Science.gov

Sample records for nonfibrotic lung tissue

  1. Wounded Embryonic Corneas Exhibit Nonfibrotic Regeneration and Complete Innervation

    PubMed Central

    Spurlin, James W.; Lwigale, Peter Y.

    2013-01-01

    Purpose. Wound healing in adult corneas is characterized by activation of keratocytes and extracellular matrix (ECM) synthesis that results in fibrotic scar formation and loss of transparency. Since most fetal wounds heal without scaring, we investigated the regenerative potential of wounded embryonic corneas. Methods. On embryonic day (E) 7 chick corneas were wounded by making a linear incision traversing the epithelium and anterior stroma. Wounded corneas were collected between E7 and E18, and analyzed for apoptosis, cell proliferation, staining of ECM components, and corneal innervation. Results. Substantial wound retraction was observed within 16-hours postwounding (hpw) and partial re-epithelialized by 5-days postwounding (dpw). Corneal wounds were fully re-epithelialized by 11 dpw with no visible scars. There was no difference in the number of cells undergoing apoptosis between wounded and control corneas. Cell proliferation was reduced in the wounded corneas, albeit mitotic cells in the regenerating epithelium. Staining for alpha–smooth muscle actin (α-SMA), tenascin, and fibronectin was vivid but transient at the wound site. Staining for procollagen I, perlecan, and keratan sulfate proteoglycan was reduced at the wound site. Wounded corneas were fully regenerated by 11 dpw and showed similar patterns of staining for ECM components, albeit an increase in perlecan staining. Corneal innervation was inhibited during wound healing, but regenerated corneas were innervated similar to controls. Conclusions. These data show that minimal keratocyte activation, rapid ECM reconstruction, and proper innervation occur during nonfibrotic regeneration of the embryonic cornea. PMID:24003085

  2. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary. PMID:18003452

  3. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary.

  4. Strategies for Whole Lung Tissue Engineering

    PubMed Central

    Calle, Elizabeth A.; Ghaedi, Mahboobe; Sundaram, Sumati; Sivarapatna, Amogh; Tseng, Michelle K.

    2014-01-01

    Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function. PMID:24691527

  5. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  6. Supine to upright lung mechanics: do changes in lung shape influence lung tissue deformation?

    PubMed

    Chan, Ho-Fung; Tawhai, Merryn H; Levin, David L; Bartholmai, Brian B; Clark, Alys R

    2014-01-01

    In this study we analyze lung shape change between the upright and supine postures and the effect of this shape change on the deformation of lung tissue under gravity. We use supine computed tomography images along with upright tomosynthesis images obtained on the same day to show that there is significant diaphragmatic movement between postures. Using a continuum model of lung tissue deformation under gravity we show that the shape changes due to this diaphragmatic movement could result in different lung tissue expansion patterns between supine and upright lungs. This is an essential consideration when interpreting imaging data acquired in different postures or translating data acquired in supine imaging to upright function.

  7. Analysis of Lung Tissue Using Ion Beams

    NASA Astrophysics Data System (ADS)

    Alvarez, J. L.; Barrera, R.; Miranda, J.

    2002-08-01

    In this work a comparative study is presented of the contents of metals in lung tissue from healthy patients and with lung cancer, by means of two analytical techniques: Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS). The samples of cancerous tissue were taken from 26 autopsies made to individuals died in the National Institute of Respiratory Disease (INER), 22 of cancer and 4 of other non-cancer biopsies. When analyzing the entirety of the samples, in the cancerous tissues, there were increments in the concentrations of S (4%), K (635%), Co (85%) and Cu (13%). Likewise, there were deficiencies in the concentrations of Cl (59%), Ca (6%), Fe (26%) and Zn (7%). Only in the cancerous tissues there were appearances of P, Ca, Ti, V, Cr, Mn, Ni, Br and Sr. The tissue samples were classified according to cancer types (adenocarcinomas, epidermoides and of small cell carcinoma), personal habits (smokers and alcoholic), genetic predisposition and residence place. There was a remarkable decrease in the concentration of Ca and a marked increment in the Cu in the epidermoide tissue samples with regard to those of adenocarcinoma or of small cells cancer. Also, decrements were detected in K and increments of Fe, Co and Cu in the sample belonging to people that resided in Mexico City with regard to those that resided in the State of Mexico.

  8. A classification framework for lung tissue categorization

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Iavindrasana, Jimison; Hidki, Asmâa; Cohen, Gilles; Geissbuhler, Antoine; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2008-03-01

    We compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) but also normal tissue. The evaluated classifiers are Naive Bayes, k-Nearest Neighbor (k-NN), J48 decision trees, Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. Those are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 87.9% with high class-specific precision on testing sets of 423 ROIs.

  9. The radiological properties of a novel lung tissue substitute.

    PubMed

    Traub, R J; Olsen, P C; McDonald, J C

    2006-01-01

    Lung phantoms have been manufactured using commercially available, polyurethane foam products. Some of these materials are no longer available; therefore, a new lung tissue substitute was developed. The elemental composition and radiological properties of the new lung tissue substitute are described in this paper. Because the lung tissue substitute will be used to manufacture phantom lungs that will be used to evaluate chest counting systems, it is necessary to know the radiological properties of the material. These properties must be compared with reference materials and materials that have been used for lung phantoms in the past. The radiological properties of interest include the electron density, mean excitation energy, electron stopping power and photon mass attenuation coefficients. In all these properties, the calculated values for the new lung tissue substitute closely matched the calculated values of ICRU Publication 44 lung tissue. Good agreement was also found when the new lung tissue substitute was compared with the Griffith lung tissue substitute described by the ICRU. The new material was determined to be an excellent lung tissue substitute. PMID:17142822

  10. Estimation of lung tissue incompressibility variation throughout respiration for tumor targeting in lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Shirzadi, Zahra; Samani, Abbas

    2013-03-01

    A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Lung tissue incompressibility variation stems from significant air content variation in the tissue throughout respiration. Estimating lung tissue incompressibility and its variation is critical for computer assisted tumor motion tracking. Continuous tumor motion during respiration is a major challenge in lung cancer treatment by external beam radiotherapy. If not accounted for, this motion leads to areas of radiation over dosage for the lung normal tissues. Since no effective imaging modality is available for real-time lung tumor tracking, computer based modeling which has the capability for accurate tissue deformation estimation can be a good alternative. Lung tissue deformation estimation can be made using the lung Finite Element (FE) model where its accuracy depends on input tissue biomechanical properties including incompressibility parameter. In this research, an optimization algorithm is proposed to estimate the incompressibility parameter function in terms of respiration cycle time. In this algorithm, the incompressibility parameter and lung pressure values are varied systematically until optimal values, which result in maximum similarity between acquired and simulated 4D CT images of the lung, are achieved for each respiration time point. The simulated images are constructed using a reference image in conjunction with the deformation field obtained from the lung's FE model in each respiration time increment. We demonstrated that utilizing the calculated function along with respiratory system FE modeling leads to accurate tumor targeting, hence potentially improving lung radiotherapy outcome.

  11. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jhih; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2009-07-01

    We utilize multiphoton microscopy for the label-free diagnosis of noncancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from humans. Our results show that the combination of second-harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from noncancerous lung tissues. Specifically, noncancerous lung tissues are largely fibrotic in structure, while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55+/-0.23 and 0.87+/-0.15, respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13, respectively. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from noncancerous tissues.

  12. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016. PMID:27644555

  13. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jr; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2010-02-01

    In this work, we utilized multiphoton microscopy for the label-free diagnosis of non-cancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from human. Our results show that the combination of second harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from non-cancerous lung tissues. Specifically, non-cancerous lung tissues are largely fibrotic in structure while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI or SAAID) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55 +/-0.23 and 0.87+/-0.15 respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13 respectively. Intrinsic fluorescence ratio (FAD/NADH) of SCC and non-cancerous tissues are 0.40+/-0.05 and 0.53+/-0.05 respectively, the redox ratio of SCC diminishes significantly, indicating that increased cellular metabolic activity. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from non-cancerous tissues. With additional development, multiphoton microscopy may be used for the clinical diagnosis of lung cancers.

  14. Trace element load in cancer and normal lung tissue

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś , A.; Braziewicz, J.; Banaś , D.; Majewska, U.; Góź Dź , S.; Urbaniak, A.

    1999-04-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described.

  15. Differential N-Glycosylation Patterns in Lung Adenocarcinoma Tissue.

    PubMed

    Ruhaak, L Renee; Taylor, Sandra L; Stroble, Carol; Nguyen, Uyen Thao; Parker, Evan A; Song, Ting; Lebrilla, Carlito B; Rom, William N; Pass, Harvey; Kim, Kyoungmi; Kelly, Karen; Miyamoto, Suzanne

    2015-11-01

    To decrease the mortality of lung cancer, better screening and diagnostic tools as well as treatment options are needed. Protein glycosylation is one of the major post-translational modifications that is altered in cancer, but it is not exactly clear which glycan structures are affected. A better understanding of the glycan structures that are differentially regulated in lung tumor tissue is highly desirable and will allow us to gain greater insight into the underlying biological mechanisms of aberrant glycosylation in lung cancer. Here, we assess differential glycosylation patterns of lung tumor tissue and nonmalignant tissue at the level of individual glycan structures using nLC-chip-TOF-MS. Using tissue samples from 42 lung adenocarcinoma patients, 29 differentially expressed (FDR < 0.05) glycan structures were identified. The levels of several oligomannose type glycans were upregulated in tumor tissue. Furthermore, levels of fully galactosylated glycans, some of which were of the hybrid type and mostly without fucose, were decreased in cancerous tissue, whereas levels of non- or low-galactosylated glycans mostly with fucose were increased. To further assess the regulation of the altered glycosylation, the glycomics data was compared to publicly available gene expression data from lung adenocarcinoma tissue compared to nonmalignant lung tissue. The results are consistent with the possibility that the observed N-glycan changes have their origin in differentially expressed glycosyltransferases. These results will be used as a starting point for the further development of clinical glycan applications in the fields of imaging, drug targeting, and biomarkers for lung cancer.

  16. Solubility of Freon 22 in human blood and lung tissue.

    PubMed

    Varene, N; Choukroun, M L; Marthan, R; Varene, P

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. (J. Appl. Physiol. 36: 600-605, 1974). In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  17. Solubility of Freon 22 in human blood and lung tissue

    SciTech Connect

    Varene, N.; Choukroun, M.L.; Marthan, R.; Varene, P.

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  18. Lung cancer tissue diagnosis in poor lung function: addressing the ongoing percutaneous lung biopsy FEV1 paradox using Heimlich valve.

    PubMed

    Abdullah, R; Tavare, A N; Creamer, A; Creer, D; Vancheeswaran, R; Hare, S S

    2016-08-01

    Many centres continue to decline percutaneous lung biopsy (PLB) in patients with poor lung function (particularly FEV1 <1 L) due to the theoretically increased risk of pneumothorax. This practice limits access to novel lung cancer therapies and minimally invasive surgical techniques. Our retrospective single-centre analysis of 212 patients undergoing PLB, all performed prospectively and blinded to lung function, demonstrates that using ambulatory Heimlich valve chest drain (HVCD) to treat significant postbiopsy pneumothorax facilitates safe, diagnostic, early discharge lung biopsy irrespective of lung function with neither FEV1 <1 L nor transfer coefficient for carbon monoxide (TLCO) <40% predicted shown to be independent predictors of HVCD insertion or pneumothorax outcomes. Incorporating ambulatory HVCD into standard PLB practice thereby elegantly bridges the gap that currently exists between tissue diagnosis in patients with poor lung function and the advanced therapeutic options available for this cohort.

  19. Immune surveillance of the lung by migrating tissue monocytes.

    PubMed

    Rodero, Mathieu P; Poupel, Lucie; Loyher, Pierre-Louis; Hamon, Pauline; Licata, Fabrice; Pessel, Charlotte; Hume, David A; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. PMID:26167653

  20. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: a lung cancer showcase

    PubMed Central

    Huwer, Hanno; Hildebrandt, Andreas; Lenhof, Hans-Peter; Wesse, Tanja; Franke, Andre; Keller, Andreas

    2016-01-01

    Proteomics analysis of paired cancer and control tissue can be applied to investigate pathological processes in tumors. Advancements in data-independent acquisition mass spectrometry allow for highly reproducible quantitative analysis of complex proteomic patterns. Optimized sample preparation workflows enable integrative multi-omics studies from the same tissue specimens. We performed ion mobility enhanced, data-independent acquisition MS to characterize the proteome of 21 lung tumor tissues including adenocarcinoma and squamous cell carcinoma (SCC) as compared to control lung tissues of the same patient each. Transcriptomic data were generated for the same specimens. The quantitative proteomic patterns and mRNA abundances were subsequently analyzed using systems biology approaches. We report a significantly (p = 0.0001) larger repertoire of proteins in cancer tissues. 12 proteins were higher in all tumor tissues as compared to matching control tissues. Three proteins, CAV1, CAV2, and RAGE, were vice versa higher in all controls. We also identified characteristic SCC and adenocarcinoma protein patterns. Principal Component Analysis provided evidence that not only cancer from control tissue but also tissue from adenocarcinoma and SCC can be differentiated. Transcriptomic levels of key proteins measured from the same matched tissue samples correlated with the observed protein patterns. The applied study set-up with paired lung tissue specimens of which different omics are measured, is generally suited for an integrated multi-omics analysis. PMID:26930711

  1. Connective tissue diseases, multimorbidity and the ageing lung.

    PubMed

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients.

  2. Development of nonfibrotic left ventricular hypertrophy in an ANG II-induced chronic ovine hypertension model.

    PubMed

    Klatt, Niklas; Scherschel, Katharina; Schad, Claudia; Lau, Denise; Reitmeier, Aline; Kuklik, Pawel; Muellerleile, Kai; Yamamura, Jin; Zeller, Tanja; Steven, Daniel; Baldus, Stephan; Schäffer, Benjamin; Jungen, Christiane; Eickholt, Christian; Wassilew, Katharina; Schwedhelm, Edzard; Willems, Stephan; Meyer, Christian

    2016-09-01

    Hypertension is a major risk factor for many cardiovascular diseases and leads to subsequent concomitant pathologies such as left ventricular hypertrophy (LVH). Translational approaches using large animals get more important as they allow the use of standard clinical procedures in an experimental setting. Therefore, the aim of this study was to establish a minimally invasive ovine hypertension model using chronic angiotensin II (ANG II) treatment and to characterize its effects on cardiac remodeling after 8 weeks. Sheep were implanted with osmotic minipumps filled with either vehicle control (n = 7) or ANG II (n = 9) for 8 weeks. Mean arterial blood pressure in the ANG II-treated group increased from 87.4 ± 5.3 to 111.8 ± 6.9 mmHg (P = 0.00013). Cardiovascular magnetic resonance imaging showed an increase in left ventricular mass from 112 ± 12.6 g to 131 ± 18.7 g after 7 weeks (P = 0.0017). This was confirmed by postmortem measurement of left ventricular wall thickness which was higher in ANG II-treated animals compared to the control group (18 ± 4 mm vs. 13 ± 2 mm, respectively, P = 0.002). However, ANG II-treated sheep did not reveal any signs of fibrosis or inflammatory infiltrates as defined by picrosirius red and H&E staining on myocardial full thickness paraffin sections of both atria and ventricles. Measurements of plasma high-sensitivity C-reactive protein and urinary 8-iso-prostaglandin F2α were inconspicuous in all animals. Furthermore, multielectrode surface mapping of the heart did not show any differences in epicardial conduction velocity and heterogeneity. These data demonstrate that chronic ANG II treatment using osmotic minipumps presents a reliable, minimally invasive approach to establish hypertension and nonfibrotic LVH in sheep. PMID:27613823

  3. Gene expression signature of non-involved lung tissue associated with survival in lung adenocarcinoma patients.

    PubMed

    Galvan, Antonella; Frullanti, Elisa; Anderlini, Marco; Manenti, Giacomo; Noci, Sara; Dugo, Matteo; Ambrogi, Federico; De Cecco, Loris; Spinelli, Roberta; Piazza, Rocco; Pirola, Alessandra; Gambacorti-Passerini, Carlo; Incarbone, Matteo; Alloisio, Marco; Tosi, Davide; Nosotti, Mario; Santambrogio, Luigi; Pastorino, Ugo; Dragani, Tommaso A

    2013-12-01

    Lung adenocarcinoma patients of similar clinical stage and undergoing the same treatments often have marked interindividual variations in prognosis. These clinical discrepancies may be due to the genetic background modulating an individual's predisposition to fighting cancer. Herein, we hypothesized that the lung microenvironment, as reflected by its expression profile, may affect lung adenocarcinoma patients' survival. The transcriptome of non-involved lung tissue, excised from a discovery series of 204 lung adenocarcinoma patients, was evaluated using whole-genome expression microarrays (with probes corresponding to 28 688 well-annotated coding sequences). Genes associated with survival status at 60 months were identified by Cox regression analysis (adjusted for gender, age and clinical stage) and retested in a validation series of 78 additional cases. RNA-Seq analysis from non-involved lung tissue of 12 patients was performed to characterize the different isoforms of candidate genes. Ten genes for which the loge-transformed hazard ratios expressed the same direction of effect in the discovery (P < 1.0 × 10(-3)) and validation series comprised the gene expression signature associated with survival: CNTNAP1, PKNOX1, FAM156A, FRMD8, GALNTL1, TXNDC12, SNTB1, PPP3R1, SNX10 and SERPINH1. RNA sequencing highlighted the complex expression pattern of these genes in non-involved lung tissue from different patients and permitted the detection of a read-through gene fusion between PPP3R1 and the flanking gene (CNRIP1) as well as a novel isoform of CNTNAP1. Our findings support the hypothesis that individual genetic characteristics, evidenced by the expression pattern of non-involved tissue, influence the outcome of lung adenocarcinoma patients. PMID:23978379

  4. Relationship Between Diseased Lung Tissues on Computed Tomography and Motion of Fiducial Marker Near Lung Cancer

    SciTech Connect

    Onodera, Yuya; Nishioka, Noriko; Yasuda, Koichi; Fujima, Noriyuki; Torres, Mylin; Kamishima, Tamotsu; Ooyama, Noriko; Onimaru, Rikiya; Terae, Satoshi; Ooizumi, Satoshi; Nishimura, Masaharu; Shirato, Hiroki

    2011-04-01

    Purpose: For lung cancer patients with poor pulmonary function because of emphysema or fibrosis, it is important to predict the amplitude of internal tumor motion to minimize the irradiation of the functioning lung tissue before undergoing stereotactic body radiotherapy. Methods and Materials: Two board-certified diagnostic radiologists independently assessed the degree of pulmonary emphysema and fibrosis on computed tomography scans in 71 patients with peripheral lung tumors before real-time tumor-tracking radiotherapy. The relationships between the computed tomography findings of the lung parenchyma and the motion of the fiducial marker near the lung tumor were investigated. Of the 71 patients, 30 had normal pulmonary function, and 29 had obstructive pulmonary dysfunction (forced expiratory volume in 1 s/forced vital capacity ratio of <70%), 6 patients had constrictive dysfunction (percentage of vital capacity <80%), and 16 had mixed dysfunction. Results: The upper region was associated with smaller tumor motion, as expected (p = .0004), and the presence of fibrosis (p = .088) and pleural tumor contact (p = .086) were weakly associated with tumor motion. The presence of fibrotic changes in the lung tissue was associated with smaller tumor motion in the upper region (p <.05) but not in the lower region. The findings of emphysema and pulmonary function tests were not associated with tumor motion. Conclusion: Tumors in the upper lung region with fibrotic changes have smaller motion than those in the upper region of the lungs without fibrotic changes. The tumor motion in the lower lung region was not significantly different between patients with and without lung fibrosis. Emphysema was not associated with the amplitude of tumor motion.

  5. Impact of Statins on Gene Expression in Human Lung Tissues

    PubMed Central

    Lane, Jérôme; van Eeden, Stephan F.; Obeidat, Ma’en; Sin, Don D.; Tebbutt, Scott J.; Timens, Wim; Postma, Dirkje S.; Laviolette, Michel; Paré, Peter D.; Bossé, Yohan

    2015-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin

  6. On the preparation of lung strip for tissue mechanics measurement.

    PubMed

    Leite-Júnior, José Henrique; Rocco, Patricia R M; Faffe, Débora S; Romero, Pablo V; Zin, Walter A

    2003-03-28

    It is widely believed that it is fundamental to degas and/or rinse the lung prior to the measurement of the tissue mechanics, so that the undesirable effects of surfactant and localized gas trapping are eliminated. However, one could hypothesize that these mechanisms are bound to disappear in the in vitro preparation since the small tissue sample remains suspended oscillating in an organ bath. To investigate the real necessity to follow these procedures, dynamic mechanical properties were studied in strips of lungs previously rinsed with saline, degassed by ventilation with 100% O(2), or without any of these prior procedures. Resistance, elastance, hysteresivity, and the amounts of airway, blood vessel, and alveolar wall were computed. There was no difference in either tissue mechanics or morphology among the groups. In conclusion, the time-consuming degassing and rinsing steps are not necessary to adequately prepare lung tissue for in vitro mechanical analysis, and eliminating these steps potentially helps preserving the intact microstructure of the tissue. PMID:12660105

  7. Interstitial lung disease in the connective tissue diseases.

    PubMed

    Antin-Ozerkis, Danielle; Rubinowitz, Ami; Evans, Janine; Homer, Robert J; Matthay, Richard A

    2012-03-01

    The connective tissue diseases (CTDs) are inflammatory, immune-mediated disorders in which interstitial lung disease (ILD) is common and clinically important. Interstitial lung disease may be the first manifestation of a CTD in a previously healthy patient. CTD-associated ILD frequently presents with the gradual onset of cough and dyspnea, although rarely may present with fulminant respiratory failure. Infection and drug reaction should always be ruled out. A diagnosis of idiopathic ILD should never be made without a careful search for subtle evidence of underlying CTD. Treatment of CTD-ILD typically includes corticosteroids and immunosuppressive agents.

  8. Immune surveillance of the lung by migrating tissue monocytes

    PubMed Central

    Rodero, Mathieu P; Poupel, Lucie; Loyher, Pierre-Louis; Hamon, Pauline; Licata, Fabrice; Pessel, Charlotte; Hume, David A; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI: http://dx.doi.org/10.7554/eLife.07847.001 PMID:26167653

  9. [Study of remanent magnetization of the human body: lung and liver tissues].

    PubMed

    Sakai, H; Wang, H; Murai, Y; Soukejima, S; Kagamimori, S

    2001-07-01

    In this study, we used lung and liver tissue specimens distracted from tissue to investigate remanant magnetization, and found that specimens with a volume of 6 mm3 had an intensity of 10(-10) Am2, which was significantly stronger than the noise level of the superconducting magnetometer. This finding indicates that both lung and liver tissues contain magnetic materials. We speculated that biological magnetite is the magnetic material in these tissues. In addition, we found that lung tissue specimens with strong magnetization had correspondingly strong magnetized findings in the liver tissue specimens. In a comparison of magnetization in lung cancer tissue specimens and normal lung tissue, no significant relationship was noted, but two of the lung cancer tissue specimens showed strong magnetization. The number of lung cancer specimens studies was insufficient to investigate the relation between the magnetization (accumulation of magnetic materials) and lung cancer, and further studies are necessary. The magnetic properties of two lung cancer tissue specimens showing strong magnetization were further investigated, and an alternating field demagnetization experiment showed that their magnetization was composed of a unit stable vector, which indicates that the lung tissue may have been magnetized after the accumulation of magnetic materials. The Wohlfarth ratio (Moskowitz et al., 1989) of them was less than 0.5, which suggests that magnetic materials are distributed in clusters in lung tissue. PMID:11519186

  10. Interpretation of autoantibody positivity in interstitial lung disease and lung-dominant connective tissue disease*

    PubMed Central

    Pereira, Daniel Antunes Silva; Kawassaki, Alexandre de Melo; Baldi, Bruno Guedes

    2013-01-01

    The initial evaluation of patients with interstitial lung disease (ILD) primarily involves a comprehensive, active search for the cause. Autoantibody assays, which can suggest the presence of a rheumatic disease, are routinely performed at various referral centers. When interstitial lung involvement is the condition that allows the definitive diagnosis of connective tissue disease and the classical criteria are met, there is little debate. However, there is still debate regarding the significance, relevance, specificity, and pathophysiological role of autoimmunity in patients with predominant pulmonary involvement and only mild symptoms or formes frustes of connective tissue disease. The purpose of this article was to review the current knowledge of autoantibody positivity and to discuss its possible interpretations in patients with ILD and without clear etiologic associations, as well as to enhance the understanding of the natural history of an allegedly new disease and to describe the possible prognostic implications. We also discuss the proposition of a new term to be used in the classification of ILDs: lung-dominant connective tissue disease. PMID:24473767

  11. Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium

    NASA Astrophysics Data System (ADS)

    Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.

    2008-03-01

    The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the

  12. Tissue heterogeneity in IMRT dose calculation for lung cancer.

    PubMed

    Pasciuti, Katia; Iaccarino, Giuseppe; Strigari, Lidia; Malatesta, Tiziana; Benassi, Marcello; Di Nallo, Anna Maria; Mirri, Alessandra; Pinzi, Valentina; Landoni, Valeria

    2011-01-01

    The aim of this study was to evaluate the differences in accuracy of dose calculation between 3 commonly used algorithms, the Pencil Beam algorithm (PB), the Anisotropic Analytical Algorithm (AAA), and the Collapsed Cone Convolution Superposition (CCCS) for intensity-modulated radiation therapy (IMRT). The 2D dose distributions obtained with the 3 algorithms were compared on each CT slice pixel by pixel, using the MATLAB code (The MathWorks, Natick, MA) and the agreement was assessed with the γ function. The effect of the differences on dose-volume histograms (DVHs), tumor control, and normal tissue complication probability (TCP and NTCP) were also evaluated, and its significance was quantified by using a nonparametric test. In general PB generates regions of over-dosage both in the lung and in the tumor area. These differences are not always in DVH of the lung, although the Wilcoxon test indicated significant differences in 2 of 4 patients. Disagreement in the lung region was also found when the Γ analysis was performed. The effect on TCP is less important than for NTCP because of the slope of the curve at the level of the dose of interest. The effect of dose calculation inaccuracy is patient-dependent and strongly related to beam geometry and to the localization of the tumor. When multiple intensity-modulated beams are used, the effect of the presence of the heterogeneity on dose distribution may not always be easily predictable. PMID:20970989

  13. Connective tissue disease-related interstitial lung disease.

    PubMed

    Demoruelle, M Kristen; Mittoo, Shikha; Solomon, Joshua J

    2016-02-01

    Interstitial lung disease (ILD) is commonly present in patients with an underlying connective tissue disease (CTD), particularly those with systemic sclerosis, rheumatoid arthritis, and inflammatory myositis. The clinical spectrum can range from asymptomatic findings on imaging to respiratory failure and death. Distinguishing features in the clinical, radiographic, and histopathologic characteristics of CTD-ILD subsets can predict prognosis and treatment response. Treatment often consists of combinations of immunosuppressive medications, but there is a paucity of guidance in the literature to help clinicians determine appropriate screening and management of CTD-ILD. As such, there is a critical need for studies that can elucidate the natural history of the CTD-ILD, as well as clarify optimal therapies for CTD patients with ILD. PMID:27421215

  14. Wavelet based rotation invariant texture feature for lung tissue classification and retrieval

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra Kumar; Mukhopadhyay, Sudipta; Das Gupta, Rahul; Garg, Mandeep Kumar; Prabhakar, Nidhi; Khandelwal, Niranjan

    2014-03-01

    This paper evaluates the performance of recently proposed rotation invariant texture feature extraction method for the classi¯cation and retrieval of lung tissues a®ected with Interstitial Lung Diseases (ILDs). The method makes use of principle texture direction as the reference direction and extracts texture features using Discrete Wavelet Transform (DWT). A private database containing high resolution computed tomography (HRCT) images belonging to ¯ve category of lung tissue is used for the experiment. The experimental result shows that the texture appearances of lung tissues are anisotropic in nature and hence rotation invariant features achieve better retrieval as well as classi¯cation accuracy.

  15. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    PubMed

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels.

  16. Fluorescence spectroscopy and cryoimaging of rat lung tissue mitochondrial redox state

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Audi, S.; Staniszewski, K.; Maleki, S.; Ranji, M.

    2011-07-01

    The objective of this study was to demonstrate the utility of optical cryoimaging and fluorometry to evaluate tissue redox state of the mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavin Adenine Dinucleotide) in intact rat lungs. The ratio (NADH/FAD), referred to as mitochondrial redox ratio (RR), is a measure of the lung tissue mitochondrial redox state. Isolated rat lungs were connected to a ventilation-perfused system. Surface NADH and FAD fluorescence signals were acquired before and after lung perfusion in the absence (control perfusate) or presence of potassium cyanide (KCN, complex IV inhibitor) to reduce the mitochondrial respiratory chain (state 5 respiration). Another group of lungs were perfused with control perfusate or KCN-containing perfusate as above, after which the lungs were deflated and frozen rapidly for subsequent 3D cryoimaging. Results demonstrate that lung treatment with KCN increased lung surface NADH signal by 22%, decreased FAD signal by 8%, and as result increased RR by 31% as compared to control perfusate (baseline) values. Cryoimaging results also show that KCN increased mean lung tissue NADH signal by 37%, decreased mean FAD signal by 4%, and increased mean RR by 47%. These results demonstrate the utility of these optical techniques to evaluate the effect of pulmonary oxidative stress on tissue mitochondrial redox state in intact lungs.

  17. Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease

    NASA Astrophysics Data System (ADS)

    Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi

    2009-02-01

    Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.

  18. Undifferentiated connective tissue disease-associated interstitial lung disease: changes in lung function.

    PubMed

    Kinder, Brent W; Shariat, Cyrus; Collard, Harold R; Koth, Laura L; Wolters, Paul J; Golden, Jeffrey A; Panos, Ralph J; King, Talmadge E

    2010-04-01

    Undifferentiated connective tissue disease (UCTD) is a distinct clinical entity that may be accompanied by interstitial lung disease (ILD). The natural history of UCTD-ILD is unknown. We hypothesized that patients with UCTD-ILD would be more likely to have improvement in lung function than those with idiopathic pulmonary fibrosis (IPF) during longitudinal follow-up. We identified subjects enrolled in the UCSF ILD cohort study with a diagnosis of IPF or UCTD. The primary outcome compared the presence or absence of a > or = 5% increase in percent predicted forced vital capacity (FVC) in IPF and UCTD. Regression models were used to account for potential confounding variables. Ninety subjects were identified; 59 subjects (30 IPF, 29 UCTD) had longitudinal pulmonary function data for inclusion in the analysis. After accounting for baseline pulmonary function tests, treatment, and duration between studies, UCTD was associated with substantial improvement in FVC (odds ratio = 8.23, 95% confidence interval, 1.27-53.2; p = 0.03) during follow-up (median, 8 months) compared with IPF. Patients with UCTD-ILD are more likely to have improved pulmonary function during follow-up than those with IPF. These findings demonstrate the clinical importance of identifying UCTD in patients presenting with an "idiopathic" interstitial pneumonia.

  19. Solubility of freon-22 in blood and lung tissue.

    PubMed

    Franks, P J; Hooper, R H; Jones, P R

    1989-04-01

    Despite the frequent use of freon-22 (e.g. to measure pulmonary blood flow), there is no agreement on its solubility in water or body fluids. The values in the literature vary, often quoted without reference to measurement or identification as Ostwald or Bunsen coefficients. We used a Schölander apparatus and determined the Bunsen solubility coefficient (mlgas.(mlfluid.atmosphere)-1) at 37 degrees C as: 0.476 in water; 0.673 in human whole blood; 0.479 in human plasma; 0.662 in canine whole blood; 0.437 in canine plasma; and 1.077 in homogenized canine lung tissue. As pure freon was used, these solubilities may not be applicable if freon-22 does not obey Henry's law. In man, the Ostwald solubility coefficient is calculated as 0.76 ml/ml whole blood at BTPS. These results provide information for further studies involving freon-22, and clear the confusion which has arisen from poorly defined solubility coefficients.

  20. Mesothelioma and asbestos fiber type. Evidence from lung tissue analyses.

    PubMed

    McDonald, J C; Armstrong, B; Case, B; Doell, D; McCaughey, W T; McDonald, A D; Sébastien, P

    1989-04-15

    Lung tissue samples from 78 cases from autopsy of mesothelioma in Canada, 1980 through 1984, and from matched referents were examined by optical and analytical transmission electron microscopic study. Concentrations of amosite, crocidolite, and tremolite fibers, and of typical asbestos bodies discriminated sharply between cases and referents. The distributions of chrysotile and anthophyllite/talc fibers and of all other natural and man-made inorganic fibers (greater than or equal to 8 microns) in the two series were quite similar. Relative risk was related to the concentration of long (greater than or equal to 8 microns) amphibole fibers with no additional information provided by shorter fibers. The proportion of long fibers was much higher for amphiboles than chrysotile and, except for chrysotile, systematically higher in cases than referents. Amphibole asbestos fibers could explain most mesothelioma cases in Canada and other inorganic fibers, including chrysotile, very few. Fibrous tremolite, contaminant of many industrial minerals including chrysotile, probably explained most cases in the Quebec mining region and perhaps 20% elsewhere.

  1. Combinational feature optimization for classification of lung tissue images

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Zhukov, Tatyana; Zhang, Jianying; Tockman, Melvyn; Qian, Wei

    2010-03-01

    A novel approach to feature optimization for classification of lung carcinoma using tissue images is presented. The methodology uses a combination of three characteristics of computational features: F-measure, which is a representation of each feature towards classification, inter-correlation between features and pathology based information. The metadata provided from pathological parameters is used for mapping between computational features and biological information. Multiple regression analysis maps each category of features based on how pathology information is correlated with the size and location of cancer. Relatively the computational features represented the tumor size better than the location of the cancer. Based on the three criteria associated with the features, three sets of feature subsets with individual validation are evaluated to select the optimum feature subset. Based on the results from the three stages, the knowledgebase produces the best subset of features. An improvement of 5.5% was observed for normal Vs all abnormal cases with Az value of 0.731 and 74/114 correctly classified. The best Az value of 0.804 with 66/84 correct classification and improvement of 21.6% was observed for normal Vs adenocarcinoma.

  2. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    PubMed

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Expression and clinicopathological implication of DcR3 in lung cancer tissues: a tissue microarray study with 365 cases

    PubMed Central

    Zhang, Yu; Luo, Jie; He, Rongquan; Huang, Wenting; Li, Zuyun; Li, Ping; Dang, Yiwu; Chen, Gang; Li, Shikang

    2016-01-01

    Background Decoy receptor 3 (DcR3) has been reported to be involved in different cancers. However, few related researches have been accomplished on the role of DcR3 in lung cancer. Objective To explore the expression level and clinicopathological implication of DcR3 protein in lung cancer tissues. Materials and methods Immunohistochemistry was used to examine DcR3 protein expression in lung cancer (n=365) and normal lung tissues (n=26). The relationships between DcR3 expression and clinical parameters were further investigated. Furthermore, the diagnostic and clinicopathological value of DcR3 mRNA was analyzed based on The Cancer Genome Atlas database in lung cancer patients. Results Compared to normal lung tissues, DcR3 expression was significantly higher in lung cancer (P=0.007) tissues, including small-cell lung cancer (P=0.001) and non-small-cell lung cancer (P=0.008). In addition, DcR3 expression was related to tumor-node-metastasis (TNM) stage (P<0.001), tumor diameter (P=0.007), distant metastasis (P<0.001), and lymph node metastasis (P<0.001) in lung cancers. When concerning non-small-cell lung cancer, consistent correlations between DcR3 expression and TNM stage (P<0.001), tumor diameter (P=0.019), distant metastasis (P<0.001), and lymph node metastasis (P<0.001) were found. Simultaneously, in small-cell lung cancer, TNM stage (P=0.004) and lymph node metastasis (P=0.005) were also associated with DcR3 expression. Additionally, receiver operator characteristic curve revealed that the area under curve (AUC) of DcR3 was 0.637 (95% confidence interval [CI] 0.531–0.742) for lung cancer. Furthermore, DcR3 was overexpressed in both adenocarcinoma and squamous cell carcinoma tissues than in noncancerous lung tissues (all P<0.0001) based on the data from The Cancer Genome Atlas. AUC of DcR3 was 0.726 (95% CI 0.644–0.788) for lung adenocarcinoma patients and 0.647 (95% CI 0.566–0.728) for squamous cell carcinoma patients. DcR3 expression was also related to

  4. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  5. Antimony in lung, liver and kidney tissue from deceased smelter workers.

    PubMed

    Gerhardsson, L; Brune, D; Nordberg, G F; Wester, P O

    1982-09-01

    Tissue concentrations of antimony in lung, liver, and kidney tissue from a group of deceased smelter workers from northern Sweden have been compared with those of a group of persons without occupational exposure from a nearby area. Neutron activation analysis was used to determine the antimony concentration of lung tissue from exposed workers; these concentrations were 12-fold higher than those of referents (p less than 0.001). For lung tissue there was no tendency towards decreased antimony concentrations with time (up to 20 a) after the cessation of exposure, and this result indicates a long biological half-time. The highest values were found for workers who had worked for many years at the roasters and in the arsenic and selenium departments. There was no significant difference between the antimony concentration of the lung tissue from workers who had died of lung cancer and those of persons who died of other malignancies, cardiovascular disease, or other causes. This finding does not however rule out the possibility of a role for antimony in the etiology of lung cancer among smelter workers since multiple factors may have been operating. The antimony concentration of the liver tissue and the kidney cortex did not differ from the corresponding values of the reference group; this finding indicates either a short biological half-time or insignificance for the systemic distribution of antimony.

  6. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue.

    PubMed

    Sadeghi, L; Yousefi Babadi, V; Espanani, H R

    2015-01-01

    Iron oxide nanoparticles are magnetic nanoparticles which have widespread application in MRI and heat therapy of cancer as contrast elements. They are also used effectively for drug and gene delivery because of effective penetrating to the cells and tissues. However, these features cause Fe2O3 nanoparticles have toxic effects that are not completely understood yet. In this study, effects of iron oxide nanoparticles on lung tissue in adult male Wistar rats were studied. We used pulmonary inhalation method for nanoparticle administration and used ether as a helper. Our results showed administered nanoparticles penetrated to the circulation and rapidly reached to liver and created serious inflammation in lung and liver tissues. This study used two different nanoparticle doses (20 and 40 mg/kg) and two exposing numbers (7 and 14 times). Results showed significant enhancement of free radicals and reduction of the GSH in lung tissue. Histological studies showed nanoparticle treatment of rats caused pulmonary emphysema, interstitial hyperemia and inflammation in lungs. By increasing the administrated dose lung tissue showed all of the mentioned symptoms with increased intensity. Nanoparticle exposition causes presence of neutrophils, lymphocytes and eosinophils in the lung tissue that confirmed there is a serious pathologic condition. Hepatic cells injuries cause penetration of the hepatic enzymes in to the blood serum (Tab. 2, Fig. 4, Ref. 32). Text in PDF www.elis.sk.

  7. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue.

    PubMed

    Sadeghi, L; Yousefi Babadi, V; Espanani, H R

    2015-01-01

    Iron oxide nanoparticles are magnetic nanoparticles which have widespread application in MRI and heat therapy of cancer as contrast elements. They are also used effectively for drug and gene delivery because of effective penetrating to the cells and tissues. However, these features cause Fe2O3 nanoparticles have toxic effects that are not completely understood yet. In this study, effects of iron oxide nanoparticles on lung tissue in adult male Wistar rats were studied. We used pulmonary inhalation method for nanoparticle administration and used ether as a helper. Our results showed administered nanoparticles penetrated to the circulation and rapidly reached to liver and created serious inflammation in lung and liver tissues. This study used two different nanoparticle doses (20 and 40 mg/kg) and two exposing numbers (7 and 14 times). Results showed significant enhancement of free radicals and reduction of the GSH in lung tissue. Histological studies showed nanoparticle treatment of rats caused pulmonary emphysema, interstitial hyperemia and inflammation in lungs. By increasing the administrated dose lung tissue showed all of the mentioned symptoms with increased intensity. Nanoparticle exposition causes presence of neutrophils, lymphocytes and eosinophils in the lung tissue that confirmed there is a serious pathologic condition. Hepatic cells injuries cause penetration of the hepatic enzymes in to the blood serum (Tab. 2, Fig. 4, Ref. 32). Text in PDF www.elis.sk. PMID:26084739

  8. Nickel accumulation in lung tissues is associated with increased risk of p53 mutation in lung cancer patients.

    PubMed

    Chiou, Yu-Hu; Wong, Ruey-Hong; Chao, Mu-Rong; Chen, Chih-Yi; Liou, Saou-Hsing; Lee, Huei

    2014-10-01

    Occupational exposure to nickel compounds has been associated with lung cancer. The correlation between high nickel levels and increased risk of lung cancer has been previously reported in a case-control study. This study assessed whether nickel exposure increased the occurrence of p53 mutations due to DNA repair inhibition by nickel. A total of 189 lung cancer patients were enrolled to determine nickel levels in tumor-adjacent normal lung tissues and p53 mutation status in lung tumors through atomic absorption spectrometry and direct sequencing, respectively. Nickel levels in p53 mutant patients were significantly higher than those in p53 wild-type patients. When patients were divided into high- and low-nickel subgroups by median nickel level, the high-nickel subgroup of patients had an odds ratio (OR) of 3.25 for p53 mutation risk relative to the low-nickel subgroup patients. The OR for p53 mutation risk of lifetime non-smokers, particularly females, in the high-nickel subgroup was greater than that in the low-nickel subgroup. To determine whether nickel affected DNA repair capacity, we conducted the host cell reactivation assay in A549 and H1975 lung cancer cells and showed that the DNA repair activity was reduced by nickel chloride in a dose-dependent manner. This was associated with elevated production of hydrogen peroxide-induced 8-oxo-deoxyguanosine. Therefore, increased risk of p53 mutation due to defective DNA repair caused by high nickel levels in lung tissues may be one mechanism by which nickel exposure contributes to lung cancer development, especially in lifetime female non-smokers.

  9. Coming to terms with tissue engineering and regenerative medicine in the lung.

    PubMed

    Prakash, Y S; Tschumperlin, Daniel J; Stenmark, Kurt R

    2015-10-01

    Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424

  10. Coming to terms with tissue engineering and regenerative medicine in the lung

    PubMed Central

    Tschumperlin, Daniel J.; Stenmark, Kurt R.

    2015-01-01

    Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424

  11. Microstructural Analysis of Peripheral Lung Tissue through CPMG Inter-Echo Time R2 Dispersion

    PubMed Central

    Kurz, Felix T.; Kampf, Thomas; Buschle, Lukas R.; Schlemmer, Heinz-Peter; Heiland, Sabine; Bendszus, Martin; Ziener, Christian H.

    2015-01-01

    Since changes in lung microstructure are important indicators for (early stage) lung pathology, there is a need for quantifiable information of diagnostically challenging cases in a clinical setting, e.g. to evaluate early emphysematous changes in peripheral lung tissue. Considering alveoli as spherical air-spaces surrounded by a thin film of lung tissue allows deriving an expression for Carr-Purcell-Meiboom-Gill transverse relaxation rates R2 with a dependence on inter-echo time, local air-tissue volume fraction, diffusion coefficient and alveolar diameter, within a weak field approximation. The model relaxation rate exhibits the same hyperbolic tangent dependency as seen in the Luz-Meiboom model and limiting cases agree with Brooks et al. and Jensen et al. In addition, the model is tested against experimental data for passively deflated rat lungs: the resulting mean alveolar radius of RA = 31.46 ± 13.15 μm is very close to the literature value (∼34 μm). Also, modeled radii obtained from relaxometer measurements of ageing hydrogel foam (that mimics peripheral lung tissue) are in good agreement with those obtained from μCT images of the same foam (mean relative error: 0.06 ± 0.01). The model’s ability to determine the alveolar radius and/or air volume fraction will be useful in quantifying peripheral lung microstructure. PMID:26544068

  12. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress.

    PubMed

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O(2) (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O(2)) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs.

  13. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    NASA Astrophysics Data System (ADS)

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs.

  14. Isolation and characterization of lung connective-tissue glycoproteins.

    PubMed Central

    Lafuma, C; Moczar, M; Robert, L

    1982-01-01

    1. Glycoproteins of hamster, rat and baboon lung parenchyma were investigated by using [14C]glucosamine incorporation in vitro followed by sequential extraction of the macromolecular components and characterization of the glycoproteins in the extracts. 2. Slices of lung parenchyma maintained in vitro incorporated [U-14C]glucosamine linearly with time into non-diffusible macromolecules for up to 5h. All the macromolecule-associated 14C label was present as [14C]glucosamine. 3. These 14C-labelled macromolecules were extracted from previously delipidated and salt-extracted lung by 5M-guanidinium chloride in the presence of dithiothreitol and proteinase inhibitors before (extract A1) and after (extract A2) hydrolysis of the collagen by collagenase. The [14C]glucosamine-labelled glycoproteins in extracts A1 and A2 contained 55 and 5% respectively of the total [14C]glucosamine incorporated in the lung of all three species studied. 4. The [14C]glucosamine-labelled glycoproteins were analysed by gel-filtration chromatography, sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectric focusing. The major [14C]glucosamine-labelled glycoproteins of baboon lung parenchyma had apparent mol.wts. of about 400 000, 140 000 and 65 000 with isoelectric points respectively of 4.8, 5.4 and 5.4. The hamster lung glycoproteins with isoelectric points of 4.1 and 5.8 were devoid of hydroxyproline and contained galactose, mannose and N-acetylglucosamine. These experiments indicate that several distinct glycoproteins are synthesized in situ by the cells of pulmonary parenchyma and may well play a role in its structure and function. PMID:7115303

  15. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  16. Differentially Expressed miRNAs in Tumor, Adjacent, and Normal Tissues of Lung Adenocarcinoma

    PubMed Central

    Tian, Fei; Li, Rui; Chen, Zhenzhu; Shen, Yanting; Lu, Jiafeng; Xie, Xueying; Ge, Qinyu

    2016-01-01

    Lung cancer is the leading cause of cancer deaths. Non-small-cell lung cancer (NSCLC) is the major type of lung cancer. The aim of this study was to characterize the expression profiles of miRNAs in adenocarcinoma (AC), one major subtype of NSCLC. In this study, the miRNAs were detected in normal, adjacent, and tumor tissues by next-generation sequencing. Then the expression levels of differential miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the results, 259, 401, and 389 miRNAs were detected in tumor, adjacent, and normal tissues of pooled AC samples, respectively. In addition, for the first time we have found that miR-21-5p and miR-196a-5p were gradually upregulated from normal to adjacent to tumor tissues; miR-218-5p was gradually downregulated with 2-fold or greater change in AC tissues. These 3 miRNAs were validated by qRT-PCR. Lastly, we predicted target genes of these 3 miRNAs and enriched the potential functions and regulatory pathways. The aberrant miR-21-5p, miR-196a-5p, and miR-218-5p may become biomarkers for diagnosis and prognosis of lung adenocarcinoma. This research may be useful for lung adenocarcinoma diagnosis and the study of pathology in lung cancer. PMID:27247934

  17. Lung tissue flap repairs esophagus defection with an inner chitosan tube stent

    PubMed Central

    Chen, Gang; Shi, Wen-Jun

    2009-01-01

    AIM: To repair the partial esophagus defect with a chitosan stent, a new esophageal prosthesis made of pulmonary tissue with vascular pedicle. METHODS: Fifteen Japanese big ear white rabbits were divided into experimental group (n = 10) and control group (n = 5). Esophagus defect in rabbits of experimental group was repaired using lung tissue flap with a chitosan tube stent, gross and histological appearance was observed at week 2, 4 and 8 after operation, and barium sulphate X-ray screen was performed at week 10 after operation. Esophagus defect of rabbits in control group was repaired using lung tissue flap with no chitosan tube stent, gross and histological appearance was observed at week 2, 4 and 8 after operation, and barium sulphate X-ray screen was performed at week 10 after operation. RESULTS: In the experimental group, 6 rabbits survived for over two weeks, the lung tissue flap healed esophageal defection, and squamous metaplasia occurred on the surface of lung tissue flap. At week 10 after operation, barium sulphate examination found that barium was fluent through the esophagus with no stricture or back stream, the creeping was good. In the control group, 4 rabbits survived for two weeks, the lung tissue flap healed esophageal defection with fibrous tissue hyperplasia, barium sulphate examination found that barium was fluent through the esophagus with a slight stricture or back stream, and the creeping was not good at week 10 after operation. CONCLUSION: Esophagus defect can be repaired using lung tissue flap with an inner chitosan tube stent. PMID:19322927

  18. Comprehensive Analysis of Transcriptome Sequencing Data in the Lung Tissues of COPD Subjects.

    PubMed

    Kim, Woo Jin; Lim, Jae Hyun; Lee, Jae Seung; Lee, Sang-Do; Kim, Ju Han; Oh, Yeon-Mok

    2015-01-01

    Background and Objectives. Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airflow limitation. Although airway inflammation and oxidative stress are known to be important in the pathogenesis of COPD, the mechanism underlying airflow obstruction is not fully understood. Gene expression profiling of lung tissue was performed to define the molecular pathways that are dysregulated in COPD. Methods. RNA was isolated from lung tissues obtained from 98 subjects with COPD and 91 control subjects with normal spirometry. The RNA samples were processed with RNA-seq using the HiSeq 2000 system. Genes expressed differentially between the two groups were identified using Student's t-test. Results. After filtering for genes with zero counts and noncoding genes, 16,676 genes were evaluated. A total of 2312 genes were differentially expressed between the lung tissues of COPD and control subjects (false discovery rate corrected q < 0.01). The expression of genes related to oxidative phosphorylation and protein catabolism was reduced and genes related to chromatin modification were dysregulated in lung tissues of COPD subjects. Conclusions. Oxidative phosphorylation, protein degradation, and chromatin modification were the most dysregulated pathways in the lung tissues of COPD subjects. These findings may have clinical and mechanistic implications in COPD.

  19. In vivo measurement of levofloxacin penetration into lung tissue after cardiac surgery.

    PubMed

    Hutschala, Doris; Skhirtladze, Keso; Zuckermann, Andreas; Wisser, Wilfried; Jaksch, Peter; Mayer-Helm, Bernhard Xaver; Burgmann, Heinz; Wolner, Ernst; Müller, Markus; Tschernko, Edda M

    2005-12-01

    Nosocomial pneumonia is a severe complication after cardiac surgery (CS). Levofloxacin, a fluoroquinolone, qualifies for the therapy of postoperative pneumonia. However, penetration properties of levofloxacin into the lung tissue could be substantially affected by CS: atelectasis, low cardiac output after CS, high volume loads, and inflammatory capillary leak potentially influence drug distribution. The aim of our study was to gain information on interstitial antibiotic concentrations in lung tissue in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Therefore, six patients undergoing elective CS participated in this prospective study. A dose of 500 mg of levofloxacin was administered intravenously in addition to standard antibiotic prophylaxis immediately after the end of surgery. Time versus concentration profiles of levofloxacin in the interstitial lung tissue and plasma were determined. A microdialysis technique was used for lung interstitial concentration measurements. The microdialysis procedure was well tolerated in all patients and no adverse events were observed. The median area under the concentration curve (AUC) of levofloxacin in interstitial lung fluid was 18.6 microg.h/ml (range, 10.1 to 33.6). The median AUC for tissue (AUC(tissue)) of unbound levofloxacin/AUC(total) in plasma was 0.6 (range, 0.4 to 0.9). The median unbound AUC(tissue)/MIC was 2.4 (range, 1.3 to 4.2) for Pseudomonas aeruginosa. Our study demonstrated the feasibility and safety of microdialysis in human lung tissue in vivo after CS. The unbound AUC/MIC ratio revealed that levofloxacin used in the described manner was borderline sufficient for the treatment of nosocomial pneumonia caused by Klebsiella pneumoniae and insufficient for the treatment of pneumonia caused by Pseudomonas aeruginosa, because the breakpoint of 30 to 40 for AUC/MIC could not be reached by the conventionally used dosage schema in our post-CS setting. Penetration was lower than in

  20. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  1. Three Dimensional Imaging of Paraffin Embedded Human Lung Tissue Samples by Micro-Computed Tomography

    PubMed Central

    Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.

    2015-01-01

    Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902

  2. Histopathology effects of nickel nanoparticles on lungs, liver, and spleen tissues in male mice

    NASA Astrophysics Data System (ADS)

    Ajdari, Marziyeh; Ziaee Ghahnavieh, Marziyeh

    2014-09-01

    Because of the classification of the nickel compounds as carcinogenic substances, there is a need for in vivo tests to nickel nanoparticles (NiNPs) for observing their effects on health experimentally. Spherical NiNPs with 10 nm in diameter and 75 ppm concentration were applied for investigating their toxicities within male albino mice as an in vivo model. We randomly made sham group, control group, and 75 ppm group (with five animals in each group). Then, the nanoparticles were injected into mice intraperitonealy for 7 days and after that their lungs, liver, and spleen were removed for histopathological observations. At the end of the test, section microscopic observations of liver, spleen, and lung in sham and control groups showed normal tissues but these tissues underwent significant abnormal effects in 75 ppm group. NiNPs can cause undesirable effects in lungs, liver, and spleen tissues with same condition of this study.

  3. Ectopic Intrathoracic Hepatic Tissue and Accessory Lung Lobe Aplasia in a Dog.

    PubMed

    Lande, Rachel; Dvorak, Laura; Gardiner, David W; Bahr, Anne

    2015-01-01

    A 6 yr old male Yorkshire terrier was presented for an ~6 yr history of progressive cough and dyspnea. Thoracic radiographs revealed a 6 cm diameter mass within the right caudal thorax. Thoracic ultrasound identified an intrathoracic mass ultrasonographically consistent with liver tissue and a chronic diaphragmatic hernia was suspected. Exploratory laparotomy was performed, but no evidence of a diaphragmatic hernia was identified. Thoracic exploration identified abnormal lung parenchyma. The accessory lung lobe was removed using a stapling devise near its base. The consolidated mass had the gross appearance of liver and was histologically identified as ectopic hepatic tissue. Ectopic hepatic tissue, unlike ectopic splenic and pancreatic tissue, is rare and generally has a subdiaphragmatic distribution. This solitary case report demonstrates that ectopic intrathoracic hepatic tissue should be considered a differential diagnosis for a caudal mediastinal mass.

  4. Classification of normal and cancerous lung tissues by electrical impendence tomography.

    PubMed

    Gao, Jianling; Yue, Shihong; Chen, Jun; Wang, Huaxiang

    2014-01-01

    Biological tissue impedance spectroscopy can provide rich physiological and pathological information by measuring the variation of the complex impedance of biological tissues under various frequencies of driven current. Electrical Impedance Tomography (EIT) technique can measure the impedance spectroscopy of biological tissue in medical field. Before application, a key problem must be solved on how to generally distinguish normal tissues from the cancerous in terms of measurable EIT data. In this paper, the impedance spectroscopy characteristics of human lung tissue are studied. On the basis of the measured data of 109 lung cancer patients, Cole-Cole Circle radius (CCCR) and the complex modulus are extracted. In terms of the two characteristics, 71.6% and 66.4% samples of cancerous and normal tissues can be correctly classified, respectively. Furthermore, two characteristics of the measured EIT data of each patient consist of a two-dimensional vector and all such vectors comprise a set of vectors. When classifying the vector set, the rate of correctly partitioning normal and cancerous tissues can be raised to 78.2%. The main factors to affect the classification results on normal and cancerous tissues are generally analyzed. The proposed method will play an important role in further working out an efficient and feasible diagnostic method for potential lung cancer patients, and provide theoretical basis and reference data for electrical impedance tomography technology in monitoring pulmonary function.

  5. Extraction and Quantification of Carbon Nanotubes in Biological Matrices with Application to Rat Lung Tissue

    PubMed Central

    Doudrick, Kyle; Corson, Nancy; Oberdörster, Günter; Elder, Alison; Herckes, Pierre; Halden, Rolf U.; Westerhoff, Paul

    2013-01-01

    Extraction of carbon nanotubes (CNTs) from biological matrices such as rat lung tissue is integral to developing a quantification method for evaluating the environmental and human health exposure and toxicity of CNTs. The ability of various chemical treatment methods, including Solvable (2.5% sodium hydroxide/surfactant mixture), ammonium hydroxide, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrogen peroxide, and proteinase K, to extract CNTs from rat lung tissue was evaluated. CNTs were quantified using programmed thermal analysis (PTA). Two CNTs were used to represent the lower (500°C) and upper (800°C) PTA limit of CNT thermal stability. The recovery efficiency of each of the eight chemical reagents evaluated was found to depend on the ability to (1) minimize oxidation of CNTs, (2) remove interfering background carbon from the rat lung tissue, and (3) separate the solid-phase CNTs from the liquid-phase dissolved tissue via centrifugation. A two-step extraction method using Solvable and proteinase K emerged as the optimal approach, enabling a recovery of 98 ± 15% of a 2.9 ± 0.19 µg CNT loading that was spiked into whole rat lungs. Due to its high yield and applicability to low organ burdens of nanomaterials, this extraction method is particularly well suited for in vivo studies to quantify clearance rates and retained CNTs in lungs and other organs. PMID:23992048

  6. Tissue Inhibitor of Metalloproteinase-1 Deficiency Amplifies Acute Lung Injury in Bleomycin-Exposed Mice

    PubMed Central

    Kim, Kyoung-Hee; Burkhart, Kristin; Chen, Peter; Frevert, Charles W.; Randolph-Habecker, Julie; Hackman, Robert C.; Soloway, Paul D.; Madtes, David K.

    2005-01-01

    Bleomycin-induced lung injury triggers a profound and durable increase in tissue inhibitor of metalloproteinase (TIMP)-1 expression, suggesting a potential role for this antiproteinase in the regulation of lung inflammation and fibrosis. TIMP-1 protein induction is spatially restricted to areas of lung injury as determined by immunohistochemistry. Using TIMP-1 null mutation mice, we demonstrate that TIMP-1 deficiency amplifies acute lung injury as determined by exaggerated pulmonary neutrophilia, hemorrhage, and vascular permeability compared with wild-type littermates after bleomycin exposure. The augmented pulmonary neutrophilia observed in TIMP-1–deficient animals was not found in similarly treated TIMP-2–deficient mice. Using TIMP-1 bone marrow (BM) chimeric mice, we observed that the TIMP-1–deficient phenotype was abolished in wild-type recipients of TIMP-1–deficient BM but not in TIMP-1–deficient recipients of wild-type BM. Acute lung injury in TIMP-1–deficient mice was accompanied by exaggerated gelatinase-B activity in the alveolar compartment. TIMP-1 deficiency did not alter neutrophil chemotactic factor accumulation in the injured lung nor neutrophil migration in response to chemotactic stimuli in vivo or in vitro. Moreover, TIMP-1 deficiency did not modify collagen accumulation after bleomycin injury. Our results provide direct evidence that TIMP-1 contributes significantly to the regulation of acute lung injury, functioning to limit inflammation and lung permeability. PMID:15947421

  7. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts.

    PubMed

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H; Keshamouni, Venkateshwar G; Peters-Golden, Marc; Lama, Vibha N

    2011-06-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs.

  8. Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.

    PubMed

    Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-07-01

    We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.

  9. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

    PubMed Central

    de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva

    2014-01-01

    OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964

  10. High concentrations of chromium in lung tissue from lung cancer patients

    SciTech Connect

    Anttila, S.; Kokkonen, P.; Paeaekkoe PRai; Rainio, P.; Kalliomaeki, P.L.P.; Pallon, J.; Malmqvist, K.; Pakarinen, P.; Naentoe, V.Su.; Sutinen, S.

    1989-02-01

    The pulmonary chromium content was determined by plasma atomic emission spectrometer (DCP-AES) from 53 lung cancer and 43 control patients, and compared with smoking habits, severity of emphysema and occupational history. The chromium content from the lung cancer patients was higher than that from the smoking (P less than 0.025) or nonsmoking control patients (6.4 +/- 4.3, 4.0 +/- 4.0, and 2.2 +/- 0.6 microgram/g dry weight, respectively). A positive correlation between the pulmonary chromium and smoking time (P less than 0.025) and the severity of emphysema (P less than 0.001) was found in the control but not in the cancer patients. The difference in the pulmonary chromium content was greatest between those lung cancer and control patients who were light smokers or had mild emphysema. This group of lung cancer patients included subjects with occupational exposure to chromium. The possibility of occupational cancer should be considered especially with light smokers. The grade of emphysema and metals such as chromium accumulating from tobacco could serve as objective indicators of smoking.

  11. Improved OCT imaging of lung tissue using a prototype for total liquid ventilation

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is used for imaging subpleural alveoli in animal models to gain information about dynamic and morphological changes of lung tissue during mechanical ventilation. The quality of OCT images can be increased if the refraction index inside the alveoli is matched to the one of tissue via liquid-filling. Thereby, scattering loss can be decreased and higher penetration depth and tissue contrast can be achieved. Until now, images of liquid-filled lungs were acquired in isolated and fixated lungs only, so that an in vivo measurement situation is not present. To use the advantages of liquid-filling for in vivo imaging of small rodent lungs, it was necessary to develop a liquid ventilator. Perfluorodecalin, a perfluorocarbon, was selected as breathing fluid because of its refraction index being similar to the one of water and the high transport capacity for carbon dioxide and oxygen. The setup is characterized by two independent syringe pumps to insert and withdraw the fluid into and from the lung and a custom-made control program for volume- or pressure-controlled ventilation modes. The presented results demonstrate the liquid-filling verified by optical coherence tomography and intravital microscopy (IVM) and the advantages of liquid-filling to OCT imaging of subpleural alveoli.

  12. Accumulation of metals in cancerous and healthy tissues of patients with lung cancer in Southern Poland.

    PubMed

    Binkowski, Łukasz J; Rogoziński, Paweł; Roychoudhury, Shubhadeep; Bruliński, Krzysztof; Kucharzewski, Marek; Łaciak, Tomasz; Massanyi, Peter; Stawarz, Robert

    2015-01-01

    The aim of this study was to investigate whether the concentrations of metals differ among patients with and without lung cancer with different smoking status and living in industrialized environments. We also evaluated the relationships between metals and blood parameters including hematocrit level (Hct), hemoglobin concentration (Hb), red (RBC) and white (WBC) blood cells numbers. Concentrations of metals were measured with AAS (copper - Cu, iron - Fe, magnesium - Mg, zinc - Zn) and CV-AAS (mercury - Hg). Neither smoking status nor industrialization could be considered as a significant factor for metals accumulation in blood, lungs and tumor tissues, with the exception of mercury which differed in the aspect of industrialization. According to the type of the disease, Fe, Hg and Mg concentrations differed significantly in lungs. Correlations between metals and blood parameters were observed. Additionally, concentrations of Mg, Cu and Zn were correlated between lungs and tumor tissue of patients with cancer as well as they all were related to each other in lungs, tumor and blood tissues.

  13. Consecutive CT-guided core needle tissue biopsy of lung lesions in the same dog at different phases of radiation-induced lung injury

    PubMed Central

    Yin, Zhongyuan; Deng, Sisi; Liang, Zhiwen; Wang, Qiong

    2016-01-01

    This project aimed to set up a Beagle dog model of radiation-induced lung injury in order to supply fresh lung tissue samples in the different injury phases for gene and protein research. Three dogs received 18 Gy X-ray irradiation in one fraction, another three dogs received 8 Gy in each of three fractions at weekly intervals, and one control dog was not irradiated. Acute pneumonitis was observed during the first 3 months after radiation, and chronic lung fibrosis was found during the next 4–12 months in all the dogs exposed to radiation. CT-guided core needle lung lesion biopsies were extracted from each dog five times over the course of 1 year. The dogs remained healthy after each biopsy, and 50–100 mg fresh lung lesion tissues were collected in each operation. The incidence of pneumothorax and hemoptysis was 20% and 2.8%, respectively, in the 35 tissue biopsies. A successful and stable radiation-induced lung injury dog model was established. Lung lesion tissue samples from dogs in acute stage, recovery stage and fibrosis stage were found to be sufficient to support cytology, genomics and proteomics research. This model safely supplied fresh tissue samples that would allow future researchers to more easily explore and develop treatments for radiation-induced lung injury. PMID:27422930

  14. Complex Sources of Variation in Tissue Expression Data: Analysis of the GTEx Lung Transcriptome.

    PubMed

    McCall, Matthew N; Illei, Peter B; Halushka, Marc K

    2016-09-01

    The sources of gene expression variability in human tissues are thought to be a complex interplay of technical, compositional, and disease-related factors. To better understand these contributions, we investigated expression variability in a relatively homogeneous tissue expression dataset from the Genotype-Tissue Expression (GTEx) resource. In addition to identifying technical sources, such as sequencing date and post-mortem interval, we also identified several biological sources of variation. An in-depth analysis of the 175 genes with the greatest variation among 133 lung tissue samples identified five distinct clusters of highly correlated genes. One large cluster included surfactant genes (SFTPA1, SFTPA2, and SFTPC), which are expressed exclusively in type II pneumocytes, cells that proliferate in ventilator associated lung injury. High surfactant expression was strongly associated with death on a ventilator and type II pneumocyte hyperplasia. A second large cluster included dynein (DNAH9 and DNAH12) and mucin (MUC5B and MUC16) genes, which are exclusive to the respiratory epithelium and goblet cells of bronchial structures. This indicates heterogeneous bronchiole sampling due to the harvesting location in the lung. A small cluster included acute-phase reactant genes (SAA1, SAA2, and SAA2-SAA4). The final two small clusters were technical and gender related. To summarize, in a collection of normal lung samples, we found that tissue heterogeneity caused by harvesting location (medial or lateral lung) and late therapeutic intervention (mechanical ventilation) were major contributors to expression variation. These unexpected sources of variation were the result of altered cell ratios in the tissue samples, an underappreciated source of expression variation. PMID:27588449

  15. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  16. Heme-related gene expression signatures of meat intakes in lung cancer tissues

    PubMed Central

    Lam, Tram Kim; Rotunno, Melissa; Ryan, Brid M.; Pesatori, Angela C.; Bertazzi, Pier Alberto; Spitz, Margaret; Caporaso, Neil E.; Landi, Maria Teresa

    2014-01-01

    Lung cancer causes more deaths worldwide than any other cancer. In addition to cigarette smoking, dietary factors may contribute to lung carcinogenesis. Epidemiologic studies, including the Environment and Genetics in Lung cancer Etiology (EAGLE), have reported increased consumption of red/processed meats to be associated with higher risk of lung cancer. Heme-iron toxicity may link meat intake with cancer. We investigated this hypothesis in meat-related lung carcinogenesis using whole genome expression. We measured genome-wide expression (HG-U133A) in 49 tumor and 42 non-involved fresh frozen lung tissues of 64 adenocarcinoma EAGLE patients. We studied gene expression profiles by high-versus-low meat consumption, with and without adjustment by sex, age, and smoking. Threshold for significance was a False Discovery Rate (FDR) ≤0.15. We studied whether the identified genes played a role in heme-iron related processes by means of manually curated literature search and gene ontology-based pathway analysis. We found that gene expression of 232 annotated genes in tumor tissue significantly distinguished lung adenocarcinoma cases who consumed above/below the median intake of fresh red meats (FDR=0.12). Sixty-three (~28%) of the 232 identified genes (12 expected by chance, p-value<0.001) were involved in heme binding, absorption, transport, and Wnt signaling pathway (e.g., CYPs, TPO, HPX, HFE, SLCs, WNTs). We also identified several genes involved in lipid metabolism (e.g., NCR1, TNF, UCP3) and oxidative stress (e.g., TPO, SGK2, MTHFR) that may be indirectly related to heme-toxicity. The study’s results provide preliminary evidence that heme-iron toxicity might be one underlying mechanism linking fresh red meat intake and lung cancer. PMID:23681825

  17. Heme-related gene expression signatures of meat intakes in lung cancer tissues.

    PubMed

    Lam, Tram Kim; Rotunno, Melissa; Ryan, Brid M; Pesatori, Angela C; Bertazzi, Pier Alberto; Spitz, Margaret; Caporaso, Neil E; Landi, Maria Teresa

    2014-07-01

    Lung cancer causes more deaths worldwide than any other cancer. In addition to cigarette smoking, dietary factors may contribute to lung carcinogenesis. Epidemiologic studies, including the environment and genetics in lung cancer etiology (EAGLE), have reported increased consumption of red/processed meats to be associated with higher risk of lung cancer. Heme-iron toxicity may link meat intake with cancer. We investigated this hypothesis in meat-related lung carcinogenesis using whole genome expression. We measured genome-wide expression (HG-U133A) in 49 tumor and 42 non-involved fresh frozen lung tissues of 64 adenocarcinoma EAGLE patients. We studied gene expression profiles by high-versus-low meat consumption, with and without adjustment by sex, age, and smoking. Threshold for significance was a false discovery rate (FDR) ≤ 0.15. We studied whether the identified genes played a role in heme-iron related processes by means of manually curated literature search and gene ontology-based pathway analysis. We found that gene expression of 232 annotated genes in tumor tissue significantly distinguished lung adenocarcinoma cases who consumed above/below the median intake of fresh red meats (FDR = 0.12). Sixty-three (∼ 28%) of the 232 identified genes (12 expected by chance, P-value < 0.001) were involved in heme binding, absorption, transport, and Wnt signaling pathway (e.g., CYPs, TPO, HPX, HFE, SLCs, and WNTs). We also identified several genes involved in lipid metabolism (e.g., NCR1, TNF, and UCP3) and oxidative stress (e.g., TPO, SGK2, and MTHFR) that may be indirectly related to heme-toxicity. The study's results provide preliminary evidence that heme-iron toxicity might be one underlying mechanism linking fresh red meat intake and lung cancer. PMID:23681825

  18. The release of spasmogenic substances from human chopped lung tissue and its inhibition

    PubMed Central

    Piper, Priscilla J.; Walker, Joyce L.

    1973-01-01

    1. Human lung tissue, passively sensitized with reaginic antibodies, released prostaglandins E1, E2 and F2α in addition to histamine and slow reacting substance (SRS-A), when exposed to the appropriate antigen. No rabbit aorta contracting substance (RCS) was detected. 2. Experiments with rats and guinea-pigs showed that the release of RCS is not confined to anaphylactic reactions mediated by non-reaginic antibodies but may be a feature of anaphylaxis in guinea-pigs alone. 3. Human lung tissue gently agitated with a blunt nylon rod liberated an E-type prostaglandin and RCS in addition to histamine and SRS-A. 4. Human isolated bronchial muscle was contracted by RCS. 5. Disodium cromoglycate antagonized the release of prostaglandins during anaphylaxis but not during agitation of human lung tissue, whereas indomethacin blocked the release of prostaglandins during agitation and anaphylaxis. 6. The release of an E-type prostaglandin during anaphylaxis in human lung tissue, which inhibits the further release of histamine could be another example of the regulatory role of prostaglandins in body functions. PMID:4352867

  19. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  20. Distribution of particulate matter and tissue remodeling in the human lung.

    PubMed Central

    Pinkerton, K E; Green, F H; Saiki, C; Vallyathan, V; Plopper, C G; Gopal, V; Hung, D; Bahne, E B; Lin, S S; Ménache, M G; Schenker, M B

    2000-01-01

    We examined the relationship between intrapulmonary particle distribution of carbonaceous and mineral dusts and remodeling of the airways along anatomically distinct airway paths in the lungs of Hispanic males from the central valley of California. Lung autopsy specimens from the Fresno County Coroner's Office were prepared by intratracheal instillation of 2% glutaraldehyde at 30 cm H(2)O pressure. Two distinct airway paths into the apico-posterior and apico-anterior portions of the left upper lung lobe were followed. Tissue samples for histologic analysis were generally taken from the intrapulmonary second, fourth, sixth, and ninth airway generations. Parenchymal tissues beyond the 12th airway generation of each airway path were also analyzed. There was little evidence of visible particle accumulation in the larger conducting airways (generations 2-6), except in bronchial-associated lymphoid tissues and within peribronchial connective tissue. In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying degrees of wall thickening and remodeling. Walls with marked thickening contained moderate to heavy amounts of carbonaceous and mineral dusts. Wall thickening was associated with increases in collagen and interstitial inflammatory cells, including dust-laden macrophages. These changes were significantly greater in first-generation respiratory bronchioles compared to second- and third-generation respiratory bronchioles. These findings suggest that accumulation of carbonaceous and mineral dust in the lungs is significantly affected by lung anatomy with the greatest retention in centers of lung acini. Furthermore, there is significant remodeling of this transitional zone in humans exposed to ambient particulate matter. PMID:11102298

  1. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  2. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  3. Cardiovascular Tissue Engineering Research Support at the National Heart, Lung, and Blood Institute

    PubMed Central

    Lundberg, Martha Shauck

    2013-01-01

    Tissue engineering aims at building three-dimensional living substitutes that are equal to or better than the damaged tissue to be replaced. The development of such a tissue replacement requires a multidisciplinary approach and careful attention to the optimal cell source, the interactions of growth factors and extracellular milieu, and the scaffolding design. This article is a review of the National Heart, Lung, and Blood Institute's (NHLBI) tissue engineering programs, which support research efforts to translate novel approaches for the treatment of cardiovascular disease. Recent progress is discussed, which highlights some major questions relevant to cardiovascular tissue engineering. NHLBI has a strong interest in tissue engineering and will continue to foster the practical, clinical, and commercial development of research discoveries in this emerging field. PMID:23580772

  4. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    SciTech Connect

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-06-15

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  5. Data on CUX1 isoforms in idiopathic pulmonary fibrosis lung and systemic sclerosis skin tissue sections.

    PubMed

    Ikeda, Tetsurou; Fragiadaki, Maria; Shi-Wen, Xu; Ponticos, Markella; Khan, Korsa; Denton, Christopher; Garcia, Patricia; Bou-Gharios, George; Yamakawa, Akio; Morimoto, Chikao; Abraham, David

    2016-09-01

    This data article contains complementary figures related to the research article entitled, "Transforming growth factor-β-induced CUX1 isoforms are associated with fibrosis in systemic sclerosis lung fibroblasts" (Ikeda et al. (2016) [2], http://dx.doi.org/10.1016/j.bbrep.2016.06.022), which presents that TGF-β increased CUX1 binding in the proximal promoter and enhancer of the COL1A2 and regulated COL1. Further, in the scleroderma (SSc) lung and diffuse alveolar damage lung sections, CUX1 localized within the α- smooth muscle actin (α-SMA) positive cells (Fragiadaki et al., 2011) [1], "High doses of TGF-beta potently suppress type I collagen via the transcription factor CUX1" (Ikeda et al., 2016) [2]. Here we show that CUX1 isoforms are localized within α-smooth muscle actin-positive cells in SSc skin and idiopathic pulmonary fibrosis (IPF) lung tissue sections. In particular, at the granular and prickle cell layers in the SSc skin sections, CUX1 and α-SMA are co-localized. In addition, at the fibrotic loci in the IPF lung tissue sections, CUX1 localized within the α-smooth muscle actin (α-SMA) positive cells. PMID:27583344

  6. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs.

    PubMed

    Staniszewski, Kevin; Audi, Said H; Sepehr, Reyhaneh; Jacobs, Elizabeth R; Ranji, Mahsa

    2013-04-01

    We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21 and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect on RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue health in real-time.

  7. Optical studies of tissue mitochondrial redox in isolated perfused rat lungs

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, M.

    2012-02-01

    Through the monitoring of the auto-fluorescent mitochondrial metabolic coenzymes, NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide), the redox state of metabolism can be probed in real time in many intact organs, but its use has not been fully developed in lungs. The ratio of these fluorophores, (NADH/FAD), referred to as the mitochondrial redox ratio (RR), can be used as a quantitative metabolic marker of tissue. We have designed a fluorometer that can be used to monitor lung surface NADH and FAD fluorescence in isolated perfused lungs. Surface fluorescence NADH and FAD signals were acquired in the absence (control) and presence of pentachlorophenol (PCP), rotenone, and potassium cyanide (KCN). Rotenone, an inhibitor of complex I, increased RR by 18%, predominantly due to an increase in NADH signal. KCN, an inhibitor of complex IV reduced the chain and resulted in an increase of 33% in RR, as a result of 23% increase in NADH and 8% in FAD . PCP, an uncoupler which oxidizes the respiratory chain, decreased RR by 18% as a result of 14% decrease in NADH signal and 4% increase in FAD signal. These results demonstrate the ability of surface fluorometry to detect changes in lung tissue mitochondrial redox state in isolated perfused lungs.

  8. New techniques for imaging and analyzing lung tissue.

    PubMed Central

    Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D

    1984-01-01

    The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115

  9. Transcriptome analysis reveals differential splicing events in IPF lung tissue.

    PubMed

    Nance, Tracy; Smith, Kevin S; Anaya, Vanessa; Richardson, Rhea; Ho, Lawrence; Pala, Mauro; Mostafavi, Sara; Battle, Alexis; Feghali-Bostwick, Carol; Rosen, Glenn; Montgomery, Stephen B

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a complex disease in which a multitude of proteins and networks are disrupted. Interrogation of the transcriptome through RNA sequencing (RNA-Seq) enables the determination of genes whose differential expression is most significant in IPF, as well as the detection of alternative splicing events which are not easily observed with traditional microarray experiments. We sequenced messenger RNA from 8 IPF lung samples and 7 healthy controls on an Illumina HiSeq 2000, and found evidence for substantial differential gene expression and differential splicing. 873 genes were differentially expressed in IPF (FDR<5%), and 440 unique genes had significant differential splicing events in at least one exonic region (FDR<5%). We used qPCR to validate the differential exon usage in the second and third most significant exonic regions, in the genes COL6A3 (RNA-Seq adjusted pval = 7.18e-10) and POSTN (RNA-Seq adjusted pval = 2.06e-09), which encode the extracellular matrix proteins collagen alpha-3(VI) and periostin. The increased gene-level expression of periostin has been associated with IPF and its clinical progression, but its differential splicing has not been studied in the context of this disease. Our results suggest that alternative splicing of these and other genes may be involved in the pathogenesis of IPF. We have developed an interactive web application which allows users to explore the results of our RNA-Seq experiment, as well as those of two previously published microarray experiments, and we hope that this will serve as a resource for future investigations of gene regulation in IPF.

  10. Transcriptome analysis reveals differential splicing events in IPF lung tissue.

    PubMed

    Nance, Tracy; Smith, Kevin S; Anaya, Vanessa; Richardson, Rhea; Ho, Lawrence; Pala, Mauro; Mostafavi, Sara; Battle, Alexis; Feghali-Bostwick, Carol; Rosen, Glenn; Montgomery, Stephen B

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a complex disease in which a multitude of proteins and networks are disrupted. Interrogation of the transcriptome through RNA sequencing (RNA-Seq) enables the determination of genes whose differential expression is most significant in IPF, as well as the detection of alternative splicing events which are not easily observed with traditional microarray experiments. We sequenced messenger RNA from 8 IPF lung samples and 7 healthy controls on an Illumina HiSeq 2000, and found evidence for substantial differential gene expression and differential splicing. 873 genes were differentially expressed in IPF (FDR<5%), and 440 unique genes had significant differential splicing events in at least one exonic region (FDR<5%). We used qPCR to validate the differential exon usage in the second and third most significant exonic regions, in the genes COL6A3 (RNA-Seq adjusted pval = 7.18e-10) and POSTN (RNA-Seq adjusted pval = 2.06e-09), which encode the extracellular matrix proteins collagen alpha-3(VI) and periostin. The increased gene-level expression of periostin has been associated with IPF and its clinical progression, but its differential splicing has not been studied in the context of this disease. Our results suggest that alternative splicing of these and other genes may be involved in the pathogenesis of IPF. We have developed an interactive web application which allows users to explore the results of our RNA-Seq experiment, as well as those of two previously published microarray experiments, and we hope that this will serve as a resource for future investigations of gene regulation in IPF.

  11. Alveolar air-tissue interface and nuclear magnetic resonance behavior of the lung

    NASA Astrophysics Data System (ADS)

    Cutillo, Antonio G.; Ailion, David C.; Ganesan, Krishnamurthy; Morris, Alan H.; Durney, Carl H.

    1995-05-01

    The nuclear magnetic resonance (NMR) properties of lung are markedly affected by the alveolar air-tissue interface, which produces internal magnetic field inhomogeneity because of the different magnetic susceptibilities of air and water. This internal magnetic field inhomogeneity results in a marked shortening of the free induction decay (FID) (in the time domain) and in inhomogeneous NMR line broadening (in the frequency domain). The signal loss due to internal magnetic field inhomogeneity can be measured as the difference Δ between the spin-echo signals obtained using temporally symmetric and asymmetric spin-echo sequences; the degree of asymmetry of the asymmetric sequence is characterized by the asymmetry time τa. In accordance with predictions based on the analysis of theoretical models, experiments in excised rat lungs (studied at various inflation levels) have shown that Δ depends on τa and is very low in degassed lungs. When measured at τa equals 6 ms, the difference signal (Δ6ms) increases markedly with alveolar opening but does not vary significantly during the rest of the inflation-deflation cycle. In edematous (oleic acid-injured) lungs, the values of Δ6ms measured at low inflation levels are significantly below those observed in normal lungs. These results suggest that Δ6ms is very sensitive to alveolar recruitment and relatively insensitive to alveolar distension. Therefore, measurements of Δ6ms may provide a means of assessing the relative contributions of these two factors to the pressure-volume behavior of lung. Such measurements may contribute to the characterization of pulmonary edema (for example, by detecting the loss of alveolar air-tissue interface due to alveolar flooding, by differentiating interstitial from alveolar pulmonary edema, and by assessing the effects of positive airway pressures). NMR lineshape measurements can also provide valuable information regarding lung geometry and the characterization of pulmonary edema.

  12. Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue

    PubMed Central

    Vierkotten, Sarah; Lindner, Michael; Königshoff, Melanie; Eickelberg, Oliver

    2015-01-01

    During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment. PMID:26092995

  13. Effects of superimposed tissue weight on regional compliance of injured lungs.

    PubMed

    Pellegrini, Mariangela; Derosa, Savino; Tannoia, Angela; Rylander, Christian; Fiore, Tommaso; Larsson, Anders; Hedenstierna, Göran; Perchiazzi, Gaetano

    2016-07-01

    Computed tomography (CT), together with image analysis technologies, enable the construction of regional volume (VREG) and local transpulmonary pressure (PTP,REG) maps of the lung. Purpose of this study is to assess the distribution of VREG vs PTP,REG along the gravitational axis in healthy (HL) and experimental acute lung injury conditions (eALI) at various positive end-expiratory pressures (PEEPs) and inflation volumes. Mechanically ventilated pigs underwent inspiratory hold maneuvers at increasing volumes simultaneously with lung CT scans. eALI was induced via the iv administration of oleic acid. We computed voxel-level VREG vs PTP,REG curves into eleven isogravitational planes by applying polynomial regressions. Via F-test, we determined that VREG vs PTP,REG curves derived from different anatomical planes (p-values<1.4E-3), exposed to different PEEPs (p-values<1.5E-5) or subtending different lung status (p-values<3E-3) were statistically different (except for two cases of adjacent planes). Lung parenchyma exhibits different elastic behaviors based on its position and the density of superimposed tissue which can increase during lung injury. PMID:26976688

  14. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    PubMed Central

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-01-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 – 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery. PMID:25961911

  15. Calculation of dose profiles in stereotactic synchrotron microplanar beam radiotherapy in a tissue-lung phantom.

    PubMed

    Company, F Z

    2007-03-01

    Synchrotron x-ray beams with high fluence rate and highly collimated may be used in stereotactic radiotherapy of lung tumours. A bundle of converging monochromatic x-ray beams having uniform microscopic thickness i.e. (microplanar beams) are directed to the center of the tumour, delivering lethal dose to the target volume while sparing normal cells. The proposed technique takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerate the lethally irradiated endothelial cells. The sharply dropping lateral dose of a microbeam provides low scattered dose to the off-target interbeam volume. In the target volume the converging bundle of beams are closely spaced, and relatively high primary and secondary electron doses overlap and produce a high dose region between the beams. This higher and lower dose margins in the target volume allows precise targeting. The advantages of stereotactic microbeam radiotherapy will be lost as the dose between microbeams exceeds the tolerance dose of the dose limiting tissues. Therefore, it is essential to optimize the interbeam doses in off-target volume. The lateral and depth doses of 100 keV microplanar beams are investigated for a single beam and an array of converging microplanar beams in a tissue, lung and tissue-lung phantoms. The EGS5 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams. The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different energies, depths, bundle sizes, heights, widths and beam spacings. The interbeam dose is calculated at different depths and an isodose map of the phantom is obtained. An acceptable energy region is found for tissue and lung microbeam radiotherapy and a stereotactic microbeam radiotherapy model is proposed for a 4 cm diameter and 1 cm thick tumour on the lung phantom.

  16. The use of an electrothermal bipolar tissue sealing system in the management of lung hydatid disease.

    PubMed

    Santini, Mario; Fiorelli, Alfonso; Milione, Roberta; Vicidomini, Giovanni; Accardo, Marina

    2014-10-01

    Surgery is the treatment of choice for management of pulmonary hydatid cysts. Total pericystectomy provided the best results concerning the recurrence of the disease, but haemorrhagia and air leak during dissection of the pericystic space are the main disadvantages of such a method. To avoid these complications, we proposed the use of an electrothermal bipolar tissue sealing system. After the extraction of the hydatid cyst, a small space is created between the pericyst and normal lung, and the separation between the two zones is joined using the electrothermal bipolar tissue sealing system. This procedure reduces the risk of bleeding and of air leaks because the bronchi and the vessels encountered during dissection are sealed by the electrothermal bipolar tissue sealing system. When the pericystic membrane (inflammatory host reaction) is intimately adherent to the lung, total pericystectomy demands greater technical training because the bronchovascular axes of the healthy segments are situated in the pericyst. In such cases, the electrothermal bipolar tissue sealing system allowed creation of an appropriate plane through the parenchyma close to the pericyst, minimizing the normal lung exposed to resection as much as possible and reducing the resulting bleeding and air leak. This procedure was successfully applied in 4 consecutive patients each with a giant hydatid cyst. PMID:24994701

  17. [Immunohistochemical Analysis of Krebs von den Lungen-6 (KL-6) Expression in Lung Tissue in Primary Lung Cancer Patients with High Serum KL-6 Levels].

    PubMed

    Yatsuyanagi, Eiji; Sato, Kazuhiro; Sato, Keisuke

    2015-09-01

    We investigated sialylated carbohydrate antigen( Krebs von den Lungen-6:KL-6) expression in lung tissue and correlation between the expression and serum KL-6 level in the patients with primary lung cancer. Thirty-four primary lung cancer patients with high serum KL-6 levels( >500 U/ml) were evaluated. A coexistence of interstitial pneumonia (IP) was histopathologically evaluated and an immunohistochemical staining using a mouse anti-human KL-6 antibody (mKL-6) was performed. A multiple regression analysis was also caluculated using a serum KL-6 level as a target variable and the histopathological and immunohistochemical factors (KL-6 expression in cancer tissue and IP tissue, coexistence of IP, tumor size, pathological staging) as descriptive variables. Twenty-two patients (64.7%) were histopathologically concomitant with IP. Cancer tissues were positively stained by mKL-6 in 32 patients (94.1%). Among them, 20 patients were concomitant with IP and all of their cancer tissues were more strongly stained by mKL-6 than IP tissues. Although considerable high rate of lung cancer patients might express the KL-6 in the cancer tissue, we could not reveal the relationship between the expression and serum KL-6 level by a multiple regression analysis. For revealing the mechanism of elevating serum KL-6 level in the patients with lung cancer, more detailed and powerful study is thought to be needed.

  18. Development of an experimental model of brain tissue heterotopia in the lung

    PubMed Central

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  19. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    PubMed

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should

  20. Impact of Collection and Storage of Lung Tumor Tissue on Whole Genome Expression Profiling

    PubMed Central

    Freidin, Maxim B.; Bhudia, Neesa; Lim, Eric; Nicholson, Andrew G.; Cookson, William O.; Moffatt, Miriam F.

    2012-01-01

    Gene expression profiling could assist in revealing biomarkers of lung cancer prognosis and progression. The handling of biological samples may strongly influence global gene expression, a fact that has not been addressed in many studies. We sought to investigate the changes in gene expression that may occur as a result of sample processing time and conditions. Using Illumina Human WG-6 arrays, we quantified gene expression in lung carcinoma samples from six patients obtained at chest opening before and immediately after lung resection with storage in RNAlater [T1a(CO) and T1b(LR)], after receipt of the sample for histopathology, placed in RNAlater [T2a(HP)]; snap frozen [T2b(HP.SF)]; or snap frozen and stored for 1 week [T2c(HP.SFA)], as well as formalin-fixed, paraffin-embedded (FFPE) block samples. Sampling immediately after resection closely represented the tissue obtained in situ, with only 1% of genes differing more than twofold [T1a(CO) versus T1b(LR)]. Delaying tissue harvest for an average of 30 minutes from the operating theater had a significant impact on gene expression, with approximately 25% of genes differing between T1a(CO) and T2a(HP). Many genes previously identified as lung cancer biomarkers were altered during this period. Examination of FFPE specimens showed minimal correlation with fresh samples. This study shows that tissue collection immediately after lung resection with conservation in RNAlater is an optimal strategy for gene expression profiling. PMID:22240448

  1. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    PubMed

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should

  2. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  3. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer

    PubMed Central

    Willumsen, Nicholas; Bager, Cecilie L; Leeming, Diana J; Smith, Victoria; Christiansen, Claus; Karsdal, Morten A; Dornan, David; Bay-Jensen, Anne-Christine

    2014-01-01

    Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7–186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer. PMID:25044252

  4. Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.

    2007-03-01

    Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.

  5. Interstitial lung disease in connective tissue disease--mechanisms and management.

    PubMed

    Wells, Athol U; Denton, Christopher P

    2014-12-01

    Pulmonary complications are an important extra-articular feature of autoimmune rheumatic diseases and a major cause of mortality. The underlying pathogenesis probably involves multiple cellular compartments, including the epithelium, lung fibroblasts, and the innate and adaptive immune system. Heterogeneity in the extent and progression of lung fibrosis probably reflects differences in underlying pathogenic mechanisms. Growing understanding of the key pathogenic drivers of lung fibrosis might lead to the development of more effective targeted therapies to replicate the treatment advances in other aspects of these diseases. Interstitial lung disease (ILD) in connective tissue disease (CTD) is characterized using the classification of the idiopathic interstitial pneumonias. Systemic sclerosis is most frequently associated with ILD and, in most of these patients, ILD manifests as a histological pattern of nonspecific interstitial pneumonia. Conversely, in rheumatoid arthritis, the pattern of ILD is most often usual interstitial pneumonia. The key goals of clinical assessment of patients with both ILD and CTD are the detection of ILD and prognostic evaluation to determine which patients should be treated. Data from treatment trials in systemic sclerosis support the use of immunosuppressive therapy, with the treatment benefit largely relating to the prevention of progression of lung disease.

  6. Lung involvement in connective tissue diseases: a comprehensive review and a focus on rheumatoid arthritis.

    PubMed

    Marigliano, Benedetta; Soriano, Alessandra; Margiotta, Domenico; Vadacca, Marta; Afeltra, Antonella

    2013-09-01

    The lungs are frequently involved in Connective Tissue Diseases (CTDs). Interstitial lung disease (ILD) is one of the most common pleuropulmonary manifestations that affects prognosis significantly. In practice, rheumatologists and other physicians tend to underestimate the impact of CTD-ILDs and diagnose respiratory impairment when it has reached an irreversible fibrotic stage. Early investigation, through clinical evidence, imaging and - in certain cases - lung biopsy, is therefore warranted in order to detect a possible ILD at a reversible initial inflammatory stage. In this review, we focus on lung injury during CTDs, with particular attention to ILDs, and examine their prevalence, clinical manifestations and histological patterns, as well as therapeutic approaches and known complications till date. Although several therapeutic agents have been approved, the best treatment is still not certain and additional trials are required, which demand more knowledge of pulmonary involvement in CTDs. Our central aim is therefore to document the impact that lung damage has on CTDs. We will mainly focus on Rheumatoid Arthritis (RA), which - unlike other rheumatic disorders - resembles Idiopathic Pulmonary Fibrosis (IPF) in numerous aspects.

  7. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration

    PubMed Central

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Purpose Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. Materials and methods C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Results Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. Conclusion RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema. PMID:27313451

  8. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue.

    PubMed

    Abbas, Yasmine; Azzazy, Hassan M E; Tammam, Salma; Lamprecht, Alf; Ali, Mohamed Ehab; Schmidt, Annette; Sollazzo, Silvio; Mathur, Sanjay

    2016-10-01

    Lung cancer, the deadliest solid tumor among all types of cancer, remains difficult to treat. This is a result of unavoidable exposure to carcinogens, poor diagnosis, the lack of targeted drug delivery platforms and limitations associated with delivery of drug to deep lung tissues. Development of a non-invasive, patient-convenient formula for the targeted delivery of chemotherapeutics to cancer in deep lung tissue is the aim of this study. The formulation consisted of inhalable polyvinylpyrrolidone (PVP)/maltodextrin (MD)-based microparticles (MPs) encapsulating chitosan (CS) nanoparticles (NPs) loaded with either drug only or drug and magnetic nanoparticles (MNPs). Drug release from CS NPs was enhanced with the aid of MNPs by a factor of 1.7 in response to external magnetic field. Preferential toxicity by CS NPs was shown towards tumor cells (A549) in comparison to cultured fibroblasts (L929). The prepared spray freeze dried (SFD) powders for CS NPs and CS MNPs were of the same size at ∼6μm. They had a fine particle fraction (FPF≤5.2μm) of 40-42% w/w and mass median aerodynamic diameter (MMAD) of 5-6μm as determined by the Next Generation Impactor (NGI). SFD-MPs of CS MNPs possess higher MMAD due to the high density associated with encapsulated MNPs. The developed formulation demonstrates several capabilities including tissue targeting, controlled drug release, and the possible imaging and diagnostic values (due to its MNPs content) and therefore represents an improved therapeutic platform for drug delivery to cancer in deep lung tissue.

  9. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor.

    PubMed

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B; Lupu, Florea

    2007-09-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis.

  10. Automated characterization of normal and pathologic lung tissue by topological texture analysis of multidetector CT

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Fink, C.; Becker, C.; Reiser, M.

    2007-03-01

    Reliable and accurate methods for objective quantitative assessment of parenchymal alterations in the lung are necessary for diagnosis, treatment and follow-up of pulmonary diseases. Two major types of alterations are pulmonary emphysema and fibrosis, emphysema being characterized by abnormal enlargement of the air spaces distal to the terminal, nonrespiratory bronchiole, accompanied by destructive changes of the alveolar walls. The main characteristic of fibrosis is coursening of the interstitial fibers and compaction of the pulmonary tissue. With the ability to display anatomy free from superimposing structures and greater visual clarity, Multi-Detector-CT has shown to be more sensitive than the chest radiograph in identifying alterations of lung parenchyma. In automated evaluation of pulmonary CT-scans, quantitative image processing techniques are applied for objective evaluation of the data. A number of methods have been proposed in the past, most of which utilize simple densitometric tissue features based on the mean X-ray attenuation coefficients expressed in terms of Hounsfield Units [HU]. Due to partial volume effects, most of the density-based methodologies tend to fail, namely in cases, where emphysema and fibrosis occur within narrow spatial limits. In this study, we propose a methodology based upon the topological assessment of graylevel distribution in the 3D image data of lung tissue which provides a way of improving quantitative CT evaluation. Results are compared to the more established density-based methods.

  11. State-of-the-Art Imaging of the Lung for Connective Tissue Disease (CTD).

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Seki, Shinichiro

    2015-12-01

    Involvement of the respiratory system is common in connective tissue diseases (CTDs), and the resultant lung injury can affect every part of the lung: the pleura, alveoli, interstitium, vasculature, lymphatic tissue, and large and/or small airways. Most of the parenchymal manifestations of CTD are similar to those found in interstitial lung diseases (ILDs), especially idiopathic interstitial pneumonias, and can be classified using the same system. Although there is some overlap, each CTD is associated with a characteristic pattern of pulmonary involvement. For this reason, thin-section CT as well as pulmonary function tests and serum markers are utilized for diagnosis, disease severity assessment, and therapeutic efficacy evaluation of ILD associated with CTD. In addition, newly developed pulmonary magnetic resonance imaging (MRI) procedures have been recommended as useful alternative imaging options for patients with CTD. This review article will (1) address radiological findings for chest radiography and conventional or thin-section CT currently used for six major types of CTD, rheumatoid arthritis, scleroderma (progressive systemic sclerosis), polymyositis/dermatomyositis, systemic lupus erythematosus, Sjögren syndrome and mixed connective tissue disease; (2) briefly deal with radiation dose reduction for thin-section CT examination; and (3) discuss clinically applicable or state-of-the-art MR imaging for CTD patients.

  12. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M.; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  13. Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization.

    PubMed

    Depeursinge, Adrien; Iavindrasana, Jimison; Hidki, Asmâa; Cohen, Gilles; Geissbuhler, Antoine; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2010-02-01

    In this paper, we compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) and with healthy tissue. The evaluated classifiers are naive Bayes, k-nearest neighbor, J48 decision trees, multilayer perceptron, and support vector machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. These are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 88.3% with high class-specific precision on testing sets of 423 ROIs.

  14. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.

    PubMed

    Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin

    2014-09-01

    Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.

  15. MICRO DOSE ASESSMENT OF INHALED PARTICLES IN HUMAN LUNGS: A STEP CLOSER TOWARDS THE TARGET TISSUE DOSE

    EPA Science Inventory

    Rationale: Inhaled particles deposit inhomogeneously in the lung and this may result in excessive deposition dose at local regions of the lung, particularly at the anatomic sites of bifurcations and junctions of the airways, which in turn leads to injuries to the tissues and adve...

  16. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.

    PubMed

    Pahor, Kevin; Olson, Greg; Forbes, Shari L

    2013-09-01

    The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.

  17. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    SciTech Connect

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  18. Time-resolved autofluorescence measurements for the differentiation of lung tissue states

    NASA Astrophysics Data System (ADS)

    Pfeifer, Lutz; Schmalzigaug, K.; Paul, Rene; Lichey, J.; Kemnitz, Klaus; Fink, Frank

    1995-12-01

    The fluorescence properties of fluorophores relevant in tissue metabolism (NADH, flavines, etc.) are characteristic of the clinical states of tissues. Especially the differentiation of healthy, cancerous, and necrotic tissue states is of large interest in lung-tumor diagnostics, e.g. to ensure that biopsies are taken from non-necrotic areas. In contrast to the common fluorescence detection our approach provides both a combination of spectral and time information from autofluorescence and the simultaneous detection of two fluorophores in order to improve differentiation between various tissues. The basis of analysis of autofluorescence is knowledge of the photophysical parameters of the fluorophores. Aqueous solutions of NADH, flavines and their mixtures have been investigated using the method of time-correlated single photon counting. The fluorescence was recorded with a new 'delay-line' microchannel-plate photomultiplier tube, that enables time- and wavelength-resolved measurements simultaneously. Nicotine-adenine-dinucleotide (NADH) and flavine-adenin-dinucleotide (FAD) display their characteristic temporal behavior (NADH: (tau) 1 equals 250 ps, (tau) 2 equals 660 ps; FAD: (tau) 1 equals 160 ps, (tau) 2 equals 2.25 ns, (tau) 3 equals 4.6 ns) in aqueous solution. In a mixture of NADH and FAD both components could be isolated by using global analytical methods. Time-gated fluorescence measurements on lung-tissue samples of 12 patients immediately after surgical resection have been performed with a fiber- based fluorescence detector. It could be demonstrated that NADH measurements are suitable for differentiating tumorous and necrotic tissue while flavine measurements are suitable for differentiating healthy and non-healthy tissue types. Applications of optical fibers facilitate simple combinations of the detection method with common surgical instruments (e.g. biopsy needles).

  19. Prognostic significance of tissue miR-345 downregulation in non-small cell lung cancer

    PubMed Central

    Chen, Liming; Li, Xiaojie; Chen, Xiaojun

    2015-01-01

    Background: MiRNAs might function as oncogenes or tumor suppressor genes in the tumorigenesis process. Dysregulation of miR-345 is a frequent event in many types of human cancers. However, the tissue miR-345 expression level in non-small cell lung cancer (NSCLC) and its potential clinical significance remains unknown. Materials and methods: Real-time PCR was conducted to evaluate the expression level of miR-345 in NSCLC tissues as well as cell lines. Then the association between tissue miR-345 expression level and clinical outcome was investigated. Results: The expression level of miR-345 was significantly decreased in NSCLC tissues and cell lines compared with the controls (P<0.05; P<0.01). Tissue miR-345 expression level was associated with various clinicopathological parameters including LN metastasis (P=0.012), distant metastasis (P=0.007), TNM stage (P=0.008) and grade (P=0.030). In addition, the NSCLC patients in thelow tissue miR-345 expression group had significantly shorter 5-year overall survival time than those in the high tissue miR-345expression group (P=0.016). Multivariate analysis showed that tissue miR-345 was an independent risk factor for NSCLC (HR=3.921, 95% CI: 2.285-10.540; P=0.008). Conclusions: The expression level of miR-345 was reduced in NSCLC tissues and cell lines. Low tissue miR-345 expression was associated with progression and poor prognosis of NSCLC, indicating that tissue miR-345 may serve as a novel prognostic marker in NSCLC. PMID:26885027

  20. A quantitative comparison analysis of diatoms in the lung tissues and the drowning medium as an indicator of drowning.

    PubMed

    Zhao, Jian; Ma, Yanbin; Liu, Chao; Wen, Jinfeng; Hu, Sunlin; Shi, He; Zhu, Lingyun

    2016-08-01

    The presence of diatoms in the lung tissues, internal organs and bone marrow is considered as the supportive evidence in the diagnosis of death by drowning. Generally, the diatoms detected in the lung tissues are regarded as insignificant since these diatoms can be detected in the lung tissues of the postmortem immersion bodies. In this study, we analyzed the relationships between the numbers of the diatoms in the lung tissues and the drowning medium. We made a comparison analysis between the diatoms in the lung tissues and the drowning medium using the ratio of diatom numbers in both samples (L/D ratio), utilizing Microwave Digestion - Vacuum Filtration - Automated Scanning Electron Microscopy method. Our data indicate that the L/D ratios in victims of the drowning group were higher than the postmortem immersion group. A higher L/D ratio provides valuable information about the cause of death in drowning victims. Quantitative diatom analysis in the lung tissues, especially combined with the diatom analysis of the drowning medium, provides supportive evidence in determining if a body recovered in water was due to drowning or not. PMID:27266652

  1. A quantitative comparison analysis of diatoms in the lung tissues and the drowning medium as an indicator of drowning.

    PubMed

    Zhao, Jian; Ma, Yanbin; Liu, Chao; Wen, Jinfeng; Hu, Sunlin; Shi, He; Zhu, Lingyun

    2016-08-01

    The presence of diatoms in the lung tissues, internal organs and bone marrow is considered as the supportive evidence in the diagnosis of death by drowning. Generally, the diatoms detected in the lung tissues are regarded as insignificant since these diatoms can be detected in the lung tissues of the postmortem immersion bodies. In this study, we analyzed the relationships between the numbers of the diatoms in the lung tissues and the drowning medium. We made a comparison analysis between the diatoms in the lung tissues and the drowning medium using the ratio of diatom numbers in both samples (L/D ratio), utilizing Microwave Digestion - Vacuum Filtration - Automated Scanning Electron Microscopy method. Our data indicate that the L/D ratios in victims of the drowning group were higher than the postmortem immersion group. A higher L/D ratio provides valuable information about the cause of death in drowning victims. Quantitative diatom analysis in the lung tissues, especially combined with the diatom analysis of the drowning medium, provides supportive evidence in determining if a body recovered in water was due to drowning or not.

  2. Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology

    PubMed Central

    Massey, Veronica L.; Beier, Juliane I.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Arteel, Gavin E.

    2015-01-01

    Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis. PMID:26437442

  3. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

    PubMed Central

    Shi, Jianxin; Marconett, Crystal N.; Duan, Jubao; Hyland, Paula L.; Li, Peng; Wang, Zhaoming; Wheeler, William; Zhou, Beiyun; Campan, Mihaela; Lee, Diane S.; Huang, Jing; Zhou, Weiyin; Triche, Tim; Amundadottir, Laufey; Warner, Andrew; Hutchinson, Amy; Chen, Po-Han; Chung, Brian S.I.; Pesatori, Angela C.; Consonni, Dario; Bertazzi, Pier Alberto; Bergen, Andrew W.; Freedman, Mathew; Siegmund, Kimberly D.; Berman, Benjamin P.; Borok, Zea; Chatterjee, Nilanjan; Tucker, Margaret A.; Caporaso, Neil E.; Chanock, Stephen J.; Laird-Offringa, Ite A.; Landi, Maria Teresa

    2014-01-01

    The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome. PMID:24572595

  4. Histamine release by Western red cedar (Thuja plicata) from lung tissue in vitro

    PubMed Central

    Evans, Elizabeth; Nicholls, P. J.

    1974-01-01

    Evans, Elizabeth and Nicholls, P. J. (1974).British Journal of Industrial Medicine,31, 28-30. Histamine release by Western red cedar(Thuja plicata)from lung tissue in vitro. Various respiratory symptoms have previously been observed in workers exposed to dust from Western red cedar (Thuja plicata). Although an allergic basis for these effects has been proposed, the possibility that the dust may contain a pharmacologically active agent was investigated. Aqueous extracts of two samples of red cedar released significant amounts of histamine from pig and human lung in vitro. For one of these samples, using pig lung, a dose-response relation was found over a narrow range of concentrations. These dusts possessed the same order of histamine-releasing activity as a sample of cotton dust. Potassium cyanide reduced the release of histamine caused by low concentrations of Western red cedar. Similar effects of cyanide on the histamine-releasing activity of cotton dust and compound 48/80 were observed. It is possible that release of histamine in the lungs and upper respiratory tract occurs on inhalation of dust from Western red cedar and this may be a contributory factor to the development of respiratory symptoms in workers exposed to the dust of this wood. PMID:4132384

  5. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    SciTech Connect

    Schittny, J. C.; Barre, S. F.; Haberthuer, D.; Mokso, R.; Tsuda, A.; Stampanoni, M.

    2011-09-09

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential--especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  6. Characterization of TLR-induced inflammatory responses in COPD and control lung tissue explants

    PubMed Central

    Pomerenke, Anna; Lea, Simon R; Herrick, Sarah; Lindsay, Mark A; Singh, Dave

    2016-01-01

    Purpose Viruses are a common cause of exacerbations in chronic obstructive pulmonary disease (COPD). They activate toll-like receptors (TLRs) 3, 7, and 8, leading to a pro-inflammatory response. We have characterized the responses of TLR3 and TLR7/8 in lung tissue explants from COPD patients and control smokers. Methods We prepared lung whole tissue explants (WTEs) from patients undergoing surgery for confirmed or suspected lung cancer. In order to mimic the conditions of viral infection, we used poly(I:C) for TLR3 stimulation and R848 for TLR7/8 stimulation. These TLR ligands were used alone and in combination. The effects of tumor necrosis factor α (TNFα) neutralization and dexamethasone on TLR responses were examined. Inflammatory cytokine release was measured by enzyme-linked immunosorbent assay and gene expression by quantitative real-time polymerase chain reaction. Results WTEs from COPD patients released higher levels of pro-inflammatory cytokines compared with WTEs from smokers. Activation of multiple TLRs led to a greater than additive release of TNFα and CCL5. TNFα neutralization and dexamethasone treatment decreased cytokine release. Conclusion This WTE model shows an enhanced response of COPD compared with controls, suggesting an increased response to viral infection. There was amplification of innate immune responses with multiple TLR stimulation. PMID:27729782

  7. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    NASA Astrophysics Data System (ADS)

    Schittny, J. C.; Barré, S. F.; Mokso, R.; Haberthür, D.; Semmler-Behnke, M.; Kreyling, W. G.; Tsuda, A.; Stampanoni, M.

    2011-09-01

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential—especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  8. Arsenic Species in Scute (Shell Plate) and Lung Tissues of Desert Tortoises

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Berry, K.; Jacobson, E. R.; Rytuba, J. J.

    2009-12-01

    The desert tortoise (Gopherus agassizii) is federally listed as a threatened species, and its numbers have been in decline for at least two decades. Portions of protected desert tortoise habitats coincide with anthropogenic features such as historic mines and military bases that are potential sources of ingested or inhaled arsenic. Previous studies of necropsied desert tortoise specimens collected from the Mojave Desert have shown a statistically significant link between elevated tissue levels of arsenic (As) and the occurrence of clinical disease states. Synchrotron-based, microbeam X-ray absorption fine structure spectroscopy (XAFS) and X-ray fluorescence mapping (XRF) were the primary techniques used to identify As species in these tissues. Specimens have been analyzed from a mining-impacted area (Kelly-Rand Mining district, Kern County), and from sites on or adjacent to military bases (National Training Center, Ft Irwin, and Edwards AFB). XRF maps showed that scute sections sliced perpendicular to the exposed surface contain one or more diffuse bands of As(III) coordinated by oxygen instead of sulfur. This As(III) species is identical in all individuals, suggesting that it represents metabolized As. In contrast, the exterior surface and edges of scute sections contained As-rich particles of varying oxidation state and species, suggesting an exogenous origin. Particles contained reduced As in sulfides (Cu sulfide or arsenide) and As(V) in ferric sulfates and/or ferric arsenates. XAFS spectra of many As(V)-rich particles were close visual matches to spectra of known arsenic-bearing minerals or phases such as scorodite, jarosite, and arsenic adsorbed to iron (hydr)oxides. At least one, and more commonly 3-5 exogeneous As-rich particles were found in the formalin-preserved lung tissue sections examined, suggesting that such particles were relatively common. Pentavalent As was observed in forms similar to those encountered on scute sections. As(III) was observed in

  9. FIB-SEM imaging of carbon nanotubes in mouse lung tissue.

    PubMed

    Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian

    2014-06-01

    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.

  10. Copper Transporter CTR1 Expression and Tissue Platinum Concentration in Non-Small Cell Lung Cancer

    PubMed Central

    Kim, Eric S.; Tang, XiMing; Peterson, Derick R.; Kilari, Deepak; Chow, Chi-Wan; Fujimoto, Junya; Kalhor, Neda; Swisher, Stephen G.; Stewart, David J.; Wistuba, Ignacio I.; Siddik, Zahid H.

    2014-01-01

    Background Platinum resistance is a major limitation in the treatment of advanced non-small cell lung cancer (NSCLC). We previously demonstrated that low tissue platinum concentration in NSCLC specimens was significantly associated with reduced tumor response. Furthermore, low expression of the copper transporter CTR1, a transporter of platinum uptake was associated with poor clinical outcome following platinum-based therapy in NSCLC patients. We investigated the relationship between tissue platinum concentrations and CTR1 expression in NSCLC specimens. Methods We identified paraffin-embedded NSCLC tissue blocks of known tissue platinum concentrations from 30 patients who underwent neoadjuvant platinum-based chemotherapy at MD Anderson Cancer Center. Expression of CTR1 in tumors and normal adjacent lung specimens was determined by immunohistochemistry with adequate controls. Results Tissue platinum concentration significantly correlated with tumor response in 30 patients who received neoadjuvant platinum-based chemotherapy (P<0.001). CTR1 was differentially expressed in NSCLC tumors. A subset of patients with undetectable CTR1 expression in their tumors had reduced platinum concentrations (P=0.058) and tumor response (P=0.016) compared to those with any level of CTR1 expression. We also observed that African Americans had significantly reduced CTR1 expression scores (P=0.001), tissue platinum concentrations (P=0.009) and tumor shrinkage (P=0.016) compared to Caucasians. Conclusions To our best knowledge this is the first study investigating the function of CTR1 in clinical specimens. CTR1 expression may be necessary for therapeutic efficacy of platinum drugs, consistent with previous preclinical studies. A prospective clinical trial is necessary to develop CTR1 into a potential biomarker for platinum drugs. PMID:24792335

  11. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats

    PubMed Central

    YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG

    2016-01-01

    Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989

  12. Ameliorating effects of CAPE on oxidative damage caused by pneumoperitoneum in rat lung tissue

    PubMed Central

    Davarci, Isil; Alp, Harun; Ozgur, Tumay; Karcioglu, Murat; Tuzcu, Kasim; Evliyaoglu, Osman; Motor, Sedat; Durgun Yetim, Tulin

    2014-01-01

    We investigated the biochemical and histopathological effects of caffeic acid phenethyl ester (CAPE) against oxidative stress causing lung injury induced by pneumoperitoneum. Twenty-eight rats were selected at random and seven rats were assigned to each of the following groups. The control group (S) was subjected to a sham operation without pneumoperitoneum. The other groups were subjected to CO2 pneumoperitoneum 15 mmHg for 60 min. The laparoscopy group (L) had no additional drugs administered, the laparoscopy + alcohol (LA) group had 1 ml of 70% ethyl alcohol administered 1 h before the desufflation period, and the laparoscopy + CAPE (LC) group had CAPE administered at 10 μmol/kg 1 h before the desufflation period. The total oxidative status levels of lung and plasma were significantly increased in the LA group as compared with the LC and S group. When the LC group was compared with the L group, there was a decrease in the level of total oxidant status and increase in the levels of total antioxidant status and paraoxonase in lung tissue. The level of total antioxidative status in the S group was increased compared with the L group in lung tissue and bronchoalveolar lavage fluid. TNF-α and IL-6 were found significantly elevated in the L group compared with the LC and S groups in bronchoalveolar lavage fluid. There was a similar increase in plasma levels of IL-6. These results were supported by histopathological examination. CAPE was found to considerably reduce oxidative stress and inflammation induced by pneumoperitoneum. PMID:25126167

  13. Cystatins in non-small cell lung cancer: tissue levels, localization and relation to prognosis.

    PubMed

    Werle, Bernd; Schanzenbächer, Ulrike; Lah, Tamara Turensek; Ebert, Eileen; Jülke, Britta; Ebert, Werner; Fiehn, Werner; Kayser, Klaus; Spiess, Eberhard; Abrahamson, Magnus; Kos, Janko

    2006-10-01

    Cystatins regulate tumour-associated cysteine proteases, however, their role in tumour progression is not clear yet. To assess their relevance in the progression of non-small cell lung cancer (NSCLC) the protein level, cysteine protease activity (CPI) and localization of type I (stefins A and B) and type II (C, E/M and F) cystatins were defined in tumours and control lung counterparts from 165 patients. The medians of CPI activity, stefins A and B were significantly greater in tumour than in lung tissue (2.1-fold, 1.7-fold, 1.2-fold, respectively, all p<0.001). The median levels of cystatin C and cystatin E/M were lower in tumour tissue (0.9-fold, p=0.06; 0.6-fold, p<0.01). In all the samples the levels of cystatin F were below the detection limit. Immunohistochemical analysis revealed the presence of all cystatins in tumour cells and infiltrated inflammatory cells such as macrophages and neutrophils. In univariate survival analysis patients with high levels of stefin A, stefin B and CPI activity exhibited a better survival probability (p=0.05, p=0.05, p<0.01, respectively). In contrast, cystatins C and E/M provided no prognostic information. In multivariate analysis the most powerful predictor of survival was the pTNM stage (p<0.0001; RR 3.5), followed by stefin A, stefin B and CPI activity (all p=0.03; RR 1.5). Our results suggest that only stefins A and B, i.e. type I cystatins, are up-regulated in lung tumours and thus able to counteract harmful tumour-associated proteolytic activity. As biological markers they may add independent prognostic information for better assessment of low- and high-risk patients with NSCLC.

  14. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    NASA Astrophysics Data System (ADS)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  15. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples.

  16. Asbestos content of lung tissue in patients with malignant peritoneal mesothelioma: A study of 42 cases.

    PubMed

    de Ridder, Gustaaf G; Kraynie, Alyssa; Pavlisko, Elizabeth N; Oury, Tim D; Roggli, Victor L

    2016-01-01

    Lung tissue from 42 peritoneal mesothelioma cases was analyzed by light microscopy and scanning electron microscopy/energy dispersive spectrometry. There were 34 men and 8 women with a mean age of 61 ± 10 years. Also, 17% of cases had histologically confirmed asbestosis, and 26% had only parietal pleural plaques. The asbestos body count exceeded our normal range in 22 of 42 cases (52%). Cases with asbestos-related pulmonary disease had higher fiber burdens than those without. The vast majority of fibers were commercial amphiboles (amosite with lesser amounts of crocidolite). These findings concur with previously published epidemiological observations.

  17. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  18. Asbestos content of lung tissue in patients with malignant peritoneal mesothelioma: A study of 42 cases.

    PubMed

    de Ridder, Gustaaf G; Kraynie, Alyssa; Pavlisko, Elizabeth N; Oury, Tim D; Roggli, Victor L

    2016-01-01

    Lung tissue from 42 peritoneal mesothelioma cases was analyzed by light microscopy and scanning electron microscopy/energy dispersive spectrometry. There were 34 men and 8 women with a mean age of 61 ± 10 years. Also, 17% of cases had histologically confirmed asbestosis, and 26% had only parietal pleural plaques. The asbestos body count exceeded our normal range in 22 of 42 cases (52%). Cases with asbestos-related pulmonary disease had higher fiber burdens than those without. The vast majority of fibers were commercial amphiboles (amosite with lesser amounts of crocidolite). These findings concur with previously published epidemiological observations. PMID:27281118

  19. Time course of inflammation, oxidative stress and tissue damage induced by hyperoxia in mouse lungs.

    PubMed

    Nagato, Akinori C; Bezerra, Frank S; Lanzetti, Manuella; Lopes, Alan A; Silva, Marco Aurélio S; Porto, Luís Cristóvão; Valença, Samuel S

    2012-08-01

    In this study our aim was to investigate the time courses of inflammation, oxidative stress and tissue damage after hyperoxia in the mouse lung. Groups of BALB/c mice were exposed to 100% oxygen in a chamber for 12, 24 or 48 h. The controls were subjected to normoxia. The results showed that IL-6 increased progressively after 12 (P < 0.001) and 24 h (P < 0.001) of hyperoxia with a reduction at 48 h (P < 0.01), whereas TNF-α increased after 24 (P < 0.001) and 48 h (P < 0.001). The number of macrophages increased after 24 h (P < 0.001), whereas the number of neutrophils increased after 24 h (P < 0.01) and 48 h (P < 0.001). Superoxide dismutase activity decreased in all groups exposed to hyperoxia (P < 0.01). Catalase activity increased only at 48 h (P < 0.001). The reduced glutathione/oxidized glutathione ratio decreased after 12 h (P < 0.01) and 24 h (P < 0.05). Histological evidence of lung injury was observed at 24 and 48 h. This study shows that hyperoxia initially causes an inflammatory response at 12 h, resulting in inflammation associated with the oxidative response at 24 h and culminating in histological damage at 48 h. Knowledge of the time course of inflammation and oxidative stress prior to histological evidence of acute lung injury can improve the safety of oxygen therapy in patients.

  20. Time course of inflammation, oxidative stress and tissue damage induced by hyperoxia in mouse lungs

    PubMed Central

    Nagato, Akinori C; Bezerra, Frank S; Lanzetti, Manuella; Lopes, Alan A; Silva, Marco Aurélio S; Porto, Luís Cristóvão; Valença, Samuel S

    2012-01-01

    In this study our aim was to investigate the time courses of inflammation, oxidative stress and tissue damage after hyperoxia in the mouse lung. Groups of BALB/c mice were exposed to 100% oxygen in a chamber for 12, 24 or 48 h. The controls were subjected to normoxia. The results showed that IL-6 increased progressively after 12 (P < 0.001) and 24 h (P < 0.001) of hyperoxia with a reduction at 48 h (P < 0.01), whereas TNF-α increased after 24 (P < 0.001) and 48 h (P < 0.001). The number of macrophages increased after 24 h (P < 0.001), whereas the number of neutrophils increased after 24 h (P < 0.01) and 48 h (P < 0.001). Superoxide dismutase activity decreased in all groups exposed to hyperoxia (P < 0.01). Catalase activity increased only at 48 h (P < 0.001). The reduced glutathione/oxidized glutathione ratio decreased after 12 h (P < 0.01) and 24 h (P < 0.05). Histological evidence of lung injury was observed at 24 and 48 h. This study shows that hyperoxia initially causes an inflammatory response at 12 h, resulting in inflammation associated with the oxidative response at 24 h and culminating in histological damage at 48 h. Knowledge of the time course of inflammation and oxidative stress prior to histological evidence of acute lung injury can improve the safety of oxygen therapy in patients. PMID:22804763

  1. Epigenetic clustering of lung adenocarcinomas based on DNA methylation profiles in adjacent lung tissue: Its correlation with smoking history and chronic obstructive pulmonary disease.

    PubMed

    Sato, Takashi; Arai, Eri; Kohno, Takashi; Takahashi, Yoriko; Miyata, Sayaka; Tsuta, Koji; Watanabe, Shun-ichi; Soejima, Kenzo; Betsuyaku, Tomoko; Kanai, Yae

    2014-07-15

    The aim of this study was to clarify the significance of DNA methylation alterations during lung carcinogenesis. Infinium assay was performed using 139 paired samples of non-cancerous lung tissue (N) and tumorous tissue (T) from a learning cohort of patients with lung adenocarcinomas (LADCs). Fifty paired N and T samples from a validation cohort were also analyzed. DNA methylation alterations on 1,928 probes occurred in N samples relative to normal lung tissue from patients without primary lung tumors, and were inherited by, or strengthened in, T samples. Unsupervised hierarchical clustering using DNA methylation levels in N samples on all 26,447 probes subclustered patients into Cluster I (n = 32), Cluster II (n = 35) and Cluster III (n = 72). LADCs in Cluster I developed from the inflammatory background in chronic obstructive pulmonary disease (COPD) in heavy smokers and were locally invasive. Most patients in Cluster II were non-smokers and had a favorable outcome. LADCs in Cluster III developed in light smokers were most aggressive (frequently showing lymphatic and blood vessel invasion, lymph node metastasis and an advanced pathological stage), and had a poor outcome. DNA methylation levels of hallmark genes for each cluster, such as IRX2, HOXD8, SPARCL1, RGS5 and EI24, were again correlated with clinicopathological characteristics in the validation cohort. DNA methylation profiles reflecting carcinogenetic factors such as smoking and COPD appear to be established in non-cancerous lung tissue from patients with LADCs and may determine the aggressiveness of tumors developing in individual patients, and thus patient outcome.

  2. Modulation of oxidative stress by functionalized fullerene materials in the lung tissues of female C57/BL mice with a metastatic Lewis lung carcinoma.

    PubMed

    Jiao, Fang; Qu, Ying; Zhou, Guoqiang; Liu, Ying; Li, Wei; Ge, Cuicui; Li, Yufeng; Hu, Wei; Li, Bai; Gao, Yuxi; Chen, Chunying

    2010-12-01

    Oxidative stress is considered to be one of the important mechanisms involved in carcinogenesis. To investigate the effect of [Gd@C82(OH)22]n and [C60(OH)20]n nanoparticles on the oxidative stress in the tumor-bearing mice, several antioxidative enzymes and antioxidants were tested for mice with or without tumor inoculation. Transplanted tumors were grown in mice by subcutaneous inoculation of a metastatic Lewis lung carcinoma in female C57/BL mice. More importantly, the tumor cells can metastasize into the normal lung tissues gradually. Therefore, in present paper, the activities of copper-zinc superoxide dismutase (CuZn-SOD), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), as well as the levels of reduced glutathione (GSH) and malondialdehyde (MDA) in the tumor-invaded lung tissues of the tumor-bearing mice were compared to the nomal lung tissues of normal mice. After treatment with nanoparticles, the activities of GSH-Px and GST and other parameters related to the oxidative stress were downregulated and tended closely to the normal levels. Pulmonary histopathological results also showed that two different types of water-soluble fullerenes can prevent lungs from inflammatory lesion and tumor invasion. These findings indicate two different types of water-soluble fullerenes materials can downregulate the oxidative stress status by scavenging excessive free radicals and inhibiting the lipid peroxidation in tumor-bearing mice, which can partly explain their protective roles on the pulmonary oxidative-damage induced by the tumor metastasis to lung tissues.

  3. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein. PMID:27621875

  4. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein.

  5. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    SciTech Connect

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  6. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  7. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard.

    PubMed

    Tahmasbpour, Eisa; Ghanei, Mostafa; Qazvini, Ali; Vahedi, Ensieh; Panahi, Yunes

    2016-04-01

    Sulfur mustard (SM) is a potent alkylating agent that targets several organs, especially lung tissue. Although pathological effects of SM on mustard lung have been widely considered, molecular and cellular mechanisms for these pathologies are poorly understood. We investigated changes in expression of genes related to oxidative stress (OS) and antioxidant defense caused by SM in lung tissue of patients. We performed gene expression profiling of OS and antioxidant defense in lung tissue samples from healthy controls (n=5) and SM-exposed patients (n=6). Changes in gene expression were measured using a 96-well RT(2) Profiler ™PCR Array: Human Oxidative Stress and Antioxidant Defense, which arrayed 84 genes functionally involved in cellular OS response. 47 (55.95%) genes were found to be significantly upregulated in patients with mustard lung compared with controls (p<0.05), whereas 7 (8.33%) genes were significantly downregulated (p<0.05). Among the most upregulated genes were OS responsive-1 (OXSR1), forkhead box M1 (FOXM1), and glutathione peroxidase-2 (GPX2), while metallothionein-3 (MT3) and glutathione reductase (GSR) were the most downregulated genes. Expression of hypoxia-induced genes (CYGB and MB), antioxidants and reactive oxygen species (ROS)-producing genes were significantly altered, suggesting an increased oxidative damage in mustard lungs. Mustard lungs were characterized by hypoxia, massive production of ROS, OS, disruption of epithelial cells, surfactant dysfunction, as well as increased risk of lung cancer and pulmonary fibrosis. Oxidative stress induced by ROS is the major mechanism for direct effect of SM exposure on respiratory system. Antioxidant treatment may improve the main features of mustard lungs.

  8. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard.

    PubMed

    Tahmasbpour, Eisa; Ghanei, Mostafa; Qazvini, Ali; Vahedi, Ensieh; Panahi, Yunes

    2016-04-01

    Sulfur mustard (SM) is a potent alkylating agent that targets several organs, especially lung tissue. Although pathological effects of SM on mustard lung have been widely considered, molecular and cellular mechanisms for these pathologies are poorly understood. We investigated changes in expression of genes related to oxidative stress (OS) and antioxidant defense caused by SM in lung tissue of patients. We performed gene expression profiling of OS and antioxidant defense in lung tissue samples from healthy controls (n=5) and SM-exposed patients (n=6). Changes in gene expression were measured using a 96-well RT(2) Profiler ™PCR Array: Human Oxidative Stress and Antioxidant Defense, which arrayed 84 genes functionally involved in cellular OS response. 47 (55.95%) genes were found to be significantly upregulated in patients with mustard lung compared with controls (p<0.05), whereas 7 (8.33%) genes were significantly downregulated (p<0.05). Among the most upregulated genes were OS responsive-1 (OXSR1), forkhead box M1 (FOXM1), and glutathione peroxidase-2 (GPX2), while metallothionein-3 (MT3) and glutathione reductase (GSR) were the most downregulated genes. Expression of hypoxia-induced genes (CYGB and MB), antioxidants and reactive oxygen species (ROS)-producing genes were significantly altered, suggesting an increased oxidative damage in mustard lungs. Mustard lungs were characterized by hypoxia, massive production of ROS, OS, disruption of epithelial cells, surfactant dysfunction, as well as increased risk of lung cancer and pulmonary fibrosis. Oxidative stress induced by ROS is the major mechanism for direct effect of SM exposure on respiratory system. Antioxidant treatment may improve the main features of mustard lungs. PMID:27085470

  9. Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips

    PubMed Central

    Yi, Eunice; Sato, Susumu; Takahashi, Ayuko; Parameswaran, Harikrishnan; Blute, Todd A.; Bartolák-Suki, Erzsébet; Suki, Béla

    2016-01-01

    Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression. PMID:27462275

  10. Impact of tissue heterogeneity corrections in stereotactic body radiation therapy treatment plans for lung cancer.

    PubMed

    Herman, Tania De La Fuente; Gabrish, Heather; Herman, Terence S; Vlachaki, Maria T; Ahmad, Salahuddin

    2010-07-01

    This study aims at evaluating the impact of tissue heterogeneity corrections on dosimetry of stereotactic body radiation therapy treatment plans. Four-dimensional computed tomography data from 15 low stage non-small cell lung cancer patients was used. Treatment planning and dose calculations were done using pencil beam convolution algorithm of Varian Eclipse system with Modified Batho Power Law for tissue heterogeneity. Patient plans were generated with 6 MV co-planar non-opposing four to six field beams optimized with tissue heterogeneity corrections to deliver a prescribed dose of 60 Gy in three fractions to at least 95% of the planning target volume, keeping spinal cord dose <10 Gy. The same plans were then regenerated without heterogeneity correction by recalculating previously optimized treatment plans keeping identical beam arrangements, field fluences and monitor units. Compared with heterogeneity corrected plans, the non-corrected plans had lower average minimum, mean, and maximum tumor doses by 13%, 8%, and 6% respectively. The results indicate that tissue heterogeneity is an important determinant of dosimetric optimization of SBRT plans.

  11. Early Changes in Gene Expression Induced by Tobacco Smoke: Evidence for the Importance of Estrogen within Lung Tissue

    PubMed Central

    Meireles, Sibele I.; Esteves, Gustavo H.; Hirata, Roberto; Peri, Suraj; Devarajan, Karthik; Slifker, Michael; Mosier, Stacy L.; Peng, Jing; Vadhanam, Manicka V.; Hurst, Harrell E.; Neves, E. Jordao; Reis, Luiz F.; Gairola, C. Gary; Gupta, Ramesh C.; Clapper, Margie L.

    2010-01-01

    Lung cancer is the leading cause of cancer deaths in the U.S., surpassing breast cancer as the primary cause of cancer-related mortality in women. The goal of the present study was to identify early molecular changes in the lung induced by exposure to tobacco smoke and thus identify potential targets for chemoprevention. Female A/J mice were exposed to either tobacco smoke or HEPA-filtered air via a whole-body exposure chamber (6 h/day; 5 days/wk for 3, 8 and 20 wk). Gene expression profiles of lung tissue from control and smoke-exposed animals were established using a 15 K cDNA microarray. Cytochrome P450 1b1 (Cyp1b1), a Phase I enzyme involved in both the metabolism of xenobiotics and the 4-hydroxylation of 17β-estradiol, was modulated to the greatest extent following smoke exposure. A panel of 10 genes was found to be differentially expressed in control and smoke-exposed lung tissue at 3, 8 and 20 wk (P < 0.001). The interaction network of these differentially expressed genes revealed new pathways modulated by short-term smoke exposure including estrogen metabolism. In addition, 17β-estradiol was detected within murine lung tissue by gas chromatography coupled mass spectrometry and immunohistochemistry. Identification of the early molecular events that contribute to lung tumor formation is anticipated to lead to the development of promising targeted chemopreventive therapies. In conclusion, the presence of 17β-estradiol within lung tissue when combined with the modulation of Cyp1b1 and other estrogen metabolism genes by tobacco smoke provides novel insight into a possible role for estrogens in lung cancer. PMID:20515954

  12. Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice

    PubMed Central

    Mura, Marco; Li, Li; Cypel, Marcelo; Soderman, Avery; Picha, Kristen; Yang, Jing; Liu, Mingyao

    2008-01-01

    Background Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. Methodology/Principal Findings Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. Conclusions This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies. PMID:18231608

  13. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  14. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    PubMed Central

    Liu, Dongdong; Mao, Pu; Huang, Yongbo; Liu, Yiting; Liu, Xiaoqing; Pang, Xiaoqing; Li, Yimin

    2014-01-01

    Acute respiratory distress syndrome (ARDS) remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI) lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS) challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α), whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI. PMID:25024510

  15. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    PubMed

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  16. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... gases do not move normally across the lung tissues into the blood vessels of the lung. This ...

  17. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  18. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome.

    PubMed

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Omodeo Salè, Fausta; Van den Steen, Philippe E; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  19. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  20. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M.; Furutani, K. M.

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  1. Different approaches for quantifying ventilation distribution and lung tissue properties by functional EIT.

    PubMed

    Hahn, G; Dittmar, J; Just, A; Quintel, M; Hellige, G

    2010-08-01

    We investigated five different methods which can be applied to quantitatively construct functional tomograms of the lungs. The focus was on the sensitivity of functional tomograms to errors in acquired data. To quantify this sensitivity, theoretical, error-free data sets of well-known properties were artificially generated based on a 'living thorax model'. Physiological time courses and a typical distribution of errors caused by a typical Goe-MF II EIT system were used for the calculations which encompassed a range up to 50 times greater than the initial error level (4 microV(rms max)-400 microV(rms max)). Additionally, low-pass filtering and principal component analysis (PCA) were used to quantify the effect of preprocessing the raw data. The results demonstrate that all methods based on fitting the local to the global time course were superior to the common functional tomograms utilizing standard deviation or maximum and minimum detection. Ventilation distribution was best quantified by the so-called VT methods. Filling capacity--a lung tissue property--was least dependent on increasing error levels. The errors introduced by filtering are significant with respect to a quantitative analysis of ventilation distribution. A preprocessing of raw data by applying a PCA performed well on the data sets which had been constructed but were, nonetheless, realistic. This approach appears to be highly promising for application on real data which is known to be erroneous.

  2. Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates

    PubMed Central

    Pascolo, Lorella; Borelli, Violetta; Canzonieri, Vincenzo; Gianoncelli, Alessandra; Birarda, Giovanni; Bedolla, Diana E.; Salomé, Murielle; Vaccari, Lisa; Calligaro, Carla; Cotte, Marine; Hesse, Bernhard; Luisi, Fernando; Zabucchi, Giuliano; Melato, Mauro; Rizzardi, Clara

    2015-01-01

    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (μXRF) and Fourier Transform InfraRed (μFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. μXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. μFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of β-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects. PMID:26159651

  3. A new natural reservoir of hantavirus: isolation of hantaviruses from lung tissues of bats.

    PubMed

    Kim, G R; Lee, Y T; Park, C H

    1994-01-01

    Two species of bats were confirmed as new natural reservoirs of hantavirus. Antibodies to Hantaan virus were detected in 3.40% (23 of 677) of bats captured from 1989 to 1992 in Korea by the IFA technique. Areal distribution of immunofluorescent antibody were different, and seropositive rates were much high in sera of bats captured in summer (3.82%) and winter (5.82%). Viral antigens were observed in the lungs (3 of 16) and kidney (1 of 7). Two hantaviruses were isolated from lung tissues of E. serotinus and R. ferrum-equinum through a cell culture system, designated CUMC-92B8 and -92B48, respectively. Using Rous associated virus-2 reverse transcriptase-directed PCR and 2 oligonucleotide primer pairs, genomic sequences of the isolates were amplified. Amplified products of the isolates and reactivities to monoclonal antibodies very closely resembled those of Hantaan virus. These data suggest that the serotype of the isolates is closely related to Hantaan virus, and bats serve as reservoirs of hantavirus. PMID:8279962

  4. Nonspecific interstitial pneumonia overlaps organizing pneumonia in lung-dominant connective tissue disease.

    PubMed

    Li, Xue-Ren; Peng, Shou-Chun; Wei, Lu-Qing

    2015-01-01

    Here, we reported two cases of nonspecific interstitial pneumonia overlap organizing pneumonia (NSIP/OP) with lung-dominant connective tissue disease (LD-ILD). The first case is a patient with hands of chapped skin, right-sided pleuritic chest discomfort, weakness, positive ANA and antibodies to Ro/SS-A (+++) and Ro-52 (++). In the second case, there were Reynaud's disease, and nucleolus-ANA increased (1:800). Chest high resolution CT scan in both cases showed ground-glass opacifications, predominantly in basal and subpleural region and the pathologic manifestation were correlated with NSIP/OP, which were previously discovered in Sjogren syndrome, PM/DM and other rheumatic diseases. The two cases of NSIP/OP with LD-CTD we reported expand disease spectrum of NSIP/OP pathological types in ILD. However, it is necessary to process large-scale studies.

  5. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung

    PubMed Central

    Hwang, Ji Young; Randall, Troy D.; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity. PMID:27446088

  6. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    PubMed

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  7. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    PubMed

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  8. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    PubMed Central

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-01-01

    ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human

  9. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  10. Development of an Ex Vivo Tissue Platform To Study the Human Lung Response to Coxiella burnetii

    PubMed Central

    Graham, Joseph G.; Winchell, Caylin G.; Kurten, Richard C.

    2016-01-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute debilitating flu-like illness that can also present as chronic endocarditis. Disease typically occurs following inhalation of contaminated aerosols, resulting in an initial pulmonary infection. In human cells, C. burnetii generates a replication niche termed the parasitophorous vacuole (PV) by directing fusion with autophagosomes and lysosomes. C. burnetii requires this lysosomal environment for replication and uses a Dot/Icm type IV secretion system to generate the large PV. However, we do not understand how C. burnetii evades the intracellular immune surveillance that triggers an inflammatory response. We recently characterized human alveolar macrophage (hAM) infection in vitro and found that avirulent C. burnetii triggers sustained interleukin-1β (IL-1β) production. Here, we evaluated infection of ex vivo human lung tissue, defining a valuable approach for characterizing C. burnetii interactions with a human host. Within whole lung tissue, C. burnetii preferentially replicated in hAMs. Additionally, IL-1β production correlated with formation of an apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)-dependent inflammasome in response to infection. We also assessed potential activation of a human-specific noncanonical inflammasome and found that caspase-4 and caspase-5 are processed during infection. Interestingly, although inflammasome activation is closely linked to pyroptosis, lytic cell death did not occur following C. burnetii-triggered inflammasome activation, indicating an atypical response after intracellular detection. Together, these studies provide a novel platform for studying the human innate immune response to C. burnetii. PMID:26902725

  11. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts.

    PubMed

    Lama, Vibha N; Smith, Lisa; Badri, Linda; Flint, Andrew; Andrei, Adin-Cristian; Murray, Susan; Wang, Zhuo; Liao, Hui; Toews, Galen B; Krebsbach, Paul H; Peters-Golden, Marc; Pinsky, David J; Martinez, Fernando J; Thannickal, Victor J

    2007-04-01

    The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% +/- 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ.

  12. Expression of Toll-like receptor 9 (TLR9) in the lungs and lymphoid tissue of pigs.

    PubMed

    Kuzemtseva, Liudmila; Pérez, Mónica; Mateu, Enric; Segalés, Joaquim; Darwich, Laila

    2015-02-01

    The pattern of distribution of Toll-like receptor 9 (TLR9) in different tissues varies between species. The aim of the present study was to describe the distribution of TLR9 expression in selected tissues and organs of healthy pigs at 3 weeks and 3 months of age. Representative formalin-fixed samples of lung, thymus and secondary lymphoid tissues were evaluated by immunohistochemistry. TLR9 positive staining was observed in epithelial cells, vascular endothelium and myoepithelial-like cells, as well as in cells of the alveolar septa of the lung. Antigen presenting cells of perifollicular zones (interdigitating, macrophage and dendritic-like cells) of the Peyer's patches, lymph nodes, spleen and thymus were also immunoreactive for TLR9. No differences were seen in TLR9 protein expression in tissues from the two age groups.

  13. Mean Organ Doses Resulting From Non-Human Primate Whole Thorax Lung Irradiation Prescribed to Mid-Line Tissue.

    PubMed

    Prado, Charlotte; Kazi, Abdul; Bennett, Alexander; MacVittie, Thomas; Prado, Karl

    2015-11-01

    Multi-organ dose evaluations and the effects of heterogeneous tissue dose calculations have been retrospectively evaluated following irradiation to the whole thorax and lung in non-human primates (NHP). A clinical-based approach was established to evaluate actual doses received in the heart and lungs during whole thorax lung irradiation. Anatomical structure and organ densities have been introduced in the calculations to show the effects of dose distribution through heterogeneous tissue. Mean organ doses received by non-human primates undergoing whole thorax lung irradiations were calculated using a treatment planning system that is routinely used in clinical radiation oncology. The doses received by non-human primates irradiated following conventional dose calculations have been retrospectively reconstructed using computerized tomography-based, heterogeneity-corrected dose calculations. The use of dose volume descriptors for irradiation to organs at risk and tissue exposed to radiation is introduced. Mean and partial-volume doses to lung and heart are presented and contrasted. The importance of exact dose definitions is highlighted, and the relevance of precise dosimetry to establish organ-specific dose response relationships in NHP models of acute and delayed effects of acute radiation exposure is emphasized.

  14. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy.

    PubMed

    Rangel, M P; de Sá, V K; Martins, V; Martins, J R M; Parra, E R; Mendes, A; Andrade, P C; Reis, R M; Longatto-Filho, A; Oliveira, C Z; Takagaki, T; Carraro, D M; Nader, H B; Capelozzi, V L

    2015-06-01

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.

  15. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    PubMed Central

    Rangel, M.P.; de Sá, V.K.; Martins, V.; Martins, J.R.M.; Parra, E.R.; Mendes, A.; Andrade, P.C.; Reis, R.M.; Longatto-Filho, A.; Oliveira, C.Z.; Takagaki, T.; Carraro, D.M.; Nader, H.B.; Capelozzi, V.L.

    2015-01-01

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology. PMID:25992645

  16. Occupational exposure to asbestos as evaluated from work histories and analysis of lung tissues from patients with mesothelioma.

    PubMed Central

    Tuomi, T; Huuskonen, M S; Tammilehto, L; Vanhala, E; Virtamo, M

    1991-01-01

    The past occupational exposure to asbestos of 23 patients with mesothelioma (21 men and two women) has been evaluated by a personal interview of their work history and by determination of the fibre burden in their lung tissue with scanning electron microscopy (SEM) and x ray microanalysis. According to the work history, nine patients (39%) had definitely been or probably been exposed to asbestos, six patients (26%) had had possible exposures, and eight patients (35%) unlikely or unknown exposure to asbestos. The two female patients were in the unknown exposure category. The fibre concentrations in the patients' lung tissue ranged from less than 0.1 million to 370 million fibres (f) per g dry tissue. Concentrations of over one million f per g dry tissue were found in 15 patients (65%). The lung fibre concentrations of all nine male office workers analysed for reference were less than one million f per g dry tissue. Seventy eight per cent of the patients with mesothelioma had at least possible exposure according to their history of work or concentrations of more than one million f per g dry tissue. PMID:1993160

  17. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  18. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  19. Elemental analysis of lung tissue particles and intracellular iron content of alveolar macrophages in pulmonary alveolar proteinosis

    PubMed Central

    2011-01-01

    Background Pulmonary alveolar proteinosis (PAP) is a rare disease occurred by idiopathic (autoimmune) or secondary to particle inhalation. The in-air microparticle induced X-ray emission (in-air micro-PIXE) system performs elemental analysis of materials by irradiation with a proton microbeam, and allows visualization of the spatial distribution and quantitation of various elements with very low background noise. The aim of this study was to assess the secondary PAP due to inhalation of harmful particles by employing in-air micro-PIXE analysis for particles and intracellular iron in parafin-embedded lung tissue specimens obtained from a PAP patient comparing with normal lung tissue from a non-PAP patient. The iron inside alveolar macrophages was stained with Berlin blue, and its distribution was compared with that on micro-PIXE images. Results The elements composing particles and their locations in the PAP specimens could be identified by in-air micro-PIXE analysis, with magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), scandium (Sc), potassium (K), calcium (Ca), titanium (Ti), chromium (Cr), copper (Cu), manganase (Mn), iron (Fe), and zinc (Zn) being detected. Si was the major component of the particles. Serial sections stained by Berlin blue revealed accumulation of sideromacrophages that had phagocytosed the particles. The intracellular iron content of alveolar macrophage from the surfactant-rich area in PAP was higher than normal lung tissue in control lung by both in-air micro-PIXE analysis and Berlin blue staining. Conclusion The present study demonstrated the efficacy of in-air micro-PIXE for analyzing the distribution and composition of lung particles. The intracellular iron content of single cells was determined by simultaneous two-dimensional and elemental analysis of paraffin-embedded lung tissue sections. The results suggest that secondary PAP is associated with exposure to inhaled particles and accumulation of iron in alveolar

  20. Improved correction for the tissue fraction effect in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  1. Hair growth promoting potential of phospholipids purified from porcine lung tissues.

    PubMed

    Choi, Seong-Hyun; Moon, Jeong-Su; Jeon, Byung-Suk; Jeon, Yeon-Jeong; Yoon, Byung-Il; Lim, Chang-Jin

    2015-03-01

    BP201, porcine lung tissue-derived phospholipids, consists of phosphatidylcholine as a major phospholipid species. BP201 promoted hair growth after application onto the shaved backs of BALB/c and C3H mice. Its effect was enhanced when applied together with minoxidil (MNX) in C3H mice. When the tissue specimens prepared from the shaved skins of BP201-treated and control mice were microscopically examined, the total numbers of hair follicles in both anagen and telogen phases of BP201-treated mice were significantly higher than those of control mice. The numbers of hair follicles in the anagen phase of BP201-treated mice were also higher than those of control mice. In combination with MNX, BP201 further increased the total number of hair follicles, but did not alter the percentage of hair follicles in the anagenic phase. BP201 also increased the proliferation of human hair follicle dermal papilla cells. Collectively, BP201 possesses hair growth promoting potential, which would suggest its use singly or in combination for hair growth products. PMID:25767686

  2. Hair Growth Promoting Potential of Phospholipids Purified from Porcine Lung Tissues

    PubMed Central

    Choi, Seong-Hyun; Moon, Jeong-Su; Jeon, Byung-Suk; Jeon, Yeon-Jeong; Yoon, Byung-Il; Lim, Chang-Jin

    2015-01-01

    BP201, porcine lung tissue-derived phospholipids, consists of phosphatidylcholine as a major phospholipid species. BP201 promoted hair growth after application onto the shaved backs of BALB/c and C3H mice. Its effect was enhanced when applied together with minoxidil (MNX) in C3H mice. When the tissue specimens prepared from the shaved skins of BP201-treated and control mice were microscopically examined, the total numbers of hair follicles in both anagen and telogen phases of BP201-treated mice were significantly higher than those of control mice. The numbers of hair follicles in the anagen phase of BP201-treated mice were also higher than those of control mice. In combination with MNX, BP201 further increased the total number of hair follicles, but did not alter the percentage of hair follicles in the anagenic phase. BP201 also increased the proliferation of human hair follicle dermal papilla cells. Collectively, BP201 possesses hair growth promoting potential, which would suggest its use singly or in combination for hair growth products. PMID:25767686

  3. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats

    PubMed Central

    Najafi, Masoud; Fardid, Reza; Takhshid, Mohammad Ali; Mosleh-Shirazi, Mohammad Amin; Rezaeyan, Abol-Hassan; Salajegheh, Ashkan

    2016-01-01

    Objective The out-of-field/non-target effect is one of the most important phenomena of ionizing radiation that leads to molecular and cellular damage to distant non-irradiated tissues. The most important concern about this phenomenon is carcinogenesis many years after radiation treatment. In vivo mechanisms and consequences of this phenomenon are not known completely. Therefore, this study aimed to evaluate the oxidative damages to out-of-field lung tissues 24 and 72 hours after pelvic irradiation in rats. Materials and Methods In this experimentalinterventional study, Sprague-Dawleymale rats (n=49) were divided into seven groups (n=7/each group), including two groups of pelvis- exposed rats (out-of-field groups), two groups of whole bodyexposed rats (scatter groups), two groups of lung-exposed rats (direct irradiation groups), and one control sham group. Out- of-field groups were irradiated at a 2×2 cm area in the pelvis region with 3 Gy using 1.25 MeV cobalt-60 gamma-ray source, and subsequently, malondialdehyde (MDA) and glutathione (GSH) levels as well as superoxide dismutase (SOD) activity in out-of-field lung tissues were measured. Results were compared to direct irradiation, control and scatter groups at 24 and 72 hours after exposure. Data were analyzed using Mann-Whitney U test. Results SOD activity decreased in out-of-field lung tissue 24 and 72 hours after irradiation as compared with the controls and scatter groups. GSH level decreased 24 hours after exposure and increased 72 hours after exposure in the out-of-field groups as compared with the scatter groups. MDA level in out-of-field groups only increased 24 hours after irradiation. Conclusion Pelvis irradiation induced oxidative damage in distant lung tissue that led to a dramatic decrease in SOD activity. This oxidative stress was remarkable, but it was less durable as compared to direct irradiation. PMID:27602315

  4. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats

    PubMed Central

    Najafi, Masoud; Fardid, Reza; Takhshid, Mohammad Ali; Mosleh-Shirazi, Mohammad Amin; Rezaeyan, Abol-Hassan; Salajegheh, Ashkan

    2016-01-01

    Objective The out-of-field/non-target effect is one of the most important phenomena of ionizing radiation that leads to molecular and cellular damage to distant non-irradiated tissues. The most important concern about this phenomenon is carcinogenesis many years after radiation treatment. In vivo mechanisms and consequences of this phenomenon are not known completely. Therefore, this study aimed to evaluate the oxidative damages to out-of-field lung tissues 24 and 72 hours after pelvic irradiation in rats. Materials and Methods In this experimentalinterventional study, Sprague-Dawleymale rats (n=49) were divided into seven groups (n=7/each group), including two groups of pelvis- exposed rats (out-of-field groups), two groups of whole bodyexposed rats (scatter groups), two groups of lung-exposed rats (direct irradiation groups), and one control sham group. Out- of-field groups were irradiated at a 2×2 cm area in the pelvis region with 3 Gy using 1.25 MeV cobalt-60 gamma-ray source, and subsequently, malondialdehyde (MDA) and glutathione (GSH) levels as well as superoxide dismutase (SOD) activity in out-of-field lung tissues were measured. Results were compared to direct irradiation, control and scatter groups at 24 and 72 hours after exposure. Data were analyzed using Mann-Whitney U test. Results SOD activity decreased in out-of-field lung tissue 24 and 72 hours after irradiation as compared with the controls and scatter groups. GSH level decreased 24 hours after exposure and increased 72 hours after exposure in the out-of-field groups as compared with the scatter groups. MDA level in out-of-field groups only increased 24 hours after irradiation. Conclusion Pelvis irradiation induced oxidative damage in distant lung tissue that led to a dramatic decrease in SOD activity. This oxidative stress was remarkable, but it was less durable as compared to direct irradiation.

  5. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    SciTech Connect

    Crocetti, Laura Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-08-15

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  6. Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wei, Huajiang; Wu, Guoyong; Guo, Zhouyi; Yang, Hongqin; He, Yonghong; Xie, Shusen; Guo, Xiao

    2012-11-01

    The objective of this study was to evaluate the effects of ultrasound-mediated analyte diffusion on permeability of normal, benign, and cancerous human lung tissue in vitro and to find more effective sonophoretic (SP) delivery in combination with the optical clearing agents (OCAs) method to distinguish normal and diseased lung tissues. The permeability coefficients of SP in combination with OCAs diffusion in lung tissue were measured with Fourier-domain optical coherence tomography (FD-OCT). 30% glucose and SP with a frequency of 1 MHz and an intensity of 0.80 W/cm2 over a 3 cm probe was simultaneously applied for 15 min. Experimental results show that the mean permeability coefficients of 30% glucose/SP were found to be (2.01±0.21)×10-5 cm/s from normal lung (NL) tissue, (2.75±0.28)×10-5 cm/s from lung benign granulomatosis (LBG) tissue, (4.53±0.49)×10-5 cm/s from lung adenocarcinoma tumor (LAT) tissue, and (5.81±0.62)×10-5 cm/s from lung squamous cell carcinoma (LSCC) tissue, respectively. The permeability coefficients of 30% glucose/SP increase approximately 36.8%, 125.4%, and 189.1% for the LBG, LAT, and LSCC tissue compared with that for the NL tissue, respectively. There were statistically significant differences in permeability coefficients of 30% glucose/SP between LBG and NL tissue (p<0.05), between LAT and NL tissue (p<0.05), and between LSCC and NL tissue (p<0.05). The results suggest that the OCT functional imaging technique to combine an ultrasound-OCAs combination method could become a powerful tool in early diagnosis and monitoring of changed microstructure of pathologic human lung tissue.

  7. MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature.

    PubMed

    Fortunato, Orazio; Verri, Carla; Pastorino, Ugo; Sozzi, Gabriella; Boeri, Mattia

    2016-01-01

    Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA signature classifier (MSC) able to discriminate lung cancer with more aggressive features. In the present work, microarray miRNA profiling of tumor tissues collected from 19 lung cancer patients with an available MSC result were perform in order to find a possible association between miRNA expression and the MSC risk level. Eleven tissue mature miRNAs and six miRNA precursors were observed to be associated with the plasma MSC risk level of patients. Not one of these miRNAs was included in the MSC algorithm. A pathway enrichment analysis revealed a role of these miRNA in the main pathways determining lung cancer aggressiveness. Overall, these findings add to the knowledge that tissue and plasma miRNAs behave as excellent diagnostic and prognostic biomarkers, which may find rapid application in clinical settings. PMID:27600084

  8. MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature

    PubMed Central

    Fortunato, Orazio; Verri, Carla; Pastorino, Ugo; Sozzi, Gabriella; Boeri, Mattia

    2016-01-01

    Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA signature classifier (MSC) able to discriminate lung cancer with more aggressive features. In the present work, microarray miRNA profiling of tumor tissues collected from 19 lung cancer patients with an available MSC result were perform in order to find a possible association between miRNA expression and the MSC risk level. Eleven tissue mature miRNAs and six miRNA precursors were observed to be associated with the plasma MSC risk level of patients. Not one of these miRNAs was included in the MSC algorithm. A pathway enrichment analysis revealed a role of these miRNA in the main pathways determining lung cancer aggressiveness. Overall, these findings add to the knowledge that tissue and plasma miRNAs behave as excellent diagnostic and prognostic biomarkers, which may find rapid application in clinical settings. PMID:27600084

  9. Hyperplasia and tumours in lung, breast and other tissues in mice carrying a RAR beta 4-like transgene.

    PubMed

    Bérard, J; Gaboury, L; Landers, M; De Repentigny, Y; Houle, B; Kothary, R; Bradley, W E

    1994-12-01

    Transgenic mice were generated which express a truncated nuclear retinoic acid receptor beta (RAR beta), closely resembling the natural isoform RAR beta 4, under the control of the MMTV promoter. The transgene was expressed in salivary gland, testis, lung and mammary tissue in two different lines. At approximately 11-14 months virtually all the transgenic mice showed hyperplasia of the lung alveolar epithelium with an excess of type II pneumocytes. Hyperplasia of the mammary alveoli and terminal ducts was also seen in some females. Salivary glands and some sebaceous glands were hyperplastic in most male transgenic mice, but only rarely in females or in non-transgenics. Primary benign and malignant tumours were more numerous in transgenic mice than in controls, with a total of 23 in 43 mice versus two in 33 non-transgenic animals. Treatment with dexamethasone to increase transgene expression resulted in exaggerated versions of the above phenotypes. Overexpression of RAR beta 4 therefore appears to predispose various tissues to hyperplasia and neoplasia, and this by contrast to the RAR beta 2 isoform, which has tumour suppressor activity. A survey of ratios of RAR beta 4:RAR beta 2 expression in human lung tumour cell lines showed an increase compared with normal lung tissue, suggesting that RAR beta 4 may play a similar role in human tumorigenesis.

  10. Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells.

    PubMed

    Chen, Chao; Liu, Jia-Bao; Bian, Zhi-Ping; Xu, Jin-Dan; Wu, Heng-Fang; Gu, Chun-Rong; Shi, Yi; Zhang, Ji-Nan; Chen, Xiang-Jian; Yang, Di

    2014-01-01

    Cardiac troponin I (cTnI) is the only sarcomeric protein identified to date that is expressed exclusively in cardiac muscle. Its expression in cancer tissues has not been reported. Herein, we examined cTnI expression in non-small cell lung cancer (NSCLC) tissues, human adenocarcinoma cells SPCA-1 (lung) and BGC 823 (gastric) by immunohistochemistry, western blot analysis and real-time PCR. Immunopositivity for cTnI was demonstrated in 69.4% (34/49) NSCLC tissues evaluated, and was strong intensity in 35.3% (6/17) lung squamous cell carcinoma cases. The non-cancer-bearing lung tissues except tuberculosis (9/9, 100%) showed negative staining for cTnI. Seven monoclonal antibodies (mAbs) against human cTnI were applied in immunofluorescence. The result showed that the staining pattern within SPCA-1 and BGC 823 was dependent on the epitope of the cTnI mAbs. The membrane and nucleus of cancer cells were stained by mAbs against N-terminal peptides of cTnI, and cytoplasm was stained by mAbs against the middle and C-terminal peptides of cTnI. A ~25 kD band was identified by anti-cTnI mAb in SPCA-1 and BGC 823 extracts by western blot, as well as in cardiomyocyte extracts. The cTnI mRNA expressions in SPCA-1 and BGC 823 cells were about ten thousand times less than that in cardiomyocytes. Our study shows for the first time that cTnI protein and mRNA were abnormally expressed in NSCLC tissues, SPCA-1 and BGC 823 cells. These findings challenge the conventional view of cTnI as a cardiac-specific protein, enabling the potential use of cTnI as a diagnostic marker or targeted therapy for cancer.

  11. Effects of ethanol on RhoA/Rho-kinase-mediated calcium sensitization in mouse lung parenchymal tissue.

    PubMed

    Aydinoglu, Fatma; Ergurhan Kiroglu, Olcay; Astarci, Erhan; Balli, Ebru; Ogulener, Nuran

    2015-10-01

    Calcium sensitization by the RhoA/Rho-kinase (ROCK) pathway contributes to the contraction in smooth muscle. Contractile stimuli can sensitize myosin to Ca(2+) by activating RhoA/Rho-kinase that inhibits myosin light chain phosphatase activity. The present study was aimed at investigating the possible involvement of RhoA/Rho-kinase pathway in contractile responses to agonist (phenylephrine) and depolarizing (KCl) of mouse lung parenchymal tissues. Also, we investigated the effect of ethanol on RhoA/Rho-kinase pathway. Phenylephrine (10(-8)-10(-4) M) and KCl (10-80 mM) induced sustained contractions in parenchymal strips. Ethanol significantly attenuated the contractions to phenylephrine and KCl. The Rho-kinase inhibitors fasudil (5×10(-5) M) and Y-27632 (5×10(-5) M) inhibited contractions to in both control and ethanol-treated parenchymal strips. In addition, the relaxations induced by fasudil (10(-4) M) and Y-27632 (5×10(-4) M) on parenchymal strips contracted by phenylephrine but not KCl was decreased in ethanol-treatment group. Also, RhoA, ROCK1 and ROCK2 expressions were detected in mouse lung parenchymal tissue. In ethanol-treated group, expression of RhoA and ROCK1 but not ROCK2 decreased compared to control. Furthermore, ethanol causes apoptotic changes in alveolar type I epithelial cells of parenchymal tissue. These results suggest that RhoA/Rho-kinase signaling pathway plays an important role in phenylephrine- and KCl-induced Ca(2)(+) sensitization in mouse lung parenchymal tissue. Also, ethanol may be decrease phenylephrine- and KCl-induced contraction due to lowering the RhoA/Rho-kinase-mediated Ca(2+)-sensitizing by inhibiting RhoA/Rho-kinase pathway in parenchymal tissue. These results may be lead to important insights into the mechanisms of lung diseases due to alcohol consumption.

  12. Assessment and management of connective tissue disease-associated interstitial lung disease.

    PubMed

    Fischer, Aryeh; Chartrand, Sandra

    2015-01-01

    The intersection of the connective tissue diseases (CTD) and the interstitial lung diseases (ILD) is complex. Although often considered as a single entity, "CTD-ILD" actually reflects a heterogeneous spectrum of diverse CTDs and a variety of patterns of interstitial pneumonia. The evaluation of patients with CTD that develop ILD, or the assessment for underlying CTD in those presenting with presumed "idiopathic" ILD can be challenging and these evaluations can be optimized by effective multidisciplinary collaboration. When a diagnosis of CTD-ILD is confirmed, careful and thorough assessments to determine extra- versus intra-thoracic disease activity, and degrees of impairment are needed. Pharmacologic intervention with immunosuppression is the mainstay of therapy for all forms of CTD-ILD, but should be reserved only for those that demonstrate clinically significant and/or progressive disease. The management of CTD-ILD is not yet evidence based and there is a desperate need for controlled trials across the spectrum of CTD-ILD. Non-pharmacologic management strategies and addressing comorbidities or aggravating factors should be part of a comprehensive treatment plan for individuals with CTD-ILD.

  13. Discovery of EST-SSRs in lung cancer: tagged ESTs with SSRs lead to differential amino acid and protein expression patterns in cancerous tissues.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2011-01-01

    Tandem repeats are found in both coding and non-coding sequences of higher organisms. These sequences can be used in cancer genetics and diagnosis to unravel the genetic basis of tumor formation and progression. In this study, a possible relationship between SSR distributions and lung cancer was studied by comparative analysis of EST-SSRs in normal and lung cancerous tissues. While the EST-SSR distribution was similar between tumorous tissues, this distribution was different between normal and tumorous tissues. Trinucleotides tandem repeats were highly different; the number of trinucleotides in ESTs of lung cancer was 3 times higher than normal tissue. Significant negative correlation between normal and cancerous tissue showed that cancerous tissue generates different types of trinucleotides. GGC and CGC were the more frequent expressed trinucleotides in cancerous tissue, but these SSRs were not expressed in normal tissue. Similar to the EST level, the expression pattern of EST-SSRs-derived amino acids was significantly different between normal and cancerous tissues. Arg, Pro, Ser, Gly, and Lys were the most abundant amino acids in cancerous tissues, and Leu, Cys, Phe, and His were significantly more abundant in normal tissues than in cancerous tissues. Next, the putative functions of triplet SSR-containing genes were analyzed. In cancerous tissue, EST-SSRs produce different types of proteins. Chromodomain helicase DNA binding proteins were one of the major protein products of EST-SSRs in the cancerous library, while these proteins were not produced from EST-SSRs in normal tissue. For the first time, the findings of this study confirmed that EST-SSRs in normal lung tissues are different than in unhealthy tissues, and tagged ESTs with SSRs cause remarkable differences in amino acid and protein expression patterns in cancerous tissue. We suggest that EST-SSRs and EST-SSRs differentially expressed in cancerous tissue may be suitable candidate markers for lung cancer

  14. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study.

    PubMed

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2011-02-21

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  15. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study

    NASA Astrophysics Data System (ADS)

    Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2011-02-01

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  16. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm2) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ˜1 cm). For the phantom, square fields of 1 × 1 cm2, 3 × 3 cm2, or 5 × 5 cm2 were applied. However, in the patient, 3 × 1 cm2, 3 × 2 cm2, 3 × 2.5 cm2, or 3 × 3 cm2 field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was

  17. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer.

    PubMed

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J

    2013-10-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour

  18. Individualized Radical Radiotherapy of Non-Small-Cell Lung Cancer Based on Normal Tissue Dose Constraints: A Feasibility Study

    SciTech Connect

    Baardwijk, Angela van Bosmans, Geert; Boersma, Liesbeth; Wanders, Stofferinus; Dekker, Andre; Dingemans, Anne Marie C.; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Simons, Jean; Lambin, Philippe; Ruysscher, Dirk de

    2008-08-01

    Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissue dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.

  19. Autofluorescence spectroscopy of normal and malignant tissues: both in-vivo and ex-vivo measurements in the upper aero-digestive tract and lung tissues

    NASA Astrophysics Data System (ADS)

    A'Amar, Ousama M.; Lignon, Dominique; Menard, O.; Begorre, Henri; Guillemin, Francois H.; Yvroud, Edouard

    1996-04-01

    A spectroscopic system with flexible three optical fiber sensor had been developed to study tissue fluorescence for a clinical use. Autofluorescence spectra at 413 nm and 10 mW excitation light power from different tissues in oral cavity had been measured in vivo in 25 subjects. The correlation coefficient in spectral shape between individual spectra and the mean emission spectrum of each site was about 0.9 and fluorescence intensity variation ranged between 20% and 45% according to the examined site. The variation in fluorescence intensity of the main emission wavelength at about 520 nm between spectra of the lower part of tongue, gingiva, lips, floor of cavity, cheek and palate was not statistically significant. But the spectrum of the upper part of tongue had been characterized by an additional peak around 635 nm. Otherwise, autofluorescence spectra at 410 nm and 0.5 mW excitation light power of 8 carcinoma of buccal and lung tissues were measured. The fluorescence ratio at 520 emission peak between normal tissue and carcinoma was evaluated at a maximum value of 13 for a lung cancer (ex vivo measurement) and a minimum of 3.3 for a cancer of the oro-pharynx (in vivo measurement). On the other hand, a fluorescence peak at 635 nm had characterized the carcinoma of the floor of cavity and the upper part of tongue.

  20. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue.

    PubMed

    Samarghandian, Saeed; Borji, Abasalt; Afshari, Reza; Delkhosh, Mohammad Bagher; gholami, Ali

    2013-07-01

    Despite the wide spread of lead environmental pollution, the effect of this heavy metal on respiratory disease was not shown yet. In respect to increased oxidative stress is an important mechanism in the pathogenesis of respiratory disease, the present study was designed to examine the association between lead toxicity and lung disease via measuring oxidative stress biomarkers in bronchoalveolar lavage fluid (BALF) and lung tissue of rat. For this aim, 32 rats were divided into the following groups of eight animals each: control, three lead tested (received lead acetate in the drinking water for a period of 14 d at concentrations of 250, 500 and 1000 ppm) groups. At the end of the 2 week period, malondialdehyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) contents were measured to assess free radical activity in the BALF and lung tissue. Superoxide dismutase (SOD) was also determined. A significant dose-dependent increase in the BALF supernatant and lung homogenate levels of MDA and NO with decrease GSH level and SOD activity were observed in the lead-treated groups compared with the control group (p < 0.05). Thus, lead acetate may be contributed to respiratory disorders via increased oxidative stress. PMID:23419166

  1. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directional block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.

  2. Effects of selective iNOS inhibition in sepsis: evaluation of lung tissue damage and blood gases.

    PubMed

    Ceran, Sami; Erikoglu, Mehmet; Sahin, Mustafa; Sunam, Güven Sadi; Gölcük, Murat; Pasaoğlu, Hatice; Avsar, Fatih; Hücümenoglu, Sema

    2008-01-01

    NO is an important mediator in the generalized inflammatory response of the body during sepsis and septic shock. We investigated the possible effects of L-arginine and aminoguanidine on plasma NO levels and the interaction between NO levels and lung tissue damage and blood gases in sepsis. Fifty Wistar male rats were used in this study and divided into five groups: group 1, sham group; group 2, CLP (sepsis); group 3, CLP + 10 mg/kg L-arginine administration; group 4, CLP +15 mg/kg aminoguanidine administration; group 5: CLP + L-arginine + aminoguanidine given in similar doses. Sepsis was induced by cecal ligation and puncture (CLP) method. Drugs were administered at postoperative hours 4 and 12. The levels in the aminoguanidine and aminoguanidine + L-arginine groups were similar to the sham group. Lung tissue damage in the sepsis and L-arginine groups was more severe than the other groups.

  3. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    SciTech Connect

    Zhang, Q; Lei, Y; Zheng, D; Zhu, X; Wahl, A; Lin, C; Zhou, S; Zhen, W

    2015-06-15

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness were created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.

  4. Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife.

    PubMed

    Kang, Ki Mun; Jeong, Bae Kwon; Choi, Hoon-Sik; Yoo, Seung Hoon; Hwang, Ui-Jung; Lim, Young Kyung; Jeong, Hojin

    2015-09-08

    We have investigated the combined effect of tissue heterogeneity and its variation associated with geometric error in stereotactic body radiotherapy (SBRT) for lung cancer. The treatment plans for eight lung cancer patients were calculated using effective path length (EPL) correction and Monte Carlo (MC) algorithms, with both having the same beam configuration for each patient. These two kinds of plans for individual patients were then subsequently recalculated with adding systematic and random geometric errors. In the ordinary treatment plans calculated with no geometric offset, the EPL calculations, compared with the MC calculations, largely overestimated the doses to PTV by ~ 21%, whereas the overestimation were markedly lower in GTV by ~ 12% due to relatively higher density of GTV than of PTV. When recalculating the plans for individual patients with assigning the systematic and random geometric errors, no significant changes in the relative dose distribution, except for overall shift, were observed in the EPL calculations, whereas largely altered in the MC calculations with a consistent increase in dose to GTV. Considering the better accuracy of MC than EPL algorithms, the present results demonstrated the strong coupling of tissue heterogeneity and geometric error, thereby emphasizing the essential need for simultaneous correction for tissue heterogeneity and geometric targeting error in SBRT of lung cancer.

  5. X-ray diffraction spectrometric analysis of nickel refinery aerosols, process materials and particulates isolated from worker lung tissues.

    PubMed

    Andersen, I; Svenes, Knut

    2003-04-01

    Results are reported of X-ray diffraction analysis of extracts derived from lungs of two nickel refinery workers and of three stationary air samples collected inside a nickel refinery. Since environmental samples from the 1950s and 1960s do not exist, two archived production control samples from that period were also analyzed. Because nickel has been found in respiratory tissue of workers retired for more than twenty years, it was likely that the residual nickel compounds must be rather insoluble. Preliminary surveys showed that sulfur was not present in the lung tissue deposits and thus water-soluble and sulfidic nickel were therefore extracted from the ten process samples before the X-ray analysis. A common compound that was found in all 10 samples was trevorite. This is a spinel-type mineral, much like magnetite where the divalent iron is replaced by nickel. It may be formed when trivalent iron reacts with nickel at 1100 degrees C. It has magnetic properties and is very insoluble. Samples from the lungs were obtained by burning off the organic tissue at 630 degrees C. Due to a relatively high detection limit for the X-ray diffraction technique, we were initially not able to detect any mineral nickel compound. But when particles extracted with a magnet were analyzed, a very clear diffraction pattern of trevorite was identified. The main residue after the magnetic separation had a low concentration of nickel (4 microg g(-1)), which suggests that trevorite was the dominating, if not the only, nickel compound present. In addition, chemical analyses were performed on 13 tissue samples from one single lung; one from each main bronchus, two from each lobe, and an additional one from the lower right lobe. Statistical testing showed a highly significant correlation between the five elements determined: Ni, Co, Cu, Fe and Cr. This suggests that these metals are isomorphous and substitute for each other in the mineral structure. These results may indicate that the nickel

  6. Response of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue.

    PubMed

    Henderson, R F; Pickrell, J A; Jones, R K; Sun, J D; Benson, J M; Mauderly, J L; McClellan, R O

    1988-10-01

    The effect of long-term (24 months) inhalation of diesel exhaust on the bronchoalveolar region of the respiratory tract of rodents was assessed by serial (every 6 months) analysis of bronchoalveolar lavage fluid (BALF) and of lung tissue from F344/Crl rats and CD-1 mice (both sexes) exposed to diesel exhaust diluted to contain 0, 0.35, 3.5, or 7.0 mg soot/m3. The purpose of the study was twofold. One was to assess the potential health effects of inhaling diluted exhaust from light-duty diesel engines. The second was to determine the usefulness of BALF analysis in detecting the early stages in the development of nononcogenic lung disease and differentiating them from the normal repair processes. No biochemical or cytological changes in BALF or in lung tissue were noted in either species exposed to the lowest, and most environmentally relevant, concentration of diesel exhaust. In the two higher levels of exposure, a chronic inflammatory response was measured in both species by dose-dependent increases in inflammatory cells, cytoplasmic and lysosomal enzymes, and protein in BALF. Histologically, after 1 year of exposure, the rats had developed focal areas of fibrosis associated with the deposits of soot, while the mice, despite a higher lung burden of soot than the rats, had only a fine fibrillar thickening of an occasional alveolar septa in the high-level exposure group. Higher increases in BALF beta-glucuronidase activity and in hydroxyproline content accompanied the greater degree of fibrosis in the rat. BALF levels of glutathione (GSH) and glutathione reductase activity increased in a dose-dependent fashion and were higher in mice than in rats. Lung tissue GSH was depleted in a dose-dependent fashion in rats but was slightly increased in mice. This depletion may have played a role in the greater fibrogenic response observed in rats. Other tissue changes in enzymatic activity were small compared to changes observed in BALF. The exposure did not increase the

  7. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues

    PubMed Central

    Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F.; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua

    2010-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM2.5 exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM2.5-induced apoptosis. Furthermore, PM2.5 exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM2.5 exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM2.5 exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis. PMID:20554909

  8. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG, IgM and leptospiral antigens. Three ...

  9. Exercise may offset nicotine-induced injury in lung tissue: a preliminary histological study based on a rat model.

    PubMed

    Al-Obaidi, S; Mathew, T C; Dean, E

    2012-05-01

    Nicotine appears to be the primary pharmacologic agent that causes smoking-related pulmonary diseases. An understanding of the effect of nicotine on lungs is essential to develop interventions that can be used to counter smoking-related diseases. Further, it is shown that physical exercise may partially reverse smoking-induced pathological changes in experimental animals. Hence, this study focuses on the pathological changes in rat lung following nicotine administration and the role of exercise in reversing the nicotine-induced lung injury. This is a randomized controlled trial with 3 groups of rats. Control (CG), nicotine-exposed (NG), and nicotine-exposed and exercise group (NEG). Control group received no intervention. Both NG and NEG were given 1.5 mg/kg nicotine base, daily, subcutaneously, but NEG were also subjected to an intensive daily swimming protocol. The rats were sacrificed and the lung tissue was processed for light and transmission electron microscopic and immunohistochemical studies. Compared with the control group, the nicotine group showed enlargement and destruction of the alveolar septum, cellular hyperplasia and interstitial fibrosis, and interstitial mononuclear cell infiltration with increased intraluminal macrophages. There was only modest morphological change between the nicotine administered and nicotine and exercise groups. Expression of superoxide dismutase (SOD) and catalase showed a mild increase in the NEG, whereas glutathione peroxidase (GPX) showed mild and moderate increase in the expression in the NG and NEG, respectively. This study shows that nicotine induces substantial pathological changes in the lung and prolonged exercise may have some beneficial effects in partially reversing the nicotine-induced lung injury by inducing the expression of antioxidants. PMID:22452750

  10. The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster.

    PubMed

    Talaei, Fatemeh; Bouma, Hjalmar R; Hylkema, Machteld N; Strijkstra, Arjen M; Boerema, Ate S; Schmidt, Martina; Henning, Rob H

    2012-08-15

    During hibernation, small mammals alternate between periods of metabolic suppression and low body temperature ('torpor') and periods of full metabolic recovery with euthermic temperatures ('arousal'). Previously, we demonstrated marked structural remodeling of the lung during torpor, which is rapidly reversed during arousal. We also found that cooling of hamster cells increased endogenous production of H(2)S through the enzyme cystathionine-β-synthase (CBS). H(2)S suppresses the immune response and increases deposition of collagen. Therefore, we examined inflammatory markers and matrix metalloproteinase (MMP) activity in relation to CBS expression and H(2)S levels in lungs of euthermic and hibernating Syrian hamsters. Lung remodeling during torpor was confirmed by a strong increase in both collagenous and non-collagenous hydroxyproline content. The number of leukocytes in lung was unchanged in any phase of hibernation, while adhesion molecules VCAM-1 and ICAM-1, and the inflammatory marker NF-κB (P65) were modestly upregulated in torpor. Gelatinase activity was decreased in lungs from torpid animals, indicating inhibition of the Zn(2+)-dependent MMP-2 and MMP-9. Moreover, expression of CBS and tissue levels of H(2)S were increased in torpor. All changes normalized during arousal. Inhibition of gelatinase activity in torpor is likely caused by quenching of Zn(2+) by the sulphide ion of H(2)S. In accord, inhibition of CBS normalized gelatinase activity in torpid animals. Conversely, NaHS decreased the gelatinase activity of euthermic animals, which was attenuated by excess Zn(2+). Similar results were obtained on the activity of the Zn(2+)-dependent angiotensin converting enzyme. Our data indicate that increased production of H(2)S through CBS in hamster lungs during torpor contributes to remodeling by inhibition of gelatinase activity and possibly by suppression of the inflammatory response. Although administration of H(2)S is known to induce metabolic suppression

  11. Dynamic OCT monitoring and quantification of light penetration enhancement for normal, benign and cancerous human lung tissues at different concentrations of glycerol

    SciTech Connect

    Shu-wen Tan; Ying Jin; Hui Yu; Guo-yong Wu

    2013-10-31

    We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the human normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)

  12. High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.

  13. [Radiation studies in the detection of early signs of lung tissue lesion in sarcoidosis].

    PubMed

    Stashuk, G A; Dubrova, S E

    2007-01-01

    The capacities of various radiation techniques in the study of patients with pulmonary sarcoidosis are analyzed. The sequence of their use, which ensures a high informative value, is proposed. By analyzing the X-ray semiotics in 45 patients with pulmonary sarcoidosis, the authors give the diagnostic signs of early lung parenchymal damage in this disease. Particular emphasis is placed on the procedure of lung X-ray computed tomography.

  14. Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair

    NASA Astrophysics Data System (ADS)

    Micera, Alessandra; Vigneti, Eliana; Pickholtz, Dalia; Reich, Reuven; Pappo, Orit; Bonini, Sergio; Maquart, François Xavier; Aloe, Luigi; Levi-Schaffer, Francesca

    2001-05-01

    Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.

  15. Cardiovascular Involvement in Connective Tissue Disease: The Role of Interstitial Lung Disease

    PubMed Central

    Wang, XiaoBing; Lou, MeiNa; Li, Yongji; Ye, WenJing; Zhang, ZhiYong; Jia, Xiufen; Shi, HongYing; Zhu, XiaoChun; Wang, LiangXing

    2015-01-01

    Objective The aim of this study was to assess cardiovascular involvement in patients with connective tissue disease (CTD), and determine whether interstitial lung disease (ILD) in these patients is associated with elevated cardiovascular risk. Methods This study evaluated a retrospective cohort of 436 CTD patients admitted to a large teaching hospital in Zhejiang province, China, along with an additional 436 participants of an annual community health screening conducted in the physical examination center who served as age- and gender-matched controls. Demographic, clinical, serologic and imaging characteristics, as well as medications used by each participant were recorded. Cardiovascular involvement was defined by uniform criteria. Correlations between clinical/serologic factors and cardiovascular involvement were determined by univariate and multivariate analyses. Results CTD patients had a significantly higher cardiovascular involvement rate than controls (64.7% vs 23.4%), with higher rates of diabetes, hypertension, and hyperlipidemia, elevated systolic and diastolic pressures, C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol, and lower albumin and high-density lipoprotein cholesterol (all p < 0.05). Furthermore, CTP patients with cardiovascular involvement were significantly older, had higher systolic and diastolic pressures, C-reactive protein, glucose, and uric acid, higher rates of diabetes, hypertension, and use of moderate- to high-dose glucocorticoids, and longer disease duration compared to patients without involvement (all p < 0.05). Moreover, CTD in patients with cardiovascular involvement was more likely to be complicated by ILD (p < 0.01), which manifested as a higher alveolar inflammation score (p < 0.05). In the multivariate analysis, cardiovascular involvement in CTD patients was associated with age, systolic pressure, body mass index, uric acid, disease duration > 2 years, use of moderate- to high

  16. Nrf3-deficient mice are not protected against acute lung and adipose tissue damages induced by butylated hydroxytoluene.

    PubMed

    Chevillard, Grégory; Nouhi, Zaynab; Anna, Derjuga; Paquet, Marilène; Blank, Volker

    2010-03-01

    We found that both wild type and Nrf3 (NF-E2-related factor 3) deficient mice are sensitive to BHT single administration exhibiting respiratory distress and considerably lose body weight following treatment. At time of sacrifice, the BHT-treated Nrf3-/- mice had lost significantly more body weight than their WT counterparts. In the lung, transcript levels of the transcription factors Nrf1, Nrf2 and Nrf3 were differentially regulated by BHT treatment. In addition, genes implicated in adipogenesis were repressed following BHT exposure in the white adipose tissue. Together, our data provide the first evidence that BHT exposure not only affects lung function but also leads to impaired adipogenesis in adipocytes.

  17. Lung cancer in uranium miners: A tissue resource and pilot study. Progress report, September 25, 1992--May 31, 1993

    SciTech Connect

    Samet, J.M.

    1993-05-01

    This project involves two related activities directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first activity involves a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second activity is a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives are to facilitate the investigation of molecular changes in radon exposed lung cancer cases and to develop methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and to assess the feasibility of recruiting former uranium miners into a longitudinal study that collects multiple biologic specimens.

  18. Increased expression of CD4+IL-17+ cells in the lung tissue of patients with stable chronic obstructive pulmonary disease (COPD) and smokers.

    PubMed

    Zhang, Jianquan; Chu, Shuyuan; Zhong, Xiaoning; Lao, Qifang; He, Zhiyi; Liang, Yi

    2013-01-01

    CD4(+)IL-17(+) cells have an important role in controlling immune and inflammatory reactions. The authors of the present study hypothesize that these cells may be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). To characterize the frequency of CD4(+)IL-17(+) cells in the lung alveolar walls, small airways and muscular pulmonary arteries of nonsmokers, smokers with normal lung function and COPD patients, CD4(+)IL-17(+) cell number was assessed using double immunofluorescence staining, and IL-17 and IL-21 expression were measured using real-time quantitative PCR in the peripheral lung tissues of 10 nonsmokers, 10 smokers with normal lung function and 10 smokers with stable COPD. In the lung alveolar walls, the number of CD4(+)IL-17(+) cells was increased in COPD patients compared with nonsmokers and in normal smokers compared with nonsmokers. In the small airways, the CD4(+)IL-17(+) cell numbers were higher in COPD patients than in normal smokers and nonsmokers. A positive correlation was observed between CD4(+)IL-17(+) cell expression and pathological changes in the lung tissue. In the small airways, the number of CD4(+)IL-17(+) cells was positively correlated with airflow limitations. The IL-17 mRNA levels in lung tissues were increased in COPD patients and normal smokers compared with nonsmokers. Increased CD4(+)IL-17(+) cell number in lung tissue is involved in chronic inflammation of the lungs and parallels lung injury aggravation in COPD patients and in smokers without airway limitations. These findings contribute to a better understanding of CD4(+) cell-related pathogenesis in COPD.

  19. Repeated Intratracheal Instillation of PM10 Induces Lipid Reshaping in Lung Parenchyma and in Extra-Pulmonary Tissues

    PubMed Central

    Rizzo, Angela Maria; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health. PMID:25259850

  20. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Farina, Francesca; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health. PMID:25259850

  1. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Farina, Francesca; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  2. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering.

    PubMed

    Hill, Ryan C; Calle, Elizabeth A; Dzieciatkowska, Monika; Niklason, Laura E; Hansen, Kirk C

    2015-04-01

    The use of extracellular matrix (ECM) scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs.

  3. Quantification of Extracellular Matrix Proteins from a Rat Lung Scaffold to Provide a Molecular Readout for Tissue Engineering*

    PubMed Central

    Hill, Ryan C.; Calle, Elizabeth A.; Dzieciatkowska, Monika; Niklason, Laura E.; Hansen, Kirk C.

    2015-01-01

    The use of extracellular matrix (ECM)1 scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs. PMID:25660013

  4. Expression and clinical significance of insulin-like growth factor 1 in lung cancer tissues and perioperative circulation from patients with non-small-cell lung cancer

    PubMed Central

    Fu, S.; Tang, H.; Liao, Y.; Xu, Q.; Liu, C.; Deng, Y.; Wang, J.; Wang, J.; Fu, X.

    2016-01-01

    Objective We explored the role of insulin-like growth factor 1 (igf-1) in the development of lung cancer. Methods We used immunohistochemistry to measure the expression of igf-1 and igf-1 receptor (igf-1r) in specimens of tissue and perioperative circulation from 80 patients with primary non-small-cell lung cancer (nsclc) and from 45 patients with benign pulmonary lesions (bpls). Correlations of those measurements with clinicopathologic characteristics and clinical follow-up were analyzed. Circulating igf-1 was measured before and after surgery in all patients. Results Compared with bpl specimens, nsclc specimens showed overexpression of igf-1and igf-1r (p < 0.001). The expression levels of igf-1 and igf-1r were significantly associated with advanced-stage disease (p = 0.034 and 0.029 respectively) and lymph node metastasis (p = 0.012 and 0.017 respectively), and expression of igf-1 correlated with tumour differentiation and tumour diameter (p = 0.011 and 0.021 respectively). Specimens positive for igf-1 or igf-1r were significantly correlated with shorter patient survival (p = 0.0012 and 0.0016 respectively). After surgery, circulating igf-1 was significantly elevated in patients with bpl (p = 0.0346) and significantly lower in patients with nsclc (p = 0.0030), especially in those with advanced-stage disease, a larger tumour size, regional lymphoid node metastasis, or lesser differentiation (p = 0.0092, 0.0051, 0.0131, and p < 0.001 respectively). Conclusions In nsclc, igf-1 and igf-1r are upregulated, and expression of those factors is correlated with tumour progression and prognosis in nsclc patients. Radical resection of nsclc can directly influence the serum concentration of igf-1. Autocrine/paracrine igf-1 might be playing an important role in the development of lung cancer. PMID:26966399

  5. PCR assay detects Mannheimia haemolytica in culture-negative pneumonic lung tissues of bighorn sheep (Ovis canadensis) from outbreaks in the western USA, 2009-2010.

    PubMed

    Shanthalingam, Sudarvili; Goldy, Andrea; Bavananthasivam, Jegarubee; Subramaniam, Renuka; Batra, Sai Arun; Kugadas, Abirami; Raghavan, Bindu; Dassanayake, Rohana P; Jennings-Gaines, Jessica E; Killion, Halcyon J; Edwards, William H; Ramsey, Jennifer M; Anderson, Neil J; Wolff, Peregrine L; Mansfield, Kristin; Bruning, Darren; Srikumaran, Subramaniam

    2014-01-01

    Mannheimia haemolytica consistently causes severe bronchopneumonia and rapid death of bighorn sheep (Ovis canadensis) under experimental conditions. However, Bibersteinia trehalosi and Pasteurella multocida have been isolated from pneumonic bighorn lung tissues more frequently than M. haemolytica by culture-based methods. We hypothesized that assays more sensitive than culture would detect M. haemolytica in pneumonic lung tissues more accurately. Therefore, our first objective was to develop a PCR assay specific for M. haemolytica and use it to determine if this organism was present in the pneumonic lungs of bighorns during the 2009-2010 outbreaks in Montana, Nevada, and Washington, USA. Mannheimia haemolytica was detected by the species-specific PCR assay in 77% of archived pneumonic lung tissues that were negative by culture. Leukotoxin-negative M. haemolytica does not cause fatal pneumonia in bighorns. Therefore, our second objective was to determine if the leukotoxin gene was also present in the lung tissues as a means of determining the leukotoxicity of M. haemolytica that were present in the lungs. The leukotoxin-specific PCR assay detected leukotoxin gene in 91% of lung tissues that were negative for M. haemolytica by culture. Mycoplasma ovipneumoniae, an organism associated with bighorn pneumonia, was detected in 65% of pneumonic bighorn lung tissues by PCR or culture. A PCR assessment of distribution of these pathogens in the nasopharynx of healthy bighorns from populations that did not experience an all-age die-off in the past 20 yr revealed that M. ovipneumoniae was present in 31% of the animals whereas leukotoxin-positive M. haemolytica was present in only 4%. Taken together, these results indicate that culture-based methods are not reliable for detection of M. haemolytica and that leukotoxin-positive M. haemolytica was a predominant etiologic agent of the pneumonia outbreaks of 2009-2010.

  6. Pharmacokinetics and tissue distribution of spray-dried carboplatin microspheres: lung targeting via intravenous route.

    PubMed

    Harsha, Sree; Al-Khars, Mohammed; Al-Hassan, Mohammed; Kumar, N Prem; Nair, Anroop B; Attimarad, Mahesh; Al-Dhubiab, Bandar E

    2014-03-01

    For cancer therapy, microspheres can be used to increase effectiveness while decreasing side effects of treatments. We prepared gelatin microspheres containing carboplatin (GCPtM) for treating lung cancer. We prepared gelatin microspheres of carboplatin (GCPtM) for use in treating lung cancer. Microspheres were prepared using a Buchi B-90 nano spray-drier. Surface morphology was found to be shriveled to nearly spherical, with an average size of 14.7 μm. Drug loading and percentage yield were found to be 72 ± 0.4 and 88 ± 0.2 %, respectively. In vitro release studies indicated that diffusion followed the Peppas model, with 99.3 % of total carboplatin released from GCPtM after 12 h, while for the pure drug this value was 92.4 % in 0.5 h. Liquification was observed during stability studies at 37 °C with an relative humidity of 75 %. Plasma concentration profile was described using a two-compartment model after intravenous injection of GCPtM. Carboplatin containing microspheres distributed in the lung, spleen, liver, and blood were found to be primarily distributed in the lungs. We used a powder technology (spray-dryer) method in this study to significantly reduce the overall production time and desired particle size, without using organic solvents; additionally, this method is economically feasible. Thus, microsphere may be an effective method for successfully delivering carboplatin to the lungs.

  7. Lung surgery - discharge

    MedlinePlus

    Thoracotomy - discharge; Lung tissue removal - discharge; Pneumonectomy - discharge; Lobectomy - discharge; Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - ...

  8. Identification of differentially expressed genes in lung tissues of nickel-exposed rats using suppression subtractive hybridization.

    PubMed

    Zhang, Jing; Zhang, Jun; Fan, Yingying; Liu, Lihong; Li, Mengjie; Zhou, Yang; Shao, Zhihua; Shi, Hongjun; Wang, Ying

    2011-11-01

    Occupational exposure to nickel compound, such as nickel refining, electroplating, and in conjunction with other metals, is harmful to the health, causing respiratory distress, and lung and nasal cancer. In this work, the different gene expression patterns of lung tissues from nickel-exposed rats and controls were investigated. The suppression subtractive hybridization (SSH) method was used to generate two subtracted cDNA libraries with gene transcripts differentially expressed after nickel inducing. Dot-blot hybridizations were used to confirm differential ratios of expression of obtained SSH clones. Out of 768 unique SSH clones, which were chosen randomly from the two subtraction libraries (384 of each), 319 could be verified as differentially expressed. According to blast screening and functional annotation, 28% genes in nickel-induced cDNA library were related to cell differentiation, whereas 21% in driver library were related to oxygen transport. Two novel expressed sequence tags (ESTs; NCBI Accession No. FC809414 and No. FC809411) in nickel-induced cDNA library were obtained. The genes detected in the present study are probably important genes associated with nickel-induced lung cancer.

  9. Identification of nuclear phosphoproteins as novel tobacco markers in mouse lung tissue following short-term exposure to tobacco smoke

    PubMed Central

    Niimori-Kita, Kanako; Ogino, Kiyoshi; Mikami, Sayaka; Kudoh, Shinji; Koizumi, Daikai; Kudoh, Noritaka; Nakamura, Fumiko; Misumi, Masahiro; Shimomura, Tadasuke; Hasegawa, Koki; Usui, Fumihiko; Nagahara, Noriyuki; Ito, Takaaki

    2014-01-01

    Smoking is a risk factor for lung diseases, including chronic obstructive pulmonary disease and lung cancer. However, the molecular mechanisms mediating the progression of these diseases remain unclear. Therefore, we sought to identify signaling pathways activated by tobacco-smoke exposure, by analyzing nuclear phosphoprotein expression using phosphoproteomic analysis of lung tissue from mice exposed to tobacco smoke. Sixteen mice were exposed to tobacco smoke for 1 or 7 days, and the expression of phosphorylated peptides was analyzed by mass spectrometry. A total of 253 phosphoproteins were identified, including FACT complex subunit SPT16 in the 1-day exposure group, keratin type 1 cytoskeletal 18 (K18), and adipocyte fatty acid-binding protein, in the 7-day exposure group, and peroxiredoxin-1 (OSF3) and spectrin β chain brain 1 (SPTBN1), in both groups. Semi-quantitative analysis of the identified phosphoproteins revealed that 33 proteins were significantly differentially expressed between the control and exposed groups. The identified phosphoproteins were classified according to their biological functions. We found that the identified proteins were related to inflammation, regeneration, repair, proliferation, differentiation, morphogenesis, and response to stress and nicotine. In conclusion, we identified proteins, including OSF3 and SPTBN1, as candidate tobacco smoke-exposure markers; our results provide insights into the mechanisms of tobacco smoke-induced diseases. PMID:25349779

  10. Identification of differentially expressed genes in lung tissues of nickel-exposed rats using suppression subtractive hybridization.

    PubMed

    Zhang, Jing; Zhang, Jun; Fan, Yingying; Liu, Lihong; Li, Mengjie; Zhou, Yang; Shao, Zhihua; Shi, Hongjun; Wang, Ying

    2011-11-01

    Occupational exposure to nickel compound, such as nickel refining, electroplating, and in conjunction with other metals, is harmful to the health, causing respiratory distress, and lung and nasal cancer. In this work, the different gene expression patterns of lung tissues from nickel-exposed rats and controls were investigated. The suppression subtractive hybridization (SSH) method was used to generate two subtracted cDNA libraries with gene transcripts differentially expressed after nickel inducing. Dot-blot hybridizations were used to confirm differential ratios of expression of obtained SSH clones. Out of 768 unique SSH clones, which were chosen randomly from the two subtraction libraries (384 of each), 319 could be verified as differentially expressed. According to blast screening and functional annotation, 28% genes in nickel-induced cDNA library were related to cell differentiation, whereas 21% in driver library were related to oxygen transport. Two novel expressed sequence tags (ESTs; NCBI Accession No. FC809414 and No. FC809411) in nickel-induced cDNA library were obtained. The genes detected in the present study are probably important genes associated with nickel-induced lung cancer. PMID:21086188

  11. Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies

    PubMed Central

    Muyal, Jai Prakash; Muyal, Vandana; Kaistha, Brajesh Pratap; Seifart, Carola; Fehrenbach, Heinz

    2009-01-01

    Background The reliability of gene expression profiling-based technologies to detect transcriptional differences representative of the original samples is affected by the quality of the extracted RNA. It strictly depends upon the technique that has been employed. Hence, the present study aimed at systematically comparing silica-gel column (SGC) and guanidine isothiocyanate (GTC) techniques of RNA isolation to answer the question which technique is preferable when frozen, long-term stored or fresh lung tissues have to be evaluated for the downstream molecular analysis. Methods Frozen lungs (n = 3) were prepared by long-term storage (2.5 yrs) in -80°C while fresh lungs (n = 3) were harvested and processed immediately. The purity and quantification of RNA was determined with a spectrophotometer whereas the total amounted copy numbers of target sequences were determined with iCycler detection system for assessment of RNA intactness (28S and 18S) and fragment sizes, i.e. short (GAPDH-3' UTR), medium (GAPDH), and long (PBGD) with 200 bp, 700 bp, and 1400 bp distance to the 3'ends of mRNA motif, respectively. Results Total yield of RNA was higher with GTC than SGC technique in frozen as well as fresh tissues while the purity of RNA remained comparable. The quantitative reverse transcriptase-polymerase chain reaction data revealed that higher mean copy numbers of 28S and a longer fragment (1400 bp) were obtained from RNA isolated with SGC than GTC technique using fresh as well as frozen tissues. Additionally, a high mean copy number of 18S and medium fragment (700 bp) were obtained in RNA isolated with SGC technique from fresh tissues, only. For the shorter fragment, no significant differences between both techniques were noticed. Conclusion Our data demonstrated that although the GTC technique has yielded a higher amount of RNA, the SGC technique was much more superior with respect to the reliable generation of an intact RNA and effectively amplified longer products in

  12. Pulmonary interstitial fibrosis with evidence of aflatoxin B1 in lung tissue

    SciTech Connect

    Dvorackova, I.; Pichova, V.

    1986-01-01

    Three cases of pulmonary interstitial fibrosis, two in agricultural workers and one in a textile worker, are reported. In lung samples of all three patients the presence of aflatoxin B1 was demonstrated by radioimmunoassay (RIA). A possible occupational risk of aflatoxin exposure via the respiratory tract is suggested.

  13. The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster.

    PubMed

    Talaei, Fatemeh; Bouma, Hjalmar R; Hylkema, Machteld N; Strijkstra, Arjen M; Boerema, Ate S; Schmidt, Martina; Henning, Rob H

    2012-08-15

    During hibernation, small mammals alternate between periods of metabolic suppression and low body temperature ('torpor') and periods of full metabolic recovery with euthermic temperatures ('arousal'). Previously, we demonstrated marked structural remodeling of the lung during torpor, which is rapidly reversed during arousal. We also found that cooling of hamster cells increased endogenous production of H(2)S through the enzyme cystathionine-β-synthase (CBS). H(2)S suppresses the immune response and increases deposition of collagen. Therefore, we examined inflammatory markers and matrix metalloproteinase (MMP) activity in relation to CBS expression and H(2)S levels in lungs of euthermic and hibernating Syrian hamsters. Lung remodeling during torpor was confirmed by a strong increase in both collagenous and non-collagenous hydroxyproline content. The number of leukocytes in lung was unchanged in any phase of hibernation, while adhesion molecules VCAM-1 and ICAM-1, and the inflammatory marker NF-κB (P65) were modestly upregulated in torpor. Gelatinase activity was decreased in lungs from torpid animals, indicating inhibition of the Zn(2+)-dependent MMP-2 and MMP-9. Moreover, expression of CBS and tissue levels of H(2)S were increased in torpor. All changes normalized during arousal. Inhibition of gelatinase activity in torpor is likely caused by quenching of Zn(2+) by the sulphide ion of H(2)S. In accord, inhibition of CBS normalized gelatinase activity in torpid animals. Conversely, NaHS decreased the gelatinase activity of euthermic animals, which was attenuated by excess Zn(2+). Similar results were obtained on the activity of the Zn(2+)-dependent angiotensin converting enzyme. Our data indicate that increased production of H(2)S through CBS in hamster lungs during torpor contributes to remodeling by inhibition of gelatinase activity and possibly by suppression of the inflammatory response. Although administration of H(2)S is known to induce metabolic suppression

  14. Polymorphonuclear leucocyte sequestration in the lungs and liver following soft-tissue trauma: an in vivo study

    SciTech Connect

    Thoerne, J.B.; Blomquist, S.; Elmer, O.; Grafstroem, G.M.; Martensson, L.

    1989-04-01

    Neutrophils are thought to sequestrate in the lungs and the liver in association with shock. Indications for this have previously been demonstrated in different in vitro studies. In this experiment an in vivo technique for dynamic studies of pulmonary and liver neutrophil sequestration (PNT and LNT, respectively) is described. Autologous neutrophils from ten pigs were labelled with indium-111 oxine. The pigs were placed under a scintillation camera for continuous recording of the activity distribution in the pigs during 105 minutes. Following a steady-state period of 15 minutes seven pigs were subjected to a standardized soft-tissue trauma. Three pigs were used as controls and not traumatized. Within 1-3 minutes after trauma the radioactivity over the lungs increased dramatically, indicating PNT. This was followed by a fast decrease but 90 minutes after trauma PNT levels were still significantly elevated. LNT showed a similar pattern, although the immediate increase was less dramatic. This study shows that PNT and LNT occur immediately after soft-tissue trauma and can be studied dynamically in vivo.

  15. Rapid and simple method of photobleaching to reduce background autofluorescence in lung tissue sections.

    PubMed

    Kumar, B Santhosh; Sandhyamani, S; Nazeer, Shaiju S; Jayasree, R S

    2015-02-01

    Autofluorescence exhibited by tissues often interferes with immunofluorescence. Using imaging and spectral analysis, we observed remarkable reduction of autofluorescence of formalin fixed paraffin embedded tissues irradiated with light prior to incubation with immunofluorescent dyes. The technique of photobleaching offers significant improvement in the quality and specificity of immunofluorescence. This has the potential for better techniques for disease diagnosis. PMID:26040118

  16. Insufficiency of peripheral blood as a substitute tissue for detecting EGFR mutations in lung cancer: a meta-analysis.

    PubMed

    Li, Zhijun; Zhang, Yongjun; Bao, Wenlong; Jiang, Chuming

    2014-12-01

    The detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer tissues is necessary for effective treatment with EGFR tyrosine kinase inhibitors. However, tumor tissues may not be available in all situations. Studies have evaluated the potential use of serum or plasma for detecting the EGFR mutation status, but the results have been inconclusive. Here, a meta-analysis was performed to determine whether blood samples could serve as substitutes for tissue specimens in detecting the EGFR mutation status. Databases, including PubMed and Embase, were searched for relevant studies published from 2005 to 2013 that included true-positive, false-positive, true-negative, and false-negative values of the EGFR mutation status of the blood compared with tissue specimens. Summary receiver operating characteristic curves were developed to explore the threshold effect. Spearman's correlation coefficient was calculated to analyze the heterogeneity between studies. Pooled sensitivity and specificity were evaluated using Meta-DiSc version 1.4. Thirteen articles involving 1,591 cases were enrolled, with a pooled sensitivity and specificity of 64.5 % (95 % CI = 0.605-0.683) and 88.5 % (95 % CI = 0.863-0.904), respectively. Heterogeneity among the studies was caused by factors other than threshold effect. The findings were influenced by test method (p = 0.0354). Blood samples had a high specificity and relatively low sensitivity for detecting EGFR mutations compared to tumor tissues. The results of this meta-analysis suggest that peripheral blood is insufficient as a substitute for tumor tissues in detecting EGFR mutations in clinical practice.

  17. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  18. Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline.

    PubMed

    Curjuric, Ivan; Imboden, Medea; Bridevaux, Pierre-Olivier; Gerbase, Margaret W; Haun, Margot; Keidel, Dirk; Kumar, Ashish; Pons, Marco; Rochat, Thierry; Schikowski, Tamara; Schindler, Christian; von Eckardstein, Arnold; Kronenberg, Florian; Probst-Hensch, Nicole M

    2016-06-01

    Lung function is an independent predictor of mortality and serves as an aging marker in never smokers. The protein sirtuin-1 of gene SIRT1 has profound anti-inflammatory effects and regulates metabolic pathways. Its suggested longevity effects on lower organisms remain poorly studied in humans. In 1132 never smokers of the population-based SAPALDIA cohort, we investigated associations between single nucleotide polymorphisms (SNPs; rs730821, rs10997868, rs10823116) of SIRT1 and aging-related lung function decline over 11 years in terms of change in forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, and forced expiratory flow between 25 and 75 % of FVC (FEF25-75) using multiple linear regression models. Interactions between the SIRT1 SNPs and adiposity parameters (body mass index (BMI), its change and weight gain) were tested by including multiplicative interaction terms into the models. SIRT1 polymorphisms exhibited no main effects, but modified the association between obesity measures and FEV1/FVC and FEF25-75 decline (p = 0.009-0.046). Per risk allele, FEV1/FVC decline was accelerated up to -0.5 % (95 % CI -1.0 to 0 %) and -0.7 % (-1.3 to -0.2 %) over interquartile range increases in BMI (2.4 kg/m(2)) or weight (6.5 kg), respectively. For FEF25-75 decline, corresponding estimates were -57 mL/s (-117 to 4 mL/s) and -76 mL/s (-1429 to -9 mL/s). Interactions were not present in participants with genetically lowered C-reactive protein concentrations. Genetic variation in SIRT1 might therefore affect lung function and human longevity by modifying subclinical inflammation arising from abdominal adipose tissue. PMID:27125385

  19. Transcriptional alterations of ET-1 axis and DNA damage in lung tissue of a rat obesity model.

    PubMed

    Del Ry, Silvia; Cabiati, Manuela; Salvadori, Costanza; Guiducci, Letizia; Caselli, Chiara; Prescimone, Tommaso; Facioni, Maria Sole; Azzarà, Alessia; Chiaramonte, Anna; Mazzoni, Stefano; Bruschi, Fabrizio; Giannessi, Daniela; Scarpato, Roberto

    2015-03-01

    Obesity has been implicated in the development of many cancers. This can lead to genome damage, especially in the form of double-strand break, the presence of which is now easily detected through nuclear phosphorylation of histone H2AX (γ-H2AX) focus assay. Recently, the endothelin (ET) axis has also been shown to have a role in the growth and progression of several tumors, including lung cancer. The aim of this study was to evaluate the ET-1 system transcriptional alterations and γ-H2AX in lung tissue of Zucker rats subdivided into obese (O, n=22) and controls (CO, n=18) rats: under either fasting conditions (CO(fc)-O(fc)) or acute hyperglycemia (CO(AH)-O(AH)). Significantly higher prepro-ET-1 (p=0.05) and ET-converting enzyme (ECE)-2 mRNA expression was observed in O with respect to CO. A significant positive association was observed between prepro-ET-1 and ET-A in the whole rat population (p=0.009) or in the obese group alone (p=0.007). The levels of γ-H2AX in O and in O(AH) rats were significantly higher (p=0.019) than in the corresponding CO and CO(AH) rats (p=0.038). The study shows an inappropriate secretion of ET-1 in O animals with a parallel DNA damage in their lungs, providing novel mechanisms by which ET receptor antagonist may exert organ protection.

  20. Choice of reconstructed tissue properties affects interpretation of lung EIT images.

    PubMed

    Grychtol, Bartłomiej; Adler, Andy

    2014-06-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization. PMID:24844670

  1. Management of Normal Tissue Toxicity Associated With Chemoradiation (Primary Skin, Esophagus, and Lung)

    PubMed Central

    Yazbeck, Victor Y.; Villaruz, Liza; Haley, Marsha; Socinski, Mark A.

    2016-01-01

    Nearly one quarter of patients with lung cancer present with locally advanced disease where concurrent chemoradiotherapy is the current standard of care for patients with good performance status. Cisplatin-based concurrent chemoradiotherapy consistently showed an improvement in survival compared with sequential chemoradiotherapy, at the expense of an increase in the toxicity profile. Over the past decades, several encouraging biomarkers such as transforming growth factor-beta and radioprotective agents such as amifostine were studied but without reaching approval for patient care. We reviewed the prevalence and risk factors for different adverse effects associated with the combined chemoradiotherapy modality, especially dermatitis, mucositis, esophagitis, and pneumonitis. These adverse effects can further be divided into acute, subacute, and chronic. Dermatitis is usually rare and responds well to topical steroids and usual skin care. Acute esophagitis occurs in 30% of patients and is treated with proton pump inhibitors, promotility agents, local anesthetic, and dietary changes. Radiation pneumonitis is a subacute complication seen in 15% of patients and is usually managed with steroids. Chronic adverse effects such as radiation fibrosis and esophageal stricture occur approximately 6 months after completion of radiation therapy and are usually permanent. In this review, complications of chemoradiotherapy for patients with locally advanced lung cancer are delineated, and approaches to their management are described. Given that treatment interruption is associated with a worse outcome, patients are aggressively treated with a curative intent. Therefore, planning for treatment adverse effects improves patient tolerance, compliance, and outcome. PMID:23708070

  2. Detection of Sendai virus receptor, the ganglioside GDla, in target tissue (mouse lung)

    SciTech Connect

    Markwell, M.A.K.; Sato, E.

    1986-05-01

    Previously the authors had shown that the gangliosides GDla, GTlb, and GQlb derived from brain function as receptors for the paramyxovirus Sendai virus by their ability to induce infection when incubated with receptor-deficient cells. Analyses of MDBK, HeLa, and MDCK cells in culture demonstrated that these putative receptors were present in host cells in the quantities required for infection. The primary site of infection for Sendai virus in the whole animal is the respiratory tract, culminating in the lung. Therefore, the ganglioside content of this target organ was analyzed to determine the endogenous receptor population available to Sendai virus. The total ganglioside fraction of lung was resolved into individual species by HPTLC. Gangliosides of the gangliotetraose series were identified by the specific binding of /sup 125/I-labeled tetanus and cholera toxins before and after exposure with sialidase. In this manner one of the major resorcinol-positive bands was identified as GDla. Evidence of the more complex ganglioside receptors for Sendai virus was also seen.

  3. Persistent Expression Changes of Fibrosis Related Genes in the Lung Tissues of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Theriot, Corey; Zalesak, Selina; Yeshitla, Samrawit; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of reactive dust, containing 1-2% of respirable fine dust (< 3 microns). The habitable area of any lunar landing vehicle would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents through inhalation to assess the health risk of dust exposures to humans and to identify the mechanisms and potential pathways involved in lunar dust-induced toxicity. Ccl3, Ccl12, Cxcl2, Cxcl5, Itgb8, Tnf, Ldhc, Clec4e, Bmp7, and Smad6, showed persistently significant expression changes in the lung tissue. The expression of several of these genes were dose- and time- dependent, and were significantly correlated with other pathological. Our previous data showed that no pathological changes were detected in low dose groups. However, several genes, primarily produced by lung epithelial, were significantly altered persistently in response to low-dose dust exposure. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity, contributing not only the risk assessment for future space exploration, but also understandings of the dust-induced toxicity to humans on earth.

  4. Inhibition of Radiation-Induced Oxidative Damage in the Lung Tissue: May Acetylsalicylic Acid Have a Positive Role?

    PubMed

    Demirel, Can; Kilciksiz, Sevil Cagiran; Gurgul, Serkan; Erdal, Nurten; Yigit, Seyran; Tamer, Lulufer; Ayaz, Lokman

    2016-02-01

    The lung is relatively sensitive to irradiation. It is shown that acetylsalicylic acid (ASA) might reduce oxidative injury and that it has a place in protection from cancer. The aim of this study is to evaluate the potential radioprotective effects of ASA. Whole-body irradiation (6 Gy, single dose) was applied to the rats. Glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels in the lung tissue were measured. Control (C), Radiation (R), Radiation + ASA (R + ASA; received irradiation and 25 mg/kg of ASA intraperitoneally (i.p.)), and Radiation + Amifostine (R + WR-2721; received irradiation and 200 mg/kg of WR-2721 i.p.) groups were used. The MPO levels decreased statistically significantly in the group administered ASA. Histopathologically, a radioprotective effect of ASA was more evident in the R + ASA group. ASA is an agent which has not been used as a radioprotector in the clinic yet, and it is worth supporting with more advanced studies. PMID:26276129

  5. The association among ferruginous body, uncoated fibers, asbestos and non-asbestos fibers in lung tissue in terms of length

    PubMed Central

    SUZUKI, Takayoshi; SAKAKIBARA, Yoko; HISANAGA, Naomi; SAKAI, Kiyoshi; YU, Il-Je; LIM, Hyun-Sul; MIKAMO, Hiroshige; SENO, Hiroshi; KOBAYASHI, Fumio; SHIBATA, Eiji

    2016-01-01

    To demonstrate the correlations between the concentrations of ferruginous body as well as uncoated fiber both of which can be observed with phase-contrast microscope and the concentration of various inorganic fibers including asbestos which requires the observation with TEM or SEM, we measured those indices among Japanese and Korean cases. Though the concentration of ferruginous body in lung tissue is an important index of asbestos exposure, uncoated fibers observed with phase-contrast microscope might be another index especially in such cases with relatively low exposure due to their history of living in a general environment. However, to establish the reliability of uncoated fibers as an index of asbestos exposure, analysis with more cases and from various backgrounds must be carried out. PMID:27021059

  6. The association among ferruginous body, uncoated fibers, asbestos and non-asbestos fibers in lung tissue in terms of length.

    PubMed

    Suzuki, Takayoshi; Sakakibara, Yoko; Hisanaga, Naomi; Sakai, Kiyoshi; Yu, Il-Je; Lim, Hyun-Sul; Mikamo, Hiroshige; Seno, Hiroshi; Kobayashi, Fumio; Shibata, Eiji

    2016-08-01

    To demonstrate the correlations between the concentrations of ferruginous body as well as uncoated fiber both of which can be observed with phase-contrast microscope and the concentration of various inorganic fibers including asbestos which requires the observation with TEM or SEM, we measured those indices among Japanese and Korean cases. Though the concentration of ferruginous body in lung tissue is an important index of asbestos exposure, uncoated fibers observed with phase-contrast microscope might be another index especially in such cases with relatively low exposure due to their history of living in a general environment. However, to establish the reliability of uncoated fibers as an index of asbestos exposure, analysis with more cases and from various backgrounds must be carried out. PMID:27021059

  7. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS).

    PubMed

    Schuller, Simone; Callanan, John J; Worrall, Sheila; Francey, Thierry; Schweighauser, Ariane; Kohn, Barbara; Klopfleisch, Robert; Posthaus, Horst; Nally, Jarlath E

    2015-06-01

    Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG (n=26), IgM (n=25) and leptospiral antigens (n=26). Three general staining patterns for IgG/IgM were observed in lungs of dogs with LPHS with most tissues showing more than one staining pattern: (1) alveolar septal wall staining, (2) staining favouring alveolar surfaces and (3) staining of intra-alveolar fluid. Healthy control lung showed no staining, whereas haemorrhagic lung from dogs not infected with Leptospira showed staining of intra-alveolar fluid and occasionally alveolar septa. Leptospiral antigens were not detected. We conclude that deposition of IgG/IgM is demonstrable in the majority of canine lungs with naturally occurring LPHS, similar to what has been described in other species. Our findings suggest involvement of the host humoral immunity in the pathogenesis of LPHS and provide further evidence to support the dog as a natural disease model for human LPHS. PMID:25963899

  8. Influence of age, sex and rearing systems on Toll-like receptor 7 (TLR7) expression pattern in gut, lung and lymphoid tissues of indigenous ducks.

    PubMed

    Kolluri, Gautham; Ramamurthy, N; Churchil, R R; Dhinakar Raj, G; Kannaki, T R

    2014-02-01

    Abstract 1. The objective of the experiment was to determine the influence of age, sex and rearing system on Toll-like receptor 7 (TLR7) gene expression in gut, lung and lymphoid tissues and physiological responses to stress in male and female indigenous ducks of Tamil Nadu, India. 2. A total of 36 ducks (12 males and 24 females) were obtained from local farmers and tissue samples of gut tissues (duodenum, jejunum, ileum and caecum), lymphoid organs (spleen and bursa) and lungs were collected in RNAlater solution followed by RNA extraction. 3. After normalisation to β-actin (endogenous control) qPCR analysis identified a significant effect of age, sex and rearing system on TLR7 expression in the ducks. 4. A significant up-regulation of TLR7 expression was observed in lungs, duodenum, jejunum, ileum and caecum of sexually mature (45 wk) compared with that of immature ducks (16 wk). Among sexes, male ducks had significantly higher TLR7 expression than female ducks. 5. Age and sex interactions were significant in lungs, duodenum, jejunum and caecum. Ducks reared in an extensive housing system showed significantly higher TLR7 expression in bursa, lungs, duodenum, ileum and caecum compared to intensively reared ducks. There were no effects of age, sex and rearing systems on TLR7 expression in the spleen. 6. The heterophil-to-lymphocyte ratio and serum corticosterone were higher in ducks reared on an intensive system compared with ducks from an extensive rearing system.

  9. Accumulation of radium in ferruginous protein bodies formed in lung tissue: association of resulting radiation hotspots with malignant mesothelioma and other malignancies

    PubMed Central

    Nakamura, Eizo; Makishima, Akio; Hagino, Kyoko; Okabe, Kazunori

    2009-01-01

    While exposure to fibers and particles has been proposed to be associated with several different lung malignancies including mesothelioma, the mechanism for the carcinogenesis is not fully understood. Along with mineralogical observation, we have analyzed forty-four major and trace elements in extracted asbestos bodies (fibers and proteins attached to them) with coexisting fiber-free ferruginous protein bodies from extirpative lungs of individuals with malignant mesothelioma. These observations together with patients’ characteristics suggest that inhaled iron-rich asbestos fibers and dust particles, and excess iron deposited by continuous cigarette smoking would induce ferruginous protein body formation resulting in ferritin aggregates in lung tissue. Chemical analysis of ferruginous protein bodies extracted from lung tissues reveals anomalously high concentrations of radioactive radium, reaching millions of times higher concentration than that of seawater. Continuous and prolonged internal exposure to hotspot ionizing radiation from radium and its daughter nuclides could cause strong and frequent DNA damage in lung tissue, initiate different types of tumour cells, including malignant mesothelioma cells, and may cause cancers. PMID:19644223

  10. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    PubMed Central

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  11. Redox regulation of epithelial sodium channels examined in alveolar type 1 and 2 cells patch-clamped in lung slice tissue.

    PubMed

    Helms, My N; Jain, Lucky; Self, Julie L; Eaton, Douglas C

    2008-08-15

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance. PMID:18541535

  12. Influence of radiation therapy on the lung-tissue in breast cancer patients: CT-assessed density changes and associated symptoms

    SciTech Connect

    Rotstein, S.; Lax, I.; Svane, G. )

    1990-01-01

    The relative electron density of lung tissue was measured from computer tomography (CT) slices in 33 breast cancer patients treated by various techniques of adjuvant radiotherapy. The measurements were made before radiotherapy, 3 months and 9 months after completion of radiation therapy. The changes in lung densities at 3 months and 9 months were compared to radiation induced radiological (CT) findings. In addition, subjective symptoms such as cough and dyspnoea were assessed before and after radiotherapy. It was observed that the mean of the relative electron density of lung tissue varied from 0.25 when the whole lung was considered to 0.17 when only the anterior lateral quarter of the lung was taken into account. In patients with positive radiological (CT) findings the mean lung density of the anterior lateral quarter increased 2.1 times 3 months after radiotherapy and was still increased 1.6 times 6 months later. For those patients without findings, in the CT pictures the corresponding values were 1.2 and 1.1, respectively. The standard deviation of the pixel values within the anterior lateral quarter of the lung increased 3.8 times and 3.2 times at 3 months and 9 months, respectively, in the former group, as opposed to 1.2 and 1.1 in the latter group. Thirteen patients had an increase in either cough or dyspnoea as observed 3 months after completion of radiotherapy. In eleven patients these symptoms persisted 6 months later. No significant correlation was found between radiological findings and subjective symptoms. However, when three different treatment techniques were compared among 29 patients the highest rate of radiological findings was observed in patients in which the largest lung volumes received the target dose. A tendency towards an increased rate of subjective symptoms was also found in this group.

  13. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling

    PubMed Central

    Bai, Xiaozhi; Fan, Lei; He, Ting; Jia, Wenbin; Yang, Longlong; Zhang, Jun; Liu, Yang; Shi, Jihong; Su, Linlin; Hu, Dahai

    2015-01-01

    Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. PMID:25992481

  14. Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-γ by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells.

    PubMed

    Hodge, G; Barnawi, J; Jurisevic, C; Moffat, D; Holmes, M; Reynolds, P N; Jersmann, H; Hodge, S

    2014-10-01

    There is a limited understanding how of lung cancer cells evade cytotoxic attack. Previously, we have shown reduced production of the cytotoxic mediator granzyme B by CD8(+) T cells in lung cancer tissue. We hypothesized that lung cancer would be further associated with decreased production of granzyme B, perforin and proinflammatory cytokines by other cytotoxic lymphocytes, natural killer (NK) T-like and NK cells, and that this would result from soluble mediators released by the cancer cells. Lung cancer and non-cancer tissue from five patients was identified by experienced pathologists. Tumour necrosis factor (TNF)-α, interferon (IFN)-γ, granzyme B and perforin were measured in CD4 and CD8(+) T, NK T-like cells and NK cells by flow cytometry. Correlation between cancer stage and granzyme B was analysed retrospectively for 21 patients. The effects of soluble factors released by lung cancer cells on production of cytotoxic mediators and cytokines was assessed, and the role of prostaglandin E2 (PGE)2 /COX investigated using indomethacin inhibition. There were significantly decreased percentages of T, NK T-like and NK cells expressing perforin, TNF-α and IFN-γ in cancer versus non-cancer tissue, and of CD8(+) T cells and CD8(+) NK T-like cells expressing granzyme B (e.g. NK T-like cells: non-cancer 30% ± 7 versus cancer 6% ± 2·5). Cancer cells released soluble factors that inhibited granzyme B, perforin and IFN-γ production that was partially associated with the PGE2 /COX2 pathway. Thus, lung cancer is associated with decreased expression of granzyme B, perforin and IFN-γ by infiltrating T cells, NK T-like and NK cells, possibly as a result of soluble factors produced by the cancer cells including PGE2 . This may be an important immune evasion mechanism.

  15. Telomere length of tumor tissues and survival in patients with early stage non-small cell lung cancer.

    PubMed

    Jeon, Hyo-Sung; Choi, Yi Young; Choi, Jin Eun; Lee, Won Kee; Lee, Eungbae; Yoo, Seung Soo; Lee, Shin Yup; Lee, Jaehee; Cha, Seung Ick; Kim, Chang Ho; Park, Jae Yong

    2014-04-01

    Telomere shortening leads to genomic instability that drives oncogenesis through the activation of telomerase and the generation of other mutations necessary for tumor progression. This study was conducted to determine the impact of telomere shortening on the survival of patients with early stage non-small cell lung cancer (NSCLC). Relative telomere length in tumor tissues was measured by quantitative polymerase chain reaction in 164 patients with surgically resected NSCLC. The association between telomere length and overall survival (OS) and disease-free survival (DFS) was analyzed. When the patients were categorized into quartiles based on telomere length, those patients with the 1st quartile (shortest) of telomere length had a significantly worse OS and DFS compared to patients with the 2nd to the 4th quartiles of telomere length (adjusted hazard ratio for OS = 2.67, 95% confidence interval = 1.50-4.75, P = 0.001; and adjusted hazard ratio for DFS = 1.92, 95% confidence interval = 1.17-3.14, P = 0.01). An association between telomere length and survival outcome was more pronounced in squamous cell carcinomas than adenocarcinomas (P-value of test for homogeneity for OS and DFS = 0.05 and 0.02, respectively). Telomere length of tumor tissues is an independent prognostic factor in patients with surgically resected early stage NSCLC.

  16. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales.

    PubMed

    Shadwick, Robert E; Goldbogen, Jeremy A; Potvin, Jean; Pyenson, Nicholas D; Vogl, A Wayne

    2013-07-15

    Muscle serves a wide variety of mechanical functions during animal feeding and locomotion, but the performance of this tissue is limited by how far it can be extended. In rorqual whales, feeding and locomotion are integrated in a dynamic process called lunge feeding, where an enormous volume of prey-laden water is engulfed into a capacious ventral oropharyngeal cavity that is bounded superficially by skeletal muscle and ventral groove blubber (VGB). The great expansion of the cavity wall presents a mechanical challenge for the physiological limits of skeletal muscle, yet its role is considered fundamental in controlling the flux of water into the mouth. Our analyses of the functional properties and mechanical behaviour of VGB muscles revealed a crimped microstructure in an unstrained, non-feeding state that is arranged in parallel with dense and straight elastin fibres. This allows the muscles to accommodate large tissue deformations of the VGB yet still operate within the known strain limits of vertebrate skeletal muscle. VGB transverse strains in routine-feeding rorquals were substantially less than those observed in dead ones, where decomposition gas stretched the VGB to its elastic limit, evidence supporting the idea that eccentric muscle contraction modulates the rate of expansion and ultimate size of the ventral cavity during engulfment.

  17. Comparison of Radiation-Induced Normal Lung Tissue Density Changes for Patients From Multiple Institutions Receiving Conventional or Hypofractionated Treatments

    SciTech Connect

    Diot, Quentin; Marks, Lawrence B.; Bentzen, Soren M.; Senan, Suresh; Kavanagh, Brian D.; Lawrence, Michael V.; Miften, Moyed; Palma, David A.

    2014-07-01

    Purpose: To quantitatively assess changes in computed tomography (CT)–defined normal lung tissue density after conventional and hypofractionated radiation therapy (RT). Methods and Materials: The pre-RT and post-RT CT scans from 118 and 111 patients receiving conventional and hypofractionated RT, respectively, at 3 institutions were registered to each other and to the 3-dimensional dose distribution to quantify dose-dependent changes in normal lung tissue density. Dose-response curves (DRC) for groups of patients receiving conventional and hypofractionated RT were generated for each institution, and the frequency of density changes >80 Hounsfield Units (HU) was modeled depending on the fractionation type using a Probit model for different follow-up times. Results: For the pooled data from all institutions, there were significant differences in the DRC between the conventional and hypofractionated groups; the respective doses resulting in 50% complication risk (TD{sub 50}) were 62 Gy (95% confidence interval [CI] 57-67) versus 36 Gy (CI 33-39) at <6 months, 48 Gy (CI 46-51) versus 31 Gy (CI 28-33) at 6-12 months, and 47 Gy (CI 45-49) versus 35 Gy (32-37) at >12 months. The corresponding m values (slope of the DRC) were 0.52 (CI 0.46-0.59) versus 0.31 (CI 0.28-0.34) at <6 months, 0.46 (CI 0.42-0.51) versus 0.30 (CI 0.26-0.34) at 6-12 months, and 0.45 (CI 0.42-0.50) versus 0.31 (CI 0.27-0.35) at >12 months (P<.05 for all comparisons). Conclusion: Compared with conventional fractionation, hypofractionation has a lower TD{sub 50} and m value, both suggesting an increased degree of normal tissue density sensitivity with hypofractionation.

  18. Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues.

    PubMed

    Hunt, Andrew; Abraham, Jerrold L; Judson, Bret; Berry, Colin L

    2003-07-01

    Exposure to atmospheric fine particulate matter (PM), even at low ambient concentrations, has clearly been linked to increases in mortality and morbidity. A 10- micro g m(-3) increase in PM10 (PM < 10 micro m) has been found to produce a 0.5% increase in daily mortality. The mechanism of action is a source of debate, although recent attention has focused on the cardiac effects of PM exposures. Likewise, several possible etiologic agents have been implicated, including ultrafine PM (PM tissues allow us the unique opportunity to report on the form and composition of December 1952 London PM in situ in tissues from persons known to have died from the smog exposure. Because absolute increases in mortality with current levels of PM in Western Europe and North America are low, analogous tissues are unlikely to be contemporaneously available. Taking a lung compartment (airway, airspace, interstitium, and lymph node) approach, we differentiated exposures contemporary with death from those of earlier origin. Electron microscopic analyses revealed the dominance of retained soot and a surfeit of other particle types. A variety of metal-bearing particle types were found in all compartments, but Pb, Zn, and SnZn types appeared the least biopersistent. The results support the acute toxicologic importance of ultrafine carbonaceous and metal PM. PMID:12842775

  19. Endogenous and exogenous stem cells: a role in lung repair and use in airway tissue engineering and transplantation

    PubMed Central

    2010-01-01

    Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses

  20. Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues.

    PubMed

    Hunt, Andrew; Abraham, Jerrold L; Judson, Bret; Berry, Colin L

    2003-07-01

    Exposure to atmospheric fine particulate matter (PM), even at low ambient concentrations, has clearly been linked to increases in mortality and morbidity. A 10- micro g m(-3) increase in PM10 (PM < 10 micro m) has been found to produce a 0.5% increase in daily mortality. The mechanism of action is a source of debate, although recent attention has focused on the cardiac effects of PM exposures. Likewise, several possible etiologic agents have been implicated, including ultrafine PM (PM tissues allow us the unique opportunity to report on the form and composition of December 1952 London PM in situ in tissues from persons known to have died from the smog exposure. Because absolute increases in mortality with current levels of PM in Western Europe and North America are low, analogous tissues are unlikely to be contemporaneously available. Taking a lung compartment (airway, airspace, interstitium, and lymph node) approach, we differentiated exposures contemporary with death from those of earlier origin. Electron microscopic analyses revealed the dominance of retained soot and a surfeit of other particle types. A variety of metal-bearing particle types were found in all compartments, but Pb, Zn, and SnZn types appeared the least biopersistent. The results support the acute toxicologic importance of ultrafine carbonaceous and metal PM.

  1. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    PubMed

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.

  2. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    PubMed

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells.

  3. Effect of carnosine supplementation on apoptosis and irisin, total oxidant and antioxidants levels in the serum, liver and lung tissues in rats exposed to formaldehyde inhalation.

    PubMed

    Aydin, Suna; Ogeturk, Murat; Kuloglu, Tuncay; Kavakli, Ahmet; Aydin, Suleyman

    2015-02-01

    The main objective of the study has been to show whether carnosine has positive effects on liver and lung tissues of rats exposed to a range of formaldehyde concentrations, and to explore how irisin expression and antioxidant capacity are altered in these tissues by carnosine supplementation. Sprague-Dawley type male rats were divided into 8 groups with 6 animals in each: (I) Control; no chemical supplementation); (II) sham (100mg/kg/day carnosine); (III) low dose formaldehyde (LDFA) for 5 days/week; (IV) LDFA for 5 days/week and carnosine); (V) moderate dose formaldehyde (MDFA) for 5 days/week); (VI) MDFA for 5 days/week and carnosine; (VII) high dose formaldehyde (HDFA) for 5 days/week; (VIII) and HDFA for 5 days/week and carnosine. Sham and control groups were exposed to normal air. Irisin levels of the serum, liver and lung tissue supernatants were analyzed by ELISA, while the REL method was used to determine total oxidant/antioxidant capacity. Irisin production by the tissues was detected immunohistochemically. Increasing doses of FA decreased serum/tissue irisin and total antioxidant levels relative to the controls, as also to increases in TUNEL expressions, total oxidant level, oxidant and apoptosis index. Irisin expression was detected in hepatocyte and sinusoidal cells of the liver and parenchymal cells of the lung. In conclusion, while FA exposure reduces irisin and total oxidant in the serum, liver and lung tissues in a dose-dependent manner and increases the total antioxidant capacity, carnosine supplementation reduces the oxidative stress and restores the histopathological and biochemical signs.

  4. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model

    PubMed Central

    2013-01-01

    Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma

  5. Persistent Expression Changes of Fibrosis-Related Genes in the Lung Tissues of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Yeshitla, Samrawit A.; Wu, Honglu; Meyers, Valerie; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% of very fine respirable dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dustinduced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 milligrams per cubic meters of lunar dust. Five rats per group were euthanized at 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The bronchoalveolar lavage fluid (BALF) was collected by lavaging with phosphate-buffered saline (PBS). A zymosan-induced luminolbased chemiluminescence assay was used to assess the activity of BAL cells. The lavaged lung tissue was snap frozen in LN2 and total RNA was isolated using the Qigen RNeasy kit. The expression of 84 fibrosisrelated genes were analyzed using the RT2 Profiler PCR Array technique. The expression of 18 genes of interest were further measured using real-time PCR technique in all the samples. 10 out of 18 genes of interest showed persistently significant expression changes in the local lung tissue exposed to lunar dust, indicating a prolonged proinflammatory response. The expressions of several of these genes were dose- and time-dependent and were significantly correlated with other pathological parameters. The potential signaling pathways and upstream regulators were further analyzed using IPA pathway analysis tool based on the gene expression data. The data presented in this study, for the first time, explore the

  6. Mineral fiber content of lung tissue in patients with environmental exposures: household contacts vs building occupants

    SciTech Connect

    Roggli, V.L.; Longo, W.E. )

    1991-12-31

    Analysis of tissue mineral fiber content in patients with environmental exposures has seldom been reported in the past. Our studies of six household contacts of asbestos workers indicate that these individuals often have pulmonary asbestos concentrations similar to some occupationally exposed individuals. In contrast, our studies of four occupants of buildings with asbestos-containing materials indicate that these individuals often have pulmonary asbestos burdens indistinguishable from the general nonoccupationally exposed population. However, one such building occupant exposed for many years and who later developed pleural mesothelioma was studied in detail, and it was concluded that her exposure as a teacher's aide in a school building containing acoustical plaster was the likely cause of her mesothelioma.

  7. Lung iodine mapping by subtraction with image registration allowing for tissue sliding

    NASA Astrophysics Data System (ADS)

    Mohr, Brian; Brink, Monique; Oostveen, Luuk J.; Schuijf, Joanne D.; Prokop, Mathias

    2016-03-01

    Pulmonary embolism is a fairly common and serious entity, so rapid diagnosis and treatment has a significant impact on morbidity and mortality rates. Iodine maps representing tissue perfusion enhancement are commonly generated by dual-energy CT acquisitions to provide information about the effect of the embolism on pulmonary perfusion. Alternatively, the iodine map can be generated by subtracting pre- from post-contrast CT scans as previously reported. Although accurate image registration is essential, subtraction has the advantage of a higher signal-to-noise ratio and suppression of bone. This paper presents an improvement over the previously reported registration algorithm. Significantly, allowance for sliding motion at tissue boundaries is included in the regularization. Pre- and post-contrast helical CT scans were acquired for thirty subjects using a Toshiba Aquilion ONE scanner. Ten of these subjects were designated for algorithm development, while the remaining twenty were reserved for qualitative clinical evaluation. Quantitative evaluation was performed against the previously reported method and using publicly available data for comparison against other methods. Comparison of 100 landmarks in seven datasets shows no change in the mean Euclidean error of 0.48 mm, compared to the previous method. Evaluation in the publicly available DIR-Lab data with 300 annotations results in a mean Euclidean error of 1.17 mm in the ten 4DCT cases and 3.37 mm in the ten COPDGene cases. Clinical evaluation on a sliding scale from 1 (excellent) to 5 (non-diagnostic) indicates a slight, but non-significant, improvement in registration adequacy from 3.1 to 2.9.

  8. Gelatin based on Power-gel.TM. as solders for Cr.sup.4+laser tissue welding and sealing of lung air leak and fistulas in organs

    DOEpatents

    Alfano, Robert R.; Tang, Jing; Evans, Jonathan M.; Ho, Peng Pei

    2006-04-25

    Laser tissue welding can be achieved using tunable Cr.sup.4+ lasers, semiconductor lasers and fiber lasers, where the weld strength follows the absorption spectrum of water. The use of gelatin and esterified gelatin as solders in conjunction with laser inducted tissue welding impart much stronger tensile and torque strengths than albumin solders. Selected NIR wavelength from the above lasers can improve welding and avoid thermal injury to tissue when used alone or with gelatin and esterified gelatin solders. These discoveries can be used to enhance laser tissue welding of tissues such as skin, mucous, bone, blood vessel, nerve, brain, liver, pancreas, spleen, kidney, lung, bronchus, respiratory track, urinary tract, gastrointestinal tract, or gynecologic tract and as a sealant for pulmonary air leaks and fistulas such as intestinal, rectal and urinary fistulas.

  9. Specific Detection of Pasteurella multocida in Chickens with Fowl Cholera and in Pig Lung Tissues Using Fluorescent rRNA In Situ Hybridization

    PubMed Central

    Mbuthia, Paul Gichohi; Christensen, Henrik; Boye, Mette; Petersen, Kamille Majken Dumong; Bisgaard, Magne; Nyaga, Phillip Njeru; Olsen, John Elmerdahl

    2001-01-01

    A Pasteurella multocida species-specific oligonucleotide probe, pmhyb449, targeting 16S rRNA was designed and evaluated by whole-cell hybridization against 22 selected reference strains in animal tissues. It differentiated P. multocida from other bacterial species of the families Pasteurellaceae and Enterobacteriaceae and also from divergent species of the order Cytophagales (except biovar 2 strains of Pasteurella avium and Pasteurella canis, which have high 16S rRNA similarity to P. multocida). The potential of the probe for specific identification and differentiation of P. multocida was further detected in formalin-fixed paraffin-embedded lung tissues from experimental fowl cholera in chickens and infections in pigs. In chicken lung tissues P. multocida cells were detected singly, in pairs, as microcolonies, and as massive colonies within air capillaries (septa and lumen), parabronchial septa, and blood vessels (wall and lumen). In pig lung, postmortem-injected P. multocida was detected in the alveoli (lumen and wall), and in both animals the bacterial cells were seen in the bronchi. The results showed that with the oligonucleotide probe pmhyb449, fluorescent in situ hybridization is a suitable and fast method for specific detection of P. multocida in histological formalin-fixed tissues. The test was replicable and reproducible and is recommended as a supplementary test for diagnosis and as a tool in pathogenesis studies of fowl cholera and respiratory tract infections in pigs due to P. multocida. PMID:11427580

  10. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung.

    PubMed

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L

    2015-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation.

  11. Prediction of recurrence by quantification of p185neu protein in non-small-cell lung cancer tissue.

    PubMed Central

    Diez, M.; Pollán, M.; Maestro, M.; Torres, A.; Ortega, D.; Gómez, A.; Sánchez, A.; Hernando, F.; Balibrea, J. L.

    1997-01-01

    The concentration of c-erbB-2 oncogene-encoded protein (p185neu) in fresh tumour samples obtained at the time of surgery from 94 non-small-cell lung cancer patients (NSCLC) was determined by an enzyme immunoassay. The relative prognostic importance was estimated, and the influence of other predictors was assessed by means of a Cox's proportional regression model. Median concentration of p185 in tumour tissues was 206 U mg(-1) (range 21-1050 U mg(-1)). p185 level did not differ significantly among subgroups defined by TNM classification, histological type, sex and age. Categorization of patients by p185 level, with 206 U mg(-1) and 343 U mg(-1) taken as cut-off values (corresponding to the 50th and 80th percentiles of the frequency distribution), showed that the recurrence rate, cumulative disease-free likelihood at the 36-month follow-up and median time from surgery to the diagnosis of recurrence worsened progressively as the level of p185 increased. Multivariate analysis confirmed the independent prognostic value of p185 level. Risk of recurrence increased by 1.304 for every increase of 100 units in p185 concentration (95% CI 1.141-1.490) (P<0.001). These findings encourage the inclusion of p185 concentration assay in a future predictive multifactorial prognostic index in NSCLC. PMID:9043025

  12. Inhalation of benzene leads to an increase in the mutant frequencies of a lacI transgene in lung and spleen tissues of mice.

    PubMed

    Mullin, A H; Rando, R; Esmundo, F; Mullin, D A

    1995-03-01

    The goal of this study was to determine if inhalation of benzene leads to an increase in the mutant frequencies in the tissues of male C57BL/6 mice. Mutant frequencies were measured using a previously described assay in which bacteriophage lambda lacI transgenes are rescued from mouse genomic DNA as infectious phage and scored for their LacI phenotype. Eight experimental mice were exposed to a target concentration of 300 ppm of benzene for 6 h/day x 5 days/week x 12 weeks, and eight control mice were treated similarly except that they were not exposed to benzene. Mutant frequencies were calculated as the ratio of LacI-/total phage recovered from organs of interest. The mean mutant frequency measured in lung tissues of mice exposed to benzene was (10.6 +/- 1.4) x 10(-5), which is about 1.7-fold higher than that of the unexposed controls. In spleen tissues from benzene-exposed mice the mean mutation frequency was (12.6 +/- 4.1) x 10(-5), which is about 1.5-fold higher than that of spleen tissues from unexposed controls. The differences in mean mutant frequencies between benzene-exposed and unexposed lung and spleen tissues are statistically significant. In liver tissues, however, the mean mutant frequencies of benzene-exposed mice and unexposed mice are not significantly different. These results demonstrate that inhaled benzene results in a statistically significant increase in the mutant frequencies in lung and spleen, but not in liver tissues of mice.

  13. Tissue requirements in lung cancer diagnosis for tumor heterogeneity, mutational analysis and targeted therapies: initial experience with intra-operative Frozen Section Evaluation (FROSE) in bronchoscopic biopsies

    PubMed Central

    Iding, Jeffrey S.

    2016-01-01

    Background Recent advances in lung cancer treatment have changed the requirement for the amount and quality of biopsy specimens needed to characterize the tumor and select the best treatment. One adjunct to guide the bronchoscopist on the quality and quantity of specimens during bronchoscopic biopsies for the diagnosis of lung cancer is rapid on-site evaluation (ROSE) of cytological specimens. This technique has been shown to add to the diagnostic yield of bronchoscopy when obtaining adequate specimens for molecular profiling in lung cancer. ROSE is not available at all medical centers. We describe our initial experience using intra-procedural Frozen Section Evaluation (FROSE) of bronchoscopic biopsy specimens as an alternative to ROSE. Methods A retrospective analysis of all interventional pulmonology cases using FROSE between February and July 2015 was performed. Results analyzed to evaluate the success in obtaining adequate specimens for molecular profiling. Results A total of 88 interventional pulmonology cases employing a frozen section in at least one site were identified. In 94.3% of cases, a definitive diagnosis of benign or malignant was made. The concordance of frozen section diagnoses of benign or malignant was 100% with final diagnoses. Thirteen of the eighty-eight cases were ultimately sent for molecular analysis. Of these, twelve of thirteen (92.3%) cases were adequate to perform all ordered molecular testing. In all cases there was sufficient tissue to perform EGFR and ALK testing. Conclusions In medical centers where ROSE may not be available, the use of FROSE by the local pathologist can be an effective technique to obtain adequate tissue and cytological samples for the diagnosis and molecular profiling of lung cancers. Further prospective study in bronchoscopic tissue sampling techniques to obtain the optimum quantity and quality of samples for molecular profiling of lung cancers for targeted treatments is needed. PMID:27606077

  14. Dosimetric errors during treatment of centrally located lung tumors with stereotactic body radiation therapy: Monte Carlo evaluation of tissue inhomogeneity corrections

    SciTech Connect

    Altunbas, Cem Kavanagh, Brian; Dzingle, Wayne; Stuhr, Kelly; Gaspar, Laurie; Miften, Moyed

    2013-01-01

    Early experience with stereotactic body radiation therapy (SBRT) of centrally located lung tumors indicated increased rate of high-grade toxicity in the lungs. These clinical results were based on treatment plans that were computed using pencil beam–like algorithms and without tissue inhomogeneity corrections. In this study, we evaluated the dosimetric errors in plans with and without inhomogeneity corrections and with planning target volumes (PTVs) that were within the zone of the proximal bronchial tree (BT). For 10 patients, the PTV, lungs, and sections of the BT either inside or within 2 cm of the PTV were delineated. Two treatment plans were generated for each patient using the following dose-calculation methods: (1) pencil beam (PB) algorithm without inhomogeneity correction (IC) (PB − IC) and (2) PB with inhomogeneity correction (PB + IC). Both plans had identical beam geometry but different beam segment shapes and monitor units (MU) to achieve similar conformal dose coverage of PTV. To obtain the baseline dose distributions, each plan was recalculated using a Monte Carlo (MC) algorithm by keeping MUs the same in the respective plans. The median maximum dose to the proximal BT and PTV dose coverage in the PB + IC plans were overestimated by 8% and 11%, respectively. However, the median maximum dose to the proximal BT and PTV dose coverage in PB − IC plans were underestimated by 15% and 9%. Similar trends were observed in low-dose regions of the lung within the irradiated volume. Our study indicates that dosimetric bias introduced by unit tissue density plans cannot be characterized as underestimation or overestimation of dose without taking the tumor location into account. This issue should be considered when analyzing clinical toxicity data from early lung SBRT trials that utilized unit tissue density for dose calculations.

  15. Differential Response of Heat Shock Proteins to Uphill and Downhill Exercise in Heart, Skeletal Muscle, Lung and Kidney Tissues

    PubMed Central

    Lollo, Pablo C. B.; Moura, Carolina S.; Morato, Priscila N.; Amaya-Farfan, Jaime

    2013-01-01

    Running on a horizontal plane is known to increase the concentration of the stress biomarker heat-shock protein (HSP), but no comparison of the expression of HSP70 has yet been established between the uphill (predominantly concentric) and downhill (predominantly eccentric) muscle contractions exercise. The objective of the study was to investigate the relationships between eccentric and concentric contractions on the HSP70 response of the lung, kidney, gastrocnemius, soleus and heart. Twenty-four male Wistar weanling rats were divided into four groups: non-exercised and three different grades of treadmill exercise groups: horizontal, uphill (+7%) and downhill (-7% of inclination). At the optimal time-point of six hours after the exercise, serum uric acid, creatine kinase (CK) and lactate dehydrogenase (LDH) were determined by standard methods and HSP70 by the Western blot analysis. HSP70 responds differently to different types of running. For kidney, heart, soleus and gastrocnemius, the HSP70 expression increased, 230, 180, 150 and 120% respectively of the reference (horizontal). When the contraction was concentric (uphill) and compared to downhill the increase in response of HSP70 was greater in 80% for kidney, 75% for gastrocnemius, 60% for soleus and 280% for the heart. Uric acid was about 50% higher (0.64 ± 0.03 mg·dL−1) in the uphill group as compared to the horizontal or downhill groups. Similarly, the activities of serum CK and LDH were both 100% greater for both the uphill and downhill groups as compared to the horizontal group (2383 ± 253 and 647.00 ± 73 U/L, respectively). The responsiveness of HSP70 appeared to be quite different depending on the type of tissue, suggesting that the impact of exercise was not restricted to the muscles, but extended to the kidney tissue. The uphill exercise increases HSP70 beyond the eccentric type and the horizontal running was a lower HSP70 responsive stimulus. Key Points Exercise can induce increases in HSP70 in

  16. Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials

    PubMed Central

    Saketkoo, Lesley Ann; Mittoo, Shikha; Huscher, Dörte; Khanna, Dinesh; Dellaripa, Paul F; Distler, Oliver; Flaherty, Kevin R; Frankel, Sid; Oddis, Chester V; Denton, Christopher P; Fischer, Aryeh; Kowal-Bielecka, Otylia M; LeSage, Daphne; Merkel, Peter A; Phillips, Kristine; Pittrow, David; Swigris, Jeffrey; Antoniou, Katerina; Baughman, Robert P; Castelino, Flavia V; Christmann, Romy B; Christopher-Stine, Lisa; Collard, Harold R; Cottin, Vincent; Danoff, Sonye; Highland, Kristin B; Hummers, Laura; Shah, Ami A; Kim, Dong Soon; Lynch, David A; Miller, Frederick W; Proudman, Susanna M; Richeldi, Luca; Ryu, Jay H; Sandorfi, Nora; Sarver, Catherine; Wells, Athol U; Strand, Vibeke; Matteson, Eric L; Brown, Kevin K; Seibold, James R

    2014-01-01

    Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field. PMID:24368713

  17. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists.

    PubMed

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin

    2016-05-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921

  18. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists.

    PubMed

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin

    2016-05-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.

  19. SU-E-J-64: Evaluation of a Commercial EPID-Based in Vivo Dosimetric System in the Presence of Lung Tissue Heterogeneity

    SciTech Connect

    Gimeno-Olmos, J; Palomo-Llinares, R; Candela-Juan, C; Carmona Meseguer, V; Lliso-Valverde, F; Garcia-Martinez, T; Richart-Sancho, J; Ballester, F; Perez-Calatayud, J

    2014-06-01

    Purpose: To study the performance of Dosimetry Check (DC), an EPID-based dosimetry software, which allows performing transit dosimetry, in low density medium, by comparing calculations in-phantom, and analysing results for 15 lung patients. Methods: DC software (v.3.8, pencil beam-based algorithm) has been tested, for plans (Eclipse v.10.0 TPS) delivered in two Varian Clinac iX equipped with aS1000 EPIDs.In the CIRS lung phantom, comparisons between DC and Eclipse (Acuros) were performed for several plans: (1) four field box; (2) square field delivered in arc mode; (3) RapidArc lung patient plan medially centred; (4) RapidArc lung patient plan centred in one lung. Reference points analysed: P1 (medial point, plans 1–3) and P2 (located inside one lung, plan 4).For fifteen lung patients treated with RapidArc, the isocentre and 9 additional points inside the PTV as well as the gamma passing rate (3%/3mm) for the PTV and at the main planes were studied. Results: In-phantom:P1: Per-field differences in plan 1: good agreement for AP-PA fields; discrepancy of 7% for the lateral fields. Global differences (plans 1–3): about 4%, showing a compensating effect of the individual differences.P2: Global difference (plan 4): 15 %. This represents the worst case situation as it is a point surrounded by lung tissue, where the DC pencil beam algorithm is expected to give the greater difference against Acuros.Lung patients: Mean point difference inside the PTV:(5.4±4.2) %. Gamma passing rate inside the PTV:(45±12) %. Conclusion: The performance of DC in heterogeneous lung medium was studied with a special phantom and the results for 15 patients were analysed. The found deviations show that even though DC is a highly promising in vivo dosimetry tool, there is a need of incorporating a more accurate algorithm mainly for plans with low density regions involved.

  20. Effect of antisense TIMP-1 cDNA on the expression of TIMP-1 and MMP-2 in lung tissue with pulmonary fibrosis induced by bleomycin.

    PubMed

    Tang, Haiying; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2013-01-01

    The aim of this study was to observe the effect of antisense tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) cDNA on the concentration of hydroxyproline (HYP) and the expression of TIMP-1 and matrix metalloproteinase-2 (MMP-2) in the lung tissue of rats with bleomycin (BLM)‑induced pulmonary fibrosis. Sprague-Dawley rats were randomly divided into 5 groups: the control, pulmonary fibrosis model, sense TIMP-1 transfection, antisense TIMP-1 transfection and empty vector transfection groups. For the transfection groups, following the intratracheal injection of BLM on days 1, 3, 7, 14, 28 and 60, the rats were treated with retroviral vectors and sacrificed on day 28. The control and pulmonary fibrosis groups were treated with normal saline at the same time‑points. The concentration of HYP and the expression levels of TIMP-1 and MMP-2 in the lung tissue were detected. The HYP concentration and lung tissue TIMP-1 expression levels of the antisense TIMP-1 group decreased significantly on days 1 and 3 compared with those of the empty vector and pulmonary fibrosis groups at the same time-points (P<0.01), but increased significantly in the sense TIMP-1 group (P<0.01). No significant differences were observed in the HYP concentration and TIMP-1 expression levels in the antisense TIMP-1, sense TIMP-1, empty vector and pulmonary fibrosis groups on days 7, 14, 28 and 60. The lung expression levels of MMP-2 in all groups, with the exception of the control group, had no significant differences at all time-points (P>0.05). Antisense TIMP-1 cDNA retroviral vectors are able to suppress the development of pulmonary fibrosis in the early stages.

  1. A Comprehensive MicroRNA Expression Profile of Liver and Lung Metastases of Colorectal Cancer with Their Corresponding Host Tissue and Its Prognostic Impact on Survival

    PubMed Central

    Pecqueux, Mathieu; Liebetrau, Isabell; Werft, Wiebke; Dienemann, Hendrik; Muley, Thomas; Pfannschmidt, Joachim; Müssle, Benjamin; Rahbari, Nuh; Schölch, Sebastian; Büchler, Markus W.; Weitz, Jürgen; Reissfelder, Christoph; Kahlert, Christoph

    2016-01-01

    MicroRNAs are small non-coding RNAs with a length of 18–25 nucleotides. They can regulate tumor invasion and metastasis by changing the expression and translation of their target mRNAs. Their expression is substantially altered in colorectal cancer cells as well as in the adjacent tumor-associated stroma. Both of these compartments have a mutual influence on tumor progression. In the development of metastases, cancer cells initially interact with the host tissue. Therefore, compartment-specific expression signatures of these three locations—tumor, associated stroma, and host tissue—can provide new insights into the complex tumor biology of colorectal cancer. Frozen tissue samples of colorectal liver (n = 25) and lung metastases (n = 24) were laser microdissected to separate tumor cells and the adjacent tumor-associated stroma cells. Additionally, normal lung and liver tissue was collected from the same patients. We performed a microarray analysis in four randomly selected liver metastases and four randomly selected lung metastases, analyzing a total of 939 human miRNAs. miRNAs with a significant change >2-fold between the tumor, tumor stroma, and host tissue were analyzed in all samples using RT-qPCR (11 miRNAs) and correlated with the clinical data. We found a differential expression of several miRNAs between the tumor, the tumor-associated stroma, and the host tissue compartment. When comparing liver and lung metastases, miR-194 showed a 1.5-fold; miR-125, miR-127, and miR-192 showed a 2.5-fold; miR-19 and miR-215 a 3-fold; miR-145, miR-199-3, and miR-429 a 5-fold; miR-21 a 7-fold; and, finally, miR-199-5 a 12.5-fold downregulation in liver metastases compared to lung metastases. Furthermore miR-19, miR-125, miR-127, miR-192, miR-194, miR-199-5, and miR-215 showed a significant upregulation in the normal liver tissue compared to the normal lung tissue. Univariate analysis identified an association of poor survival with the expression of miR-125 (p = 0

  2. Tissue Proteomics Reveals Differential and Compartment-Specific Expression of the Homologs Transgelin and Transgelin-2 in Lung Adenocarcinoma and Its Stroma

    PubMed Central

    Rho, Jung-hyun; Roehrl, Michael H. A.; Wang, Julia Y.

    2009-01-01

    Discovery of tissue-specific biomarkers for human cancer is crucial for early diagnosis and molecular understanding of the disease. To overcome the limitations posed by the large dynamic concentration range and compositional complexity of tissue biomacromolecules, we applied heparin affinity fractionation for proteomic enrichment. Comparing the proteomes of five paired samples of normal lung and pulmonary adenocarcinoma tissue by 2-D difference gel electrophoresis, 14 spots were found to be differentially expressed. From these candidate spots, three proteins overexpressed in cancer were identified by mass spectrometry as transgelin (TAGLN, SM22-α, WS3-10), transgelin-2 (TAGLN2), and cyclophilin A (PPIA). Quantitative RT-PCR indicated that both TAGLN2 and PPIA were upregulated at transcriptional level. Differential protein expression levels were validated by Western blot analysis using an independent set of 10 paired lung adenocarcinoma samples. Using immunohistochemistry on human tissue sections, we discovered that overexpression of TAGLN was strictly localized to the tumor-induced reactive myofibroblastic stromal tissue compartment, whereas overexpression of TAGLN2 was exclusively localized to the neoplastic glandular compartment. Thus, the highly homologous protein pair TAGLN and TAGLN2 displayed mutually exclusive, compartment-specific cell type expression regulation in tumor stroma vs. neoplastic epithelial cells. Our data further suggest that TGLN may be a marker of active stromal remodeling in the vicinity of invasive carcinomas. It may shed light on mechanisms of tumor-stroma interaction and could be useful for early diagnosis, treatment guidance, and treatment response monitoring. PMID:19848416

  3. Sites of particle retention and lung tissue responses to chronically inhaled diesel exhaust and coal dust in rats and cynomolgus monkeys.

    PubMed Central

    Nikula, K J; Avila, K J; Griffith, W C; Mauderly, J L

    1997-01-01

    The usefulness of pulmonary carcinogenicity data from rats exposed to high concentrations of particles for quantitatively predicting lung cancer risk in humans exposed to much lower environmental or occupational concentrations has been questioned. The results of several chronic inhalation bioassays of poorly soluble, nonfibrous particles have suggested that rats may be more prone than other rodent species to develop persistent pulmonary epithelial hyperplasia, metaplasia, and tumors in response to the accumulation of inhaled particles. In addition, rats and primates differ in their pulmonary anatomy and rate of particle clearance from the lung. This paper reviews results of recent Lovelace Respiratory Research Institute (Albuquerque, NM) investigations that directly compared the anatomical patterns of particle retention and the lung tissue responses of rats and monkeys exposed chronically to high occupational concentrations of poorly soluble particles. Lung sections from male cynomolgus monkeys and F344 rats exposed 7 hr/day, 5 days/week for 24 months to filtered ambient air, diesel exhaust (2 mg soot/m3), coal dust (2 mg respirable particulate material/m3), or diesel exhaust and coal dust combined (1 mg soot and 1 mg respirable coal dust/m3) were obtained from a study conducted at the U.S. National Institute for Occupational Safety and Health and examined histopathologically and morphometrically. Within each species, the sites of particle retention and lung tissue responses were the same for diesel soot, coal dust, and combined material. Rats retained a significantly greater portion of the particulate material in the lumens of alveolar ducts and alveoli than monkeys. Conversely, monkeys retained a significantly greater portion of the particulate material in the interstitium than rats. Rats, but not monkeys, had significant alveolar epithelial hyperplastic, inflammatory, and septal fibrotic responses to the retained particles. These results suggest that anatomic

  4. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    PubMed Central

    2011-01-01

    Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins) around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF) microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the presence of asbestos fibres

  5. Improved PCR amplification for molecular analysis using DNA from long-term preserved formalin-fixed, paraffin-embedded lung cancer tissue specimens.

    PubMed

    Taga, Masataka; Eguchi, Hidetaka; Shinohara, Tomoko; Takahashi, Keiko; Ito, Reiko; Yasui, Wataru; Nakachi, Kei; Kusunoki, Yoichiro; Hamatani, Kiyohiro

    2013-01-01

    Archival tissue specimens are valuable resources of materials for molecular biological analyses in retrospective studies, especially for rare diseases or those associated with exposure to uncommon environmental events. Although successful amplification with PCR is essential for analysis of DNA extracted from archival formalin-fixed, paraffin-embedded (FFPE) tissue specimens, we have often encountered problems with poor PCR amplification of target fragments. To overcome this, we examined whether heat treatment in alkaline solution could efficiently restore the PCR template activity of DNA that had already been extracted from FFPE lung cancer tissue specimens. The effect of the heat treatment was assessed by PCR for the TP53 gene and other lung cancer-related gene loci. The heat treatment of DNA samples in borate buffer resulted in successful PCR amplification of DNA fragments ranging from 91 to 152 bp. This technique for restoration of template activity of DNA for PCR amplification is very simple and economical, and requires no special apparatus, so it may be applicable for molecular analysis of DNA samples from FFPE tissue specimens at various laboratories.

  6. SU-E-J-269: Assessing the Precision of Dose Delivery in CBCT-Guided Stereotactic Body Radiation Therapy for Lung and Soft Tissue Metastatic Lesions

    SciTech Connect

    Parsai, S; Dalhart, A; Chen, C; Parsai, E; Pearson, D; Sperling, N; Reddy, K

    2014-06-01

    Purpose: Ensuring reproducibility of target localization is critical to accurate stereotactic body radiation treatment (SBRT) for lung and soft tissue metastatic lesions. To characterize interfraction variability in set-up and evaluate PTV margins utilized for SBRT, daily CBCTs were used to calculate delivered target and OAR doses compared to those expected from planning. Methods: CBCT images obtained prior to each fraction of SBRT for a lung and thyroid metastatic lesion were evaluated. The target CTV/ITV and OARs on each of 8 CBCT data sets were contoured. Using MIM fusion software and Pinnacle{sup 3} RTP system, delivered dose distribution was reconstructed on each CBCT, utilizing translational shifts performed prior to treatment. Actual delivered vs. expected doses received by target CTV/ITV and adjacent critical structures were compared to characterize accuracy of pre-treatment translational shifts and PTV margins. Results: The planned CTV/ITV D95% and V100% were 4595cGy and 91.47% for the lung lesion, and 3010cGy and 96.34% for the thyroid lesion. Based on CBCT analysis, actual mean D95% and V100% for lung ITV were 4542±344.4cGy and 91.54±3.45%; actual mean D95% and V100% for thyroid metastasis CTV were 3005±25.98cGy and 95.20±2.522%. For the lung lesion, ipsilateral lung V20, heart V32 (cc) and spinal cord (.03 cc) max were 110.15cc, 3.33cc, and 1680cGy vs. 110.27±14.79cc, 6.74±3.76cc, and 1711±46.56cGy for planned vs. delivered doses, respectively. For the thyroid metastatic lesion, esophagus V18, trachea (.03 cc) max, and spinal cord (.03 cc) max were 0.35cc, 2555cGy, and 850cGy vs. 0.16±0.13cc, 2147±367cGy, and 838±45cGy for planned vs. delivered treatments, respectively. Conclusion: Minimal variability in SBRT target lesion dose delivered based on pre-treatment CBCT-based translational shifts suggests tighter PTV margins may be considered to further decrease dose to surrounding critical structures. Guidelines for optimal target alignment during

  7. Alpha/Beta Ratio for Normal Lung Tissue as Estimated From Lung Cancer Patients Treated With Stereotactic Body and Conventionally Fractionated Radiation Therapy

    SciTech Connect

    Scheenstra, Alize E.H.; Rossi, Maddalena M.G.; Belderbos, José S.A.; Damen, Eugène M.F.; Lebesque, Joos V.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: To estimate the α/β ratio for which the dose-dependent lung perfusion reductions for stereotactic body radiation therapy (SBRT) and conventionally fractionated radiation therapy (CFRT) are biologically equivalent. Methods and Materials: The relations between local dose and perfusion reduction 4 months after treatment in lung cancer patients treated with SBRT and CFRT were scaled according to the linear-quadratic model using α/β ratios from 0 Gy to ∞ Gy. To test for which α/β ratio both treatments have equal biological effect, a 5-parameter logistic model was optimized for both dose–effect relationships simultaneously. Beside the α/β ratio, the other 4 parameters were d{sub 50}, the steepness parameter k, and 2 parameters (M{sub SBRT} and M{sub CFRT}) representing the maximal perfusion reduction at high doses for SBRT and CFRT, respectively. Results: The optimal fitted model resulted in an α/β ratio of 1.3 Gy (0.5-2.1 Gy), M{sub SBRT} = 42.6% (40.4%-44.9%), M{sub CFRT} = 66.9% (61.6%-72.1%), d{sub 50} = 35.4 Gy (31.5-9.2 Gy), and k = 2.0 (1.7-2.3). Conclusions: An equal reduction of lung perfusion in lung cancer was observed in SBRT and CFRT if local doses were converted by the linear-quadratic model with an α/β ratio equal to 1.3 Gy (0.5-2.1 Gy)

  8. Inducible nitric oxide synthase inhibition attenuates lung tissue responsiveness and remodeling in a model of chronic pulmonary inflammation in guinea pigs.

    PubMed

    Starling, Claudia M; Prado, Carla M; Leick-Maldonado, Edna A; Lanças, Tatiana; Reis, Fabiana G; Aristóteles, Luciana R C B R; Dolhnikoff, Marisa; Martins, Mílton A; Tibério, Iolanda F L C

    2009-02-28

    We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400 W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p<0.05), eosinophils counting (p<0.001), iNOS-positive cells (p<0.001), collagen and elastic fiber deposition (p<0.05), actin density (p<0.05) and 8-iso-PGF2alpha expression (p<0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p<0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway.

  9. Over, and Underexpression of Endothelin 1 and TGF-Beta Family Ligands and Receptors in Lung Tissue of Broilers with Pulmonary Hypertension

    PubMed Central

    Dominguez-Avila, Norma; Ruiz-Castañeda, Gabriel; González-Ramírez, Javier; Fernandez-Jaramillo, Nora; Escoto, Jorge; Sánchez-Muñoz, Fausto; Marquez-Velasco, Ricardo; Bojalil, Rafael; Espinosa-Cervantes, Román; Sánchez, Fausto

    2013-01-01

    Transforming growth factor beta (TGFβ) is a family of genes that play a key role in mediating tissue remodeling in various forms of acute and chronic lung disease. In order to assess their role on pulmonary hypertension in broilers, we determined mRNA expression of genes of the TGFβ family and endothelin 1 in lung samples from 4-week-old chickens raised either under normal or cold temperature conditions. Both in control and cold-treated groups of broilers, endothelin 1 mRNA expression levels in lungs from ascitic chickens were higher than levels from healthy birds (P < 0.05), whereas levels in animals with cardiac failure were intermediate. Conversely, TGFβ2 and TGFβ3 gene expression in lungs were higher in healthy animals than in ascitic animals in both groups (P < 0.05). TGFβ1, TβRI, and TβRII mRNA gene expression among healthy, ascitic, and chickens with cardiac failure showed no differences (P > 0.05). BAMBI mRNA gene expression was lowest in birds with ascites only in the control group as compared with the values from healthy birds (P < 0.05). PMID:24286074

  10. Effect of subchronic in vivo exposure to nitrogen dioxide on lung tissue inflammation, airway microvascular leakage, and in vitro bronchial muscle responsiveness in rats.

    PubMed Central

    Chitano, P; Rado, V; Di Stefano, A; Papi, A; Boniotti, A; Zancuoghi, G; Boschetto, P; Romano, M; Salmona, M; Ciaccia, A; Fabbri, L M; Mapp, C E

    1996-01-01

    OBJECTIVES: In a previous study on bronchoalveolar lavage fluid from rats exposed in vivo for seven days to 10 ppm nitrogen dioxide (NO2), it has been shown that there is an influx of macrophages into the airways. The present study investigated the effect of seven day exposure to 10 ppm NO2, on: (a) lung tissue inflammation and morphology; (b) airway microvascular leakage; (c) in vitro contractile response of main bronchi. METHODS: Lung tissue was studied by light microscopy, after fixing the lungs by inflation with 4% formalin at a pressure of 20 cm H2O. Microvascular leakage was measured by extravasation of Evans blue dye in the larynx, trachea, main bronchi, and intrapulmonary airways. Smooth muscle responsiveness was evaluated by concentration-responses curves to acetylcholine (10(-9)-10(-3) M), serotonin (10(-9)-10(-4) M), and voltage-response curves (12-28 V) to electrical field stimulation. RESULTS: Histology showed an increased total inflammation at the level of respiratory bronchioles and alveoli. No influx of inflammatory cells was found in the main bronchi. A loss of cilia in the epithelium of small airways and ectasia of alveolar capillaries was also found. By contrast, no alterations to microvascular permeability or modification of bronchial smooth muscle responsiveness was found. CONCLUSIONS: Subchronic exposure to 10 ppm NO2 causes airway inflammation and structural damage, but does not cause any persistent alteration to microvascular permeability or bronchial smooth muscle responsiveness in rats. Images Figure 1 PMID:8758032

  11. Differential effects of dexamethasone and rosiglitazone in a sephadex-induced model of lung inflammation in rats: Possible role of tissue inhibitor of metalloproteinase-3

    PubMed Central

    Nagar, Jignesh K.; Patel, Praful P.; Mohapatra, Jogeswar N.; Sharma, Manoranjan M.; Pandya, Gaurav M.; Umar, Malik M.; Chatterjee, Abhijit A.; Deshpande, Shrikalp S.; Jain, Mukul R.; Soni, Hitesh M.

    2015-01-01

    Objectives: To study the effects of two different classes of drugs in sephadex-induced lung inflammation using rats and explore the potential mechanism (s). Materials and Methods: Effects of dexamethasone (0.3 mg/kg, p.o.) and rosiglitazone (10 mg/kg, p.o.) treatments were evaluated up to 3 days in sephadex challenged rats. 72 h postsephadex administration, broncho-alveolar lavage fluid (BALF) was collected for cell count and cytokine estimation. Lung tissues were harvested for gene expression and histopathology. Results: Dexamethasone treatment resulted in significant inhibition of lymphocytes, monocytes, eosinophils and neutrophils, whereas rosiglitazone inhibited eosinophils and neutrophils only. Further, dexamethasone reduced the elevated levels of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) after sephadex challenge while rosiglitazone significantly reduced the PGE2 levels without altering LTB4 in the BALF. Hydroxyproline content in rat lung homogenate was significantly reduced with dexamethasone treatment but not with rosiglitazone. Both the drugs were found to suppress matrix metallo proteinase 9, whereas only dexamethasone showed inhibition of tumor necrosis factor-alpha and up-regulation of tissue inhibitor of metalloproteinase 3 (TIMP-3) expression and preserved the broncho-alveolar microstructure. Conclusions: Our results revealed that up-regulation of TIMP-3 corroborated well with dexamethasone mediated inhibition of collagen degradation and restoration of alveolar micro-architecture. PMID:25878373

  12. Implicit mechanistic role of the collagen, smooth muscle, and elastic tissue components in strengthening the air and blood capillaries of the avian lung.

    PubMed

    Maina, John N; Jimoh, Sikiru A; Hosie, Margo

    2010-11-01

    To identify the forces that may exist in the parabronchus of the avian lung and that which may explain the reported strengths of the terminal respiratory units, the air capillaries and the blood capillaries, the arrangement of the parabronchial collagen fibers (CF) of the lung of the domestic fowl, Gallus gallus variant domesticus was investigated by discriminatory staining, selective alkali digestion, and vascular casting followed by alkali digestion. On the luminal circumference, the atrial and the infundibular CF are directly connected to the smooth muscle fibers and the elastic tissue fibers. The CF in this part of the parabronchus form the internal column (the axial scaffold), whereas the CF in the interparabronchial septa and those associated with the walls of the interparabronchial blood vessels form the external, i.e. the peripheral, parabronchial CF scaffold. Thin CF penetrate the exchange tissue directly from the interparabronchial septa and indirectly by accompanying the intraparabronchial blood vessels. Forming a dense network that supports the air and blood capillaries, the CF weave through the exchange tissue. The exchange tissue, specifically the air and blood capillaries, is effectively suspended between CF pillars by an intricate system of thin CF, elastic and smooth muscle fibers. The CF course through the basement membranes of the walls of the blood and air capillaries. Based on the architecture of the smooth muscle fibers, the CF, the elastic muscle fibers, and structures like the interparabronchial septa and their associated blood vessels, it is envisaged that dynamic tensional, resistive, and compressive forces exist in the parabronchus, forming a tensegrity (tension integrity) system that gives the lung rigidity while strengthening the air and blood capillaries. PMID:20819116

  13. The Cysteine Dioxgenase Knockout Mouse: Altered Cysteine Metabolism in Nonhepatic Tissues Leads to Excess H2S/HS− Production and Evidence of Pancreatic and Lung Toxicity

    PubMed Central

    Roman, Heather B.; Hirschberger, Lawrence L.; Krijt, Jakub; Valli, Alessandro; Kožich, Viktor

    2013-01-01

    Abstract Aims: To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS− (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO−/− mice that were fed either a taurine-free or taurine-supplemented diet. Results: CDO−/− mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO−/− mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS−. Accumulation of cystathionine and lanthionine appeared to result from cystathionine β-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO−/− mice were observed, suggesting a unique cysteine metabolism in the pancreas. Innovation: The CDO−/− mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS−. Conclusion: The CDO−/− mouse clearly demonstrates that H2S/HS− production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS−production than are liver and kidney. Antioxid. Redox Signal. 19, 1321–1336. PMID:23350603

  14. Metals in lung tissue from autopsy cases in Mexico City residents: comparison of cases from the 1950s and the 1980s.

    PubMed Central

    Fortoul, T I; Osorio, L S; Tovar, A T; Salazar, D; Castilla, M E; Olaiz-Fernández, G

    1996-01-01

    In autopsies performed on residents of Mexico City during the 1950s and 1980s (45 males and 24 females and 42 males and 42 females, respectively), concentrations of cadmium, copper, cobalt, nickel, and lead in the lungs were studied by atomic absorption spectrometry. Sharp increases were noted in samples taken in the 1980s compared to those from the 1950s. In samples from both time periods, the concentrations were influenced by gender. Smoking was not associated with higher levels of the metals. Only lead seemed to have a relation with age. The enormous differences by gender in the 1950s could be due to different patterns of exposure. The differences among samples from both periods appear to be associated with the increase of air pollutants in the metropolitan areas of Mexico City during the years under study. These results reinforce the importance of studying lung tissue to monitor air pollution by metals. PMID:8793351

  15. The expression of Foxp3 and ROR gamma t in lung tissues from normal smokers and chronic obstructive pulmonary disease patients.

    PubMed

    Chu, Shuyuan; Zhong, Xiaoning; Zhang, Jianquan; Lao, Qifang; He, Zhiyi; Bai, Jing

    2011-11-01

    Foxp3- and ROR gamma t-expressing cells are involved in acquired immune responses. The change in Foxp3 and ROR gamma t expression in lung tissue and their role in emphysema has not been studied for COPD patients and normal smokers. In the present study, Foxp3 and ROR gamma t were assessed using real-time quantitative polymerase chain reaction and western blotting, and the expression and distribution of Foxp3, IL-17, IL-23R and CCR6 were measured by immunohistochemistry in peripheral lung tissue (10 smokers with COPD, 10 smokers and 10 nonsmokers with normal lung function). Foxp3 expression was lower and ROR gamma t expression was higher in COPD patients when compared with smokers and nonsmokers (all P values were less than 0.001). The ratios of Foxp3/ROR gamma t mRNA and protein were positively correlated to FEV1%pred and negatively correlated to the mean alveoli area. Foxp3(+) cell numbers were decreased, while the number of IL-17(+) cells, IL-23R(+) cells and CCR6(+) cells were increased in the lung alveolar walls of COPD patients compared with normal smokers and nonsmokers (all P values were less than 0.001). The IL-17(+) cell numbers were positively correlated to both CCR6(+) and IL-23R(+) cells. Our data show a decreased Foxp3 expression and an increased ROR gamma t expression in COPD patients and normal smokers that parallels the aggravation of the disease. The IL-17(+)-cell-related cytokines receptors CCR6 and IL-23R had an association with the mechanism of IL-17(+) cell number increasing, which will provide a new immuno-therapeutic target for COPD.

  16. Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants

    PubMed Central

    Zong, Jian-Chao; Heaggans, Sarah Y.; Long, Simon Y.; Latimer, Erin M.; Nofs, Sally A.; Bronson, Ellen; Casares, Miguel; Fouraker, Michael D.; Pearson, Virginia R.; Richman, Laura K.

    2015-01-01

    ABSTRACT More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. IMPORTANCE Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly

  17. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    PubMed Central

    Braga, Tarcio Teodoro; Barioni, Éric Diego; de Oliveira Duro, Stephanie; Ratto Tempestini Horliana, Anna Carolina; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2016-01-01

    Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT) has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days) and treated or not with PBMT (1 and 5 h after each FA exposure). Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment. PMID:27293324

  18. 8-Oxoguanine incision activity is impaired in lung tissues of NSCLC patients with the polymorphism of OGG1 and XRCC1 genes.

    PubMed

    Janik, Justyna; Swoboda, Maja; Janowska, Beata; Cieśla, Jarosław M; Gackowski, Daniel; Kowalewski, Janusz; Olinski, Ryszard; Tudek, Barbara; Speina, Elżbieta

    2011-05-10

    Decreased repair of oxidative DNA damage is a risk factor for developing certain human malignancies. We have previously found that the capacity of 8-oxo-7,8-dihydroguanine repair was lower in leukocytes of NSCLC patients than in controls. To explain these observations, we searched for mutations and polymorphisms in the OGG1 gene among 88 NSCLC patients and 79 controls. One patient exhibited a heterozygous mutation in exon 1, which resulted in Arg46Gln substitution. Normal lung and tumor tissue carrying this mutation showed markedly lower 8-oxoG incision activity than the mean for all patients. The predominant polymorphism of OGG1 was Ser326Cys. A significant difference was observed in the frequencies of the OGG1 variants between populations of NSCLC patients and controls. The frequency of the Cys326 allele and the number of Cys326Cys homozygotes was higher among patients than controls. In individuals with either Ser326Cys or Cys326Cys genotype 8-oxoG incision rate was lower than in those with both Ser326 alleles, either in lung or leukocytes. Moreover, 8-oxodG level was higher in lung tissue and leukocytes of patients carrying two Cys326 alleles and in leukocytes of patients with the Ser326Cys genotype. We also screened for polymorphisms of the XRCC1 gene. Only heterozygotes of the XRCC1 variants Arg194Trp, Arg280His and Arg399Gln were found among patients and controls, with the frequency of Arg280His being significantly higher among patients. NSCLC patients with Arg280His or Arg399Gln polymorphism revealed lower 8-oxoG incision activity in their lung tissues, but not in leukocytes. We can conclude that the OGG1 Ser326Cys polymorphisms may have an impact on the efficiency of 8-oxoG incision in humans and the XRCC1 His280 and Gln399 may influence the OGG1 activity in tissues exposed to chronic oxidative/inflammatory stress. Higher frequency of the OGG1 Cys326 allele among NSCLC patients may partially explain the impairment of the 8-oxoG repair observed in their

  19. Hidden Treasures in “Ancient” Microarrays: Gene-Expression Portrays Biology and Potential Resistance Pathways of Major Lung Cancer Subtypes and Normal Tissue

    PubMed Central

    Kerkentzes, Konstantinos; Lagani, Vincenzo; Tsamardinos, Ioannis; Vyberg, Mogens; Røe, Oluf Dimitri

    2014-01-01

    Objective: Novel statistical methods and increasingly more accurate gene annotations can transform “old” biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expression dataset, originally published in 2001, using state-of-the-art bioinformatics approaches. Methods: The dataset consists of histologically defined cases of lung adenocarcinoma (AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast and colon AD), and normal lung specimens (203 samples in total). A battery of statistical tests was used for identifying differential gene expressions, diagnostic and prognostic genes, enriched gene ontologies, and signaling pathways. Results: Our results showed that gene expressions faithfully recapitulate immunohistochemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and TTF1 in non-squamous types. Moreover, biological information with putative clinical relevance was revealed as potentially novel diagnostic genes for each subtype with specificity 93–100% (AUC = 0.93–1.00). Cancer subtypes were characterized by (a) differential expression of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton pathways were overexpressed in normal tissue. Conclusion: Reanalysis of this public dataset displayed the known biological features of lung cancer subtypes and revealed novel pathways of potentially clinical importance. The findings also support our hypothesis that even old omics data of high quality can be a source of significant biological information when appropriate bioinformatics methods are used. PMID:25325012

  20. Evaluation of PD-L1 Expression in Tumor Tissue of Patients with Lung Carcinoma and Correlation with Clinical and Demographic Data

    PubMed Central

    de Souza Viana, Luciano; Scapulatempo Neto, Cristovam; Vicente Serrano, Sérgio

    2016-01-01

    Lung cancer is the leading world cause of cancer-related death, in both genders, and smoking is the main etiological factor. The discovery of immune checkpoints corroborates the hypothesis that ligands presented in tumors modulate the mechanisms of carcinogenesis and the immune activity of tumor microenvironment. Among the most studied coregulatory molecules, PD-1 (programmed cell death 1) and its ligand PD-L1 (programmed cell death 1 ligand 1) are noteworthy. The present study aims to enhance the understanding of the tumor microenvironment of lung cancer patients who underwent surgery, by means of analysis of PD-L1 expression in tumor cells and in intratumoral immune cells (IICs). It was found that PD-L1 expression was more frequent in tumor cells than in IICs. Collective analysis by Tissue Microarray Assay (TMA) for PD-L1 expression in tumor cells and IICs did not reproduce the findings for separate individual analysis of tumor tissues. Patients with past history of smoking were more likely to express PD-L1 in tumor cells than those who never smoked. Patients with past history of smoking were less likely to have PD-L1 positive IICs compared to those who had never smoked. The immunohistochemical expression of PD-L1 in tumor cells and IICs did not correlate with survival. PMID:27747247

  1. Influence of different sized nanoparticles combined with ultrasound on the optical properties of in vitro normal and cancerous human lung tissue studied with OCT and diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zhou, L. P.; Wu, G. Y.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; He, Y. H.; Xie, S. S.; Liu, Y.

    2014-11-01

    The present study is concerned with the in vitro study of different sized titanium dioxide (TiO2) nanoparticles’ (NPs) penetration and accumulation in human normal lung (NL) tissue and lung adenocarcinoma tumor (LAT) tissue by the methods of continuous optical coherence tomography (OCT) monitoring and diffuse reflectance (DR) spectra measurement, and their evaluating the effects of TiO2 NPs in two sizes (60 nm and 100 nm) and their combination with ultrasound (US) on the optical properties of human NL and LAT tissue. Spectral measurements indicate that TiO2 NPs penetrate and accumulate into the tissues and thus induce enhancement of DR. The averaged and normalized OCT signal intensity suggests that light penetration depth is significantly enlarged by ultrasound. The average attenuation coefficient of NL tissue changes from 5.10  ±  0.26 mm-1 to 3.12  ±  0.43 mm-1 and 2.15  ±  0.54 mm-1 at 120 min for 60 nm TiO2 NPs and 60 nm TiO2NPs/US treatment, respectively, and from 5.54  ±  0.46 mm-1 to 3.24  ±  0.73 mm-1 and 2.69  ±  0.34 mm-1 at 150 min for 100 nm TiO2 NPs and 100 nm TiO2NPs/US, respectively. The average attenuation coefficient of LAT tissue changes from 9.12  ±  0.54 mm-1 to 4.54  ±  0.39 mm-1 and 3.61  ±  0.38 mm-1 at 120 min for 60 nm TiO2 NPs and 60 nm TiO2NPs/US treatment, respectively, and from 9.79  ±  0.32 mm-1 to 5.12  ±  0.47 mm-1 and 4.89  ±  0.59 mm-1 at 150 min for 100 nm TiO2 NPs and 100 nm TiO2NPs/US, respectively. The results suggest that the optical properties of NL and LAT tissues are greatly influenced by TiO2 NPs and their combination with ultrasound.

  2. Prognostic Value of Tissue Inhibitor of Metalloproteinase-2 Expression in Patients with Non–Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhu, Lin; Yu, Hong; Liu, Shi-Yuan; Xiao, Xiang-Sheng; Dong, Wei-Hua; Chen, Yi-Nan; Xu, Wei; Zhu, Tong

    2015-01-01

    Background and Objectives Tissue inhibitor of metalloproteinase-2 (TIMP-2) is a small secretory glycoprotein with anti–matrix metalloproteinase activity. Data on the value of TIMP-2 as a prognostic factor in non–small cell lung cancer (NSCLC) are discordant and remain controversial. A systematic review and meta-analysis was performed to explore this issue. Methods We identified the relevant literature by searching the PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, SinoMed, and Wanfang Data databases (search terms: “non-small cell lung cancer” or “NSCLC” or “Lung Carcinoma, Non-Small-Cell”, “Tissue Inhibitor of Metalloproteinase-2” or “TIMP-2”, and “prognosis” or “prognostic” or “survive”) for updates prior to March 1, 2014. The pooled hazard ratio (HR) of overall survival with a 95% confidence interval (95% CI) was used to evaluate the strength of the association between positive TIMP-2 expression and survival in patients with NSCLC. Results We included 12 studies in our systematic review; five studies involving 399 patients with NSCLC were meta-analyzed. The pooled HR of all included patients was 0.57 (95% CI: 0.43–0.77), and the HRs of subgroup analysis according to stage (I–IV), testing method (immunohistochemistry) and high TIMP-2 expression percentage (<50%) were 0.63 (95% CI: 0.43–0.92), 0.55 (95% CI: 0.41–0.74), and 0.50 (95% CI: 0.28–0.88), respectively. These data suggested that high TIMP-2 expression is associated with favorable prognosis in NSCLC. The meta-analysis did not reveal heterogeneity or publication bias. Conclusions TIMP-2 expression indicates favorable prognosis in patients with NSCLC; as a protective factor, it could help predict outcome and may guide clinical therapy in the future. PMID:25905787

  3. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma

    PubMed Central

    PALIOGIANNIS, PANAGIOTIS; ATTENE, FEDERICO; COSSU, ANTONIO; DEFRAIA, EFISIO; PORCU, GIUSEPPE; CARTA, ANNAMARIA; SOTGIU, MARIA IGNAZIA; PAZZOLA, ANTONIO; CORDERO, LORENZO; CAPELLI, FRANCESCA; FADDA, GIOVANNI MARIA; ORTU, SALVATORE; SOTGIU, GIOVANNI; PALOMBA, GRAZIA; SINI, MARIA CRISTINA; PALMIERI, GIUSEPPE; COLOMBINO, MARIA

    2015-01-01

    Assessment of the epidermal growth factor receptor (EGFR) mutational status has become crucial in recent years in the molecular classification of patients with lung cancer. The impact of the type and quantity of malignant cells of the neoplastic specimen on the quality of mutation analysis remains to be elucidated, and only empirical and sporadic data are available. The aim of the present study was to investigate the impact of tissue type and content of neoplastic cells in the specimen on the quality of EGFR mutation analysis among patients with lung adenocarcinoma. A total of 515 patients with histologically-confirmed disease were included in the present study. Formalin-fixed paraffin embedded tissue samples were used for the mutation analysis and the content of the neoplastic cells was evaluated using light microscopy. Genomic DNA was isolated using a standard protocol. The coding sequences and splice junctions of exons 18, 19 and 21 in the EGFR gene were then screened for mutations by direct automated sequencing. The mean age of the patients examined was 64.9 years and 357 (69.3%) were male. A total of 429 tissue samples (83.3%) were obtained by biopsy and the remaining samples were obtained by surgery. A total of 456 samples (88.5%) were observed from primary lung adenocarcinomas, while 59 (11.5%) were from metastatic lesions. EGFR mutations occurred in 59 cases (11.5%); exon 18 mutations were detected in one case (1.7%), whereas exon 19 and 21 mutations were detected in 30 (51%) and 28 (47.3%) cases, respectively. EGFR mutations were more frequent in females and patients that had never smoked. The distribution of the mutations among primary and metastatic tissues exhibited no significant differences in the proportions of EGFR mutations detected. However, a statistically significant difference in the number of mutations detected was found between samples with at least 50% of neoplastic cells (450 cases-57 mutations; 12.7%) and those with <50% of neoplastic

  4. Characterization of endothelin receptors in the peripheral lung tissues of horses unaffected and affected with recurrent airway obstruction

    PubMed Central

    Polikepahad, Sumanth; Haque, Masudul; Francis, Joseph; Moore, Rustin M.; Venugopal, Changaram S.

    2008-01-01

    The purpose of the study was to determine and compare the expression of endothelin (ET) receptors in the peripheral lungs of healthy horses and those affected with recurrent airway obstruction (RAO) using reverse transcriptase polymerase chain reaction (RT-PCR), real-time PCR, Western blot analysis, and immunohistochemical techniques. Two groups of horses (7 healthy and 7 RAO-affected) were selected from a pool of horses destined for euthanasia. The grouping of horses was based on the history, clinical scoring, and pulmonary function testing. After euthanasia, gross postmortem evaluation of the lungs was conducted, and lung samples were collected and either stored at −80°C or fixed in zinc-formalin for 12 h. The RT-PCR was performed by using specific primers for ETA and ETB receptors, and β-actin. To determine the relative gene expression real-time PCR was performed. To detect ET receptor protein expression, Western blotting and immunohistochemical studies were performed using polyclonal antibodies against ETA and ETB receptors and β-actin. The ET receptor expression was determined by performing either densitometric analyses or scoring of immunostaining. Statistical analyses were performed to detect differences in receptor expression within and between the 2 groups. The results indicated that ET receptor expression, particularly ETB receptors, was significantly greater in the peripheral lungs of RAO-affected horses than in those of healthy horses. Clinical trials using ET receptor antagonists, particularly ETB antagonists might help in developing a therapeutic strategy to treat this career-ending disease. PMID:18783023

  5. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  6. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  7. SU-F-BRD-09: Is It Sufficient to Use Only Low Density Tissue-Margin to Compensate Inter-Fractionation Setup Uncertainties in Lung Treatment?

    SciTech Connect

    Nie, K; Yue, N; Chen, T; Millevoi, R; Qin, S; Guo, J

    2014-06-15

    Purpose: In lung radiation treatment, PTV is formed with a margin around GTV (or CTV/ITV). Although GTV is most likely of water equivalent density, the PTV margin may be formed with the surrounding low-density tissues, which may lead to unreal dosimetric plan. This study is to evaluate whether the concern of dose calculation inside the PTV with only low density margin could be justified in lung treatment. Methods: Three SBRT cases were analyzed. The PTV from the original plan (Plan-O) was created with a 5–10 mm margin outside the ITV to incorporate setup errors and all mobility from 10 respiratory phases. Test plans were generated with the GTV shifted to the PTV edge to simulate the extreme situations with maximum setup uncertainties. Two representative positions as the very posterior-superior (Plan-PS) and anterior-inferior (Plan-AI) edge were considered. The virtual GTV was assigned a density of 1.0 g.cm−3 and surrounding lung, including the PTV margin, was defined as 0.25 g.cm−3. Also, additional plan with a 1mm tissue-margin instead of full lung-margin was created to evaluate whether a composite-margin (Plan-Comp) has a better approximation for dose calculation. All plans were generated on the average CT using Analytical Anisotropic Algorithm with heterogeneity correction on and all planning parameters/monitor unites remained unchanged. DVH analyses were performed for comparisons. Results: Despite the non-static dose distribution, the high-dose region synchronized with tumor positions. This might due to scatter conditions as greater doses were absorbed in the solid-tumor than in the surrounding low-density lungtissue. However, it still showed missing target coverage in general. Certain level of composite-margin might give better approximation for the dosecalculation. Conclusion: Our exploratory results suggest that with the lungmargin only, the planning dose of PTV might overestimate the coverage of the target during treatment. The significance of this

  8. Effects of beta 2-agonist- and dexamethasone-treatment on relaxation and regulation of beta-adrenoceptors in human bronchi and lung tissue.

    PubMed

    Hauck, R W; Harth, M; Schulz, C; Präuer, H; Böhm, M; Schömig, A

    1997-08-01

    1. Long-term treatment with beta 2-adrenoceptor agonists can lead to a decreased therapeutic efficacy of bronchodilatation in patients with obstructive pulmonary disease. In order to examine whether or not this is due to beta-adrenoceptor desensitization, human bronchial muscle relaxation was studied in isolated bronchial rings after pretreatment with beta 2-adrenoceptor agonists. Additionally, the influence of pretreatment with dexamethasone on desensitization was studied. 2. The effect of beta 2-agonist incubation alone and after coincubation with dexamethasone on density and affinity of beta-adrenoceptors was investigated by radioligand binding experiments. 3. In human isolated bronchi, isoprenaline induces a time- and concentration-dependent beta-adrenoceptor desensitization as judged from maximal reduction in potency by a factor of 7 and reduction of 73 +/- 4% in efficacy of isoprenaline to relax human bronchial smooth muscle. 4. After an incubation period of 60 min with 100 mumol l-1 terbutaline, a significant decline in its relaxing efficacy (81 +/- 8%) and potency (by a factor 5.5) occurred. 5. Incubation with 30 mumol l-1 isoprenaline for 60 min did not impair the maximal effect of a subsequent aminophylline response but led to an increase in potency (factor 4.4). 6. Coincubation of dexamethasone with isoprenaline (120 min; 30 mumol l-1) preserved the effect of isoprenaline on relaxation (129 +/- 15%). 7. In radioligand binding experiments, pretreatment of lung tissue for 60 min with isoprenaline (30 mumol l-1) resulted in a decrease in beta-adrenoceptor binding sites (Bmax) to 64 +/- 1.6% (P < 0.05), while the antagonist affinity (KD) for [3H]-CGP-12177 remained unchanged. 8. In contrast, radioligand binding studies on lung tissue pretreated with either dexamethasone (30 mumol l-1) or isoprenaline (30 mumol l-1) plus dexamethasone (30 mumol l-1) for 120 min did not lead to a significant change of Bmax (160 +/- 22.1% vs 142.3 +/- 28.7%) or KD (5.0 nmol l-1

  9. Gene expression profiling in the lung tissue of cynomolgus monkeys in response to repeated exposure to welding fumes.

    PubMed

    Heo, Jeong-Doo; Oh, Jung-Hwa; Lee, Kyuhong; Kim, Choong Yong; Song, Chang-Woo; Yoon, Seokjoo; Han, Jin Soo; Yu, Il Je

    2010-03-01

    Many in the welding industry suffer from bronchitis, lung function changes, metal fume fever, and diseases related to respiratory damage. These phenomena are associated with welding fumes; however, the mechanism behind these findings remains to be elucidated. In this study, the lungs of cynomolgus monkeys were exposed to MMA-SS welding fumes for 229 days and allowed to recover for 153 days. After the exposure and recovery period, gene expression profiles were investigated using the Affymetrix GeneChip Human U133 plus 2.0. In total, it was confirmed that 1,116 genes were up-or downregulated (over 2-fold changes, P\\0.01) for the T1 (31.4 ± 2.8 mg/m3) and T2 (62.5 ± 2.7 mg/m3) dose groups. Differentially expressed genes in the exposure and recovery groups were analyzed, based on hierarchical clustering, and were imported into Ingenuity Pathways Analysis to analyze the biological and toxicological functions. Functional analysis identified genes involved in immunological disease in both groups. Additionally, differentially expressed genes in common between monkeys and rats following welding fume exposure were compared using microarray data, and the gene expression of selected genes was verified by real-time PCR. Genes such as CHI3L1, RARRES1, and CTSB were up-regulated and genes such as CYP26B1, ID4, and NRGN were down-regulated in both monkeys and rats following welding fume exposure. This is the first comprehensive gene expression profiling conducted for welding fume exposure in monkeys, and these expressed genes are expected to be useful in helping to understand transcriptional changes in monkey lungs after welding fume exposure.

  10. The ALCHEMIST Lung Cancer Trial

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trial that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  11. The ALCHEMIST Lung Cancer Trials

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trials that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  12. Vanadium in ambient air: concentrations in lung tissue from autopsies of Mexico City residents in the 1960s and 1990s.

    PubMed

    Fortoul, Teresa Imelda; Quan-Torres, Alma; Sánchez, Ivonne; López, Irma Elena; Bizarro, Patricia; Mendoza, Maria Luisa; Osorio, Liliana Saldivar; Espejel-Maya, Guadalupe; Avila-Casado, Maria del Carmen; Avila-Costa, Maria Rosa; Colin-Barenque, Laura; Villanueva, Daniel Navarro; Olaiz-Fernandez, Gustavo

    2002-01-01

    Vanadium concentrations in lung tissue were determined by atomic absorption spectrometry from autopsy specimens taken from residents of Mexico City during the 1960s and 1990s (20 males and 19 females, and 30 males and 18 females, respectively). Samples from the 1990s had significantly increased mean vanadium concentrations (mean +/- standard deviation: 1.36 +/- 0.08), compared with those from the 1960s (1.04 +/- 0.05). Concentrations were not correlated with gender, smoking habit, age, cause of death, or occupation. These findings suggest that vanadium in ambient air is increasing and it represents a potential health hazard for Mexico City residents. Air pollution monitoring efforts should include vanadium concentrations in suspended particles to follow-up the findings reported herein. Researchers need to acquire a better knowledge of the levels of airborne vanadium exposure at which risk to human health occurs. PMID:12641188

  13. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  14. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small-cell lung cancer study

    PubMed Central

    Fan, Teresa W.-M.; Warmoes, Marc O.; Sun, Qiushi; Song, Huan; Turchan-Cholewo, Jadwiga; Martin, Jeremiah T.; Mahan, Angela; Higashi, Richard M.; Lane, Andrew N.

    2016-01-01

    Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME. This approach enabled full control of experimental parameters and acquisition of individual patient's target tissue response to therapeutic agents while eliminating interferences from genetic and physiological variations. In this two-case study of non-small-cell lung cancer, we performed stable isotope-resolved metabolomic (SIRM) experiments on paired CA and NC lung tissues treated with a macrophage activator β-glucan and 13C6-glucose, followed by ion chromatography–Fourier transform mass spectrometry (IC-FTMS) and nuclear magnetic resonance (NMR) analyses of 13C-labeling patterns of metabolites. We demonstrated that CA lung tissue slices were metabolically more active than their NC counterparts, which recapitulated the metabolic reprogramming in CA lung tissues observed in vivo. We showed β-glucan-enhanced glycolysis, Krebs cycle, pentose phosphate pathway, antioxidant production, and itaconate buildup in patient UK021 with chronic obstructive pulmonary disease (COPD) and an abundance of tumor-associated macrophages (TAMs) but not in UK049 with no COPD and much less macrophage infiltration. This metabolic response of UK021 tissues was accompanied by reduced mitotic index, increased necrosis, and enhaced inducible nitric oxide synthase (iNOS) expression. We surmise that the reprogrammed networks could reflect β-glucan M1 polarization of human macrophages. This case study presents a unique opportunity for investigating metabolic responses of human macrophages to immune modulators in their native microenvironment on an individual patient basis. PMID:27551682

  15. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small-cell lung cancer study.

    PubMed

    Fan, Teresa W-M; Warmoes, Marc O; Sun, Qiushi; Song, Huan; Turchan-Cholewo, Jadwiga; Martin, Jeremiah T; Mahan, Angela; Higashi, Richard M; Lane, Andrew N

    2016-07-01

    Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME. This approach enabled full control of experimental parameters and acquisition of individual patient's target tissue response to therapeutic agents while eliminating interferences from genetic and physiological variations. In this two-case study of non-small-cell lung cancer, we performed stable isotope-resolved metabolomic (SIRM) experiments on paired CA and NC lung tissues treated with a macrophage activator β-glucan and (13)C6-glucose, followed by ion chromatography-Fourier transform mass spectrometry (IC-FTMS) and nuclear magnetic resonance (NMR) analyses of (13)C-labeling patterns of metabolites. We demonstrated that CA lung tissue slices were metabolically more active than their NC counterparts, which recapitulated the metabolic reprogramming in CA lung tissues observed in vivo. We showed β-glucan-enhanced glycolysis, Krebs cycle, pentose phosphate pathway, antioxidant production, and itaconate buildup in patient UK021 with chronic obstructive pulmonary disease (COPD) and an abundance of tumor-associated macrophages (TAMs) but not in UK049 with no COPD and much less macrophage infiltration. This metabolic response of UK021 tissues was accompanied by reduced mitotic index, increased necrosis, and enhaced inducible nitric oxide synthase (iNOS) expression. We surmise that the reprogrammed networks could reflect β-glucan M1 polarization of human macrophages. This case study presents a unique opportunity for investigating metabolic responses of human macrophages to immune modulators in their native microenvironment on an individual patient basis. PMID:27551682

  16. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV).

    PubMed

    Duan, X; Nauwynck, H J; Pensaert, M B

    1997-05-01

    Sixteen 6 week old conventional pigs were inoculated by aerosol with a European strain of porcine reproductive and respiratory syndrome virus (PRRSV). Virus replication was followed by virus titration and immunofluorescence in the lungs and in associated and distant lymphoid tissues at 3, 14, 21, 35, 42 and 82 days post-inoculation (DPI). PRRSV replication was detected in alveolar macrophages, lungs, tonsils, spleen, retropharyngeal lymph nodes, bronchial lymph nodes and thoracic aortic lymph nodes at 3 DPI. The same tissues, except retropharyngeal and thoracic aortic lymph nodes, were PRRSV positive at 14 DPI. Lungs and alveolar macrophages were PRRSV positive until 35 DPI. PRRSV was not detected in heart, peripheral blood mononuclear cells and bone marrow cells. Viremia was detected from 3 to 28 DPI. Not more than 2% of alveolar macrophages were PRRSV positive even during the acute stage of infection. 80 to 94% of the PRRSV infected cells in the lungs and in lung lavaged cells were identified as macrophages using a porcine macrophage specific monoclonal antibodies. In the lymph nodes and spleen, 100% of the infected cells were macrophages. Anti-PRRSV antibodies were detected by a blocking ELISA as early as 7 DPI. the antibody titre gradually increased to reach a geometric mean titre (GMT) of 160 at 35 DPI. It remained at that level until the end of the study. These findings clearly demonstrate that PRRSV has a tropism for macrophages. PRRSV mainly replicates in macrophages of the lymphoid tissues and lungs in the acute phase of infection and persists in the lung macrophages.

  17. p53 immunolabeling in archival paraffin-embedded tissues: optimal protocol based on microwave heating for eight antibodies on lung carcinomas.

    PubMed

    Tenaud, C; Negoescu, A; Labat-Moleur, F; Legros, Y; Soussi, T; Brambilla, E

    1994-10-01

    The prognostic value of p53 gene mutations is dealt with by several recent reports. However, retrospective assessment of p53 tumor status on archived samples has been prevented by p53 epitope alteration during routine fixation and embedding procedures. This study aimed at establishing a reproducible low-cost protocol to retrieve not only N-terminal, but also midregion and C-terminal, epitopes, with special attention to possible artifacts induced by epitope retrieval procedures. Using microwave heating, we compared the epitope retrieval efficiency of five solutions with eight commercial antibodies on 21 lung carcinomas for which frozen tissue and samples fixed with formalin and Bouin's liquid were available. All eight epitopes were retrieved, citrate buffer proving efficient for seven. PAb 240 epitope was restored by target unmasking fluid only. No false positivity was observed. Fixation-induced loss of p53 immunoreactivity was minimal for formalin (two of 10 tumors for one antibody each), more significant for Bouin (six of 10 tumors for one to five antibodies). On the other hand, staining intensity was maintained or even improved, and nonspecific staining reduced, through fixation. We conclude that p53 stabilization can be detected on routinely processed archival tumor samples with a reliability similar to that of frozen tissue by means of a microwave-based procedure and a panel of at least three antibodies, with epitopes on the N-terminal, C-terminal, and midpart of the molecule.

  18. Association of serum KL-6 levels with interstitial lung disease in patients with connective tissue disease: a cross-sectional study.

    PubMed

    Oguz, Ekin Oktay; Kucuksahin, Orhan; Turgay, Murat; Yildizgoren, Mustafa Turgut; Ates, Askin; Demir, Nalan; Kumbasar, Ozlem Ozdemir; Kinikli, Gulay; Duzgun, Nursen

    2016-03-01

    It was aimed to evaluate KL-6 glycoprotein levels to determine if it may be a diagnostic marker for the connective tissue diseases (CTDs) predicting CTD-related interstitial lung diseases (ILDs) (CTD-ILD) development and to examine if there was a difference between patients and healthy controls. The study included 113 patients with CTD (45 CTD without lung involvement, 68 CTD-ILD) and 45 healthy control subjects. KL-6 glycoprotein levels were analyzed with ELISA in patients and the control group. The relationship between KL-6 glycoprotein levels and CTD-ILD was assessed. In the comparison of all the groups in the study, significantly higher levels of KL-6 were determined in the CTD-ILD group than in either the CTD without pulmonary involvement group or the healthy control group (p < 0.008 and p < 0.001, respectively). There was no statistically significant difference between the KL-6 levels in the healthy control group and the CTD without pulmonary involvement group (p = 0.289). The KL-6 levels did not differ significantly according to the connective tissue diseases in the diagnostic groups (systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, mixed connective tissue disease, scleroderma, polymyositis/ dermatomyositis). In the healthy control group, there was a statistically significant difference between KL-6 levels in smokers and non-smokers. Smokers had significantly higher serum KL-6 levels compared with non-smokers (p < 0.05). There was no statistically significant difference between smoking status (pack-year) and serum KL-6 levels. There was no statistically significant correlation between serum KL-6 levels and time since diagnosis of CTD and CTD-ILD. The level of KL-6 as a predictive factor could be used to identify the clinical development of ILD before it is detected on imaging modality. Further prospective clinical studies are needed to define whether levels of KL-6 might have prognostic value or might predict

  19. A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds.

    PubMed

    Göttlich, Claudia; Müller, Lena C; Kunz, Meik; Schmitt, Franziska; Walles, Heike; Walles, Thorsten; Dandekar, Thomas; Dandekar, Gudrun; Nietzer, Sarah L

    2016-01-01

    In the present study, we combined an in vitro 3D lung tumor model with an in silico model to optimize predictions of drug response based on a specific mutational background. The model is generated on a decellularized porcine scaffold that reproduces tissue-specific characteristics regarding extracellular matrix composition and architecture including the basement membrane. We standardized a protocol that allows artificial tumor tissue generation within 14 days including three days of drug treatment. Our article provides several detailed descriptions of 3D read-out screening techniques like the determination of the proliferation index Ki67 staining's, apoptosis from supernatants by M30-ELISA and assessment of epithelial to mesenchymal transition (EMT), which are helpful tools for evaluating the effectiveness of therapeutic compounds. We could show compared to 2D culture a reduction of proliferation in our 3D tumor model that is related to the clinical situation. Despite of this lower proliferation, the model predicted EGFR-targeted drug responses correctly according to the biomarker status as shown by comparison of the lung carcinoma cell lines HCC827 (EGFR -mutated, KRAS wild-type) and A549 (EGFR wild-type, KRAS-mutated) treated with the tyrosine-kinase inhibitor (TKI) gefitinib. To investigate drug responses of more advanced tumor cells, we induced EMT by long-term treatment with TGF-beta-1 as assessed by vimentin/pan-cytokeratin immunofluorescence staining. A flow-bioreactor was employed to adjust culture to physiological conditions, which improved tissue generation. Furthermore, we show the integration of drug responses upon gefitinib treatment or TGF-beta-1 stimulation - apoptosis, proliferation index and EMT - into a Boolean in silico model. Additionally, we explain how drug responses of tumor cells with a specific mutational background and counterstrategies against resistance can be predicted. We are confident that our 3D in vitro approach especially with its

  20. The Influence of Tissue Ischemia Time on RNA Integrity and Patient-Derived Xenografts (PDX) Engraftment Rate in a Non-Small Cell Lung Cancer (NSCLC) Biobank

    PubMed Central

    Maletta, Francesca; Gaudiano, Marcello; Ercole, Elisabetta; Annaratone, Laura; Todaro, Maria; Boita, Monica; Filosso, Pier Luigi; Solidoro, Paolo; Delsedime, Luisa; Oliaro, Alberto; Sapino, Anna; Ruffini, Enrico; Inghirami, Giorgio

    2016-01-01

    Introduction Bio-repositories are invaluable resources to implement translational cancer research and clinical programs. They represent one of the most powerful tools for biomolecular studies of clinically annotated cohorts, but high quality samples are required to generate reliable molecular readouts and functional studies. The objective of our study was to define the impact of cancer tissue ischemia time on RNA and DNA quality, and for the generation of Patient-Derived Xenografts (PDXs). Methods One-hundred thirty-five lung cancer specimens were selected among our Institutional BioBank samples. Associations between different warm (surgical) and cold (ex-vivo) ischemia time ranges and RNA quality or PDXs engraftment rates were assessed. RNA quality was determined by RNA integrity number (RINs) values. Fresh viable tissue fragments were implanted subcutaneously in NSG mice and serially transplanted. Results RNAs with a RIN>7 were detected in 51% of the sample (70/135), with values of RIN significantly lower (OR 0.08, P = 0.01) in samples preserved for more than 3 hours before cryopreservation. Higher quality DNA samples had a concomitant high RIN. Sixty-three primary tumors (41 adenocarcinoma) were implanted with an overall engraftment rate of 33%. Both prolonged warm (>2 hours) and ex-vivo ischemia time (>10 hours) were associated to a lower engraftment rate (OR 0.09 P = 0.01 and OR 0.04 P = 0.008, respectively). Conclusion RNA quality and PDXs engraftment rate were adversely affected by prolonged ischemia times. Proper tissue collection and processing reduce failure rate. Overall, NSCLC BioBanking represents an innovative modality, which can be successfully executed in routine clinical settings, when stringent Standard Operating Procedures are adopted. PMID:26731692

  1. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  2. Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A.

    PubMed

    Sundström, Karin B; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas

    2016-01-01

    Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7-10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20-25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS.

  3. Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A.

    PubMed

    Sundström, Karin B; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas

    2016-01-01

    Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7-10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20-25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS. PMID:26907493

  4. Malignant Pleural Effusion Supernatants Are Substitutes for Metastatic Pleural Tumor Tissues in EGFR Mutation Test in Patients with Advanced Lung Adenocarcinoma

    PubMed Central

    Wu, Ning; Nie, Xiaomeng; Xia, Yang; Han, Yiping; Li, Qiang; Zhu, Guanshan; Bai, Chong

    2014-01-01

    Background Though the possibility of using malignant pleural effusions (MPEs) as alternatives for metastatic pleural tumor tissues (MPTTs) in epidermal growth factor receptor (EGFR) mutation test has been examined, due to the lack of studies comparing the results in matching MPEs and MPTTs, the clinical value of MPEs for advanced adenocarcinoma patients with pleural effusions is not confirmed. Methods EGFR mutation statuses in matching MPTTs, MPE supernatants and cell blocks, of 41 patients with advanced lung adenocarcinoma as diagnosed by thoracoscopy were analyzed using amplification refractory mutation system (ARMS). Results EGFR mutations were detected in 46.3% (19/41) of MPTTs, 43.9% (18/41) of MPE supernatants and 56.3% (18/32) of MPE cell blocks by ARMS analysis. Generally, the same EGFR statuses were identified in both MPTTs and matching MPE cell blocks of 81.3% patients (26/32), whereas MPTTs and matching MPE supernatants of 87.8% (36/41) patients shared the same EGFR status. Compared with EGFR mutation detection in MPTTs, the sensitivity of EGFR mutation detection in MPE-cell blocks was 87.5% (14/16), specificity was 75.0% (12/16), while the sensitivity of EGFR mutation detection in MPE-supernatants was 84.2% (16/19), specificity was 90.9% (20/22). Conclusions The high concordance of EGFR mutation statuses between MPEs and MPTTs in lung adenocarcinoma patients with pleural metastasis as determined by ARMS analysis suggests that MPEs, particularly MPE supernatants, may be substitutes for MPTTs in EGFR mutation test. PMID:24587142

  5. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  6. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

    NASA Astrophysics Data System (ADS)

    Vallières, M.; Freeman, C. R.; Skamene, S. R.; El Naqa, I.

    2015-07-01

    This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping

  7. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  8. Genome-Wide Gene Expression Profiles in Lung Tissues of Pig Breeds Differing in Resistance to Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Zhang, Chenhua; Zhang, Yujie; Wang, Nan; Li, Yanping; Yang, Lijuan; Jiang, Chenglan; Zhang, Chaoyang; Wen, Changhong; Jiang, Yunliang

    2014-01-01

    Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an infectious disease characterized by severe reproductive deficiency in pregnant sows, typical respiratory symptoms in piglets, and high mortality rate of piglets. In this study, we employed an Affymetrix microarray chip to compare the gene expression profiles of lung tissue samples from Dapulian (DPL) pigs (a Chinese indigenous pig breed) and Duroc×Landrace×Yorkshire (DLY) pigs after infection with PRRSV. During infection with PRRSV, the DLY pigs exhibited a range of clinical features that typify the disease, whereas the DPL pigs showed only mild signs of the disease. Overall, the DPL group had a lower percentage of CD4+ cells and lower CD4+/CD8+ratios than the DLY group (p<0.05). For both IL-10 and TNF-α, the DLY pigs had significantly higher levels than the DPL pigs (p<0.01). The DLY pigs have lower serum IFN-γ levels than the DPL pigs (p<0.01). The serum IgG levels increased slightly from 0 dpi to 7 dpi, and peaked at 14 dpi (p<0.0001). Microarray data analysis revealed 16 differentially expressed (DE) genes in the lung tissue samples from the DLY and DPL pigs (q≤5%), of which LOC100516029 and LOC100523005 were up-regulated in the PRRSV-infected DPL pigs, while the other 14 genes were down-regulated in the PRRSV-infected DPL pigs compared with the PRRSV-infected DLY pigs. The mRNA expression levels of 10 out of the 16 DE genes were validated by real-time quantitative RT-PCR and their fold change was consistent with the result of microarray data analysis. We further analyzed the mRNA expression level of 8 differentially expressed genes between the DPL and DLY pigs for both uninfected and infected groups, and found that TF and USP18 genes were important in underlying porcine resistance or susceptibility to PRRSV. PMID:24465897

  9. Dosimetric Verification Using Monte Carlo Calculations for Tissue Heterogeneity-Corrected Conformal Treatment Plans Following RTOG 0813 Dosimetric Criteria for Lung Cancer Stereotactic Body Radiotherapy

    SciTech Connect

    Li Jun; Galvin, James; Harrison, Amy; Timmerman, Robert; Yu Yan; Xiao Ying

    2012-10-01

    Purpose: The recently activated Radiation Therapy Oncology Group (RTOG) studies of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) require tissue density heterogeneity correction, where the high and intermediate dose compliance criteria were established based on superposition algorithm dose calculations. The study was aimed at comparing superposition algorithm dose calculations with Monte Carlo (MC) dose calculations for SBRT for NSCLC and to evaluate whether compliance criteria need to be adjusted for MC dose calculations. Methods and Materials: Fifteen RTOG 0236 study sets were used. The planning tumor volumes (PTV) ranged from 10.7 to 117.1 cm{sup 3}. SBRT conformal treatment plans were generated using XiO (CMS Inc.) treatment planning software with superposition algorithm to meet the dosimetric high and intermediate compliance criteria recommended by the RTOG 0813 protocol. Plans were recalculated using the MC algorithm of a Monaco (CMS, Inc.) treatment planning system. Tissue density heterogeneity correction was applied in both calculations. Results: Overall, the dosimetric quantities of the MC calculations have larger magnitudes than those of the superposition calculations. On average, R{sub 100%} (ratio of prescription isodose volume to PTV), R{sub 50%} (ratio of 50% prescription isodose volume to PTV), D{sub 2cm} (maximal dose 2 cm from PTV in any direction as a percentage of prescription dose), and V{sub 20} (percentage of lung receiving dose equal to or larger than 20 Gy) increased by 9%, 12%, 7%, and 18%, respectively. In the superposition plans, 3 cases did not meet criteria for R{sub 50%} or D{sub 2cm}. In the MC-recalculated plans, 8 cases did not meet criteria for R{sub 100%}, R{sub 50%}, or D{sub 2cm}. After reoptimization with MC calculations, 5 cases did not meet the criteria for R{sub 50%} or D{sub 2cm}. Conclusions: Results indicate that the dosimetric criteria, e.g., the criteria for R{sub 50%} recommended by

  10. Development of Clinical Trial Assessments for the Study of Interstitial Lung Disease in Patients who have Connective Tissue Diseases—Methodological Considerations

    PubMed Central

    Huscher, Dörte; Saketkoo, Lesley Ann; Pittrow, David; Khanna, Dinesh

    2010-01-01

    This review article discusses the proposed methodology that will be utilized to develop core set items for connective tissue disease-associated interstitial lung disease (CTD-ILD). CTD-ILD remain an important enigma in clinical medicine. No consensus exists on measurement of disease activity or what constitutes a significant response to therapeutic interventions. Lack of appropriate measures inhibit effective drug development and hamper regulatory evaluation of candidate therapies. An interdisciplinary and international Steering Committee (SC) will oversee the execution of a 3-tier Delphi exercise involving experts in CTD and ILD. In parallel to the Delphi, qualitative information will be gathered from patients with ILD using focus groups. These data will subsequently be used to construct surveys to collect quantitative response from patients with ILD. The final Delphi and Patient Perspective results are to be scrutinized by SC and specialty sub-groups (including patient advocates) for truth, discrimination and feasibility – the OMERACT filters. Through application of Nominal Group technique, a core set of outcome measures will be proposed. Subsequent exercises will evaluate the applicability of a proposed core set to the unique issues posed by individual CTDs in addition to guidelines on screening, prognostication and damage scoring. PMID:20676224

  11. Reconciling Healthcare Professional and Patient Perspectives in the Development of Disease Activity and Response Criteria in Connective Tissue Disease Related Interstitial Lung Diseases

    PubMed Central

    Saketkoo, LA; Mittoo, S; Frankel, S; LeSage, D; Sarver, C; Phillips, K; Strand, V; Matteson, EL

    2015-01-01

    Interstitial lung diseases (ILD), including connective tissue disease (CTD) related and idiopathic pulmonary fibrosis (IPF), carry a high morbidity and mortality. Great efforts are underway to develop and investigate meaningful treatments in the context of clinical trials. However, these efforts have been challenged by the lack of validated outcome measures and inconsistent use of measures in the context of clinical trials. This lack of consensus has fragmented effective use of investigative in CTD-ILD and IPF with a history of resultant difficulties in agency approval of treatment interventions. Patient perspective in determination of domains and outcome measures in CTD-ILD and IPF, prior to this effort, has never occurred. These efforts demonstrate unequivocally the value and impact of patient involvement on core set development. Regarding CTD-ILD, this is the first OMERACT working group to directly address a manifestation/co-morbidity of a rheumatic disease (ILD) as well as a disease not considered rheumatic (IPF). The OMERACT 11 proceedings of the CTD-ILD Working Group describe the forward and lateral process to include both the medical and patient perspectives in the urgently needed identification of a core set of preliminary domains and outcome measures in CTD-ILD and IPF. PMID:24488412

  12. Reconciling healthcare professional and patient perspectives in the development of disease activity and response criteria in connective tissue disease-related interstitial lung diseases.

    PubMed

    Saketkoo, Lesley Ann; Mittoo, Shikha; Frankel, Sid; LeSage, Daphne; Sarver, Catherine; Phillips, Kristine; Strand, Vibeke; Matteson, Eric L

    2014-04-01

    Interstitial lung diseases (ILD), including those related to connective tissue disease (CTD), and idiopathic pulmonary fibrosis (IPF) carry high morbidity and mortality. Great efforts are under way to develop and investigate meaningful treatments in the context of clinical trials. However, efforts have been challenged by a lack of validated outcome measures and by inconsistent use of measures in clinical trials. Lack of consensus has fragmented effective use of strategies in CTD-ILD and IPF, with a history of resultant difficulties in obtaining agency approval of treatment interventions. Until recently, the patient perspective to determine domains and outcome measures in CTD-ILD and IPF had never been applied. Efforts described here demonstrate unequivocally the value and influence of patient involvement on core set development. Regarding CTD-ILD, this is the first OMERACT working group to directly address a manifestation/comorbidity of a rheumatic disease (ILD) as well as a disease not considered rheumatic (IPF). The OMERACT 11 proceedings of the CTD-ILD Working Group describe the forward and lateral process to include both the medical and patient perspectives in the urgently needed identification of a core set of preliminary domains and outcome measures in CTD-ILD and IPF.

  13. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  14. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  15. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  16. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches.

    PubMed

    Lee, Sojung; Kang, Jungwoo; Cho, Minchul; Seo, Eunhee; Choi, Heesook; Kim, Eunjin; Kim, Junghee; Kim, Heejong; Kang, Gum Yong; Kim, Kwang Pyo; Park, Young-Ho; Yu, Dae-Yeul; Yum, Young Na; Park, Sue-Nie; Yoon, Do-Young

    2009-01-01

    The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as

  17. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches.

    PubMed

    Lee, Sojung; Kang, Jungwoo; Cho, Minchul; Seo, Eunhee; Choi, Heesook; Kim, Eunjin; Kim, Junghee; Kim, Heejong; Kang, Gum Yong; Kim, Kwang Pyo; Park, Young-Ho; Yu, Dae-Yeul; Yum, Young Na; Park, Sue-Nie; Yoon, Do-Young

    2009-01-01

    The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as

  18. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke.

    PubMed

    Hussain, Tajamul; Al-Attas, Omar S; Al-Daghri, Nasser M; Mohammed, Arif A; De Rosas, Edgard; Ibrahim, Shebl; Vinodson, Benjamin; Ansari, Mohammed G; El-Din, Khaled I Alam

    2014-06-01

    Incense smoke is increasingly being recognized as a potential environmental contaminant and is linked to malignant and non-malignant respiratory diseases. The detoxification of environmental contaminants including polycyclic aromatic hydrocarbons (PAHs) involves the induction of cytochrome P-450 family enzymes (CYPs) by PAHs. However, the detoxification of PAHs also results in the generation of reactive and unstable intermediary metabolites which are implicated in the oxidative stress, DNA damage, and inflammation. It is unclear whether CYPs are similarly induced by incense smoke, which incidentally contains substantial amounts of PAHs. Here, we examined the impact of long-term incense smoke exposure on the induction of CYPs in male Wister Albino rats. Incense smoke exposure significantly induced the expression of CYP1A1, CYP1A2, and CYP1B1 mRNAs in both lung and liver tissues. The extent of CYP1A1 and CYP1B1 induction was significantly higher in the liver compared to that in the lung, while that of CYP1A2 was greater in the lung than in liver. Incense smoke exposure also increased malondialdehyde and reduced glutathione levels in lung and liver tissues, and the catalase activity in the liver tissues to significant levels. Furthermore incense smoke exposure led to a marked increase in TNF-α and IL-4 levels. The data demonstrate for the first time the capacity of incense smoke to induce CYP1 family enzymes in the target and non-target tissues. Induction of CYPs increased oxidative stress and inflammation appear to be intimately linked to promote the carcinogenesis and health complications in people chronically exposed to incense smoke.

  19. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  20. Cigarette smoke affects IL-17A, IL-17F and IL-17 receptor expression in the lung tissue: Ex vivo and in vitro studies.

    PubMed

    Montalbano, Angela Marina; Riccobono, Loredana; Siena, Liboria; Chiappara, Giuseppina; Di Sano, Caterina; Anzalone, Giulia; Gagliardo, Rosalia; Ricciardolo, Fabio L M; Sorbello, Valentina; Pipitone, Loredana; Vitulo, Patrizio; Profita, Mirella

    2015-12-01

    Cigarette smoke is a risk factor for Chronic Obstructive Pulmonary Disease (COPD). Th-17 cytokines are involved in the pathogenesis of COPD. We aimed to evaluate the role of cigarette smoke on the expression of IL-17A, IL-17F and IL-17R in airways of COPD patients. Epithelial and subepithelial immunoreactivity for IL-17A, IL-17F and IL-17R was assessed in surgical specimens from COPD patients (n=15) and from healthy subjects (HC) (n=10) by immunohistochemistry. In vitro, human epithelial cell line 16HBE and A549 as well as PBMC from normal donors were stimulated with cigarette smoke extract (CSE) (0%, 2.5%, 5%, 10%) to evaluate the IL-17A, IL-17F and IL-17R expression by flow cytometry. Furthermore, rhIL-17A and CSE stimulation was evaluated on proliferation and apoptosis in 16HBE and in A549. In central and distal airways immunoreactivity for IL-17A, IL-17F and IL-17R significantly increased in the epithelium and IL-17A in the subepithelium from COPD than in HC. In distal airway, immunoreactivity for IL-17F increased in the subepithelium of COPD than in HC. IL-17A immunoreactivity positively correlate with IL-17R and total pack years in the epithelium from central and distal airways of COPD patients. In vitro, CSE stimulation significantly increased IL-17F and IL-17R in 16HBE (2.5%) and A549 (5%) while IL-17A and IL-17F in PBMC (10%). IL-17A and CSE stimulation, rather than CSE or rhIL-17A alone, significantly increased proliferation in 16HBE and apoptosis in A549. Cigarette smoke increases Th17 immunity in lung tissue of COPD patients, promoting the mechanism of proliferation and apoptosis in airway epithelial cells.

  1. Patient Perspectives in OMERACT Provide an Anchor for Future Metric Development and Improved Approaches to Healthcare Delivery in Connective Tissue Disease Related Interstitial Lung Disease (CTD-ILD)

    PubMed Central

    Mittoo, Shikha; Frankel, Sid; LeSage, Daphne; Strand, Vibeke; Shah, Ami A.; Christopher-Stine, Lisa; Danoff, Sonye; Hummers, Laura K.; Swigris, Jeffery J.; Huscher, Dörte; Christensen, Angela M.; Cenac, Sophia L.; Erbil, Jen K.; Ferguson, Sancia; Garcia-Valladares, Ignacio; Grewal, Harmanjot K.; Orbai, Ana-Maria; Smith, Katherine Clegg; Tran, Maithy; Bingham, Clifton O.; Castelino, Flavia V.; Fischer, Aryeh; Saketkoo, Lesley Ann

    2015-01-01

    Objective The impact and natural history of connective tissue disease related interstitial lung disease (CTD-ILD) are poorly understood; and have not been previously described from the patient’s perspective. This investigation sought insight into CTD-ILD from the patients’ perspective to add to our knowledge of CTD-ILD, identify disease-specific areas of unmet need and gather potentially meaningful information towards development of disease-specific patient-reported outcome measures (PROMs). Methods A mixed methods design incorporating patient focus groups (FGs) querying disease progression and life impact followed by questionnaires with items of importance generated by >250 ILD specialists were implemented among CTD-ILD patients with rheumatoid arthritis, idiopathic inflammatory myopathies, systemic sclerosis, and other CTD subtypes. FG data were analyzed through inductive analysis with five independent analysts, including a patient research partner. Questionnaires were analyzed through Fisher’s Exact tests and hierarchal cluster analysis. Results Six multicenter FGs included 45 patients. Biophysiologic themes were cough and dyspnea, both pervasively impacting health related quality of life (HRQoL). Language indicating dyspnea was unexpected, unique and contextual. Psycho-social themes were Living with Uncertainty, Struggle over Self-Identity, and Self-Efficacy - with education and clinician communication strongly emphasised. All questionnaire items were rated ‘moderately’ to ‘extremely’ important with 10 items of highest importance identified by cluster analysis. Conclusion Patients with CTD-ILD informed our understanding of symptoms and impact on HRQoL. Cough and dyspnea are central to the CTD-ILD experience. Initial FGs have provided disease-specific content, context and language essential for reliable PROM development with questionnaires adding value in recognition of patients’ concerns. PMID:26568747

  2. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  3. Benign salivary gland tissue inclusion in a pulmonary hilar lymph node from a patient with invasive well-differentiated adenocarcinoma of the lung: a potential misinterpretation for the staging of carcinoma.

    PubMed

    Lewis, Annisa L; Truong, Luan D; Cagle, Philip; Zhai, Qihui Jim

    2011-06-01

    Benign epithelial and nonepithelial inclusions have been found in lymph nodes in multiple body sites. These inclusions have been seen in cervical, axillary, mediastinal, abdominal, and pelvic lymph nodes. They appear as benign epithelial, parathyroid, decidual, mesothelial, angiolipomatous, nevus cells, or Tamm-Horsfall protein. Although heterotopic salivary gland tissue is not infrequent in paraparotid lymph nodes, it has only been described in lymph nodes of the pulmonary hilum once. A 68-year-old woman with gastric lymphoma now in remission presented for routine follow-up and was found to have a lung mass. After a fine needle aspiration biopsy diagnosis of adenocarcinoma, lobectomy and lymph node dissection were performed. Histological sections of lung demonstrated a well-differentiated adenocarcinoma and one lymph node, which displayed a subcapsular nest of well-formed salivary glands occupying approximately one third of the nodal tissue. The inclusion was composed of acinar cells of both serous and mucinous types, but ductal type of cells were not seen. Identification of heterotopic tissue in lymph nodes is of great importance for patient management. Misdiagnosing benign glandular inclusions for metastasis could potentially lead to incorrect tumor staging. Benign salivary gland tissue inclusions should be considered in the differential diagnosis when evaluating for metastatic adenocarcinoma. The salivary gland inclusion in pulmonary hilar lymph node may be histogenetically related to the minor salivary glands, which are located within the bronchial submucosa.

  4. Lung disease

    MedlinePlus

    ... the lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often ... the lungs to take up oxygen and release carbon dioxide. These diseases may also affect heart function. An ...

  5. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  6. [Pathology of lung cancer].

    PubMed

    Theegarten, D; Hager, T

    2016-09-01

    Lung cancer is the leading cause of cancer death in men and the second most frequent cause in women. The pathology of lung tumors is of special relevance concerning therapy and prognosis and current classification systems have to be taken into consideration. The results of molecular tissue subtyping allow further classification and therapeutic options. The histological entities are mainly associated with typical X‑ray morphological features. PMID:27495784

  7. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  8. Fourth Primary Malignant Tumor in a Patient with Possible Li-Fraumeni Syndrome: Synchronous Diagnosis of Postirradiation Sarcoma, Cutaneous Relapse of a Previous Soft Tissue Sarcoma, and Lung Adenocarcinoma

    PubMed Central

    Yumrukçal, Feridun; Dirik, Yalin; Çinar, Arda; Eralp, Levent

    2014-01-01

    We present a 46-year-old female patient who is diagnosed with synchronous postirradiation sarcoma, cutaneous relapse of a previous soft tissue sarcoma, and lung adenocarcinoma. More than one malignant tumor at the same time with an accompanying relapse of a previous malignant tumor is a rare entity. A relatively young patient diagnosed with adenocarcinoma of the urethra before age 40, which is an unusual tumor for that age, later three more different malignant tumors being diagnosed, two of which are synchronous, causes the suspicion of Li-Fraumeni syndrome. PMID:25506014

  9. Synchronous Multiple Lung Adenocarcinomas: Estrogen Concentration in Peripheral Lung

    PubMed Central

    Shinchi, Yusuke; Sanada, Mune; Motooka, Yamato; Fujino, Kosuke; Mori, Takeshi; Suzuki, Makoto

    2016-01-01

    Background The detection rate of synchronous multiple lung adenocarcinomas (SMLA), which display multiple ground glass opacity nodules in the peripheral lung, is increasing due to advances in high resolution computed tomography. The backgrounds of multicentric development of adenocarcinoma are unknown. In this study, we quantitated estrogen concentration in the peripheral lungs of postmenopausal female patients with SMLA. Methods The tissue concentration of estrogens (estrone [E1] and estdadiol [E2]) in the noncancerous peripheral lung were measured with liquid chromatography/electrospray tandem mass spectrometry in postmenopausal female patients with lung adenocarcinoma. The expression levels of CYP19A1 in the normal lung were also quantitated with real-time PCR. Thirty patients with SMLA and 79 cases of control patients with single lung adenocarcinoma were analyzed. Results The concentrations of E1 and E2 in the noncancerous tissue were significantly higher in SMLA cases than control cases (P = 0.004 and P = 0.02, respectively). The minor allele (A) of single nucleotide polymorphism rs3764221 were significantly associated with higher concentration of E1 and E2 (P = 0.002 and P = 0.01, respectively) and higher CYP19A1 mRNA expression (P = 0.03). Conclusion The tissue estrogen concentration of peripheral lung was significantly higher in SMLA than control cases. The high concentration of estrogen may be one of the causes of multicentric development of peripheral lung adenocarcinomas. PMID:27526096

  10. Consequences of prolonged inhalation of ozone on f344/n rats: Collaborative studies. Part 3. Effects on complex carbohydrates of lung connective tissue. Research report, April 1991-January 1994

    SciTech Connect

    Radhakrishnamurthy, B.

    1994-09-01

    Glycosaminoglycans are constituents of proteoglycans, which are integral components of lung connective tissue. Changes in the metabolism of glycosaminoglycans have been noted in pulmonary fibrosis and emphysema. The authors studied quantitative and qualitative changes of glycosaminoglycans in the lungs of rats exposed to a range of ozone levels (0, 0.12, 0.5, or 1.0 parts per million) for 20 months. Although wide variations in total glycosaminoglycans concentrations exist among individual animals within each exposure group, regression analyses of data indicated a monotonic and statistically significant decrease of total glycosaminoglycans after ozone exposure. Among individual glycosaminoglycans, hyaluronan, chondroitin 4-sulfate, and chondroitin 6-sulfate levels decreased significantly in animals exposed to ozone when compared with control animals. Heparan sulfate concentration exhibited a significant trend toward increase with increasing doses of ozone, but the difference in heparan sulfate concentration animals exposed to ozone and control animals was not significant. Gel filtration studies of glycosaminoglycans in pooled sampled indicated that the molecular size of hyaluronan in animals exposed to ozone was lower than it was in control animals. The authors noted differences in heparan sulfate`s chemical properties and its affinity to antithrombin III between animals exposed to ozone and control animals. These observations indicate that inhalation of ozone for 20 months affects normal cellular metabolism of proteoglycans, which may contribute to the functional impairment of the lung.

  11. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    NASA Astrophysics Data System (ADS)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  12. Rat heparins. A study of the relative sizes and antithrombin-binding characteristics of heparin proteoglycans, chains and depolymerization products from rat adipose tissue, heart, lungs, peritoneal cavity and skin.

    PubMed Central

    Horner, A A

    1986-01-01

    35S-labelled heparins were recovered from adipose tissue, hearts, lungs, peritoneal cavities and skins of rats given H2(35)SO4. Their purification involved incubation with Pronase, precipitation with cetylpyridinium chloride in 1.0 M-NaCl, gradient elution from DEAE-Sephacel and incubation with chondroitinase ABC. Each product was divided into proteoglycan and "depolymerization products' fractions by gel filtration on Bio-Gel A-15m. Heparin chains were released from a portion of each proteoglycan fraction by beta-elimination with NaOH. Proteoglycans, chains and depolymerization products were separated by gradient elution from a column of antithrombin-agarose into fractions with no affinity, low affinity and high affinity for antithrombin. The relative sizes of the products were determined by gel filtration on columns of Bio-Gel A-50m, A-15m, A-1.5m and A-0.5m. Skin was the major source of heparin and contained the largest proteoglycans and the lowest proportion of depolymerization products. Lungs contained the smallest proteoglycans, the smallest depolymerization products and the highest proportion of depolymerization products. The highest proportions of proteoglycans, chains and depolymerization products with high affinity for antithrombin were found in adipose tissue. The lowest proportions of each of these fractions were found in the peritoneal cavity. The data suggest that there was relatively little biosynthesis of sites with high affinity for antithrombin in peritoneal-cavity mast cells and that heparin catabolism was most active in lungs. Each source of heparin was unique with respect to both biosynthesis and subsequent breakdown of its proteoglycans. PMID:3827837

  13. Probable Phaeoacremonium parasiticum as a cause of cavitary native lung nodules after single lung transplantation.

    PubMed

    Shah, S K; Parto, P; Lombard, G A; James, M A; Beckles, D L; Lick, S; Valentine, V G

    2013-02-01

    Lung nodules after lung transplantation most often represent infection or post-transplant lymphoproliferative disorder in the allograft. Conversely, native lung nodules in single lung transplant recipients are more likely to be bronchogenic carcinoma. We present a patient who developed native lung cavitary nodules. Although malignancy was anticipated, evaluation revealed probable Phaeoacremonium parasiticum infection. Phaeoacremonium parasiticum is a dematiaceous fungus first described as a cause of soft tissue infection in a renal transplant patient. Lung nodules have not been previously described and this is the first case, to our knowledge, of P. parasiticum identified after lung transplantation.

  14. Probable Phaeoacremonium parasiticum as a cause of cavitary native lung nodules after single lung transplantation.

    PubMed

    Shah, S K; Parto, P; Lombard, G A; James, M A; Beckles, D L; Lick, S; Valentine, V G

    2013-02-01

    Lung nodules after lung transplantation most often represent infection or post-transplant lymphoproliferative disorder in the allograft. Conversely, native lung nodules in single lung transplant recipients are more likely to be bronchogenic carcinoma. We present a patient who developed native lung cavitary nodules. Although malignancy was anticipated, evaluation revealed probable Phaeoacremonium parasiticum infection. Phaeoacremonium parasiticum is a dematiaceous fungus first described as a cause of soft tissue infection in a renal transplant patient. Lung nodules have not been previously described and this is the first case, to our knowledge, of P. parasiticum identified after lung transplantation. PMID:23279754

  15. Lung transplant

    MedlinePlus

    Solid organ transplant - lung ... the new lung Have severe disease of other organs Cannot reliably take their medicines Are unable to ... medicines Damage to your kidneys, liver, or other organs from anti-rejection medicines Future risk of certain ...

  16. Lung surgery

    MedlinePlus

    ... Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... You will have general anesthesia before surgery. You will be asleep and unable to feel pain. Two common ways to do surgery on your lungs are thoracotomy and video- ...

  17. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    PubMed

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  18. Detection of EGFR mutation in supernatant, cell pellets of pleural effusion and tumor tissues from non-small cell lung cancer patients by high resolution melting analysis and sequencing.

    PubMed

    Lin, Jie; Gu, Ye; Du, Rui; Deng, Min; Lu, Yaodan; Ding, Yanqing

    2014-01-01

    To determine epidermal growth factor receptor (EGFR) mutation in advanced non-small cell lung cancer (NSCLC) patients and compare the detection efficiency between different sample resources, both high resolution melting (HRM) analysis and direct sequencing method were used to analyze 36 pleural effusion samples and 22 matched biopsy tumor tissues collected from NSCLC patients. For each pleural effusion sample, the supernatant and the cell pellets were examined separately. Among all the 36 cases of pleural effusion samples, 18 mutations of EGFR were found in cell-free supernatant while 13 mutations were found in the cell pellets as detected by HRM analysis. In the 22 matched samples, 13 cases of EGFR mutations were identified in paraffin-embedded biopsy tissue samples, 12 cases in the cell-free supernatant and 9 cases in the cell pellets of pleural effusion. EGFR mutations in 15 cases out of the total 36 pleural effusion samples detected by direct sequencing were also identified by HRM analysis, giving 100% efficiency for HRM method. The results established the important role of HRM as a reliable and efficient method to determine EGFR mutation status and indicated the feasibility of using pleural effusion in replacement of biopsy tissues in particular clinical cases. Furthermore, the cell-free supernatant of pleural effusion might be a better resource for mutation detection than cell pellets.

  19. Increased expression of SVCT2 in a new mouse model raises ascorbic acid in tissues and protects against paraquat-induced oxidative damage in lung.

    PubMed

    Harrison, Fiona Edith; Best, Jennifer Lee; Meredith, Martha Elizabeth; Gamlin, Clare Ruth; Borza, Dorin-Bogdan; May, James Marion; May, James Michael

    2012-01-01

    A new transgenic mouse model for global increases in the Sodium Dependent Vitamin C transporter 2 (SVCT2) has been generated. The SVCT2-Tg mouse shows increased SVCT2 mRNA levels in all organs tested and correspondingly increased ascorbic acid (ASC) levels in all organs except liver. The extent of the increase in transporter mRNA expression differed among mice and among organs. The increased ASC levels did not have any adverse effects on behavior in the SVCT2-Tg mice, which did not differ from wild-type mice on tests of locomotor activity, anxiety, sensorimotor or cognitive ability. High levels of SVCT2 and ASC were found in the kidneys of SVCT2-Tg mice and urinary albumin excretion was lower in these mice than in wild-types. No gross pathological changes were noted in kidneys from SVCT2-Tg mice. SVCT2 immunoreactivity was detected in both SVCT2 and wild-type mice, and a stronger signal was seen in tubules than in glomeruli. Six treatments with Paraquat (3x10 and 3x15 mg/kg i.p.) were used to induce oxidative stress in mice. SVCT2-Tg mice showed a clear attenuation of Paraquat-induced oxidative stress in lung, as measured by F(2)-isoprostanes. Paraquat also decreased SVCT2 mRNA signal in liver, lung and kidney in SVCT2-Tg mice.

  20. Use of A-scan for penetration control during dual-frequency ultrasound thermal therapy of superficial tissues overlaying bone and lung

    NASA Astrophysics Data System (ADS)

    Moros, Eduardo G.; Straube, William L.; Fan, Xiaobing

    1999-05-01

    An ultrasonic system capable of Lateral Power Conformability, Penetration Depth Control (PDC), and the ability to deliver hyperthermia concomitantly with external beam radiation is being developed. PDC is achieved by simultaneously insonating with beams of low (1 MHz) and high (5 MHz) frequency. This paper presents a sono-thermal numerical evaluation of the impact of PDC on thermal dose in the treatment of chest wall volumes. The main goal is to assess the potential advantages of impedance-mismatched interface depth-mapping, using therapy transducers in A-scan mode, to select optimal relative output intensities of the beams as a function of bone and lung depths. Simulation results for a representative chest wall anatomy showed that there exists a strong relationship between optimal relative output intensities and bone/lung depth for maximum thermal dose and minimum muscle-bone interface temperature. Consequently, interface depth-mapping prior to a dual- frequency ultrasound hyperthermia treatment would provide patient-specific data useful for selecting PDC parameters that maximize thermal dose and minimize bone heating.

  1. Treatment of small-cell lung cancer xenografts with iodine-313-anti-neural cell adhesion molecule monoclonal antibody and evaluation of absorbed dose in tissue

    SciTech Connect

    Hosono, Makoto; Endo, Keigo; Hosono, Masako N.

    1994-02-01

    Human small-cell lung cancer (SCLC) is considered a feasible target for immunotherapy using a radiolabeled monoclonal antibody (Mab). A murine Mab, NE150 (IgG1), reacts with the neural cell adhesion molecule, which is identical to cluster 1 antigen of SCLC. To estimate their therapeutic effects, NE150 and an isotype-matched control Mab were labeled with {sup 131}I and administered intravenously as a single dose into athymic mice inoculated with a NCI-H69 SCLC xenograft. The absorbed dose in organs was also examined based upon a long-term biodistribution study of {sup 131}I-NE150. Tumors initial volume 563.4 {plus_minus} 223.5 mm{sup 3} treated with 11.1 MBq (300 {mu}Ci) of {sup 131}I-NE150 diminished and became invisible at days 30-33, demonstrating a 60-day mean growth delay to reach a tripled initial volume compared with sham-treated tumors. Cumulative absorbed doses were estimated to be 2310, 410, 500, 330, and 790 cGy for the tumor, liver, kidney, spleen and lung, respectively. Iodine-131-NE150 had potent therapeutic effects against SCLC transplants in athymic mice, however, careful assessment of the side effects, improvement of radioiodination and chimerization of the Mab might be necessary to achieve efficient targeting in clinical therapeutic applications. 25 refs., 2 figs., 3 tabs.

  2. Increased Expression of SVCT2 in a New Mouse Model Raises Ascorbic Acid in Tissues and Protects against Paraquat-Induced Oxidative Damage in Lung

    PubMed Central

    Harrison, Fiona Edith; Best, Jennifer Lee; Meredith, Martha Elizabeth; Gamlin, Clare Ruth; Borza, Dorin-Bogdan; May, James Michael

    2012-01-01

    A new transgenic mouse model for global increases in the Sodium Dependent Vitamin C transporter 2 (SVCT2) has been generated. The SVCT2-Tg mouse shows increased SVCT2 mRNA levels in all organs tested and correspondingly increased ascorbic acid (ASC) levels in all organs except liver. The extent of the increase in transporter mRNA expression differed among mice and among organs. The increased ASC levels did not have any adverse effects on behavior in the SVCT2-Tg mice, which did not differ from wild-type mice on tests of locomotor activity, anxiety, sensorimotor or cognitive ability. High levels of SVCT2 and ASC were found in the kidneys of SVCT2-Tg mice and urinary albumin excretion was lower in these mice than in wild-types. No gross pathological changes were noted in kidneys from SVCT2-Tg mice. SVCT2 immunoreactivity was detected in both SVCT2 and wild-type mice, and a stronger signal was seen in tubules than in glomeruli. Six treatments with Paraquat (3x10 and 3x15 mg/kg i.p.) were used to induce oxidative stress in mice. SVCT2-Tg mice showed a clear attenuation of Paraquat-induced oxidative stress in lung, as measured by F2-isoprostanes. Paraquat also decreased SVCT2 mRNA signal in liver, lung and kidney in SVCT2-Tg mice. PMID:22558179

  3. Lung Organogenesis

    PubMed Central

    Warburton, David; El-Hashash, Ahmed; Carraro, Gianni; Tiozzo, Caterina; Sala, Frederic; Rogers, Orquidea; De Langhe, Stijn; Kemp, Paul J.; Riccardi, Daniela; Torday, John; Bellusci, Saverio; Shi, Wei; Lubkin, Sharon R; Jesudason, Edwin

    2011-01-01

    Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the “molecular embryology” of the lung was first comprehensively reviewed, new challenges have emerged—and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits. PMID:20691848

  4. Should Patient Setup in Lung Cancer Be Based on the Primary Tumor? An Analysis of Tumor Coverage and Normal Tissue Dose Using Repeated Positron Emission Tomography/Computed Tomography Imaging

    SciTech Connect

    Elmpt, Wouter van; Oellers, Michel; Lambin, Philippe; De Ruysscher, Dirk

    2012-01-01

    Purpose: Evaluation of the dose distribution for lung cancer patients using a patient setup procedure based on the bony anatomy or the primary tumor. Methods and materials: For 39 patients with non-small-cell lung cancer, the planning fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scan was registered to a repeated FDG-PET/CT scan made in the second week of treatment. Two patient setup methods were analyzed based on the bony anatomy or the primary tumor. The original treatment plan was copied to the repeated scan, and target and normal tissue structures were delineated. Dose distributions were analyzed using dose-volume histograms for the primary tumor, lymph nodes, lungs, and spinal cord. Results: One patient showed decreased dose coverage of the primary tumor caused by progressive disease and required replanning to achieve adequate coverage. For the other patients, the minimum dose to the primary tumor did not significantly deviate from the planned dose: -0.2 {+-} 1.7% (p = 0.71) and -0.1 {+-} 1.7% (p = 0.85) for the bony anatomy setup and the primary tumor setup, respectively. For patients (n = 31) with nodal involvement, 10% showed a decrease in minimum dose larger than 5% for the bony anatomy setup and 13% for the primary tumor setup. The mean lung dose exceeded the maximum allowed 20 Gy in 21% of the patients for the bony anatomy setup and in 13% for the primary tumor setup, whereas for the spinal cord this occurred in 10% and 13% of the patients, respectively. Conclusions: In 10% and 13% of patients with nodal involvement, setup based on bony anatomy or primary tumor, respectively, led to important dose deviations in nodal target volumes. Overdosage of critical structures occurred in 10-20% of the patients. In cases of progressive disease, repeated imaging revealed underdosage of the primary tumor. Development of practical ways for setup procedures based on repeated high-quality imaging of all tumor sites during radiotherapy

  5. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways

    PubMed Central

    Cheng, Yi; Lin, Chien-huang; Chen, Jing-Yun; Li, Chien-Hua; Liu, Yu-Tin; Chen, Bing-Chang

    2016-01-01

    Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and

  6. Galactose 6-O-Sulfotransferases Are Not Required for the Generation of Siglec-F Ligands in Leukocytes or Lung Tissue*

    PubMed Central

    Patnode, Michael L.; Cheng, Chu-Wen; Chou, Chi-Chi; Singer, Mark S.; Elin, Matilda S.; Uchimura, Kenji; Crocker, Paul R.; Khoo, Kay-Hooi; Rosen, Steven D.

    2013-01-01

    Eosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor. Only two sulfotransferases are known to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase 1 (C6ST-1). Here we use mice deficient in both KSGal6ST and C6ST-1 to determine whether these sulfotransferases are required for the generation of endogenous Siglec-F ligands. First, we characterize ligand expression on leukocyte populations and find that ligands are predominantly expressed on cell types also expressing Siglec-F, namely eosinophils, neutrophils, and alveolar macrophages. We also detect Siglec-F ligand activity in bronchoalveolar lavage fluid fractions containing polymeric secreted mucins, including MUC5B. Consistent with these observations, ligands in the lung increase dramatically during infection with the parasitic nematode, Nippostrongylus brasiliensis, which is known to induce eosinophil accumulation and mucus production. Surprisingly, Gal6S is undetectable in sialylated glycans from eosinophils and BAL fluid analyzed by mass spectrometry. Furthermore, none of the ligands we describe are diminished in mice lacking KSGal6ST and C6ST-1, indicating that neither of the known galactose 6-O-sulfotransferases is required for ligand synthesis. These results establish that ligands for Siglec-F are present on several cell types that are relevant during allergic lung inflammation and argue against the widely held view that Gal6S is critical for glycan recognition by this receptor. PMID:23880769

  7. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues

    PubMed Central

    Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar

    2015-01-01

    Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062

  8. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  9. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  10. Assessment of Peripheral Lung Mechanics

    PubMed Central

    Bates, Jason H.T.; Suki, Béla

    2008-01-01

    The mechanical properties of the lung periphery are major determinants of overall lung function, and can change dramatically in disease. In this review we examine the various experimental techniques that have provided data pertaining to the mechanical properties of the lung periphery, together with the mathematical models that have been used to interpret these data. These models seek to make a clear distinction between the central and peripheral compartments of the lung by encapsulating functional differences between the conducing airways, the terminal airways and the parenchyma. Such a distinction becomes problematic in disease, however, because of the inevitable onset of regional variations in mechanical behavior throughout the lung. Accordingly, lung models are used both in the inverse sense as vehicles for extracting physiological insight from experimental data, and in the forward sense as virtual laboratories for the testing of specific hypothesis about mechanisms such as the effects of regional heterogeneities. Pathologies such as asthma, acute lung injury and emphysema can alter the mechanical properties of the lung periphery through the direct alteration of intrinsic tissue mechanics, the development of regional heterogeneities in mechanical function, and the complete derecruitment of airspaces due to airway closure and alveolar collapse. We are now beginning to decipher the relative contributions of these various factors to pathological alterations in peripheral lung mechanics, which may eventually lead to the development and assessment of novel therapies. PMID:18463006

  11. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  12. Spectrum of fibrosing diffuse parenchymal lung disease.

    PubMed

    Morgenthau, Adam S; Padilla, Maria L

    2009-02-01

    The interstitial lung diseases are a heterogeneous group of disorders characterized by inflammation and/or fibrosis of the pulmonary interstitium. In 2002, the American Thoracic Society and the European Respiratory Society revised the classification of interstitial lung diseases and introduced the term diffuse parenchymal lung disease. The idiopathic interstitial pneumonias are a subtype of diffuse parenchymal lung disease. The idiopathic interstitial pneumonias are subdivided into usual interstitial pneumonia (with its clinical counterpart idiopathic interstitial pneumonia), nonspecific interstitial pneumonia, cryptogenic organizing pneumonia, acute interstitial pneumonia, desquamative interstitial pneumonia, respiratory bronchiolitis interstitial lung disease, and lymphocytic pneumonia. Sarcoidosis and hypersensitivity pneumonitis are the 2 most common granulomatous diffuse parenchymal lung diseases. Rheumatoid arthritis, systemic sclerosis, and dermatomyositis/polymyositis (causing antisynthetase syndrome) are diffuse parenchymal lung diseases of known association because these conditions are associated with connective tissue disease. Hermansky-Pudlak syndrome is a rare genetic diffuse parenchymal lung disease characterized by the clinical triad of pulmonary disease, oculocutaneous albinism, and bleeding diathesis. This review provides an overview of the chronic fibrosing diffuse parenchymal lung diseases. Its primary objective is to illuminate the clinical challenges encountered by clinicians who manage the diffuse parenchymal lung diseases regularly and to offer potential solutions to those challenges. Treatment for the diffuse parenchymal lung diseases is limited, and for many patients with end-stage disease, lung transplantation remains the best option. Although much has been learned about the diffuse parenchymal lung diseases during the past decade, research in these diseases is urgently needed. PMID:19170214

  13. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  14. Lung Diseases

    MedlinePlus

    When you breathe, your lungs take in oxygen from the air and deliver it to the bloodstream. The cells in your body need oxygen to ... you breathe nearly 25,000 times. People with lung disease have difficulty breathing. Millions of people in ...

  15. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  16. Collapsed lung (pneumothorax)

    MedlinePlus

    Air around the lung; Air outside the lung; Pneumothorax dropped lung; Spontaneous pneumothorax ... Collapsed lung can be caused by an injury to the lung. Injuries can include a gunshot or knife wound ...

  17. Lung disease - resources

    MedlinePlus

    Resources - lung disease ... The following organizations are good resources for information on lung disease : American Lung Association -- www.lung.org National Heart, Lung, and Blood Institute -- www.nhlbi.nih.gov ...

  18. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic

    PubMed Central

    Xiao, Yong-Li; Kash, John C; Beres, Stephen B; Sheng, Zong-Mei; Musser, James M; Taubenberger, Jeffery K

    2013-01-01

    Most biopsy and autopsy tissues are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. The RNA genome of the 1918 pandemic influenza virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Here, the full genome of the 1918 virus at 3000× coverage was determined in one high-throughput sequencing run of a library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments. Bacterial sequences associated with secondary bacterial pneumonias were also detected. Host transcripts were well represented in the library. Compared to a 2009 pandemic influenza virus FFPE post-mortem library, the 1918 sample showed significant enrichment for host defence and cell death response genes, concordant with prior animal studies. This methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of diseases. PMID:23180419

  19. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  20. Intermediate filaments of the lung.

    PubMed

    Yi, Hayan; Ku, Nam-On

    2013-07-01

    Intermediate filaments (IF), a subfamily of the cytoskeletal filaments, provide structural support to cells. Human diseases related to mutations in IF proteins in which their tissue-specific expression is reflected have been found in a broad range of patients. The properties of identified IF mutants are well-studied in vitro in cultured cells and in vivo using transgenic mice expressing IF mutants. However, the association of IF proteins with diseases of the lung is not fully studied yet. Epithelial cells in normal lung express vimentin and various keratins, and the patterns of their expression are altered depending on the progression of the lung diseases. A growing number of studies performed in alveolar epithelial cells demonstrated IF involvement in disease-related aspects including their usefulness as tumor marker, in epithelial-mesenchymal transition and cell migration. However, the lung disease-associated IF functions in animal models are poorly understood, and IF mutations associated with lung diseases in humans have not been reported. In this review, we summarize recent studies that show the significance of IF proteins in lung epithelial cells. Understanding these aspects is an important prerequisite for further investigations on the role of lung IF in animal models and human lung diseases.

  1. Pneumothorax as adverse event in patients with lung metastases of soft tissue sarcoma treated with pazopanib: a single reference centre case series

    PubMed Central

    2014-01-01

    Background Recently, the phase III PALETTE study introduced pazopanib (Votrient®) as treatment for adult patients with locally advanced or metastatic non-liposarcoma soft tissue sarcoma after prior treatment with doxorubicin and/or ifosfamide. Pneumothorax was reported as adverse event in 8 of 246 treated patients (3.3%) in that study. This case series presents the incidence and clinic of this complication in the Leiden University Medical Centre. Cases Forty-three patients were treated with pazopanib of which six patients (14.0%) developed a pneumothorax. These six patients were treated for malignant peripheral nerve sheath tumour, angiosarcoma, synovial sarcoma, fibromyxomatoid sarcoma, pleomorphic sarcoma and endometrial stromal sarcoma. All six patients had subpleural pulmonary or pleural metastases at the start of pazopanib and the pneumothorax developed during or shortly after treatment with pazopanib and was difficult to treat. Discussion The incidence reported by us is higher than the incidence in the PALETTE study. Trials with pazopanib in renal cell carcinoma, urothelial carcinoma and cervix carcinoma did not report pneumothorax as an adverse event, suggesting pneumothorax as a specific adverse event in soft tissue sarcoma patients treated with pazopanib. This may be related to the fact that there is often pleural metastatic involvement and cystic degeneration due to pazopanib treatment may add to the risk. Conclusion The risk of an, often difficult to treat, pneumothorax during pazopanib therapy should be discussed with the patient before initiation of treatment for a pulmonary metastasized sarcoma and physicians should be alert to the occurrence of such an event. PMID:25302110

  2. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  3. TU-A-12A-04: Quantitative Texture Features Calculated in Lung Tissue From CT Scans Demonstrate Consistency Between Two Databases From Different Institutions

    SciTech Connect

    Cunliffe, A; Armato, S; Castillo, R; Pham, N; Guerrero, T; Al-Hallaq, H

    2014-06-15

    Purpose: To evaluate the consistency of computed tomography (CT) scan texture features, previously identified as stable in a healthy patient cohort, in esophageal cancer patient CT scans. Methods: 116 patients receiving radiation therapy (median dose: 50.4Gy) for esophageal cancer were retrospectively identified. For each patient, diagnostic-quality pre-therapy (0-183 days) and post-therapy (5-120 days) scans (mean voxel size: 0.8mm×0.8mm×2.5mm) and a treatment planning scan and associated dose map were collected. An average of 501 32x32-pixel ROIs were placed randomly in the lungs of each pre-therapy scan. ROI centers were mapped to corresponding locations in post-therapy and planning scans using the displacement vector field output by demons deformable registration. Only ROIs with mean dose <5Gy were analyzed, as these were expected to contain minimal post-treatment damage. 140 texture features were calculated in pre-therapy and post-therapy scan ROIs and compared using Bland-Altman analysis. For each feature, the mean feature value change and the distance spanned by the 95% limits of agreement were normalized to the mean feature value, yielding normalized range of agreement (nRoA) and normalized bias (nBias). Using Wilcoxon signed rank tests, nRoA and nBias were compared with values computed previously in 27 healthy patient scans (mean voxel size: 0.67mm×0.67mm×1mm) acquired at a different institution. Results: nRoA was significantly (p<0.001) larger in cancer patients than healthy patients. Differences in nBias were not significant (p=0.23). The 20 features identified previously as having nRoA<20% for healthy patients had the lowest nRoA values in the current database, with an average increase of 5.6%. Conclusion: Despite differences in CT scanner type, scan resolution, and patient health status, the same 20 features remained stable (i.e., low variability and bias) in the absence of disease changes for databases from two institutions. Identification of

  4. Lung xenotransplantation: recent progress and current status.

    PubMed

    Harris, Donald G; Quinn, Kevin J; Dahi, Siamak; Burdorf, Lars; Azimzadeh, Agnes M; Pierson, Richard N

    2014-01-01

    Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many preclinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation--including the seemingly unique challenges posed by this organ-and summarize proven and emerging means of overcoming acute lung xenograft injury.

  5. Particles causing lung disease.

    PubMed Central

    Kilburn, K H

    1984-01-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response, appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. The insidious and probably most important human lung disease due to particles is bronchiolar obstruction and obliteration, producing progressive impairment of air flow. The responsible particle is the complex combination of poorly digestive lipids and complex carbohydrates with active chemicals which we call cigarette smoke. More research is needed to perfect, correct and

  6. Pharmacokinetics of tildipirosin in porcine plasma, lung tissue, and bronchial fluid and effects of test conditions on in vitro activity against reference strains and field isolates of Actinobacillus pleuropneumoniae.

    PubMed

    Rose, M; Menge, M; Bohland, C; Zschiesche, E; Wilhelm, C; Kilp, S; Metz, W; Allan, M; Röpke, R; Nürnberger, M

    2013-04-01

    The pharmacokinetics of tildipirosin (Zuprevo(®) 40 mg/mL solution for injection for pigs), a novel 16-membered-ring macrolide for the treatment for swine respiratory disease (SRD), was investigated in studies collecting blood plasma and postmortem samples of lung tissue and bronchial fluid (BF) from swine. In view of factors influencing the in vitro activity of macrolides, and for the interpretation of tildipirosin pharmacokinetics in relation to minimum inhibitory concentrations (MIC), additional experiments were conducted to study the effects of pH, carbon dioxide-enriched atmosphere, buffers, and serum on tildipirosin MICs for various reference strains and Actinobacillus (A.) pleuropneumoniae field isolates. After single intramuscular (i.m.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.9 μg/mL observed within 23 min (Tmax ). Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half-life (T1/2) both were about 4 days. A dose-response relationship with no significant sex effect is observed for area under the plasma concentration-time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. However, linear dose proportionality could not be proven with statistical methods. The time-concentration profile of tildipirosin in BF and lung far exceeded that in blood plasma. In lung, tildipirosin concentrations reached 3.1 μg/g at 2 h, peaked at 4.3 μg/g at day 1, and slowly declined to 0.8 μg/g at day 17. In BF, tildipirosin levels were 14.3, 7.0, and 6.5 μg/g at days 5, 10, and 14. T1/2 in lung was ∼7 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination. Culture media pH and carbon dioxide-enriched atmosphere (CO2 -EA) had a marked impact on in vitro activity of tildipirosin in reference strains of various rapidly growing aerobic and

  7. Adenosine A2A Agonist Improves Lung Function During Ex-vivo Lung Perfusion

    PubMed Central

    Emaminia, Abbas; LaPar, Damien J.; Zhao, Yunge; Steidle, John F.; Harris, David A.; Linden, Joel; Kron, Irving L.; Lau, Christine L.

    2012-01-01

    Background Ex-vivo lung perfusion (EVLP) is a novel technique to assess, and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against lung ischemia-reperfusion injury through its A2A receptor. We hypothesized that combining EVLP with adenosine A2A receptor agonist treatment would enhance lung functional quality and increase donor lung usage. Methods Eight bilateral pig lungs were harvested and flushed with cold Perfadex. After 14 hours storage at 4°C, EVLP was performed for 5 hours on two explanted lung groups: 1) Control group lungs (n=4), were perfused with Steen Solution and Dimethyl sulfoxide (DMSO), and 2) treated group lungs (n=4) received 10μM CGS21680, a selective A2A receptor agonist, in a Steen Solution-primed circuit. Lung histology, tissue cytokines, gas analysis and pulmonary function were compared between groups. Results Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 vs. 5.2, p<0.03) and confirmed by histology. In addition, treated lung demonstrated significantly lower levels of interferon gamma (45.1 vs. 88.5, p<0.05). Other measured tissue cytokines (interleukin (IL) 1 beta, IL-6, and IL-8) were lower in treatment group, but values failed to reach statistical significance. Oxygenation index was improved in the treated group (1.5 vs. 2.3, p<0.01) as well as mean airway pressure (10.3 vs. 13 p<0.009). Conclusions EVLP is a novel and efficient way to assess and optimize lung function and oxygen exchange within donor lungs, and the use of adenosine A2A agonist potentiates its potential. EVLP with the concomitant administration of A2A agonist may enhance donor lung quality and could increase the donor lung pool for transplantation. PMID:22051279

  8. Particles causing lung disease

    SciTech Connect

    Kilburn, K.H.

    1984-04-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. 164 references, 1 figure, 2 tables.

  9. [Recent findings in fetal lung development: structure, surfactant, lung fluid].

    PubMed

    Schwartze, H

    1990-01-01

    A great deal of lung development takes place after birth; new alveoli continue to develop until 8-11 years. However, the differentiation of epithelial cells is characteristic of the fetal lung from 24 weeks of gestation onwards: this is the point at which the surfactant containing type II cells can first be identified. Lung blood flow and the metabolic rate of type II cells increase in parallel rates the last 20% of the gestation period. The timely synthesis of surfactant depends on the availability of the fetal hormones T3, cortisol and prolactin, whereas this synthesis is inhibited by insulin and testosterone. Endogenous surfactant consists of 80% phosphatidylcholine and 10% protein. A sufficient quantity of surfactant is only available at term. Nowadayx, surfactant deficiency can be treated successfully with various exogenous surfactant preparations. Fetal lung liquid contributes about one half to the amniotic fluid. It is partly secreted by an active transport system. Secretion is inhibited by the stimulation of beta-adrenergic receptors in the lung tissue. The epithelial surface of the alveoli is a barrier which limits protein penetration considerably; lung liquid contains minimal amounts of protein. Under pathological conditions (RDS, haemorrhagic lung oedema) the alveolar barrier is disturbed so that plasma protein penetrate into the air spaces and form hyaline membranes.

  10. Implantation of fibrin gel on mouse lung to study lung-specific angiogenesis.

    PubMed

    Mammoto, Tadanori; Mammoto, Akiko

    2014-01-01

    Recent significant advances in stem cell research and bioengineering techniques have made great progress in utilizing biomaterials to regenerate and repair damage in simple tissues in the orthopedic and periodontal fields. However, attempts to regenerate the structures and functions of more complex three-dimensional (3D) organs such as lungs have not been very successful because the biological processes of organ regeneration have not been well explored. It is becoming clear that angiogenesis, the formation of new blood vessels, plays key roles in organ regeneration. Newly formed vasculatures not only deliver oxygen, nutrients and various cell components that are required for organ regeneration but also provide instructive signals to the regenerating local tissues. Therefore, to successfully regenerate lungs in an adult, it is necessary to recapitulate the lung-specific microenvironments in which angiogenesis drives regeneration of local lung tissues. Although conventional in vivo angiogenesis assays, such as subcutaneous implantation of extracellular matrix (ECM)-rich hydrogels (e.g., fibrin or collagen gels or Matrigel - ECM protein mixture secreted by Engelbreth-Holm-Swarm mouse sarcoma cells), are extensively utilized to explore the general mechanisms of angiogenesis, lung-specific angiogenesis has not been well characterized because methods for orthotopic implantation of biomaterials in the lung have not been well established. The goal of this protocol is to introduce a unique method to implant fibrin gel on the lung surface of living adult mouse, allowing for the successful recapitulation of host lung-derived angiogenesis inside the gel. This approach enables researchers to explore the mechanisms by which the lung-specific microenvironment controls angiogenesis and alveolar regeneration in both normal and pathological conditions. Since implanted biomaterials release and supply physical and chemical signals to adjacent lung tissues, implantation of these

  11. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  12. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  13. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches

    PubMed Central

    Akram, Khondoker M.; Patel, Neil; Spiteri, Monica A.; Forsyth, Nicholas R.

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  14. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer. PMID:25864755

  15. Microdosimetry of plutonium in beagle dog lung

    SciTech Connect

    Fisher, D.R.; Roesch, W.C.

    1980-08-01

    A better understanding of the microdosimetry of internally-deposited radionuclides should provide new clues to the complex relationships between organ dose distribution and early or late biological effects. Our current interest is the microdosimetry of plutonium and other alpha emitters in the lung. Since the lung is an inhomogeneous tissue, it was necessary to characterize the microscopic distributions of alveolar tissue, air space, and epithelial cell nuclei to define source-target parameters. A statistical representation of the microstructure of beagle dog lung was developed from automated image analysis of specimens from three healthy adult male dogs. The statistical distributions obtained constituted a data base from which it was possible to calculate both the energy dissipation of an alpha particle as it traversed a straight line path through pulmonary tissue, and the probability of intersecting a potentially sensitive biological site in the cell. Computer methods were modified to accomodate tissues with air space regions such as one finds in lung tissue. With the lung model description, these methods were used to determine probability density curves in specific energy for inhaled plutonium aerosols. It was assumed that the activity was randomly distributed on alveolar walls. Calculated examples are given for various activities of inhaled plutonium point sources deposited in lung tissue.

  16. Carotenoids and lung cancer prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular actions of carotenoids is critical for human studies involving carotenoids for prevention of lung cancer and cancers at other tissue sites. While the original hypothesis prompting the beta-carotene intervention trials was that beta-carotene exerts beneficial effects thro...

  17. Classification and Pathology of Lung Cancer.

    PubMed

    Zheng, Min

    2016-07-01

    Advancement in the understanding of lung tumor biology enables continued refinement of lung cancer classification, reflected in the recently introduced 2015 World Health Organization classification of lung cancer. In small biopsy or cytology specimens, special emphasis is placed on separating adenocarcinomas from the other lung cancers to effectively select tumors for targeted molecular testing. In resection specimens, adenocarcinomas are further classified based on architectural pattern to delineate tissue types of prognostic significance. Neuroendocrine tumors are divided into typical carcinoid, atypical carcinoid, small cell carcinoma, and large cell neuroendocrine carcinoma based on a combination of features, especially tumor cell proliferation rate. PMID:27261908

  18. [Developing surgical options for lung cancer].

    PubMed

    Sihvo, Eero

    2016-01-01

    The selection of correct treatment for lung cancer is multidisciplinary collaboration and requires careful assessment of the extent of the tumor and the condition of the patient. In localized non-small cell lung cancer, mere surgery or surgery in combination with adjuvant therapies are the best options for curing the disease. The trend in modern surgery is mini-invasiveness and preservation of lung tissue. Accordingly, any unit conducting lung cancer operations should have access to all modern techniques in order to provide each patient with optimal, patient-tailored surgical therapy. PMID:27132298

  19. Open lung biopsy

    MedlinePlus

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia , which means you are asleep and pain- ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  20. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  1. Tsunami lung.

    PubMed

    Inoue, Yoshihiro; Fujino, Yasuhisa; Onodera, Makoto; Kikuchi, Satoshi; Shozushima, Tatsuyori; Ogino, Nobuyoshi; Mori, Kiyoshi; Oikawa, Hirotaka; Koeda, Yorihiko; Ueda, Hironobu; Takahashi, Tomohiro; Terui, Katsutoshi; Nakadate, Toshihide; Aoki, Hidehiko; Endo, Shigeatsu

    2012-04-01

    We encountered three cases of lung disorders caused by drowning in the recent large tsunami that struck following the Great East Japan Earthquake. All three were females, and two of them were old elderly. All segments of both lungs were involved in all the three patients, necessitating ICU admission and endotracheal intubation and mechanical ventilation. All three died within 3 weeks. In at least two cases, misswallowing of oil was suspected from the features noted at the time of the detection. Sputum culture for bacteria yielded isolation of Stenotrophomonas maltophilia, Legionella pneumophila, Burkholderia cepacia, and Pseudomonas aeruginosa. The cause of tsunami lung may be a combination of chemical induced pneumonia and bacterial pneumonia.

  2. A Cross-Platform Comparison of Genome-Wide Expression Changes of Laser Microdissected Lung Tissue of C-Raf Transgenic Mice Using 3′IVT and Exon Array

    PubMed Central

    Londhe, Kishor Bapu; Borlak, Juergen

    2012-01-01

    Microarrays are widely used to study genome-wide gene expression changes in different conditions most notably disease, growth, or to investigate the effects of drugs on entire genomes. While the number and gene probe sequences to investigate individual gene expression changes differs amongst manufactures, the design for all of the probes is biased towards the 3′ region. With the advent of exon arrays, transcripts of any known or predicted exon can be investigated to facilitate the study of genome-wide alternative splicing events. Thus, the use of exon arrays provides unprecedented opportunities in gene expression studies. However, it remains a major challenge to directly compare gene expression data derived from oligonucleotide to exon arrays. In the present study, genome-wide expression profiling of Laser Micro-dissected Pressure Catapulted (LMPC) samples of c-Raf mouse lung adenocarcinoma, dysplasia, unaltered transgenic and non-transgenic tissues was performed using the Affymetrix GeneChip Mouse Genome 430 2.0 Array and whole genome Mouse Exon 1.0 ST Array. Based on individual group comparisons 52 to 83% of regulated genes were similar in direction, but fold changes of regulated genes disagreed when data amongst the two platforms were compared. Furthermore, for 27 regulated genes opposite direction of gene expression was observed when the two platforms were compared pointing to the need to assess alternative splicing events at the 3′ end. Taken collectively, exon arrays can be performed even with laser microdissected samples but fold change gene expression changes differ considerably between 3′IVT array and exon arrays with alternative splicing events contributing to apparent differences in gene expression changes. PMID:22815814

  3. Rat heparan sulphates. A study of the antithrombin-binding properties of heparan sulphate chains from rat adipose tissue, brain, carcase, heart, intestine, kidneys, liver, lungs, skin and spleen.

    PubMed Central

    Horner, A A

    1990-01-01

    Adult male rats were given [35S]sulphate intraperitoneally. Heparan [35S]sulphate (HS) chains were recovered from adipose tissue, brain, carcase, heart, intestine, kidneys, liver, lungs, skin and spleen by digestion with Pronase, precipitation with cetylpyridinium chloride, digestion with chondroitin ABC lyase and DNAase and gradient elution from DEAE-Sephacel. Purity was confirmed by agarose-gel electrophoresis and degradation with HNO2. Fractionation by gradient elution from antithrombin-agarose indicated that the proportion of HS with high binding affinity for antithrombin (HA-HS) ranged from 4.7% (kidneys) to 21.5% (brain). On a mass basis the major sources of HA-HS were carcase, skin and intestine. HA-HS from intestine was arbitrarily divided into subfractions I-VI, with anticoagulant activities ranging from 1 to 60 units/mg [by amidolytic anti-(Factor IIa) assay] and from 4 to 98 units/mg [by amidolytic anti-(Factor Xa) assay], indicating that the antithrombin-binding-site densities of HA-HS chains covered a wide range, as shown previously for rat HA-heparin chains [Horner, Kusche, Lindahl & Peterson (1988) Biochem. J. 251, 141-145]. HA-HS subfractions II, IV and VI were mixed with samples of HA-[3H]heparin chains and rechromatographed on antithrombin-agarose. Affinity for matrix-bound antithrombin did not correlate with anticoagulant activity, e.g. HA-HS subfraction IV [38 anti-(Factor Xa) units/mg] was co-eluted with HA-heparin chains [127 anti-(Factor Xa) units/mg]. Images Fig. 2. PMID:2138457

  4. Understanding and Preventing Lung Cancer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Lung Cancer Understanding and Preventing Lung Cancer Past Issues / Winter 2013 Table of Contents ... Winslow, U.S. Govt. has certain rights What is Lung Cancer Lung cancer forms in tissues of the ...

  5. Pulmonary Endogenous Fluorescence Allows the Distinction of Primary Lung Cancer from the Perilesional Lung Parenchyma

    PubMed Central

    Benoit, Charlotte; Farcy, René; Garcia, Stéphane; Secq, Veronique; Gaubert, Jean-Yves; Trousse, Delphine; Orsini, Bastien; Doddoli, Christophe; Moniz-Koum, Helene; Thomas, Pascal Alexandre; D’journo, Xavier Benoit

    2015-01-01

    Background Pre-therapeutic pathological diagnosis is a crucial step of the management of pulmonary nodules suspected of being non small cell lung cancer (NSCLC), especially in the frame of currently implemented lung cancer screening programs in high-risk patients. Based on a human ex vivo model, we hypothesized that an embedded device measuring endogenous fluorescence would be able to distinguish pulmonary malignant lesions from the perilesional lung tissue. Methods Consecutive patients who underwent surgical resection of pulmonary lesions were included in this prospective and observational study over an 8-month period. Measurements were performed back table on surgical specimens in the operative room, both on suspicious lesions and the perilesional healthy parenchyma. Endogenous fluorescence signal was characterized according to three criteria: maximal intensity (Imax), wavelength, and shape of the signal (missing, stable, instable, photobleaching). Results Ninety-six patients with 111 suspicious lesions were included. Final pathological diagnoses were: primary lung cancers (n = 60), lung metastases of extra-thoracic malignancies (n = 27) and non-tumoral lesions (n = 24). Mean Imax was significantly higher in NSCLC targeted lesions when compared to the perilesional lung parenchyma (p<0,0001) or non-tumoral lesions (p<0,0001). Similarly, photobleaching was more frequently found in NSCLC than in perilesional lung (p<0,0001), or in non-tumoral lesions (p<0,001). Respective associated wavelengths were not statistically different between perilesional lung and either primary lung cancers or non-tumoral lesions. Considering lung metastases, both mean Imax and wavelength of the targeted lesions were not different from those of the perilesional lung tissue. In contrast, photobleaching was significantly more frequently observed in the targeted lesions than in the perilesional lung (p≤0,01). Conclusion Our results demonstrate that endogenous fluorescence applied to the

  6. Intensity-Modulated Proton Therapy Reduces the Dose to Normal Tissue Compared With Intensity-Modulated Radiation Therapy or Passive Scattering Proton Therapy and Enables Individualized Radical Radiotherapy for Extensive Stage IIIB Non-Small-Cell Lung Cancer: A Virtual Clinical Study

    SciTech Connect

    Zhang Xiaodong; Li Yupeng; Pan Xiaoning; Xiaoqiang, Li; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2010-06-01

    Purpose: To compare dose volume histograms of intensity-modulated proton therapy (IMPT) with those of intensity-modulated radiation therapy (IMRT) and passive scattering proton therapy (PSPT) for the treatment of stage IIIB non-small-cell lung cancer (NSCLC) and to explore the possibility of individualized radical radiotherapy. Methods and Materials: Dose volume histograms designed to deliver IMRT at 60 to 63 Gy, PSPT at 74 Gy, and IMPT at the same doses were compared and the use of individualized radical radiotherapy was assessed in patients with extensive stage IIIB NSCLC (n = 10 patients for each approach). These patients were selected based on their extensive disease and were considered to have no or borderline tolerance to IMRT at 60 to 63 Gy, based on the dose to normal tissue volume constraints (lung volume receiving 20 Gy [V20] of <35%, total mean lung dose <20 Gy; spinal cord dose, <45 Gy). The possibility of increasing the total tumor dose with IMPT for each patient without exceeding the dose volume constraints (maximum tolerated dose [MTD]) was also investigated. Results: Compared with IMRT, IMPT spared more lung, heart, spinal cord, and esophagus, even with dose escalation from 63 Gy to 83.5 Gy, with a mean MTD of 74 Gy. Compared with PSPT, IMPT allowed further dose escalation from 74 Gy to a mean MTD of 84.4 Gy (range, 79.4-88.4 Gy) while all parameters of normal tissue sparing were kept at lower or similar levels. In addition, IMPT prevented lower-dose target coverage in patients with complicated tumor anatomies. Conclusions: IMPT reduces the dose to normal tissue and allows individualized radical radiotherapy for extensive stage IIIB NSCLC.

  7. RADIOAUTOGRAPHY OF CHOLESTEROL IN LUNG

    PubMed Central

    Darrah, Hilary K.; Hedley-Whyte, John; Hedley-Whyte, E. Tessa

    1971-01-01

    30 Swiss albino mice aged 8 days were injected intraperitoneally with 0.2 ml of a solution of 4% N,N-dimethyl-formamide in 5% dextrose in water containing cholesterol-1,2-3H (∼1 mCi/ml). Lung tissue was embedded in an Epon mixture after either acetone and propylene oxide dehydration, partial ethanol and Epon 812 dehydration, or the precipitation of cholesterol by digitonin succeeded by partial dehydration. The distribution of cholesterol-1,2-3H in lung parenchyma in 1µ Epon section radioautograms was compared with that in frozen section radioautograms and was found to be independent of the manner of tissue processing. Grain distribution in the tissue was essentially the same whether 16, 63, 93, or 100% radioactivity was retained in the lung. However, grain distribution in the alveolar spaces differed, presumably due to displacement of pulmonary surfactant, which contains cholesterol. Intracellular distribution of cholesterol, in electron microscope radioautograms, was the same with either 51% or 93% retention of radioactivity in the lung. Loss of radioactivity into the various processing solutions was monitored. The various processing techniques have different drawbacks. PMID:19866763

  8. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect

    Traub, Richard J.

    2008-10-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  9. Mucoepidermoid tumors of the lung.

    PubMed

    Yousem, S A; Hochholzer, L

    1987-09-15

    Mucoepidermoid tumors of lung (MET) are rare tumors derived from the minor salivary gland tissue of the proximal tracheobronchial tree. The authors studied 58 cases of MET confined to the lung and used criteria derived from similar tumors of the salivary glands to separate them into low-grade and high-grade variants. The overwhelming majority of low-grade tumors behaved in a benign fashion, whereas 23% of high-grade tumors resulted in patient death. Prognostic factors which appeared to predict future aggressive behavior included high-grade classification, advanced stage at presentation, and perhaps lymph node metastases.

  10. Human Lung Angiotensin Converting Enzyme

    PubMed Central

    Friedland, Joan; Silverstein, Emanuel; Drooker, Martin; Setton, Charlotte

    1981-01-01

    inactivation. Antibody to human lung angiotensin converting enzyme has permitted tissue localization of the enzyme, which appears to be clinically useful in diseases associated with abnormal abundance of angiotensin-converting enzyme in tissues, such as sarcoidosis. Images PMID:6259212

  11. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    PubMed

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  12. Effects of pulmonary ischemia on lung morphology.

    PubMed

    Fields, Michael J; Bishai, John M; Mitzner, Wayne; Wagner, Elizabeth M

    2007-07-01

    Pulmonary ischemia resulting from chronic pulmonary embolism leads to proliferation of the systemic circulation within and surrounding the lung. However, it is not clear how well alveolar tissue is sustained during the time of complete pulmonary ischemia. In the present study, we investigated how pulmonary ischemia after left pulmonary artery ligation (LPAL) would alter lung mechanical properties and morphology. In this established mouse model of lung angiogenesis after chronic LPAL (10), we evaluated lung function and structure before (3 days) and after (14 days) a functional systemic circulation to the left lung is established. Age-matched naïve and sham-operated C57Bl/6 mice and mice undergoing chronic LPAL were studied. Left and right lung pressure-volume relationships were determined. Next, lungs were inflated in situ with warmed agarose (25-30 cmH(2)O) and fixed, and mean chord lengths (MCL) of histological sections were quantified. MCL of naïve mice averaged 43.9 +/- 1.8 mum. No significant changes in MCL were observed at either time point after LPAL. Left lung volumes and specific compliances were significantly reduced 3 days after LPAL. However, by 14 days after LPAL, lung pressure-volume relationships were not different from controls. These results suggest that severe pulmonary ischemia causes changes in lung mechanics early after LPAL that are reversed by the time a new systemic vasculature is known to perfuse pulmonary capillaries. The LPAL model thus affords a unique opportunity to study lung functional responses to tissue ischemia and subsequent recovery. PMID:17449796

  13. Applying Biotechnology and Bioengineering to Pediatric Lung Disease: Emerging Paradigms and Platforms

    PubMed Central

    Colvin, Kelley L.; Yeager, Michael E.

    2015-01-01

    Pediatric lung diseases remain a costly worldwide health burden. For many children with end-stage lung disease, lung transplantation remains the only therapeutic option. Due to the limited number of lungs available for transplantation, alternatives to lung transplant are desperately needed. Recently, major improvements in tissue engineering have resulted in newer technology and methodology to develop viable bioengineered lungs. These include critical advances in lung cell biology, stem cell biology, lung extracellular matrix, microfabrication techniques, and orthotopic transplantation of bioartificial lungs. The goal of this short review is to engage the reader’s interest with regard to these emerging concepts and to stimulate their interest to learn more. We review the existing state of the art of lung tissue engineering, and point to emerging paradigms and platforms in the field. Finally, we summarize the challenges and unmet needs that remain to be overcome. PMID:26106589

  14. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer

    PubMed Central

    2013-01-01

    Background Epidermal growth factor receptor (EGFR) gene mutations identify patients with non-small cell lung cancer (NSCLC) who have a high likelihood of benefiting from treatment with anti-EGFR tyrosine kinase inhibitors. Sanger sequencing is widely used for mutation detection but can be technically challenging, resulting in longer turn-around-time, with limited sensitivity for low levels of mutations. This manuscript details the technical performance verification studies and external clinical reproducibility studies of the cobas EGFR Mutation Test, a rapid multiplex real-time PCR assay designed to detect 41 mutations in exons 18, 19, 20 and 21. Methods The assay’s limit of detection was determined using 25 formalin-fixed paraffin-embedded tissue (FFPET)-derived and plasmid DNA blends. Assay performance for a panel of 201 specimens was compared against Sanger sequencing with resolution of discordant specimens by quantitative massively parallel pyrosequencing (MPP). Internal and external reproducibility was assessed using specimens tested in duplicate by different operators, using different reagent lots, instruments and at different sites. The effects on the performance of the cobas EGFR test of endogenous substances and nine therapeutic drugs were evaluated in ten FFPET specimens. Other tests included an evaluation of the effects of necrosis, micro-organisms and homologous DNA sequences on assay performance, and the inclusivity of the assay for less frequent mutations. Results A >95% hit rate was obtained in blends with >5% mutant alleles, as determined by MPP analysis, at a total DNA input of 150 ng. The overall percent agreement between Sanger sequencing and the cobas test was 96.7% (negative percent agreement 97.5%; positive percent agreement 95.8%). Assay repeatability was 98% when tested with two operators, instruments, and reagent lots. In the external reproducibility study, the agreement was > 99% across all sites, all operators and all reagent lots

  15. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  16. Rheumatoid lung disease

    MedlinePlus

    Lung disease - rheumatoid arthritis; Rheumatoid nodules; Rheumatoid lung ... Elsevier Saunders; 2016:chap 65. Lake F, Proudman S. Rheumatoid arthritis and lung disease: from mechanisms to a practical approach. Semin Respir ...

  17. How Lungs Work

    MedlinePlus

    ... Health and Diseases > How Lungs Work How Lungs Work The Respiratory System Your lungs are part of ... Parts of the Respiratory System and How They Work Airways SINUSES are hollow spaces in the bones ...

  18. Lung Carcinoid Tumor: Surgery

    MedlinePlus

    ... for lung carcinoid tumor symptoms Surgery to treat lung carcinoid tumors Surgery is the main treatment for ... often be cured by surgery alone. Types of lung surgery Different operations can be used to treat ( ...

  19. Intravital microscopy of the lung: minimizing invasiveness.

    PubMed

    Fiole, Daniel; Tournier, Jean-Nicolas

    2016-09-01

    In vivo microscopy has recently become a gold standard in lung immunology studies involving small animals, largely benefiting from the democratization of multiphoton microscopy allowing for deep tissue imaging. This technology represents currently our only way of exploring the lungs and inferring what happens in human respiratory medicine. The interest of lung in vivo microscopy essentially relies upon its relevance as a study model, fulfilling physiological requirements in comparison with in vitro and ex vivo experiments. However, strategies developed in order to overcome movements of the thorax caused by breathing and heartbeats remain the chief drawback of the technique and a major source of invasiveness. In this context, minimizing invasiveness is an unavoidable prerequisite for any improvement of lung in vivo microscopy. This review puts into perspective the main techniques enabling lung in vivo microscopy, providing pros and cons regarding invasiveness. PMID:26846880

  20. Fly ash lung: a new pneumoconiosis

    SciTech Connect

    Golden, E.B.; Warnock, M.L.; Hulett, L.D. Jr.; Churg, A.M.

    1982-01-01

    A laborer who worked in a steel mill and in a shipyard developed a nonspecific pulmonary interstitial fibrosis. Postmortem samples of his lung were digested, and the inorganic material present was extracted and examined using transmission electron microscopy, electron diffraction, and electron microprobe analysis. Uncoated asbestos fibers were present (1.4 X 10(5)/g wet lung), but the surprising finding was the presence of a large number of fly ash particles (6 X 10(6)/g wet lung). Fly ash, the particulate material produced during coal combustion, has not previously been reported to be present in human lung tissue. Although the contribution of the asbestos to this man's lung disease is uncertain, we believe, based on previous studies implicating aluminum silicates in pneumoconiosis, that the fly ash, an aluminum silicate, may be a contributing factor.

  1. [Lung cavities, mycetomas and hemoptysis].

    PubMed

    Domej, Wolfgang; Hermann, Josef; Krause, Robert; Wehrschütz, Martin; Maier, Alfred; Flögel, Erich

    2007-01-01

    Pulmonary mycetomas, or fungus balls, consist of spherical masses of mycelia and hyphae, fibrin and granulocytes that grow and partly fill cavitary lesions without invading tissue. They are usually caused by molds of the Aspergillus species, rarely by Mucor or yeast fungi such as Candida species, that colonize damaged lung tissue. Hemoptysis is the most frequent symptom. Since systemic and local administration of antifungal agents is of uncertain efficacy, resectional surgery should be the treatment of choice in cases of severe hemoptysis, if lung function is not severely compromised. As pulmonary resection in the form of lobectomy or pneumonectomy is associated with raised mortality, cavernostomy and cavernoplasty may be options for high-risk patients. PMID:18030549

  2. [Lung cavities, mycetomas and hemoptysis].

    PubMed

    Domej, Wolfgang; Hermann, Josef; Krause, Robert; Wehrschütz, Martin; Maier, Alfred; Flögel, Erich

    2007-01-01

    Pulmonary mycetomas, or fungus balls, consist of spherical masses of mycelia and hyphae, fibrin and granulocytes that grow and partly fill cavitary lesions without invading tissue. They are usually caused by molds of the Aspergillus species, rarely by Mucor or yeast fungi such as Candida species, that colonize damaged lung tissue. Hemoptysis is the most frequent symptom. Since systemic and local administration of antifungal agents is of uncertain efficacy, resectional surgery should be the treatment of choice in cases of severe hemoptysis, if lung function is not severely compromised. As pulmonary resection in the form of lobectomy or pneumonectomy is associated with raised mortality, cavernostomy and cavernoplasty may be options for high-risk patients.

  3. Molecular diagnosis in lung diseases.

    PubMed

    Calabrese, Fiorella; Lunardi, Francesca; Popper, Helmut

    2015-01-01

    The development of different molecular biology techniques in the past decade has led to an explosion of new research in molecular pathology with consequent important applications to diagnosis, prognosis, and therapeutics, as well as a clearer concept of the disease pathogenesis. Many methods used in molecular pathology are now validated and used in several areas of pathological diagnosis, particularly on infectious and neoplastic diseases. The spectrum of infectious diseases, especially lung infective diseases, is now broadening and modifying, thus the pathologist is increasingly involved in the diagnosis of these pathologies. The precise tissue characterization of lung infections has an important impact on specific therapeutic treatment. Increased knowledge of significant alterations in lung cancer has led today to a better understanding of the pathogenic substrate underlying the development, progression and metastasis of neoplastic processes. Molecular tests are now routinely performed in different lung tumors allowing a more precise patient stratification in terms of prognosis and therapy. This review focuses on molecular pathology of the principal infective lung diseases and tumors.

  4. Undifferentiated connective tissue disease with pulmonary involvement.

    PubMed

    Arjun, P; Ameer, K A; Sasikumar, S; Rajalakshmi, A; Hari, T A; Thomas, Mathew

    2011-03-01

    Pulmonary involvement in collagen vascular diseases is extremely common. It is usually seen in the well described dyscollagenoses and in mixed connective tissue diseases (MCTD). However, there is a lesser known entity called Undifferentiated Connective Tissue Disease (UCTD) which can also involve the lung. We herein present a case of a young man who was detected to have lung involvement secondary to UCTD. PMID:21751630

  5. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation.

    PubMed

    Wang, Changsong; Dong, Ran; Wang, Xiaoyang; Lian, Ailing; Chi, Chunjie; Ke, Chaofu; Guo, Lei; Liu, Shanshan; Zhao, Wei; Xu, Guowang; Li, Enyou

    2014-01-01

    In this study, single-lung ventilation was used to detect differences in the volatile organic compound (VOCs) profiles between lung tissues in healthy and affected lungs. In addition, changes that occurred after lung cancer resection in both the VOCs profiles of exhaled breath from ipsilateral and contralateral lungs and the VOCs profiles of exhaled breath and blood sample headspaces were also determined. Eighteen patients with non-small cell carcinoma were enrolled. Alveolar breath samples were taken separately from healthy and diseased lungs before and after the tumor resection. Solid phase microextraction-gas chromatography/mass spectrometry was used to assess the exhaled VOCs of the study participants. The VOCs exhibited significant differences between the contralateral and ipsilateral lungs before surgery, the contralateral and ipsilateral lungs after surgery, the ipsilateral lungs before and after surgery, and the blood samples from before and after surgery; 12, 19, 12 and 5 characteristic metabolites played decisive roles in sample classification, respectively. 2,2-Dimethyldecane, tetradecane, 2,2,4,6,6-pentamethylheptane, 2,3,4-trimethyldecane, nonane, 3,4,5,6-tetramethyloctane, and hexadecane may be generated from lipid peroxidation during surgery. Caprolactam and propanoic acid may be more promising exhaled breath biomarkers for lung cancer. PMID:25482491

  6. Role of lymphatics in removal of sheep lung surfactant lipid.

    PubMed

    Tarpey, M M; O'Brodovich, H M; Young, S L

    1983-04-01

    To study the role of lung lymphatics in the removal of surfactant lipid from the sheep lung, we injected [1-14C]palmitate intravenously into six animals previously fitted with a cannula draining the caudal mediastinal lymph node. Lung lymph was collected for 100 h after injection of radiolabel. We obtained alveolar lavage material through a tracheostomy in four other animals after intravenous injection of [9,10-3H]palmitate. We measured radioactivity at several time points in lipid extracts from lymph, lavage fluid, and lung tissue. Alveolar lavage disaturated phosphatidylcholine (DSPC) specific activity peaked at about 40 h and was reduced to 30% of this value by 82 h. About 2% of the injected radiolabel was incorporated into lung tissue lipids. Only 4% of the level of labeling achieved in lung tissue lipids was found in lung lymph lipid during 100 h of lymph collection. Sixty-three percent of radiolabel in lymph lipid was recovered in phospholipids, and 29% of phospholipid radiolabel was found in DSPC. The distribution of phosphorus and palmitate radiolabel in lung lymph phospholipid did not closely resemble that of surfactant lipid. No rise in lung lymph DSPC specific activity was observed following the peak in lavage specific activity. If surfactant lipid is removed from the alveolar compartment without extensive recycling, then we conclude that the lung lymphatics do not play a major role in the clearance of surfactant lipid from the alveolar surface. PMID:6687883

  7. Validity of lung correction algorithms

    SciTech Connect

    Tang, W.L.; Khan, F.M.; Gerbi, B.J.

    1986-09-01

    Our studies have compared the ''effective tissue--air ratio (TAR) method'' (ICRU Report No. 24), ''equivalent TAR method,'' and the ''generalized Batho method'' (currently used by the TP-11 computer treatment planning system) with measured results for different energy photon beams using two lung inhomogeneities to simulate a lateral chest field. Significant differences on the order of 3%--15% were found when comparing these various methods with measured values.

  8. Interstitial lung disease

    MedlinePlus

    Diffuse parenchymal lung disease; Alveolitis; Idiopathic pulmonary pneumonitis (IPP) ... The lungs contain tiny air sacs (alveoli), which is where oxygen is absorbed. These air sacs expand with each ...

  9. Lung Xenotransplantation: Recent Progress and Current Status

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; Dahi, Siamak; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many pre-clinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation – including the seemingly unique challenges posed by this organ – and summarize proven and emerging means of overcoming acute lung xenograft injury. PMID:25040467

  10. Stress, deformation, and atelectasis of the lung.

    PubMed

    Fung, Y C

    1975-10-01

    The lung parenchyma as a tissue has a rather unusual stress-strain relationship. A theoretical derivation of this relationship is presented which connects the surface tension and the tissue elastic stress in the alveolar septa with the alveolar geometry. The mathematical expression contains a few meaningful physical constants which can be determined by in vitro and in vivo experiments. With this stress-strain relationship, the general equations of lung mechanics are formulated, and solutions to some simpler problems are presented. First, the equilibrium of a lung subjected to a uniform inflation pressure (definition: alveolar air pressure - intrapleural pressure - pleural tension X mean curvature of pleura) is analyzed, and the stability of the equilibrium states with respect to small perturbations is examined. Second, an exact solution for a lung in a chest under the influence of gravity is presented; the solution is "exact," of course, for only a particular lung, but it can serve as a standard to check numerical procedures being developed in many laboratories. Finally, three types of possible atelectasis-planar, axial, and focal-are analyzed. The planar type can exist in a normally inflated lung, provided the layers of alveoli are forced to collapse toward a plane by some external agent. But axial atelectasis (alveoli collapse into a cylinder) can occur only if the dimension (at which the elastic tension in the alveolar septa vanishes). Similarly, focal atelectasis can occur only if the entire lung is smaller than the resting volume. PMID:1182940

  11. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-04-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. PMID:27065170

  12. 3D lung image retrieval using localized features

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Zrimec, Tatjana; Busayarat, Sata; Müller, Henning

    2011-03-01

    The interpretation of high-resolution computed tomography (HRCT) images of the chest showing disorders of the lung tissue associated with interstitial lung diseases (ILDs) is time-consuming and requires experience. Whereas automatic detection and quantification of the lung tissue patterns showed promising results in several studies, its aid for the clinicians is limited to the challenge of image interpretation, letting the radiologists with the problem of the final histological diagnosis. Complementary to lung tissue categorization, providing visually similar cases using content-based image retrieval (CBIR) is in line with the clinical workflow of the radiologists. In a preliminary study, a Euclidean distance based on volume percentages of five lung tissue types was used as inter-case distance for CBIR. The latter showed the feasibility of retrieving similar histological diagnoses of ILD based on visual content, although no localization information was used for CBIR. However, to retrieve and show similar images with pathology appearing at a particular lung position was not possible. In this work, a 3D localization system based on lung anatomy is used to localize low-level features used for CBIR. When compared to our previous study, the introduction of localization features allows improving early precision for some histological diagnoses, especially when the region of appearance of lung tissue disorders is important.

  13. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma

    PubMed Central

    Cotroneo, Chiara E.; Galvan, Antonella; Noci, Sara; Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Incarbone, Matteo; Palleschi, Alessandro; Rosso, Lorenzo; Santambrogio, Luigi; Dragani, Tommaso A.; Colombo, Francesca

    2016-01-01

    Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue. PMID:27058892

  14. Who Needs a Lung Transplant?

    MedlinePlus

    ... from the NHLBI on Twitter. Who Needs a Lung Transplant? Your doctor may recommend a lung transplant ... lungs to pick up oxygen. Applying to a Lung Transplant Program Lung transplants are done in medical ...

  15. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.

    PubMed

    Zhang, Xiaoming; Osborn, Thomas; Kalra, Sanjay

    2016-09-01

    The purpose of this work was to demonstrate an ultrasound based surface wave elastography (SWE) technique for generating and detecting surface waves on the lung. The motivation was to develop a noninvasive technique for assessing superficial lung tissue disease including interstitial lung disease (ILD). ILD comprises a number of lung disorders in which the lung tissue is stiffened and damaged due to fibrosis of the lung tissue. Currently, chest radiographs and computed tomography (CT) are the most common clinical methods for evaluating lung disease, but they are associated with radiation and cannot measure lung mechanical properties. The novelty of SWE is to develop a noninvasive and nonionizing technique to measure the elastic properties of superficial lung tissue. We propose to generate waves on the lung surface through wave propagation from a local harmonic vibration excitation on the chest through an intercostal space. The resulting surface wave propagation on the lung is detected using an ultrasound probe through the intercostal space. To demonstrate that surface waves can be generated on the lung, an ex vivo muscle-lung model was developed to evaluate lung surface wave generation and detection. In this model, swine muscle was laid atop a swine lung. A vibration excitation of 0.1s 100Hz wave was generated on the muscle surface and the surface waves on the lung were detected using a linear array ultrasound probe at 5MHz. To test its feasibility for patient use, SWE was used to measure both lungs of an ILD patient through eight intercostal spaces. The mean wave speed was 1.71±0.20m/s (±SD) at the functional residual capacity, while the mean wave speed was 2.36±0.33m/s at the total lung capacity. These studies support the feasibility of SWE for noninvasive measurement of elastic properties of lung and demonstrate potential for assessment of ILD. PMID:27392204

  16. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.

    PubMed

    Zhang, Xiaoming; Osborn, Thomas; Kalra, Sanjay

    2016-09-01

    The purpose of this work was to demonstrate an ultrasound based surface wave elastography (SWE) technique for generating and detecting surface waves on the lung. The motivation was to develop a noninvasive technique for assessing superficial lung tissue disease including interstitial lung disease (ILD). ILD comprises a number of lung disorders in which the lung tissue is stiffened and damaged due to fibrosis of the lung tissue. Currently, chest radiographs and computed tomography (CT) are the most common clinical methods for evaluating lung disease, but they are associated with radiation and cannot measure lung mechanical properties. The novelty of SWE is to develop a noninvasive and nonionizing technique to measure the elastic properties of superficial lung tissue. We propose to generate waves on the lung surface through wave propagation from a local harmonic vibration excitation on the chest through an intercostal space. The resulting surface wave propagation on the lung is detected using an ultrasound probe through the intercostal space. To demonstrate that surface waves can be generated on the lung, an ex vivo muscle-lung model was developed to evaluate lung surface wave generation and detection. In this model, swine muscle was laid atop a swine lung. A vibration excitation of 0.1s 100Hz wave was generated on the muscle surface and the surface waves on the lung were detected using a linear array ultrasound probe at 5MHz. To test its feasibility for patient use, SWE was used to measure both lungs of an ILD patient through eight intercostal spaces. The mean wave speed was 1.71±0.20m/s (±SD) at the functional residual capacity, while the mean wave speed was 2.36±0.33m/s at the total lung capacity. These studies support the feasibility of SWE for noninvasive measurement of elastic properties of lung and demonstrate potential for assessment of ILD.

  17. Lung Ultrasound in the Critically Ill Neonate

    PubMed Central

    Lichtenstein, Daniel A; Mauriat, Philippe

    2012-01-01

    Critical ultrasound is a new tool for first-line physicians, including neonate intensivists. The consideration of the lung as one major target allows to redefine the priorities. Simple machines work better than up-to-date ones. We use a microconvex probe. Ten standardized signs allow a majority of uses: the bat sign (pleural line), lung sliding and the A-line (normal lung surface), the quad sign and sinusoid sign indicating pleural effusion regardless its echogenicity, the tissue-like sign and fractal sign indicating lung consolidation, the B-line artifact and lung rockets (indicating interstitial syndrome), abolished lung sliding with the stratosphere sign, suggesting pneumothorax, and the lung point, indicating pneumothorax. Other signs are used for more sophisticated applications (distinguishing atelectasis from pneumonia for instance...). All these disorders were assessed in the adult using CT as gold standard with sensitivity and specificity ranging from 90 to 100%, allowing to consider ultrasound as a reasonable bedside gold standard in the critically ill. The same signs are found, with no difference in the critically ill neonate. Fast protocols such as the BLUE-protocol are available, allowing immediate diagnosis of acute respiratory failure using seven standardized profiles. Pulmonary edema e.g. yields anterior lung rockets associated with lung sliding, making the B-profile. The FALLS-protocol, inserted in a Limited Investigation including a simple model of heart and vessels, assesses acute circulatory failure using lung artifacts. Interventional ultrasound (mainly, thoracocenthesis) provides maximal safety. Referrals to CT can be postponed. CEURF proposes personnalized bedside trainings since 1990. Lung ultrasound opens physicians to a visual medicine. PMID:23255876

  18. Lung Ultrasound in the Critically Ill Neonate.

    PubMed

    Lichtenstein, Daniel A; Mauriat, Philippe

    2012-08-01

    Critical ultrasound is a new tool for first-line physicians, including neonate intensivists. The consideration of the lung as one major target allows to redefine the priorities. Simple machines work better than up-to-date ones. We use a microconvex probe. Ten standardized signs allow a majority of uses: the bat sign (pleural line), lung sliding and the A-line (normal lung surface), the quad sign and sinusoid sign indicating pleural effusion regardless its echogenicity, the tissue-like sign and fractal sign indicating lung consolidation, the B-line artifact and lung rockets (indicating interstitial syndrome), abolished lung sliding with the stratosphere sign, suggesting pneumothorax, and the lung point, indicating pneumothorax. Other signs are used for more sophisticated applications (distinguishing atelectasis from pneumonia for instance...). All these disorders were assessed in the adult using CT as gold standard with sensitivity and specificity ranging from 90 to 100%, allowing to consider ultrasound as a reasonable bedside gold standard in the critically ill. The same signs are found, with no difference in the critically ill neonate. Fast protocols such as the BLUE-protocol are available, allowing immediate diagnosis of acute respiratory failure using seven standardized profiles. Pulmonary edema e.g. yields anterior lung rockets associated with lung sliding, making the B-profile. The FALLS-protocol, inserted in a Limited Investigation including a simple model of heart and vessels, assesses acute circulatory failure using lung artifacts. Interventional ultrasound (mainly, thoracocenthesis) provides maximal safety. Referrals to CT can be postponed. CEURF proposes personnalized bedside trainings since 1990. Lung ultrasound opens physicians to a visual medicine. PMID:23255876

  19. Involvement of MicroRNAs in Lung Cancer Biology and Therapy

    PubMed Central

    Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2011-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030

  20. Interstitial lung disease.

    PubMed

    Cottin, Vincent

    2013-03-01

    This article reviews the most important articles published in interstitial lung disease, as reviewed during the Clinical Year in Review session at the 2012 annual European Respiratory Society Congress in Vienna, Austria. Since the recent international guidelines for the management of idiopathic pulmonary fibrosis (IPF), important new evidence is available. The anti-fibrotic drug pirfenidone has been recently approved in Europe. Other pharmacological agents, especially nintedanib, are still being tested. The so-called triple combination therapy, anticoagulation therapy and endothelin receptor antagonists, especially ambrisentan, are either harmful or ineffective in IPF and are not recommended as treatment. Although the clinical course of IPF is highly variable, novel tools have been developed for individual prediction of prognosis. Acute exacerbations of IPF are associated with increased mortality and may occur with higher frequency in IPF patients with associated pulmonary hypertension. Interstitial lung disease associated with connective tissue disease has been definitely established to have a better long-term survival than IPF. A subset of patients present with symptoms and/or biological autoimmune features, but do not fulfil diagnostic criteria for a given autoimmune disease; this condition is associated with a higher prevalence of nonspecific interstitial pneumonia pattern, female sex and younger age, although survival relevance is unclear.

  1. Bronchoscopy of Lung Cancer

    PubMed Central

    Emslander, H. P.

    1994-01-01

    Lung cancer is a leading cancer site in men and women with a high incidence and mortality rate. Most patients are diagnosed when the disease has already spread. An early, detection and immediate and accurate histological or cytological diagnosis are essential for a hopeful outcome. In most patients, bronchoscopy is the method of choice in establishing a suspected lung neoplasm. With the rigid and flexible method, two complementary techniques are available. The methods bear a very low mortality rate if sufficient monitoring and resuscitative instrumentation is available. Rigid bronchoscopy offers the possibility of obtaining large biopsy specimens from the tumorous tissue and provides an effective tool in the control of major haemorrhage. However, it cannot be used for the inspection of further peripherally located parts of the bronchial system and needs general anaesthesia. In contrast, the flexible method can be quickly and readily performed at practically any location using portable equipment. Bronchi can be inspected up to the 8th order and with bronchial washing, forceps biopsy, brush biopsy and fluorescence bronchoscopy techniques with a high diagnostic yield are available. This holds true, especially if these sampling techniques are used as complementary methods. PMID:18493335

  2. Comparative proteomic analysis of lung tissue from guinea pigs with Leptospiral Pulmonary Haemorrhage Syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, a 2-D guinea pig proteome lung map was used to investigate the pathogenic mechanisms of ...

  3. An analytical study of cryosurgery in the lung.

    PubMed

    Bischof, J C; Bastacky, J; Rubinsky, B

    1992-11-01

    The process of freezing in healthy lung tissue and in tumors in the lung during cryosurgery was modeled using one-dimensional close form techniques and finite difference techniques to determine the temperature profiles and the propagation of the freezing interface in the tissue. A thermal phenomenon was observed during freezing of lung tumors embedded in healthy tissue, (a) the freezing interface suddenly accelerates at the transition between the tumor and the healthy lung, (b) the frozen tumor temperature drops to low values once the freezing interface moves into the healthy lung, and (c) the outer boundary temperature has a point of sharp inflection corresponding to the time at which the tumor is completely frozen.

  4. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  5. Airway and lung remodelling in chronic pulmonary obstructive disease: a role for m