Based on the data analysis, 15 proteins from Chr 9 were detected only in lung cancer tissues. Finally, we conducted a proteogenomic analysis to discover Chr 9-residing single nucleotide polymorphisms (SNP) and mutations described in the COSMIC cancer mutation database. We identified 21 SNPs and 4 mutations containing peptides on Chr 9 from normal human cells/tissues and lung cancer cell lines, respectively. In summary, this study provides valuable information of the human proteome for the scientific community as part of C-HPP. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD. PMID:24274035

  18. Modeling the risk of radiation-induced lung fibrosis: Irradiated heart tissue is as important as irradiated lung.

    PubMed

    Cella, Laura; D'Avino, Vittoria; Palma, Giuseppe; Conson, Manuel; Liuzzi, Raffaele; Picardi, Marco; Pressello, Maria Cristina; Boboc, Genoveva Ionela; Battistini, Roberta; Donato, Vittorio; Pacelli, Roberto

    2015-10-01

    We used normal tissue complication probability (NTCP) modeling to explore the impact of heart irradiation on radiation-induced lung fibrosis (RILF). We retrospectively reviewed for RILF 148 consecutive Hodgkin lymphoma (HL) patients treated with sequential chemo-radiotherapy (CHT-RT). Left, right, total lung and heart dose-volume and dose-mass parameters along with clinical, disease and treatment-related characteristics were analyzed. NTCP modeling by multivariate logistic regression analysis using bootstrapping was performed. Models were evaluated by Spearman Rs coefficient and ROC area. At a median time of 13months, 18 out of 115 analyzable patients (15.6%) developed RILF after treatment. A three-variable predictive model resulted to be optimal for RILF. The two models most frequently selected by bootstrap included increasing age and mass of heart receiving >30Gy as common predictors, in combination with left lung V5 (Rs=0.35, AUC=0.78), or alternatively, the lungs near maximum dose D2% (Rs=0.38, AUC=0.80). CHT-RT may cause lung injury in a small, but significant fraction of HL patients. Our results suggest that aging along with both heart and lung irradiation plays a fundamental role in the risk of developing RILF. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Electron microscopy analysis of mineral fibers in human lung tissue

    SciTech Connect

    Friedrichs, K.H.; Brockmann, M.; Fischer, M.; Wick, G. )

    1992-01-01

    In the present study, lung samples from 126 autopsied cases were examined to determine the content of mineral fibers using analytical transmission electron microscopy (ATEM). The cases were divided into four groups (22 lungs of persons exposed to ambient environmental pollution, 32 cases of mesothelioma, 38 cases of primary lung cancer, and 34 asbestosis cases, 13 of these with additional pleural plaques). Fibers were counted, measured, and mineralogically identified using a combination of X-ray microanalysis and electron diffraction of the non-oriented fiber. Concentration of fibrous particles (defined as particles above 1 micron in length with roughly parallel long sides and an aspect ratio of 5:1 and greater) was calculated as fibers 10(6)/g dry lung weight. The concentration of chrysotile was found to be similar throughout the groups except for two cases in the asbestosis group with comparably high numbers of chrysotile. However, a remarkable difference for amphiboles could be observed between the groups. Asbestos bodies were mostly found in the asbestosis group. There was a rather good correlation between numbers of amphibole fibers and asbestos bodies, with an average ratio of 10:1. For comparison purposes between occupationally exposed/non-exposed individuals, a transition was found in the concentration range of 3-10(7) asbestos fibers/g dried lung weight.

  20. Hormones of adipose tissue and their biologic role in lung cancer.

    PubMed

    Ntikoudi, E; Kiagia, M; Boura, P; Syrigos, K N

    2014-02-01

    Adipose tissue secretes numerous bioactive peptides, collectively termed "adipocytokines" or "adipokines". Adipokines act in a paracrine, autocrine, or endocrine manner and regulate several physiological and pathological processes. Increasing evidence indicates that adipokines are implicated also in several malignancies, including lung cancer as well. The aim of this study is to summarize data concerning adipokines in lung cancer pathogenesis, prognosis and survival; the role of adipokines in lung cancer cachexia is also examined. A systematic literature search was performed in the electronic database of Medline. Several studies and review articles met the inclusion criteria. Leptin and adiponectin are the best studied adipokines. The majority of the relevant studies has investigated the potential correlations mainly between leptin, adiponectin, and sometimes also resistin, and nutritional status, systemic inflammation of lung cancer or lung cancer cachexia and have also assessed their prognostic significance. Few other studies have studied genetic variations in leptin, leptin receptor and adiponectin genes and their association with lung cancer susceptibility and prognosis. The ongoing list of adipokines associated with lung cancer also includes resistin, chemerin, and visfatin. Increasing evidence points to the involvement of certain adipocytokines in lung cancer development, progression and prognosis. No conclusive evidence exists so far with regards to the role of adipocytokines in lung cancer cachexia. Future, longitudinal studies are warranted in order to clarify the role of adipocytokines in lung cancer and also uncover adipocytokines as novel therapeutic targets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Lung tissue engineering and preservation of alveolar microstructure using a novel casting method.

    PubMed

    Kajbafzadeh, A-M; Sabetkish, N; Sabetkish, S; Tavangar, S M; Hossein Beigi, R S; Talebi, M A; Akbarzadeh, A; Nikfarjam, L

    2015-02-01

    We used a rat model to decellularize and seed alveolar cells on a three-dimensional lung scaffold to preserve alveolar microarchitecture. We verified the preservation of terminal respiratory structure by casting and by scanning electron microscopy (SEM) of the casts after decellularization. Whole lungs were obtained from 12 healthy Sprague-Dawley rats, cannulated through the trachea under sterile conditions, and decellularized using a detergent-based method. Casting of both natural and decellularized lungs was performed to verify preservation of the inner microstructure of scaffolds for further cell seeding. Alveolar cell seeding was performed using green fluorescent protein (GFP) lung cells and non-GFP lung cells, and a peristaltic pump. We assessed cell seeding using histological and immunohistochemical staining, and enzymatic evaluation. All cellular components were removed completely from the scaffolds, and histological staining and SEM of casts were used to verify the preservation of tissue structure. Tensile tests verified conservation of biomechanical properties. The hydroxyproline content of decellularized lungs was similar to native lung. Histological and immunohistochemical evaluations showed effective cell seeding on decellularized matrices. Enzymatic measurement of trypsin and alpha 1 antitrypsin suggested the potential functional properties of the regenerated lungs. Casts produced by our method have satisfactory geometrical properties for further cell seeding of lung scaffolds. Preservation of micro-architecture and terminal alveoli that was confirmed by SEM of lung casts increases the probability of an effective cell seeding process.

  2. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    PubMed Central

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said

    2012-01-01

    Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688

  3. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    NASA Astrophysics Data System (ADS)

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs.

  4. Mycophenolate Mofetil Improves Lung Function in Connective Tissue Disease-associated Interstitial Lung Disease

    PubMed Central

    Fischer, Aryeh; Brown, Kevin K.; Du Bois, Roland M.; Frankel, Stephen K.; Cosgrove, Gregory P.; Fernandez-Perez, Evans R.; Huie, Tristan J.; Krishnamoorthy, Mahalakshmi; Meehan, Richard T.; Olson, Amy L.; Solomon, Joshua J.; Swigris, Jeffrey J.

    2013-01-01

    Objective Small series suggest mycophenolate mofetil (MMF) is well tolerated and may be an effective therapy for connective tissue disease-associated interstitial lung disease (CTD-ILD). We examined the tolerability and longitudinal changes in pulmonary physiology in a large and diverse cohort of patients with CTD-ILD treated with MMF. Methods We identified consecutive patients evaluated at our center between January 2008 and January 2011 and prescribed MMF for CTD-ILD. We assessed safety and tolerability of MMF and used longitudinal data analyses to examine changes in pulmonary physiology over time, before and after initiation of MMF. Results We identified 125 subjects treated with MMF for a median 897 days. MMF was discontinued in 13 subjects. MMF was associated with significant improvements in estimated percentage of predicted forced vital capacity (FVC%) from MMF initiation to 52, 104, and 156 weeks (4.9% ± 1.9%, p = 0.01; 6.1% ± 1.8%, p = 0.0008; and 7.3% ± 2.6%, p = 0.004, respectively); and in estimated percentage predicted diffusing capacity (DLCO%) from MMF initiation to 52 and 104 weeks (6.3% ± 2.8%, p = 0.02; 7.1% ± 2.8%, p = 0.01). In the subgroup without usual interstitial pneumonia (UIP)-pattern injury, MMF significantly improved FVC% and DLCO%, and in the subgroup with UIP-pattern injury, MMF was associated with stability in FVC% and DLCO%. Conclusion In a large diverse cohort of CTD-ILD, MMF was well tolerated and had a low rate of discontinuation. Treatment with MMF was associated with either stable or improved pulmonary physiology over a median 2.5 years of followup. MMF appears to be a promising therapy for the spectrum of CTD-ILD. PMID:23457378

  5. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  6. STUDIES ON A LUNG TISSUE COMPONENT WHICH COMBINES WITH PNEUMONIA VIRUS OF MICE (PVM)

    PubMed Central

    Volkert, Mogens; Horsfall, Frank L.

    1947-01-01

    Evidence has been obtained which indicates that the lung tissues of mammalian species susceptible to infection with PVM contain a specific component which combines with the virus. The concentration of this tissue component appears to be directly proportional to the suceptibility of the species; in its absence infection with PVM cannot be established. The available evidence suggests that the presence of the virus-combining component in lung tissue may play a decisive ro1e in the initiation of infection with this pneumotropic virus. PMID:19871686

  7. Effect of alloxan-diabetes on multiple forms of hexokinase in adipose tissue and lung

    PubMed Central

    McLean, Patricia; Brown, J.; Walters, Eileen; Greenslade, K.

    1967-01-01

    Comparison has been made of the effect of alloxan-diabetes on the multiple forms of hexokinase (EC 2.7.1.1) in adipose tissue and lung. Types I and II hexokinase were distinguished in adipose tissue by their different stabilities to heat treatment, which made it possible to determine the activity of each form spectrophotometrically; additional confirmatory evidence was obtained from starch-gel electrophoresis. Type II hexokinase was markedly depressed in adipose tissue from alloxan-diabetic rats. Lung contained types I, II and III hexokinase, type I predominating. There was no significant change in the pattern of these multiple forms of hexokinase in lung from alloxan-diabetic rats. These results are discussed in relation to current ideas that the insulin-sensitivity of a tissue may be correlated with the content of type II hexokinase. PMID:16742560

  8. Multimodal imaging of lung tissue using optical coherence tomography and two photon microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Geissler, Stefan; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2012-02-01

    In the context of protective artificial ventilation strategies for patients with severe lung diseases, the contribution of ventilator settings to tissue changes on the alveolar level of the lung is still a question under debate. To understand the impact of respiratory settings as well as the dynamic process of respiration, high-resolution monitoring and visualization of the dynamics of lung alveoli are essential. An instrument allowing 3D imaging of lung tissue as well as imaging of functional constituents, such as elastin fibers, in in situ experimental conditions is presented in this study using a combination of Fourier domain optical coherence tomography (FD-OCT) and fiber-guided two photon microscopy. In a comparative study, fixed lung tissue, stained with sulforhodamine B for elastin fibers, was used to illustrate the ability of fiber-guided two photon excitation and single photon excitation for the visualization of elastin fibers within the tissue. Together with the fast 3D imaging capability of OCT, a new tool is given for the monitoring of alveolar lung dynamics in future in vivo experiments.

  9. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling.

    PubMed

    Wilkinson, Dan C; Alva-Ornelas, Jackelyn A; Sucre, Jennifer M S; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J; Paul, Manash K; Karumbayaram, Saravanan; Dunn, Bruce; Gomperts, Brigitte N

    2017-02-01

    Stem cell technologies, especially patient-specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ-level tissues. The generation of three-dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self-assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor-β1 to single cell-type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two-dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment. Our bottom-up approach for synthesizing patient-specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine 2017;6:622-633.

  10. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling.

    PubMed

    Wilkinson, Dan C; Alva-Ornelas, Jackelyn A; Sucre, Jennifer M S; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J; Paul, Manash K; Karumbayaram, Saravanan; Dunn, Bruce; Gomperts, Brigitte N

    2016-09-15

    : Stem cell technologies, especially patient-specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ-level tissues. The generation of three-dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self-assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor-β1 to single cell-type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two-dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment. Our bottom-up approach for synthesizing patient-specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies.

  11. [Oxidative damage of gasoline engine exhausts to rat lung tissues].

    PubMed

    Che, Wang-Jun; Wang, Ling; Luo, Qing-Ying; Wu, Mei; Zhang, Zun-Zhen

    2009-01-01

    To study the effects of extracts of condensate, particulates and semivolatile organic compounds from gasoline engine exhaust on DNA damage, 8-oxoguanine DNA glycosylase-1 (OGG1) expression, and changes of ultra-structures in lungs of rats. Organic extracts of gasoline engine exhaust (GEE) was intratrachealy instilled into rat lungs at 0, 5.6, 16.7, and 50.0 L/kg body weight, respectively, once a week for a month. The single DNA strand break was measured by comet assay. The OGG1 was determined using immunohistochemistry method. The ultrastructure of lung cells was observed with electronic microscope. The rates of tailed cells detected by the comet assay increased significantly when the rats were exposed to 16.7 and 50.0 L/kg of GEE compared with those exposed to solvent only (P < 0.05). However, the tail length did not differ significantly between the groups. Similarly, exposure to 16.7 and 50.0 L/kg of GEE led to increased OGG1 significantly. Significant changes of mitochondria in type I and II alveolar cells as well as respiratory bronchiole epithelial cells were observed, which included decrease of numbers, pyknosis and swelling. Gasoline engine exhausts induce single DNA strand break, increase OGG1 expression, decrease numbers of mitochondria, and destroy ultrastructures of mitochondria in various lung cells of rats.

  12. Facts and fiction: premalignant lesions of lung tissues.

    PubMed

    Klebe, S; Henderson, D W

    2013-04-01

    Lung cancer is now the leading cause of death from cancer in Australia. Most patients are diagnosed with late-stage disease. Although diagnosis at pre-invasive stages could theoretically improve outcomes, mooted precursor lesions are often asymptomatic and often undetectable by non-invasive investigations. Nonetheless, they merit study to identify early and essential molecular steps involved in lung carcinoma pathogenesis, with the aim of developing therapies targeted against one or more such steps. Some lung cancers appear to develop via a series of progressive morphological changes with correlating molecular alterations, but others seem to arise in histologically normal epithelium, and these differences may reflect anatomically and functionally distinct epithelial compartments of the respiratory tract. Pre-invasive precursor lesions recognised by the World Health Organization (WHO) include squamous metaplasia with dysplasia and carcinoma in situ, atypical adenomatous hyperplasia, and diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. Other lesions that likely represent pre-invasive lesions, but which are not currently WHO-listed, include human papillomavirus (HPV)-related respiratory papillomatosis and mesothelioma in situ. No single cancer stem cell marker has been identified. Field cancerisation plays an important role in lung cancer development, and includes the spread of pre-invasive clones along the respiratory epithelium or the occurrence of multiple separate foci of pre-invasive abnormalities such as squamous dysplasia and carcinoma in situ.In addition to well-characterised step-wise progression in squamous cell carcinomas and some adenocarcinomas, alternative pathways exist, and are currently being investigated. In addition, molecular techniques, including miRNA screening on blood samples or cytology samples--such as sputum samples--may become clinically relevant and more accurate in predicting lung cancer progression.

  13. Regional Normal Lung Tissue Density Changes in Patients Treated With Stereotactic Body Radiation Therapy for Lung Tumors

    SciTech Connect

    Diot, Quentin; Kavanagh, Brian; Schefter, Tracey; Gaspar, Laurie; Stuhr, Kelly; Miften, Moyed

    2012-11-15

    Purpose: To describe regional lung tissue density changes in normal lung tissue of patients with primary and metastatic lung tumors who received stereotactic body radiation therapy (SBRT). Methods and Materials: A total of 179 post-SBRT follow-up computed tomography (CT) scans of 62 patients who received SBRT between 2003 and 2009 were studied. Median prescription dose was 54 Gy (range, 30-60 Gy) in 3 to 5 fractions. SBRT-induced lung density changes on post-SBRT follow-up CT were evaluated at approximately 3, 6, 12, 18, 24, and 30 months after treatment. Dose-response curves (DRC) were generated for SBRT-induced lung damage by averaging CT number (HU) changes for regions of the lungs receiving the same dose at 5-Gy intervals. Results: For all follow-up interval periods, CT numbers linearly increased with dose until 35 Gy and were constant thereafter. For 3, 18, 24, and 30 months, the rate of relative electron density increase with dose was approximately 0.24% per Gy. At 6 months, the rate was also similar below 20 Gy but then rose to 0.6% per Gy above this threshold. After 6 months, DRCs were mostly time-independent. When split between patients treated with 3 fractions of 12 to 20 Gy (median, 20 Gy; average tumor volume, 12 {+-} 16 cm{sup 3}) and with >3 fractions of 6 to 12.5 Gy (median, 9 Gy; average tumor volume, 30 {+-} 40 cm{sup 3}), DRCs differed significantly. In both cases, CT changes at 3, 18, 24, and 30 months were identical to those of the population DRC; however, patients who received >3 fractions showed 6-month CT changes that were more than twice those for the group that received 3 fractions. Conclusions: This analysis of SBRT-induced normal lung density changes indicates that lung normal tissue has more pronounced self-limited acute effects than late effects. Differences in acute CT changes following treatments in 3 fractions were considerably less than for treatments in >3 fractions.

  14. Comparison of EGFR mutation rates in lung adenocarcinoma tissue and pleural effusion samples.

    PubMed

    Guan, Y; Wang, Z J; Wang, L Q; Hua, D F; Liu, J

    2016-04-04

    The goal of the current study was to investigate the differences in epidermal growth factor receptor (EGFR) mutation rates in tumor tissue and pleural effusion specimens from patients with lung adenocarcinoma. PCR amplification and gene sequencing were used to detect EGFR mutations in exons 18, 19, 20, and 21 in tumor tissue and pleural effusion samples from 50 patients with advanced lung adenocarcinoma. The EGFR mutation rate was 34.0% in tissue samples from patients with advanced lung adenocarcinoma. There were 11 cases with exon 19 mutations and 6 cases with exon 21 mutations. The EGFR mutation rate was 30.0% in pleural effusion specimens, including 10 cases with exon 19 mutation and 5 cases with exon 21 mutations. Although the tissue samples had a slightly higher mutation rate compared to the pleural effusion samples, the difference was not statistically significant. These results indicate that the EGFR mutation rate detected in pleural effusion specimens from patients with advanced lung adenocarcinoma is similar to that detected in tumor tissue samples. Therefore, pleural effusion specimens can potentially be used for EGFR mutation detection in advanced lung adenocarcinoma.

  15. In compressed lung tissue microscopic sections of adenocarcinoma in situ may mimic papillary adenocarcinoma.

    PubMed

    Thunnissen, Erik; Beliën, Jeroen A M; Kerr, Keith M; Chung, Jin-Haeng; Flieder, Douglas B; Noguchi, Masayuki; Yatabe, Yasushi; Hwang, David M; Lely, Rutger J; Hartemink, Koen J; Meijer-Jorna, Lorine B; Tsao, Ming-Sound

    2013-12-01

    Surgical removal and pathologic handling of lung tissue has a compressive effect upon its architecture. The effect of surgical atelectasis on morphology has not been examined in depth, especially with respect to lung adenocarcinomas. To examine the influence of surgical atelectasis on morphologic lepidic growth pattern, mimicking papillary adenocarcinoma pattern. In 2 cases serial sections of resected pulmonary adenocarcinoma were used, as was a 3-dimensional reconstruction. Elastin stains were performed on primary and metastatic adenocarcinomas. Perfusion fixation of another case showed marked morphologic differences of less compressed peripheral lung tissue, emphasizing the preexisting alveolar structure. An elastic stain may help identify true lesional architecture. We demonstrate that microscopic sections of adenocarcinoma in situ in compressed/collapsed tissue may give rise to a pseudopapillary pattern mimicking invasive adenocarcinoma. Accurate appreciation of different tumor architecture in lung adenocarcinoma has important biologic and clinical implications. Pathologists should be aware of the possibility of misclassification of adenocarcinoma pattern due to tissue artifacts caused by lung tissue handling.

  16. In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study.

    PubMed

    Sanchez, Benjamin; Vandersteen, Gerd; Martin, Irene; Castillo, Diego; Torrego, Alfons; Riu, Pere J; Schoukens, Johan; Bragos, Ramon

    2013-07-01

    Lung biopsies form the basis for the diagnosis of lung cancer. However, in a significant number of cases bronchoscopic lung biopsies fail to provide useful information, especially in diffuse lung disease, so more aggressive procedures are required. Success could be improved using a guided electronic biopsy based on multisine electrical impedance spectroscopy (EIS), a technique which is evaluated in this paper. The theoretical basis of the measurement method and the instrument developed are described, characterized and calibrated while the performance of the instrument is assessed by experiments to evaluate the noise and nonlinear source of errors from measurements on phantoms. Additional preliminary results are included to demonstrate that it is both feasible and safe to monitor in vivo human lung tissue electrical bioimpedance (EBI) during the bronchoscopy procedure. The time required for performing bronchoscopy is not extended because the bioimpedance measurements, present no complications, tolerance problems or side effects among any of the patients measured.

  17. [Biopsy of lung tissue in the diagnosis of disseminated transformations].

    PubMed

    Lewaschow, J N; Orsheschkowskij, O W

    1988-01-01

    The results of complex studies in 440 patients with disseminated processes are presented. In 135 of them the diagnosis was confirmed by clinical, roentgenologic and laboratory data and by biopsies of skin, muscles and subcutaneous lymph nodes. Transbronchial lung biopsy was performed in 218 patients. It gave positive results in 65% of the cases. Open biopsy of lung was performed in 134 cases. Hemodynamic and gas exchange studies during the operation indicated its insignificant traumatism. Complications (limited hemothorax, partial pneumothorax, subcutaneous emphysema, wound suppuration) were noted in 10 (7.5%) cases in the postoperative period. Pulmonary tests performed three weeks after the operation did not reveal significant changes in the subjects, even those with considerable initial disorders. Open biopsy permitted to verify the diagnosis in 131 (98%) patients. In 52% of these cases the diagnosis did not correspond to the presumed one and considerably influenced the subsequent treatment.

  18. Asbestos content of lung tissue in asbestos associated diseases: a study of 110 cases.

    PubMed Central

    Roggli, V L; Pratt, P C; Brody, A R

    1986-01-01

    Diseases associated with asbestos exposure include asbestosis, malignant mesothelioma, carcinoma of the lung, and parietal pleural plaques. In this study the asbestos content of lung tissue was examined in groups of cases representing each of these diseases and in several cases with non-occupational idiopathic pulmonary fibrosis. Asbestos bodies (AB), which are the hallmark of asbestos exposure, were present in the lungs of virtually everyone in the general population and present at increased levels in individuals with asbestos associated diseases. The highest numbers of AB occurred in individuals with asbestosis, all of whom had levels greater than or equal to 2000 ABs/g wet lung tissue. Every case with a content of 100,000 ABs/g or higher had asbestosis. Intermediate levels occurred in individuals with malignant mesothelioma and the lowest levels in patients with parietal pleural plaques. There was no overlap between the asbestos content of lung tissue from patients with asbestosis and those with idiopathic pulmonary fibrosis. Lung cancer was present in half the patients with asbestosis, and the distribution of histological patterns did not differ from that in patients with lung cancer without asbestosis. The asbestos body content in patients with lung cancer was highly variable. Control cases had values within our previously established normal range (0-20 ABs/g). There was a significant correlation (p less than 0.001) between AB counted by light microscope and AB and uncoated fibres counted by scanning electron microscopy. The previous observation that the vast majority of asbestos bodies isolated from human tissues have an amphibole core was confirmed. Images PMID:3947558

  19. SU-E-T-671: Range-Modulation Effects of Carbon Ion Beams in Lung Tissue

    SciTech Connect

    Witt, M; Weber, U; Simeonov, Y; Zink, K

    2015-06-15

    Purpose: When particles traversing inhomogeneous materials like lung they show a characteristic range modulation which cannot be observed in homogeneous materials. It is possible to describe the range modulation by a convolution of an unperturbed Bragg-Curve and a normal distribution. The sigma of the normal distribution is a parameter for the strength of the modulation effect. A new material parameter (modulation power, P-mod) is introduced which is independent of the material thickness. It is defined as the square of sigma divided by the mean water equivalent thickness of the target (µ). Methods: The modulation power of lung tissue was determined by actual Bragg-peak measurements after traversing an ex-vivo porcine lung and by Monte-Carlo simulations with micro-CT data of human lung tissue. The determined modulation powers were used to show the effect of range modulation effects in a simplified treatment situation. A four centimeter spread-out Bragg-peak after traversing eight centimeter of lung tissue was simulated in FLUKA. The SOBP with and without consideration of range modulation effects were compared. Results: As well in the measurements as in the MC simulations range modulation effects of lung tissue were observed. The determined modulation powers showed a great range from 0.05 mm, in the micro-CT data, to 0.7 mm in the lung measurements. The SOBP comparison showed that range modulation effects Result in over- and underdosages at the distal and proximal edge of the SOBP. In the investigated case, the last 0.5 cm of the SOBP showed an underdosage of up to 50% at the distal edge, while 0.5 cm distal to the SOBP an overdosage of up to 50% was observed. Conclusion: Range modulation effects occur in inhomogeneous materials like lung. These modulation effects may Result in clinically relevant over- and underdosages but are currently not considered in commercially available treatment planning systems.

  20. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  1. Histopathology effects of nickel nanoparticles on lungs, liver, and spleen tissues in male mice

    NASA Astrophysics Data System (ADS)

    Ajdari, Marziyeh; Ziaee Ghahnavieh, Marziyeh

    2014-09-01

    Because of the classification of the nickel compounds as carcinogenic substances, there is a need for in vivo tests to nickel nanoparticles (NiNPs) for observing their effects on health experimentally. Spherical NiNPs with 10 nm in diameter and 75 ppm concentration were applied for investigating their toxicities within male albino mice as an in vivo model. We randomly made sham group, control group, and 75 ppm group (with five animals in each group). Then, the nanoparticles were injected into mice intraperitonealy for 7 days and after that their lungs, liver, and spleen were removed for histopathological observations. At the end of the test, section microscopic observations of liver, spleen, and lung in sham and control groups showed normal tissues but these tissues underwent significant abnormal effects in 75 ppm group. NiNPs can cause undesirable effects in lungs, liver, and spleen tissues with same condition of this study.

  2. Intra-vital microscopy of lung tissue: A simulation based analysis of the image formation

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Schirrmann, Kerstin; Schnabel, Christian; Meissner, Sven; Kertzscher, Ulrich; Kirsten, Lars; Koch, Edmund

    2013-06-01

    In the course of pulmonary research, understanding alveolar tissue dynamics plays a critical role in the treatment of patients suffering from acute lung diseases. As a gold standard technique for monitoring micro scale changes of lung tissue, real-time intra-vital microscopy (IVM) has been established to evaluate the behavior of the alveolar tissue. To allow profound qualitative and quantitative conclusions, characteristic features of the obtained images have to be thoroughly understood. These factors are strongly influenced by the imaging setup and physiological condition of the lung. To circumvent misinterpretations, a ray-tracing approach has been applied in this study using an idealized geometry of the mouse lung parenchyma deduced from optical coherence tomography (OCT) as a complementary imaging technique. Basic features of IVM images are double ring structures and disappearing of alveoli related to liquid infiltration. Ray propagation analysis reveals the formation of these features by two major reflection processes: partial reflection and total internal reflection. The results give rise to quantification errors of the alveolar area related to reflexes misinterpreted as alveolar borders and should further be used to yield a correction factor for future IVM lung tissue studies.

  3. Extraction and Quantification of Carbon Nanotubes in Biological Matrices with Application to Rat Lung Tissue

    PubMed Central

    Doudrick, Kyle; Corson, Nancy; Oberdörster, Günter; Elder, Alison; Herckes, Pierre; Halden, Rolf U.; Westerhoff, Paul

    2013-01-01

    Extraction of carbon nanotubes (CNTs) from biological matrices such as rat lung tissue is integral to developing a quantification method for evaluating the environmental and human health exposure and toxicity of CNTs. The ability of various chemical treatment methods, including Solvable (2.5% sodium hydroxide/surfactant mixture), ammonium hydroxide, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrogen peroxide, and proteinase K, to extract CNTs from rat lung tissue was evaluated. CNTs were quantified using programmed thermal analysis (PTA). Two CNTs were used to represent the lower (500°C) and upper (800°C) PTA limit of CNT thermal stability. The recovery efficiency of each of the eight chemical reagents evaluated was found to depend on the ability to (1) minimize oxidation of CNTs, (2) remove interfering background carbon from the rat lung tissue, and (3) separate the solid-phase CNTs from the liquid-phase dissolved tissue via centrifugation. A two-step extraction method using Solvable and proteinase K emerged as the optimal approach, enabling a recovery of 98 ± 15% of a 2.9 ± 0.19 µg CNT loading that was spiked into whole rat lungs. Due to its high yield and applicability to low organ burdens of nanomaterials, this extraction method is particularly well suited for in vivo studies to quantify clearance rates and retained CNTs in lungs and other organs. PMID:23992048

  4. Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue.

    PubMed

    Parasa, Venkata Ramanarao; Rahman, Muhammad Jubayer; Ngyuen Hoang, Anh Thu; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria

    2014-02-01

    The widely used animal models for tuberculosis (TB) display fundamental differences from human TB. Therefore, a validated model that recapitulates human lung TB is attractive for TB research. Here, we describe a unique method for establishment of TB infection in an experimental human lung tissue model. The model is based on cell lines derived from human lungs and primary macrophages from peripheral blood, and displays characteristics of human lung tissue, including evenly integrated macrophages throughout the epithelium, production of extracellular matrix, stratified epithelia and mucus secretion. Establishment of experimental infection in the model tissue with Mycobacterium tuberculosis, the bacterium that causes TB, resulted in clustering of macrophages at the site of infection, reminiscent of early TB granuloma formation. We quantitated the extent of granuloma formation induced by different strains of mycobacteria and validated our model against findings in other TB models. We found that early granuloma formation is dependent on ESAT-6, which is secreted via the type VII secretion machinery of virulent mycobacteria. Our model, which can facilitate the discovery of the interactions between mycobacteria and host cells in a physiological environment, is the first lung tissue model described for TB.

  5. The impact of perioperative atelectasis on antibiotic penetration into lung tissue: an in vivo microdialysis study.

    PubMed

    Hutschala, Doris; Kinstner, Christian; Skhirtladze, Keso; Mayer-Helm, Bernhard-Xaver; Zeitlinger, Markus; Wisser, Wilfried; Müller, Markus; Tschernko, Edda

    2008-10-01

    Postoperative pneumonia is a potentially devastating complication associated with high mortality in intensive care unit (ICU)-patients. One of the major predisposing factors is the perioperative occurrence of atelectatic formations in non-dependent lung areas. Perioperative ventilation/perfusion mismatch due to atelectasis may influence antibiotic distribution to lung tissue, hence increasing the risk of postoperative pneumonia. We evaluated whether differences in ventilation/perfusion mismatch can influence antibiotic distribution into lung tissue by means of in vivo microdialysis, comparing patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) (atelectasis model), with patients operated with the off-pump coronary artery bypass grafting (OPCAB)-technique. We compared five patients operated with CPB (CPB-group) and five patients undergoing CABG with OPCAB-technique (OPCAB-group). Levofloxacin (500 mg) was administered intravenously, after surgery, in the ICU. Time versus concentration profiles of levofloxacin in lung tissue and plasma were measured at regular time-intervals. In the OPCAB-group, the median of the maximum concentration of levofloxacin in lung tissue (4.1 microg ml(-1) +/- 7, range 3.7-11.8 microg ml(-1)) was significantly higher compared with the CPB-group (2.5 microg ml(-1) +/- 0.3, range 2.0-2.9 microg ml(-1)) (P = 0.046). Median levofloxacin tissue/plasma area under the concentration curve (AUC) ratio in lung tissue was 0.3 +/- 0.2 (range 0.1-0.7) in the CPB-group versus 0.7 +/- 1.6 (range 0.4-0.8) in the OPCAB-group (P = 0.015). Data indicate that postoperative interstitial antibiotic concentration is influenced by perioperative atelectasis formation. Our findings suggest the re-evaluation of clinical dosing schemas of antibiotic therapy in a variety of diseases associated with atelectasis formation.

  6. Carcinogen metabolism in human lung tissues and the effect of tobacco smoking: results from a case--control multicenter study on lung cancer patients.

    PubMed Central

    Bartsch, H; Petruzzelli, S; De Flora, S; Hietanen, E; Camus, A M; Castegnaro, M; Alexandrov, K; Rojas, M; Saracci, R; Giuntini, C

    1992-01-01

    Cigarette smoking is the strongest risk factor for lung cancer, but genetically determined variations in the activities of pulmonary enzyme that metabolize tobacco-derived carcinogens may affect individual risk. To investigate whether these enzymes (e.g., CYP1A-related) can serve as markers for carcinogen-DNA damage, lung tissue specimens were taken during surgery from middle-aged men with either lung cancer or non-neoplastic lung disease. Phase I [aryl hydrocarbon hydroxylase (AHH), ethoxycoumarin O-deethylase (ECOD)] and phase II (epoxide hydrolase, UDP-glucuronosyltransferase, glutathione S-transferase) enzyme activities, glutathione and malondialdehyde contents were determined in lung parenchyma and/or bronchial tissues; some samples were also analyzed for DNA adducts, using 32P-postlabeling. The data were then analyzed for the following: a) differences in metabolic profiles between bronchial and parenchymal lung tissue; b) the effect of recent exposure to tobacco smoke on enzyme inducibility and benzo[a]pyrene metabolism; c) differences in enzyme inducibility between lung cancer and non-lung cancer patients; d) the effect of smoking on metabolism of mutagens in vitro; e) pulmonary DNA adduct levels and AHH activity in lung parenchyma of smokers and ex-smokers; f) lipid peroxidation products in lung tissue from lung cancer and non-lung cancer patients, as related to smoking habits and degree of airway obstruction; and g) prognostic value of AHH pulmonary activity in lung cancer patients. The results demonstrate a pronounced effect of tobacco smoke on pulmonary metabolism of xenobiotics and prooxidant state and suggest the existence of a metabolic phenotype at higher risk for tobacco-associated lung cancer. PMID:1336722

  7. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation

    PubMed Central

    Zhao, Yunge; Sharma, Ashish K.; LaPar, Damien J.; Kron, Irving L.; Ailawadi, Gorav; Liu, Yuan; Jones, David R.; Laubach, Victor E.

    2011-01-01

    Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation. PMID:21378024

  8. Resident Tissue-Specific Mesenchymal Progenitor Cells Contribute to Fibrogenesis in Human Lung Allografts

    PubMed Central

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H.; Keshamouni, Venkateshwar G.; Peters-Golden, Marc; Lama, Vibha N.

    2011-01-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft–derived MSCs uniquely express embryonic lung mesenchyme–associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. PMID:21641374

  9. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts.

    PubMed

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H; Keshamouni, Venkateshwar G; Peters-Golden, Marc; Lama, Vibha N

    2011-06-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. [Effects of pathogenic wind-dampness on lung tissue cytokines in rats with syndrome due to pathogenic cold invading lung].

    PubMed

    Zhang, Wei; Cao, Jing-tao; Liu, Hai-yu

    2008-07-01

    To explore the effects of wind and dampness pathogens on cytokines in the lung tissue of rats with cold syndrome due to different gradient cold pathogens. One hundred and four Wistar rats of SPF grade were randomly divided into 13 groups: normal temperature group, six cold pathogen groups and six cold plus wind-dampness pathogen (wind of grade 5 and 90%-100% relative humidity) groups. The cold pathogens were constant low temperature (including 10 degrees C, 0 degree C, -10 degrees C) and temperature change (including 20 to 10 degrees C, 20 to 0 degrees C, and 20 to -10 degrees C). The rats in different groups were kept in a temperature-controlled box under the corresponding condition for 2 hours on the first day of experiment. Then, the rats were all raised in normal temperature for 4 days and the rats' behaviors were observed. The contents of tumor necrosis factor alpha (TNF-alpha), interleukin-6(IL-6) and interleukin-4 (IL-4) in lung homogenate were measured by radioimmunoassay and the content of interferon-gamma (IFN-gamma) was detected by enzyme-linked immunosorbent assay. In comparison with cold pathogen groups, contents of TNF-alpha, IL-6 and IL-4 were obviously increased in lung homogenate of rats in cold plus wind-dampness pathogen groups (P<0.01), and the content of IFN-gamma and IFN-gamma/IL-4 ratio were obviously decreased (P<0.01). Wind-dampness pathogen can seriously aggravate the injury to lung tissue caused by cold pathogen, and the unbalance of Th(1)/Th(2) in lung homogenate of rats.

  11. Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.

    PubMed

    Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-07-01

    We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.

  12. [GST polymorphism and cytogenetic changes in lung tissues of lung cancer patients].

    PubMed

    Chakova, N N; Mikhalenko, E P; Polonetskaia, S N; Chebotareva, N V; Demidchik, Iu E; Zhilko, A A; Kvitko, O V; Krupnova, E V

    2009-01-01

    Carriers of GSTTI gene deletion were found to be more subjected to a risk of emerging non-small-cell lung cancer (NSLC) than those of normal GSTT1(+) genotype. Study on the relation between GST gene polymorphism and cytogenetic indices in lung cancer patients has shown a significant excess of the group average level in cells with micronuclei in NSLC patients with GSTTI(-). The frequency of cells with micronuclei was higher in smoking patients with a mutant genotype than in smoking carriers of the GSTT1(+) genotype.

  13. Long term ethanol consumption leads to lung tissue oxidative stress and injury.

    PubMed

    Das, Subir Kumar; Mukherjee, Sukhes

    2010-01-01

    Alcohol abuse is a systemic disorder. The deleterious health effects of alcohol consumption may result in irreversible organ damage. By contrast, there currently is little evidence for the toxicity of chronic alcohol use on lung tissue. Hence, in this study we investigated long term effects of ethanol in the lung. Though body weight of rats increased significantly with duration of exposure compared to its initial weight, but there was no significant change in relative weight (g/100 g body weight) of lung due to ethanol exposure. The levels of thiobarbituric acid reactive substances (TBARS), nitrite, protein carbonyl, oxidized glutathione (GSSG), redox ratio (GSSG/GSH) and GST activity elevated; while reduced glutathione (GSH) level and activities of glutathione reductase (GR), glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD) and Na(+)K(+) ATPase reduced significantly with duration of ethanol exposure in the lung homogenate compared to the control group. Total matrix metalloproteinase activity elevated in the lung homogenate with time of ethanol consumption. Histopathologic examination also demonstrated that severity of lung injury enhanced with duration of ethanol exposure. 16-18 weeks old male albino Wistar strain rats weighing 200-220 g were fed with ethanol (1.6 g/ kg body weight/ day) up to 36 weeks. At the end of the experimental period, blood samples were collected from reteroorbital plexus to determine blood alcohol concentration, and the animals were sacrificed. Various oxidative stress related biochemical parameters, total matrix metalloproteinase activity and histopathologic examinations of the lung tissues were performed. Results of this study indicate that long term ethanol administration aggravates systemic and local oxidative stress, which may be associated with lung tissue injury.

  14. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.

    PubMed

    Uhl, Franziska E; Vierkotten, Sarah; Wagner, Darcy E; Burgstaller, Gerald; Costa, Rita; Koch, Ina; Lindner, Michael; Meiners, Silke; Eickelberg, Oliver; Königshoff, Melanie

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs.

  15. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

    PubMed Central

    de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva

    2014-01-01

    OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964

  16. Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods.

    PubMed

    Schneider, Jan Philipp; Ochs, Matthias

    2014-02-15

    Preservation of original tissue dimensions is an essential prerequisite for morphometric studies. Shrinkage occurring during tissue processing for histology may severely influence the appearance of structures seen under the microscope and stereological calculations. Therefore, shrinkage has to be avoided so that estimates obtained by application of unbiased stereology are indeed unbiased. The present study investigates the alterations of tissue dimensions of mouse lung samples during processing for histology. Different fixatives as well as embedding protocols are considered. Mouse lungs were fixed by instillation of either 4% formalin or a mixture of 1.5% glutaraldehyde/1.5% formaldehyde. Tissue blocks were sampled according to principles of stereology for embedding in paraffin, glycol methacrylate without treatment with osmium tetroxide and uranyl acetate, and glycol methacrylate including treatment with osmium tetroxide and uranyl acetate before dehydration. Shrinkage was investigated by stereological measurements of dimensional changes of tissue cut faces. Results show a shrinkage of the cut face areas of roughly 40% per lung during paraffin embedding, 30% during "simple" glycol methacrylate embedding, and <3% during osmium tetroxide/uranyl acetate/glycol methacrylate embedding. Furthermore, the superiority of the glutaraldehyde-containing fixative regarding shrinkage is demonstrated. In conclusion, the use of a glutaraldehyde-containing fixative and embedding in glycol methacrylate with previous treatment of the samples with osmium tetroxide and uranyl acetate before dehydration is recommended for stereological studies of the mouse lung.

  17. High concentrations of chromium in lung tissue from lung cancer patients

    SciTech Connect

    Anttila, S.; Kokkonen, P.; Paeaekkoe PRai; Rainio, P.; Kalliomaeki, P.L.P.; Pallon, J.; Malmqvist, K.; Pakarinen, P.; Naentoe, V.Su.; Sutinen, S.

    1989-02-01

    The pulmonary chromium content was determined by plasma atomic emission spectrometer (DCP-AES) from 53 lung cancer and 43 control patients, and compared with smoking habits, severity of emphysema and occupational history. The chromium content from the lung cancer patients was higher than that from the smoking (P less than 0.025) or nonsmoking control patients (6.4 +/- 4.3, 4.0 +/- 4.0, and 2.2 +/- 0.6 microgram/g dry weight, respectively). A positive correlation between the pulmonary chromium and smoking time (P less than 0.025) and the severity of emphysema (P less than 0.001) was found in the control but not in the cancer patients. The difference in the pulmonary chromium content was greatest between those lung cancer and control patients who were light smokers or had mild emphysema. This group of lung cancer patients included subjects with occupational exposure to chromium. The possibility of occupational cancer should be considered especially with light smokers. The grade of emphysema and metals such as chromium accumulating from tobacco could serve as objective indicators of smoking.

  18. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection

    PubMed Central

    Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R.

    2015-01-01

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs. PMID:26485646

  19. Experimental evaluation of a new system for laser tissue welding applied on damaged lungs.

    PubMed

    Schiavon, Marco; Marulli, Giuseppe; Zuin, Andrea; Lunardi, Francesca; Villoresi, Paolo; Bonora, Stefano; Calabrese, Fiorella; Rea, Federico

    2013-05-01

    Alveolar air leaks represent a challenging problem in thoracic surgery, leading to increased patient morbidity and prolonged hospitalization. Several methods have been used, but no ideal technique exists yet. We investigated the lung-sealing capacity of an experimental kit for laser tissue welding. The kit is composed of a semiconductor laser system applied on a protein substrate associated with a chromophore that increases absorption. In vitro tests on porcine lung tissue were done to define ideal laser parameters (power 100 Å, frequency 50 Hz, pulse duration 400 µs) and protein substrate dilution (50%). For in vivo tests, through a left thoracotomy, 14 pigs received two different lung damages: a linear incision and a circular incision. Protein substrate applied on damaged areas was treated with laser to obtain a layer that reconstituted the integrity of the visceral pleura. Air leaks were intraoperatively evaluated by water submersion test with an airway pressure of 20 cmH2O. Animals were sacrificed at postoperative days 0 and 7 to study early and late pathological features. After applying laser treatment, no air leaks were seen in all proofs except in 2 cases in which a second application was required. At time 0, pathological damage mostly consisted of superficial alveolar necrotic tissue covered by protein membrane. At time 7, a complete recovery of lung lesions by fibrous scar with slight inflammatory reaction of adjacent lung tissue was seen. This experimental study demonstrated the effectiveness of laser tissue welding applied to seal air leaks after lung surgery. Further studies are needed to verify acceptability for human application.

  20. Differential Effect of Soy Isoflavones in Enhancing High Intensity Radiotherapy and Protecting Lung Tissue in a Pre-Clinical Model of Lung Carcinoma

    PubMed Central

    Hillman, Gilda G.; Singh-Gupta, Vinita; Hoogstra, David J.; Abernathy, Lisa; Rakowski, Joseph; Yunker, Christopher K.; Rothstein, Shoshana E.; Sarkar, Fazlul H.; Gadgeel, Shirish; Konski, Andre A.; Lonardo, Fulvio; Joiner, Michael C.

    2013-01-01

    Background Radiotherapy of locally-advanced non-small cell lung cancer is limited by radiation-induced pneumonitis and fibrosis. We have further investigated the role of soy isoflavones to improve the effect of a high intensity radiation and reduce lung damage in a pre-clinical lung tumor model. Methods Human A549 NSCLC cells were injected i.v. in nude mice to generate a large tumor burden in the lungs. Mice were treated with lung irradiation at 10 Gy and with oral soy. The therapy effect on the tumor cells and surrounding lung tissue was analyzed on lung sections stained with H&E, Ki-67 and Masson’s Trichrome. Pneumonitis and vascular damage were evaluated by measurements of alveolar septa and immunofluorescent staining of vessel walls. Results Combined soy and radiation caused a significantly stronger inhibition of tumor progression compared to each modality alone in contrast to large invasive tumor nodules seen in control mice. At the same time, soy reduced radiation injury in lung tissue by decreasing pneumonitis, fibrosis and protecting alveolar septa, bronchioles and vessels. Conclusions These studies demonstrate a differential effect of soy isoflavones on augmenting tumor destruction induced by radiation while radioprotecting normal lung tissue and support using soy to alleviate radiotoxicity in lung cancer. PMID:24021346

  1. Local tissue-weight-based nonrigid registration of lung images with application to regional ventilation

    NASA Astrophysics Data System (ADS)

    Yin, Youbing; Hoffman, Eric A.; Lin, Ching-Long

    2009-02-01

    In this paper, a new nonrigid image registration method is presented to align two volumetric lung CT datasets with an application to estimate regional ventilation. Instead of the sum of squared intensity difference (SSD), we introduce the sum of squared tissue volume difference (SSTVD) as the similarity criterion to take into account the variation of intensity due to respiration. This new criterion aims to minimize the local difference of tissue volume inside the lungs between two images scanned in the same session or over short periods of time, thus preserving the tissue weight of the lungs. Our approach is tested using a pair of volumetric lung datasets acquired at 15% and 85% of vital capacity (VC) in a single scanning session. The results show that the new SSTVD predicts a smaller registration error and also yields a better alignment of structures within the lungs than the normal SSD similarity measure. In addition, the regional ventilation derived from the new method exhibits a much more improved physiological pattern than that of SSD.

  2. Beryllium detection in human lung tissue using electron probe X-ray microanalysis.

    PubMed

    Butnor, Kelly J; Sporn, Thomas A; Ingram, Peter; Gunasegaram, Sue; Pinto, John F; Roggli, Victor L

    2003-11-01

    Chronic berylliosis is an uncommon disease that is caused by the inhalation of beryllium particles, dust, or fumes. The distinction between chronic berylliosis and sarcoidosis can be difficult both clinically and histologically, as both entities can have similar presentations and exhibit nonnecrotizing granulomatous inflammation of the lungs. The diagnosis of chronic berylliosis relies on a history of exposure to beryllium, roentgenographic evidence of diffuse nodular disease, and demonstration of beryllium hypersensitivity by ancillary studies, such as lymphocyte proliferation testing. Additional support may be gained by the demonstration of beryllium in lung tissue. Unlike other exogenous particulates, such as asbestos, detection of beryllium in human lung tissue is problematic. The low atomic number of beryllium usually makes it unsuitable for conventional microprobe analysis. We describe a case of chronic berylliosis in which beryllium was detected in lung tissue using atmospheric thin-window energy-dispersive X-ray analysis (ATW EDXA). A woman with a history of occupational exposure to beryllium at a nuclear weapons testing facility presented with progressive cough and dyspnea and a nodular pattern on chest roentgenograph. Open lung biopsy showed nonnecrotizing granulomatous inflammation that was histologically indistinguishable from sarcoidosis. Scanning electron microscopy and ATW EDXA demonstrated particulates containing beryllium within the granulomas. This application of EDXA offers significant advantages over existing methods of beryllium detection in that it is nondestructive, more widely available, and can be performed using routine paraffin sections.

  3. Drug-related death: adulterants from cocaine preparations in lung tissue and blood.

    PubMed

    Pawlik, Evelyn; Mahler, Hellmut; Hartung, Benno; Plässer, Gerd; Daldrup, Thomas

    2015-04-01

    The abuse of drugs such as street cocaine is known to cause a variety of toxic effects, some of which involve the lungs and often induce lethal complications. While the toxicity of cocaine itself is reviewed well, the influence of toxic effects of its adulterants on the human body is not thoroughly studied. Therefore, we examined heart blood, femoral vein blood and lung tissue from 11 cases for typically used adulterants in cocaine preparations and check whether if the concentrations in the lung tissue are higher than in the blood. The adulterants were isolated using solid-phase (SPE) and liquid-liquid extraction (LLE) and quantified via high-pressure-liquid-chromatography-time-of-flight-mass spectrometry (LC/TOF-MS). Five adulterants, i.e., phenacetin, lidocaine, diltiazem, levamisole and hydroxyzine, were detected. We found out that the concentration of these substances was often higher in the lung than in the analogous analysed body fluids. It should therefore be considered whether - for the determination in the cause of death - the lung should be examined in addition to heart blood, urine or brain tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Improved OCT imaging of lung tissue using a prototype for total liquid ventilation

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is used for imaging subpleural alveoli in animal models to gain information about dynamic and morphological changes of lung tissue during mechanical ventilation. The quality of OCT images can be increased if the refraction index inside the alveoli is matched to the one of tissue via liquid-filling. Thereby, scattering loss can be decreased and higher penetration depth and tissue contrast can be achieved. Until now, images of liquid-filled lungs were acquired in isolated and fixated lungs only, so that an in vivo measurement situation is not present. To use the advantages of liquid-filling for in vivo imaging of small rodent lungs, it was necessary to develop a liquid ventilator. Perfluorodecalin, a perfluorocarbon, was selected as breathing fluid because of its refraction index being similar to the one of water and the high transport capacity for carbon dioxide and oxygen. The setup is characterized by two independent syringe pumps to insert and withdraw the fluid into and from the lung and a custom-made control program for volume- or pressure-controlled ventilation modes. The presented results demonstrate the liquid-filling verified by optical coherence tomography and intravital microscopy (IVM) and the advantages of liquid-filling to OCT imaging of subpleural alveoli.

  5. Consecutive CT-guided core needle tissue biopsy of lung lesions in the same dog at different phases of radiation-induced lung injury

    PubMed Central

    Yin, Zhongyuan; Deng, Sisi; Liang, Zhiwen; Wang, Qiong

    2016-01-01

    This project aimed to set up a Beagle dog model of radiation-induced lung injury in order to supply fresh lung tissue samples in the different injury phases for gene and protein research. Three dogs received 18 Gy X-ray irradiation in one fraction, another three dogs received 8 Gy in each of three fractions at weekly intervals, and one control dog was not irradiated. Acute pneumonitis was observed during the first 3 months after radiation, and chronic lung fibrosis was found during the next 4–12 months in all the dogs exposed to radiation. CT-guided core needle lung lesion biopsies were extracted from each dog five times over the course of 1 year. The dogs remained healthy after each biopsy, and 50–100 mg fresh lung lesion tissues were collected in each operation. The incidence of pneumothorax and hemoptysis was 20% and 2.8%, respectively, in the 35 tissue biopsies. A successful and stable radiation-induced lung injury dog model was established. Lung lesion tissue samples from dogs in acute stage, recovery stage and fibrosis stage were found to be sufficient to support cytology, genomics and proteomics research. This model safely supplied fresh tissue samples that would allow future researchers to more easily explore and develop treatments for radiation-induced lung injury. PMID:27422930

  6. Mineral fiber concentration in lung tissue of mesothelioma patients in Finland

    SciTech Connect

    Tuomi, T.; Segerberg-Konttinen, M.; Tammilehto, L.; Tossavainen, A.; Vanhala, E. )

    1989-01-01

    The mineral fibers in lung tissue samples of 19 mesothelioma patients and 15 randomly selected autopsy cases were analyzed using low-temperature ashing, scanning electron microscopy (SEM) and x-ray microanalysis. The fiber concentration ranged from 0.5 to 370 million fibers per gram of dry tissue in the mesothelioma group and from less than 0.01 to 3.2 million fibers per gram of dry tissue in the autopsy group. In 80% of the mesothelioma patients and in 20% of the autopsy cases, the fiber concentration exceeded 1 million fibers per gram of dry tissue. Amphibole asbestos fibers predominated in both groups, and only a few chrysotile fibers were found. In the lungs of six mesothelioma patients, anthophyllite was the main fiber type. The overall analytical precision of sample preparation and fiber counting with SEM was 22%.

  7. hPSC-derived lung and intestinal organoids as models of human fetal tissue.

    PubMed

    Aurora, Megan; Spence, Jason R

    2016-12-15

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC).

  8. Tissue factor as an initiator of coagulation and inflammation in the lung.

    PubMed

    van der Poll, Tom

    2008-01-01

    Patients with severe infections almost invariably exhibit evidence of activation of the coagulation system. The lungs are amongst the most frequently affected organs during severe infection and sepsis. The abundant presence of intravascular and extravascular fibrin appears to be a specific hallmark of acute lung injury after sepsis. Tissue factor (TF) is regarded to be the primary initiator of coagulation in severe infection. Effective blockade of the TF pathway, either by recombinant TF pathway inhibitor or by anti-TF antibodies in experimental sepsis, attenuates lung injury and partially prevents pulmonary dysfunction. In addition, inhibition of the activity of TF prevents local activation of coagulation in models of pneumonia. The TF pathway can influence inflammatory signaling by activation of protease activated receptor-1 and -2. This review presents the most recent data on the crosstalk between TF-mediated coagulation and inflammation, with a specific emphasis on these processes in the lung.

  9. RBFOX3 regulates Claudin-1 expression in human lung tissue via attenuation of proteasomal degradation

    PubMed Central

    Kim, Yong-Eun; Choi, Sunkyung

    2017-01-01

    RBFOX3, a nuclear RNA-binding protein, is well known as a regulator of alternative pre-mRNA splicing during neuronal development. However, other functions of RBFOX3 are poorly understood. Here, we investigated the function of RBFOX3 in the cytoplasm with respect to regulation of Claudin-1 expression. In human lung tissue, Claudin-1 is higher in RBFOX3-positive cells than in RBFOX3-negative cells. Immunostaining and mRNA quantification revealed that protein levels, but not mRNA levels, of Claudin-1 are increased by RBFOX3. In addition, cycloheximide treatment of human lung cancer cells revealed that RBFOX3 increases the stability of Claudin-1 through attenuation of its ubiquitination. Our study provides insights into the molecular mechanisms by which RBFOX3 regulates Claudin-1 expression in human lung tissue. PMID:28126724

  10. Angiotensin converting enzyme binding sites in human heart and lung: comparison with rat tissues.

    PubMed Central

    Vago, T.; Bevilacqua, M.; Conci, F.; Baldi, G.; Ongini, E.; Chebat, E.; Monopoli, A.; Norbiato, G.

    1992-01-01

    1. Angiotensin converting enzyme (ACE), a dipeptidyl carboxypeptidase which catalyzes the final activation step in the formation of angiotensin II, was identified by radioligand studies in rat heart and lung. In this work we identified ACE binding sites in human left ventricle and lung by radioligand binding using the ACE inhibitor [3H]-ramiprilat in all tissues tested was saturable, temperature and zinc-dependent, and inhibited by EDTA. In human left ventricle homogenate we found a density of binding sites of 121 +/- 15 fmol mg-1 protein (n = 4) with an affinity (Kd) of 850 +/- 55 pM, whereas in rat left ventricle the same values were 23 +/- 4 fmol mg-1 protein and 315 +/- 30 pM, (n = 4), respectively. 3. [3H]-ramiprilat binding to rat (n = 4) and human lung (n = 4) showed a binding site density of 2132 +/- 155 and 1085 +/- 51 fmol mg-1 protein respectively with an affinity of 639 +/- 54 and 325 +/- 22 pM. The lung:heart ratio of ACE binding site density was about 9:1 in man and 100:1 in rat. 4. The binding affinities of 13 ACE inhibitors were evaluated on human heart and lung: the drugs tested showed a wide range of affinities for the ACE binding sites in both tissues, and the affinity for lung was significantly greater than for heart for most of the drugs. 5. The greater potency of some ACE inhibitors in displacing [3H]-ramiprilat in human lung compared with the heart indicates differences between ACE binding sites in these tissues and suggests the possibility of a selective organ-targeted therapeutic approach. PMID:1335341

  11. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells

    PubMed Central

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C; Li, Hongzhe; Kassem, Moustapha; Mertens, Fredrik; Westergren, Albert; Eriksson, Leif; Hansson, Lennart; Skog, Ingrid; Bjermer, Leif; Scheding, Stefan; Westergren-Thorsson, Gunilla

    2014-01-01

    Background Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This study therefore aimed to identify and characterise the ‘bona fide’ MSC in human lungs and to investigate if the MSC numbers correlate with the development of bronchiolitis obliterans syndrome in lung-transplanted patients. Methods Primary lung MSC were directly isolated or culture-derived from central and peripheral transbronchial biopsies of lung-transplanted patients and evaluated using a comprehensive panel of in vitro and in vivo assays. Results Primary MSC were enriched in the CD90/CD105 mononuclear cell fraction with mesenchymal progenitor frequencies of up to four colony-forming units, fibroblast/100 cells. In situ staining of lung tissues revealed that CD90/CD105 MSCs were located perivascularly. MSC were tissue-resident and exclusively donor lung-derived even in biopsies obtained from patients as long as 16 years after transplantation. Culture-derived mesenchymal stromal cells showed typical in vitro MSC properties; however, xenotransplantation into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice showed that lung MSC readily differentiated into adipocytes and stromal tissues, but lacked significant in vivo bone formation. Conclusions These data clearly demonstrate that primary MSC in human lung tissues are not only tissue resident but also tissue-specific. The identification and phenotypic characterisation of primary lung MSC is an important first step in identifying the role of MSC in normal lung physiology and pulmonary diseases. PMID:25478178

  12. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells.

    PubMed

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C; Li, Hongzhe; Kassem, Moustapha; Mertens, Fredrik; Westergren, Albert; Eriksson, Leif; Hansson, Lennart; Skog, Ingrid; Bjermer, Leif; Scheding, Stefan; Westergren-Thorsson, Gunilla

    2014-01-01

    Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This study therefore aimed to identify and characterise the 'bona fide' MSC in human lungs and to investigate if the MSC numbers correlate with the development of bronchiolitis obliterans syndrome in lung-transplanted patients. Primary lung MSC were directly isolated or culture-derived from central and peripheral transbronchial biopsies of lung-transplanted patients and evaluated using a comprehensive panel of in vitro and in vivo assays. Primary MSC were enriched in the CD90/CD105 mononuclear cell fraction with mesenchymal progenitor frequencies of up to four colony-forming units, fibroblast/100 cells. In situ staining of lung tissues revealed that CD90/CD105 MSCs were located perivascularly. MSC were tissue-resident and exclusively donor lung-derived even in biopsies obtained from patients as long as 16 years after transplantation. Culture-derived mesenchymal stromal cells showed typical in vitro MSC properties; however, xenotransplantation into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice showed that lung MSC readily differentiated into adipocytes and stromal tissues, but lacked significant in vivo bone formation. These data clearly demonstrate that primary MSC in human lung tissues are not only tissue resident but also tissue-specific. The identification and phenotypic characterisation of primary lung MSC is an important first step in identifying the role of MSC in normal lung physiology and pulmonary diseases.

  13. Heme-related gene expression signatures of meat intakes in lung cancer tissues.

    PubMed

    Lam, Tram Kim; Rotunno, Melissa; Ryan, Brid M; Pesatori, Angela C; Bertazzi, Pier Alberto; Spitz, Margaret; Caporaso, Neil E; Landi, Maria Teresa

    2014-07-01

    Lung cancer causes more deaths worldwide than any other cancer. In addition to cigarette smoking, dietary factors may contribute to lung carcinogenesis. Epidemiologic studies, including the environment and genetics in lung cancer etiology (EAGLE), have reported increased consumption of red/processed meats to be associated with higher risk of lung cancer. Heme-iron toxicity may link meat intake with cancer. We investigated this hypothesis in meat-related lung carcinogenesis using whole genome expression. We measured genome-wide expression (HG-U133A) in 49 tumor and 42 non-involved fresh frozen lung tissues of 64 adenocarcinoma EAGLE patients. We studied gene expression profiles by high-versus-low meat consumption, with and without adjustment by sex, age, and smoking. Threshold for significance was a false discovery rate (FDR) ≤ 0.15. We studied whether the identified genes played a role in heme-iron related processes by means of manually curated literature search and gene ontology-based pathway analysis. We found that gene expression of 232 annotated genes in tumor tissue significantly distinguished lung adenocarcinoma cases who consumed above/below the median intake of fresh red meats (FDR = 0.12). Sixty-three (∼ 28%) of the 232 identified genes (12 expected by chance, P-value < 0.001) were involved in heme binding, absorption, transport, and Wnt signaling pathway (e.g., CYPs, TPO, HPX, HFE, SLCs, and WNTs). We also identified several genes involved in lipid metabolism (e.g., NCR1, TNF, and UCP3) and oxidative stress (e.g., TPO, SGK2, and MTHFR) that may be indirectly related to heme-toxicity. The study's results provide preliminary evidence that heme-iron toxicity might be one underlying mechanism linking fresh red meat intake and lung cancer.

  14. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  15. Comparison of two methods used to prepare smears of mouse lung tissue for detection of Pneumocystis carinii.

    PubMed Central

    Thomson, R B; Smith, T F; Wilson, W R

    1982-01-01

    The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088

  16. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  17. Human receptor kinetics and lung tissue retention of the enhanced-affinity glucocorticoid fluticasone furoate

    PubMed Central

    Valotis, Anagnostis; Högger, Petra

    2007-01-01

    Fluticasone furoate (FF) – USAN approved name, a new topically active glucocorticoid has been recently identified. The aim of this study was to characterise the binding affinity of this compound to the human lung glucocorticoid receptor in relation to other glucocorticoids. Additionally, we sought to determine the binding behaviour of fluticasone furoate to human lung tissue. The glucocorticoid receptor binding kinetics of fluticasone furoate revealed a remarkably fast association and a slow dissociation resulting in a relative receptor affinity (RRA) of 2989 ± 135 with reference to dexamethasone (RRA: 100 ± 5). Thus, the RRA of FF exceeds the RRAs of all currently clinically used corticosteroids such as mometasone furoate (MF; RRA 2244), fluticasone propionate (FP; RRA 1775), ciclesonide's active metabolite (RRA 1212 – rat receptor data) or budesonide (RRA 855). FP and FF displayed pronounced retention in human lung tissue in vitro. Lowest tissue binding was found for MF. There was no indication of instability or chemical modification of FF in human lung tissue. These advantageous binding attributes may contribute to a highly efficacious profile for FF as a topical treatment for inflammatory disorders of the respiratory tract. PMID:17650349

  18. Mechanism of Tissue Remodeling in Sepsis-Induced Acute Lung Injury

    DTIC Science & Technology

    2005-04-01

    acute lung injury have been identified (e.g., infection, trauma ), little is known about the factors that control the tissue remodeling response. This...in fibroblasts. This suggests that the main player in this process is acetaldehyde . To test this, we exposed cells to acetaldehyde and found that this

  19. Tissue concentrations of estrogens and aromatase immunolocalization in interstitial pneumonia of human lung.

    PubMed

    Taniuchi, Shinji; Fujishima, Fumiyoshi; Miki, Yasuhiro; Abe, Keiko; Nakamura, Yasuhiro; Sato, Satoko; Kasajima, Atsuko; Fue, Misaki; Ishida, Kazuyuki; Watanabe, Mika; Sakakibara, Tomohiro; Maeda, Sumiko; Suzuki, Takashi; Sasano, Hironobu

    2014-07-05

    Interstitial pneumonia (IP) is characterized by various degrees of pulmonary fibrosis and inflammation. Estrogens have been demonstrated to play important roles in physiological and pathological conditions of human lung, but significance of estrogens has remained unknown in human IP. Therefore, we measured estrogen concentrations and immunolocalized aromatase and estrogen receptor β (ERβ) in IP tissues. Estradiol concentration was significantly (2.8-fold) higher in IP than normal lung tissues, and aromatase activity evaluated by estradiol/testosterone ratio was also significantly (7.2-fold) elevated in IP tissues. Aromatase immunoreactivity in alveolar epithelial cells was significantly frequent in IP than normal lung or inflammatory lung disease other than IP, and it was positively associated with ERβ immunoreactivity in these cells of IP. These results suggest that estradiol concentration is locally increased in human IP tissue by aromatase, and increased estrogens may play an important role in the development of IP through ERβ in the alveolar epithelial cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Metals transfer from tobacco to cigarette smoke: Evidences in smokers' lung tissue.

    PubMed

    Pinto, Edgar; Cruz, Mariana; Ramos, Patrícia; Santos, Agostinho; Almeida, Agostinho

    2017-03-05

    Tobacco use kills millions of people every year around the world. The current level of 11 metals in tobacco was determined and their transfer rate to cigarette smoke was calculated as the difference between the total metal content in cigarettes and the amount present in its ashes. The metals content was also determined in the lung tissue of smokers and non-smokers in order to evaluate the marks that smoking leaves in this tissue. Metals content in tobacco ranged from less than 1μg/g (Co, Cd, Pb, As and Tl) to several hundreds of μg/g (Al, Mn and Ba). The highest transfer rate from tobacco to cigarette smoke was found for Tl (85-92%) and Cd (81-90%), followed by Pb (46-60%) and As (33-44%). Significantly higher levels of As, Cd and Pb were found in the lung tissue of smokers compared to non-smokers, showing that smoking results in an increase of these metals in the lungs and that they contribute to the carcinogenic potential of cigarette smoke. This study presents important data on current metals content in tobacco and its transference to cigarette smoke and provides evidence of their accumulation in smokers' lung tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  2. Preliminary results of anatomic lung resection using energy-based tissue and vessel coagulative fusion technology.

    PubMed

    Schuchert, Matthew J; Abbas, Ghulam; Pettiford, Brian L; Luketich, James D; Landreneau, Rodney J

    2010-11-01

    Mechanical stapling devices have been established as the mainstay of therapy in the selective isolation and division of bronchial and vascular structures during anatomic lung resection. Few data are available regarding the application of energy-based tissue fusion technology during anatomic lung resection. In the present study, we evaluated the use of energy-based instruments for the division of the pulmonary arterial and venous branches during anatomic lung resection. Anatomic lung resection (segmentectomy or lobectomy) was performed using energy-based coagulative fusion technology. A low-profile jaw can be used to facilitate dissection in both open and video-assisted thoracic surgery cases, applying a seal 6 mm wide by 22 mm in length. Two energy applications were applied to the arterial and venous branches before vessel division. The bipolar tissue fusion system was used in 211 patients between 2008 and 2010 (104 lobectomies and 107 anatomic segmentectomies). Initially, we used a device with a smaller, curved jaw (n = 12), producing a 3.3- to 4.7-cm seal. No arterial dehiscences and 2 partial venous dehiscences that were recognized and controlled intraoperatively occurred. For the remaining cases, we used a new device with a larger jaw that applied a seal 6 mm wide by 22 mm in length. No arterial or venous dehiscences (vessel size range, 0.4-1.2 cm) occurred. The bipolar tissue fusion system provided safe and reliable control of pulmonary arterial and venous branches during anatomic lung resection. The use of energy-based tissue fusion technology represents a reasonable alternative to mechanical stapling devices during anatomic lung resection. Copyright © 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance

    PubMed Central

    Soroosh, Pejman; Doherty, Taylor A.; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H.

    2013-01-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3+ iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3+ Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  4. Detection and Localization of Pre-Cancerous Lesions and Early Lung Cancer Using Tissue Autofluorescence.

    NASA Astrophysics Data System (ADS)

    Hung, Jaclyn Yip-Chan

    In this work, two different yet related hypotheses were tested by experimental means as follows: (i) pre-cancerous and non-invasive (early) lung cancer can be detected and localized using the fluorescence properties of tumour localizing drugs at non-photosensitizing doses to skin tissue; (ii) significant differences exist in laser-induced autofluorescence between normal, pre-cancerous and cancerous tissues such that these differences alone can be exploited to detect and delineate early lung cancer without using exogenous drug(s). Exogenous fluorescent tumour markers such as hematoporphyrin derivatives (e.g. Photofrin) have been used to enhance to detection of occult lung lesions. Photofrin is preferentially retained in tumor tissues compared to the surrounding normal tissues; it fluoresces at 630 nm and 690 nm when excited at -405 nm. Based on this principle several imaging and non-imaging devices have been developed. However, wider clinical applications were limited due to the skin photosensitivity property of Photofrin. We have postulated that this could be solved by employing a much lower dose of Photofrin (0.25 mg/kg) which was believed to be less photosensitizing to human patients. This postulate was experimentally tested by ratio fluorometry and early lung cancers were detected with no false negative results and no apparent skin photosensitivity. An important finding in this study was that the mechanism for detection of early cancer was mainly due to the differences in the green autofluorescence between normal and malignant tissues, rather than fluorescence of tumour localizing drug. This discovery led to the second postulate of this thesis that tissue autofluorescence alone can be exploited for the detection of early lung cancer. The results indicated that algorithm(s) could be developed to clearly delineate early lesions from the normal tissues. Several algorithms were then tested using a non-imaging ratio fluorometer device and a prototype imaging

  5. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  6. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  7. Real-time In Vivo Tissue Characterization with Diffuse Reflectance Spectroscopy during Transthoracic Lung Biopsy: A Clinical Feasibility Study.

    PubMed

    Spliethoff, Jarich W; Prevoo, Warner; Meier, Mark A J; de Jong, Jeroen; Klomp, Houke M; Evers, Daniel J; Sterenborg, Hendricus J C M; Lucassen, Gerald W; Hendriks, Benno H W; Ruers, Theodoor J M

    2016-01-15

    This study presents the first in vivo real-time tissue characterization during image-guided percutaneous lung biopsies using diffuse reflectance spectroscopy (DRS) sensing at the tip of a biopsy needle with integrated optical fibers. Tissues from 21 consented patients undergoing lung cancer surgery were measured intraoperatively using the fiber-optic platform capable of assessing various physical tissue properties highly correlated to tissue architecture and composition. In addition, the method was tested for clinical use by performing DRS tissue sensing during 11 routine biopsy procedures in patients with suspected lung cancer. We found that water content and scattering amplitude are the primary discriminators for the transition from healthy lung tissue to tumor tissue and that the reliability of these parameters is not affected by the amount of blood at the needle tip. In the 21 patients measured intraoperatively, the water-to-scattering ratio yielded a 56% to 81% contrast difference between tumor and surrounding tissue. Analysis of the 11 image-guided lung biopsy procedures showed that the tissue diagnosis derived from DRS was diagnostically discriminant in each clinical case. DRS tissue sensing integrated into a biopsy needle may be a powerful new tool for biopsy guidance that can be readily used in routine diagnostic lung biopsy procedures. This approach may not only help to increase the successful biopsy yield for histopathologic analysis, but may also allow specific sampling of vital tumor tissue for genetic profiling. ©2015 American Association for Cancer Research.

  8. Alterations in Tissue Metabolism (The Lung) with Injury and Shock.

    DTIC Science & Technology

    1975-07-15

    of Insulin Resistance by In Vivo infusion of AT? in Experinental Shock. Surg~ica1 Foruri , itt Press. b. Chaudry , Lii., Sayeed , N.M., and Bauc, A.E...Surgery, 109:349—350, 1974. p. Chaudry, I.H., Sayeed , N .M . , and 8aue,~ A.E.: Insulin Resistance in Experimental Shock. Archives of Surgery, 109:412...determine the effect of In vivo infusion of AT?—~’gCl2 on tissue insulin resistance in shock. The results indicate that insulin resistance can be overcome

  9. Impact of Triple Combinations of Retinoic Acid, Mold Spores and Citral on the F344 Rat Lung Tissue Pathology.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Cason, Zelma; Benghuzzi, Hamed

    2016-04-01

    The impact of retinoic acid (All Trans Retinoic Acid; ATRA) and Mold spores (MLD) in the development of lung pathology and in vivo tissue remodeling have not been well established in the literature. In addition, the role of citral (inhibitor of retinoid function) in the improvement of lung pathology has not been ascertained in animal studies. Therefore, it is hypothesized that ATRA and Mold (MLD) exposure will sensitize lung tissues leading to lung tissue pathology and that Citrals (C1 and C2) will reverse, ameliorate or improve the associated pathological damage to lung tissues. The study used an IACUC approved between-subject in vivo randomized split plot factorial design (F344 rat model; N=40). Animals were exposed to seven different treatments including untreated control, MLD, ATRA, Citrals (C1 and C2) and their MLD combinations (MLD+ ATRA+ C1, and MLD+ ATRA+ C2) by intra-peritoneal route. Rat weight and blood data were collected on Days 1 and 21, all animals were sacrificed on day 21, and lung tissues were processed for histopathology. Results from weight and blood data (ANOVA and Duncan) as well as from histopathological analyses supported the findings that exposure of F344 rats to MLD combinations with ATRA and Citrals showed various levels of lung tissue damage that were impacted by either C1 or C2 exposure. This promising study showed impressive responses on the interaction of MLD, Citrals, and ATRA as related to their impact on associated lung tissue pathologies.

  10. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    SciTech Connect

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-06-15

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  11. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry.

    PubMed

    Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A

    2007-06-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  12. [Determination of fifty-five elements in lung carcinomatous tissues and their pericarcinomatous tissues by atomic spectrometry].

    PubMed

    Xiong, Yi-jie; Ouyang, Li; Liu, Ya-qiong; Xie, Qing; Liu, Hu-sheng; Wang, Jing-yu

    2006-11-01

    A method for determining 55 elements in human lung tissue was developed. Mixed acid (HNO3:HCl04) was added into samples, which were digested at room temperature over night, then heated at 180 degrees C. Arsenic and selenium in lung tissue were determined by hydride generation atomic fluorescence spectrometry (HG-AFS), potassium, sodium, calcium and magnesium were determined by atomic absorption spectrometer (AAS), while the rest of forty-eight elements were determined by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Reference materials of GBW(E)080193 bovine hepar and GBWO9101 human hair were analyzed by the described method. The measured element values in two reference materials accorded with their reference values. The recovery rates for most of the studied elements were 90%-110%. The precisions of the method were 1.7%-10.0%. The concentrations of seventeen elements in the carcinomatous tissues were remarkably different from those in the pericarcinomatous tissues. The method is rapid, simple and accurate.

  13. Structural and Biomechanical Properties of the Exchange Tissue of the Avian Lung.

    PubMed

    Maina, John N

    2015-10-01

    The blood capillaries (BC) and the air capillaries (ACs) are the terminal gas exchange units of the avian lung. The minuscule structures are astonishingly strong. It is only recently that the morphologies and the biomechanical properties of the BCs and the ACs were investigated. Regarding size and shape, the BCs and the ACs differ remarkably. While they were previously claimed to be tubular (cylindrical) in shape, the ACs are rather rotund structures which interconnect across short, narrow passageways. Atypical of those in other tissues, the BCs in the exchange tissue of the avian lung comprise of distinct segments which are about as long as they are wide and which are coupled in three-dimensions. The thin blood-gas barrier (BGB) which separates the ACs from the BCs is peculiarly strong. The causes of the strengths of the ACs and the BCs in general and the BGB in particular are varied and controversial. Here, the recent morphological and physiological findings on the structure, biomechanical properties, and the strengths of the respiratory units of the avian lung and the BGB have been critically examined. Also, in light of the new morphological findings of the ACs and the BCs, the functional model which is currently in use to assess the gas exchange efficiency of the avian lung should be revised and the inappropriateness of the terms 'blood capillary' and 'air capillary' for the gas exchange units of the avian lung is pointed out. © 2015 Wiley Periodicals, Inc.

  14. Optical studies of tissue mitochondrial redox in isolated perfused rat lungs

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, M.

    2012-02-01

    Through the monitoring of the auto-fluorescent mitochondrial metabolic coenzymes, NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide), the redox state of metabolism can be probed in real time in many intact organs, but its use has not been fully developed in lungs. The ratio of these fluorophores, (NADH/FAD), referred to as the mitochondrial redox ratio (RR), can be used as a quantitative metabolic marker of tissue. We have designed a fluorometer that can be used to monitor lung surface NADH and FAD fluorescence in isolated perfused lungs. Surface fluorescence NADH and FAD signals were acquired in the absence (control) and presence of pentachlorophenol (PCP), rotenone, and potassium cyanide (KCN). Rotenone, an inhibitor of complex I, increased RR by 18%, predominantly due to an increase in NADH signal. KCN, an inhibitor of complex IV reduced the chain and resulted in an increase of 33% in RR, as a result of 23% increase in NADH and 8% in FAD . PCP, an uncoupler which oxidizes the respiratory chain, decreased RR by 18% as a result of 14% decrease in NADH signal and 4% increase in FAD signal. These results demonstrate the ability of surface fluorometry to detect changes in lung tissue mitochondrial redox state in isolated perfused lungs.

  15. Reduced generation of lung tissue-resident memory T cells during infancy.

    PubMed

    Zens, Kyra D; Chen, Jun Kui; Guyer, Rebecca S; Wu, Felix L; Cvetkovski, Filip; Miron, Michelle; Farber, Donna L

    2017-10-02

    Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant-T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet-regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage. © 2017 Zens et al.

  16. The correlation of tissue motion within the lung: implications on fiducial based treatments

    SciTech Connect

    Smith, Ryan L.; Yang Deshan; Lee, Andrew; Mayse, Martin L.; Low, Dan A.; Parikh, Parag J.

    2011-11-15

    In radiation therapy many motion management and alignment techniques rely on the accuracy of an internal fiducial acting as a surrogate for target motion within the lung. Although fiducials are routinely used as surrogates for tumor motion, the extent to which varying spatial locations in the lung move similarly to other locations has yet to be quantitatively analyzed. In an attempt to analyze the motion correlation throughout the lung, ten primary lung cancer patients underwent IRB-approved 4DCT scans in the supine position. Deformable registration produced motion vectors for each voxel between exhalation and inhalation. Modeling was performed for each vector and all surrounding vectors within the lung in order to determine the mean 3D Euclidean distance necessary for an implanted fiducial to correlate with surrounding tissue motion to within 3 mm (left lower: 1.7 cm, left upper: 2.1 cm, right lower 1.6 cm, and right upper 2.9 cm). No general implantation rule of where to position a fiducial with respect to the tumor was found as the motion is highly patient and lobe specific. Correlation maps are presented showcasing spatial anisotropy of the motion of tissue surrounding the tumor.

  17. New techniques for imaging and analyzing lung tissue.

    PubMed Central

    Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D

    1984-01-01

    The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115

  18. 3D imaging of lung tissue by confocal microscopy and micro-CT

    NASA Astrophysics Data System (ADS)

    Kriete, Andres; Breithecker, Andreas; Rau, Wigbert D.

    2001-07-01

    Two complementary techniques for the imaging of tissue subunits are discussed. A computer guided light microscopic imaging technique is described first, which confocally resolves thick serial sections axially. The lateral area of interest is increased by scanning a mosaic of images in each plane. Subsequently, all images are fused digitally to form a highly resolved volume exhibiting the fine structure of complete respiratory units of lung. A different technique described is based on microtomography. This method allows to image volumes up to 3x3x3 cm at a resolution of up to 7 microns. Due to the lack of strong density differences, a contrast enhancement procedure is introduced which makes this technique applicable for the imaging of lung tissue. Imaging, visualization and analysis described here are parts of an ongoing project to model structure and to simulate function of tissue subunits and complete organs.

  19. Modeling and incorporating cardiac-induced lung tissue motion in a breathing motion model

    PubMed Central

    White, Benjamin M.; Santhanam, Anand; Thomas, David; Min, Yugang; Lamb, James M.; Neylon, Jack; Jani, Shyam; Gaudio, Sergio; Srinivasan, Subashini; Ennis, Daniel; Low, Daniel A.

    2014-01-01

    Purpose: The purpose of this work is to develop a cardiac-induced lung motion model to be integrated into an existing breathing motion model. Methods: The authors’ proposed cardiac-induced lung motion model represents the lung tissue's specific response to the subject's cardiac cycle. The model is mathematically defined as a product of a converging polynomial function h of the cardiac phase (c) and the maximum displacement \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\smash{\\mathord{\\buildrel{\\lower3pt\\hbox{\\scriptscriptstyle\\rightharpoonup}}\\over \\gamma } ( {\\mathord{\\buildrel{\\lower3pt\\hbox{\\scriptscriptstyle\\rightharpoonup}}\\over X} _0 } )}\\end{document}γ⇀(X⇀0) of each voxel (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\smash{\\mathord{\\buildrel{\\lower3pt\\hbox{\\scriptscriptstyle\\rightharpoonup}}\\over X} _0 }\\end{document}X⇀0) among all the cardiac phases. The function h(c) was estimated from cardiac-gated MR imaging of ten healthy volunteers using an Akaike Information Criteria optimization algorithm. For each volunteer, a total of 24 short-axis and 18 radial planar views were acquired on a 1.5 T MR scanner during a series of 12–15 s breath-hold maneuvers. Each view contained 30 temporal frames of equal time-duration beginning with the end-diastolic cardiac phase. The frames in each of the planar views were resampled to create a set of three-dimensional (3D) anatomical volumes representing thoracic anatomy at different cardiac phases. A 3D multiresolution optical flow deformable image registration algorithm was used to quantify the difference

  20. Mineral fibres, fibrosis, and asbestos bodies in lung tissue from deceased asbestos cement workers.

    PubMed Central

    Albin, M; Johansson, L; Pooley, F D; Jakobsson, K; Attewell, R; Mitha, R

    1990-01-01

    Lung tissue from 76 deceased asbestos cement workers (seven with mesothelioma) exposed to chrysotile asbestos and small amounts of amphiboles, has been studied by transmission electron microscopy, together with lung tissue from 96 controls. The exposed workers with mesothelioma had a significantly higher total content of asbestos fibre in the lungs than those without mesothelioma, who in turn, had higher concentrations than the controls (medians 189, 50, and 29 x 10(6) fibres/g (f/g]. Chrysotile was the major type of fibre. The differences were most pronounced for the amphibole fibres (62, 4.7, and 0.15 f/g), especially crocidolite (54, 1.8 and less than 0.001 f/g), but were evident also for tremolite (2.9, less than 0.001, and less than 0.001 f/g) and anthophyllite (1.7, less than 0.001, and less than 0.001 f/g). For amosite, there was no statistically significant difference between lungs from workers with and without mesothelioma; the lungs of workers had, however, higher concentrations than the controls. Strong correlations were found between duration of exposure and content of amphibole fibres in the lungs. Asbestos bodies, counted by light microscopy, were significantly correlated with the amphibole but not with the chrysotile contents. Fibrosis was correlated with the tremolite but not the chrysotile content in lungs from both exposed workers and controls. Overall, similar results were obtained using fibre counts and estimates of mass. PMID:2173948

  1. Endothelial Cells Expressing Endothelial and Mesenchymal Cell Gene Products in Lung Tissue From Patients With Systemic Sclerosis-Associated Interstitial Lung Disease.

    PubMed

    Mendoza, Fabian A; Piera-Velazquez, Sonsoles; Farber, John L; Feghali-Bostwick, Carol; Jiménez, Sergio A

    2016-01-01

    To examine whether lung endothelial cells (ECs) from patients with systemic sclerosis (SSc)-associated interstitial lung disease (ILD) express mesenchymal cell-specific proteins and gene transcripts, indicative of the occurrence of endothelial-to-mesenchymal phenotypic transition (EndoMT). Lung tissue from 6 patients with SSc-associated pulmonary fibrosis was examined by histopathology and immunohistochemistry. Confocal laser microscopy was utilized to assess the simultaneous expression of EC and myofibroblast molecular markers. CD31+CD102+ ECs were isolated from the lung tissue of 2 patients with SSc-associated ILD and 2 normal control subjects, and the expression of EC and mesenchymal cell markers and other relevant genes was analyzed by quantitative polymerase chain reaction, immunofluorescence microscopy, and Western blotting. Immunohistochemical staining revealed cells expressing the EC-specific marker CD31 in the subendothelial, perivascular, and parenchymal regions of the lungs from all SSc patients. Confocal microscopy identified cells displaying simultaneous expression of von Willebrand factor and α-smooth muscle actin in small and medium-sized arterioles in the SSc lung tissue but not in normal control lungs. CD31+CD102+ ECs isolated from SSc lungs expressed high levels of mesenchymal cell-specific genes (type I collagen, type III collagen, and fibronectin), EC-specific genes (type IV collagen and VE-cadherin), profibrotic genes (transforming growth factor β1 and connective tissue growth factor), and genes encoding EndoMT-related transcription factors (TWIST1 and SNAI2). Cells coexpressing EC- and mesenchymal cell-specific molecules are present in the lungs of patients with SSc-associated ILD. CD31+CD102+ ECs isolated from SSc lungs simultaneously expressed mesenchymal cell- and EC-specific transcripts and proteins. Collectively, these observations demonstrate the occurrence of EndoMT in the lungs of patients with SSc-associated ILD. © 2016, American

  2. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H2O and a tidal volume of 6 ml x kg(-1). The control group (n = 10) had an end expiratory pressure of 5 cm H2O and a tidal volume of 10 ml x kg(-1). 10(11) colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  3. Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue

    PubMed Central

    Vierkotten, Sarah; Lindner, Michael; Königshoff, Melanie; Eickelberg, Oliver

    2015-01-01

    During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment. PMID:26092995

  4. Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue.

    PubMed

    Cavalcante, Francisco S A; Ito, Satoru; Brewer, Kelly; Sakai, Hiroaki; Alencar, Adriano M; Almeida, Murilo P; Andrade, José S; Majumdar, Arnab; Ingenito, Edward P; Suki, Béla

    2005-02-01

    Collagen and elastin are thought to dominate the elasticity of the connective tissue including lung parenchyma. The glycosaminoglycans on the proteoglycans may also play a role because osmolarity of interstitial fluid can alter the repulsive forces on the negatively charged glycosaminoglycans, allowing them to collapse or inflate, which can affect the stretching and folding pattern of the fibers. Hence, we hypothesized that the elasticity of lung tissue arises primarily from 1) the topology of the collagen-elastin network and 2) the mechanical interaction between proteoglycans and fibers. We measured the quasi-static, uniaxial stress-strain curves of lung tissue sheets in hypotonic, normal, and hypertonic solutions. We found that the stress-strain curve was sensitive to osmolarity, but this sensitivity decreased after proteoglycan digestion. Images of immunofluorescently labeled collagen networks showed that the fibers follow the alveolar walls that form a hexagonal-like structure. Despite the large heterogeneity, the aspect ratio of the hexagons at 30% uniaxial strain increased linearly with osmolarity. We developed a two-dimensional hexagonal network model of the alveolar structure incorporating the mechanical properties of the collagen-elastin fibers and their interaction with proteoglycans. The model accounted for the stress-strain curves observed under all experimental conditions. The model also predicted how aspect ratio changed with osmolarity and strain, which allowed us to estimate the Young's modulus of a single alveolar wall and a collagen fiber. We therefore identify a novel and important role for the proteoglycans: they stabilize the collagen-elastin network of connective tissues and contribute to lung elasticity and alveolar stability at low to medium lung volumes.

  5. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  6. Best immunohistochemical panel in distinguishing adenocarcinoma from squamous cell carcinoma of lung: tissue microarray assay in resected lung cancer specimens.

    PubMed

    Kim, Mi Jin; Shin, Hyeong Chan; Shin, Kyeong Cheol; Ro, Jae Y

    2013-02-01

    The emergence of the targeted therapies for non-small cell lung carcinoma (NSCLC) has generated a need for accurate histologic subtyping of NSCLC. In this study, we assessed the utility of immunohistochemical markers that could be helpful in distinction between adenocarcinoma (ADC) and squamous cell carcinoma (SCC). We performed a battery of immunohistochemistry using tissue microarray for napsin-A, Thyroid transcription factor 1 (TTF-1), p63, cytokeratin (CK) 5/6, thrombomodulin (CD141), Epithelial-related antigen (MOC-31), carcinoembryonic antigen (CEA), Cyclooxygenase 2 (COX-2), high-molecular-weight CK (HMWCK), p27kip1 (p27), and Rb protein in 129 resected primary NSCLC with 81 ADCs and 48 SCCs and 10 metastatic ADC to the lung (primary in colon, 7 cases; stomach, 2 cases; vagina, 1 case). Cases of ADC and SCC were morphologically unequivocal and solid tumors with no definite squamous or glandular differentiation were excluded for this analysis. Napsin-A and TTF-1 were positive in 81% and 70% of ADC and in 0% and 2% of SCC, respectively, whereas P63 and CK5/6 were positive in 91% and 90% of SCC and in 9% and 4% of ADC, respectively (P < .001). CD141 stained significantly higher in SCC over ADC (positive in 2% of ADC and 46% of SCC. MOC-31, CEA, COX-2, HMWCK, p27, and Rb appeared to be not useful markers in distinction between ADC and SCC because of their low specificity. None of metastatic ADC to the lung showed positive for napsin-A and TTF-1. It was evident that combination of napsin-A, TTF-1, CK5/6, and p63 was the best immunohistochemical panel in differentiating ADC from SCC of the lung in this study. CD141 appeared to be a potential new marker for SCC with high specificity. Cyclooxygenase 2, MOC-31, CEA, HMWCK, p27, and Rb showed less specificity for differentiation ADC from SCC.

  7. Decay-Accelerating Factor Mitigates Controlled Hemorrhage-Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine

    DTIC Science & Technology

    2011-07-01

    Decay-Accelerating Factor Mitigates Controlled Hemorrhage- Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine Jurandir J. Dalle...DAF treatment improved hemorrhage- induced hyperkalemia . The protective effects of DAF appear to be related to its ability to reduce tissue complement...Decay-accelerating factor mitigates controlled hemorrhage-instigated intestinal and lung tissue damage and hyperkalemia in swine 5a. CONTRACT NUMBER

  8. Lung surgery

    MedlinePlus

    ... lung tissue that is diseased or damaged from emphysema or bronchiectasis Remove blood or blood clots ( hemothorax ) ... Editorial team. Related MedlinePlus Health Topics Collapsed Lung Emphysema Lung Cancer Lung Diseases Pleural Disorders Browse the ...

  9. The use of an electrothermal bipolar tissue sealing system in the management of lung hydatid disease.

    PubMed

    Santini, Mario; Fiorelli, Alfonso; Milione, Roberta; Vicidomini, Giovanni; Accardo, Marina

    2014-10-01

    Surgery is the treatment of choice for management of pulmonary hydatid cysts. Total pericystectomy provided the best results concerning the recurrence of the disease, but haemorrhagia and air leak during dissection of the pericystic space are the main disadvantages of such a method. To avoid these complications, we proposed the use of an electrothermal bipolar tissue sealing system. After the extraction of the hydatid cyst, a small space is created between the pericyst and normal lung, and the separation between the two zones is joined using the electrothermal bipolar tissue sealing system. This procedure reduces the risk of bleeding and of air leaks because the bronchi and the vessels encountered during dissection are sealed by the electrothermal bipolar tissue sealing system. When the pericystic membrane (inflammatory host reaction) is intimately adherent to the lung, total pericystectomy demands greater technical training because the bronchovascular axes of the healthy segments are situated in the pericyst. In such cases, the electrothermal bipolar tissue sealing system allowed creation of an appropriate plane through the parenchyma close to the pericyst, minimizing the normal lung exposed to resection as much as possible and reducing the resulting bleeding and air leak. This procedure was successfully applied in 4 consecutive patients each with a giant hydatid cyst.

  10. Routes of conjugation in normal and cancerous tissue from human lung

    NASA Astrophysics Data System (ADS)

    Cohen, Gerald M.; Gibby, Elizabeth M.; Mehta, Rekha

    1981-06-01

    The selective toxicity of drugs leading to major advances in antibacterial chemotherapy has often resulted from the identification and exploitation of major biochemical differences between bacterial and mammalian species1. Similar progress has not been made in cancer chemotherapy, partly due to a lack of suitable biochemical differences between normal and cancerous tissue other than in DNA synthesis, but also because of many other problems such as those of metastases and resistance, and the presence in tumours of cells at different states of the cell cycle. Here we report a major biochemical difference in the routes of conjugation between normal lung and tumour tissue from patients with lung cancer. Conjugation with glucuronic acid and sulphate constitute two of the most important pathways of metabolism of drugs, other foreign compounds and hormonal steroids2,3. Using 1-naphthol as a model phenolic substrate, normal peripheral lung tissue formed almost exclusively the sulphate ester conjugate, 1-naphthyl sulphate, whereas tumour tissue from squamous carcinomas from the same patients formed predominantly the glucuronic acid conjugate, 1-naphthyl glucuronide. Such major biochemical differences may be exploitable in the design of selectively toxic cancer chemotherapeutic agents.

  11. [Immunohistochemical Analysis of Krebs von den Lungen-6 (KL-6) Expression in Lung Tissue in Primary Lung Cancer Patients with High Serum KL-6 Levels].

    PubMed

    Yatsuyanagi, Eiji; Sato, Kazuhiro; Sato, Keisuke

    2015-09-01

    We investigated sialylated carbohydrate antigen( Krebs von den Lungen-6:KL-6) expression in lung tissue and correlation between the expression and serum KL-6 level in the patients with primary lung cancer. Thirty-four primary lung cancer patients with high serum KL-6 levels( >500 U/ml) were evaluated. A coexistence of interstitial pneumonia (IP) was histopathologically evaluated and an immunohistochemical staining using a mouse anti-human KL-6 antibody (mKL-6) was performed. A multiple regression analysis was also caluculated using a serum KL-6 level as a target variable and the histopathological and immunohistochemical factors (KL-6 expression in cancer tissue and IP tissue, coexistence of IP, tumor size, pathological staging) as descriptive variables. Twenty-two patients (64.7%) were histopathologically concomitant with IP. Cancer tissues were positively stained by mKL-6 in 32 patients (94.1%). Among them, 20 patients were concomitant with IP and all of their cancer tissues were more strongly stained by mKL-6 than IP tissues. Although considerable high rate of lung cancer patients might express the KL-6 in the cancer tissue, we could not reveal the relationship between the expression and serum KL-6 level by a multiple regression analysis. For revealing the mechanism of elevating serum KL-6 level in the patients with lung cancer, more detailed and powerful study is thought to be needed.

  12. [The level of RORγt increases in rat lung tissues of bronchiolitis caused by respiratory syncytial virus].

    PubMed

    Gao, Meng; Wu, Fuling; Li, Yingying; Shi, Tao; Tian, Lijun; Han, Tingting; Wang, Haiying

    2015-11-01

    To study the level of retinoic acid receptor-related orphan receptor γt (RORγt) in rat lung tissues of bronchiolitis caused by respiratory syncytial virus (RSV) and its implication. The rats were randomly divided into normal group and bronchiolitis group. After the model of bronchiolitis was established successfully by nasal dripping, the pathological changes of lung tissues were detected by HE staining; the plasma levels of interleukin 23 (IL-23), IL-17 were detected by ELISA; the level of RORγt mRNA in lung tissues and peripheral blood mononuclear cells (PBMCs) were detected by real-time quantitative PCR; the level of RORγt protein in lung tissues was examined by Western blotting. Compared with the normal group, the rats with bronchiolitis presented with pulmonary interstitial hyperemia and edema, more inflammatory cell infiltration, wider alveolar septa and bronchial collapse and deformation. Compared with the normal group, the level of RORγt mRNA in the lung tissues and PBMCs increased in rats with bronchiolitis. The level of RORγt protein in lung tissues and the plasma levels of IL-23 and IL -17 were higher in rats with bronchiolitis than in normal rats. The level of RORγt was elevated in the lung tissues of rats with RSV-induced bronchiolitis.

  13. Human Lung Tissue Explants Reveal Novel Interactions during Legionella pneumophila Infections

    PubMed Central

    Jäger, Jens; Marwitz, Sebastian; Tiefenau, Jana; Rasch, Janine; Shevchuk, Olga; Kugler, Christian

    2014-01-01

    Histological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model for Legionella pneumophila infection comprising living human lung tissue. We stimulated lung explants with L. pneumophila strains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion of L. pneumophila to the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA− strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context of L. pneumophila infections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations. PMID:24166955

  14. Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data.

    PubMed

    Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani

    2012-11-02

    The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated

  15. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD) data

    PubMed Central

    2012-01-01

    Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1

  16. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network.

    PubMed

    Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian

    2017-02-01

    Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung.

  17. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    PubMed

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should

  18. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  19. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer

    PubMed Central

    Willumsen, Nicholas; Bager, Cecilie L; Leeming, Diana J; Smith, Victoria; Christiansen, Claus; Karsdal, Morten A; Dornan, David; Bay-Jensen, Anne-Christine

    2014-01-01

    Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7–186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer. PMID:25044252

  20. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer.

    PubMed

    Willumsen, Nicholas; Bager, Cecilie L; Leeming, Diana J; Smith, Victoria; Christiansen, Claus; Karsdal, Morten A; Dornan, David; Bay-Jensen, Anne-Christine

    2014-10-01

    Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7-186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer.

  1. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.

    PubMed

    Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P

    2011-02-21

    There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.

  2. Surface Fluorescence Studies of Tissue Mitochondrial Redox State in Isolated Perfused Rat Lungs

    PubMed Central

    Staniszewski, Kevin; Audi, Said H.; Sepehr, Reyhaneh; Jacobs, Elizabeth R.; Ranji, Mahsa

    2012-01-01

    We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21% and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect of RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue’s health in real-time. PMID:23238793

  3. Lung mechanics and connective tissue levels in starvation-induced emphysema in hamsters.

    PubMed

    Karlinsky, J B; Goldstein, R H; Ojserkis, B; Snider, G L

    1986-08-01

    The effect of starvation on lung mechanics, morphometry, and levels of connective tissue components was determined in young adult golden Syrian hamsters. A base-line control, fed control, and starved group were studied. Fed group animals increased body weight by 13%, but dry lung weight did not increase above that of the base-line controls. The total lung capacity when transpulmonary pressure was at 25 cmH2O (TLC25) also increased by 20% above base-line controls. The mean TLC25 of the starved group was greater than that of the base-line control group but less than that of the fed control group (P less than 0.05). Volume-corrected air-filled volume pressure (VP) curves of the three groups were similar. Volume-corrected saline-filled VP curves were identical in the three groups. Total lung collagen, elastin, glycosaminoglycan, and protein were similar in the three groups. Air space size was significantly increased and mean internal surface area was significantly decreased in the starved group compared with the base-line and fed controls. No evidence of alveolar wall destruction was evident by light or electron microscopy. We conclude that severe starvation of young adult hamsters produces air space enlargement without changes in lung elastic recoil. The mechanism of alveolar wall remodeling is not yet understood in this model of emphysema.

  4. Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.

    2007-03-01

    Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.

  5. Interstitial lung disease in connective tissue disease--mechanisms and management.

    PubMed

    Wells, Athol U; Denton, Christopher P

    2014-12-01

    Pulmonary complications are an important extra-articular feature of autoimmune rheumatic diseases and a major cause of mortality. The underlying pathogenesis probably involves multiple cellular compartments, including the epithelium, lung fibroblasts, and the innate and adaptive immune system. Heterogeneity in the extent and progression of lung fibrosis probably reflects differences in underlying pathogenic mechanisms. Growing understanding of the key pathogenic drivers of lung fibrosis might lead to the development of more effective targeted therapies to replicate the treatment advances in other aspects of these diseases. Interstitial lung disease (ILD) in connective tissue disease (CTD) is characterized using the classification of the idiopathic interstitial pneumonias. Systemic sclerosis is most frequently associated with ILD and, in most of these patients, ILD manifests as a histological pattern of nonspecific interstitial pneumonia. Conversely, in rheumatoid arthritis, the pattern of ILD is most often usual interstitial pneumonia. The key goals of clinical assessment of patients with both ILD and CTD are the detection of ILD and prognostic evaluation to determine which patients should be treated. Data from treatment trials in systemic sclerosis support the use of immunosuppressive therapy, with the treatment benefit largely relating to the prevention of progression of lung disease.

  6. Lung involvement in "stable" undifferentiated connective tissue diseases: a rheumatology perspective.

    PubMed

    Riccardi, Antonella; Irace, Rosaria; Di Stefano, Ilaria; Iudici, Michele; Fasano, Serena; Bocchino, Marialuisa; Capaccio, Annalisa; Sanduzzi, Alessandro; Valentini, Gabriele

    2017-08-01

    Previous studies of the occurrence of interstitial lung disease (ILD) in undifferentiated connective tissue diseases (UCTD) were conducted in patients admitted to Respiratory Medicine Units. The aim of the present prospective study was to investigate lung involvement in UCTD patients admitted to a Rheumatology Unit. Eighty-one consecutive UCTD patients were enrolled in the study. Each patient underwent history and physical examination, routine laboratory investigations, antinuclear antibody (ANA) profiling, B-mode echocardiography, and lung function study according to previously reported methods. Lung high resolution computed tomography (HRCT) was performed in patients who provided informed consent. Six patients (7.4%) had a history of grade II dyspnea. Three of them had a DLCO ranging from 42 to 55% of the predicted value; and a HRCT-documented ILD with a non-specific interstitial pneumonia (NSIP) pattern. Symptoms in the other three patients were due to cardiac disease. None of the 75 asymptomatic patients, had relevant findings at physical examination, 26/75 had a DLCO <80% (<70% in 10 cases). Of these, 3 of the 30 patients who underwent lung HRCT were affected by NSIP-ILD. Six of the 81 enrolled were affected by ILD, which was symptomatic in three patients. A higher percentage of patients had a reduced DLCO. The latter finding may reflect a preradiographic ILD or a preechocardiographic pulmonary vascular disease.

  7. Interstitial lung disease in connective tissue diseases: evolving concepts of pathogenesis and management

    PubMed Central

    2010-01-01

    Interstitial lung disease (ILD) is a challenging clinical entity associated with multiple connective tissue diseases, and is a significant cause of morbidity and mortality. Effective therapies for connective tissue disease-associated interstitial lung disease (CTD-ILD) are still lacking. Multidisciplinary clinics dedicated to the early diagnosis and improved management of patients with CTD-ILD are now being established. There is rapid progress in understanding and identifying the effector cells, the proinflammatory and profibrotic mediators, and the pathways involved in the pathogenesis of CTD-ILD. Serum biomarkers may provide new insights as risk factors for pulmonary fibrosis and as measures of disease progression. Despite these recent advances, the management of patients with CTD-ILD remains suboptimal. Further studies are therefore urgently needed to better understand these conditions, and to develop effective therapeutic interventions. PMID:20735863

  8. Mechanism of Tissue Remodeling in Sepsis-Induced Acute Lung Injury

    DTIC Science & Technology

    2006-04-01

    identified (e.g., infection, trauma ), little is known about the factors that control the tissue remodeling response. This project addresses this very...induced fibronectin expression in fibroblasts. This suggests that the main player in this process is acetaldehyde . To test this, we exposed cells...to acetaldehyde and found that this molecule indeed stimulated fibronectin expression. The latter observation suggests that lung fibroblasts contain

  9. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue.

    PubMed

    Abbas, Yasmine; Azzazy, Hassan M E; Tammam, Salma; Lamprecht, Alf; Ali, Mohamed Ehab; Schmidt, Annette; Sollazzo, Silvio; Mathur, Sanjay

    2016-10-01

    Lung cancer, the deadliest solid tumor among all types of cancer, remains difficult to treat. This is a result of unavoidable exposure to carcinogens, poor diagnosis, the lack of targeted drug delivery platforms and limitations associated with delivery of drug to deep lung tissues. Development of a non-invasive, patient-convenient formula for the targeted delivery of chemotherapeutics to cancer in deep lung tissue is the aim of this study. The formulation consisted of inhalable polyvinylpyrrolidone (PVP)/maltodextrin (MD)-based microparticles (MPs) encapsulating chitosan (CS) nanoparticles (NPs) loaded with either drug only or drug and magnetic nanoparticles (MNPs). Drug release from CS NPs was enhanced with the aid of MNPs by a factor of 1.7 in response to external magnetic field. Preferential toxicity by CS NPs was shown towards tumor cells (A549) in comparison to cultured fibroblasts (L929). The prepared spray freeze dried (SFD) powders for CS NPs and CS MNPs were of the same size at ∼6μm. They had a fine particle fraction (FPF≤5.2μm) of 40-42% w/w and mass median aerodynamic diameter (MMAD) of 5-6μm as determined by the Next Generation Impactor (NGI). SFD-MPs of CS MNPs possess higher MMAD due to the high density associated with encapsulated MNPs. The developed formulation demonstrates several capabilities including tissue targeting, controlled drug release, and the possible imaging and diagnostic values (due to its MNPs content) and therefore represents an improved therapeutic platform for drug delivery to cancer in deep lung tissue.

  10. Filtration of diaspirin crosslinked hemoglobin into lung and soft tissue lymph.

    PubMed

    Conhaim, R L; Cooler, S D; McGrath, A M; DeAngeles, D A; Myers, G A; Harms, B A

    1998-10-01

    Diaspirin crosslinked hemoglobin (DCHb) is a new blood substitute manufactured from human blood. To evaluate its microvascular filtration properties, we infused DCLHb into unanesthetized sheep (10%, 20 ml/kg) and measured the flow and composition of lung and soft tissue lymph. For comparison, we also infused human serum albumin (HSA; 10%, 20 ml/kg). DCLHb raised systemic and pulmonary arterial pressures from baseline values of 83 +/- 7 and 13 +/- 2 mm Hg, respectively, to peak values of 113 +/- 9 and 26 +/- 3 mm Hg (p < 0.05 versus baseline). These increases were significantly greater than those associated with HSA, which raised systemic and pulmonary arterial pressures from baseline values of 86 +/- 4 and 13 +/- 2 mm Hg, respectively, to peak values of 97 +/- 3 and 21 +/- 7 mm Hg (p <= 0.05 versus baseline and versus DCLHb). These differences reflect the known pressor properties of DCLHb. Accordingly, DCLHb raised lung and soft tissue lymph flows to peak values of 12.2 +/- 3.8 and 1.6 +/- 0.7 ml/30 min, respectively, while HSA raised lung and soft tissue lymph flows to peak values of 7.5 +/- 4.8 and 4.6 +/- 1.9 ml/30 min, respectively (p <= 0.05 versus DCLHb). The half-times of DCLHb equilibration from plasma into lung and soft tissue lymph of 1. 0 +/- 0.3 and 2.1 +/- 1.1 h, respectively, were significantly faster than HSA equilibration half-times of 3.1 +/- 0.2 and 3.8 +/- 0.9 h. Filtration differences between DCLHb and HSA appear to be due to the pressor properties DCLHb.

  11. Survival of Mycobacterium tuberculosis organisms for 8 days in fresh lung tissue from an exhumed body.

    PubMed

    Nolte, Kurt B

    2005-08-01

    Mycobacterium tuberculosis was isolated from the lung tissue of an 86-year-old unembalmed woman who was exhumed for an autopsy 8 days after her death. Autopsy prosectors should consider performing microbiological culture in all cases with a history or gross pathological findings suggestive of an infection even if the postmortem interval is extended. In addition, prosectors should still adhere to biosafety precautions for airborne pathogens, because a long postmortem interval does not necessarily provide assurance that these organisms are not viable.

  12. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation.

    PubMed

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.

  13. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation

    PubMed Central

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway. PMID:27922691

  14. Tissue engineering and organ structure: a vascularized approach to liver and lung.

    PubMed

    Hoganson, David M; Pryor, Howard I; Vacanti, Joseph P

    2008-05-01

    Over the past two decades, great strides have been made in the field of tissue engineering. Many of the initial attempts to develop an engineered tissue construct were based on the concept of seeding cells onto an avascular scaffold. Using advanced manufacturing technologies, the creation of a preformed vascular scaffold has become a reality. This article discusses some of the issues surrounding the development of such a vascular scaffold. We then examine of the challenges associated with applying this scaffold technology to two vital organ constructs: liver and lung.

  15. Microarray analysis of long non-coding RNAs in COPD lung tissue.

    PubMed

    Bi, Hui; Zhou, Ji; Wu, Dandan; Gao, Wei; Li, Lingling; Yu, Like; Liu, Feng; Huang, Mao; Adcock, Ian M; Barnes, Peter J; Yao, Xin

    2015-02-01

    Long noncoding RNAs (lncRNAs) play an important role in the pathogenesis of many human diseases. In this study, we provide the description of genome-wide lncRNA expression in the lung tissue of non-smokers without Chronic obstructive pulmonary disease (COPD), of smokers without COPD and of smokers with COPD. RNA was extracted from human lung tissue and analysed using an Agilent Human lncRNA + mRNA Array v2.0 system. 39,253 distinct lncRNA transcripts were detected in the lung tissues of all subjects. In smokers without COPD 87 lncRNAs were significantly up-regulated and 244 down-regulated compared to non-smokers without COPD with RNA50010|UCSC-9199-1005 and RNA58351| CombinedLit_316_550, the most over- and under-regulated, respectively. In contrast, in COPD patients 120 lncRNAs were over-expressed and 43 under-expressed compared with smokers without COPD with RNA44121|UCSC-2000-3182 and RNA43510|UCSC-1260-3754 being the most over- and under-regulated, respectively. Gene Ontology (GO) and pathway analysis indicated that cigarette smoking was associated with activation of metabolic pathways, whereas COPD transcripts were associated with 'hematopoietic cell lineage', intermediary metabolism and immune system processes. We conclude that the altered expression of lncRNAs might play partial role in pathways implicated in COPD onset and progression such as intermediary metabolism and the immune response.

  16. Automated characterization of normal and pathologic lung tissue by topological texture analysis of multidetector CT

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Fink, C.; Becker, C.; Reiser, M.

    2007-03-01

    Reliable and accurate methods for objective quantitative assessment of parenchymal alterations in the lung are necessary for diagnosis, treatment and follow-up of pulmonary diseases. Two major types of alterations are pulmonary emphysema and fibrosis, emphysema being characterized by abnormal enlargement of the air spaces distal to the terminal, nonrespiratory bronchiole, accompanied by destructive changes of the alveolar walls. The main characteristic of fibrosis is coursening of the interstitial fibers and compaction of the pulmonary tissue. With the ability to display anatomy free from superimposing structures and greater visual clarity, Multi-Detector-CT has shown to be more sensitive than the chest radiograph in identifying alterations of lung parenchyma. In automated evaluation of pulmonary CT-scans, quantitative image processing techniques are applied for objective evaluation of the data. A number of methods have been proposed in the past, most of which utilize simple densitometric tissue features based on the mean X-ray attenuation coefficients expressed in terms of Hounsfield Units [HU]. Due to partial volume effects, most of the density-based methodologies tend to fail, namely in cases, where emphysema and fibrosis occur within narrow spatial limits. In this study, we propose a methodology based upon the topological assessment of graylevel distribution in the 3D image data of lung tissue which provides a way of improving quantitative CT evaluation. Results are compared to the more established density-based methods.

  17. Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography.

    PubMed

    Depeursinge, Adrien; Racoceanu, Daniel; Iavindrasana, Jimison; Cohen, Gilles; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2010-09-01

    We investigate the influence of the clinical context of high-resolution computed tomography (HRCT) images of the chest on tissue classification. 2D regions of interest in HRCT axial slices from patients affected with an interstitial lung disease are automatically classified into five classes of lung tissue. Relevance of the clinical parameters is studied before fusing them with visual attributes. Two multimedia fusion techniques are compared: early versus late fusion. Early fusion concatenates features in one single vector, yielding a true multimedia feature space. Late fusion consisting of the combination of the probability outputs of two support vector machines. The late fusion scheme allowed a maximum of 84% correct predictions of testing instances among the five classes of lung tissue. This represents a significant improvement of 10% compared to a pure visual-based classification. Moreover, the late fusion scheme showed high robustness to the number of clinical parameters used, which suggests that it is appropriate for mining clinical attributes with missing values in clinical routine. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization.

    PubMed

    Depeursinge, Adrien; Iavindrasana, Jimison; Hidki, Asmâa; Cohen, Gilles; Geissbuhler, Antoine; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2010-02-01

    In this paper, we compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) and with healthy tissue. The evaluated classifiers are naive Bayes, k-nearest neighbor, J48 decision trees, multilayer perceptron, and support vector machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. These are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 88.3% with high class-specific precision on testing sets of 423 ROIs.

  19. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M.; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  20. Differential effects of chronic cyanide intoxication on heart, lung and pancreatic tissues.

    PubMed

    Okolie, N P; Osagie, A U

    2000-06-01

    The histotoxic effects of chronic cyanide insult on heart, lung and pancreatic tissues, and some corroborative enzyme and metabolite changes were studied in New Zealand White rabbits using colorimetric, enzymatic and histochemical methods. Two groups of rabbits were fed for 10 months on either pure growers mash or grower mash +702 ppm inorganic cyanide. There were no significant differences in time-course profiles of serum amylase and fasting blood glucose between the cyanide-fed group and control. Pancreatic islet and heart histologies showed no pathological changes, and there were no significant differences in both serum and heart aspartate transaminase activities between the two groups. However, there were significant decreases (P<0.01) in alkaline phosphatase activity in the lungs of the cyanide-fed group, with corresponding significant (P<0.05) increases in the serum activity of the enzyme. Histological examination of lung tissue of the cyanide-treated rabbits revealed focal areas of pulmonary oedema and necrosis. These results suggest the existence of variabilities in tissue susceptibilities to the toxic effect of chronic cyanide exposure. It would appear that chronic cyanide exposure may not predispose to diabetes in the presence of adequate protein intake.

  1. Diagnosis and prevalence of ovine pulmonary adenocarcinoma in lung tissues of naturally infected farm sheep

    PubMed Central

    Sonawane, Ganesh G.; Tripathi, Bhupendra Nath; Kumar, Rajiv; Kumar, Jyoti

    2016-01-01

    Aim: This study was aimed to detect ovine pulmonary adenocarcinoma (OPA) in sheep flocks affected with pulmonary disorders at organized farm. Materials and Methods: A total of 75 sheep died naturally were thoroughly examined for the lesions of OPA during necropsy. Tissue sections from affected portion of the lungs from each animal were collected aseptically and divided into two parts; one each for polymerase chain reaction (PCR) and another for histopathology. Results: On PCR examination of lung tissues, six sheep (8%) were found to be positive for JSRV. Two of them were 3-6 months of age and did not show clinical signs/gross lesions of OPA. Four adult sheep positive on PCR revealed characteristic lesions of OPA on gross and histopathological examination. Conclusion: In the absence of known specific antibody response to the infection with JSRV, there is no diagnostic serological test available. The PCR assay employed in this study on lung tissues, using primers based on the U3 region of the viral long terminal repeat for JSRV would be helpful in the screening of preclinical and clinical cases of OPA in sheep. PMID:27182131

  2. Sepsis-Induced Coagulation in the Baboon Lung Is Associated with Decreased Tissue Factor Pathway Inhibitor

    PubMed Central

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B.; Lupu, Florea

    2007-01-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis. PMID:17640967

  3. Effect of methacholine on low-frequency mechanics of canine airways and lung tissue.

    PubMed

    Sato, J; Suki, B; Davey, B L; Bates, J H

    1993-07-01

    We measured tracheal flow, tracheal pressure, and alveolar capsule pressure in four anesthetized paralyzed tracheostomized open-chest dogs. Lung impedance between 0.12 and 4.88 Hz was measured with a forced volume oscillation technique before and after the intravenous administration of methacholine (MCh). Before MCh administration, lung impedance was well described by a model featuring a single airway leading to an alveolar region surrounded by tissue with a continuous distribution of viscoelastic time constants as used by Hantos et al. (J. Appl. Physiol. 68: 849-860, 1990). After MCh, however, this model gave a poor fit to the impedances. The impedances were well accounted for, however, when the model was enhanced to include an extra time constant term, which we suspect is required to account for the uneven ventilation distribution produced by MCh. Airway impedance before MCh administration was well described by a simple resistance-inertance model, but a model incorporating serial inhomogeneity of ventilation was again required after MCh. Our results support those of previous studies indicating that the impedance of the normal dog lung is well described by a homogeneously ventilated viscoelastic tissue model. In contrast, our results after MCh administration show strong evidence of marked regional ventilation inhomogeneity in addition to the rheological properties of the tissues.

  4. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.

    PubMed

    Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin

    2014-09-01

    Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.

  5. MICRO DOSE ASESSMENT OF INHALED PARTICLES IN HUMAN LUNGS: A STEP CLOSER TOWARDS THE TARGET TISSUE DOSE

    EPA Science Inventory

    Rationale: Inhaled particles deposit inhomogeneously in the lung and this may result in excessive deposition dose at local regions of the lung, particularly at the anatomic sites of bifurcations and junctions of the airways, which in turn leads to injuries to the tissues and adve...

  6. MICRO DOSE ASESSMENT OF INHALED PARTICLES IN HUMAN LUNGS: A STEP CLOSER TOWARDS THE TARGET TISSUE DOSE

    EPA Science Inventory

    Rationale: Inhaled particles deposit inhomogeneously in the lung and this may result in excessive deposition dose at local regions of the lung, particularly at the anatomic sites of bifurcations and junctions of the airways, which in turn leads to injuries to the tissues and adve...

  7. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.

    PubMed

    Pahor, Kevin; Olson, Greg; Forbes, Shari L

    2013-09-01

    The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.

  8. Operating on a suspicious lung mass without a preoperative tissue diagnosis: pros and cons.

    PubMed

    Sihoe, Alan D L; Hiranandani, Raj; Wong, Henry; Yeung, Enoch S L

    2013-08-01

    Patients with a suspicious lung mass sometimes receive surgery with no preoperative tissue diagnosis despite-and sometimes in lieu of-modern medical investigations. The pros and cons of doing so have rarely been studied. Pulmonary surgery was performed in 443 consecutive adult patients with a lung mass confirmed or suspected to be an early stage primary lung cancer. No diagnosis was confirmed preoperatively in 206 (46.5%) patients. Whether to take a core biopsy or wedge excision biopsy for frozen section assessment intraoperatively was decided at the surgeon's discretion. Patients without preoperative diagnosis were on average younger than those with a diagnosis (61 vs 66 years, P < 0.01), but were otherwise similar to those who had a preoperative diagnosis confirmed. In all patients operated on without a preoperative diagnosis, there was no mortality or major complication, and the perioperative minor morbidity rate was 9.7%. Among patients ultimately found to have lung cancer and who received a lobectomy, performing a frozen section intraoperatively did not increase mean operation time or morbidity. Among those patients with no preoperative tissue diagnosis, 97 (47.1%) proceeded to surgery without attempts at preoperative diagnosis, and 109 (52.9%), after attempts at preoperative diagnosis failed to yield a positive diagnosis. After surgery, benign disease was found in 16 (7.8%) patients without preoperative diagnosis. A significantly lower proportion of patients without preoperative diagnosis waited an interval of over 28 days between presentation and being accepted for thoracic surgery (42.2 vs 54.9%, P < 0.01). However, they were not more likely to have Stage I disease and did not have better recurrence-free survival rates on survival analysis. Proceeding to surgery without preoperative diagnosis in selected patients with a suspicious lung mass is safe and can potentially reduce the interval between presentation and surgical management. However, the shortened

  9. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    PubMed Central

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time. PMID:24007146

  10. [Association of Inorganics Accumulation with the Activation of NF-κB Signaling Pathway and the iNOS Expression of Lung Tissue in Xuanwei Lung Cancer Patients].

    PubMed

    Yang, Jiapeng; Li, Guangjian; Huang, Yunchao; Ye, Lianhua; Zhou, Yongchun; Zhao, Guangqiang; Lei, Yujie; Chen, Xiaobo; Wang, Kun; Chen, Ying; Dai, Chun; Zhang, Yanjun

    2016-01-01

    Indoor air pollution induces asthma, leads to chronic obstructive pulmonary disease, and may promote lung cancer. Our previous studies found that the accumulation of inorganic particulate matter that is due to indoor air pollution can lead to damage to alveolar cells and activation of signaling pathway, and ultimately provoke tumorigenesis. The aim of this study is to explore the accumulation of inorganics and activation of nuclear factor κB (NF-κB)-inducible nitric oxide synthase (iNOS) signaling pathway of lung tissue in Xuanwei lung cancer patients. From December 2013 to November 2014, 48 cases Xuanwei patients with lung cancer who underwent surgical treatment from the Third Affiliated Hospital of Kunming Medical University were enrolled in this study and compared with lung cancer patients from other regions. The ultrastructure of postoperative specimens was observed by transmission electron microscopy (TEM) to explore the occurrence of inorganic particles. Serum cytokines were analyzed. Then, the expression levels of NF-κB-p65 protein and iNOS protein in postoperative specimens was explored by immunohistochemistry and Western blot. Finally, 8-OHdG accumulation in lung cancer tissues and urine was measured. A large number of nanoscale inorganics were observed in alveolar type II cells and macrophages located in adjacent tissues of lung cancer with Xuanwei patients. Silicon (Si) content was found in inorganic elemental analysis. The serum interleukin (IL)-1β levels (31.50 ± 19.16) pg/mL of Xuanwei lung-cancer patients were remarkably higher than those from other regions (11.33 ± 6.94) pg/mL (P<0.01), with statistically significant difference. The pathological tissues of Xuanwei lung-cancer patients express NF-κB-p65, and iNOS expression were significantly higher than those of patients from non-Xuanwei regions. No significant difference was found between cancerous and normal adjacent tissues. Xuanwei lung-cancer tissues and urine 8-OHdG level (40.124 ± 8

  11. Effects of intravenous pentafraction on lung and soft tissue liquid exchange in hypoproteinemic sheep.

    PubMed

    Conhaim, R L; Rosenfeld, D J; Schreiber, M A; Baaske, D M; Harms, B A

    1993-11-01

    Effects of infusing pentafraction (Pen), a synthetic hydroxyethyl starch plasma volume expander, on lung and soft tissue lymph flux were compared in nonanesthetized sheep that were protein depleted by batch plasmapheresis. Pen (5%) was infused to raise pulmonary arterial wedge pressure by 5 mmHg for 2 h (1.8 +/- 0.3 l). Pen raised plasma osmotic pressure from plasmapheresis baseline (10.7 +/- 2.2 mmHg; preplasmapheresis baseline, 19.6 +/- 0.6 mmHg) to 16.6 +/- 2.4 mmHg. After Pen, lung lymph flows peaked at 3.9 +/- 2.0 times a preplasmapheresis baseline value of 1.0 (plasmapheresis baseline, 2.7 +/- 0.7), but soft tissue lymph flows rose insignificantly. Plasma Pen concentrations were 2.3 +/- 1.0% postinfusion and 1.6 +/- 0.3% at 12 h. Pen mean molecular masses at these times, measured by high-performance liquid chromatography, were 160 +/- 44 and 129 +/- 23 kDa, respectively. In lung lymph, Pen concentrations were 0.8 +/- 0.6% postinfusion and 0.7 +/- 0.2% at 12 h, with mean molecular masses of 125 +/- 44 and 112 +/- 18 kDa, respectively. In soft tissue lymph Pen was nearly undetectable postinfusion, but at 12 h concentrations averaged 0.3 +/- 0.2% with a mean molecular mass of 80 +/- 10 kDa. The osmotic effectiveness of Pen may be related to its molecular mass, which was large enough to restrict filtration so that the plasma-to-lung lymph osmotic pressure gradient widened. Pen remained effective in the circulation for at least 24 h.

  12. Tissue inhibitors of matrix metalloproteinases 1 and 2 and matrix metalloproteinase activity in the serum and lungs of mice with lewis lung carcinoma.

    PubMed

    Kisarova, Ya A; Korolenko, T A

    2012-10-01

    We studied the content of tissue inhibitors of matrix metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) and activities of matrix metalloproteinases (MMP) in the serum and lungs of mice with Lewis lung carcinoma metastasizing into the lung. Metastasizing was associated with increased serum content of TIMP-1 and TIMP-2 (only on day 20 at the terminal stage of the tumor process). These data confirm the hypothesis on pro-tumorigenic role of TIMP-1 in the serum. Locally, the development of metastases was associated with a decrease in TIPM-1 concentration (day 7), an increase in TIMP-2 concentration (days 7 and 20), and elevated activity of MMP at all terms of the study (days 7, 15, and 20). Increased concentration of TIMP-2 in the lungs (but not in the serum) can be regarded as an indicator of Lewis lung carcinoma metastasizing.

  13. Time-resolved autofluorescence measurements for the differentiation of lung tissue states

    NASA Astrophysics Data System (ADS)

    Pfeifer, Lutz; Schmalzigaug, K.; Paul, Rene; Lichey, J.; Kemnitz, Klaus; Fink, Frank

    1995-12-01

    The fluorescence properties of fluorophores relevant in tissue metabolism (NADH, flavines, etc.) are characteristic of the clinical states of tissues. Especially the differentiation of healthy, cancerous, and necrotic tissue states is of large interest in lung-tumor diagnostics, e.g. to ensure that biopsies are taken from non-necrotic areas. In contrast to the common fluorescence detection our approach provides both a combination of spectral and time information from autofluorescence and the simultaneous detection of two fluorophores in order to improve differentiation between various tissues. The basis of analysis of autofluorescence is knowledge of the photophysical parameters of the fluorophores. Aqueous solutions of NADH, flavines and their mixtures have been investigated using the method of time-correlated single photon counting. The fluorescence was recorded with a new 'delay-line' microchannel-plate photomultiplier tube, that enables time- and wavelength-resolved measurements simultaneously. Nicotine-adenine-dinucleotide (NADH) and flavine-adenin-dinucleotide (FAD) display their characteristic temporal behavior (NADH: (tau) 1 equals 250 ps, (tau) 2 equals 660 ps; FAD: (tau) 1 equals 160 ps, (tau) 2 equals 2.25 ns, (tau) 3 equals 4.6 ns) in aqueous solution. In a mixture of NADH and FAD both components could be isolated by using global analytical methods. Time-gated fluorescence measurements on lung-tissue samples of 12 patients immediately after surgical resection have been performed with a fiber- based fluorescence detector. It could be demonstrated that NADH measurements are suitable for differentiating tumorous and necrotic tissue while flavine measurements are suitable for differentiating healthy and non-healthy tissue types. Applications of optical fibers facilitate simple combinations of the detection method with common surgical instruments (e.g. biopsy needles).

  14. Quantifying Heterogeneity in Emphysema from High Resolution Computed Tomography: A Lung Tissue Research Consortium Study

    PubMed Central

    Yilmaz, Cuneyt; Dane, Dan M.; Patel, Nova C.; Hsia, Connie C.W.

    2012-01-01

    Rationale and Objective To quantify spatial distribution of emphysema using high-resolution computed tomography (HRCT), we applied semi-automated analysis with internal attenuation calibration to measure regional air volume, tissue volume, and fractional tissue volume (FTV=tissue/[air+tissue] volume) in well-characterized patients studied by the Lung Tissue Research Consortium (LTRC). Methods HRCT was obtained at supine end-inspiration and end-expiration, and prone end-inspiration from 31 patients with mild, moderate, severe, or very severe emphysema (stages II–V, FEV1>75%, 51–75%, 21–50% and ≤20% predicted, respectively). Control data were from 20 healthy non-smokers (stage I). Each lobe was analyzed separately. Heterogeneity of FTV was assessed from coefficients of variation (CV) within and among lobes, and the kurtosis and skewness of FTV histograms. Results In emphysema, lobar air volume increased up to 177% except in the right middle lobe. Lobar tissue volume increased up to 107% in mild-moderate stages then normalized in advanced stages. Normally, FTV was up to 82% higher in lower than upper lobes. In mild-moderate emphysema, lobar FTV increased by up to 74% above normal at supine inspiration. In severe emphysema FTV declined below normal in all lobes and positions in correlation with pulmonary function (p<0.05). Markers of FTV heterogeneity increased steadily with disease stage in correlation with pulmonary function (p<0.05); the pattern is distinct from that seen in interstitial lung disease (ILD). Conclusion CT-derived biomarkers differentiate the spatial patterns of emphysema distribution and heterogeneity from that in ILD. Early emphysema is associated with elevated tissue volume and FTV, consistent with hyperemia, inflammation or atelectasis. PMID:23122057

  15. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues.

    PubMed

    Panzetta, Valeria; Musella, Ida; Rapa, Ida; Volante, Marco; Netti, Paolo A; Fusco, Sabato

    2017-07-15

    The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies.

    PubMed

    Shevchuk, Olga; Abidi, Nada; Klawonn, Frank; Wissing, Josef; Nimtz, Manfred; Kugler, Christian; Steinert, Michael; Goldmann, Torsten; Jänsch, Lothar

    2014-11-07

    Hepes-glutamic acid buffer-mediated organic solvent protection effect (HOPE)-fixation has been introduced as an alternative to formalin fixation of clinical samples. Beyond preservation of morphological structures for histology, HOPE-fixation was demonstrated to be compatible with recent methods for RNA and DNA sequencing. However, the suitability of HOPE-fixed materials for the inspection of proteomes by mass spectrometry so far remained undefined. This is of particular interest, since proteins constitute a prime resource for drug research and can give valuable insights into the activity status of signaling pathways. In this study, we extracted proteins from human lung tissue and tested HOPE-treated and snap-frozen tissues comparatively by proteome and phosphoproteome analyses. High confident data from accurate mass spectrometry allowed the identification of 2603 proteins and 3036 phosphorylation sites. HOPE-fixation did not hinder the representative extraction of proteins, and investigating their biochemical properties, covered subcellular localizations, and cellular processes revealed no bias caused by the type of fixation. In conclusion, proteome as well as phosphoproteome data of HOPE lung samples were qualitatively equivalent to results obtained from snap-frozen tissues. Thus, HOPE-treated tissues match clinical demands in both histology and retrospective proteome analyses of patient samples by proteomics.

  17. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  18. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    PubMed

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  19. Histamine release by Western red cedar (Thuja plicata) from lung tissue in vitro

    PubMed Central

    Evans, Elizabeth; Nicholls, P. J.

    1974-01-01

    Evans, Elizabeth and Nicholls, P. J. (1974).British Journal of Industrial Medicine,31, 28-30. Histamine release by Western red cedar(Thuja plicata)from lung tissue in vitro. Various respiratory symptoms have previously been observed in workers exposed to dust from Western red cedar (Thuja plicata). Although an allergic basis for these effects has been proposed, the possibility that the dust may contain a pharmacologically active agent was investigated. Aqueous extracts of two samples of red cedar released significant amounts of histamine from pig and human lung in vitro. For one of these samples, using pig lung, a dose-response relation was found over a narrow range of concentrations. These dusts possessed the same order of histamine-releasing activity as a sample of cotton dust. Potassium cyanide reduced the release of histamine caused by low concentrations of Western red cedar. Similar effects of cyanide on the histamine-releasing activity of cotton dust and compound 48/80 were observed. It is possible that release of histamine in the lungs and upper respiratory tract occurs on inhalation of dust from Western red cedar and this may be a contributory factor to the development of respiratory symptoms in workers exposed to the dust of this wood. PMID:4132384

  20. Benefit of adjunctive tacrolimus in connective tissue disease-interstitial lung disease

    PubMed Central

    Witt, Leah J.; Demchuk, Carley; Curran, James J.; Strek, Mary E.

    2016-01-01

    We evaluated the safety and effectiveness of adjunctive tacrolimus therapy with conventional immunosuppression in patients with severe connective tissue disease-related interstitial lung disease (CTD-ILD). We included patients from our interstitial lung disease (ILD) registry with CTD-ILD, in whom tacrolimus was added to corticosteroids and an additional immunosuppressive agent. Demographic data, clinical features, lung function, radiographic images, and pathologic findings were reviewed. Effectiveness was assessed by comparing pulmonary function tests (PFTs) closest to tacrolimus initiation to PFTs approximately 6–12 months later. Corticosteroid dose at these time points was also evaluated. We report adverse events attributed to tacrolimus. Seventeen patients with CTD-ILD were included in adverse event analysis; twelve were included in efficacy analysis. Length of tacrolimus therapy ranged from 6 to 110 months (mean 38.8 months ± 31.4). The mean improvement in percent predicted total lung capacity was 7.5% ± 11.7 (p=0.02). Forced vital capacity mean improvement was 7.4% ± 12.5 (p=0.06). The average decrease in corticosteroid dose at follow-up was 20.3mg ± 25.2 (p=0.02) with complete discontinuation in six patients. No patients experienced a life-threatening adverse event attributed to tacrolimus. Tacrolimus can be effective and is well tolerated as an adjunctive therapy and allows tapering of corticosteroids. PMID:26762710

  1. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue.

    PubMed

    Shi, Jianxin; Marconett, Crystal N; Duan, Jubao; Hyland, Paula L; Li, Peng; Wang, Zhaoming; Wheeler, William; Zhou, Beiyun; Campan, Mihaela; Lee, Diane S; Huang, Jing; Zhou, Weiyin; Triche, Tim; Amundadottir, Laufey; Warner, Andrew; Hutchinson, Amy; Chen, Po-Han; Chung, Brian S I; Pesatori, Angela C; Consonni, Dario; Bertazzi, Pier Alberto; Bergen, Andrew W; Freedman, Mathew; Siegmund, Kimberly D; Berman, Benjamin P; Borok, Zea; Chatterjee, Nilanjan; Tucker, Margaret A; Caporaso, Neil E; Chanock, Stephen J; Laird-Offringa, Ite A; Landi, Maria Teresa

    2014-02-27

    The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF-binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, four of the five established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome.

  2. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

    PubMed Central

    Shi, Jianxin; Marconett, Crystal N.; Duan, Jubao; Hyland, Paula L.; Li, Peng; Wang, Zhaoming; Wheeler, William; Zhou, Beiyun; Campan, Mihaela; Lee, Diane S.; Huang, Jing; Zhou, Weiyin; Triche, Tim; Amundadottir, Laufey; Warner, Andrew; Hutchinson, Amy; Chen, Po-Han; Chung, Brian S.I.; Pesatori, Angela C.; Consonni, Dario; Bertazzi, Pier Alberto; Bergen, Andrew W.; Freedman, Mathew; Siegmund, Kimberly D.; Berman, Benjamin P.; Borok, Zea; Chatterjee, Nilanjan; Tucker, Margaret A.; Caporaso, Neil E.; Chanock, Stephen J.; Laird-Offringa, Ite A.; Landi, Maria Teresa

    2014-01-01

    The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome. PMID:24572595

  3. A quantitative comparison analysis of diatoms in the lung tissues and the drowning medium as an indicator of drowning.

    PubMed

    Zhao, Jian; Ma, Yanbin; Liu, Chao; Wen, Jinfeng; Hu, Sunlin; Shi, He; Zhu, Lingyun

    2016-08-01

    The presence of diatoms in the lung tissues, internal organs and bone marrow is considered as the supportive evidence in the diagnosis of death by drowning. Generally, the diatoms detected in the lung tissues are regarded as insignificant since these diatoms can be detected in the lung tissues of the postmortem immersion bodies. In this study, we analyzed the relationships between the numbers of the diatoms in the lung tissues and the drowning medium. We made a comparison analysis between the diatoms in the lung tissues and the drowning medium using the ratio of diatom numbers in both samples (L/D ratio), utilizing Microwave Digestion - Vacuum Filtration - Automated Scanning Electron Microscopy method. Our data indicate that the L/D ratios in victims of the drowning group were higher than the postmortem immersion group. A higher L/D ratio provides valuable information about the cause of death in drowning victims. Quantitative diatom analysis in the lung tissues, especially combined with the diatom analysis of the drowning medium, provides supportive evidence in determining if a body recovered in water was due to drowning or not.

  4. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities.

    PubMed

    Yang, Yun; Rivard, Mark J

    2011-11-01

    Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and (PTV)DVH were calculated using the MCNP ∗FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10(9) histories were simulated to achieve statistical errors (k = 1) typically of 1%. The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The (PTV)V(100) values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and 1.1. However, the maximum doses to

  5. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2011-11-15

    Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and

  6. Characterization of TLR-induced inflammatory responses in COPD and control lung tissue explants

    PubMed Central

    Pomerenke, Anna; Lea, Simon R; Herrick, Sarah; Lindsay, Mark A; Singh, Dave

    2016-01-01

    Purpose Viruses are a common cause of exacerbations in chronic obstructive pulmonary disease (COPD). They activate toll-like receptors (TLRs) 3, 7, and 8, leading to a pro-inflammatory response. We have characterized the responses of TLR3 and TLR7/8 in lung tissue explants from COPD patients and control smokers. Methods We prepared lung whole tissue explants (WTEs) from patients undergoing surgery for confirmed or suspected lung cancer. In order to mimic the conditions of viral infection, we used poly(I:C) for TLR3 stimulation and R848 for TLR7/8 stimulation. These TLR ligands were used alone and in combination. The effects of tumor necrosis factor α (TNFα) neutralization and dexamethasone on TLR responses were examined. Inflammatory cytokine release was measured by enzyme-linked immunosorbent assay and gene expression by quantitative real-time polymerase chain reaction. Results WTEs from COPD patients released higher levels of pro-inflammatory cytokines compared with WTEs from smokers. Activation of multiple TLRs led to a greater than additive release of TNFα and CCL5. TNFα neutralization and dexamethasone treatment decreased cytokine release. Conclusion This WTE model shows an enhanced response of COPD compared with controls, suggesting an increased response to viral infection. There was amplification of innate immune responses with multiple TLR stimulation. PMID:27729782

  7. Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration.

    PubMed

    Peyrot, Donald A; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève

    2012-05-01

    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle.

  8. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    SciTech Connect

    Schittny, J. C.; Barre, S. F.; Haberthuer, D.; Mokso, R.; Tsuda, A.; Stampanoni, M.

    2011-09-09

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential--especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  9. Increased chromium and nickel content in lung tissue and bronchial carcinoma

    SciTech Connect

    Kollmeier, H.; Seemann, J.W.; Mueller, K.M.R.; Rothe, G.; Wittig, P.; Schejbal, V.B.

    1987-01-01

    In 25 random autopsies, chromium (Cr) and nickel (Ni) in lung tissue and regional lymph nodes were analysed by means of flameless atomic absorption spectrometry (AAS). The subjects originate from Bochum in the Ruhr District, which is defined as a particular pollution area with locally high Cr and Ni emissions. The subjects examined from Bochum (BO) and vicinity have Cr and Ni concentrations about 5 and 6 times higher than those in a previous series form Muenster (MS) and vicinity (outside the particular pollution area), which is used for comparison purposes. BO and MS data showed an age-dependent increase of chromium and nickel in the lung, and in both data sets as well as in the combined, the Cr and Ni values showed extremely high correlations. The Cr and Ni concentrations (BO) in lung (3.47 +/- 2.53 micrograms Cr/g, 1.09 +/- 1.43 micrograms Ni/g dry weight) and lymph node tissue (6.30 +/- 3.72 micrograms Cr/g, 1.00 +/- 0.58 micrograms Ni/g dry weight) do not show any correlation. The BO data contained four cases of bronchial carcinoma (all male), three of which showed pulmonary Cr and Ni concentrations that lie clearly above the predicted level. One case of bronchial carcinoma had extremely high Cr and Ni values; an occupational exposure as dental laboratory technician is taken into consideration.

  10. Arsenic Species in Scute (Shell Plate) and Lung Tissues of Desert Tortoises

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Berry, K.; Jacobson, E. R.; Rytuba, J. J.

    2009-12-01

    The desert tortoise (Gopherus agassizii) is federally listed as a threatened species, and its numbers have been in decline for at least two decades. Portions of protected desert tortoise habitats coincide with anthropogenic features such as historic mines and military bases that are potential sources of ingested or inhaled arsenic. Previous studies of necropsied desert tortoise specimens collected from the Mojave Desert have shown a statistically significant link between elevated tissue levels of arsenic (As) and the occurrence of clinical disease states. Synchrotron-based, microbeam X-ray absorption fine structure spectroscopy (XAFS) and X-ray fluorescence mapping (XRF) were the primary techniques used to identify As species in these tissues. Specimens have been analyzed from a mining-impacted area (Kelly-Rand Mining district, Kern County), and from sites on or adjacent to military bases (National Training Center, Ft Irwin, and Edwards AFB). XRF maps showed that scute sections sliced perpendicular to the exposed surface contain one or more diffuse bands of As(III) coordinated by oxygen instead of sulfur. This As(III) species is identical in all individuals, suggesting that it represents metabolized As. In contrast, the exterior surface and edges of scute sections contained As-rich particles of varying oxidation state and species, suggesting an exogenous origin. Particles contained reduced As in sulfides (Cu sulfide or arsenide) and As(V) in ferric sulfates and/or ferric arsenates. XAFS spectra of many As(V)-rich particles were close visual matches to spectra of known arsenic-bearing minerals or phases such as scorodite, jarosite, and arsenic adsorbed to iron (hydr)oxides. At least one, and more commonly 3-5 exogeneous As-rich particles were found in the formalin-preserved lung tissue sections examined, suggesting that such particles were relatively common. Pentavalent As was observed in forms similar to those encountered on scute sections. As(III) was observed in

  11. FIB-SEM imaging of carbon nanotubes in mouse lung tissue.

    PubMed

    Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian

    2014-06-01

    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.

  12. Effect of zinc on the content of chemical elements in the lung tissue during obesity in the experiment.

    PubMed

    Churin, B V; Trunova, V A; Sidorina, A V; Zvereva, V V; Astashov, V V

    2015-02-01

    We found no deviations from normalcy in the content of chemical elements (K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb, and Sr) in the lungs of rats with mild alimentary obesity, but revealed redistribution of correlations between the elements indicating impaired metabolism in this organ. Zinc supplementation had no effect on the body weight and content of chemical elements (including zinc) in the lung tissue in rats fed high fat diet, but led to significant changes in the correlations between the elements. Bromine, rubidium, and strontium are actively involved in interelement interactions in the lung tissue. These elements should be given more attention in considering biological processes including alimentary obesity.

  13. Comparison between concentrations of amphotericin B in infected lung lesion and in uninfected lung tissue in a patient treated with liposomal amphotericin B (AmBisome).

    PubMed

    Watanabe, Akira; Matsumoto, Kana; Igari, Hidetoshi; Uesato, Masaya; Yoshida, Shigetoshi; Nakamura, Yasutaka; Morita, Kunihiko; Shibuya, Kazutoshi; Matsubara, Hisahiro; Yoshino, Ichiro; Kamei, Katsuhiko

    2010-09-01

    Generally, the primary lesion of a mold infection is in the airway, an extravascular site. Therefore, the antifungal drug concentration at the actual tissue lesion of a mold infection is as important as in the blood compartment. Although our antifungal armamentarium has expanded recently, polyenes are still often needed in clinical practice because of their potent fungicidal activity and the rarity of resistance. Nevertheless, the distribution of amphotericin B (AmB) in infected lung tissue has not yet been evaluated. Using high-performance liquid chromatography analysis, we determined the concentrations of AmB in plasma and infected and uninfected tissues of resected lung simultaneously, in a patient with pulmonary aspergillosis treated with liposomal amphotericin B (L-AmB). The AmB concentration in the infected lesion of the lung was approximately 5.2 times higher than that in plasma and 3.7 times higher than in uninfected lung tissue. L-AmB accumulated in the infected lesion of the lung at a higher concentration. Although our data are from only one patient, they may be useful in helping to develop better strategies for the use of L-AmB against pulmonary fungal infections.

  14. [Correlation of tissue respiration and some mitochondria stereometric characteristics of the lung tissue in different modifications of hypoxic hypoxia].

    PubMed

    Rozova, K V; Nazarenko, A I; Tavolzhanova, T I; Trepats'ka, T V; Cherkesova, M O

    2005-01-01

    In experiments on the adult white laboratory rats the correlation of tissue respiration and some morpho- and stereometric characteristics of mitochondria in lung tissue under breathing by air and gas mixture with 7% O2 in N2 was investigated. The following agents were used as modulators: indomethacin, a blockator of cyclooxygenase way of arachidonic acid metabolism; quercetin and linoleil of hydroxamic acid, blockators of lipooxygenase way ofarachidonic acid metabolism; taurine, an antihypoxant and energy source under hypoxic conditions; lipin-antihypoxant with significant membrane protective effect. It was shown, that the respiration intensity of tissue homogenate, not only of its mitochondrial fraction, closely connected with structural organization of mitochondria. It was demonstrated that changes of O2 concentration in gas mixture lead to the alteration of interrelation between O2 consumption and stereometric characteristics of mitochondria: in normoxia the intimate correlation was established with number of mitochondria and its total surface; in hypoxia such correlation was established with mitochondria diameter and number of structurally damage organelles. Pharmacological modulation factors play in this process not so significant role.

  15. Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer

    PubMed Central

    del Mar Valenzuela-Membrives, María; Perea-García, Francisco; Sanchez-Palencia, Abel; Ruiz-Cabello, Francisco; Gómez-Morales, Mercedes; Miranda-León, María Teresa; Galindo-Angel, Inmaculada; Fárez-Vidal, María Esther

    2016-01-01

    Immune cell infiltration is a common feature of many human solid tumors. Innate and adaptative immune systems contribute to tumor immunosurveillance. We investigated whether tumors evade immune surveillance by inducing states of tolerance and/or through the inability of some immune subpopulations to effectively penetrate tumor nests. Immunohistochemistry and flow cytometry analysis were used to study the composition and distribution of immune subpopulations in samples of peripheral blood, tumor tissue (TT), adjacent tumor tissue (ATT), distant non-tumor tissue (DNTT), cancer nests, cancer stroma, and invasive margin in 61 non-small-cell lung cancer (NSCLC) patients. A significantly higher percentage of T and B cells and significantly lower percentage of NK cells were detected in TT than in DNTT. Memory T cells (CD4+CD45RO+, CD8+CD45RO+) and activated T cells (CD8+DR+) were more prevalent in TT. Alongside this immune activation, the percentage of T cells with immunosuppressive activity was higher in TT than in DNTT. B- cells were practically non-existent in tumor nests and were preferentially located in the invasive margin. The dominant NK cell phenotype in peripheral blood and DNTT was the cytotoxic phenotype (CD56+ CD16+), while the presence of these cells was significantly decreased in ATT and further decreased in TT. Finally, the immunologic response differed between adenocarcinoma and squamous cell carcinoma and according to the tumor differentiation grade. These findings on the infiltration of innate and adaptative immune cells into tumors contribute to a more complete picture of the immune reaction in NSCLC. PMID:27689405

  16. Serum B cell-activating factor (BAFF) level in connective tissue disease associated interstitial lung disease.

    PubMed

    Hamada, Tsutomu; Samukawa, Takuya; Kumamoto, Tomohiro; Hatanaka, Kazuhito; Tsukuya, Go; Yamamoto, Masuki; Machida, Kentaro; Watanabe, Masaki; Mizuno, Keiko; Higashimoto, Ikkou; Inoue, Yoshikazu; Inoue, Hiromasa

    2015-09-30

    Interstitial lung diseases (ILDs) are common in patients with connective tissue diseases (CTDs). Although the diagnosis of an underlying CTD in ILD (CTD-ILD) affects both prognosis and treatment, it is sometimes difficult to distinguish CTD-ILD from chronic fibrosing interstitial pneumonia (CFIP). B cell-activating factor belonging to the tumour necrosis factor family (BAFF) plays a crucial role in B cell development, survival, and antibody production. We examined serum levels of BAFF, surfactant protein D (SP-D), and Krebs von den Lungen-6 (KL-6) in 33 patients with CTD-ILD, 16 patients with undifferentiated CTD-ILD, 19 patients with CFIP, and 26 healthy volunteers. And we analysed the relationship between serum BAFF levels and pulmonary function, as well as the expression of BAFF in the lung tissue of patients with CTD-ILD. Serum levels of BAFF were significantly higher in CTD-ILD patients compared to healthy subjects and CFIP patients. However, there were no significant differences in serum levels of SP-D and KL-6. Furthermore, serum BAFF levels in CTD-ILD patients were inversely correlated with pulmonary function. BAFF was strongly expressed in the lungs of CTD-ILD patients, but weakly in normal lungs. This is the first study to demonstrate that serum BAFF levels were significantly higher in CTD-ILD patients compared to healthy subjects and CFIP patients. Furthermore, serum BAFF levels were correlated with pulmonary function. We consider that serum BAFF levels in patients with CTD-ILD reflect the presence of ILDs disease activity and severity. These finding suggest that BAFF may be a useful marker for distinguishing CTD-ILD from CFIP.

  17. Lung disease with anti-CCP antibodies but not rheumatoid arthritis or connective tissue disease

    PubMed Central

    Fischer, Aryeh; Solomon, Joshua J.; du Bois, Roland M.; Deane, Kevin D.; Olson, Amy L.; Fernandez-Perez, Evans R.; Huie, Tristan J.; Stevens, Allen D.; Gill, Mary B.; Rabinovitch, Avi M.; Lynch, David A.; Burns, David A.; Pineiro, Isabel S.; Groshong, Steve D.; Duarte Achcar, Rosane D.; Brown, Kevin K.; Martin, Richard J.; Swigris, Jeffrey J.

    2013-01-01

    Summary Objective We sought to characterize a novel cohort of patients with lung disease, anti-cyclic citrullinated peptide (CCP) antibody positivity, without rheumatoid arthritis (RA) or other connective tissue disease (CTD). Methods The study sample included 74 subjects with respiratory symptoms, evaluated January 2008–January 2010 and found to have a positive anti-CCP antibody but no evidence for RA or other CTD. Each underwent serologic testing, pulmonary physiology testing, and thoracic high-resolution computed tomography (HRCT) scan as part of routine clinical evaluation. Results The majority of subjects were women, and most were former cigarette smokers. Four distinct radiographic phenotypes were identified: isolated airways disease (54%), isolated interstitial lung disease (ILD) (14%), mixed airways disease and ILD (26%), and combined pulmonary fibrosis with emphysema (7%). This cohort had a predominance of airways disease, either in isolation or along with a usual interstitial pneumonia-pattern of ILD. Among subjects with high-titer anti-CCP positivity (n=33), three developed the articular manifestations of RA during a median follow-up of 449 days. Conclusion We have described a unique cohort of patients with anti-CCP antibody positivity and lung disease in the absence of existing RA or other CTD. The lung phenotypic characteristics of this cohort resemble those of established RA and a few of these patients have developed articular RA within a short period of follow-up. The implications of a positive anti-CCP antibody among patients with lung disease but not RA are not yet known, but we believe requires further investigation. PMID:22503074

  18. Expression heterogeneity research of ITGB3 and BCL-2 in lung adenocarcinoma tissue and adenocarcinoma cell line.

    PubMed

    Xia, Zong-Jiang; Hu, Wei; Wang, Yue-Bin; Zhou, Kun; Sun, Guo-Ju

    2014-06-01

    To analyze expression heterogeneity of Integrin beta 3 (ITGB3) and B-cell lymphoma 2 (BCL-2) in lung adenocarcinoma tissue and adenocarcinoma cell line and further provide theoretical direction for molecular biological research of lung adenocarcinoma. Tissue microarray was used to observe relation among expression, heterogeneitpy and clinical characteristics of ITGB3 and BCL-2 in lung cancer. ITGB3 and BCL-2 increased significantly in A549 cells in CAFs group withβ-actin as control; the expression level of BCL-2 also increased in ITGB3 transfected cells with GFP plasmid transfected A549 cells as control; immunohistochemistry staining showed that positive rates of ITGB3, ITGB1 and BCL-2 in normal lung tissues were 0, the positive rates in lung adenocarcinoma were 7.04%, 84.51% and 4.23%, respectively; in the results of immunohistochemistry staining, the expression of Girdin protein in lung adenocarcinoma was homogeneous, however protein expression of ITGB3, ITGB1 and BCL-2 showed different patterns in the same location with significant heterogeneity; majority of ITGB3, ITGB1 or BCL-2 positive tissue showed heterogeneity that expression in trailing edge was higher than that of trailing edge in lung adenocarcinoma tissue, the patients with BCL-2 heterogeneity showed higher lymph node metastasis ratio and lower clinical stage (P<0.05); and the expression of ITGB3 and the clinical characteristics of patients were not significant related (P>0.05). Expression of ITGB3 and BCL-2 in lung adenocarcinoma and adenocarcinoma cell line showed heterogeneity that expression in trailing edge was higher than that of trailing edge, which may play an important role in promoting tumor lymph node metastasis and vascular invasion, and provides a new research direction for exploration of lung adenocarcinoma metastasis mechanism. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. TBI lung dose comparisons using bilateral and anteroposterior delivery techniques and tissue density corrections.

    PubMed

    Bailey, Daniel W; Wang, Iris Z; Lakeman, Tara; Hales, Lee D; Singh, Anurag K; Podgorsak, Matthew B

    2015-03-08

    This study compares lung dose distributions for two common techniques of total body photon irradiation (TBI) at extended source-to-surface distance calculated with, and without, tissue density correction (TDC). Lung dose correction factors as a function of lateral thorax separation are approximated for bilateral opposed TBI (supine), similar to those published for anteroposterior-posteroanterior (AP-PA) techniques in AAPM Report 17 (i.e., Task Group 29). 3D treatment plans were created retrospectively for 24 patients treated with bilateral TBI, and for whom CT data had been acquired from the head to the lower leg. These plans included bilateral opposed and AP-PA techniques- each with and without - TDC, using source-to-axis distance of 377 cm and largest possible field size. On average, bilateral TBI requires 40% more monitor units than AP-PA TBI due to increased separation (26% more for 23 MV). Calculation of midline thorax dose without TDC leads to dose underestimation of 17% on average (standard deviation, 4%) for bilateral 6 MV TBI, and 11% on average (standard deviation, 3%) for 23 MV. Lung dose correction factors (CF) are calculated as the ratio of midlung dose (with TDC) to midline thorax dose (without TDC). Bilateral CF generally increases with patient separation, though with high variability due to individual uniqueness of anatomy. Bilateral CF are 5% (standard deviation, 4%) higher than the same corrections calculated for AP-PA TBI in the 6 MV case, and 4% higher (standard deviation, 2%) for 23 MV. The maximum lung dose is much higher with bilateral TBI (up to 40% higher than prescribed, depending on patient anatomy) due to the absence of arm tissue blocking the anterior chest. Dose calculations for bilateral TBI without TDC are incorrect by up to 24% in the thorax for 6 MV and up to 16% for 23 MV. Bilateral lung CF may be calculated as 1.05 times the values published in Table 6 of AAPM Report 17, though a larger patient pool is necessary to better

  20. Effect of atelectasis changes on tissue mass and dose during lung radiotherapy

    PubMed Central

    Guy, Christopher L.; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B.; Christensen, Gary E.; Hugo, Geoffrey D.

    2016-01-01

    Purpose: To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Methods: Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Results: Atelectatic lobes experienced mean (stdev) mass changes of −2.8% (36.6%), −24.4% (33.0%), and −9.2% (17.5%) and density changes of −66.0% (6.4%), −25.6% (13.6%), and −17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord Dmax, esophagus Dmean, and lungs Dmean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina

  1. Effect of atelectasis changes on tissue mass and dose during lung radiotherapy.

    PubMed

    Guy, Christopher L; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B; Christensen, Gary E; Hugo, Geoffrey D

    2016-11-01

    To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Atelectatic lobes experienced mean (stdev) mass changes of -2.8% (36.6%), -24.4% (33.0%), and -9.2% (17.5%) and density changes of -66.0% (6.4%), -25.6% (13.6%), and -17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord Dmax, esophagus Dmean, and lungs Dmean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of

  2. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    NASA Astrophysics Data System (ADS)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  3. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  4. Recognition of Pneumocystis carinii by gram stain in impression smears of lung tissue.

    PubMed Central

    Felegie, T P; Pasculle, A W; Dekker, A

    1984-01-01

    In 12 of 20 (60%) biopsy-proven cases of Pneumocystis carinii pneumonia, the diagnosis was first suggested by examination of routine Gram stains of impression smears made from infected lung tissue and later confirmed by methenamine-silver staining. The cysts appeared as 5- to 7-microns unstained spheres, each containing six to eight intracystic gram-negative bodies (sporozoites). Although the Gram stain does not appear to be as sensitive as more traditional staining techniques for the detection of P. carinii, clinical microbiologists should be aware of the morphology of this organism in gram-stained specimens because this relatively simple procedure gives quick results. Images PMID:6084017

  5. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues

    PubMed Central

    Xu, Xiaoyun; Cheng, Jie; Thrall, Michael J.; Liu, Zhengfan; Wang, Xi; Wong, Stephen T.C.

    2013-01-01

    Lung carcinoma is the leading cause of cancer-related death in the United States, and non-small cell carcinoma accounts for 85% of all lung cancer cases. One major characteristic of non-small cell carcinoma is the appearance of desmoplasia and deposition of dense extracellular collagen around the tumor. The desmoplastic response provides a radiologic target but may impair sampling during traditional image-guided needle biopsy and is difficult to differentiate from normal tissues using single label free imaging modality; for translational purposes, label-free techniques provide a more promising route to clinics. We thus investigated the potential of using multimodal, label free optical microscopy that incorporates Coherent Anti-Stokes Raman Scattering (CARS), Two-Photon Excited AutoFluorescence (TPEAF), and Second Harmonic Generation (SHG) techniques for differentiating lung cancer from normal and desmoplastic tissues. Lung tissue samples from patients were imaged using CARS, TPEAF, and SHG for comparison and showed that the combination of the three non-linear optics techniques is essential for attaining reliable differentiation. These images also illustrated good pathological correlation with hematoxylin and eosin (H&E) stained sections from the same tissue samples. Automated image analysis algorithms were developed for quantitative segmentation and feature extraction to enable lung tissue differentiation. Our results indicate that coupled with automated morphology analysis, the proposed tri-modal nonlinear optical imaging technique potentially offers a powerful translational strategy to differentiate cancer lesions reliably from surrounding non-tumor and desmoplastic tissues. PMID:24409386

  7. A mast cell secretagogue, compound 48/80, prevents the accumulation of hyaluronan in lung tissue injured by ionizing irradiation

    SciTech Connect

    Nilsson, K.; Bjermer, L.; Hellstroem, S.H.; Henriksson, R.; Haellgren, R. )

    1990-02-01

    Irradiation with a single dose of 30 Grey on the basal regions of the lungs of Sprague-Dawley rats induced a peribronchial and alveolar inflammation. Infiltration of mast cells in the edematous alveolar interstitial tissue and also in the peribronchial tissue were characteristic features of the lesion. The appearance of mast cells was already seen 4 wk after irradiation and by weeks 6 to 8 there was a heavy infiltration. The staining properties suggested that they were connective tissue-type mast cells. The infiltration of mast cells was paralleled by an accumulation of hyaluronan (hyaluronic acid) in the alveolar interstitial tissue 6 and 8 wk after irradiation. The recovery of hyaluronan (HA) during bronchoalveolar lavage (BAL) of the lungs also increased at this time. Treatment with a mast cell secretagogue, compound 48/80, induced a distinct reduction of granulated mast cells in the alveolar tissue. Regular treatment with compound 48/80 from the time of irradiation considerably reduced the HA recovery during BAL and the HA accumulation in the interstitial tissue but did not affect the interstitial infiltration of mononuclear cells and polymorphonuclear leukocytes. By contrast, an accumulation of HA in the alveolar interstitial space was induced when compound 48/80 was given not until mast cell infiltration of the lung had started. The effects of compound 48/80 indicate that the connective tissue response after lung irradiation is dependent on whether or not mast cell degranulation is induced before or after the mast cell infiltration of the alveolar tissue.

  8. Impact of acute and subchronic asbestos exposure on some parameters of antioxidant defense system and lung tissue injury.

    PubMed

    Kaiglová, A; Kováciková, Z; Hurbánková, M

    1999-07-01

    Asbestos fibers have been used in industry for decades. Deleterious effect of asbestos on the lungs has been documented. However, the mechanism of asbestos related diseases has not been fully explained yet. Numerous papers suggest there is a role of reactive oxygen intermediates (ROI) in asbestos-induced lung disease development. The excess ROI produced can be removed from the lungs by enzymatic and nonenzymatic antioxidants. The aim of our study was to compare the levels of antioxidants (ascorbic acid, retinol, alpha-tocopherol, glutathionperoxidase) as well as some markers of lung injury (lipid peroxides, total amount of protein, alkaline phosphatase) in asbestos treated Wistar-rats both 24 hr and 3 months after exposure to those in the controls, and to find out if the changes in antioxidant levels could affect impairment of the lungs. Decreased levels of antioxidants and increased values of lung tissue injury parameters in exposed groups suggest involvement of ROI in the mechanism of asbestos lung disease development, resulting in lung tissue injury, both 24 hr and 3 months after exposure.

  9. Innate lymphoid cells: the role in respiratory infections and lung tissue damage.

    PubMed

    Głobińska, Anna; Kowalski, Marek L

    2017-10-01

    Innate lymphoid cells (ILCs) represent a diverse family of cells of the innate immune system, which play an important role in regulation of tissue homeostasis, immunity and inflammation. Emerging evidence has highlighted the importance of ILCs in both protective immunity to respiratory infections and their pathological roles in the lungs. Therefore, the aim of this review is to summarize the current knowledge, interpret and integrate it into broader perspective, enabling greater insight into the role of ILCs in respiratory diseases. Areas covered: In this review we highlighted the role of ILCs in the lungs, citing the most recent studies in this area. PubMed searches (2004- July 2017) were conducted using the term 'innate lymphoid cells respiratory viral infections' in combination with other relevant terms including various respiratory viruses. Expert commentary: Since studies of ILCs have opened new areas of investigation, understanding the role of ILCs in respiratory infections may help to clarify the mechanisms underlying viral-induced exacerbations of lung diseases, providing the basis for novel therapeutic strategies. Potential therapeutic targets have already been identified. So far, the most promising strategy is cytokine-targeting, although further clinical trials are needed to verify its effectiveness.

  10. Automated decellularization of intact, human-sized lungs for tissue engineering.

    PubMed

    Price, Andrew P; Godin, Lindsay M; Domek, Alex; Cotter, Trevor; D'Cunha, Jonathan; Taylor, Doris A; Panoskaltsis-Mortari, Angela

    2015-01-01

    We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature. This system was interfaced with a prototypic bioreactor chamber that was connected to another program, from a commercial source, which controlled the volume and flow pressure of fluids. Lung matrix that was decellularized by the automated method was compared to a manual method previously used by us and others. Automation resulted in more consistent acellular matrix preparations as demonstrated by measuring levels of DNA, hydroxyproline (collagen), elastin, laminin, and glycosaminoglycans. It also proved highly beneficial in saving time as the decellularization procedure was reduced from days down to just 24 h. Developing a rapid, controllable, automated system for production of reproducible matrices in a closed system is a major step forward in whole-organ tissue engineering.

  11. Cell structure and proliferative activity of organ cultures of normal embryonic lung tissue of mice resistant (C57BL) and predisposed (A) to lung tumors

    SciTech Connect

    Kolesnichenko, T.S.; Gor'kova, T.G.

    1985-08-01

    Local factors such as proliferative activity and the numerical ratio between epithelial and mesenchymal cells, and also the character of interaction between the tissue components in ontogeny may play an important role in the realization of sensitivity of mice of a particular line to the development of lung tumors. These characteristics of lung tissue in mice of lines A and C57BL are investigated under normal conditions and during induced carcinogenesis. Results are given of a comparative study of the relative numbers of epithelial and mesenchymal cells in organ cultures of embryonic lungs. /sup 3/H-thymidine was added to the cultures on the 14th day of the experiment in a concentration of 1 microCi/m1 medium. An autoradiographic study of the cultures was performed.

  12. Epigenetic clustering of lung adenocarcinomas based on DNA methylation profiles in adjacent lung tissue: Its correlation with smoking history and chronic obstructive pulmonary disease.

    PubMed

    Sato, Takashi; Arai, Eri; Kohno, Takashi; Takahashi, Yoriko; Miyata, Sayaka; Tsuta, Koji; Watanabe, Shun-ichi; Soejima, Kenzo; Betsuyaku, Tomoko; Kanai, Yae

    2014-07-15

    The aim of this study was to clarify the significance of DNA methylation alterations during lung carcinogenesis. Infinium assay was performed using 139 paired samples of non-cancerous lung tissue (N) and tumorous tissue (T) from a learning cohort of patients with lung adenocarcinomas (LADCs). Fifty paired N and T samples from a validation cohort were also analyzed. DNA methylation alterations on 1,928 probes occurred in N samples relative to normal lung tissue from patients without primary lung tumors, and were inherited by, or strengthened in, T samples. Unsupervised hierarchical clustering using DNA methylation levels in N samples on all 26,447 probes subclustered patients into Cluster I (n = 32), Cluster II (n = 35) and Cluster III (n = 72). LADCs in Cluster I developed from the inflammatory background in chronic obstructive pulmonary disease (COPD) in heavy smokers and were locally invasive. Most patients in Cluster II were non-smokers and had a favorable outcome. LADCs in Cluster III developed in light smokers were most aggressive (frequently showing lymphatic and blood vessel invasion, lymph node metastasis and an advanced pathological stage), and had a poor outcome. DNA methylation levels of hallmark genes for each cluster, such as IRX2, HOXD8, SPARCL1, RGS5 and EI24, were again correlated with clinicopathological characteristics in the validation cohort. DNA methylation profiles reflecting carcinogenetic factors such as smoking and COPD appear to be established in non-cancerous lung tissue from patients with LADCs and may determine the aggressiveness of tumors developing in individual patients, and thus patient outcome.

  13. CD8+ T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis

    PubMed Central

    Daniil, Zoe; Kitsanta, Panagiota; Kapotsis, George; Mathioudaki, Maria; Kollintza, Androniki; Karatza, Marilena; Milic-Emili, Joseph; Roussos, Charis; Papiris, Spyros A

    2005-01-01

    Background Several studies have implicated a role of inflammation in the pathogenesis of lung damage in idiopathic pulmonary fibrosis (IPF). Parenchymal lung damage leads to defects in mechanics and gas exchange and clinically manifests with exertional dyspnea. Investigations of inflammatory cells in IPF have shown that eosinophils, neutrophils and CD8+ TLs may be associated with worse prognosis. We wished to investigate by quantitative immunohistochemistry infiltrating macrophages, neutrophils and T lymphocytes (TLs) subpopulations (CD3+, CD4+ and CD8+) in lung tissue of patients with IPF and their correlation with lung function indices and grade of dyspnoea. Methods Surgical biopsies of 12 patients with IPF were immunohistochemically stained with mouse monoclonal antibodies (anti-CD68 for macrophages, anti-elastase for neutrophils, and anti-CD3, anti-CD4, anti-CD8 for CD3+TLs, CD4+TLs, and CD8+TLs respectively). The number of positively stained cells was determined by observer-interactive computerized image analysis (SAMBA microscopic image processor). Cell numbers were expressed in percentage of immunopositive nuclear surface in relation to the total nuclear surface of infiltrative cells within the tissue (labeling Index). Correlations were performed between cell numbers and physiological indices [FEV1, FVC, TLC, DLCO, PaO2, PaCO2 and P(A-a)O2)] as well as dyspnoea scores assessed by the Medical Research Council (MRC) scale. Results Elastase positive cells accounted for the 7.04% ± 1.1 of total cells, CD68+ cells for the 16.6% ± 2, CD3+ TLs for the 28.8% ± 7, CD4+ TLs for the 14.5 ± 4 and CD8+ TLs for the 13.8 ± 4. CD8+TLs correlated inversely with FVC % predicted (rs = -0.67, p = 0.01), TLC % predicted (rs = -0.68, p = 0.01), DLCO % predicted (rs = -0.61, p = 0.04), and PaO2 (rs = -0.60, p = 0.04). Positive correlations were found between CD8+TLs and P(A-a)O2 (rs = 0.65, p = 0.02) and CD8+TLs and MRC score (rs = 0.63, p = 0.02). Additionally, CD68+ cells

  14. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein. PMID:27621875

  15. Circulating and tissue biomarkers in early-stage non-small cell lung cancer

    PubMed Central

    Fumagalli, Caterina; Bianchi, Fabrizio; Raviele, Paola Rafaniello; Vacirca, Davide; Bertalot, Giovanni; Rampinelli, Cristiano; Lazzeroni, Matteo; Bonanni, Bernardo; Veronesi, Giulia; Fusco, Nicola; Barberis, Massimo; Guerini-Rocco, Elena

    2017-01-01

    Objective We sought to characterise circulating and tissue tumour biomarkers of patients who developed early-stage non-small cell lung cancer (NSCLC) during long-term follow-up of a chemoprevention trial (NCT00321893). Materials and Methods Blood and sputum samples were collected from 202 high-risk asymptomatic individuals with CT-detected stable lung nodules. Real-time PCR was performed on plasma to quantify free circulating DNA. Baseline serum was investigated with a previously validated test based on 13 circulating miRNAs (miR-Test). Promoter methylation status of p16, RASSF1a and RARβ2 and telomerase activity were assessed in sputum samples. DNA was extracted from each tumour developed during follow-up and subjected to a mutation survey using the LungCarta panel on the Sequenom MassARRAY platform. Results During follow-up (9 years) six individuals underwent surgery for stage I NSCLC with a median time of disease onset of 20.5 months. MiR-Test scores were positive (range: 0.14–7.24) in four out of six baseline pre-disease onset sera. No association was identified between free circulating DNA or sputum biomarkers and disease onset. All tumours harboured at least one somatic mutation in well-known cancer genes, including KRAS (n = 4), BRAF (n = 1), and TP53 (n = 3). Conclusion Circulating miRNA tests may represent valuable tools to detect clinically-silent tumours. Early-stage lung adenocarcinomas harbour recurrent genetic events similar to those described in advanced-stage NSCLCs. PMID:28194229

  16. Generation of lung epithelial-like tissue from human embryonic stem cells

    PubMed Central

    2009-01-01

    Background Human embryonic stem cells (hESC) have the capacity to differentiate in vivo and in vitro into cells from all three germ lineages. The aim of the present study was to investigate the effect of specific culture conditions on the differentiation of hESC into lung epithelial cells. Methods Undifferentiated hESC, grown on a porous membrane in hESC medium for four days, were switched to a differentiation medium for four days; this was followed by culture in air-liquid interface conditions during another 20 days. Expression of several lung markers was measured by immunohistochemistry and by quantitative real-time RT-PCR at four different time points throughout the differentiation and compared to appropriate controls. Results Expression of CC16 and NKX2.1 showed a 1,000- and 10,000- fold increase at day 10 of differentiation. Other lung markers such as SP-C and Aquaporin 5 had the highest expression after twenty days of culture, as well as two markers for ciliated cells, FOXJ1 and β-tubulin IV. The results from qRT-PCR were confirmed by immunohistochemistry on paraffin-embedded samples. Antibodies against CC16, SP-A and SP-C were chosen as specific markers for Clara Cells and alveolar type II cells. The functionality was tested by measuring the secretion of CC16 in the medium using an enzyme immunoassay. Conclusion These results suggest that by using our novel culture protocol hESC can be differentiated into the major cell types of lung epithelial tissue. PMID:19891764

  17. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    SciTech Connect

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  18. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  19. Parametric and nonparametric nonlinear system identification of lung tissue strip mechanics.

    PubMed

    Yuan, H; Westwick, D T; Ingenito, E P; Lutchen, K R; Suki, B

    1999-01-01

    Lung parenchyma is a soft biological material composed of many interacting elements such as the interstitial cells, extracellular collagen-elastin fiber network, and proteoglycan ground substance. The mechanical behavior of this delicate structure is complex showing several mild but distinct types of nonlinearities and a fractal-like long memory stress relaxation characterized by a power-law function. To characterize tissue nonlinearity in the presence of such long memory, we investigated the robustness and predictive ability of several nonlinear system identification techniques on stress-strain data obtained from lung tissue strips with various input wave forms. We found that in general, for a mildly nonlinear system with long memory, a nonparametric nonlinear system identification in the frequency domain is preferred over time-domain techniques. More importantly, if a suitable parametric nonlinear model is available that captures the long memory of the system with only a few parameters, high predictive ability with substantially increased robustness can be achieved. The results provide evidence that the first-order kernel of the stress-strain relationship is consistent with a fractal-type long memory stress relaxation and the nonlinearity can be described as a Wiener-type nonlinear structure for displacements mimicking tidal breathing.

  20. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease.

    PubMed

    Ohlmeier, Steffen; Nieminen, Pentti; Gao, Jing; Kanerva, Tinja; Rönty, Mikko; Toljamo, Tuula; Bergmann, Ulrich; Mazur, Witold; Pulkkinen, Ville

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by irreversible airflow limitation. Cigarette smoking represents the main risk factor, but the specific mechanisms of COPD are not completely understood. Our aim was to identify COPD-specific proteomic changes involved in disease onset and severity. A comparative proteomic analysis of 51 lung tissues from nonsmokers, smokers, smokers with mild to moderate (stage I-II) COPD, severe to very severe COPD (stage III-IV), and patients with α-1-antitrypsin deficiency (AATD) and idiopathic pulmonary fibrosis (IPF) was performed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Selected COPD-specific changes were validated by immunoblotting and further by ELISA in 120 induced sputum and plasma samples from nonsmokers, smokers, and patients with COPD (stage I-III). Altogether 82 altered proteins were identified comprising COPD-, AATD-, and IPF-specific, overlapping, and unspecific changes. Cathepsin D (CTSD), dihydropyrimidinase-related protein 2 (DPYSL2), transglutaminase 2 (TGM2), and tripeptidyl-peptidase 1 (TPP1) were validated as COPD-specific. TGM2 was not associated with smoking and correlated with COPD severity in lung tissue. TGM2 levels in sputum and plasma were elevated in patients with COPD (stage II-III) and correlated with lung function. In conclusion, new proteins related to COPD onset and severity could be identified with TGM2 being a novel potential diagnostic and therapeutic target for COPD. Further studies in carefully characterized cohorts are required to validate the identified changes. Copyright © 2016 the American Physiological Society.

  1. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard.

    PubMed

    Tahmasbpour, Eisa; Ghanei, Mostafa; Qazvini, Ali; Vahedi, Ensieh; Panahi, Yunes

    2016-04-01

    Sulfur mustard (SM) is a potent alkylating agent that targets several organs, especially lung tissue. Although pathological effects of SM on mustard lung have been widely considered, molecular and cellular mechanisms for these pathologies are poorly understood. We investigated changes in expression of genes related to oxidative stress (OS) and antioxidant defense caused by SM in lung tissue of patients. We performed gene expression profiling of OS and antioxidant defense in lung tissue samples from healthy controls (n=5) and SM-exposed patients (n=6). Changes in gene expression were measured using a 96-well RT(2) Profiler ™PCR Array: Human Oxidative Stress and Antioxidant Defense, which arrayed 84 genes functionally involved in cellular OS response. 47 (55.95%) genes were found to be significantly upregulated in patients with mustard lung compared with controls (p<0.05), whereas 7 (8.33%) genes were significantly downregulated (p<0.05). Among the most upregulated genes were OS responsive-1 (OXSR1), forkhead box M1 (FOXM1), and glutathione peroxidase-2 (GPX2), while metallothionein-3 (MT3) and glutathione reductase (GSR) were the most downregulated genes. Expression of hypoxia-induced genes (CYGB and MB), antioxidants and reactive oxygen species (ROS)-producing genes were significantly altered, suggesting an increased oxidative damage in mustard lungs. Mustard lungs were characterized by hypoxia, massive production of ROS, OS, disruption of epithelial cells, surfactant dysfunction, as well as increased risk of lung cancer and pulmonary fibrosis. Oxidative stress induced by ROS is the major mechanism for direct effect of SM exposure on respiratory system. Antioxidant treatment may improve the main features of mustard lungs.

  2. Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips

    PubMed Central

    Yi, Eunice; Sato, Susumu; Takahashi, Ayuko; Parameswaran, Harikrishnan; Blute, Todd A.; Bartolák-Suki, Erzsébet; Suki, Béla

    2016-01-01

    Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression. PMID:27462275

  3. Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips.

    PubMed

    Yi, Eunice; Sato, Susumu; Takahashi, Ayuko; Parameswaran, Harikrishnan; Blute, Todd A; Bartolák-Suki, Erzsébet; Suki, Béla

    2016-01-01

    Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression.

  4. Procoagulant, Tissue Factor-Bearing Microparticles in Bronchoalveolar Lavage of Interstitial Lung Disease Patients: An Observational Study

    PubMed Central

    Tavanti, Laura; Armani, Chiara; Noce, Concettina; Falaschi, Fabio; Bartoli, Maria Laura; Martino, Federica; Palla, Antonio; Celi, Alessandro; Paggiaro, Pierluigi

    2014-01-01

    Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H2O2 was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons). Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r2 = .27 and .31, respectively; p<.05 for both correlations). Exposure of lung epithelial cells to H2O2 caused an increase in microparticle-bound tissue factor without affecting tissue

  5. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  6. [Relationship between expression of HDAC2, IL-8, TNF-α in lung adenocarcinoma tissues and smoking].

    PubMed

    Yao, L K; Liu, G N; Huang, S M; Li, W T; Li, Y

    2016-05-17

    To investigate the relationship between the expression of histone acetylation enzyme 2 (HDAC2), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α) in lung adenocarcinoma tissues and smoking. A total of 73 cases of lung adenocarcinoma confirmed by pathological examination after surgical removals were collected in the First Affiliated Hospital and Affiliated Tumor Hospital of Guangxi Medical University from April 2014 to March 2015. All patients received preoperative lung function test. Lung adenocarcinoma and para-cancer tissues were cut by the sharp blade and stored in liquid nitrogen and the sampling time was less than 30 minutes. Smokers were defined as people who had smoked more than 100 cigarettes or inhaled the smoke of cigarettes at least one day a week (more than 15 minutes every day) more than three years. According to the lung function and whether smoking or not, the cases of lung adenocarcinoma were divided into three groups: smoking without chronic obstructive pulmonary disease (COPD) group (33 cases), without smoking and COPD group (19 cases), smoking with COPD group (21 cases). The levels of HDAC2, IL-8 and TNF-α mRNA in lung adenocarcinoma and para-cancer tissues of groups were detected by real-time polymerase chain reaction (PCR) and the expression of HDAC2 protein was detected by Western blotting, and statistical analysis was carried out. The expression of HDAC2, IL-8 and TNF-α in lung adenocarcinoma tissues and TNM stage of lung adenocarcinoma showed no significant differences with respect to age and gender (P>0.05). Compared with the para-cancer tissues of 73 cases, the expression of HDAC2 at mRNA and protein levels in lung adenocarcinoma tissues were significantly lower (t=4.15, 8.006, all P<0.01). and the content of IL-8 and TNF-α at mRNA levels were increased (t=-4.252, -5. 576, all P<0.01). The expression of HDAC2 mRNA and protein in lung adenocarcinoma tissues in smoking without COPD group and smoking with COPD group were

  7. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    PubMed

    He, Xiaolin; Han, Bing; Mura, Marco; Li, Li; Cypel, Marcelo; Soderman, Avery; Picha, Kristen; Yang, Jing; Liu, Mingyao

    2008-01-30

    Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  8. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  9. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    PubMed Central

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  10. Inducible expression of indoleamine 2,3-dioxygenase attenuates acute rejection of tissue-engineered lung allografts in rats.

    PubMed

    Ebrahimi, Ammar; Kardar, Gholam Ali; Teimoori-Toolabi, Ladan; Toolabi, LadanTeimoori; Ghanbari, Hossein; Sadroddiny, Esmaeil

    2016-01-15

    Lung disease remains one of the principal causes of death worldwide and the incidence of pulmonary diseases is increasing. Complexity in treatments and shortage of donors leads us to develop new ways for lung disease treatment. One promising strategy is preparing engineered lung for transplantation. In this context, employing new immunosuppression strategies which suppresses immune system locally rather than systemic improves transplant survival. This tends to reduce the difficulties in transplant rejection and the systemic impact of the use of immunosuppressive drugs which causes side effects such as serious infections and malignancies. In our study examining the immunosuppressive effects of IDO expression, we produced rat lung tissues with the help of decellularized tissue, differentiating medium and rat mesenchymal stem cells. Transduction of these cells by IDO expressing lentiviruses provided inducible and local expression of this gene. To examine immunosuppressive properties of IDO expression by these tissues, we transplanted these allografts into rats and, subsequently, evaluated cytokine expression and histopathological properties. Expression of inflammatory cytokines IFNγ and TNFα were significantly downregulated in IDO expressing allograft. Moreover, acute rejection score of this experimental group was also lower comparing other two groups and mRNA levels of FOXP3, a regulatory T cell marker, upregulated in IDO expressing group. However, infiltrating lymphocyte counting did not show significant difference between groups. This study demonstrates that IDO gene transfer into engineered lung allograft tissues significantly attenuates acute allograft damage suggesting local therapy with IDO as a strategy to reduce the need for systemic immunosuppression and, thereby, its side effects.

  11. Tissue Platinum Concentration and Tumor Response in Non–Small-Cell Lung Cancer

    PubMed Central

    Kim, Eric S.; Lee, J. Jack; He, Guangan; Chow, Chi-Wan; Fujimoto, Junya; Kalhor, Neda; Swisher, Stephen G.; Wistuba, Ignacio I.; Stewart, David J.; Siddik, Zahid H.

    2012-01-01

    Purpose Platinum resistance is a major limitation in the treatment of advanced non–small-cell lung cancer (NSCLC). Reduced intracellular drug accumulation is one of the most consistently identified features of platinum-resistant cell lines, but clinical data are limited. We assessed the effects of tissue platinum concentrations on response and survival in NSCLC. Patients and Methods We measured total platinum concentrations by flameless atomic absorption spectrophotometry in 44 archived fresh-frozen NSCLC specimens from patients who underwent surgical resection after neoadjuvant platinum-based chemotherapy. Tissue platinum concentration was correlated with percent reduction in tumor size on post- versus prechemotherapy computed tomography scans. The relationship between tissue platinum concentration and survival was assessed by univariate and multicovariate Cox proportional hazards regression model analysis and Kaplan-Meier analysis. Results Tissue platinum concentration correlated significantly with percent reduction in tumor size (P < .001). The same correlations were seen with cisplatin, carboplatin, and all histology subgroups. Furthermore, there was no significant impact of potential variables such as number of cycles and time lapse from last chemotherapy on platinum concentration. Patients with higher platinum concentration had longer time to recurrence (P = .034), progression-free survival (P = .018), and overall survival (P = .005) in the multicovariate Cox model analysis after adjusting for number of cycles. Conclusion This clinical study established a relationship between tissue platinum concentration and response in NSCLC. It suggests that reduced platinum accumulation might be an important mechanism of platinum resistance in the clinical setting. Further studies investigating factors that modulate intracellular platinum concentration are warranted. PMID:22891266

  12. Does Three-Dimensional External Beam Partial Breast Irradiation Spare Lung Tissue Compared With Standard Whole Breast Irradiation?

    SciTech Connect

    Jain, Anudh K.; Vallow, Laura A. Gale, Ashley A.; Buskirk, Steven J.

    2009-09-01

    Purpose: To determine whether three-dimensional conformal partial breast irradiation (3D-PBI) spares lung tissue compared with whole breast irradiation (WBI) and to include the biologically equivalent dose (BED) to account for differences in fractionation. Methods and Materials: Radiotherapy treatment plans were devised for WBI and 3D-PBI for 25 consecutive patients randomized on the NSABP B-39/RTOG 0413 protocol at Mayo Clinic in Jacksonville, Florida. WBI plans were for 50 Gy in 25 fractions, and 3D-PBI plans were for 38.5 Gy in 10 fractions. Volume of ipsilateral lung receiving 2.5, 5, 10, and 20 Gy was recorded for each plan. The linear quadratic equation was used to calculate the corresponding dose delivered in 10 fractions and volume of ipsilateral lung receiving these doses was recorded for PBI plans. Ipsilateral mean lung dose was recorded for each plan and converted to BED. Results: There was a significant decrease in volume of lung receiving 20 Gy with PBI (median, 4.4% vs. 7.5%; p < 0.001), which remained after correction for fractionation (median, 5.6% vs. 7.5%; p = 0.02). Mean lung dose was lower for PBI (median, 3.46 Gy vs. 4.57 Gy; p = 0.005), although this difference lost significance after conversion to BED (median, 3.86 Gy{sub 3} vs 4.85 Gy{sub 3}, p = 0.07). PBI plans exposed more lung to 2.5 and 5 Gy. Conclusions: 3D-PBI exposes greater volumes of lung tissue to low doses of radiation and spares the amount of lung receiving higher doses when compared with WBI.

  13. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  14. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy.

    PubMed

    Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M

    2014-01-01

    To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed

  15. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M.; Furutani, K. M.

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  16. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M.; Furutani, K. M.

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  17. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD

    PubMed Central

    2013-01-01

    Background De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking. Methods Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6. Results The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0

  18. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD.

    PubMed

    Mori, Michiko; Andersson, Cecilia K; Graham, Gerard J; Löfdahl, Claes-Göran; Erjefält, Jonas S

    2013-06-11

    De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking. Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6. The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar

  19. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease.

    PubMed

    Núñez, Belén; Sauleda, Jaume; Antó, Josep Maria; Julià, Maria Rosa; Orozco, Mauricio; Monsó, Eduard; Noguera, Aina; Gómez, Federico P; Garcia-Aymerich, Judith; Agustí, Alvar

    2011-04-15

    Chronic obstructive pulmonary disease (COPD) is a multicomponent disease. Autoimmunity can contribute to the pathogenesis of COPD. This study investigates the prevalence of circulating antinuclear antibodies (ANA) and anti-tissue (AT) antibodies, two common markers of autoimmunity, in COPD and their relationship with several components of the disease. We determined lung function, the serum titers of ANA and AT by immunofluorescence, and the serum levels of C-reactive protein (CRP) by high sensitivity nephelometry in 328 patients with clinically stable COPD and in 67 healthy controls recruited in the PAC-COPD study. Multiple linear and logistic regression analysis was used to analyze results. The prevalence of abnormal ANA and AT titers was 34% and 26% in patients and 3% and 6% in controls, respectively. Levels of AT greater than or equal to 1:320 were seen in 21% of patients with COPD and were independently associated with the severity of airflow limitation and gas transfer impairment (P < 0.05). Neither ANA or AT titers was related to body mass index, current smoking status, use of inhaled steroids, the Charlson index, or serum C-reactive protein values. Between a quarter and a third of patients with clinically stable COPD present abnormal titers of circulating ANA and AT. The observed relationship between AT and lung function supports a role for autoimmunity in the pathogenesis of COPD.

  20. Are there characteristic alterations in lung tissue associated with Crohn's disease?

    PubMed

    Kayser, K; Probst, F; Gabius, H J; Müller, K M

    1990-08-01

    Two male patients aged 12 and 31 years suffered from Crohn's disease for more than six years and were treated with Cortison for more than four years. Surgical excision of parts of the terminal ileum was performed in both patients. They suffered from pulmonary symptoms as dyspnoea, shortness of breath and ventilation disturbances two years after operation. Wedge biopsies of the lungs revealed the following histomorphological findings: 1. Granulomatous interstitial lymphocyte infiltrates 2. Acute alveolitis with severe dysplasia of pneumocytes 3. Moderate interstitial fibrosis. Immunohistology performed in one case showed predominantly lambda chains expressed by lymphocytes associated with IgA and IgM. IgG was missing, furthermore kappa chains could not be detected. Macrophages contained endogenous lectins (sugar receptors) for fucose, maltose, and N-acetyl-D-glucosamine (glcNAc). No receptors specific for mannose, lactose, and heparin could be found. Pneumocytes did not bind the neoglycoproteins but were found to express HLA-DR receptors detectable by the monoclonal antibody LN 3 in dysplastic pneumocytes only. The histomorphological and immunohistochemical findings suggest that the analyzed alterations of lung tissue are related to the underlying disease of enteritis regionalis.

  1. Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates.

    PubMed

    Pascolo, Lorella; Borelli, Violetta; Canzonieri, Vincenzo; Gianoncelli, Alessandra; Birarda, Giovanni; Bedolla, Diana E; Salomé, Murielle; Vaccari, Lisa; Calligaro, Carla; Cotte, Marine; Hesse, Bernhard; Luisi, Fernando; Zabucchi, Giuliano; Melato, Mauro; Rizzardi, Clara

    2015-07-10

    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (μXRF) and Fourier Transform InfraRed (μFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. μXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. μFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of β-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects.

  2. Paraquat increases connective tissue growth factor expression and impairs lung fibroblast proliferation and viscoelasticity.

    PubMed

    Zhang, N; Xie, Y-P; Pang, L; Zang, X-X; Wang, J; Shi, D; Wu, Y; Liu, X-L; Wang, G-H

    2014-12-01

    This in vitro study was designed to investigate the molecular mechanisms of paraquat-induced damage using cultured human fetal lung fibroblasts (MRC-5 cells), in order to promote the development of improved therapies for paraquat poisoning. Paraquat's effects on proliferation were examined by flow cytometry, on viscoelasticity by the micropipette aspiration technique, and on connective tissue growth factor (CTGF) expression by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Paraquat was found to significantly reduce the proliferation index of MRC-5 cells in a concentration-dependent manner (p < 0.05) and to significantly impair the viscoelastic properties in a time-independent manner (p < 0.05). Exposure to paraquat led to a significant and time-dependent increase in CTGF expression (p < 0.05) and induced changes in the morphology and biomechanical characteristics of the MRC-5 cells. These findings not only provide novel insights into the mechanisms of paraquat-induced lung fibrosis but may represent useful targets of improved molecular-based therapies for paraquat poisoning.

  3. Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates

    PubMed Central

    Pascolo, Lorella; Borelli, Violetta; Canzonieri, Vincenzo; Gianoncelli, Alessandra; Birarda, Giovanni; Bedolla, Diana E.; Salomé, Murielle; Vaccari, Lisa; Calligaro, Carla; Cotte, Marine; Hesse, Bernhard; Luisi, Fernando; Zabucchi, Giuliano; Melato, Mauro; Rizzardi, Clara

    2015-01-01

    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (μXRF) and Fourier Transform InfraRed (μFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. μXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. μFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of β-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects. PMID:26159651

  4. Proteomic Study of Differential Protein Expression in Mouse Lung Tissues after Aerosolized Ricin Poisoning

    PubMed Central

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-01-01

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning. PMID:24786090

  5. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung

    PubMed Central

    Hwang, Ji Young; Randall, Troy D.; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity. PMID:27446088

  6. Nonspecific interstitial pneumonia overlaps organizing pneumonia in lung-dominant connective tissue disease.

    PubMed

    Li, Xue-Ren; Peng, Shou-Chun; Wei, Lu-Qing

    2015-01-01

    Here, we reported two cases of nonspecific interstitial pneumonia overlap organizing pneumonia (NSIP/OP) with lung-dominant connective tissue disease (LD-ILD). The first case is a patient with hands of chapped skin, right-sided pleuritic chest discomfort, weakness, positive ANA and antibodies to Ro/SS-A (+++) and Ro-52 (++). In the second case, there were Reynaud's disease, and nucleolus-ANA increased (1:800). Chest high resolution CT scan in both cases showed ground-glass opacifications, predominantly in basal and subpleural region and the pathologic manifestation were correlated with NSIP/OP, which were previously discovered in Sjogren syndrome, PM/DM and other rheumatic diseases. The two cases of NSIP/OP with LD-CTD we reported expand disease spectrum of NSIP/OP pathological types in ILD. However, it is necessary to process large-scale studies.

  7. Proteomic study of differential protein expression in mouse lung tissues after aerosolized ricin poisoning.

    PubMed

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-04-28

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning.

  8. Regional Mapping of Gas Uptake by Blood and Tissue in the Human Lung using Hyperpolarized Xenon-129 MRI

    PubMed Central

    Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.

    2013-01-01

    Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559

  9. Mesenchymal Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in Healthy Humans.

    PubMed

    Sinclair, K A; Yerkovich, S T; Chen, T; McQualter, J L; Hopkins, P M-A; Wells, C A; Chambers, D C

    2016-10-01

    Stromal support is critical for lung homeostasis and the maintenance of an effective epithelial barrier. Despite this, previous studies have found a positive association between the number of mesenchymal stromal cells (MSCs) isolated from the alveolar compartment and human lung diseases associated with epithelial dysfunction. We hypothesised that bronchoalveolar lavage derived MSCs (BAL-MSCs) are dysfunctional and distinct from resident lung tissue MSCs (LT-MSCs). In this study, we comprehensively interrogated the phenotype and transcriptome of human BAL-MSCs and LT-MSCs. We found that MSCs were rarely recoverable from the alveolar space in healthy humans, but could be readily isolated from lung transplant recipients by bronchoalveolar lavage. BAL-MSCs exhibited a CD90(Hi) , CD73(Hi) , CD45(Neg) , CD105(Lo) immunophenotype and were bipotent, lacking adipogenic potential. In contrast, MSCs were readily recoverable from healthy human lung tissue and were CD90(Hi or Lo) , CD73(Hi) , CD45(Neg) , CD105(Int) and had full tri-lineage potential. Transcriptional profiling of the two populations confirmed their status as bona fide MSCs and revealed a high degree of similarity between each other and the archetypal bone-marrow MSC. 105 genes were differentially expressed; 76 of which were increased in BAL-MSCs including genes involved in fibroblast activation, extracellular matrix deposition and tissue remodelling. Finally, we found the fibroblast markers collagen 1A1 and α-smooth muscle actin were increased in BAL-MSCs. Our data suggests that in healthy humans, lung MSCs reside within the tissue, but in disease can differentiate to acquire a profibrotic phenotype and migrate from their in-tissue niche into the alveolar space. Stem Cells 2016;34:2548-2558.

  10. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    PubMed

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  11. Effects of acupuncture on the gene expression profile of lung tissue from normal rats.

    PubMed

    Yin, Lei-Miao; Wang, Yu; Wang, Yan; Xu, Yu-Dong; Liu, Yan-Yan; Jin, Wei-Rong; Zhang, Qing-Hua; Yang, Yong-Qing

    2012-08-01

    Acupuncture has been demonstrated to be an effective treatment for various diseases. However, little attention has been paid to its physiological influences, especially on the changes in protein and mRNA levels following acupuncture treatment under normal conditions. In this study, we investigated the gene expression profile of lung tissue from acupuncture-treated normal rats and attempted to characterize the underlying mechanisms of the changes in expression. Three common acupoints, Dazhui (GV14), fengmen (BL12) and feishu (BL13) were selected for analysis, and 2 serial analyses of gene expression (SAGE) tag libraries of the lung tissues that were derived from the normal and acupuncture-treated rats were established. Bioinformatic analyses were carried out using the functional annotation tools of the database for annotation, visualization and integrated discovery (DAVID), the gene ontology (GO) Tree Machine and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. In total, 144 tags were differentially expressed (P<0.05), and the DAVID functional classification of genes demonstrated that the genes were divided into 6 types. Furthermore, GO Tree Machine analysis of the gene categories indicated that 10 enriched GO categories had become enriched after acupuncture, and that 15 KEGG pathways matched the differentially expressed tags of the 2 SAGE libraries. Our results show that the essential effects of acupuncture on normal rats include the regulation of macromolecular biosynthesis, transportation and metabolism. Cellular biosynthesis and cellular lipid metabolism are the common biological processes that occur in response to acupuncture under normal and morbid conditions, which may be the general physiological effects of acupuncture.

  12. Development of an Ex Vivo Tissue Platform To Study the Human Lung Response to Coxiella burnetii

    PubMed Central

    Graham, Joseph G.; Winchell, Caylin G.; Kurten, Richard C.

    2016-01-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute debilitating flu-like illness that can also present as chronic endocarditis. Disease typically occurs following inhalation of contaminated aerosols, resulting in an initial pulmonary infection. In human cells, C. burnetii generates a replication niche termed the parasitophorous vacuole (PV) by directing fusion with autophagosomes and lysosomes. C. burnetii requires this lysosomal environment for replication and uses a Dot/Icm type IV secretion system to generate the large PV. However, we do not understand how C. burnetii evades the intracellular immune surveillance that triggers an inflammatory response. We recently characterized human alveolar macrophage (hAM) infection in vitro and found that avirulent C. burnetii triggers sustained interleukin-1β (IL-1β) production. Here, we evaluated infection of ex vivo human lung tissue, defining a valuable approach for characterizing C. burnetii interactions with a human host. Within whole lung tissue, C. burnetii preferentially replicated in hAMs. Additionally, IL-1β production correlated with formation of an apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)-dependent inflammasome in response to infection. We also assessed potential activation of a human-specific noncanonical inflammasome and found that caspase-4 and caspase-5 are processed during infection. Interestingly, although inflammasome activation is closely linked to pyroptosis, lytic cell death did not occur following C. burnetii-triggered inflammasome activation, indicating an atypical response after intracellular detection. Together, these studies provide a novel platform for studying the human innate immune response to C. burnetii. PMID:26902725

  13. [Comparison of 51 element contents in normal human lung tissue over twenty years].

    PubMed

    Zeng, Jing; Ouyang, Li; Wang, Xiao-Yan; Liu, Ya-Qiong; Xie, Qing; Chu, Hong-Da; Wu, Quan; Fan, Ti-Qiang; Wang, Jing-Yu

    2008-05-01

    Changes in content and distribution of elements in human tissues may reflect changes in environmental backgrounds, and are closely related to human health. To investigate the change in element background in normal lung tissue in different stage, we used ICP-MS, ICP-AES and GFAAS to determine 51 element contents in normal human lung samples of 1982-83 year (n = 7) and compare with those of 2004-05 year (n = 16). Samples were from healthy male adults who died suddenly, and were treated with microwave digestion and wet digestion method. The results show that the contents of 23 elements (Na, Mg, P, K, As, Mo, Ag, Ba, Bi, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) are significantly higher, and 6 elements (Zn, Ga, Ge, Se, Au and Zr) are significantly lower in the 2004-05 samples than those in the 1982-83 samples. This difference would be related to the changes in environmental backgrounds and people's living habit during twenty years. The distinctive decrease in contents of the 2004-05 samples for most measured rare earth elements (REEs) may be due to more rational usage of REEs in present, while were the soil and corps were largely abused in 1980s in China. The significant increase in contents of some useful micro-elements (Zn and Se ) in the present samples maybe because of the increased intake of these elements as people own more health consciousness. Besides, the increased contents of heavy metal Pb, Cd, Cr and Ni in the present samples may be related to the deterioration of air quality as industrialization course. More than half of measured elements have been significantly changed over twenty years, indicating that some normal value ranges of element contents should be adjusted according to the difference.

  14. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  15. Stereotactic body radiation therapy for lung metastases from soft tissue sarcoma.

    PubMed

    Navarria, Pierina; Ascolese, Anna Maria; Cozzi, Luca; Tomatis, Stefano; D'Agostino, Giuseppe Roberto; De Rose, Fiorenza; De Sanctis, Rita; Marrari, Andrea; Santoro, Armando; Fogliata, Antonella; Cariboni, Umberto; Alloisio, Marco; Quagliuolo, Vittorio; Scorsetti, Marta

    2015-03-01

    To appraise the role of stereotactic body radiation therapy (SBRT) in patients with lung metastasis from primary soft tissue sarcoma. Twenty-eight patients (51 lesions) were analysed. All patients were in good performance status (1-2 eastern cooperative oncology group (ECOG)), unsuitable for surgical resection, with controlled primary tumour and the number of lung metastases was ⩽4. In a risk adaptive scheme, the dose prescription was: 30Gy/1fr, 60Gy/3fr, 60Gy/8fr and 48Gy/4fr. Treatments were performed with Volumetric Modulated Arc Therapy. Clinical outcome was evaluated by thoracic and abdominal computed tomography (CT) scan before SBRT and than every 3months. Toxicity was evaluated with Common Terminology Criteria for Adverse Events (CTCAE) scale version 4.0. Leiomyosarcoma (36%) and synovial sarcoma (25%) were the most common histologies. Five patients (18%) initially presented with pulmonary metastasis, whereas 23 (82%) developed them at a median time of 51months (range 11-311months) from the initial diagnosis. The median follow-up time from initial diagnosis was 65months (5-139months) and from SBRT was 21months (2-80months). No severe toxicity (grades III-IV) was recorded and no patients required hospitalisation. The actuarial 5-years local control rate (from SBRT treatment) was 96%. Overall survival at 2 and 5years was 96.2% and 60.5%, respectively. At last follow-up 15 patients (54%) were alive. All other died because of distant progression. SBRT provides excellent local control of pulmonary metastasis from soft tissue sarcoma (STS) and may improve survival in selected patients. SBRT should be considered for all patients with pulmonary metastasis (PM) and evaluated in a multidisciplinary team. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts

    PubMed Central

    Lama, Vibha N.; Smith, Lisa; Badri, Linda; Flint, Andrew; Andrei, Adin-Cristian; Murray, Susan; Wang, Zhuo; Liao, Hui; Toews, Galen B.; Krebsbach, Paul H.; Peters-Golden, Marc; Pinsky, David J.; Martinez, Fernando J.; Thannickal, Victor J.

    2007-01-01

    The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% ± 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ. PMID:17347686

  17. Mean Organ Doses Resulting From Non-Human Primate Whole Thorax Lung Irradiation Prescribed to Mid-Line Tissue.

    PubMed

    Prado, Charlotte; Kazi, Abdul; Bennett, Alexander; MacVittie, Thomas; Prado, Karl

    2015-11-01

    Multi-organ dose evaluations and the effects of heterogeneous tissue dose calculations have been retrospectively evaluated following irradiation to the whole thorax and lung in non-human primates (NHP). A clinical-based approach was established to evaluate actual doses received in the heart and lungs during whole thorax lung irradiation. Anatomical structure and organ densities have been introduced in the calculations to show the effects of dose distribution through heterogeneous tissue. Mean organ doses received by non-human primates undergoing whole thorax lung irradiations were calculated using a treatment planning system that is routinely used in clinical radiation oncology. The doses received by non-human primates irradiated following conventional dose calculations have been retrospectively reconstructed using computerized tomography-based, heterogeneity-corrected dose calculations. The use of dose volume descriptors for irradiation to organs at risk and tissue exposed to radiation is introduced. Mean and partial-volume doses to lung and heart are presented and contrasted. The importance of exact dose definitions is highlighted, and the relevance of precise dosimetry to establish organ-specific dose response relationships in NHP models of acute and delayed effects of acute radiation exposure is emphasized.

  18. Detection of Chlamydia pneumoniae on cytospin preparations from bronchoalveolar lavage in COPD patients and in lung tissue from advanced emphysema.

    PubMed

    Brandén, Eva; Gnarpe, Judy; Hillerdal, Gunnar; Orre, Lotta; Sköld, C Magnus; Löfdahl, Magnus; Koyi, Hirsh; Tornling, Göran

    2007-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with smoking but other etiological factors contribute. Chlamydia pneumoniae is an obligate intracellular bacterium causing both acute and chronic respiratory tract infections. Studies have revealed an association between chronic C. pneumoniae infection and COPD, asthma and lung cancer but there have been difficulties detecting C. pneumoniae in the bronchial tree. Cytospin slides prepared from bronchoalveolar lavage (BAL) fluid from 14 patients with COPD, 10 healthy smokers (S) and 7 non smokers (NS) were analyzed with a fluorescein isothiocyanate labeled monoclonal antibody to C. pneumoniae. Lung tissue from 24 patients with advanced emphysema who had undergone lung volume reduction surgery (LVRS) was examined with immunohistochemistry for C. pneumoniae. Archived serum samples for detection of specific C. pneumoniae antibodies by microimmunofluorescence were available for 30 of the BAL subjects and 11 of LVRS patients. C. pneumoniae elementary body like structures were found in 29% of cytospin specimens from COPD patients, 14% of NS and 10% of HS. C. pneumoniae was detected in lung tissue in 8%. COPD patients had higher titres of IgG and IgA than NS and S. There was no association between occurrence of C. pneumoniae in BAL fluid and antibody titres. In conclusion, the assays used for detection of C. pneumoniae in lung tissue are feasible, and could be adapted in adequately powered studies to further confirm an association between C. pneumoniae infection and COPD.

  19. Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle).

    PubMed

    Menge, M; Rose, M; Bohland, C; Zschiesche, E; Kilp, S; Metz, W; Allan, M; Röpke, R; Nürnberger, M

    2012-12-01

    The pharmacokinetics of tildipirosin (Zuprevo(®) 180 mg/mL solution for injection for cattle), a novel 16-membered macrolide for treatment, control, and prevention of bovine respiratory disease, were investigated in studies collecting blood plasma, lung tissue, and in vivo samples of bronchial fluid (BF) from cattle. After single subcutaneous (s.c.) injection at 4 mg/kg body weight, maximum plasma concentration (C(max)) was 0.7 μg/mL. T(max) was 23 min. Mean residence time from the time of dosing to the time of last measurable concentration (MRT(last)) and terminal half-life (T(1/2) ) was 6 and 9 days, respectively. A strong dose-response relationship with no significant sex effect was shown for both C(max) and area under the plasma concentration-time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUC(last) ) over the range of doses up to 6 mg/kg. Absolute bioavailability was 78.9%. The volume of distribution based on the terminal phase (V(z)) was 49.4 L/kg, and the plasma clearance was 144 mL/h/kg. The time-concentration profile of tildipirosin in BF and lung far exceeded those in blood plasma. In lung, tildipirosin concentrations reached 9.2 μg/g at 4 h, peaked at 14.8 μg/g at day 1, and slowly declined to 2.0 μg/g at day 28. In BF, the concentration of tildipirosin reached 1.5 and 3.0 μg/g at 4 and 10 h, maintained a plateau of about 3.5 μg/g between day 1 and 3, and slowly declined to 1.0 at day 21. T(1/2) in lung and BF was approximately 10 and 11 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination.

  20. The effect of activated alveolar macrophages on experimental lung emphysema development. III. Morphological analysis of the lung tissue and alveolar macrophages in situ.

    PubMed

    Sulkowski, S; Nowak, H F; Sulkowska, M; Sobaniec-Lotowska, M; Andrzejewska, A; Sulik, M; Dziecioł, J; Famulski, W; Poczopko, B

    1995-01-01

    Morphological (in light and transmission electron microscope) as well as morphometrical analysis of the lungs was performed on experimental, papain-induced lung emphysema. Development of emphysematous changes was studied seven days after a single intratracheal instillation of papain solution. The effect of alveolar macrophages (AM) activation by BCG-vaccine on changes in pulmonary tissue was analyzed. In the rats given BCG the number of AM increased and demonstrated enhanced activity. Increase in reticulin fibre density in places of AM cumulation, particularly in BCG+papain-treated rats was observed. The lungs of animals treated with BCG+papain showed enhancing of emphysema comparing with the papain-treated rats. Development of emphysematous changes, especially in BCG+papain-treated rats coexisted with cumulation of activated alveolar macrophages and collagen fibres as well as type II alveolar epithelial cells proliferation. Our data support the inflammatory-repair hypothesis of emphysema pathogenesis and indicate that AM regulate collagen production in the lung. Type II alveolar epithelial cells seem be important in lung injury and repair.

  1. Effect of lung water content, manipulated by intratracheal furosemide, surfactant, or a mixture of both, on compliance and viscoelastic tissue forces in lung-lavaged newborn piglets.

    PubMed

    Flemmer, A; Simbruner, G; Muenzer, S; Proquitté, H; Haberl, C; Nicolai, T; Leiderer, R

    2000-06-01

    To study the impact of lung water content and its reduction by a topically applied diuretic on respiratory and lung tissue mechanics in comparison with surfactant administration in surfactant-deficient newborn piglets with lavage-induced lung injury. Controlled, randomized study. Animal research facility. Newborn piglets. TREATMENT Piglets were surfactant depleted by lung lavage and, after a pretreatment period, randomly treated with intratracheal furosemide, furosemide and surfactant, or with surfactant alone. Dynamic compliance (C(DYN)), static compliance (C(ST)), stress-adaptation pressures (P(DIFF)) and post mortem lung water content were determined. Static compliance in the furosemide-surfactant group was not significantly higher than in the surfactant group. At the end of the study, C(ST) did not differ between the three groups because C(ST) in the furosemide group had increased to values similar to those of the surfactant-containing treatment groups: C(ST) F+S: 0.73 +/- 0.2 mL/cm H2O/kg body weight (BW); C(ST) S: 0.61 +/- 0.11 mL/cm H2O/kg BW; and C(ST) F: 0.60 +/- 0.19 mL/cm H2O/kg BW). Compliance was inversely and P(DIFF) was directly correlated to lung water (LW) content (C(ST) vs. LW: r2 = .59, p = .001; C(DYN) vs. LW: r2 = .49, p = .006; P(DIFF) vs. LW: r2 = .37, p = .059), independent of the type of treatment. Changes in C(ST) and C(DYN) were inversely related to changes in P(DIFF). Intrapulmonary furosemide was more rapidly absorbed when administered to the surfactant-depleted lung alone compared with the mixture with surfactant, and intrapulmonary furosemide had a rapid systemic effect. Although the combination of surfactant with a diuretic failed to increase respiratory compliance to a significantly larger extent than surfactant alone, furosemide at the end of the study increased respiratory compliance to a level similar to surfactant-containing treatments. Lung water content and, to a lesser extent, the absence or presence of surfactant appeared to

  2. High Resolution Multi-Detector CT Aided Tissue Analysis and Quantification of Lung Fibrosis

    PubMed Central

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A

    2009-01-01

    class discrimination: Normal, Reticular, Honeycombing, and Emphysema. Experiment 3 consisted of a five class discrimination: Normal, Ground glass, Reticular, Honeycombing, and Emphysema. 2.) The remaining four scans were used to further test the algorithm on new data in the context of a whole lung analysis. Each of the four datasets was manually segmented by three experts. These datasets included Normal, Reticular and Honeycombing regions and did not include Ground glass or Emphysema. The accuracy of the classification algorithm was then compared with results from experts. Results Independent VOIs: 1.) Two class discrimination problem (sensitivity, specificity): Normal versus Abnormal (92.96%,93.78%). 2.) Four class discrimination problem: Normal (92%,95%), Reticular (86%,87%), Honeycombing (74%,98%), and Emphysema (93%,98%). 3.) Five class discrimination problem: Normal(92%,95%), Ground glass (75%,89%), Reticular (22%,92%), Honeycombing (74%,91%), and Emphysema (94%,98%). Whole lung datasets: 1.) William's Index shows that algorithm classification of lungs agrees with the experts as well as the experts agree with themselves. 2.) Student-T test between overlap measures of algorithm and expert (AE) and expert and expert (EE) : Normal (t=-1.20, p = 0.230), Reticular (t=-1.44, p = 0.155), Honeycombing (t=-3.15, p = 0.003). 3.) Lung Volumes Intra-class correlation: Dataset 1 (ICC = 0.9984, F = 0.0007); Dataset 2 (ICC = 0.9559, F = 0); Dataset 3 (ICC = 0.8623, F= 0.0015); Dataset 4 (ICC = 0.7807, F = 0.0136). Conclusions We have demonstrated that our novel method is computationally efficient and produces results comparable to expert radiologic judgment. It is effective in the classification of normal versus abnormal tissue and performs as well as the experts in distinguishing among typical pathologies present in lungs with UIP/IPF. The continuing development of quantitative metrics will improve quantification of disease and provide objective measures of disease progression

  3. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    PubMed Central

    Rangel, M.P.; de Sá, V.K.; Martins, V.; Martins, J.R.M.; Parra, E.R.; Mendes, A.; Andrade, P.C.; Reis, R.M.; Longatto-Filho, A.; Oliveira, C.Z.; Takagaki, T.; Carraro, D.M.; Nader, H.B.; Capelozzi, V.L.

    2015-01-01

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology. PMID:25992645

  4. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  5. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  6. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue.

    PubMed

    Krstajic, Nikola; Akram, Ahsan R; Choudhary, Tushar R; McDonald, Neil; Tanner, Michael G; Pedretti, Ettore; Dalgarno, Paul A; Scholefield, Emma; Girkin, John M; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-30

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (∼3  μm ∼3  μm ). This effectively increases the measured spatial resolution of 4  μm 4  μm . We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  7. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  8. Lung squamous cell carcinoma with brachial soft tissue metastasis responsive to gefitinib: Report of a rare case

    PubMed Central

    Kataoka, Kana; Osaka, Eiji; Shimizu, Tetsuo; Okamura, Yuki; Yoshida, Yukihiro; Tokuhashi, Yasuaki

    2016-01-01

    Metastasis of lung cancer to soft tissue is rare and patient outcomes are generally poor. There are no reports describing soft tissue metastasis in lung squamous cell carcinoma (SCC), in which gefitinib treatment was effective not only for the primary tumor but also the metastatic lesion. A 61‐year‐old Asian woman presented to our facility with pain and a mass in the brachium. An additional tumor was identified in the lung. As we suspected soft tissue metastasis of lung cancer, an incisional biopsy was performed, yielding a diagnosis of SCC. The brachial tumor continued to grow and became exposed at the biopsy site when the incisional wound dehisced. Because the biopsied specimen was positive for an epidermal growth factor receptor (EGFR) gene mutation, we commenced gefitinib administration. This treatment resulted in the rapid shrinkage of both the brachial metastasis and the primary tumor, followed by healing of the wound. Therefore, tyrosine kinase inhibitors should be used for cases that present EGFR activating mutations independently from the presence of skin and soft tissue metastases. PMID:27755795

  9. Lung squamous cell carcinoma with brachial soft tissue metastasis responsive to gefitinib: Report of a rare case.

    PubMed

    Kataoka, Kana; Osaka, Eiji; Shimizu, Tetsuo; Okamura, Yuki; Yoshida, Yukihiro; Tokuhashi, Yasuaki

    2016-11-01

    Metastasis of lung cancer to soft tissue is rare and patient outcomes are generally poor. There are no reports describing soft tissue metastasis in lung squamous cell carcinoma (SCC), in which gefitinib treatment was effective not only for the primary tumor but also the metastatic lesion. A 61-year-old Asian woman presented to our facility with pain and a mass in the brachium. An additional tumor was identified in the lung. As we suspected soft tissue metastasis of lung cancer, an incisional biopsy was performed, yielding a diagnosis of SCC. The brachial tumor continued to grow and became exposed at the biopsy site when the incisional wound dehisced. Because the biopsied specimen was positive for an epidermal growth factor receptor (EGFR) gene mutation, we commenced gefitinib administration. This treatment resulted in the rapid shrinkage of both the brachial metastasis and the primary tumor, followed by healing of the wound. Therefore, tyrosine kinase inhibitors should be used for cases that present EGFR activating mutations independently from the presence of skin and soft tissue metastases.

  10. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis.

    PubMed

    Nuovo, Gerard J; Hagood, James S; Magro, Cynthia M; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B; Folcik, Virginia A

    2012-03-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68(+) and CD80(+) cells and significantly fewer CD3(+), CD4(+), and CD45RO(+) cells in areas of relatively (histologically) normal lung in biopsy samples from idiopathic pulmonary fibrosis patients compared with controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, chemokine receptor 6 (CCR6), S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared with histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3(+) T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for forkhead box p3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating

  11. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  12. Improved correction for the tissue fraction effect in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  13. The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering.

    PubMed

    Kim, Sally Yunsun; Wong, Alice Hai May; Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Chan, Hak-Kim

    2015-06-01

    Search for new, functional biomaterials that can be used to synergistically deliver a drug, enhance its adsorption and stimulate the post-injury recovery of tissue function, is one of the priorities in biomedicine. Currently used materials for drug delivery fail to satisfy one or more of these functionalities, thus they have limited potential and new classes of materials are urgently needed. Natural materials, due to their origin, physical and chemical structure can potentially fulfill these requirements and there is already strong evidence of their usefulness in drug delivery. They are increasingly utilized in various therapeutic applications due to the obvious advantages over synthetic materials. Particularly in pulmonary drug delivery, there have been limitations in the use of synthetic materials such as polymers and lipids, leading to an increase in the use of natural and protein-based materials such as silk, keratin, elastin and collagen. Literature search in each specialized field, namely, silk, keratin and collagen was conducted, and the benefits of each material for future application in pulmonary drug delivery are highlighted. The natural materials discussed in this review have been well established in their use for other applications, yet further studies are required in the application of pulmonary drug delivery. The properties exhibited by these natural materials seem positive for their application in lung tissue engineering, which may allow for more extensive testing for validation of pulmonary drug delivery systems.

  14. The novel protein suppressed in lung cancer down-regulated in lung cancer tissues retards cell proliferation and inhibits the oncokinase Aurora-A.

    PubMed

    Yu, Chang-Tze Ricky; Hsia, Jiun-Yi; Hseih, Yun-Chih; Su, Li-Jen; Lee, Tien-Chiang; Ku, Chia-Feng; Chen, Ke-Shin; Chen, Jou-May Maureen; Wei, Tong-You Wade; Lee, Yuan-Chii Gladys; Huang, Chi-Ying F; Wu, Yu-Chung; Yang, Chiou-Ying; Hsu, Shih-Lan

    2011-06-01

    In an attempt to search for genes with abnormal expression in cancers, Suppressed in Lung Cancer (SLAN, also known as KIAA0256) is found underexpressed in human lung cancer tissues by quantitative real-time PCR (Q-RT-PCR). The study set out to characterize SLAN protein and explore its cellular functions. SLAN or its specific short hairpin RNA, full length or various deletion mutants were overexpressed in 293T or lung cancer cell lines, and cell proliferation, cell cycle, mitosis progression, and spindle configuration were surveyed. SLAN and its deletion mutants are localized to many subcellular locations such as endoplasmic reticulum (ER), nucleus, nucleolus, spindle pole and midbody, suggesting SLAN may function as a multifunctional protein. Overexpression of SLAN per se or its short hairpin RNAs (shRNAs) inhibits or accelerates cell proliferation through prolonging or shortening mitosis. Time-lapse microscopic recording reveals that cells overexpressing exogenous SLAN are arrested in mitosis or cannot undergo cytokinesis. SLAN 2-551 mutants drastically arrest cells in mitosis, where α- and γ-tubulin are disorganized. SLAN employs C-terminal to interact with Aurora-A, a key mitosis regulator and an oncogenic kinase associated with a wide range of human cancers. SLAN negatively regulates the activity of Aurora-A by directly inhibiting kinase activity in vitro or reducing the level of active Aurora-A in cells. SLAN is frequently reduced in lung cancer tissues overexpressing Aurora-A, arguing for the necessity to suppress SLAN during the Aurora-A-associated cancer formation. Taken together, we have identified a novel protein SLAN downregulated in lung caner, having multiple subcellular localization including spindle matrix and midbody, inhibiting cell proliferation and Aurora-A.

  15. Activation of large form galanin-LI by extracellular processing in small cell lung carcinoma tissue.

    PubMed

    Yamamoto, Hiroyuki; Iguchi, Kazuaki; Ohno, Satoshi; Yokogawa, Takashi; Nishikawa, Kazuya; Hoshino, Minoru

    2011-10-01

    Galanin is a neuropeptide that is widely distributed in the central and peripheral nervous systems. Some small cell lung carcinoma (SCLC) cell lines such as SBC-3A release only the high-molecular-mass form, with lower molecular mass forms being undetectable. To investigate the mechanism of processing of progalanin to active peptide, we studied galanin-LI in both the culture media of SBC-3A cells and in extracts from in vivo mouse SBC-3A tumors. SBC-3A cells were found to release high molecular mass galanin, but did not release active peptides. In contrast, tumor extract contained both high-molecular-mass galanin, and a cleaved lower-molecular-mass form of the peptide (8, 5 and 2 kDa). The lower-molecular-mass peptide was identified as galanin(1-20) by MALDI-TOF mass spectrometry. We then looked at MMP-2 and MMP-9 release from SBC-3A cells and tumor tissue treated with galanin and progalanin, as revealed by gelatin zymography. Galanin elicited pro-MMP-2 and pro-MMP-9 release from SBC-3A cells and tumor tissue; however, recombinant progalanin induced pro-MMP-2 and pro-MMP-9 release from tumor tissue only. This study has shown that the galanin-LI released from SCLC SBC-3A cells consisted of the high-molecular-mass peptide form, and was processed extracellularly to galanin(1-20). Furthermore, galanin was seen to induce pro-MMP-2 and pro-MMP-9 release from SBC-3A cells.

  16. The Negative Impact of Combining Retinoic Acid (ATRA) and Mold Spores on F344 Rat Lung and Improvement of Tissue Pathology by Citral.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Cason, Zelma; Benghuzzi, Hamed

    2015-01-01

    The impact of retinoic acid (All Trans Retinoic Acid; ATRA) and Mold spores (MLD) in the development of lung pathology and in vivo tissue remodeling have not been well established in the literature. In addition, the role of citral (inhibitor of retinoid function) in the improvement of lung pathology has not been ascertained in animal studies. Therefore, it is hypothesized that ATRA and Mold (MLD) exposure will sensitize lung tissues leading to lung tissue pathology and that Citrals (C1 and C2) will reverse, ameliorate or improve the associated pathological damage to lung tissues. The study used an IACUC approved between-subject in vivo randomized split plot factorial design (F344 rat model; N=40). Animals were exposed to eight different treatments including vehicle, MLD, ATRA, Citrals (C1 and C2) and their MLD combinations (MLD+ ATRA, MLD+ C1, and MLD+ C2) by intra-peritoneal route. Rat weight and blood data were collected on Days 1 and 21, all animals were sacrificed on day 21, and lung tissues were processed for histopathology. Results from weight and blood data (ANOVA and Duncan) as well as from histopathological analyses supported the findings that exposure of F344 rats to MLD combinations with ATRA and Citrals showed various levels of lung tissue damage that were impacted by either C1 or C2. This promising study showed impressive responses on the interaction of MLD, Citrals, and ATRA as related to their impact on associated lung tissue pathologies.

  17. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    SciTech Connect

    Crocetti, Laura Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-08-15

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  18. The in vivo effect of different bedding materials on the antioxidant levels of rat heart, lung and liver tissue.

    PubMed

    Potgieter, F J; Wilke, P I; van Jaarsveld, H; Alberts, D W

    1996-03-01

    Several experimental effects due to wood-derived bedding have been reported. Female Sprague Dawley rats were kept on pine shavings, eucalyptus pulp, vermiculite and in wire-bottomed cages without bedding for 14 days whereafter normal values for the antioxidants ascorbic acid and reduced glutathione (G-SH) in rat heart lung and liver tissue were determined and compared. Statistically significant differences were observed for lung G-SH between pine shavings and eucalyptus pulp (p < 0.0183), and heart G-SH between vermiculite and eucalyptus pulp (p < 0.0948). The highest levels of liver G-SH were obtained using pine shavings compared to vermiculite (p < 0.0001), eucalyptus pulp (p < 0.0002) and wire floor (p < 0.0001). Statistically significant differences in ascorbic acid concentrations could only be described between the wire-bottomed cages and eucalyptus pulp (p < 0.0333) for lung tissue and between pine shavings and eucalyptus pulp for liver tissue (p < 0.042). Although no statistically significant differences were observed in heart ascorbic acid levels between the different bedding applications, the concentration obtained using vermiculite was approximately 50% higher than that observed with the other materials. Pine shavings, eucalyptus pulp and wire floors demonstrated virtually the same heart tissue ascorbic acid levels. It was thus demonstrated that bedding material can alter the tissue antioxidant concentration of laboratory animals, limiting the comparison of this type of result between institutions to those using identical environmental conditions.

  19. Comparison of TGF-β1 and NO production by mesenchymal stem cells isolated from murine lung and adipose tissues.

    PubMed

    Hosseinpur, Zahra; Hashemi, Seyed Mahmoud; Salehi, Eisa; Ghazanfari, Tooba

    2016-06-01

    Mesenchymal stem cells (MSCs) are cell sources for tissues regeneration. By secretion of soluble factors including transforming growth factor-β (TGF-β1) and nitric oxide (NO), MSCs are also able to regulate the immune system. MSCs have been disclosed in lung and adipose tissues with insufficient comparison between the tissues. In this study, specific differentiation and the expression of surface antigens as well as TGF-β1 and NO productive levels were compared in murine lung-derived MSCs (LMSCs) and adipose tissue-derived MSCs (ADMSCs). MSCs were isolated from murine lung and adipose tissues and cultured. Both cell populations were characterized using multilineage potential and the expression of surface antigenic proteins, CD73, CD105, CD34, CD45, and CD11b. Finally, levels of TGF-β1 and NO were evaluated and compared in ADMSCs and LMSCs. Expression of CD73 and CD105; lack of the expression of CD34, CD45, and CD11b markers; as well as adipocyte and osteocyte differentiations were detected in both adult stem cells. No significant difference was found in TGF-β1 and NO production between two stem cell populations. Our data showed that LMSCs and ADMSCs have comparable phenotype and TGF-β1 and NO production.

  20. Carcinogenicity of airborne combustion products observed in subcutaneous tissue and lungs of laboratory rodents.

    PubMed Central

    Pott, F; Stöber, W

    1983-01-01

    Most air pollution in West Germany is caused by combustion products. Particulate organic matter released by incomplete combustion is suspected to contribute to the "urban factor" of lung cancer frequency in urban-industrial centers. The carcinogenic potential of single components, groups of compounds and total source emissions of combustion processes was investigated in laboratory animals by subcutaneous injection, intratracheal instillation or inhalation. Tests by subcutaneous injection of condensates of automobile exhaust, extracts of coal furnace emissions and of airborne particles and different fractions of these extracts showed that the polycyclic aromatic hydrocarbons (PAH) with four to six benzene rings have the strongest experimental carcinogenicity. However, polar compounds (heterocyclic nitrogen-containing PAH, phenols, and others) also show remarkable carcinogenic potency. There were large differences between the dose-response relationships of several PAHs. In the subcutaneous tissue, benzo(a)pyrene and dibenz(a,h)anthracene are the most carcinogenic of the tested airborne PAHs. Furthermore, they can induce high tumor rates in the lung after subcutaneous injection in newborn mice and after intratracheal instillation of mice or hamsters. The tumor rate of benzo(a)pyrene did not further increase after simultaneous instillation of carbon black, but lead chloride may have a promoting effect. Far more than 100 PAHs are found in the urban atmosphere. However, because of the remarkable similarity of the PAH profiles in the examined samples, it may be sufficient to measure just a few stable PAHs in the urban air in order to facilitate an assessment of the carcinogenic potency of the PAH content in the atmosphere. To examine the carcinogenic or cocarcinogenic effects of gas and vapor emissions, studies with a two-phase model were carried out: phase 1 relates to the induction of a basic tumor rate in the lung by a well known carcinogen, while phase 2 is

  1. Effects of Nigella sativa seed extract on ameliorating lung tissue damage in rats after experimental pulmonary aspirations.

    PubMed

    Kanter, Mehmet

    2009-01-01

    Aspiration of gastric contents can cause serious lung injury, although the mechanisms of pulmonary damage are still not clear and means of amelioration of the pulmonary damage have been little investigated. The black cumin seed, Nigella sativa L. (NS) has been shown to have specific health benefits and the aim of the current study was to investigate the possible beneficial effects of NS on experimental lung injury in male Wistar rats after pulmonary aspiration of different materials. The rats were randomly allotted into one of six experimental groups (n=7 per group): (1) saline control, (2) saline+NS treated, (3) Pulmocare (a specialized nutritional supplement given to pulmonary patients), (4) Pulmocare+NS treated, (5) hydrochloric acid, (6) hydrochloric acid+NS treated. The saline, Pulmocare and hydrochloric acid were injected into the lungs in a volume of 2 ml/kg. The rats received daily oral doses of NS volatile oil (400mg/kg body weight) by means of intragastric intubation for 7 days starting immediately after the pulmonary aspiration of the materials. After 7 days, the rats were sacrificed and tissue samples from both lungs were taken for histopathological investigation. To date, no similar study investigating the potential for NS treatment to protect against lung injury after pulmonary aspiration of materials has been reported. Our study showed that NS treatment inhibits the inflammatory pulmonary responses, reducing significantly (p<0.05) peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar macrophages, interstitial fibrosis, granuloma and necrosis formation in different pulmonary aspiration models. Our data indicate a significant reduction in the activity of inducible nitric oxide synthase (iNOS) and a rise in surfactant protein D in lung tissue of different pulmonary aspiration models after NS therapy. Based on our results, we conclude that NS treatment might be beneficial in lung injury and

  2. Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wei, Huajiang; Wu, Guoyong; Guo, Zhouyi; Yang, Hongqin; He, Yonghong; Xie, Shusen; Guo, Xiao

    2012-11-01

    The objective of this study was to evaluate the effects of ultrasound-mediated analyte diffusion on permeability of normal, benign, and cancerous human lung tissue in vitro and to find more effective sonophoretic (SP) delivery in combination with the optical clearing agents (OCAs) method to distinguish normal and diseased lung tissues. The permeability coefficients of SP in combination with OCAs diffusion in lung tissue were measured with Fourier-domain optical coherence tomography (FD-OCT). 30% glucose and SP with a frequency of 1 MHz and an intensity of 0.80 W/cm2 over a 3 cm probe was simultaneously applied for 15 min. Experimental results show that the mean permeability coefficients of 30% glucose/SP were found to be (2.01±0.21)×10-5 cm/s from normal lung (NL) tissue, (2.75±0.28)×10-5 cm/s from lung benign granulomatosis (LBG) tissue, (4.53±0.49)×10-5 cm/s from lung adenocarcinoma tumor (LAT) tissue, and (5.81±0.62)×10-5 cm/s from lung squamous cell carcinoma (LSCC) tissue, respectively. The permeability coefficients of 30% glucose/SP increase approximately 36.8%, 125.4%, and 189.1% for the LBG, LAT, and LSCC tissue compared with that for the NL tissue, respectively. There were statistically significant differences in permeability coefficients of 30% glucose/SP between LBG and NL tissue (p<0.05), between LAT and NL tissue (p<0.05), and between LSCC and NL tissue (p<0.05). The results suggest that the OCT functional imaging technique to combine an ultrasound-OCAs combination method could become a powerful tool in early diagnosis and monitoring of changed microstructure of pathologic human lung tissue.

  3. Buffer optimization for high resolution of human lung cancer tissue proteins by two-dimensional gel electrophoresis.

    PubMed

    Lee, Kibeom; Pi, Kyungbae; Lee, Keeman

    2009-01-01

    A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea-urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.

  4. Biphasic cellular and tissue response of rat lungs after eight-day aerosol exposure to the silicon dioxide cristobalite.

    PubMed Central

    Absher, M. P.; Trombley, L.; Hemenway, D. R.; Mickey, R. M.; Leslie, K. O.

    1989-01-01

    Cristobalite is a crystalline silicon dioxide that elicits pulmonary inflammation and fibrosis in humans and experimental animals. Exposure of rats to aerosols of respirable cristobalite for 8 days led to a rapid influx of neutrophils and macrophages into alveolar and tissue compartments of the lung followed by a more gradual accumulation of T lymphocytes. This inflammatory response persisted throughout 52 weeks after the end of the exposure. For some variables studied there appeared to be a cyclical nature to the response. Statistical analysis of alveolar cell populations and lung tissue weight, protein, and hydroxyproline showed significant time-dependent fluctuations. Histologic analysis revealed a progressive deposition of collagen and type II cell hyperplasia centered on airways, however, there appeared to be some correlation between fluctuations in alveolar cell populations and overall tissue pathology. The observed cellular and biochemical fluctuations and the persistence of the inflammatory response may be due to the presence of silica in the lung, which serves as a source of repetitive stimulation of lung cells. Images Figure 4 Figure 5 PMID:2547319

  5. MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature

    PubMed Central

    Fortunato, Orazio; Verri, Carla; Pastorino, Ugo; Sozzi, Gabriella; Boeri, Mattia

    2016-01-01

    Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA signature classifier (MSC) able to discriminate lung cancer with more aggressive features. In the present work, microarray miRNA profiling of tumor tissues collected from 19 lung cancer patients with an available MSC result were perform in order to find a possible association between miRNA expression and the MSC risk level. Eleven tissue mature miRNAs and six miRNA precursors were observed to be associated with the plasma MSC risk level of patients. Not one of these miRNAs was included in the MSC algorithm. A pathway enrichment analysis revealed a role of these miRNA in the main pathways determining lung cancer aggressiveness. Overall, these findings add to the knowledge that tissue and plasma miRNAs behave as excellent diagnostic and prognostic biomarkers, which may find rapid application in clinical settings. PMID:27600084

  6. Right ventricular systolic pressure measurements in combination with harvest of lung and immune tissue samples in mice.

    PubMed

    Chen, Wen-Chi; Park, Sung-Hyun; Hoffman, Carol; Philip, Cecil; Robinson, Linda; West, James; Grunig, Gabriele

    2013-01-16

    The function of the right heart is to pump blood through the lungs, thus linking right heart physiology and pulmonary vascular physiology. Inflammation is a common modifier of heart and lung function, by elaborating cellular infiltration, production of cytokines and growth factors, and by initiating remodeling processes. Compared to the left ventricle, the right ventricle is a low-pressure pump that operates in a relatively narrow zone of pressure changes. Increased pulmonary artery pressures are associated with increased pressure in the lung vascular bed and pulmonary hypertension. Pulmonary hypertension is often associated with inflammatory lung diseases, for example chronic obstructive pulmonary disease, or autoimmune diseases. Because pulmonary hypertension confers a bad prognosis for quality of life and life expectancy, much research is directed towards understanding the mechanisms that might be targets for pharmaceutical intervention. The main challenge for the development of effective management tools for pulmonary hypertension remains the complexity of the simultaneous understanding of molecular and cellular changes in the right heart, the lungs and the immune system. Here, we present a procedural workflow for the rapid and precise measurement of pressure changes in the right heart of mice and the simultaneous harvest of samples from heart, lungs and immune tissues. The method is based on the direct catheterization of the right ventricle via the jugular vein in close-chested mice, first developed in the late 1990s as surrogate measure of pressures in the pulmonary artery. The organized team-approach facilitates a very rapid right heart catheterization technique. This makes it possible to perform the measurements in mice that spontaneously breathe room air. The organization of the work-flow in distinct work-areas reduces time delay and opens the possibility to simultaneously perform physiology experiments and harvest immune, heart and lung tissues. The

  7. Right Lung Agenesis with Tracheal Stenosis due to Complete Tracheal Rings and Postpneumonectomy Like Syndrome Treated with Tissue Expander Placement

    PubMed Central

    2016-01-01

    Congenital lung agenesis is an extremely rare condition with an estimated prevalence of 34 in 1,000,000 live births. It is often associated with other congenital malformations of the skeletal, cardiovascular, urogenital, and gastrointestinal systems. We discuss the case of a 5-month-old who presented with increasing stridor over 1 month. Imaging revealed right lung agenesis, complete dextromalposition of heart, and compression of distal trachea. An intrathoracic saline tissue expander was placed which marked improved distal tracheal stenosis. In patients who are symptomatic it becomes imperative to perform surgeries to increase survival as was the case in this patient. PMID:27882259

  8. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues.

    PubMed

    Hirota, Takeshi; Date, Yuko; Nishibatake, Yu; Takane, Hiroshi; Fukuoka, Yasushi; Taniguchi, Yuuji; Burioka, Naoto; Shimizu, Eiji; Nakamura, Hiroshige; Otsubo, Kenji; Ieiri, Ichiro

    2012-07-01

    Dihydropyrimidine dehydrogenase (DPD) is important to the antitumor effect of 5-fluorouracil (5-FU). DPD gene (DPYD) expression in tumors is correlated with sensitivity to 5-FU. Because the 5-FU accumulated in cancer cells is also rapidly converted into inactivated metabolites through catabolic pathways mediated by DPD, high DPD activity in cancer cells is an important determinant of the response to 5-FU. DPD activity is highly variable and reduced activity causes a high risk of 5-FU toxicity. Genetic variation in DPYD has been proposed as the main factor responsible for the variation in DPD activity. However, only a small proportion of the activity of DPD can be explained by DPYD mutations. In this study, we found that DPYD is a target of the following microRNAs (miRNA): miR-27a, miR-27b, miR-134, and miR-582-5p. In luciferase assays with HepG2 cells, the overexpression of these miRNAs was associated with significantly decreased reporter activity in a plasmid containing the 3'-UTR of DYPD mRNA. The level of DPD protein in MIAPaca-2 cells was also significantly decreased by the overexpression of these four miRNAs. The results suggest that miR-27a, miR-27b, miR-134, and miR-582-5p post-transcriptionally regulate DPD protein expression. The levels of miRNAs in normal lung tissue and lung tumors were compared; miR-27b and miR-134 levels were significantly lower in the tumors than normal tissue (3.64 ± 4.02 versus 9.75 ± 6.58 and 0.64 ± 0.75 versus 1.48 ± 1.39). DPD protein levels were significantly higher in the tumors. Thus, the decreased expression of miR-27b would be responsible for the high levels of DPD protein. This study is the first to show that miRNAs regulate the DPD protein, and provides new insight into 5-FU-based chemotherapy.

  9. Evaluating Radioprotective Effect of Hesperidin on Acute Radiation Damage in the Lung Tissue of Rats

    PubMed Central

    Rezaeyan, A.; Fardid, R.; Haddadi, G.H.; Takhshid, M.A.; Hosseinzadeh, M.; Najafi, M.; Salajegheh, A.

    2016-01-01

    Background: Oxidative stress plays an important role in the pathogenesis and progression of γ-irradiation-induced cellular damage, Lung is a radiosensitive organ and its damage is a dose-limiting factor in radiotherapy. The administration of dietary antioxidants has been suggested to protect against the succeeding tissue damage. The present study aimed to evaluate the radioprotective efficacy of Hesperidin (HES) against γ-irradiation-induced tissue damage in the lung of male rats. Materials and Methods: Thirty two rats were divided into four groups. Rats in Group 1 received PBS and underwent sham irradiation. Rats in Group 2 received HES and underwent sham irradiation. Rats in Group 3 received PBS and underwent γ-irradiation. Rats in Group 4 received HES and underwent γ-irradiation. These rats were exposed to γ-radiation 18 Gy using a single fraction cobalt-60 unit, and were administered HES (100 mg/kg/d, b.w, orally) for 7 days prior to irradiation. Rats in each group were sacrificed 24 hours after radiotherapy (RT) for the determination of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and histopathological evaluations. Results: Compared to group 1, the level of SOD and GSH significantly decreased and MDA level significantly increased in group 3 at 24 h following irradiation, (p=0.001, p<0.001, p=0.001), respectively. A statistically significant difference in all parameters was observed for rats in group 4 as compared to group 3 (p<0.05). Histopathological results 24 hours after RT showed that radiation has increased inflammation, lymphocyte, macrophage and neutrophil compared to group 1 ( p<0.0125). Oral administration of HES before RT significantly decreased macrophage and neutrophil when compared to group 3 (p<0.0125), but partly there was inflammation and lymphocyte that indicated there was no significant difference when compared to group 3 (p>0.0125). Conclusion: Oral administration of HES was found to offer protection against

  10. Tea polyphenols prevent lung from preneoplastic lesions and effect p53 and bcl-2 gene expression in rat lung tissues.

    PubMed

    Gu, Qihua; Hu, Chengping; Chen, Qiong; Xia, Ying

    2013-01-01

    Lung cancer is one of the cancers that have the highest incidence and the highest mortality rate, and it is of great interest to identify ways to prevent its occurrence. We had established an animal model by using 3,4-benzopyrene intra-pulmonary injection in our previous study, and had observed that the rats lung carcinoma incidence and multiplicity were significantly reduced by green tea administration. This study further investigated the effect of tea polyphenols on rat lung preneoplastic lesions using the lung carcinoma model established by 3,4-benzopyrene intra-pulmonary injection. Sprague-Dawley rats of the same age were randomly divided into 10 groups and treated with 3,4-benzopyrene by intra-pulmonary injection. Five groups were given 0.3% solution of tea polyphenols (equivalent to 1.2% of green tea) in drinking water, while the other 5 groups were given pure drinking water. The rats were sacrificed at 0, 1, 4, 8 and 16 weeks after carcinogen treatment. In the control groups of rats, local bronchial inflammation were observed at 1 week after 3,4-benzopyrene treatment. From 4 weeks to 16 weeks after carcinogen treatment, hyperplasia, cell hyperproliferation, heterogeneity were observed in the bronchial epithelium. Meanwhile, the expression of p53 mRNA and protein, as well as the level of bcl-2, increased in the bronchial epithelial lesion. Tea polyphenols treatment significantly alleviated the bronchial epithelial lesions. At the same time, tea polyphenols treatment enhanced p53 expression, but reduced bcl-2 expression. These results indicated that tea polyphenols may have preventive effect against lung preneoplasm lesions, possibly through regulating the expression of some critical genes such as p53 and bcl-2.

  11. Comparative transcriptomics and gene expression in larval tiger salamander (Ambystoma tigrinum) gill and lung tissues as revealed by pyrosequencing.

    PubMed

    Eo, Soo Hyung; Doyle, Jacqueline M; Hale, Matthew C; Marra, Nicholas J; Ruhl, Joseph D; DeWoody, J Andrew

    2012-01-25

    Biologists are beginning to unravel the complexities of gene expression in model organisms by studying the transcriptome, the complement of genes that are transcribed in a given tissue. It is unclear, however, if findings from model systems apply to non-model organisms because of environmental effects on gene expression. Furthermore, there have been few efforts to quantify how transcriptome or gene expression varies across individuals and across tissues in natural environments. Herein, we describe transcriptomic profiling of gene expression in lung and gill tissue of three larval tiger salamanders. We do so with a hierarchical experimental design that captures variation in expression among genes, among tissues, and among individuals. Using 454 pyrosequencing, we produced high-quality sequence data of 59 megabases and assembled ~200,000 reads into 19,501 contigs. These contigs BLASTed to 3,599 transcripts, of which 721 were expressed in both tissues, 1,668 were unique to gill, and 1,210 unique to lung. Our data showed tissue-specific patterns in gene expression level with variation among transcripts and individuals. We identified genes and gene ontology terms related to respiration and compared their relative expression levels between gill and lung tissues. We also found evidence of exogenous genes associated with larval salamanders, and we identified ~1400 potential molecular markers (microsatellites and single nucleotide polymorphisms) that are associated with expressed genes. Given the tissue-specific differences we observed in transcriptomes, these data reinforce the idea that changes in gene expression serve as a primary mechanism underlying phenotypic plasticity.

  12. Use of human lung tissue for studies of structural changes associated with chronic ozone exposure: opportunities and critical issues.

    PubMed Central

    Lippmann, M

    1993-01-01

    Definitive information on the chronic effects of exposure to ozone (O3) in humans is not available. There is a strong concern that ozone could produce chronic lung damage in humans on the basis that exposures are ubiquitous at levels that produce transient symptoms, function deficits, and lung inflammation in humans and chronic lung damage in laboratory animals. Both prospective and national population surveys suggest an association between chronic O3 exposure and reduced lung function, and a pilot investigation of autopsied lungs of accident victims in Los Angeles reported an unexpectedly high incidence of disease in the centriacinar region, the lung region known to receive the highest dose of inhaled O3. This paper discusses the advantages and limitations of further studies of structural changes in human lung tissue in relation to chronic O3 exposure. The major advantages of such studies are that a) measurable effects may be related to realistic chronic exposures, b) the effects may be described quantitatively and compared directly to those obtained in chronic animal inhalation exposures, and c) evidence for chronic effects may be obtained much more rapidly than in prospective studies. The major limitations are the difficulties in obtaining sufficient reliable information on residential history, physical activity out-of-doors, and smoking and other confounding exposures to lung irritants from next of kin, and limited availability of adequate air quality data for determining ambient concentrations at places of residence and/or outdoor exercise. The paper also discusses approaches to minimizing these limitations in the design of specific studies. PMID:8206033

  13. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69).

    PubMed

    Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D

    2010-04-01

    This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Undifferentiated connective tissue disease and interstitial lung disease: Trying to define patterns.

    PubMed

    Alberti, María Laura; Paulin, Francisco; Toledo, Heidegger Mateos; Fernández, Martín Eduardo; Caro, Fabián Matías; Rojas-Serrano, Jorge; Mejía, Mayra Edith

    2016-12-12

    To identify clinical or immunological features in patients with undifferentiated connective tissue disease (UCTD) associated interstitial lung disease (ILD), in order to group them and recognize different functional and high resolution computed tomography (HRCT) behavior. Retrospective cohort study. Patients meeting Kinder criteria for UCTD were included. We defined the following predictive variables: 'highly specific' connective tissue disease (CTD) manifestations (Raynaud's phenomenon, dry eyes or arthritis), high antinuclear antibody (ANA) titer (above 1: 320), and 'specific' ANA staining patterns (centromere, cytoplasmic and nucleolar patterns). We evaluated the following outcomes: change in the percentage of the predicted forced vital capacity (FVC%) during the follow-up period, and HRCT pattern. Sixty-six patients were included. Twenty-nine (43.94%) showed at least one 'highly specific' CTD manifestation, 16 (28.57%) had a 'specific' ANA staining pattern and 29 (43.94%) high ANA titer. Patients with 'highly specific' CTD manifestations were younger (mean [SD] 52 years [14.58] vs 62.08 years [9.46], P<.001), were more likely men (10.34% vs 48.65%, P<.001) and showed a smaller decline of the FVC% (median [interquartile range] 1% [-1 to 10] vs -6% [-16 to -4], P<.006). In the multivariate analysis, the presence of highly specific manifestations was associated with improvement in the FVC% (B coefficient of 13.25 [95% confidence interval, 2.41 to 24.09]). No association was observed in relation to the HRCT pattern. The presence of 'highly specific' CTD manifestations was associated with female sex, younger age and better functional behavior. These findings highlight the impact of the clinical features in the outcome of patients with UCTD ILD. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  15. Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells.

    PubMed

    Chen, Chao; Liu, Jia-Bao; Bian, Zhi-Ping; Xu, Jin-Dan; Wu, Heng-Fang; Gu, Chun-Rong; Shi, Yi; Zhang, Ji-Nan; Chen, Xiang-Jian; Yang, Di

    2014-01-01

    Cardiac troponin I (cTnI) is the only sarcomeric protein identified to date that is expressed exclusively in cardiac muscle. Its expression in cancer tissues has not been reported. Herein, we examined cTnI expression in non-small cell lung cancer (NSCLC) tissues, human adenocarcinoma cells SPCA-1 (lung) and BGC 823 (gastric) by immunohistochemistry, western blot analysis and real-time PCR. Immunopositivity for cTnI was demonstrated in 69.4% (34/49) NSCLC tissues evaluated, and was strong intensity in 35.3% (6/17) lung squamous cell carcinoma cases. The non-cancer-bearing lung tissues except tuberculosis (9/9, 100%) showed negative staining for cTnI. Seven monoclonal antibodies (mAbs) against human cTnI were applied in immunofluorescence. The result showed that the staining pattern within SPCA-1 and BGC 823 was dependent on the epitope of the cTnI mAbs. The membrane and nucleus of cancer cells were stained by mAbs against N-terminal peptides of cTnI, and cytoplasm was stained by mAbs against the middle and C-terminal peptides of cTnI. A ~25 kD band was identified by anti-cTnI mAb in SPCA-1 and BGC 823 extracts by western blot, as well as in cardiomyocyte extracts. The cTnI mRNA expressions in SPCA-1 and BGC 823 cells were about ten thousand times less than that in cardiomyocytes. Our study shows for the first time that cTnI protein and mRNA were abnormally expressed in NSCLC tissues, SPCA-1 and BGC 823 cells. These findings challenge the conventional view of cTnI as a cardiac-specific protein, enabling the potential use of cTnI as a diagnostic marker or targeted therapy for cancer.

  16. Brain Tissue Oxygen Monitoring and the Intersection of Brain and Lung: A Comprehensive Review.

    PubMed

    Ngwenya, Laura B; Burke, John F; Manley, Geoffrey T

    2016-09-01

    Traumatic brain injury is a problem that affects millions of Americans yearly and for which there is no definitive treatment that improves outcome. Continuous brain tissue oxygen (PbtO2 ) monitoring is a complement to traditional brain monitoring techniques, such as intracranial pressure and cerebral perfusion pressure. PbtO2 monitoring has not yet become a clinical standard of care, due to several unresolved questions. In this review, we discuss the rationale and technology of PbtO2 monitoring. We review the literature, both historic and current, and show that continuous PbtO2 monitoring is feasible and useful in patient management. PbtO2 numbers reflect cerebral blood flow and oxygen diffusion. Thus, continuous monitoring of PbtO2 yields important information about both the brain and the lung. The preclinical and clinical studies demonstrating these findings are discussed. In this review, we demonstrate that patient management in a PbtO2 -directed fashion is not the sole answer to the problem of treating traumatic brain injury but is an important adjunct to the armamentarium of multimodal neuromonitoring.

  17. Ubiquitination of tissue transglutaminase is modulated by interferon alpha in human lung cancer cells.

    PubMed Central

    Esposito, Carla; Marra, Monica; Giuberti, Gaia; D'Alessandro, Anna Maria; Porta, Raffaele; Cozzolino, Anna; Caraglia, Michele; Abbruzzese, Alberto

    2003-01-01

    The addition of 2500 i.u./ml interferon alpha (IFNalpha) for 48 h induced apoptosis, and caused an approx. 4-fold increase in the activity and expression of tissue transglutaminase (tTG), in human lung cancer H1355 cells. However, the increase in mRNA levels for tTG was just 1.6-fold. On the basis of these data, we investigated whether tTG levels may be regulated through regulation of its degradation via ubiquitination. It was found that 2500 i.u./ml IFNalpha induced a time-dependent decrease in tTG ubiquitination. On the other hand, addition of the proteasome inhibitor lactacystin led to accumulation of the ubiquitinated form of the enzyme and to a consequent increase in its expression. Treatment of the cells with the two agents combined antagonized the accumulation of the ubiquitinated isoforms of tTG induced by lactacystin and caused a potentiation of tTG expression. Moreover, the tTG inducer retinoic acid was also able to cause increased expression and ubiquitination of tTG in H1355 cells. The addition of monodansylcadaverine (a tTG inhibitor) to IFNalpha-treated H1355 cells completely antagonized growth inhibition and apoptosis induced by the cytokine. In conclusion, we demonstrate for the first time that tTG is ubiquitinated and degraded by a proteasome-dependent pathway. Moreover, IFNalpha can, at least in part, induce apoptosis through the modulation of this pathway. PMID:12401132

  18. Treatment of connective tissue disease-associated interstitial lung disease: the pulmonologist's point of view.

    PubMed

    Koo, So-My; Uh, Soo-Taek

    2017-07-01

    Interstitial lung disease (ILD) occurs in 15% of patients with collagen vascular disease (CVD), referred to as connective tissue disease (CTD). Despite advances in management strategies, ILD continues to be a significant cause of mortality in patients with CVD-associated ILD (CTD-ILD). There is a lack of randomized, clinical trials assessing pharmacological agents for CTD-ILD, except in cases of ILD-associated systemic sclerosis (SSc). This may be due to the lack of CTD cases available, the difficulty of histological confirmation of ILD, and the various types of CTD and ILD. As a result, evidence-based pharmacological treatment of CTD-ILD is not yet well established. CTD-ILD presents with varying degrees of histology, from inflammation to fibrosis, and a wide spectrum of clinical manifestations, from minimal symptoms to respiratory failure. This renders it difficult for clinicians to make decisions regarding treatment options, observational strategies, optimal timing for interventions, and the appropriateness of pharmacological agents for treatment. There is no specific treatment for reversing fibrosis-like idiopathic pulmonary fibrosis in a clinical setting. This review describes pharmacological interventions for SSc-ILD described in randomized control trials, and presents an overview of recent advances of CTD-ILD-dependent treatments based on the types of CTD.

  19. Periostin facilitates eosinophil tissue infiltration in allergic lung and esophageal responses.

    PubMed

    Blanchard, C; Mingler, M K; McBride, M; Putnam, P E; Collins, M H; Chang, G; Stringer, K; Abonia, J P; Molkentin, J D; Rothenberg, M E

    2008-07-01

    Periostin is an extracellular matrix protein that has been primarily studied in the context of the heart, where it has been shown to promote cardiac repair and remodeling. In this study, we focused on the role of periostin in an allergic eosinophilic inflammatory disease (eosinophilic esophagitis (EE)) known to involve extensive tissue remodeling. Periostin was indeed markedly overexpressed (35-fold) in the esophagus of EE patients, particularly in the papillae, compared with control individuals. Periostin expression was downstream from transforming growth factor-beta and interleukin-13, as these cytokines were elevated in EE esophageal samples and markedly induced periostin production by primary esophageal fibroblasts (107- and 295-fold, respectively, at 10 ng ml(-1)). A functional role for periostin in eliciting esophageal eosinophilia was demonstrated, as periostin-null mice had a specific defect in allergen-induced eosinophil recruitment to the lungs and esophagus (66 and 72% decrease, respectively). Mechanistic analyses revealed that periostin increased (5.8-fold) eosinophil adhesion to fibronectin. As such, these findings extend the involvement of periostin to esophagitis and uncover a novel role for periostin in directly regulating leukocyte (eosinophil) accumulation in T helper type 2-associated mucosal inflammation in both mice and humans.

  20. Lung Ultrasonography in the Evaluation of Interstitial Lung Disease in Systemic Connective Tissue Diseases: Criteria and Severity of Pulmonary Fibrosis - Analysis of 52 Patients.

    PubMed

    Buda, N; Piskunowicz, M; Porzezińska, M; Kosiak, W; Zdrojewski, Z

    2016-08-01

    Patients with a diagnosed systemic connective tissue disease require regular monitoring from the point of view of interstitial lung disease. The main aim of this work is a description of the criteria for pulmonary fibrosis and the degree of the severity of the fibrosis during the course of interstitial lung disease through the TLU (transthoracic lung ultrasound). 52 patients with diagnosed diffuse interstitial lung disease were qualified for this research, together with 50 volunteers in the control group. The patients in both groups were over 18 years of age and were of both sexes. The results of the TLU of the patients underwent statistical analysis and were compared to High-Resolution Computed Tomography (HRCT) results. As a consequence of the statistical analysis, we defined our own criteria for pulmonary fibrosis in TLU: irregularity of the pleura line, tightening of the pleura line, the fragmentary nature of the pleura line, blurring of the pleura line, thickening of the pleura line, artifacts of line B ≤ 3 and ≥ 4, artifacts of Am line and subpleural consolidations < 5 mm. As a result of the conducted research, a scale of severity of pulmonary fibrosis in TLU was devised (UFI - Ultrasound Fibrosis Index), enabling a division to be made into mild, moderate and severe cases. Transthoracic Lung Ultrasonography (TLU) gives a new outlook on the diagnostic possibilities, non-invasive and devoid of ionising radiation, of pulmonary fibrosis. This research work has allowed to discover two new ultrasound symptoms of pulmonary fibrosis (blurred pleural line and Am lines). © Georg Thieme Verlag KG Stuttgart · New York.

  1. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm2) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ˜1 cm). For the phantom, square fields of 1 × 1 cm2, 3 × 3 cm2, or 5 × 5 cm2 were applied. However, in the patient, 3 × 1 cm2, 3 × 2 cm2, 3 × 2.5 cm2, or 3 × 3 cm2 field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was

  2. Decay-accelerating factor mitigates controlled hemorrhage-instigated intestinal and lung tissue damage and hyperkalemia in swine.

    PubMed

    Dalle Lucca, Jurandir J; Simovic, Milomir; Li, Yansong; Moratz, Chantal; Falabella, Michael; Tsokos, George C

    2011-07-01

    Activation of complement system has been associated with tissue injury after hemorrhage and resuscitation in rats and swine. This study investigated whether administration of human recombinant decay-accelerating factor (DAF; a complement regulatory protein that inhibits classical and alternative pathways) reduces tissue damage in a porcine model of hemorrhagic shock. Male Yorkshire swine assigned to four groups were subjected to controlled, isobaric hemorrhage over 15 minutes to a target mean arterial pressure of 35 mm Hg. Hypotension was maintained for 20 minutes followed by a bolus intravenous injection of DAF or vehicle and then animals were observed for 200 minutes. Blood chemistry and physiologic parameters were recorded. Tissue samples from lung and small intestine were subjected to histopathological evaluation and detection of tissue deposition of complement proteins by immunohistochemistry and Western blot analyses. Administration of DAF significantly reduced intestinal and lung tissue damage in a dose-dependent manner (5, 25, and 50 μg/kg). In addition, DAF treatment improved hemorrhage-induced hyperkalemia. The protective effects of DAF appear to be related to its ability to reduce tissue complement activation and deposition on affected tissues. DAF treatment decreased tissue complement activation and deposition in hemorrhaged animals and attenuated tissue damage at 200 minutes after treatment. The observed beneficial effects of DAF treatment on tissue injury after 20 minutes of severe hypotension presents an attractive model of small volume resuscitation, particularly in situations with a restrictive medical logistical footprint such as far-forward access to first responders in the battlefield or in remote rural or mountainous environments.

  3. IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells.

    PubMed

    Bajaña, Sandra; Turner, Sean; Paul, Jinny; Ainsua-Enrich, Erola; Kovats, Susan

    2016-02-15

    Dendritic cells (DCs) initiate immune responses in barrier tissues including lung and skin. Conventional DC (cDC) subsets, CD11b(-) (cDC1s) or CD11b(+) (cDC2s), arise via distinct networks of transcription factors involving IFN regulatory factor 4 (IRF4) and IRF8, and are specialized for unique functional responses. Using mice in which a conditional Irf4 or Irf8 allele is deleted in CD11c(+) cells, we determined whether IRF4 or IRF8 deficiency beginning in CD11c(+) cDC precursors (pre-cDCs) changed the homeostasis of mature DCs or pre-DCs in the lung, dermis, and spleen. CD11c-cre-Irf4(-/-) mice selectively lacked a lung-resident CD11c(hi)CD11b(+)SIRPα(+)CD24(+) DC subset, but not other lung CD11b(+) DCs or alveolar macrophages. Numbers of CD11b(+)CD4(+) splenic DCs, but not CD11b(+) dermal DCs, were reduced, indicating cDC2s in the lung and dermis develop via different pathways. Irf4 deficiency did not alter numbers of cDC1s. CD11c-cre-Irf8(-/-) mice lacked lung-resident CD103(+) DCs and splenic CD8α(+) DCs, yet harbored increased IRF4-dependent DCs. This correlated with a reduced number of Irf8(-/-) pre-cDCs, which contained elevated IRF4, suggesting that Irf8 deficiency diverts pre-cDC fate. Analyses of Irf4 and Irf8 haploinsufficient mice showed that, although one Irf4 allele was sufficient for lung cDC2 development, two functional Irf8 alleles were required for differentiation of lung cDC1s. Thus, IRF8 and IRF4 act in pre-cDCs to direct the terminal differentiation of cDC1 and cDC2 subsets in the lung and spleen. These data suggest that variation in IRF4 or IRF8 levels resulting from genetic polymorphisms or environmental cues will govern tissue DC numbers and, therefore, regulate the magnitude of DC functional responses. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study.

    PubMed

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2011-02-21

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  5. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study

    PubMed Central

    Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2011-01-01

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual energy system used in this study can acquire up to 15 frame of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1 to 3.0 frames /sec). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual-energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy. PMID:21285477

  6. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study

    NASA Astrophysics Data System (ADS)

    Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2011-02-01

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  7. Gender-dependent expression of alpha and beta estrogen receptors in human nontumor and tumor lung tissue.

    PubMed

    Fasco, Michael J; Hurteau, Gregory J; Spivack, Simon D

    2002-02-25

    Estrogen receptor (ER) expression in human lung has been understudied, particularly in light of its potential biological importance in the female lung cancer epidemic. Reverse transcription-polymerase chain reaction was used to probe mRNA expression of wild-type ERalpha and ERbeta and their splice variants in human bronchogenic tumor and adjacent nontumor specimens. In tumor tissue from 13 women and 13 men, ERalpha was expressed in 85% of women versus 15% in men [P=0.001]. ERbeta was expressed equally in tumors from women versus men [92% vs. 69%, P=ns]. Both ERalpha and beta forms were expressed simultaneously in the lung tumors of 77% of women versus 15% of men [P=0.005]. Among adjacent nontumor lung specimens, 31% of the women expressed ERalpha mRNA versus 0% of men [P=0.101], and 39% of women expressed ERbeta mRNA versus 31% of men [P=ns]; only one woman and no men expressed both ERalpha and beta in nontumor tissue. Females expressed ERalpha [P=0.017], ERbeta [P=0.013], and ERalpha+beta [P=0.002] more frequently in tumor versus nontumor tissue, whereas in males expression of ERalpha, beta and both alpha+beta was not clearly different for tumor versus nontumor tissue. In specimens expressing ERalpha mRNA, the transcript lacking exon 7 (delta7) was the major splice variant with varying contributions from the transcripts delta4, delta3+4, delta5 and others unidentified. Alternative splicing of ERbeta mRNA was observed, but not to as great an extent as for ERalpha mRNA. ERalpha promoter usage in tumors varied among individuals. When the ER receptors were co-expressed in tumors, ERalpha was quantitatively more abundant in the majority of cases than ERbeta. Within this small group of 26 patients, no correlation was found between age, smoking history, plasma nicotine, cotinine, estradiol concentrations or histopathologic type with tumor or nontumor estrogen receptor status of any type. However, several positive correlations imply that: (1) ERalpha expression occurs

  8. Individualized Radical Radiotherapy of Non-Small-Cell Lung Cancer Based on Normal Tissue Dose Constraints: A Feasibility Study

    SciTech Connect

    Baardwijk, Angela van Bosmans, Geert; Boersma, Liesbeth; Wanders, Stofferinus; Dekker, Andre; Dingemans, Anne Marie C.; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Simons, Jean; Lambin, Philippe; Ruysscher, Dirk de

    2008-08-01

    Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissue dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.

  9. Response of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue

    SciTech Connect

    Henderson, R.F.; Pickrell, J.A.; Jones, R.K.; Sun, J.D.; Benson, J.M.; Mauderly, J.L.; McClellan, R.O.

    1988-10-01

    The effect of long-term (24 months) inhalation of diesel exhaust on the bronchoalveolar region of the respiratory tract of rodents was assessed by serial (every 6 months) analysis of bronchoalveolar lavage fluid (BALF) and of lung tissue from F344/Crl rats and CD-1 mice (both sexes) exposed to diesel exhaust diluted to contain 0, 0.35, 3.5, or 7.0 mg soot/m3. The purpose of the study was twofold. One was to assess the potential health effects of inhaling diluted exhaust from light-duty diesel engines. The second was to determine the usefulness of BALF analysis in detecting the early stages in the development of nononcogenic lung disease and differentiating them from the normal repair processes. No biochemical or cytological changes in BALF or in lung tissue were noted in either species exposed to the lowest, and most environmentally relevant, concentration of diesel exhaust. In the two higher levels of exposure, a chronic inflammatory response was measured in both species by dose-dependent increases in inflammatory cells, cytoplasmic and lysosomal enzymes, and protein in BALF. Histologically, after 1 year of exposure, the rats had developed focal areas of fibrosis associated with the deposits of soot, while the mice, despite a higher lung burden of soot than the rats, had only a fine fibrillar thickening of an occasional alveolar septa in the high-level exposure group. Higher increases in BALF beta-glucuronidase activity and in hydroxyproline content accompanied the greater degree of fibrosis in the rat. BALF levels of glutathione (GSH) and glutathione reductase activity increased in a dose-dependent fashion and were higher in mice than in rats. Lung tissue GSH was depleted in a dose-dependent fashion in rats but was slightly increased in mice.

  10. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directional block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.

  11. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue.

    PubMed

    Samarghandian, Saeed; Borji, Abasalt; Afshari, Reza; Delkhosh, Mohammad Bagher; gholami, Ali

    2013-07-01

    Despite the wide spread of lead environmental pollution, the effect of this heavy metal on respiratory disease was not shown yet. In respect to increased oxidative stress is an important mechanism in the pathogenesis of respiratory disease, the present study was designed to examine the association between lead toxicity and lung disease via measuring oxidative stress biomarkers in bronchoalveolar lavage fluid (BALF) and lung tissue of rat. For this aim, 32 rats were divided into the following groups of eight animals each: control, three lead tested (received lead acetate in the drinking water for a period of 14 d at concentrations of 250, 500 and 1000 ppm) groups. At the end of the 2 week period, malondialdehyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) contents were measured to assess free radical activity in the BALF and lung tissue. Superoxide dismutase (SOD) was also determined. A significant dose-dependent increase in the BALF supernatant and lung homogenate levels of MDA and NO with decrease GSH level and SOD activity were observed in the lead-treated groups compared with the control group (p < 0.05). Thus, lead acetate may be contributed to respiratory disorders via increased oxidative stress.

  12. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    PubMed

    Liu, Yansheng; Luo, Xiaoyang; Hu, Haichuan; Wang, Rui; Sun, Yihua; Zeng, Rong; Chen, Haiquan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC) can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA) and Multiple reaction monitoring (MRM) assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG) and Leucine-rich alpha-2-glycoprotein (LRG1), two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  13. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy

    PubMed Central

    Pascolo, Lorella; Gianoncelli, Alessandra; Schneider, Giulia; Salomé, Murielle; Schneider, Manuela; Calligaro, Carla; Kiskinova, Maya; Melato, Mauro; Rizzardi, Clara

    2013-01-01

    Asbestos is a potent carcinogen associated with malignant mesothelioma and lung cancer but its carcinogenic mechanisms are still poorly understood. Asbestos toxicity is ascribed to its particular physico-chemical characteristics, and one of them is the presence of and ability to adsorb iron, which may cause an alteration of iron homeostasis in the tissue. This observational study reports a combination of advanced synchrotron-based X-ray imaging and micro-spectroscopic methods that provide correlative morphological and chemical information for shedding light on iron mobilization features during asbestos permanence in lung tissue. The results show that the processes responsible for the unusual distribution of iron at different stages of interaction with the fibres also involve calcium, phosphorus and magnesium. It has been confirmed that the dominant iron form present in asbestos bodies is ferritin, while the concurrent presence of haematite suggests alteration of iron chemistry during asbestos body permanence. PMID:23350030

  14. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    SciTech Connect

    Zhang, Q; Lei, Y; Zheng, D; Zhu, X; Wahl, A; Lin, C; Zhou, S; Zhen, W

    2015-06-15

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness were created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.

  15. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    PubMed Central

    2011-01-01

    Introduction Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student's t-test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results Thirty-one ARDS patients (A: PaO2/FiO2 ≤200, 45 ± 14 years, 16 males) and 11 controls (C: 52 ± 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 ± 27.2%, C:76.7 ± 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 ± 35.2%, C:21.8 ± 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 ± 54.3 μm, C:86.4 ± 33.3 μm, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P ≤0.03). The extension of normal epithelium

  16. Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife.

    PubMed

    Kang, Ki Mun; Jeong, Bae Kwon; Choi, Hoon-Sik; Yoo, Seung Hoon; Hwang, Ui-Jung; Lim, Young Kyung; Jeong, Hojin

    2015-09-08

    We have investigated the combined effect of tissue heterogeneity and its variation associated with geometric error in stereotactic body radiotherapy (SBRT) for lung cancer. The treatment plans for eight lung cancer patients were calculated using effective path length (EPL) correction and Monte Carlo (MC) algorithms, with both having the same beam configuration for each patient. These two kinds of plans for individual patients were then subsequently recalculated with adding systematic and random geometric errors. In the ordinary treatment plans calculated with no geometric offset, the EPL calculations, compared with the MC calculations, largely overestimated the doses to PTV by ~ 21%, whereas the overestimation were markedly lower in GTV by ~ 12% due to relatively higher density of GTV than of PTV. When recalculating the plans for individual patients with assigning the systematic and random geometric errors, no significant changes in the relative dose distribution, except for overall shift, were observed in the EPL calculations, whereas largely altered in the MC calculations with a consistent increase in dose to GTV. Considering the better accuracy of MC than EPL algorithms, the present results demonstrated the strong coupling of tissue heterogeneity and geometric error, thereby emphasizing the essential need for simultaneous correction for tissue heterogeneity and geometric targeting error in SBRT of lung cancer.

  17. Tissue Optical Clearing, Three-Dimensional Imaging, and Computer Morphometry in Whole Mouse Lungs and Human Airways

    PubMed Central

    Scott, Gregory D.; Blum, Emily D.; Fryer, Allison D.

    2014-01-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy. PMID:24471696

  18. Diagnosis and Treatment of Connective Tissue Disease-Associated Interstitial Lung Disease

    PubMed Central

    Strek, Mary E.

    2013-01-01

    Interstitial lung disease (ILD) is one of the most serious pulmonary complications associated with connective tissue diseases (CTDs), resulting in significant morbidity and mortality. Although the various CTDs associated with ILD often are considered together because of their shared autoimmune nature, there are substantial differences in the clinical presentations and management of ILD in each specific CTD. This heterogeneity and the cross-disciplinary nature of care have complicated the conduct of prospective multicenter treatment trials and hindered our understanding of the development of ILD in patients with CTD. In this update, we present new information regarding the diagnosis and treatment of patients with ILD secondary to systemic sclerosis, rheumatoid arthritis, dermatomyositis and polymyositis, and Sjögren syndrome. We review information on risk factors for the development of ILD in the setting of CTD. Diagnostic criteria for CTD are presented as well as elements of the clinical evaluation that increase suspicion for CTD-ILD. We review the use of medications in the treatment of CTD-ILD. Although a large, randomized study has examined the impact of immunosuppressive therapy for ILD secondary to systemic sclerosis, additional studies are needed to determine optimal treatment strategies for each distinct form of CTD-ILD. Finally, we review new information regarding the subgroup of patients with ILD who meet some, but not all, diagnostic criteria for a CTD. A careful and systematic approach to diagnosis in patients with ILD may reveal an unrecognized CTD or evidence of autoimmunity in those previously believed to have idiopathic ILD. PMID:23460159

  19. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues.

    PubMed

    Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua; Zhang, Kezhong

    2010-10-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 μm, PM(2.5)) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM(2.5) exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM(2.5)-induced apoptosis. Furthermore, PM(2.5) exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM(2.5) exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM(2.5) exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis.

  20. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues

    PubMed Central

    Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F.; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua

    2010-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM2.5 exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM2.5-induced apoptosis. Furthermore, PM2.5 exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM2.5 exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM2.5 exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis. PMID:20554909

  1. Rituximab for the treatment of connective tissue disease-associated interstitial lung disease.

    PubMed

    Chartrand, Sandra; Swigris, Jeffrey J; Peykova, Lina; Fischer, Aryeh

    2016-01-15

    To describe our experience with rituximab (RTX) as treatment for a diverse spectrum of chronic connective tissue disease-associated interstitial lung disease (CTD-ILD). Twenty-four subjects with CTD-ILD were included. All had pulmonary function testing before and after their first RTX infusion. Each subject was evaluated in a multidisciplinary autoimmune and ILD outpatient clinic. Data were extracted by retrospective review of complete medical records. Most subjects were middle-aged white women with rheumatoid arthritis (RA) (n=15) and a nonspecific interstitial pneumonia (NSIP) pattern on high-resolution chest computed tomography scans (n=17). Sixteen subjects received a corticosteroid-sparing agent at the time of RTX initiation; mostly mycophenolate mofetil (n=8). RTX administration was not associated with corticosteroid-sparing effects: 13 subjects were on prednisone at the time of the initial RTX cycle, and 9 remained on prednisone at 6 months after (mean daily dosage 10.2±16.2 mg before vs. 5.6±11.0 mg after, p=0.27). RTX had no appreciable effect on pulmonary physiology; however, individual trajectories for percentage predicted forced vital capacity (FVC%) were highly variable. The underlying CTD (RA vs. non-RA) and ILD pattern did not appear to affect response to RTX. Among 14 subjects who received multiple RTX cycles, FVC% trajectories were variable: FVC% increased in eight and declined in six. Respiratory infections were the most common post-RTX adverse event. In this small, retrospective study of chronic CTD-ILD, RTX was not associated with changes in FVC% or corticosteroid-sparing effects. Controlled, prospective studies are needed to more confidently define the effects of RTX in CTD-ILD.

  2. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  3. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  4. When is pneumonia not pneumonia: a clinicopathologic study of the utility of lung tissue biopsies in determining the suitability of cadaveric tissue for donation.

    PubMed

    Kubilay, Zeynep; Layon, A Joseph; Baer, Herman; Archibald, Lennox K

    2016-06-01

    Healthcare-associated pneumonia (HCAP) represents a major diagnostic challenge because of the relatively low sensitivity and specificity of clinical criteria, radiological findings, and microbiologic culture results. It is often difficult to distinguish between pneumonia, underlying pulmonary disease, or conditions with pulmonary complications; this is compounded by the often-subjective clinical diagnosis of pneumonia. We conducted this study to determine the utility of post-mortem lung biopsies for diagnosing pneumonia in tissue donors diagnosed with pneumonia prior to death. Subjects were deceased patients who had been hospitalized at death and diagnosed with pneumonia. Post-mortem lung biopsies were obtained from the anatomic portion of the cadaveric lung corresponding to chest radiograph abnormalities. Specimens were fixed, stained with hematoxylin and eosin, and read by a single board-certified pathologist. Histological criteria for acute pneumonia included intense neutrophilic infiltration, fibrinous exudates, cellular debris, necrosis, or bacteria in the interstitium and intra-alveolar spaces. Of 143 subjects with a diagnosis of pneumonia at time of death, 14 (9.8 %) had histological evidence consistent with acute pneumonia. The most common histological diagnoses were emphysema (53 %), interstitial fibrosis (40 %), chronic atelectasis (36 %), acute and chronic passive congestion consistent with underlying cardiomyopathy (25 %), fibro-bullous disease (12 %), and acute bronchitis (11 %). HCAP represents a major diagnostic challenge because of the relatively low sensitivity and specificity of clinical criteria, radiological findings, and microbiologic testing. We found that attending physician-diagnosed pneumonia did not correlate with post-mortem pathological diagnosis. We conclude that histological examination of cadaveric lung tissue biopsies enables ascertainment or rule out of underlying pneumonia and prevents erroneous donor deferrals.

  5. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS)

    USDA-ARS?s Scientific Manuscript database

    Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG, IgM and leptospiral antigens. Three ...

  6. Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

    PubMed

    Huang, Min; Yang, Huifang; Zhu, Lingqin; Li, Honghui; Zhou, Jian; Zhou, Zhijun

    2016-11-01

    Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

  7. Assessment of regional non-linear tissue deformation and air volume change of human lungs via image registration.

    PubMed

    Jahani, Nariman; Yin, Youbing; Hoffman, Eric A; Lin, Ching-Long

    2014-05-07

    We evaluate the non-linear characteristics of the human lung via image registration-derived local variables based on volumetric multi-detector-row computed tomographic (MDCT) lung image data of six normal human subjects acquired at three inflation levels: 20% of vital capacity (VC), 60% VC and 80% VC. Local variables include Jacobian (ratio of volume change) and maximum shear strain for assessment of lung deformation, and air volume change for assessment of air distribution. First, the variables linearly interpolated between 20% and 80% VC images to reflect deformation from 20% to 60% VC are compared with those of direct registration of 20% and 60% VC images. The result shows that the linearly-interpolated variables agree only qualitatively with those of registration (P<0.05). Then, a quadratic (or linear) interpolation is introduced to link local variables to global air volumes of three images (or 20% and 80% VC images). A sinusoidal breathing waveform is assumed for assessing the time rate of change of these variables. The results show significant differences between two-image and three-image results (P<0.05). The three-image results for the whole lung indicate that the peak of the maximum shear rate occurs at about 37% of the maximum volume difference between 20% and 80% VC, while the peaks for the Jacobian and flow rate occur at 50%. This is in agreement with accepted physiology whereby lung tissues deform more at lower lung volumes due to lower elasticity and greater compliance. Furthermore, the three-image results show that the upper and middle lobes, even in the recumbent, supine posture, reach full expansion earlier than the lower lobes.

  8. [Effect of Spearmint oil on inflammation, oxidative alteration and Nrf2 expression in lung tissue of COPD rats].

    PubMed

    Zhao, Chun-zhen; Wang, Yan; Tang, Fa-di; Zhao, Xiao-jing; Xu, Qiao-ping; Xia, Jin-fang; Zhu, You-fa

    2008-07-01

    To investigate the effect of Spearmint oil on inflammation, oxidative alteration and Nrf2 expression in rats with chronic obstructive pulmonary disease(COPD). COPD model was induced by intratracheal instillation of Klebsiella pneumonia and lipopolysaccharide (LPS) for 12 weeks in rats, and COPD rats were treated with Spearmint oil for 3 weeks. After COPD was induced, the pathological changes, changes in leucocyte number in blood and bronchoalveolar lavage fluid (BALF), MDA in lung homogenate and Nrf2 expression were observed. The effects of Spearmint oil on these changes were determined. Spearmint oil 100 mg*kg(-1)significantly reduced leucocyte numbers in BALF, and attenuated bronchiolitis, pulmonary interstitial inflammation and inflammation cell infiltration. Spearmint oil 30-300 mg*kg(-1)decreased the destruction of pulmonary alveolus and the thickness of bronchioles walls, and inhibited goblet cell proliferation. Spearmint oil significantly reduced MDA in lung homogenate, and decreased the expression of Nrf2 protein in lung tissues. Spearmint oil has protective effect on lung injury in COPD rats, since it improves pulmonary inflammation,oxidative alteration, and enhances Nrf2 protein expression.

  9. Dynamic OCT monitoring and quantification of light penetration enhancement for normal, benign and cancerous human lung tissues at different concentrations of glycerol

    SciTech Connect

    Shu-wen Tan; Ying Jin; Hui Yu; Guo-yong Wu

    2013-10-31

    We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the human normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)

  10. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    PubMed

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10(5) human AD-MSCs, or EVs (released by 10(5) AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3(+)CD4(+) T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3(+)CD4(+) T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3(+)CD4(+) T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  11. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Zhaoguo; Wang, Yueping; Wang, Yaoqi; Ning, Qiaoqing; Zhang, Yong; Gong, Chunzhi; Zhao, Wenxiang; Jing, Guangjian; Wang, Qianqian

    2016-06-01

    Dexmedetomidine (Dex) is a highly selective α2-adrenergic receptor agonist that is widely used for sedation in intensive care units and in clinical anesthesia. Dex has also been shown to possess anti-inflammatory benefits. However, the underlying mechanism by which Dex relieves the inflammatory reaction in the lung tissues of septic mice has not been fully elucidated. In this study, we aimed to evaluate the protective effects and possible mechanism of Dex on the sepsis-induced lung inflammatory response in mice. Sepsis was induced in mice models through the intraperitoneal injection of lipopolysaccharide (LPS). The preemptive administration of Dex substantially abated sepsis-induced pulmonary edema, pulmonary histopathological changes, and NF-κB p65 activity. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both the mRNA and protein levels was also reduced. Moreover, these effects were significantly blocked by the α7 nicotinic acetylcholine receptor (α7nAChR) antagonist α-bungarotoxin (α-Bgt). α-Bgt aggravated pulmonary edema and pulmonary histopathological changes, as well as increased NF-κB p65 activity and TNF-α and IL-6 expression at both the mRNA and protein levels. The overall results demonstrate that Dex inhibits the LPS-induced inflammatory reaction in the lung tissues of septic mice partly through the α7nAChR-dependent cholinergic anti-inflammatory pathway.

  12. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract.

    PubMed

    Jang, Seong Soon; Kim, Hyeong Geug; Han, Jong Min; Lee, Jin Seok; Choi, Min Kyung; Huh, Gil Ja; Son, Chang Gue

    2015-02-01

    We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor β1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.

  13. Distribution of ceftiofur into Mannheimia haemolytica-infected tissue chambers and lung after subcutaneous administration of ceftiofur crystalline free acid sterile suspension.

    PubMed

    Washburn, K; Johnson, R; Clarke, C; Anderson, K

    2010-04-01

    The objective of this study was to evaluate the penetration of ceftiofur- and desfuroylceftiofur-related metabolites (DCA) into sterile and infected tissue chambers, lung tissue and disposition of DCA in plasma across four different sacrifice days postdosing. Twelve healthy calves were utilized following implantation with tissue chambers in the paralumbar fossa. Tissue chambers in each calf were randomly inoculated with either Mannheimia haemolytica or sterile PBS. All calves were dosed with ceftiofur crystalline free acid sterile suspension (CCFA-SS) subcutaneously in the ear pinna. Calves were randomly assigned to 4 groups of 3 to be sacrificed on days 3, 5, 7 and 9 postdosing. Prior to euthanasia, plasma and tissue chamber fluid were collected, and immediately following euthanasia, lung tissue samples were obtained from four different anatomical sites DCA concentration analysis. Results of our study found that, in general, DCA concentrations followed a rank order of plasma > infected tissue chamber fluid > noninfected tissue chamber fluid > lung tissue. Data also indicated DCA concentrations remained above the therapeutic threshold of 0.2 microg/mL for plasma and chamber fluid and 0.2 microg/g for lung tissue for at least 7 days post-treatment.

  14. High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.

  15. Lung tissue distribution after intravenous administration of grepafloxacin: comparative study with levofloxacin.

    PubMed

    Yamamoto, Hiroshi; Koizumi, Tomonobu; Hirota, Masao; Kaneki, Toshimichi; Ogasawara, Hitoshi; Yamazaki, Yoshitaka; Fujimoto, Keisaku; Kubo, Keishi

    2002-01-01

    The aim of the present study is to study the pharmacokinetics in plasma, lung lymph and bronchial washing fluid after intravenous infusion of grepafloxacin (GPFX), in comparison with those of levofloxacin (LVFX). Four conscious sheep with chronically instrumented lung lymph fistulas and tracheotomy were prepared. GPFX and LVFX concentrations in plasma and lung lymph after intravenous infusion of the drugs (10 mg/kg) for over 10 min were measured. In addition serial bronchial washing with 50 mL normal saline was performed to obtain epithelial lining fluid (ELF) at 2, 4, 6, 8, 12, 24 h after the intravenous administration. The time courses of lung lymph concentration were almost identical to those of the concomitant levels of both GPFX and LVFX in plasma, suggesting that both GPFX and LVFX could be easily moved from plasma to pulmonary interstitium and/or lung lymph circulation. However, GPFX concentrations of ELF were significantly higher than LVFX concentrations over time after the administration. In addition, intracellular concentrations in ELF of GPFX were also extremely high compared with those of LVFX. These results demonstrated that penetration of GPFX in bronchial wall, bronchial epithelium and/or phagocytic cells was superior to that of LVFX. These observations suggest that the pharmacokinetic characteristics of GPFX in the lung may provide a new insight into the strategy for clinical treatment of various pulmonary infections, especially cytotropic bacterial infections.

  16. Applications of tissue microarray technology in immunohistochemistry: a study on c-kit expression in small cell lung cancer.

    PubMed

    Donati, Valentina; Faviana, Pinuccia; Dell'omodarme, Matteo; Prati, Maria Cristina; Camacci, Tiziano; De Ieso, Katia; Giannini, Riccardo; Lucchi, Marco; Mussi, Alfredo; Pingitore, Raffaele; Basolo, Fulvio; Fontanini, Gabriella

    2004-11-01

    Tissue microarray technology allows the immediate evaluation of molecular profiles of numerous different tissues, with savings of money and time. It was created for rapid, large-scale molecular studies, and the main concern regarding its possible broad acceptance is that the analysis of tissue microarrays instead of whole tissue sections may lead to false negative or positive results because of tissue heterogeneity. In the present study, we analyzed in 54 small cell lung cancers, by immunohistochemistry, the expression of the antigen c-kit, which seems to be important in these neoplasms' tumorigenesis, and compared the staining obtained on whole sections with that of the corresponding tissue microarrays. Although c-kit expression of the whole sections agreed with that of the corresponding biopsies in many cases, the correlation between whole sections and all the companion nonlost single cores or their mean value turned out to be highly significant only if the 36 double negatives (ie, both whole sections and companion tissue microarrays negative) were included (P <0.0001). In fact, if only cases positive to at least 1 of the tests (i.e. whole sections or corresponding tissue microarrays positive) were considered, the correlation was not significant (P=0.055). Tissue microarrays showed a good specificity (94.2% for all single cores and 92.3% for their mean value) but a rather poor sensitivity (respectively, 69.4% and 71.4%). Moreover, a high percentage (13.4%) of cores was lost, and this loss was not random. To sum up, in our experience, tissue microarray technology cannot be a substitute for whole sections in clinical diagnosis of individual cases.

  17. Cardiovascular Involvement in Connective Tissue Disease: The Role of Interstitial Lung Disease

    PubMed Central

    Wang, XiaoBing; Lou, MeiNa; Li, Yongji; Ye, WenJing; Zhang, ZhiYong; Jia, Xiufen; Shi, HongYing; Zhu, XiaoChun; Wang, LiangXing

    2015-01-01

    Objective The aim of this study was to assess cardiovascular involvement in patients with connective tissue disease (CTD), and determine whether interstitial lung disease (ILD) in these patients is associated with elevated cardiovascular risk. Methods This study evaluated a retrospective cohort of 436 CTD patients admitted to a large teaching hospital in Zhejiang province, China, along with an additional 436 participants of an annual community health screening conducted in the physical examination center who served as age- and gender-matched controls. Demographic, clinical, serologic and imaging characteristics, as well as medications used by each participant were recorded. Cardiovascular involvement was defined by uniform criteria. Correlations between clinical/serologic factors and cardiovascular involvement were determined by univariate and multivariate analyses. Results CTD patients had a significantly higher cardiovascular involvement rate than controls (64.7% vs 23.4%), with higher rates of diabetes, hypertension, and hyperlipidemia, elevated systolic and diastolic pressures, C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol, and lower albumin and high-density lipoprotein cholesterol (all p < 0.05). Furthermore, CTP patients with cardiovascular involvement were significantly older, had higher systolic and diastolic pressures, C-reactive protein, glucose, and uric acid, higher rates of diabetes, hypertension, and use of moderate- to high-dose glucocorticoids, and longer disease duration compared to patients without involvement (all p < 0.05). Moreover, CTD in patients with cardiovascular involvement was more likely to be complicated by ILD (p < 0.01), which manifested as a higher alveolar inflammation score (p < 0.05). In the multivariate analysis, cardiovascular involvement in CTD patients was associated with age, systolic pressure, body mass index, uric acid, disease duration > 2 years, use of moderate- to high

  18. Cardiovascular involvement in connective tissue disease: the role of interstitial lung disease.

    PubMed

    Wang, XiaoBing; Lou, MeiNa; Li, Yongji; Ye, WenJing; Zhang, ZhiYong; Jia, Xiufen; Shi, HongYing; Zhu, XiaoChun; Wang, LiangXing

    2015-01-01

    The aim of this study was to assess cardiovascular involvement in patients with connective tissue disease (CTD), and determine whether interstitial lung disease (ILD) in these patients is associated with elevated cardiovascular risk. This study evaluated a retrospective cohort of 436 CTD patients admitted to a large teaching hospital in Zhejiang province, China, along with an additional 436 participants of an annual community health screening conducted in the physical examination center who served as age- and gender-matched controls. Demographic, clinical, serologic and imaging characteristics, as well as medications used by each participant were recorded. Cardiovascular involvement was defined by uniform criteria. Correlations between clinical/serologic factors and cardiovascular involvement were determined by univariate and multivariate analyses. CTD patients had a significantly higher cardiovascular involvement rate than controls (64.7% vs 23.4%), with higher rates of diabetes, hypertension, and hyperlipidemia, elevated systolic and diastolic pressures, C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol, and lower albumin and high-density lipoprotein cholesterol (all p < 0.05). Furthermore, CTP patients with cardiovascular involvement were significantly older, had higher systolic and diastolic pressures, C-reactive protein, glucose, and uric acid, higher rates of diabetes, hypertension, and use of moderate- to high-dose glucocorticoids, and longer disease duration compared to patients without involvement (all p < 0.05). Moreover, CTD in patients with cardiovascular involvement was more likely to be complicated by ILD (p < 0.01), which manifested as a higher alveolar inflammation score (p < 0.05). In the multivariate analysis, cardiovascular involvement in CTD patients was associated with age, systolic pressure, body mass index, uric acid, disease duration > 2 years, use of moderate- to high-dose glucocorticoids, and ILD with a high

  19. Lung cancer in uranium miners: A tissue resource and pilot study. Progress report, September 25, 1992--May 31, 1993

    SciTech Connect

    Samet, J.M.

    1993-05-01

    This project involves two related activities directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first activity involves a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second activity is a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives are to facilitate the investigation of molecular changes in radon exposed lung cancer cases and to develop methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and to assess the feasibility of recruiting former uranium miners into a longitudinal study that collects multiple biologic specimens.

  20. Repeated Intratracheal Instillation of PM10 Induces Lipid Reshaping in Lung Parenchyma and in Extra-Pulmonary Tissues

    PubMed Central

    Rizzo, Angela Maria; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health. PMID:25259850

  1. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Farina, Francesca; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  2. Psf3 is a prognostic biomarker in lung adenocarcinoma: a larger trial using tissue microarrays of 864 consecutive resections.

    PubMed

    Tauchi, Shunsuke; Sakai, Yasuhiro; Fujimoto, Shuntaro; Ogawa, Hiroyuki; Tane, Shinya; Hokka, Daisuke; Tanaka, Yugo; Nishio, Wataru; Yoshimura, Masahiro; Yanagita, Emmy; Itoh, Tomoo; Hayashi, Yoshitake; Maniwa, Yoshimasa

    2016-10-01

    Partner of Sld five (Psf) 3 is a member of the evolutionarily conserved heterotetrameric complex GINS (Go-Ichi-Ni-San). We previously reported that Psf3 could serve as a biomarker of poor prognosis in lung adenocarcinoma. Here, we used tissue microarrays to analyse Psf3 expression in lung adenocarcinoma and investigated whether its expression is associated with survival outcomes. The study included 864 consecutive patients with lung adenocarcinoma who underwent complete resection at Hyogo Cancer Center between January 2002 and December 2009. Tissue microarrays were prepared, and Psf3 was detected using mouse antihuman Psf3 primary monoclonal antibodies. The status of Psf3 expression was determined using these microarrays. Of the 864 patients, 375 had high-positive Psf3 expression and 489 had low-positive expression. Psf3 expression was significantly associated with age, sex, T factor, lymph node metastasis, stage and P factor. The 5-year disease-free survival (DFS) rate was significantly lower in patients with high-positive Psf3 expression than in those with low-positive expression, and Psf3 expression, sex, age, T factor and lymph node metastasis were identified as independent and significant prognostic determinants. Among patients with Stage I adenocarcinoma, the 5-year DFS rate was significantly lower in those with high-positive Psf3 expression than in those with low-positive expression, and Psf3 expression was the most powerful survival predictor. The present findings strengthened our previous data demonstrating that high Psf3 expression in primary lung adenocarcinoma plays an important role in disease progression and is a prognostic indicator, particularly in early-stage adenocarcinoma. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  3. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs

    SciTech Connect

    Xie Yaoqin; Chao Ming; Xing Lei

    2009-07-15

    Purpose: To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials: The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform method. The control point pairs were then sorted into different 'colors' according to the organs in which they resided and used to model the involved organs individually. A thin-plate spline method was used to register a structure characterized by the control points with a given 'color.' The proposed technique was applied to study a digital phantom case and 3 lung and 3 liver cancer patients. Results: For the phantom case, a comparison with the conventional thin-plate spline method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and standard deviation of the 15 points against the known ground truth were reduced from 3.0 to 0.5 mm and from 1.5 to 0.2 mm, respectively, when the new method was used. A similar level of improvement was achieved for the clinical cases. Conclusion: The results of our study have shown that the segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration.

  4. Quantification of Extracellular Matrix Proteins from a Rat Lung Scaffold to Provide a Molecular Readout for Tissue Engineering*

    PubMed Central

    Hill, Ryan C.; Calle, Elizabeth A.; Dzieciatkowska, Monika; Niklason, Laura E.; Hansen, Kirk C.

    2015-01-01

    The use of extracellular matrix (ECM)1 scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs. PMID:25660013

  5. Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling.

    PubMed

    Ito, Satoru; Ingenito, Edward P; Brewer, Kelly K; Black, Lauren D; Parameswaran, Harikrishnan; Lutchen, Kenneth R; Suki, Béla

    2005-02-01

    Enlargement of the respiratory air spaces is associated with the breakdown and reorganization of the connective tissue fiber network during the development of pulmonary emphysema. In this study, a mouse (C57BL/6) model of emphysema was developed by direct instillation of 1.2 IU of porcine pancreatic elastase (PPE) and compared with control mice treated with saline. The PPE treatment caused 95% alveolar enlargement (P = 0.001) associated with a 29% lower elastance along the quasi-static pressure-volume curves (P < 0.001). Respiratory mechanics were measured at several positive end-expiratory pressures in the closed-chest condition. The dynamic tissue elastance was 19% lower (P < 0.001), hysteresivity was 9% higher (P < 0.05), and harmonic distortion, a measure of collagen-related dynamic nonlinearity, was 33% higher in the PPE-treated group (P < 0.001). Whole lung hydroxyproline content, which represents the total collagen content, was 48% higher (P < 0.01), and alpha-elastin content was 13% lower (P = 0.16) in the PPE-treated group. There was no significant difference in airway resistance (P = 0.7). The failure stress at which isolated parenchymal tissues break during stretching was 40% lower in the PPE-treated mice (P = 0.002). These findings suggest that, after elastolytic injury, abnormal collagen remodeling may play a significant role in all aspects of lung functional changes and mechanical forces, leading to progressive emphysema.

  6. Isolation, in vitro culture and identification of a new type of mesenchymal stem cell derived from fetal bovine lung tissues.

    PubMed

    Hu, Pengfei; Pu, Yabin; Li, Xiayun; Zhu, Zhiqiang; Zhao, Yuhua; Guan, Weijun; Ma, Yuehui

    2015-09-01

    Lung‑derived mesenchymal stem cells (LMSCs) are considered to be important in lung tissue repair and regenerative processes. However, the biological characteristics and differentiation potential of LMSCs remain to be elucidated. In the present study, fetal lung‑derived mesenchymal stem cells (FLMSCs) were isolated from fetal bovine lung tissues by collagenase digestion. The in vitro culture conditions were optimized and stabilized and the self‑renewal ability and differentiation potential were evaluated. The results demonstrated that the FLMSCs were morphologically consistent with fibroblasts, were able to be cultured and passaged for at least 33 passages and the cell morphology and proliferative ability were stable during the first 10 passages. In addition, FLMSCs were found to express CD29, CD44, CD73 and CD166, however, they did not express hematopoietic cell specific markers, including CD34, CD45 and BOLA‑DRα. The growth kinetics of FLMSCs consisted of a lag phase, a logarithmic phase and a plateau phase, and as the passages increased, the proliferative ability of cells gradually decreased. The majority of FLMSCs were in G0/G1 phase. Following osteogenic induction, FLMSCs were positive for the expression of osteopontin and collagen type I α2. Following neurogenic differentiation, the cells were morphologically consistent with neuronal cells and positive for microtubule‑associated protein 2 and nestin expression. It was concluded that the isolated FLMSCs exhibited typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their proliferation and the maintenance of stemness. The present study illustrated the potential application of lung tissue as an adult stem cell source for regenerative therapies.

  7. The lung innate immune gene surfactant protein-D is expressed in adipose tissue and linked to obesity status.

    PubMed

    Ortega, F J; Pueyo, N; Moreno-Navarrete, J M; Sabater, M; Rodriguez-Hermosa, J I; Ricart, W; Tinahones, F J; Fernández-Real, J M

    2013-12-01

    Surfactant protein-D (SFTPD) is a component of the lung innate immunity that enhances clearance of pathogens and modulates inflammatory responses. An inverse association of putative, lung-derived circulating SFTPD with obesity has been reported but no information is available concerning possible SFTPD gene expression in human adipose tissue. SFTPD gene expression was analyzed in human omental (OM; n=156) and subcutaneous (SC; n=106) adipose tissue, and in isolated fat cells (n=12) in association with measures of obesity and glucose tolerance. SFTPD gene was expressed in human adipose tissue and adipocytes. This expression was decreased in OM and SC adipose tissue from obese subjects with (-47%, P<0.0001; and -37%, P=0.048) and without (-34%, P=0.001; and -22%, P=0.08; respectively) type 2 diabetes when compared with the control group. Indeed, OM SFTPD was inversely associated with body mass index (r=-0.33, P<0.0001), percent fat mass (r=-0.36, P<0.0001), waist perimeter (r=-0.26, P=0.002), diastolic blood pressure (r=-0.21, P=0.018) and fasting glucose (r=-0.21, P=0.012); and positively linked to the expression of insulin receptor substrate 1 (IRS1; r=0.25, P=0.004), perilipin A (PLIN; r=0.38, P=0.007) and fatty acid synthase (FASN; r=0.36, P<0.0001). Accordingly, increased SFTPD (4.5-fold, P=0.02) was detected in isolated adipocytes when compared with the stromal-vascular cell fraction, in parallel to IRS1, FASN and PLIN. Both OM and SC adipose tissue (mainly mature adipocytes) express SFTPD. This expression decreases with obesity and impaired glucose tolerance.

  8. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps)☆

    PubMed Central

    Mancia, Annalaura; Spyropoulos, Demetri D.; McFee, Wayne E.; Newton, Danforth A.; Baatz, John E.

    2011-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a “living” tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. PMID:21501697

  9. Proteomic patterns analysis with multivariate calculations as a promising tool for prompt differentiation of early stage lung tissue with cancer and unchanged tissue material.

    PubMed

    Waloszczyk, Piotr; Janus, Tomasz; Alchimowicz, Jacek; Grodzki, Tomasz; Borowiak, Krzysztof

    2011-03-21

    Lung cancer diagnosis in tissue material with commonly used histological techniques is sometimes inconvenient and in a number of cases leads to ambiguous conclusions. Frequently advanced immunostaining techniques have to be employed, yet they are both time consuming and limited. In this study a proteomic approach is presented which may help provide unambiguous pathologic diagnosis of tissue material. Lung tissue material found to be pathologically changed was prepared to isolate proteome with fast and non selective procedure. Isolated peptides and proteins in ranging from 3.5 to 20 kDa were analysed directly using high resolution mass spectrometer (MALDI-TOF/TOF) with sinapic acid as a matrix. Recorded complex spectra of a single run were then analyzed with multivariate statistical analysis algorithms (principle component analysis, classification methods). In the applied protocol we focused on obtaining the spectra richest in protein signals constituting a pattern of change within the sample containing detailed information about its protein composition. Advanced statistical methods were to indicate differences between examined groups. Obtained results indicate changes in proteome profiles of changed tissues in comparison to physiologically unchanged material (control group) which were reflected in the result of principle component analysis (PCA). Points representing spectra of control group were located in different areas of multidimensional space and were less diffused in comparison to cancer tissues. Three different classification algorithms showed recognition capability of 100% regarding classification of examined material into an appropriate group. The application of the presented protocol and method enabled finding pathological changes in tissue material regardless of localization and size of abnormalities in the sample volume. Proteomic profile as a complex, rich in signals spectrum of proteins can be expressed as a single point in multidimensional space and

  10. Proteomic patterns analysis with multivariate calculations as a promising tool for prompt differentiation of early stage lung tissue with cancer and unchanged tissue material

    PubMed Central

    2011-01-01

    Background Lung cancer diagnosis in tissue material with commonly used histological techniques is sometimes inconvenient and in a number of cases leads to ambiguous conclusions. Frequently advanced immunostaining techniques have to be employed, yet they are both time consuming and limited. In this study a proteomic approach is presented which may help provide unambiguous pathologic diagnosis of tissue material. Methods Lung tissue material found to be pathologically changed was prepared to isolate proteome with fast and non selective procedure. Isolated peptides and proteins in ranging from 3.5 to 20 kDa were analysed directly using high resolution mass spectrometer (MALDI-TOF/TOF) with sinapic acid as a matrix. Recorded complex spectra of a single run were then analyzed with multivariate statistical analysis algorithms (principle component analysis, classification methods). In the applied protocol we focused on obtaining the spectra richest in protein signals constituting a pattern of change within the sample containing detailed information about its protein composition. Advanced statistical methods were to indicate differences between examined groups. Results Obtained results indicate changes in proteome profiles of changed tissues in comparison to physiologically unchanged material (control group) which were reflected in the result of principle component analysis (PCA). Points representing spectra of control group were located in different areas of multidimensional space and were less diffused in comparison to cancer tissues. Three different classification algorithms showed recognition capability of 100% regarding classification of examined material into an appropriate group. Conclusion The application of the presented protocol and method enabled finding pathological changes in tissue material regardless of localization and size of abnormalities in the sample volume. Proteomic profile as a complex, rich in signals spectrum of proteins can be expressed as a

  11. Transcriptional Alterations of ET-1 Axis and DNA Damage in Lung Tissue of a Rat Obesity Model

    PubMed Central

    Cabiati, Manuela; Salvadori, Costanza; Guiducci, Letizia; Caselli, Chiara; Prescimone, Tommaso; Facioni, Maria Sole; Azzarà, Alessia; Chiaramonte, Anna; Mazzoni, Stefano; Bruschi, Fabrizio; Giannessi, Daniela

    2015-01-01

    Obesity has been implicated in the development of many cancers. This can lead to genome damage, especially in the form of double-strand break, the presence of which is now easily detected through nuclear phosphorylation of histone H2AX (γ-H2AX) focus assay. Recently, the endothelin (ET) axis has also been shown to have a role in the growth and progression of several tumors, including lung cancer. The aim of this study was to evaluate the ET-1 system transcriptional alterations and γ-H2AX in lung tissue of Zucker rats subdivided into obe