Sample records for noninductive current drive

  1. Deducing noninductive current profile from surface voltage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Wukitch, S.; Hershkowitz, N.

    Solving the resistive diffusion equation in the presence of a noninductive current source determines the time-evolution of the surface voltage. By inverting the problem the current drive profile can be determined from the surface voltage evolution. We show that under wide range of conditions the deduced profile is unique. If the conductivity profile is known, this method can be employed to infer the noninductive current profile, and, ipso facto, the profile of the total current. We discuss the application of this method to analyze the Alfven wave current drive experiments in Phaedrus-T.

  2. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Poli, F. M.; Andre, R. G.; Bertelli, N.; ...

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less

  3. Stable Spheromaks Sustained by Neutral Beam Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R; McLean, H S

    It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.

  4. Stable Spheromaks with Profile Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  5. Non-inductive current drive and transport in high βN plasmas in JET

    NASA Astrophysics Data System (ADS)

    Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors

    2009-05-01

    A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  6. Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2013-10-01

    The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.

  7. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  8. Noninductive RF startup in CDX-U

    NASA Astrophysics Data System (ADS)

    Jones, B.; Majeski, R.; Efthimion, P.; Kaita, R.; Menard, J.; Munsat, T.; Takase, Y.

    1998-11-01

    For the spherical torus (ST) to prove viable as a reactor, it will be necessary to devise techniques for noninductive plasma startup. Initial studies of noninductive plasma initiation have been performed on CDX-U, using the 100 kW high harmonic fast wave (HHFW) system in combination with the 1 kW 2.45 GHz electron cyclotron heating system used for breakdown. Modest density (ne ~ 10^12 cm-3), low temperature (5 eV) plasmas were formed, but the density profile was peaked far off-axis, very near the HHFW antenna. High neutral fill pressures were also required. In upcoming experiments, up to 500 kW of low frequency RF power will utilized for heating and noninductive current drive in the mode conversion regime in a target noninductive plasma formed by a combination of 5.6 and 14 GHz ECH (40 kW total). Modeling will be presented which indicates that startup to plasma currents of 60 kA is feasible with this system.

  9. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  10. Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.

    PubMed

    Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A

    2002-12-23

    Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.

  11. Ebw Assisted Plasma Current Startup in Mast

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Saveliev, Alexander

    2009-04-01

    EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.

  12. Fully non-inductive plasma start-up with lower-hybrid waves using the outboard-launch and top-launch antennas on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke

    2017-10-01

    Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.

  13. Heating and current drive on NSTX

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  14. Non-inductive current driven by Alfvén waves in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1996-08-01

    It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.

  15. Non-inductive current generation in fusion plasmas with turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.

    2017-10-01

    It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  16. Long Pulse Operation on Tore-Supra: Towards Steady State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, P.; Bucalossi, J.; Brosset, C.

    The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.

  17. Advances in the steady-state hybrid regime in DIII-D – a fully non-inductive, ELM-suppressed scenario for ITER

    DOE PAGES

    Petty, Craig C.; Nazikian, Raffi; Park, Jin Myung; ...

    2017-07-19

    Here, the hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n=3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (β ≤ 2.8%) and high confinement (98y2 ≤ 1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n=3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybridmore » plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q = 5 ITER steady-state mission.« less

  18. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, Francesca; Kessel, Charles; Bonoli, Paul; Batchelor, Donald; Harvey, Bob

    2013-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) to reach adequate fusion gain at typical currents of 9 MA. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of external sources that maintain weakly reversed shear profiles and ρ (qmin >= 0 . 5 are the focus of this work. Simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of ITBs could be demonstrated with the baseline configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current (6.2MA) are below the target. Upgrades of the heating and current drive system, like the use of Lower Hybrid current drive, could overcome these limitations. With 30MW of coupled LH in the flattop and operating at the Greenwald density, plasmas can sustain ~ 9 MA and achieve Q ~ 4 . Work supported by the US Department of Energy under DE-AC02-CH0911466.

  19. Numerical modeling of lower hybrid current drive in fully non-inductive plasma start-up experiments on TST-2

    NASA Astrophysics Data System (ADS)

    Tsujii, N.; Takase, Y.; Ejiri, A.; Shinya, T.; Togashi, H.; Yajima, S.; Yamazaki, H.; Moeller, C. P.; Roidl, B.; Sonehara, M.; Takahashi, W.; Toida, K.; Yoshida, Y.

    2017-12-01

    Non-inductive plasma start-up is a critical issue for spherical tokamaks since there is not enough room to provide neutron shielding for the center solenoid. Start-up using lower hybrid (LH) waves has been studied on the TST-2 spherical tokamak. Because of the low magnetic field of a spherical tokamak, the plasma density needs to be kept at a very low value during the plasma current ramp-up so that the plasma core remains accessible to the LH waves. However, we have found that higher density was required to sustain larger plasma current. The achievable plasma current was limited by the maximum operational toroidal field of TST-2. The existence of an optimum density for LH current drive and its toroidal field dependence is explained through a numerical simulation based on a ray tracing code and a Fokker-Planck solver. In order to access higher density at the same magnetic field, a top-launch antenna was recently installed in addition to the existing outboard-launch antenna. Increase in the density limit was observed when the power was launched from the top antenna, consistently with the numerical predictions.

  20. Integrated Scenario Modeling of NSTX Advanced Plasma Configurations

    NASA Astrophysics Data System (ADS)

    Kessel, Charles; Synakowski, Edward

    2003-10-01

    The Spherical Torus will provide an attractive fusion energy source if it can demonstrate the following major features: high elongation and triangularity, 100% non-inductive current with a credible path to high bootstrap fractions, non-solenoidal startup and current rampup, high beta with stabilization of RWM instabilities, and sufficiently high energy confinement. NSTX has specific experimental milestones to examine these features, and integrated scenario modeling is helping to understand how these configurations might be produced and what tools are needed to access this operating space. Simulations with the Tokamak Simulation Code (TSC), CURRAY, and JSOLVER/BALMSC/PEST2 have identified fully non-inductively sustained, high beta plasmas that rely on strong plasma shaping accomplished with a PF coil modification, off-axis current drive from Electron Bernstein Waves (EBW), flexible on-axis heating and CD from High Harmonic Fast Wave (HHFW) and Neutral Beam Injection (NBI), and density control. Ideal MHD stability shows that with wall stabilization through plasma rotation and/or RWM feedback coils, a beta of 40% is achievable, with 100% non-inductive current sustained for 4 current diffusion times. Experimental data and theory are combined to produce a best extrapolation to these regimes, which is continuously improved as the discharges approach these parameters, and theoretical/computational methods expand. Further investigations and development for integrated scenario modeling on NSTX is discussed.

  1. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  2. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  3. Advanced tokamak investigations in full-tungsten ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, A.; Doerk, H.; Fischer, R.; Rittich, D.; Stober, J.; Burckhart, A.; Fable, E.; Geiger, B.; Mlynek, A.; Reich, M.; Zohm, H.; ASDEX Upgrade Team

    2018-05-01

    The appropriate tailoring of the q-profile is the key to accessing Advanced Tokamak (AT) scenarios, which are of great benefit to future all-metal fusion power plants. Such scenarios depend on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering of the electron density ne leads to a strong decrease in the collisionality with increasing electron temperature ν* ˜ Te-3 . Simultaneously, the conditions for low ne also benefit impurity accumulation. This paper reports on how radiative collapses due to central W accumulation were overcome by improved understanding of the changes to recycling and pumping, substantially expanded ECRH capacities for both heating and current drive, and a new solid W divertor capable of withstanding the power loads at low ne. Furthermore, it reports on various improvements to the reliability of the q-profile reconstruction. A candidate steady state scenario for ITER/DEMO (q95 = 5.3, βN = 2.7, fbs > 40%) is presented. The ion temperature profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. A fully non-inductive scenario at higher q95 = 7.1 for current drive model validation is also discussed. The results show that non-inductive operation is principally compatible with full-metal machines.

  4. Advances in the steady-state hybrid regime in DIII-D—a fully non-inductive, ELM-suppressed scenario for ITER

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Nazikian, R.; Park, J. M.; Turco, F.; Chen, Xi; Cui, L.; Evans, T. E.; Ferraro, N. M.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Holcomb, C. T.; Hyatt, A. W.; Kolemen, E.; La Haye, R. J.; Lasnier, C.; Logan, N.; Luce, T. C.; McKee, G. R.; Orlov, D.; Osborne, T. H.; Pace, D. C.; Paz-Soldan, C.; Petrie, T. W.; Snyder, P. B.; Solomon, W. M.; Taylor, N. Z.; Thome, K. E.; Van Zeeland, M. A.; Zhu, Y.

    2017-11-01

    The hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n  =  3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (≤ft< β \\right>   ⩽  2.8%) and high confinement (H98y2  ⩽  1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n  =  3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybrid plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q fus  =  5 ITER steady-state mission.

  5. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    PubMed

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.

  6. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  7. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    DOE PAGES

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  8. Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.

    2015-05-15

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  9. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  10. Long pulse high performance plasma scenario development for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.

    2006-05-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  11. Advanced ST plasma scenario simulations for NSTX

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team

    2005-08-01

    Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.

  12. Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.

    2015-11-01

    Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.

  13. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.

    2017-12-01

    Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.

  14. Using AORSA to simulate helicon waves in DIII-D

    NASA Astrophysics Data System (ADS)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2015-12-01

    Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.

  15. Steady state scenario development with elevated minimum safety factor on DIII-D

    DOE PAGES

    Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...

    2014-08-15

    On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less

  16. External heating and current drive source requirements towards steady-state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.

    2014-07-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.

  17. Current Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulconer, D.W

    2004-03-15

    Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less

  18. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  19. Effect of heating on the suppression of tearing modes in tokamaks.

    PubMed

    Classen, I G J; Westerhof, E; Domier, C W; Donné, A J H; Jaspers, R J E; Luhmann, N C; Park, H K; van de Pol, M J; Spakman, G W; Jakubowski, M W

    2007-01-19

    The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory.

  20. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Qian, J.; Chen, J.; Li, G.; Li, K.; Li, M. H.; Zhai, X.; Bonoli, P.; Brower, D.; Cao, L.; Cui, L.; Ding, S.; Ding, W. X.; Guo, W.; Holcomb, C.; Huang, J.; Hyatt, A.; Lanctot, M.; Lao, L. L.; Liu, H.; Lyu, B.; McClenaghan, J.; Peysson, Y.; Ren, Q.; Shiraiwa, S.; Solomon, W.; Zang, Q.; Wan, B.

    2017-07-01

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2 ~ 1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drive (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.

  1. Using AORSA to simulate helicon waves in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.

    2015-12-10

    Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less

  2. Using AORSA to simulate helicon waves in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola

    2015-01-01

    Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less

  3. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  4. Electron Bernstein waves in spherical torus plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saveliev, A. N.

    2006-11-30

    Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasmamore » interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.« less

  5. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Masanori; Park, Jin Myung; Giruzzi, G.

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less

  6. TRANSP-based Trajectory Optimization of the Current Profile Evolution to Facilitate Robust Non-inductive Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Wehner, William; Schuster, Eugenio; Poli, Francesca

    2016-10-01

    Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.

  7. Realizing steady-state tokamak operation for fusion energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2011-03-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  8. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  9. Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B. M.; Wilson, J. R.; Wilgen, J. B.; Bell, G. L.; Bigelow, T. S.; Rasmussen, D. A.; Ram, A. K.; Bers, A.; Harvey, R. W.

    2002-11-01

    Recent studies of EBWs, via mode conversion (MC) to X-mode electromagnetic radiation on the CDX-U and NSTX spherical torus (ST) plasmas, support the use of EBWs to measure the Te profile and allow local heating and current drive in ST plasmas. An in-vessel antenna with a local adjustable limiter has successfully controlled the density scale length at the MC layer in CDX-U increasing the MC by an order of magnitude to ˜ 100%. A similar technique on NSTX has so far increased MC efficiency fivefold to ˜ 50%. Both results are in good agreement with theoretical predictions. Experiments focused on achieving >= 80% MC on NSTX are planned for the coming year. Ray tracing and Fokker-Planck modeling support the design of a ˜ 1 MW EBW heating and current drive system for NSTX that will assist plasma startup, locally heat electrons, drive non-inductive current and may suppress tearing modes or other MHD that limit high β operation.

  10. Integrated modeling of high βN steady state scenario on DIII-D

    DOE PAGES

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...

    2018-01-10

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  11. Integrated modeling of high βN steady state scenario on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  12. Integrated modeling of high βN steady state scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.

    2018-01-01

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.

  13. Pushing Particles with Waves: Current Drive and α-Channeling

    DOE PAGES

    FISCH, Nathaniel J.

    2016-01-01

    It can be advantageous to push particles with waves in tokamaks or other magnetic confinement devices, relying on wave-particle resonances to accomplish specific goals. Waves that damp on electrons or ions in toroidal fusion devises can drive currents if the waves are launched with toroidal asymmetry. Theses currents are important for tokamaks, since they operate in the absence of an electric field with curl, enabling steady state operation. The lower hybrid wave and the electron cyclotron wave have been demonstrated to drive significant currents. Non-inductive current also stabilizes deleterious tearing modes. Waves can also be used to broker the energymore » transfer between energetic alpha particles and the background plasma. Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled instead into useful energy, that heats fuel ions or drives current. Furthermore, an important question is the extent to which these effects can be accomplished together.« less

  14. Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger

    2017-10-01

    30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.

  15. Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2017-07-01

    Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β t), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β t up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.

  16. Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta.

    PubMed

    Schlossberg, D J; Bodner, G M; Bongard, M W; Burke, M G; Fonck, R J; Perry, J M; Reusch, J A

    2017-07-21

    Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β_{t}), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β_{t} up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume.

  17. High internal inductance for steady-state operation in ITER and a reactor

    DOE PAGES

    Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; ...

    2015-06-26

    Increased confinement and ideal stability limits at relatively high values of the internal inductance (more » $${{\\ell}_{i}}$$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with $${{\\beta}_{\\text{N}}}\\approx 5$$ at $${{\\ell}_{i}}\\approx 1.3$$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at $${{\\beta}_{\\text{N}}}>5.5$$ . Confinement is above the H-mode level with $${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$$ . At $${{q}_{95}}\\approx 7.5$$ , the current is overdriven, with bootstrap current fraction $${{f}_{\\text{BS}}}\\approx 0.8$$ , noninductive current fraction $${{f}_{\\text{NI}}}>1$$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at $${{\\ell}_{i}}\\approx 1$$ is a promising option with $${{f}_{\\text{BS}}}\\approx 0.5$$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at $${{q}_{95}}=4.8$$ , so far reaching $${{f}_{\\text{NI}}}=0.7$$ and $${{f}_{\\text{BS}}}=0.4$$ at $${{\\beta}_{\\text{N}}}\\approx 3.5$$ with performance appropriate for the ITER Q=5 mission, $${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high $${{\\ell}_{i}}$$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at $${{\\beta}_{\\text{N}}}=4$$ , $${{\\ell}_{i}}=1.07$$ and $${{f}_{\\text{BS}}}=0.5$$ , and at $${{\\beta}_{\\text{N}}}=5$$ with the vacuum vessel wall.« less

  18. Overview of EAST experiments on the development of high-performance steady-state scenario

    NASA Astrophysics Data System (ADS)

    Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2  >  1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5  ×  1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n  =  1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.

  19. High-beta, steady-state hybrid scenario on DIII-D

    DOE PAGES

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...

    2015-12-17

    Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less

  20. Using AORSA to simulate helicon waves in DIIID and ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Cornwall H; Jaeger, E. F.; Berry, Lee Alan

    2014-01-01

    Recent efforts by Vdovin [1] and Prater [2] have shown that helicon waves (fast waves at ~30 ion cyclotron frequency harmonic) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIIID, ITER and DEMO. For DIIID scenarios, the ray tracing code GENRAY has been extensively used to study helicon current drive efficiency and location as a function many plasma parameters. has some limitations on absorption at high cyclotron harmonics, so the full wave code AORSA, which is applicable to arbitrary Larmor radius and can therefore resolve high ion cyclotron harmonics, has been recentlymore » used to validate the GENRAY model. It will be shown that the GENRAY and AORSA driven current drive profiles are comparable for the envisioned high temperature and density advanced scenarios for DIIID, where there is high single pass absorption due to electron Landau damping. AORSA results will be shown for various plasma parameters for DIIID and for ITER. Computational difficulties in achieving these AORSA results will also be discussed. * Work supported by USDOE Contract No. DE-AC05-00OR22725 [1] V. L. Vdovin, Plasma Physics Reports, V.39, No.2, 2013 [2] R. Prater et al, Nucl. Fusion, 52, 083024, 2014« less

  1. First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2014-10-01

    Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.

  2. Current drive for stability of thermonuclear plasma reactor

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  3. Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun

    2006-01-01

    The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.

  4. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  5. Prospects for steady-state scenarios on JET

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Bizarro, J. P. S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Lomas, P.; Rimini, F. G.; Tala, T. J. J.; Akers, R.; Andrew, Y.; Arnoux, G.; Artaud, J. F.; Baranov, Yu F.; Beurskens, M.; Brix, M.; Cesario, R.; DeLa Luna, E.; Fundamenski, W.; Giroud, C.; Hawkes, N. C.; Huber, A.; Joffrin, E.; Pitts, R. A.; Rachlew, E.; Reyes-Cortes, S. D. A.; Sharapov, S. E.; Zastrow, K. D.; Zimmermann, O.; JET EFDA contributors, the

    2007-09-01

    In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (nl ~ 4 × 1019 m-3), with ITER-relevant safety factor (q95 ~ 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (~45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (~15 MW), an upgrade of the NB power (35 MW/20 s or 17.5 MW/40 s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (~2.5 MA) and density (nl > 5 × 1019 m-3), with high βN (βN > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (~3.5 T).

  6. Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl R.

    1995-11-01

    Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less

  7. Overview of long pulse H-mode operation on EAST

    NASA Astrophysics Data System (ADS)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  8. Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.

    2018-01-01

    Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion goals.

  9. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  10. Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.

    2018-05-01

    A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.

  11. Electron Bernstein Wave Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B.; Bell, G. L.; Bers, A.; Bigelow, T. S.; Carter, M. D.; Harvey, R. W.; Ram, A. K.; Rasmussen, D. A.; Smirnov, A. P.; Wilgen, J. B.; Wilson, J. R.

    2003-12-01

    Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to ˜ 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving ⩾ 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high β NSTX plasmas.

  12. High performance advanced tokamak regimes in DIII-D for next-step experiments

    NASA Astrophysics Data System (ADS)

    Greenfield, C. M.; Murakami, M.; Ferron, J. R.; Wade, M. R.; Luce, T. C.; Petty, C. C.; Menard, J. E.; Petrie, T. W.; Allen, S. L.; Burrell, K. H.; Casper, T. A.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gorelov, I. A.; Groebner, R. J.; Hobirk, J.; Hyatt, A. W.; Jayakumar, R. J.; Kessel, C. E.; La Haye, R. J.; Jackson, G. L.; Lohr, J.; Makowski, M. A.; Pinsker, R. I.; Politzer, P. A.; Prater, R.; Strait, E. J.; Taylor, T. S.; West, W. P.; DIII-D Team

    2004-05-01

    Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.

  13. Steady state plasma operation in RF dominated regimes on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or bymore » combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.« less

  14. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    NASA Astrophysics Data System (ADS)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  15. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  16. Development of Integrated Magnetic and Kinetic Control-oriented Transport Model for q-profile Response Prediction in EAST Discharges

    NASA Astrophysics Data System (ADS)

    Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye

    2016-10-01

    Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.

  17. Transition From High Harmonic Fast Wave to Whistler/Helicon Regime in Tokamaks

    NASA Astrophysics Data System (ADS)

    Harris, S. P.; Pinsker, R. I.; Porkolab, M.

    2014-10-01

    Experiments are being prepared1 on DIII-D in which fast waves (FWs) at 0.5 GHz will be used to drive current noninductively in the mid-radius region. Previous DIII-D experiments used FWs at ~0.1 GHz to drive central current; in this work we examine the frequency dependence of wave propagation and damping in the 0.1-1.0 GHz range with the goal of identifying the optimum frequency range for a particular application. Strongly enhanced electron damping and reduced ion damping at higher frequencies must be weighed against increasing coupling difficulties at higher frequencies and more restrictive wave accessibility at low toroidal field. Wave propagation and accessibility is studied with ray tracing models in slab, cylindrical, and fully toroidal geometries. Analytic expressions for electron and ion damping will be derived with an emphasis on understanding the transition from the moderate-to-high ion cyclotron harmonic regime to the very high harmonic or ``whistler''/``helicon''/lower hybrid FW regime. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FC02-04ER54698.

  18. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  19. Veff Scaling of Te and ne Measurements During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2017-10-01

    Understanding the electron confinement of local helicity injection (LHI) is critical in order to evaluate its scalability as a startup technique to MA-class devices. Electron confinement in the Pegasus Toroidal Experiment is investigated using multi-point Thomson scattering (TS). The Pegasus TS system utilizes a set of high-throughput transmission gratings and intensified CCDs to measure Te and ne profiles. Previous TS measurements indicated peaked Te profiles 120 eV in outboard injector discharges characterized by strong inductive drive and low LHI drive. Injectors designed to have dominant non-inductive drive have recently been installed in the divertor region of Pegasus to understand the relationship between effective drive voltage, Veff, and plasma performance. At low Veff and reduced plasma current, Ip 60 kA, TS measurements reveal a flat Te profile 50 eV, with a peaked ne profile 1 ×1019 m-3, resulting in a slightly peaked pe profile. As current drive is increased, the Te profiles become hollow with a core Te 50 eV and an edge Te 120 -150 eV. These hollow profiles appear after the start of the Ip flattop and are sustained until the discharge terminates. The ne profiles drop in magnitude to < 1 ×1019 m-3 but remain somewhat peaked. Initial results suggest a weak scaling between input power and core Te. Additional studies are planned to identify the mechanisms behind the anomalous profile features. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Destabilization of counter-propagating TAEs by off-axis, co-current Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Podesta', M.; Fredrickson, E.; Gorelenkova, M.

    2017-10-01

    Neutral Beam injection (NBI) is a common tool to heat the plasma and drive current non-inductively in fusion devices. Energetic particles (EP) resulting from NBI can drive instabilities that are detrimental for the performance and the predictability of plasma discharges. A broad NBI deposition profile, e.g. by off-axis injection aiming near the plasma mid-radius, is often assumed to limit those undesired effects by reducing the radial gradient of the EP density, thus reducing the ``universal'' drive for instabilities. However, this work presents new evidence that off-axis NBI can also lead to undesired effects such as the destabilization of Alfvénic instabilities, as observed in NSTX-U plasmas. Experimental observations indicate that counter propagating toroidal AEs are destabilized as the radial EP density profile becomes hollow as a result of off-axis NBI. Time-dependent analysis with the TRANSP code, augmented by a reduced fast ion transport model (known as kick model), indicates that instabilities are driven by a combination of radial and energy gradients in the EP distribution. Understanding the mechanisms for wave-particle interaction, revealed by the phase space resolved analysis, is the basis to identify strategies to mitigate or suppress the observed instabilities. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.

  1. Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.

  2. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE PAGES

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...

    2018-03-14

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  3. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  4. ITER-FEAT operation

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.

  5. Exploration of spherical torus physics in the NSTX device

    NASA Astrophysics Data System (ADS)

    Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team

    2000-03-01

    The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

  6. Transport modeling of the DIII-D high $${{\\beta}_{p}}$$ scenario and extrapolations to ITER steady-state operation

    DOE PAGES

    McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...

    2017-08-03

    In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less

  7. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  8. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  9. Highlights of the Alcator C-Mod Research Campaign

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Alcator Team

    2011-10-01

    Alcator C-Mod has completed an experimental campaign focusing on broad scientific issues with particular emphasis on ITER needs and requests. Experiments with no NBI torque have investigated spontaneous flow reversal, creation of transport barriers aided by the shear of intrinsic rotation and a variety of RF flow drive schemes. Studies of I-mode have found conditions where a wide operating regime opens up, allowing easy access to long-lived, high-performance discharges with L-mode like particle confinement. We are validating the EPED and BOUT++ models for pedestal height/width and ELM onset using extended parameter scans in ELMy H-mode. The challenge of high-Z impurity generation with ICRF is being addressed first by deployment of a novel antenna whose current straps and antenna box are perpendicular to the total magnetic field -second by studies of the modification of edge impurity transport, where fine-scale Er structures in the SOL in the presence of ICRF heating have been found. LH current drive has produced non-inductive reversed shear regimes at n ~ 5x1019 which exhibit electron temperature ITBs. The first observations have been made of in-tokamak production of divertor tungsten nano-structures (fuzz), which had previously been seen only in linear laboratory experiments. Supported by DoE DE-FC02-99ER54512.

  10. Development of fully non-inductive plasmas heated by medium and high-harmonic fast waves in the national spherical torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Poli, F.; Bertelli, N.; Harvey, R. W.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Phillips, C. K.; Raman, R.

    2015-12-01

    A major challenge for spherical tokamak development is to start-up and ramp-up the plasma current (Ip) without using a central solenoid. Experiments in the National Spherical Torus eXperiment (NSTX) demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a non-inductive Ip fraction, fNI ˜ 0.7. The discharge had an axial toroidal magnetic field (BT(0)) of 0.55 T, the maximum BT(0) available on NSTX. NSTX has undergone a major upgrade (NSTX-U), that will eventually allow the generation of BT(0) ≤ 1 T and Ip ≤ 2 MA plasmas. Full wave simulations of 30 MHz HHFW and medium harmonic fast wave (MHFW) heating in NSTX-U predict significantly reduced FW power loss in the plasma edge at the higher BT(0) achievable in NSTX-U. HHFW experiments will aim to generate stable, fNI ˜ 1, Ip = 300 kA H-mode plasmas and to ramp Ip from 250 to 400 kA with FW power. Time-dependent TRANSP simulations are used to develop non-inductive Ip ramp-up and sustainment using 30 MHz FW power. This paper presents results from these RF simulations and plans for developing non-inductive plasmas heated by FW power.

  11. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  12. Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok

    2011-10-01

    A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.

  13. Two-fluid dynamo relaxation and momentum transport induced by CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Hirono, Hidetoshi; Hanao, Takafumi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki

    2013-10-01

    Non-inductive current drive by using Multi-pulsing coaxial helicity injection was studied on HIST. In the double-pulsing CHI experiment, we have examined two-fluid effects by reversing polarity of the bias poloidal coil current. In the ST magnetic configurations with the right-handed magnetic field (positive CHI), there are a diamagnetic structure in the open flux column region and a paramagnetic structure in the closed flux region. It is naturally understood that the direction of the poloidal magnetic field (toroidal current) is reversed in reversing the polarity of the bias flux from positive to negative. However, the poloidal current is surprisingly reversed in reversing the magnetic helicity polarity. The direction of the poloidal current is opposite in the each region. The toroidal flow is reversed, but a shear profile of the poloidal flow is not changed significantly. In this configuration, the diamagnetic structure appears in the closed flux region. Thus, not only Jt×Bp but also Jp×Bt force contributes on pressure balance leading to a higher beta. We are studying a more general helicity conservation that constrains the interaction between flows and magnetic fields and momentum transport in the two-fluid framework.

  14. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  15. Development of rotating magnetic field coil system in the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Kikuchi, Y.; Yamada, S.; Hashimoto, S.; Nishioka, T.; Fukumoto, N.; Nagata, M.

    2007-11-01

    Coaxial Helicity Injection (CHI) is one of most attractive methods to achieve non-inductive current drive in spherical torus devices. The current drive mechanism of CHI relies on MHD relaxation process of rotating kink behavior [1], so that there is a possibility to control the CHI by using an externally applied rotating magnetic field (RMF). We have recently started to develop a RMF coil system in the HIST spherical torus device. Eight coils are located above and below the midplane at four toroidal locations so that the RMF is resonant with n = 1 rotating kink mode driven by the CHI. In addition, the RMF coil set is installed inside a flux conserver of 5 mm thickness (cut-off frequency ˜ 170 Hz) so that the RMF penetrates into the plasma. The coil winding is made of 20 turns of enameled copper circular wires (1.5 mm^2 conductor cross section), covered with a thin stainless steal case of 0.5 mm thickness (cut-off frequency ˜ 710 kHz). The RMF system is driven by an IGBT inverter power supply (nominal current: 1 kA, nominal voltage: 1 kV) with an operating frequency band from 10 kHz to 30 kHz. The estimated amplitude of RMF neglecting effects of image current at the flux conserver is a few tens Gauss at around the magnetic axis. A preliminary experimental result will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003).

  16. Turbulence in high-beta ASDEX upgrade advanced scenarios

    NASA Astrophysics Data System (ADS)

    Doerk, H.; Bock, A.; Di Siena, A.; Fable, E.; Görler, T.; Jenko, F.; Stober, J.; The ASDEX Upgrade Team

    2018-01-01

    Recent experiments at ASDEX Upgrade achieve non-inductive operation in full tungsten wall conditions by applying electron cyclotron and neutral beam current drive. These discharges are characterised by a well-measured safety factor profile, which does not drop below one, and a good energy confinement. By reproducing the experimental heat fluxes, nonlinear gyrokinetic simulations suggest that the observed strong peaking of the ion temperature in the core is caused by the stabilising impact of a significant beam ion content, as well as strong electromagnetic effects on turbulent transport. Quasilinear transport models are not yet applicable in this interesting and reactor relevant parameter regime, but available simulation data may serve as a testbed for improvements. As the present plasma is close to the kinetic ballooning (KBM) threshold, elevating the safety factor profile under otherwise identical conditions is proposed to clarify, whether profiles are ultimately limited by KBM turbulence, or by global stability constraints.

  17. Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Peysson, Y.; Artaud, J.-F.; Ekedahl, A.; Hillairet, J.; Aniel, T.; Basiuk, V.; Goniche, M.; Imbeaux, F.; Mazon, D.; Sharma, P.

    2013-08-01

    Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.

  18. Realizing Steady State Tokamak Operation for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2009-11-01

    Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.

  19. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Poli, F. M.

    2018-06-01

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.

  20. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Nicolas; Poli, Francesca M.

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  1. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE PAGES

    Lopez, Nicolas; Poli, Francesca M.

    2018-03-29

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  2. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    NASA Astrophysics Data System (ADS)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  3. Feasibility study of ECRH in NSTX-U startup plasma

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Poli, F.; Taylor, G.; Harvey, R.; Petrov, Yu.

    2016-10-01

    A key mission goal of the National Spherical Torus eXperiment Upgrade (NSTX-U) is the demonstration of fully non-inductive startup and operation. In part to accomplish this, a 1MW, 28 GHz ECRH system is presently being developed for implementation on NSTX-U in 2018. Like most spherical tokamaks, NSTX-U operates in the overdense regime (fpe>fce) , which limits traditional ECRH to the early startup phase. An extensive modelling effort of the propagation and absorption of EC waves in the evolving plasma is thus required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and for current drive during this window. In fact, the ECRH system will play an important role in preparing a target plasma for subsequent injection of IC waves and NBI. Here we assess the feasibility of O1-mode ECRH in NSTX-U startup plasma at full field of 1T through time-dependent simulations performed with the transport solver TRANSP. Linear ray-tracing calculations conducted by GENRAY are coupled into the TRANSP framework, allowing the plasma equilibrium and the temperature profiles to evolve self-consistently in response to the injected microwave power. Furthermore, we investigate additional possibilities of heating and current drive made available through coupling the injected O-mode power to the electrostatic EBW via the slow X-mode as an intermediary.

  4. Status of Europe's contribution to the ITER EC system

    NASA Astrophysics Data System (ADS)

    Albajar, F.; Aiello, G.; Alberti, S.; Arnold, F.; Avramidis, K.; Bader, M.; Batista, R.; Bertizzolo, R.; Bonicelli, T.; Braunmueller, F.; Brescan, C.; Bruschi, A.; von Burg, B.; Camino, K.; Carannante, G.; Casarin, V.; Castillo, A.; Cauvard, F.; Cavalieri, C.; Cavinato, M.; Chavan, R.; Chelis, J.; Cismondi, F.; Combescure, D.; Darbos, C.; Farina, D.; Fasel, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gantenbein, G.; Gassmann, T.; Gessner, R.; Goodman, T. P.; Gracia, V.; Grossetti, G.; Heemskerk, C.; Henderson, M.; Hermann, V.; Hogge, J. P.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Jin, J.; Kasparek, W.; Koning, J.; Krause, A. S.; Landis, J. D.; Latsas, G.; Li, F.; Mazzocchi, F.; Meier, A.; Moro, A.; Nousiainen, R.; Purohit, D.; Nowak, S.; Omori, T.; van Oosterhout, J.; Pacheco, J.; Pagonakis, I.; Platania, P.; Poli, E.; Preis, A. K.; Ronden, D.; Rozier, Y.; Rzesnicki, T.; Saibene, G.; Sanchez, F.; Sartori, F.; Sauter, O.; Scherer, T.; Schlatter, C.; Schreck, S.; Serikov, A.; Siravo, U.; Sozzi, C.; Spaeh, P.; Spichiger, A.; Strauss, D.; Takahashi, K.; Thumm, M.; Tigelis, I.; Vaccaro, A.; Vomvoridis, J.; Tran, M. Q.; Weinhorst, B.

    2015-03-01

    The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe's contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.

  5. Extrapolation of the DIII-D high poloidal beta scenario to ITER steady-state using transport modeling

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.

    2016-10-01

    Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.

  6. Evaluation of heat and particle controllability on the JT-60SA divertor

    NASA Astrophysics Data System (ADS)

    Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.

    2011-08-01

    The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.

  7. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    DOE PAGES

    Garofalo, Andrea M.; Gong, X. Z.; Qian, J.; ...

    2017-06-07

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2~1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drivemore » (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.« less

  8. Modeling of Steady-state Scenarios for the Fusion Nuclear Science Facility, Advanced Tokamak Approach

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.

    2013-10-01

    A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.

  9. The high-βN hybrid scenario for ITER and FNSF steady-state missions

    DOE PAGES

    Turco, Francesca; Petty, Clinton C.; Luce, Timothy C.; ...

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and βN up to 3.7 sustained for ~3 s (~1.5 current diffusion time, τ R, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H 98y2~1.6) without performance limiting tearing modes. Furthermore, the hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficientmore » current drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ R when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β N~4-4.5. Off-axis NBI power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ', as calculated by the DCON and PEST3 codes. Our results are based on measured profiles that predict ideal limits at βN>4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, βN and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q=5 mission and the FNSF 6.7 MA scenario with Q=3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-βN hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  10. CHI Research on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lay, W.-S.; Raman, R.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Ebrahimi, F.; Ono, M.; Jardin, S. C.; Taylor, G.

    2017-10-01

    At present about 20% of the total plasma current required for sustained operation has been generated by transient CHI. The present understanding suggests that it may be possible to generate all of the needed current in a ST / tokamak using transient CHI. In such a scenario, one could transition directly from a CHI produced plasma to a non-inductively sustained plasma, without the difficult intermediate step that involves non-inductive current ramp-up. STs based on this new configuration would take advantage of evolving developments in high-temperature superconductor technology to develop a simpler design ST that relies primarily on CHI for plasma current generation. Motivated by the very good results from NSTX and HIT-II, we are examining the potential application of transient CHI for reactor configurations through these studies. (1) Study of the maximum levels of start-up currents that could be generated on NSTX-U, (2) application of a single biased electrode configuration on QUEST to protect the insulator from neutron damage in a CHI reactor installation, and (3) QUEST-like, but a double biased electrode configuration for PEGASUS and NSTX-U. Results from these on-going studies will be described. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.

  11. Non-inductive improved H-mode operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, A.; Fable, E.; Fischer, R.; Reich, M.; Rittich, D.; Stober, J.; Bernert, M.; Burckhart, A.; Doerk, H.; Dunne, M.; Geiger, B.; Giannone, L.; Igochine, V.; Kappatou, A.; McDermott, R.; Mlynek, A.; Odstrčil, T.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team

    2017-12-01

    Recent improvements to the heating and diagnostic systems on the ASDEX Upgrade tokamak allow renewed investigations into non-inductive operation scenarios with improved confinement in a full-metal device. Motivated by this, a scenario with \

  12. Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei

    2000-03-01

    The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.

  13. O-regime dynamics and modeling in Tore Supra

    NASA Astrophysics Data System (ADS)

    Turco, F.; Giruzzi, G.; Imbeaux, F.; Udintsev, V. S.; Artaud, J. F.; Barana, O.; Dumont, R.; Mazon, D.; Ségui, J.-L.

    2009-06-01

    The regime of nonlinear temperature oscillations (O-regime), characteristic of noninductive discharges on Tore Supra [Équipe Tore Supra, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 9], is investigated in its triggering and suppressing mechanism. This regime can be described by two nonlinearly coupled equations for the current density j(r ) and the electron temperature Te(r) where the equation coefficients are functions of j and Te themselves. Both the integrated modeling code CRONOS [V. Basiuk et al., Nucl. Fusion 43, 822 (2003)] and a two-patch predator-prey system with diffusion and noise have been used and results have been compared to the experimental observations of the O-regime. A database of discharges is analyzed which features monotonic, flat, and reversed safety factor (q) profiles in order to characterize the action of external actuators on the regime dynamics with the widest generality. Electron cyclotron current drive and neutral beam injections have been used in order to induce localized perturbations in the total current profile j(r ) as well as to change the plasma confinement conditions in the central region. Magnetic shear perturbations and modifications of the heat transport turn out to be the central parameters governing the dynamics of the O-regime.

  14. AC loss modelling and experiment of two types of low-inductance solenoidal coils

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Yuan, Weijia; Zhang, Min; Zhang, Zhenyu; Li, Jianwei; Venuturumilli, Sriharsha; Patel, Jay

    2016-11-01

    Low-inductance solenoidal coils, which usually refer to the nonintersecting type and the braid type, have already been employed to build superconducting fault current limiters because of their fast recovery and low inductance characteristics. However, despite their usage there is still no systematical simulation work concerning the AC loss characteristics of the coils built with 2G high temperature superconducting tapes perhaps because of their complicated structure. In this paper, a new method is proposed to simulate both types of coils with 2D axisymmetric models solved by H formulation. Following the simulation work, AC losses of both types of low inductance solenoidal coils are compared numerically and experimentally, which verify that the model works well in simulating non-inductive coils. Finally, simulation works show that pitch has significant impact to AC loss of both types of coils and the inter-layer separation has different impact to the AC loss of braid type of coil in case of different applied currents. The model provides an effective tool for the design optimisation of SFCLs built with non-inductive solenoidal coils.

  15. Solenoid-free plasma start-up in spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Raman, R.; Shevchenko, V. F.

    2014-10-01

    The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.

  16. Recent results from the electron cyclotron heated plasmas in Tokamak à Configuration Variable (TCV)

    NASA Astrophysics Data System (ADS)

    Henderson, M. A.; Alberti, S.; Angioni, C.; Arnoux, G.; Behn, R.; Blanchard, P.; Bosshard, P.; Camenen, Y.; Coda, S.; Condrea, I.; Goodman, T. P.; Hofmann, F.; Hogge, J.-Ph.; Karpushov, A.; Manini, A.; Martynov, An.; Moret, J.-M.; Nikkola, P.; Nelson-Melby, E.; Pochelon, A.; Porte, L.; Sauter, O.; Ahmed, S. M.; Andrèbe, Y.; Appert, K.; Chavan, R.; Degeling, A.; Duval, B. P.; Etienne, P.; Fasel, D.; Fasoli, A.; Favez, J.-Y.; Furno, I.; Horacek, J.; Isoz, P.; Joye, B.; Klimanov, I.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Mylnar, J.; Paris, P. J.; Perez, A.; Peysson, Y.; Pitts, R. A.; Raju, D.; Reimerdes, H.; Scarabosio, A.; Scavino, E.; Seo, S. H.; Siravo, U.; Sushkov, A.; Tonetti, G.; Tran, M. Q.; Weisen, H.; Wischmeier, M.; Zabolotsky, A.; Yhuang, G.

    2003-05-01

    In noninductively driven discharges, 0.9 MW second harmonic (X2) off-axis co-electron cyclotron current drive deposition is combined with 0.45 MW X2 central heating to create an electron internal transport barrier (eITB) in steady plasma conditions resulting in a 1.6-fold increase of the confinement time (τEe) over ITER-98L-mode scaling. The eITB is associated with a reversed shear current profile enhanced by a large bootstrap current fraction (up to 80%) and is sustained for up to 10 current redistribution times. A linear dependence of the confinement improvement on the product of the global shear reversal factor (q0/qmin) and the reversed shear volume (ρq-min2) is shown. In other discharges heated with X2 the sawteeth are destabilized (respectively stabilized) when heating just inside (respectively outside) the q=1 surface. Control of the sawteeth may allow the avoidance of neoclassical tearing modes that can be seeded by the sawtooth instability. Results on H-mode and highly elongated plasmas using the newly completed third harmonic (X3) system and achieving up to 100% absorption are also discussed, along with comparison of experimental results with the TORAY-GA ray tracing code [K. Matsuda, IEEE Trans. Plasma Sci. PS-17, 6 (1989); R. H. Cohen, Phys. Fluids 30, 2442 (1987)].

  17. Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.

    2015-12-01

    Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.

  18. Control of plasma profiles and stability through localised Electron Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    Merkulov, Oleksiy

    2006-06-01

    The work presented in this thesis addresses several topics from the physics of the magnetically confined plasma inside a tokamak. At the moment, the tokamak is the most successful concept for becoming a future thermonuclear reactor. However, there are plenty of physics and engineering problems to surpass before the prototype can become an economically and environmentally feasible device. The plasma in the tokamak experiences periodic oscillations of the central temperature and density when the safety factor, q, drops below unity on-axis. These oscillations are called the sawtooth instability and are the subject of the first part of this thesis. The sawtooth oscillations are characterised by the relatively slow rise phase, when the central temperature increases, and a following crash phase, when the central temperature drops. The energy, particles and plasma current are redistributed during the sawtooth crash. Obviously, this leads to a confinement degradation and moreover, the sawtooth instability can trigger potentially other more dangerous instabilities, such as a neoclassical tearing mode. The sawtooth period control is realised on the basis of the sawtooth trigger model, derived by Porcelli. The main idea of this model is that the sawtooth crash is triggered when the magnetic shear at the q=1 surface, s1, reaches a critical value which depends on the local plasma parameters. The magnetic shear, s, is a measure for the rate of change in the direction of the field line as a function of the position in the plasma. The sawtooth period can be changed by affecting the evolution of s1. The effects of the electron cyclotron current drive (ECCD) on the shear evolution are studied with a simple model for the poloidal field evolution. The results of the model are summarised in a form of a criterion for the amount of the non-inductive current drive required for sawtooth period control. The effects of the ECCD have been studied in the TEXTOR tokamak in order to confirm the outcome of the model. The observations are complicated by the unavoidable presence of concurrent heating, which also affects the sawtooth period. The effects of additional heating have been separated from the effects of current drive by normalising the sawtooth period, as a function of the power deposition radius, to a case with heating only. The results are in qualitative agreement with the predictions of the theory and confirm that the shear around the q=1 surface determines the moment of the sawtooth crash. The next topic addresses the current diffusion in the presence of the ECCD. It is known that the synergy between non-inductively driven current and the ohmic current can affect the current penetration. However, the standard method of calculations, which assumes neoclassical plasma resistivity, cannot describe the synergistic effects. We propose a model which combines a Fokker-Planck code and magnetic diffusion calculation in a self-consistent manner; where the plasma resistivity is approximated from the Fokker-Planck code at every time step. In this way the parallel electric field is no longer a constant input profile for the Fokker-Planck code, but is a result of calculations of the magnetic diffusion. This model allowed us to identify situations where the synergy between the driven and the ohmic currents becomes significant and affects the current penetration. Both the ECCD power and the electron density have been varied over a wide range of parameters, thus changing the well known non-linearity criterion for ECCD after Harvey. This criterion indicates the non-linear behaviour of the current drive efficiency and also appears to be a good predictor for the synergistic effects. The results are compared with the standard method of calculations which were supplied by the ASTRA transport code. The standard method and the Fokker-Planck code with the self-consistent electric field show similar results in the absence of the synergy and therefore for low values of the Harvey parameter. For co-ECCD and high values of the Harvey parameter substantial synergy between ECCD and the ohmic current is observed and leads to the generation of a large population of suprathermal electrons and slows down the current penetration. The synergy between counter-ECCD and the inductive current results in a decrease of the total driven current and a much smaller population of suprathermal electrons. Another plasma stability problem has been studied during the current ramp-up phase. Quiet and MHD free current ramp-up is a necessary requirement for a long and efficient flat-top phase. The current penetration in the plasma scenarios with various plasma ramp-up rates has been modelled with the ASTRA transport code. It is shown that in the absence of MHD activity the predictions of the ASTRA code are in a agreement with the experimental results.

  19. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    PubMed

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  20. Recent progress of RF-dominated experiments on EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.

    2017-10-01

    The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.

  1. Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges

    NASA Astrophysics Data System (ADS)

    Park, J. M.

    2013-10-01

    Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.

  2. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less

  3. Public Data Set: Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.A. Reusch et al., 'Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment,' Phys. Plasmas 25, 056101 (2018).

  4. Commissioning and Plans for the NSTX-U Facility

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; NSTX-U Team

    2016-10-01

    The National Spherical Torus Experiment - Upgrade (NSTX-U) has started its first year of plasma operations after the successful completion of the CD-4 milestones. The unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. The major mission of NSTX-U is also to develop the physics and technology basis for an ST-based Fusion Nuclear Science Facility (FNSF). The new center stack will provide toroidal field of 1 Tesla at a major radius of 0.93 m which should enable a plasma current of up to 2 mega-Amp for 5 sec. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed. NSTX-U is designed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers of 14 MW, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the trend in transport towards the low collisionality FNSF regime. If the favorable trends observed on NSTX holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices.

  5. The high-β{sub N} hybrid scenario for ITER and FNSF steady-state missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turco, F.; Petty, C. C.; Luce, T. C.

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and β{sub N} up to 3.7 sustained for ∼3 s (∼1.5 current diffusion time, τ{sub R}, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H{sub 98y2} ∼ 1.6) without performance limiting tearing modes. The hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficient currentmore » drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ{sub R} when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β{sub N} ∼ 4–4.5. Off-axis Neutral Beam Injection (NBI) power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ′, as calculated by the DCON and PEST3 codes. Results based on measured profiles predict ideal limits at β{sub N} > 4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, β{sub N} and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q = 5 mission and the FNSF 6.7 MA scenario with Q = 3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-β{sub N} hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  6. Advanced Tokamak Investigations in Full-Tungsten ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, Alexander

    2017-10-01

    The tailoring of the q-profile is the foundation of Advanced Tokamak (AT) scenarios. It depends on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering ne leads to a strong decrease of ν* Te - 3 . After the conversion of ASDEX Upgrade to fully W-coated plasma facing components, radiative collapses of H-modes with little gas puffing due to central W accumulation could only be avoided partially with central ECRH. Also, operation at high β with low ne presented a challenge for the divertor. Together, these issues prevented meaningful AT investigations. To overcome this, several major feats have been accomplished: Access to lower ne was achieved through a better understanding of the changes to recycling and pumping, and optionally the density pump-out phenomenon due to RMPs. ECRH capacities were substantially expanded for both heating and current drive, and a solid W divertor capable of withstanding the power loads was installed. A major overhaul improved the reliability of the current profile diagnostics. This contribution will detail the efforts needed to re-access AT scenarios and report on the development of candidate steady state scenarios for ITER/DEMO. Starting from the `hybrid scenario,' a non-inductive scenario (q95 = 5.3 , βN = 2.7 , fbs > 40 %) was developed. It can be sustained for many τE, limited only by technical boundaries, and is also independent of the ramp-up scenario. The β-limit is set by ideal modes that convert into NTMs. The Ti-profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. We will also report on scenarios at higher q95, similar to the EAST/DIII-D steady state scenario. The extrapolation of these scenarios to ITER/DEMO will be discussed.

  7. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less

  8. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    DOE PAGES

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; ...

    2017-04-24

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less

  9. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; Gerhardt, S. P.; Menard, J. E.; Poli, F. M.

    2017-06-01

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control scheme that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.

  10. Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Reusch, Joshua

    2017-10-01

    A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  11. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    DOE PAGES

    Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...

    2015-10-20

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in-situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination diagnostic (CER) at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain informationmore » about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. Lastly, the methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Tobias, B.; Chang, Y. -T.

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less

  13. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  14. Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.

    2017-10-01

    KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.

  15. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  16. Feedback control of the lower hybrid power deposition profile on Tore Supra

    NASA Astrophysics Data System (ADS)

    Barana, O.; Mazon, D.; Laborde, L.; Turco, F.

    2007-07-01

    The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n// and the total power PLH. The control of the suprathermal electron local emission profile through n// was also integrated with the feedback control of the total plasma current IP with PLH and of the loop voltage Vloop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies.

  17. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE PAGES

    Ding, Siye; Garofalo, A. M.; Qian, J.; ...

    2017-05-03

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  18. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Garofalo, A. M.; Qian, J.; Cui, L.; McClenaghan, J. T.; Pan, C.; Chen, J.; Zhai, X.; McKee, G.; Ren, Q.; Gong, X.; Holcomb, C. T.; Guo, W.; Lao, L.; Ferron, J.; Hyatt, A.; Staebler, G.; Solomon, W.; Du, H.; Zang, Q.; Huang, J.; Wan, B.

    2017-05-01

    Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high βp plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high βp regime, is maintained when the scenario is extended from q95 ˜ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E × B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a βp threshold for large-radius ITB formation in the high βp scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a βN scan and the other for a q95 scan. They both give the same βp threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing βp is consistent with transport modeling. The progress toward the high βp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high βp scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high βp regime can be extended to a lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.

  19. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Siye; Garofalo, A. M.; Qian, J.

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  20. Exploring EBW conversion physics with applications to NSTX-U

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Ram, A. K.; Poli, F. M.; Du Toit, E. J.

    2017-10-01

    Radiofrequency waves are commonly used on traditional tokamaks to assist plasma formation and to provide non-inductive heating and current drive (NI H&CD). Their applicability to spherical tokamaks (STs), however, is complicated by the latter's comparatively high densities and low field strengths. Electron Bernstein waves (EBW) are attractive for NI H&CD on STs because they do not experience a density cutoff and they damp strongly in the vicinity of cyclotron harmonics, even at low temperatures typical of startup. The excitation of EBWs using vacuum-launched electromagnetic waves requires a mode conversion that is highly sensitive to the choice of launch polarization and to local plasma parameters. Common theoretical models employ a 1D slab geometry to study such conversion processes; however, these models may be insufficient to describe the EBW conversion physics in STs, in which equilibria are typically strongly-shaped with large magnetic shear. We report our progress on a theoretical study of EBW conversion physics that emphasizes the inherent idiosyncrasies of the ST equilibrium. Additionally, using a recently developed OD2V kinetic model along with GENRAY simulations, we assess the EBW NI H&CD on NSTX-U using the OXB startup technique that has been developed on MAST. We then make recommendations regarding its implementation in future experimental campaigns.

  1. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  2. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    DOE PAGES

    Wang, Y.; Tobias, B.; Chang, Y. -T.; ...

    2017-03-14

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less

  3. Critical threshold behavior for steady-state internal transport barriers in burning plasmas.

    PubMed

    García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M

    2008-06-27

    Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.

  4. Measurement of LHCD antenna position in Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Ambulkar, K. K.; Sharma, P. K.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Kulkarni, S. V.

    2010-02-01

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  5. Chapter 8: Plasma operation and control

    NASA Astrophysics Data System (ADS)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.

  6. Investigation of beam- and wave-plasma interactions in spherical tokamak Globus-M

    NASA Astrophysics Data System (ADS)

    Gusev, V. K.; Aminov, R. M.; Berezutskiy, A. A.; Bulanin, V. V.; Chernyshev, F. V.; Chugunov, I. N.; Dech, A. V.; Dyachenko, V. V.; Ivanov, A. E.; Khitrov, S. A.; Khromov, N. A.; Kurskiev, G. S.; Larionov, M. M.; Melnik, A. D.; Minaev, V. B.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Novokhatsky, A. N.; Panasenkov, A. A.; Patrov, M. I.; Petrov, A. V.; Petrov, Yu. V.; Podushnikova, K. A.; Rozhansky, V. A.; Rozhdestvensky, V. V.; Sakharov, N. V.; Shevelev, A. E.; Senichenkov, I. Yu.; Shcherbinin, O. N.; Stepanov, A. Yu.; Tolstyakov, S. Yu.; Varfolomeev, V. I.; Voronin, A. V.; Yagnov, V. A.; Yashin, A. Yu.; Zhilin, E. G.

    2011-10-01

    The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m-3 and a high velocity up to 250 km s-1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5-30 kHz and toroidal Alfvén eigenmodes in the range 50-300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W-1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.

  7. Overview of ASDEX Upgrade results

    DOE PAGES

    Aguiam, D.

    2017-06-28

    Here, the ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current ofmore » $${{I}_{\\text{p}}}=0.8$$ MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD).« less

  8. Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, Y.; Fujita, T.; Ishida, S.

    2002-09-15

    Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (Q{sub DT}{sup eq} up to 1.25) and a high fusion triple product n{sub D}(0){tau}{sub E}T{sub i}(0) = 1.5 x 10{sup 21} m{sup -3}skeV, JT-60U has demonstrated the integrated performance of highmore » confinement, high {beta}{sub N}, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-{beta}{sub p}) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-{beta}{sub p} mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-{beta}{sub p} mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD events on confinement such as sawteeth and ELMs. Through these studies, JT-60U has demonstrated applicability of the high confinement modes to ITER and the steady-state tokamak reactors.« less

  9. The Use of a 28 GHz Gyrotron for EBW Startup Experiments on MAST

    NASA Astrophysics Data System (ADS)

    Caughman, J. B.; Bigelow, T. S.; Diem, S. J.; Peng, Y. K. M.; Rasmussen, D. A.; Shevchenko, V.; Hawes, J.; Lloyd, B.

    2009-11-01

    The use of electron Bernstein waves for non-inductive plasma current startup in MAST has recently been demonstrated [1]. The injection of 100 kW at 28 GHz generated plasma currents of up to 33 kA without the use of solenoid flux, and limited solenoid assist resulted in up to 55 kA of plasma current. A higher power 28 GHz gyrotron, with power levels of up to 300 kW for 0.5 seconds, is currently being commissioned. It is being used to investigate the scaling of startup current with microwave power and power profile as a function of time. Power modulation experiments are also being explored. Gyrotron performance and experimental results will be presented. [4pt] [1] V. Shevchenko, et al., Proceedings of the 15^th Joint Workshop on ECE and ECRH, Yosimite, USA, p. 68 (2009)

  10. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  11. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  12. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  13. Overview of physics research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; TCV Team

    2009-10-01

    The Tokamak à Configuration Variable (TCV) tokamak is equipped with high-power (4.5 MW), real-time-controllable EC systems and flexible shaping, and plays an important role in fusion research by broadening the parameter range of reactor relevant regimes, by investigating tokamak physics questions and by developing new control tools. Steady-state discharges are achieved, in which the current is entirely self-generated through the bootstrap mechanism, a fundamental ingredient for ITER steady-state operation. The discharge remains quiescent over several current redistribution times, demonstrating that a self-consistent, 'bootstrap-aligned' equilibrium state is possible. Electron internal transport barrier regimes sustained by EC current drive have also been explored. MHD activity is shown to be crucial in scenarios characterized by large and slow oscillations in plasma confinement, which in turn can be modified by small Ohmic current perturbations altering the barrier strength. In studies of the relation between anomalous transport and plasma shape, the observed dependences of the electron thermal diffusivity on triangularity (direct) and collisionality (inverse) are qualitatively reproduced by non-linear gyro-kinetic simulations and shown to be governed by TEM turbulence. Parallel SOL flows are studied for their importance for material migration. Flow profiles are measured using a reciprocating Mach probe by changing from lower to upper single-null diverted equilibria and shifting the plasmas vertically. The dominant, field-direction-dependent Pfirsch-Schlüter component is found to be in good agreement with theoretical predictions. A field-direction-independent component is identified and is consistent with flows generated by transient over-pressure due to ballooning-like interchange turbulence. Initial high-resolution infrared images confirm that ELMs have a filamentary structure, while fast, localized radiation measurements reveal that ELM activity first appears in the X-point region. Real time control techniques are currently being applied to EC multiple independent power supplies and beam launchers, e.g. to control the plasma current in fully non-inductive conditions, and the plasma elongation through current broadening by far-off-axis heating at constant shaping field.

  14. Creating Hybrid Plasmas With Off-Axis ECCD for Radiating Divertor Studies in DIII-D

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Ferron, J. R.; Luce, T. C.; Osborne, T. H.; Petrie, T. W.; Turco, F.; Holcomb, C. T.; Thome, K. E.

    2017-10-01

    A long duration, high density, high power hybrid scenario has been developed for use in radiative divertor studies in DIII-D. Using 11.2 MW of co-NBI power and 3.4 MW of ECCD, with a total injected energy of up to 56 MJ, high performance hybrid plasmas with βN = 3.7 and H98y2 = 1.5 were created. The hybrid plasmas were fully non-inductive at densities of n 4.2 ×1019 m-3 with central ECCD, but the EC deposition needed to be moved to ρ = 0.45 to avoid the right-hand cutoff when the density was raised to n 5.8 ×1019 m-3 for radiative divertor studies. Although moving the EC deposition to ρ = 0.45 had the effect of dropping τE by 10%, the energy confinement time increased with higher density like τE n0.4, allowing high beta to be maintained. While the plasma current profile displays the usual self-organizing properties of hybrids - an anomalously broad profile with qmin >1 - local current drive can still have a measurable effect on stability, either positively or negatively. For example, hybrid discharges with radial ECH deposited at ρ = 0.45 proved to be more robustly stable to n = 1 modes (can be either a 1/1 or 2/1 mode) than similar discharges with co-ECCD at the same location. Interestingly, the large 1/1 mode had almost no effect on energy confinement but strongly degraded particle confinement; thus this mode needed to be suppressed to achieve the high pedestal densities required for radiative divertor studies. Work supported by USDOE under DE-FC02-04ER54698.

  15. Progress toward commissioning and plasma operation in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team

    2015-07-01

    The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.

  16. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

  17. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas

    NASA Astrophysics Data System (ADS)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% < betat < 100% throughout a toroidal field ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD no-wall stability limit predicted by the DCON code. Mode analyses of predicted and measured MHD agree, and suggest discharges terminate by an intermediate-m, n=1 external mode. A localized region of minimum |B| has been identified in these discharges, and modeling shows access to it depends on both plasma pressure and magnetic geometry. This magnetic well is shown to persist over several milliseconds, in both constant toroidal field and ramp-down cases.

  18. Solenoid-free plasma startup in NSTX using transient CHI

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.

    2009-06-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  19. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, and the NMCFP of China under 2015GB110000 and 2015GB102000.

  20. Popperian and Inductivist Views of Science

    ERIC Educational Resources Information Center

    Fraser, Barry J.

    1977-01-01

    Illustrates that a view of the nature of science is dependent upon underlying assumptions concerning scientific proof. Compares the inductive view of science with the non-inductive viewpoint of Karl Popper. (CP)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et al., 'Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta,' Phys. Rev. Lett. 119, 035001 (2017).

  2. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  3. Sustained high βN plasmas on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; the EAST team

    2018-05-01

    Sustained high normalized beta (βN ∼ 1.9) plasmas with an ITER-like tungsten divertor have been achieved on EAST tokamak recently. The high power NBI heating system of 4.8 MW and the 4.6 GHz lower hybrid wave of 1 MW were developed and applied to produce edge and internal transport barriers in high βN discharges. The central flat q profile with q (ρ) ∼ 1 at ρ < 0.3 region and edge safety factor q95 = 4.7 is identified by the multi-channel far-infrared laser polarimeter and the EFIT code. The fraction of non-inductive current is about 40%. The relation between fishbone activity and ITB formation is observed and discussed.

  4. Power Balance Estimation in Long Duration Discharges on QUEST

    DOE PAGES

    Hanada, K.; Zushi, H.; Idei, H.; ...

    2016-10-28

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3–5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%–90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. Lastly, the power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magneticmore » configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.« less

  5. Power Balance Estimation in Long Duration Discharges on QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, K.; Zushi, H.; Idei, H.

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3–5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%–90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. Lastly, the power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magneticmore » configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.« less

  6. Physics Results from the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.

    2000-10-01

    The National Spherical Torus Experiment (NSTX) will produce plasmas with R/a=0.85/0.68 m 1.25, I_p= 1 MA, BT <=0.6 T, κ<=2.2, δ<=0.5, with 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-axial Helicity Injection (CHI) for non-inductive startup to establish the physics principles of low aspect ratio. Outboard passive conducting plates aid vertical stability and suppression of low-n modes. During the initial set of physics experiments, studies of poloidal flux consumption indicated an optimal current ramp rate of 5 MA/sec, with higher ramp rates limited by m=2 oscillations and Internal Reconnection Events possibly related to impurity accumulation and double tearing modes. Flux consumption optimization and real-time plasma control led to the achievement of ohmic discharges with 1 MA plasma current and stored energies up to 48 kJ and βT 9%. Inboard limited and single and double-null diverted plasmas over a wide range of κ and δ were produced. The density limit, so far, is consistent with the Hugill limit, which is about 60% of the Greenwald limit, and it was characterized by growing and locking m=1 oscillations, followed by a series of Reconnection Events. The q-limit was manifest as growing and locking 2/1 perturbations leading to severe kinking of the plasma surface and subsequent discharge termination as q_cyl decreased below 2. Initial observations of edge turbulence indicated filamentary structures with λ_perp 10 cm. Up to 2 MW of HHFW power was coupled to the plasma, with increases in stored energy observed for waves with k_parallel=14 m-1, but not at higher phase velocity. CHI experiments on NSTX produced up to 130 kA of toroidal current for up to 100 msec. NBI heating is planned for late September 2000. This work has been supported at PPPL by U.S. DOE Contract # DE-AC02-76CH03073.

  7. Numerical calculations of non-inductive current driven by microwaves in JET

    NASA Astrophysics Data System (ADS)

    Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET

    2016-12-01

    Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.

  8. Non-induction of radioadaptive response in zebrafish embryos by neutrons

    PubMed Central

    Ng, Candy Y.P.; Kong, Eva Y.; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-01-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. PMID:26850927

  9. Absorber arc mitigation during CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.

    2009-11-01

    A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.

  10. Non-induction of radioadaptive response in zebrafish embryos by neutrons.

    PubMed

    Ng, Candy Y P; Kong, Eva Y; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-06-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  11. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).

  12. Using of explosive technologies for development of a compact current-limiting device for operation on 110 kV class systems

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.

    2016-11-01

    This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less

  14. Analysis of JT-60SA operational scenarios

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  15. Plasmoid formation in the elongated current sheet during transient CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi

    2016-10-01

    The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.

  16. Key Motivational Factors in the Retention of Three Generations of Public High School Mathematics Teachers

    ERIC Educational Resources Information Center

    Pospichal, Wendy

    2011-01-01

    Purpose: The purpose of this study was to describe and compare the similarities and differences between five key motivational factors: (a) new teacher induction, (b) noninduction mentor support in the early years of teaching, (c) salary and benefits, (d) working conditions, and (e) administrative support influential in retention of employment in…

  17. Design of tangential multi-energy soft x-ray camera for NSTX-U

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip

    2016-10-01

    For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.

  18. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  19. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  20. Identity physics experiment on internal transport barriers in JT-60U and JET

    NASA Astrophysics Data System (ADS)

    de Vries, P. C.; Sakamoto, Y.; Litaudon, X.; Beurskens, M. N. A.; Brix, M.; Crombé, K.; Fujita, T.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Joffrin, E.; Mantica, P.; Matsunaga, G.; Oyama, N.; Parail, V.; Salmi, A.; Shinohara, K.; Strintzi, D.; Suzuki, T.; Takechi, M.; Takenaga, H.; Tala, T.; Tsalas, M.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; EFDA contributors, JET; JT-60 Team

    2009-12-01

    A series of experiments have been carried out in 2008 at JT-60U and JET to find common characteristics and explain differences between internal transport barriers (ITBs). The identity experiments succeeded in matching the profiles of most dimensionless parameters at the time ITBs were triggered. Thereafter the q-profile development deviated due to differences in non-inductive current density profile, affecting the ITB. Furthermore, the ITBs in JET were more strongly influenced by the H-mode pedestal or edge localized modes. It was found to be difficult to match the plasma rotation characteristics in both devices. However, the wide range of Mach numbers obtained in these experiments shows that the rotation has little effect on the triggering of ITBs in plasmas with reversed magnetic shear. On the other hand the toroidal rotation and more specifically the rotational shear had an impact on the subsequent growth and allowed the formation of strong ITBs.

  1. Initial exploration of scenarios with Internal Transport Barrier in the first NBI-heated L-mode TCV plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team

    2016-10-01

    Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.

  2. A general theory of DC electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Engel, Thomas G.; Timpson, Erik J.

    2015-08-01

    The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.

  3. Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime

    DOE PAGES

    Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; ...

    2016-06-20

    Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of β p and β N despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high β p plasmas challenge the energy transport understanding, especiallymore » in the electron energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.« less

  4. Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D

    DOE PAGES

    Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...

    2015-11-16

    Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β N ≤ 4 , β P ≥ 3 , and β T ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less

  5. A multiple degree of freedom electromechanical Helmholtz resonator.

    PubMed

    Liu, Fei; Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark

    2007-07-01

    The development of a tunable, multiple degree of freedom (MDOF) electromechanical Helmholtz resonator (EMHR) is presented. An EMHR consists of an orifice, backing cavity, and a compliant piezoelectric composite diaphragm. Electromechanical tuning of the acoustic impedance is achieved via passive electrical networks shunted across the piezoceramic. For resistive and capacitive loads, the EMHR is a 2DOF system possessing one acoustic and one mechanical DOF. When inductive ladder networks are employed, multiple electrical DOF are added. The dynamics of the multi-energy domain system are modeled using lumped elements and are represented in an equivalent electrical circuit, which is used to analyze the tunable acoustic input impedance of the EMHR. The two-microphone method is used to measure the acoustic impedance of two EMHR designs with a variety of resistive, capacitive, and inductive shunts. For the first design, the data demonstrate that the tuning range of the second resonant frequency for an EMHR with non-inductive shunts is limited by short- and open-circuit conditions, while an inductive shunt results in a 3DOF system possessing an enhanced tuning range. The second design achieves stronger coupling between the Helmholtz resonator and the piezoelectric backplate, and both resonant frequencies can be tuned with different non-inductive loads.

  6. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    A. Kallenbachthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-10-01

    The ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of {{I}\\text{p}}=0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen {{E}\\text{N}}≥slant 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.

  7. Reconfigurable Drive Current System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.

  8. An innovative small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, Houyang

    2017-10-01

    A new Small Angle Slot (SAS) divertor is being developed in DIII-D to address the challenge of efficient divertor heat dispersal at the relatively low plasma density required for non-inductive current drive in future advanced tokamaks. SAS features a small incident angle near the plasma strike point on the divertor target plate with a progressively opening slot. SOLPS (B2-Eirene) edge code analysis finds that SAS can achieve strong plasma cooling when the strike point is placed near the small angle target plate in the slot, leading to low electron temperature Te across the entire divertor target. This is enabled by strong coupling between a gas tight slot and directed neutral recycling by the small angle target to enhance neutral buildup near the target. SOLPS analysis reveals a strong correlation between Te and D2 density at the target for various divertor configurations including the flat target, slanted target, and lower single null divertor. The strong correlation suggests that achievement of low Te may reduce essentially to identifying the divertor baffle geometry that achieves the highest target gas density at a given upstream condition. The SAS divertor concept has recently been tested in DIII-D for a range of plasma configurations and conditions with precise control of slot strike point location. In confirmation of SOLPS predictions, a sharp transition is observed when the strike point is moved to the critical outer corner of SAS. A set of Langmuir probes imbedded in SAS show that the Te radial profile, which is peaked at the strike point when it is located away from the SAS corner, becomes low across the target when the strike point is located near the corner. With further increase in density, deep-slot detachment occurs with Te 1 eV, measured by the unique DIII-D divertor Thomson Scattering diagnostic. Work supported by US DOE under DE-FC02-04ER54698.

  9. An overview of recent physics results from NSTX

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Abrams, T.; Ahn, J.-W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J.; Berry, L.; Bertelli, N.; Beiersdorfer, P.; Bialek, J.; Bilato, R.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyer, M. D.; Boyle, D.; Brennan, D.; Breslau, J.; Brooks, J.; Buttery, R.; Capece, A.; Canik, J.; Chang, C. S.; Crocker, N.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; D'Ippolito, D.; Domier, C.; Ebrahimi, F.; Ethier, S.; Evans, T.; Ferraro, N.; Ferron, J.; Finkenthal, M.; Fonck, R.; Fredrickson, E.; Fu, G. Y.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gorelenkova, M.; Goumiri, I.; Gray, T.; Green, D.; Guttenfelder, W.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Jaeger, E. F.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Kaita, R.; Kessel, C.; Kim, K.; Koel, B.; Kolemen, E.; Kramer, G.; Ku, S.; Kubota, S.; LaHaye, R. J.; Lao, L.; LeBlanc, B. P.; Levinton, F.; Liu, D.; Lore, J.; Lucia, M.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Mueller, D.; Munsat, T.; Muscatello, C.; Myra, J.; Nelson, B.; Nichols, J.; Ono, M.; Osborne, T.; Park, J.-K.; Peebles, W.; Perkins, R.; Phillips, C.; Podesta, M.; Poli, F.; Raman, R.; Ren, Y.; Roszell, J.; Rowley, C.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S. A.; Schuster, E.; Scotti, F.; Sechrest, Y.; Shaing, K.; Sizyuk, T.; Sizyuk, V.; Skinner, C.; Smith, D.; Snyder, P.; Solomon, W.; Sovenic, C.; Soukhanovskii, V.; Startsev, E.; Stotler, D.; Stratton, B.; Stutman, D.; Taylor, C.; Taylor, G.; Tritz, K.; Walker, M.; Wang, W.; Wang, Z.; White, R.; Wilson, J. R.; Wirth, B.; Wright, J.; Yuan, X.; Yuh, H.; Zakharov, L.; Zweben, S. J.

    2015-10-01

    The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Two Alfvén eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.

  10. An overview of recent physics results from NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S. M.; Abrams, T.; Ahn, J. -W.

    Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Finally, two Alfven eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.« less

  11. An overview of recent physics results from NSTX

    DOE PAGES

    Kaye, S. M.; Abrams, T.; Ahn, J. -W.; ...

    2015-03-27

    Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Finally, two Alfven eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.« less

  12. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less

  13. Integrated Plasma Control for Alternative Plasma Shape on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Bingjia

    2017-10-01

    To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.

  14. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less

  15. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  16. Towards Current Profile Control in ITER: Potential Approaches and Research Needs

    NASA Astrophysics Data System (ADS)

    Schuster, E.; Barton, J. E.; Wehner, W. P.

    2014-10-01

    Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.

  17. High beta-N experiments at JET

    NASA Astrophysics Data System (ADS)

    Challis, Clive

    2007-11-01

    JET has investigated the performance potential and limitations of highly triangular plasmas relevant to fully non-inductive tokamak operation. The q-profile shape has been varied from cases with highly negative core magnetic shear to low shear with q0 close to 1, allowing the effect on confinement and stability to be studied. Operation with beta-N above the no-wall `limit' has been demonstrated for durations comparable with the resistive time and direct measurements of the no-wall beta have been developed as a tool for systematic performance optimization. Regimes have been developed with ITBs at reduced plasma current and toroidal field (1.2-1.5MA/2.3-2.7T) to obtain high values of beta-N and beta-P with either impurity seeding or quasi-double-null plasma configurations used to mitigate ELMs. The importance of the q-profile shape for performance optimization has been demonstrated in plasmas without ITBs (1.2MA/1.8T) with low values of minimum q (1-2) providing access to the highest beta-N (above 3).

  18. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V A; Bell, M G; Bell, R E

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.« less

  19. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  20. Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism

    PubMed Central

    Liu, Hao; Suresh, Angayarkanni; Willard, Francis S; Siderovski, David P; Lu, Shen; Naqvi, Naweed I

    2007-01-01

    Regulators of G-protein signaling (RGS proteins) negatively regulate heterotrimeric G-protein cascades that enable eukaryotic cells to perceive and respond to external stimuli. The rice-blast fungus Magnaporthe grisea forms specialized infection structures called appressoria in response to inductive surface cues. We isolated Magnaporthe RGS1 in a screen for mutants that form precocious appressoria on non-inductive surfaces. We report that a thigmotropic cue is necessary for initiating appressoria and for accumulating cAMP. Similar to an RGS1-deletion strain, magAG187S (RGS-insensitive Gαs) and magAQ208L (GTPase-dead) mutants accumulated excessive cAMP and elaborated appressoria on non-inductive surfaces, suggesting that Rgs1 regulates MagA during pathogenesis. Rgs1 was also found to negatively regulate the Gαi subunit MagB during asexual development. Deficiency of MAGB suppressed the hyper-conidiation defect in RGS1-deletion strain, whereas magBG183S and magBQ204L mutants produced more conidia, similar to the RGS1-deletion strain. Rgs1 physically interacted with GDP·AlF4−-activated forms of MagA, MagB and MagC (a GαII subunit). Thus, Rgs1 serves as a negative regulator of all Gα subunits in Magnaporthe and controls important developmental events during asexual and pathogenic development. PMID:17255942

  1. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  2. Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field

    NASA Astrophysics Data System (ADS)

    Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.

    2009-05-01

    This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.

  3. Experiments Using Local Helicity Injectors in the Lower Divertor Region as the Majority Current Drive in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Perry, Justin M.

    Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.

  4. On current drive by Ohkawa mechanism of electron cyclotron wave in large inverse aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng

    2018-03-01

    A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.

  5. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    NASA Astrophysics Data System (ADS)

    Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra

    2017-08-01

    The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  6. Electrical motor/generator drive apparatus and method

    DOEpatents

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  7. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preynas, M.; Goniche, M.; Hillairet, J.

    2014-02-12

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have beenmore » performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling for the first time on the FAM and PAM antennas on Tore Supra.« less

  8. Fusion nuclear science facilities and pilot plants based on the spherical tokamak

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Brown, T.; El-Guebaly, L.; Boyer, M.; Canik, J.; Colling, B.; Raman, R.; Wang, Z.; Zhai, Y.; Buxton, P.; Covele, B.; D'Angelo, C.; Davis, A.; Gerhardt, S.; Gryaznevich, M.; Harb, M.; Hender, T. C.; Kaye, S.; Kingham, D.; Kotschenreuther, M.; Mahajan, S.; Maingi, R.; Marriott, E.; Meier, E. T.; Mynsberge, L.; Neumeyer, C.; Ono, M.; Park, J.-K.; Sabbagh, S. A.; Soukhanovskii, V.; Valanju, P.; Woolley, R.

    2016-10-01

    A fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR  ≈  1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R 0 for a range 1 m-2.2 m are described. In particular, it is found the threshold major radius for TBR  =  1 is {{R}0}≥slant 1.7 m, and a smaller R 0  =  1 m ST device has TBR  ≈  0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A  =  2, R 0  =  3 m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies.

  9. Fusion nuclear science facilities and pilot plants based on the spherical tokamak

    DOE PAGES

    Menard, J. E.; Brown, T.; El-Guebaly, L.; ...

    2016-08-16

    Here, a fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR ≈ 1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R 0 for a range 1 m–2.2 m are described. In particular, it is found the threshold major radius for TBR = 1 ismore » $${{R}_{0}}\\geqslant 1.7$$ m, and a smaller R 0 = 1 m ST device has TBR ≈ 0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A = 2, R = 3 m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies.« less

  10. Isotopic effect in experiments on lower hybrid current drive in the FT-2 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkul, S. I., E-mail: Serguey.lashkul@mail.ioffe.ru; Altukhov, A. B.; Gurchenko, A. D., E-mail: aleksey.gurchenko@mail.ioffe.ru

    To analyze factors influencing the limiting value of the plasma density at which lower hybrid (LH) current drive terminates, the isotopic factor (the difference in the LH resonance densities in hydrogen and deuterium plasmas) was used for the first time in experiments carried out at the FT-2 tokamak. It is experimentally found that the efficiency of LH current drive in deuterium plasma is appreciably higher than that in hydrogen plasma. The significant role of the parametric decay of the LH pumping wave, which hampers the use of the LH range of RF waves for current drive at high plasma densities,more » is confirmed. It is demonstrated that the parameters characterizing LH current drive agree well with the earlier results obtained at large tokamaks.« less

  11. Universal power transistor base drive control unit

    DOEpatents

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  12. Universal power transistor base drive control unit

    DOEpatents

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  13. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  14. Understanding the Relationships Between Lightning, Cloud Microphysics, and Airborne Radar-derived Storm Structure During Hurricane Karl (2010)

    NASA Technical Reports Server (NTRS)

    Reinhart, Brad; Fuelberg, Henry; Blakeslee, Richard; Mach, Douglas; Heymsfield, Andrew; Bansemer, Aaron; Durden, Stephen L.; Tanelli, Simone; Heymsfield, Gerald; Lambrigtsen, Bjorn

    2013-01-01

    This study explores relationships between lightning, cloud microphysics, and tropical cyclone (TC) storm structure in Hurricane Karl (16 September 2010) using data collected by the NASA DC-8 and Global Hawk (GH) aircraft during NASA's Genesis and Rapid Intensification Processes (GRIP) experiment. The research capitalizes on the unique opportunity provided by GRIP to synthesize multiple datasets from two aircraft and analyze the microphysical and kinematic properties of an electrified TC. Five coordinated flight legs through Karl by the DC-8 and GH are investigated, focusing on the inner-core region (within 50km of the storm center) where the lightning was concentrated and the aircraft were well coordinated. GRIP datasets are used to compare properties of electrified and nonelectrified inner-core regions that are related to the noninductive charging mechanism, which is widely accepted to explain the observed electric fields within thunderstorms. Three common characteristics of Karl's electrified regions are identified: 1) strong updrafts of 10-20ms21, 2) deep mixed-phase layers indicated by reflectivities.30 dBZ extending several kilometers above the freezing level, and 3) microphysical environments consisting of graupel, very small ice particles, and the inferred presence of supercooled water. These characteristics describe an environment favorable for in situ noninductive charging and, hence, TC electrification. The electrified regions in Karl's inner core are attributable to a microphysical environment that was conducive to electrification because of occasional, strong convective updrafts in the eyewall.

  15. Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?

    NASA Astrophysics Data System (ADS)

    Freidberg, J.; Mangiarotti, F.; Minervini, J.

    2014-10-01

    The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.

  16. Brief Report: Driving and Young Adults with ASD--Parents' Experiences

    ERIC Educational Resources Information Center

    Cox, Neill Broderick; Reeve, Ronald E.; Cox, Stephany M.; Cox, Daniel J.

    2012-01-01

    A paucity of research exists regarding driving skills and individuals with Autism Spectrum Disorders (ASD). The current study sought to gain a better understanding of driving and ASD by surveying parents/caregivers of adolescents/young adults with ASD who were currently attempting, or had previously attempted, to learn to drive. Respondents…

  17. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    NASA Astrophysics Data System (ADS)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the electrification process determined by the turbulence intensity and particles sizes is strong enough. The electric field strength grows exponentially. For the non-inductive mechanism we have found the conditions when the electric field strength grows but linearly in time. Our results show that turbulent electric dynamo could play a substantial role in the electrification processes for different mechanisms of charge generation and separation. Thunderstorms and lightning are the most frequent and spectacular manifestations of electric dynamo in the atmosphere, but turbulent electric dynamo may also be the reason of electric discharges occurring in dust and snow storms or even in technological setups with intense mixing of small particles.

  18. Plasma heating and current drive using intense, pulsed microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less

  19. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    NASA Astrophysics Data System (ADS)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  20. Modelling of minority ion cyclotron current drive during the activated phase of ITER

    NASA Astrophysics Data System (ADS)

    Laxåback, M.; Hellsten, T.

    2005-12-01

    Neoclassical tearing modes, triggered by the long-period sawteeth expected in tokamaks with large non-thermal α-particle populations, may impose a severe β limit on experiments with large fusion yields and on reactors. Sawtooth destabilization by localized current drive could relax the β limit and improve plasma performance. 3He minority ion cyclotron current drive around the sawtooth inversion radius has been planned for ITER. Several ion species, including beam injected D ions and fusion born α particles, are however also resonant in the plasma and may represent a parasitic absorption of RF power. Modelling of minority ion cyclotron current drive in an ITER-FEAT-like plasma is presented, including the effects of ion trapping, finite ion drift orbit widths, wave-induced radial transport and the coupled evolution of wave fields and resonant ion distributions. The parasitic absorption of RF power by the other resonant species is concluded to be relatively small, but the 3He minority current drive is nevertheless negligible due to the strong collisionality of the 3He ions and the drag current by toroidally counter-rotating background ions and co-rotating electrons. H minority current drive is found to be a significantly more effective alternative.

  1. Oscillating field current drive experiments in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Blair, Arthur P., Jr.

    Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

  2. Turbulent current drive mechanisms

    NASA Astrophysics Data System (ADS)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  3. Global plasma oscillations in electron internal transport barriers in TCV

    NASA Astrophysics Data System (ADS)

    Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team

    2008-12-01

    In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  4. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  5. Visual function and fitness to drive.

    PubMed

    Kotecha, Aachal; Spratt, Alexander; Viswanathan, Ananth

    2008-01-01

    Driving is recognized to be a visually intensive task and accordingly there is a legal minimum standard of vision required for all motorists. The purpose of this paper is to review the current United Kingdom (UK) visual requirements for driving and discuss the evidence base behind these legal rules. The role of newer, alternative tests of visual function that may be better indicators of driving safety will also be considered. Finally, the implications of ageing on driving ability are discussed. A search of Medline and PubMed databases was performed using the following keywords: driving, vision, visual function, fitness to drive and ageing. In addition, papers from the Department of Transport website and UK Royal College of Ophthalmologists guidelines were studied. Current UK visual standards for driving are based upon historical concepts, but recent advances in technology have brought about more sophisticated methods for assessing the status of the binocular visual field and examining visual attention. These tests appear to be better predictors of driving performance. Further work is required to establish whether these newer tests should be incorporated in the current UK visual standards when examining an individual's fitness to drive.

  6. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams

    2017-07-01

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.

  7. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  8. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE PAGES

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; ...

    2017-04-28

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  9. Turbulent current drive mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm’s law, and hence provide an ideal means for driving deviationsmore » from neoclassical predictions.« less

  10. Turbulent current drive mechanisms

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-07-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm’s law, and hence provide an ideal means for driving deviationsmore » from neoclassical predictions.« less

  11. Numerical analysis on the synergy between electron cyclotron current drive and lower hybrid current drive in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Hong, B. B.; Liu, Y.; Lu, W.; Huang, J.; Tang, C. J.; Ding, X. T.; Zhang, X. J.; Hu, Y. J.

    2012-11-01

    The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small.

  12. Plasma current ramp-up by lower hybrid wave using innovative antennas on TST-2

    NASA Astrophysics Data System (ADS)

    Takase, Yuichi; Ejiri, Akira; Moeller, Charles; Roidl, Benedikt; Shinya, Takahiro; Tsujii, Naoto; Yajima, Satoru; Yamazaki, Hibiki; Kitayama, Akichika; Matsumoto, Naoki; Sato, Akito; Sonehara, Masateru; Takahashi, Wataru; Tajiri, Yoshiyuki; Takei, Yuki; Togashi, Hiro; Toida, Kazuya; Yoshida, Yusuke

    2016-10-01

    Non-inductive plasma current (Ip) ramp-up by RF power in the lower hybrid frequency range is being studied on the TST-2 spherical tokamak (R = 0.36 m, a = 0.23 m, Bt = 0.3 T, Ip = 0.1 MA). Up to 400 kW of RF power is available at a frequency of 200 MHz. An innovative antenna called the capacitively-coupled combline (CCC) antenna was developed to excite a sharp, highly directional traveling wave with the electric field polarized in the toroidal direction. It is an array of resonant circuit elements made of capacitance and inductance, coupled to neighboring elements by mutual capacitance. Two CCC antennas are installed in TST-2, a 13-element outboard-launch antenna and a 6-element top-launch antenna. The latter was installed in March 2016 to improve accessibility to the core and to achieve single-pass damping. The suspected wave power loss in the scrape-off layer plasma should also be avoided. Ip ramp-up to 25 kA has been achieved so far. An upgrade of the Bt power supply is planned to take advantage of the observed improvement of Ip ramp-up with Bt. Higher Bt for longer pulses should improve the Ip ramp-up efficiency by improving wave accessibility and by reducing prompt orbit losses of energetic electrons.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less

  14. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  15. Base drive circuit for a four-terminal power Darlington

    DOEpatents

    Lee, Fred C.; Carter, Roy A.

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  16. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  17. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weiman; Tang, Jie; Wang, Yishan

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. Theremore » is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.« less

  18. Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team

    2015-11-01

    A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.

  19. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu

    2017-10-01

    An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  20. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  1. Power-control switch

    NASA Technical Reports Server (NTRS)

    Kessler, L. L.

    1976-01-01

    Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.

  2. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  3. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  4. Lower hybrid current drive experiments in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Jiang, Tongwen; Liu, Yuexiu; Guo, Wenkang; Zhang, Xuelei; Luo, Jiarong

    1987-07-01

    Lower hybrid current drive (LHCD) experiments with a multijunction grill have been performed in the HT-6M tokamak. When the RF power pulse with 15ms risetime is injected into the plasma, the toroidal current amplitude is raised, but the temporal variation of the loop voltage does not have measurable change. The efficiency of current drive is Irf/Prf=0.57kA/kW at bar ne=3 × 1012cm-3 and Bt=8KG. It seems that the multijunction grill has the same efficiency as the ordinary grill on the LHCD experiments.

  5. Analytical approaches to optimizing system "Semiconductor converter-electric drive complex"

    NASA Astrophysics Data System (ADS)

    Kormilicin, N. V.; Zhuravlev, A. M.; Khayatov, E. S.

    2018-03-01

    In the electric drives of the machine-building industry, the problem of optimizing the drive in terms of mass-size indicators is acute. The article offers analytical methods that ensure the minimization of the mass of a multiphase semiconductor converter. In multiphase electric drives, the form of the phase current at which the best possible use of the "semiconductor converter-electric drive complex" for active materials is different from the sinusoidal form. It is shown that under certain restrictions on the phase current form, it is possible to obtain an analytical solution. In particular, if one assumes the shape of the phase current to be rectangular, the optimal shape of the control actions will depend on the width of the interpolar gap. In the general case, the proposed algorithm can be used to solve the problem under consideration by numerical methods.

  6. Development of steady-state scenarios compatible with ITER-like wall conditions

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Arnoux, G.; Beurskens, M.; Brezinsek, S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Giroud, C.; Pitts, R. A.; Rimini, F. G.; Andrew, Y.; Ariola, M.; Baranov, Yu F.; Brix, M.; Buratti, P.; Cesario, R.; Corre, Y.; DeLa Luna, E.; Fundamenski, W.; Giovannozzi, E.; Gryaznevich, M. P.; Hawkes, N. C.; Hobirk, J.; Huber, A.; Jachmich, S.; Joffrin, E.; Koslowski, H. R.; Liang, Y.; Loarer, Th; Lomas, P.; Luce, T.; Mailloux, J.; Matthews, G. F.; Mazon, D.; McCormick, K.; Moreau, D.; Pericoli, V.; Philipps, V.; Rachlew, E.; Reyes-Cortes, S. D. A.; Saibene, G.; Sharapov, S. E.; Voitsekovitch, I.; Zabeo, L.; Zimmermann, O.; Zastrow, K. D.; JET-EFDA Contributors, the

    2007-12-01

    A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q95 ~ 5 and high triangularity, δ (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching βN ~ 2 at Bo ~ 3.1 T. Operating at higher δ has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high βN regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of βN above the 'no-wall magnetohydrodynamic limit' (βN ~ 3.0) have been sustained for a resistive current diffusion time in high-δ configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with ~30 MW of applied heating power (at 1.2 MA/2.7 T, q95 ~ 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.

  7. Driving reduction and cessation : transitioning to not driving.

    DOT National Transportation Integrated Search

    2009-09-01

    This project examined the process of driving reduction and cessation from the perspective of older adults (current and former drivers) and adult children. The objectives were to identify common markers of the process of driving cessation and to gain ...

  8. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  9. Alcohol and Traffic Safety.

    ERIC Educational Resources Information Center

    Dickman, Frances Baker, Ed.

    1988-01-01

    Seven papers discuss current issues and applied social research concerning alcohol traffic safety. Prevention, policy input, methodology, planning strategies, anti-drinking/driving programs, social-programmatic orientations of Mothers Against Drunk Driving, Kansas Driving Under the Influence Law, New Jersey Driving While Impaired Programs,…

  10. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling

    PubMed Central

    Marroquin-Guzman, Margarita; Wilson, Richard A.

    2015-01-01

    Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development. PMID:25901357

  11. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  12. Reduced ion bootstrap current drive on NTM instability

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng; Wang, Feng; Wang, Aike; Peng, Xiaodong; Li, Jiquan

    2018-05-01

    The loss of bootstrap current inside magnetic island plays a dominant role in driving the neoclassical tearing mode (NTM) instability in tokamak plasmas. In this work, we investigate the finite-banana-width (FBW) effect on the profile of ion bootstrap current in the island vicinity via an analytical approach. The results show that even if the pressure gradient vanishes inside the island, the ion bootstrap current can partly survive due to the FBW effect. The efficiency of the FBW effect is higher when the island width becomes smaller. Nevertheless, even when the island width is comparable to the ion FBW, the unperturbed ion bootstrap current inside the island cannot be largely recovered by the FBW effect, and thus the current loss still exists. This suggests that FBW effect alone cannot dramatically reduce the ion bootstrap current drive on NTMs.

  13. Fuel magnetization without external field coils (AutoMag)

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  15. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  16. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  17. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  18. An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William

    The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous workmore » that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.« less

  19. Demonstration of Inductive Flux Saving by Transient CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2010-11-01

    Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  20. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  1. Impact of New Regulations On Assessing Driving Status (INROADS): a South Australian seizure clinic cohort.

    PubMed

    Hafner, Jessica; Horn, Sharon; Robinson, Martin; Purdie, Grant; Jannes, Jim

    2014-11-01

    The ability to drive is important to patients and driving restriction often leads to restriction of employment and social opportunities. In March 2012, Austroads released revised Assessing Fitness to Drive Guidelines (AFTDG) with significant changes for drivers with seizures and epilepsy. Our study aimed to assess the impact of the 2012 AFTDG on a Seizure Clinic cohort compared to the previous 2003 AFTDG and an individual's current driving status. We also aimed to quantify the difference in AFTDG interpretation between expert and non-expert doctors. We performed a retrospective observational audit of case notes for all patients managed in a public hospital outpatient Seizure Clinic between 1 March 2010 and 1 March 2012. A total of 142 patients were included in the analysis. Comparison between the 2003 and 2012 AFTDG resulted in reduced eligibility to drive a private vehicle by 2.1% (52.5% versus 50.4%) and commercial vehicle by 2.2% (4.5% versus 2.3%). The proportion of those currently driving against guideline recommendations increased (private 8.8% versus 19%; commercial 50% versus 100%) and the non-expert assessor was more likely to agree with the experts with the 2012 AFTDG. In summary, the 2012 AFTDG has had a measurable impact on driving eligibility in individuals with seizure although it is easier to interpret for non-expert doctors. Greater awareness of the 2012 AFTDG is required to reduce the proportion of patients driving against current recommendations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Neoclassical Current Drive by Waves with a Symmetric Spectrum

    NASA Astrophysics Data System (ADS)

    Helander, Per

    2000-10-01

    It is well known that plasma waves can produce electric currents if the waves have an asymmetric spectrum, so that they either interact preferentially with electrons travelling in one direction along the magnetic field or impart net parallel momentum to the electrons [1]. This directionality creates an asymmetry in the electron distribution function and thereby produces a current parallel to the field. We demonstrate, somewhat surprisingly, that in a plasma confined by a curved magnetic field no such spectral asymmetry is necessary for current drive if the effect of collisions is properly taken into account. For instance, in a toroidal plasma a current can be produced by a spectrally symmetric wave field if this field is instead up-down asymmetric, which is frequently the case for electron cyclotron current drive (ECCD) in tokamaks. We have calculated the resulting current drive efficiency and found it to be smaller than that of the conventional current drive mechanism in the banana regime, but not insignificant in the plateau regime. The results will be compared with experiments in DIII-D, where the measured efficiency exceeds the classical prediction [2]. Our calculations are focused on this case of ECCD in tokamaks, but the basic physical mechanism is much more general. It is of a universal neoclassical nature and applies to all wave-particle interaction in curved magnetic fields. [1] N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987). [2] Y. R. Lin-Liu et al., 26th EPS Conf. on Contr. Fusion and Plasma Phys.(European Phys. Soc. Paris, 1999) Vol. 23J, p 1245.

  3. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  4. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    DOE PAGES

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive (IDCD) theory is used to predict the toroidal current evolution in the HIT-SI experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  5. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive (IDCD) theory is used to predict the toroidal current evolution in the HIT-SI experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  6. Anxiety, Sedation, and Simulated Driving in Binge Drinkers

    PubMed Central

    Aston, Elizabeth R.; Shannon, Erin E.; Liguori, Anthony

    2014-01-01

    The current study evaluated the relationships among trait anxiety, subjective response to alcohol, and simulated driving following a simulated alcohol binge. Sixty drinkers with a binge history completed the State Trait Anxiety Inventory (STAI), the Alcohol Use Questionnaire, and subsequently completed a driving simulation. Participants were then administered 0.2 g/kg ethanol at 30 minute intervals (cumulative dose 0.8 g/kg). Following alcohol consumption, the Biphasic Alcohol Effects Scale (BAES) and visual analog scales of subjective impairment and driving confidence were administered, after which simulated driving was re-assessed. Due to the emphasis on simulated driving after drinking in the current study, subjective response to alcohol (i.e., self-reported sedation, stimulation, impairment, and confidence in driving ability) was assessed once following alcohol consumption, as this is the time when drinkers tend to make decisions regarding legal driving ability. Alcohol increased driving speed, speeding tickets, and collisions. Sedation following alcohol predicted increased subjective impairment and decreased driving confidence. Subjective impairment was not predicted by sensitivity to stimulation or trait anxiety. High trait anxiety predicted low driving confidence after drinking and this relationship was mediated by sedation. Increased speed after alcohol was predicted by sedation, but not by trait anxiety or stimulation. Anxiety, combined with the sedating effects of alcohol, may indicate when consumption should cease. However, once driving is initiated, sensitivity to sedation following alcohol consumption is positively related to simulated driving speed. PMID:24955664

  7. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  8. Factors associated with driving in teens with autism spectrum disorders.

    PubMed

    Huang, Patty; Kao, Trudy; Curry, Allison E; Durbin, Dennis R

    2012-01-01

    To compare the characteristics of driving and nondriving teens and explore the driving outcomes for teens with higher functioning autism spectrum disorders. Parents of teens aged 15 to 18 years with a parent-reported diagnosis of an autism spectrum disorder enrolled in Interactive Autism Network, an online research registry, were eligible for this cross-sectional study. An online survey was used for data collection. A total of 297 parents completed the survey. Sixty-three percent of teens currently drive or plan to drive. Twenty-nine percent of the teens who are age-eligible to drive currently drive. Compared with age-eligible but nondriving teens, a greater proportion of driving teens were in full-time regular education (p < .005), planned to attend college (p < .001), and held a paid job (p = .008). A greater proportion of parents of driving teens had taught ≥1 teen to drive previously (p < .001). There were no differences in gender, autism subtype, attention deficit/hyperactivity disorder diagnosis, parental age or education, or access to public transportation. Driving predictors included individualized education plans with driving goals, indicators of functional status (classroom placement, college aspiration, and job experience), and parent experience with teaching teens to drive. Twelve percent of teens received driving citations, and 12% of teens had been involved in a motor vehicle crash. Although a significant proportion of teens with higher functioning autism spectrum disorders were driving or learning to drive, the fact that most driving teens' individualized education plans did not include driving goals suggests an area of opportunity for improvement in transition planning. Driving teens were more frequently in regular education settings with college aspirations, which could help schools identify potential drivers.

  9. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  10. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less

  11. Marijuana and actual driving performance

    DOT National Transportation Integrated Search

    1993-11-01

    This report concerns the effects of marijuana smoking on actual driving performance. It presents the results of one pilot and three actual driving studies. The pilot study's major purpose was to establish the THC dose current marijuana users smoke to...

  12. Electron Cyclotron Radiation, Related Power Loss, and Passive Current Drive in Tokamaks: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidone, Ignazio; Giruzzi, Gerardo; Granata, Giovanni

    2001-01-15

    A critical review on emission of weakly damped, high-harmonics electron cyclotron radiation, the related synchrotron power loss, and passive current drive in tokamaks with a fish-scale first wall is presented. First, the properties of overlapping harmonics are discussed using general analytical formulas and numerical applications. Next, the radiation power loss and efficiency of passive current drive in tokamak reactors are derived for the asymmetric fish-scale first wall. The radiation power loss is determined by the direction-averaged reflection coefficient {sigma}{sub 0} and the passive current drive by the differential reflectivity {delta}{sigma}/(1 - {sigma}{sub 0}). Finally, the problem of experimental investigations ofmore » the high harmonics radiation spectra, of {sigma}{sub 0} and {delta}{sigma}/(1 - {sigma}{sub 0}) in existing and next-step tokamaks, is discussed. Accurate measurements of the radiation spectra and the fish-scale reflectivity can be performed at arbitrary electron temperature using a partial fish-scale structure located near the tokamak equatorial plane.« less

  13. Restraining for switching effects in an AC driving pixel circuit of the OLED-on-silicon

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Yan; Geng, Wei-Dong; Dai, Yong-Ping

    2010-03-01

    The AC driving scheme for OLEDs, which uses the pixel circuit with two transistors and one capacitor (2T1C), can extend the lifetime of the active matrix organic light-emitting diode (AMOLED) on silicon, but there are switching effects during the switch of AC signals, which result in the voltage variation on the storage capacitor and cause the current glitch in OLED. That would decrease the gray scale of the OLED. This paper proposes a novel pixel circuit consisting of three transistors and one capacitor to realize AC driving for the OLED-on-silicon while restraining the switching effects. Simulation results indicate that the proposed circuit is less sensitive to switching effects. Also, another pixel circuit is proposed to further reduce the driving current to meet the current constraints for the OLED-on-silicon.

  14. Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System

    NASA Astrophysics Data System (ADS)

    Brazis, V.; Latkovskis, L.; Grigans, L.

    2010-01-01

    The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.

  15. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    PubMed

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  16. Integral Sensor Fault Detection and Isolation for Railway Traction Drive

    PubMed Central

    del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-01-01

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251

  17. Diplopia and driving: a problematic issue.

    PubMed

    Righi, Stefano; Boffano, Paolo; Guglielmi, Valeria; Rossi, Paolo; Martorina, Massimo

    2014-10-01

    The aim of this article was to review the literature regarding diplopia and driving license and to review the West European legislations about this topic, in order to obtain appropriate indications for hospitals specialists and patients. A systematic review of articles published about diplopia and driving was performed. In addition a review of West European national legislations about driving license regulations for medical illnesses was performed, in addition to the European Union Directive on driving licenses. In the literature, the presence of diplopia has not been considered a reliable predictor of the safety of driving behavior, or it has not appeared to be a contraindication for driving according to some authors who were unable to demonstrate significant differences on driving simulator performance between subjects with chronic stable diplopia and control subjects. Nevertheless, in all western European legislations, acute diplopia constitutes an important limitation for driving, thus making the knowledge of current regulations fundamental for specialists involved in managing patients with diplopia. Ophthalmologists and maxillofacial/head and neck surgeons, may advise patients before hospital discharge about current legislations in their respective countries. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Relativistic theory of radiofrequency current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Metens, T.

    1991-05-01

    A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less

  19. On the application of frequency selective common mode feedback for multifrequency EIT.

    PubMed

    Langlois, Peter J; Wu, Yu; Bayford, Richard H; Demosthenous, Andreas

    2015-06-01

    Common mode voltages are frequently a problem in electrical impedance tomography (EIT) and other bioimpedance applications. To reduce their amplitude common mode feedback is employed. Formalised analyses of both current and voltage feedback is presented in this paper for current drives. Common mode effects due to imbalances caused by the current drives, the electrode connections to the body load and the introduction of the body impedance to ground are considered. Frequency selective narrowband common mode feedback previously proposed to provide feedback stability is examined. As a step towards multifrequency applications the use of narrowband feedback is experimentally demonstrated for two simultaneous current drives. Measured results using standard available components show a reduction of 62 dB for current feedback and 31 dB for voltage feedback. Frequencies ranged from 50 kHz to 1 MHz.

  20. Investigating the decision-making processes that contribute to impaired driving.

    DOT National Transportation Integrated Search

    2015-08-01

    Alcohol-impaired (AI) driving continues to cause a disproportionate number of fatalities within the college and : young adult populations, indicating optimal prevention programs for AI driving have yet to be developed. The : current study tested the ...

  1. Alcohol & drug use among drivers : British Columbia roadside survey 2008

    DOT National Transportation Integrated Search

    2009-01-01

    Following two decades of progress dealing with alcoholimpaired : driving, greater attention is now being : directed toward the issue of driving while impaired by : drugs. Currently, there is far less information related to drug-impaired : driving tha...

  2. Effectiveness evaluation of simulative workshops for newly licensed drivers.

    PubMed

    Rosenbloom, Tova; Eldror, Ehud

    2014-02-01

    The current study set to examine the effects of simulator use in driving instruction on newly licensed drivers, comparing the road safety knowledge and reported intended behavior, as well as the actual driving performance of new drivers. Participants consisted of 280 newly licensed driver, of which 140 whose drivers license training included additional simulator-based lessons, and 140 drivers whose training precluded simulator-based lessons. All drivers answered questionnaires pertaining to their intended safe driving behaviors (according to Ajzen's (2000) theory of planned behavior), and to their traffic safety knowledge. Of the initial sample, 40 drivers received actual driving performance evaluation by an expert driving instructor, as well as by in-vehicle data recorders (IVDRs). We assumed that safer drivers report safer driving intentions, demonstrate greater traffic safety knowledge, evaluated as safer drivers by the driving instructor, and display lower and stable driving parameters on the IVDRs. We hypothesized that theoretical driving studies combined with practical training on simulators will elevate the safety level of novices driving. Hierarchical regression analyses on driving intentions indicated that drivers who did not receive simulator-based lessons demonstrated safer driving intentions compared to drivers who received simulator-based lessons. This pattern possibly indicating the drivers who received simulator-based lessons felt more confident in their driving abilities compared to drivers who did not receive simulated training. No significant difference was found in traffic safety knowledge, or in the evaluation of the expert driving instructor. IDVR data comparisons indicated drivers who received simulator-based lessons braked more often and were less prone to headway events, suggesting a more responsive driving style. These findings do not point to any significant advantage or disadvantage of the current simulator-based driving training over other driving training methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  4. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations

    PubMed Central

    Liu, Chen

    2017-01-01

    A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations. PMID:28727785

  5. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  6. Underwater noise reduction of marine pile driving using a double pile.

    DOT National Transportation Integrated Search

    2015-12-01

    Impact pile driving of steel piles in marine environments produces extremely high sound levels in the water. : It has been shown that current pile driving noise attenuation techniques, such as bubble curtains and : cofferdams, provide limited noise r...

  7. Stabilizing effect of helical current drive on tearing modes

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Lu, X. Q.; Dong, J. Q.; Gong, X. Y.; Zhang, R. B.

    2018-01-01

    The effect of helical driven current on the m = 2/n = 1 tearing mode is studied numerically in a cylindrical geometry using the method of reduced magneto-hydro-dynamic simulation. The results show that the local persistent helical current drive from the beginning time can be applied to control the tearing modes, and will cause a rebound effect called flip instability when the driven current reaches a certain value. The current intensity threshold value for the occurrence of flip instability is about 0.00087I0. The method of controlling the development of tearing mode with comparative economy is given. If the local helical driven current is discontinuous, the magnetic island can be controlled within a certain range, and then, the tearing modes stop growing; thus, the flip instability can be avoided. We also find that the flip instability will become impatient with delay injection of the driven current because the high order harmonics have been developed in the original O-point. The tearing mode instability can be controlled by using the electron cyclotron current drive to reduce the gradient of the current intensity on the rational surfaces.

  8. Impact of gender, organized athletics, and video gaming on driving skills in novice drivers

    PubMed Central

    Miller, Gregory A.

    2018-01-01

    Given that novice drivers tend to be young, and teenagers and young adult drivers are involved in the greatest number of accidents, it is important that we understand what factors impact the driving skills of this population of drivers. The primary aim of the present study was to understand the impact of gender, organized athletics, and video gaming on driving skills of novice drivers under real-world driving conditions. Novice driving students having less than five hours driving experience previous to a normal driving lesson were evaluated on their self-confidence (self-reported) prior to the lesson and driving skill evaluated by their instructor during the course of the lesson. Information was collected about gender, age, whether or not the students were involved in organized athletics, and the extent of their video game playing. There was no impact of gender or extent of video game playing on driving skills. Females were significantly less self-confident with driving than males, but this did not translate to gender differences in driving skills. Being involved in organized athletics—either currently or in the past—significantly enhanced driving skills in both females and males. Finally, novice drivers’ age was negatively correlated with driving skills. That is, younger novice drivers (especially males) had better driving skills than older novice drivers. This is counter to popular belief that young drivers lack technical driving skills because they have less experience behind the wheel. Based on the results of the current study, we hypothesize that the relatively high accident rate of younger drivers (especially male drivers) is most likely due to inattention to safety considerations rather than lack of technical driving ability. PMID:29364957

  9. Impact of gender, organized athletics, and video gaming on driving skills in novice drivers.

    PubMed

    Wayne, Nancy L; Miller, Gregory A

    2018-01-01

    Given that novice drivers tend to be young, and teenagers and young adult drivers are involved in the greatest number of accidents, it is important that we understand what factors impact the driving skills of this population of drivers. The primary aim of the present study was to understand the impact of gender, organized athletics, and video gaming on driving skills of novice drivers under real-world driving conditions. Novice driving students having less than five hours driving experience previous to a normal driving lesson were evaluated on their self-confidence (self-reported) prior to the lesson and driving skill evaluated by their instructor during the course of the lesson. Information was collected about gender, age, whether or not the students were involved in organized athletics, and the extent of their video game playing. There was no impact of gender or extent of video game playing on driving skills. Females were significantly less self-confident with driving than males, but this did not translate to gender differences in driving skills. Being involved in organized athletics-either currently or in the past-significantly enhanced driving skills in both females and males. Finally, novice drivers' age was negatively correlated with driving skills. That is, younger novice drivers (especially males) had better driving skills than older novice drivers. This is counter to popular belief that young drivers lack technical driving skills because they have less experience behind the wheel. Based on the results of the current study, we hypothesize that the relatively high accident rate of younger drivers (especially male drivers) is most likely due to inattention to safety considerations rather than lack of technical driving ability.

  10. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    PubMed

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  11. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  12. Amplitude-frequency effect of Y-cut langanite and langatate.

    PubMed

    Kim, Yoonkee

    2003-12-01

    Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.

  13. Cognitive deficits are associated with poorer simulated driving in older adults with heart failure

    PubMed Central

    2013-01-01

    Background Cognitive impairment is prevalent in older adults with heart failure (HF) and associated with reduced functional independence. HF patients appear at risk for reduced driving ability, as past work in other medical samples has shown cognitive dysfunction to be an important contributor to driving performance. The current study examined whether cognitive dysfunction was independently associated with reduced driving simulation performance in a sample of HF patients. Methods 18 persons with HF (67.72; SD = 8.56 year) completed echocardiogram and a brief neuropsychological test battery assessing global cognitive function, attention/executive function, memory and motor function. All participants then completed the Kent Multidimensional Assessment Driving Simulation (K-MADS), a driving simulator scenario with good psychometric properties. Results The sample exhibited an average Mini Mental State Examination (MMSE) score of 27.83 (SD = 2.09). Independent sample t-tests showed that HF patients performed worse than healthy adults on the driving simulation scenario. Finally, partial correlations showed worse attention/executive and motor function were independently associated with poorer driving simulation performance across several indices reflective of driving ability (i.e., centerline crossings, number of collisions, % of time over the speed limit, among others). Conclusion The current findings showed that reduced cognitive function was associated with poor simulated driving performance in older adults with HF. If replicated using behind-the-wheel testing, HF patients may be at elevated risk for unsafe driving and routine driving evaluations in this population may be warranted. PMID:24499466

  14. Multi-megawatt, gigajoule plasma operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Dumont, R. J.; Goniche, M.; Ekedahl, A.; Saoutic, B.; Artaud, J.-F.; Basiuk, V.; Bourdelle, C.; Corre, Y.; Decker, J.; Elbèze, D.; Giruzzi, G.; Hoang, G.-T.; Imbeaux, F.; Joffrin, E.; Litaudon, X.; Lotte, Ph; Maget, P.; Mazon, D.; Nilsson, E.; The Tore Supra Team

    2014-07-01

    Integrating several important technological elements required for long pulse operation in magnetic fusion devices, the Tore Supra tokamak routinely addresses the physics and technology issues related to this endeavor and, as a result, contributes essential information on critical issues for ITER. During the last experimental campaign, components of the radiofrequency system including an ITER relevant launcher (passive active multijunction (PAM)) and continuous wave/3.7 GHz klystrons, have been extensively qualified, and then used to develop steady state scenarios in which the lower hybrid (LH), ion cyclotron (IC) and electron cyclotron (EC) systems have been combined in fully stationary shots (duration ˜150 s, injected power up to ˜8 MW, injected/extracted energy up to ˜1 GJ). Injection of LH power in the 5.0-6.0 MW range has extended the domain of accessible plasma parameters to higher densities and non-inductive currents. These discharges exhibit steady electron internal transport barriers (ITBs). We report here on various issues relevant to the steady state operation of future devices, ranging from operational aspects and limitations related to the achievement of long pulses in a fully actively cooled fusion device (e.g. overheating due to fast particle losses), to more fundamental plasma physics topics. The latter include a beneficial influence of IC resonance heating on the magnetohydrodynamic (MHD) stability in these discharges, which has been studied in detail. Another interesting observation is the appearance of oscillations of the central temperature with typical periods of the order of one to several seconds, caused by a nonlinear interplay between LH deposition, MHD activity and bootstrap current in the presence of an ITB.

  15. Experiment to investigate current drive by fast Alfven waves in a small tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahl, J.; Ishihara, O.; Wong, K.

    1985-07-01

    An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.

  16. Base drive for paralleled inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  17. AORSA full wave calculations of helicon waves in DIII-D and ITER

    NASA Astrophysics Data System (ADS)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2018-06-01

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.

  18. AORSA full wave calculations of helicon waves in DIII-D and ITER

    DOE PAGES

    Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola; ...

    2018-04-11

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less

  19. AORSA full wave calculations of helicon waves in DIII-D and ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less

  20. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  1. Two-dimensional Inductive Position Sensing System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)

    2015-01-01

    A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.

  2. Current challenges in autonomous driving

    NASA Astrophysics Data System (ADS)

    Barabás, I.; Todoruţ, A.; Cordoş, N.; Molea, A.

    2017-10-01

    Nowadays the automotive industry makes a quantum shift to a future, where the driver will have smaller and smaller role in driving his or her vehicle ending up being totally excluded. In this paper, we have investigated the different levels of driving automatization, the prospective effects of these new technologies on the environment and traffic safety, the importance of regulations and their current state, the moral aspects of introducing these technologies and the possible scenarios of deploying the autonomous vehicles. We have found that the self-driving technologies are facing many challenges: a) They must make decisions faster in very diverse conditions which can include many moral dilemmas as well; b) They have an important potential in reducing the environmental pollution by optimizing their routes, driving styles by communicating with other vehicles, infrastructures and their environment; c) There is a considerable gap between the self-drive technology level and the current regulations; fortunately, this gap shows a continuously decreasing trend; d) In case of many types of imminent accidents management there are many concerns about the ability of making the right decision. Considering that this field has an extraordinary speed of development, our study is up to date at the submission deadline. Self-driving technologies become increasingly sophisticated and technically accessible, and in some cases, they can be deployed for commercial vehicles as well. According to the current stage of research and development, it is still unclear how the self-driving technologies will be able to handle extreme and unexpected events including their moral aspects. Since most of the traffic accidents are caused by human error or omission, it is expected that the emergence of the autonomous technologies will reduce these accidents in their number and gravity, but the very few currently available test results have not been able to scientifically underpin this issue yet. The increasing trend in automation of vehicles will radically change the composition of car industry players, as mechatronics will not only be a complementary part of the automobile industry but an indispensable part of it. There is a reasonable expectation that automated cars will perform the same or better in all respects than their conventional counterparts. However, it seems that the current regulations do not keep up with the development of technology and sometimes hinder the development and testing of autonomous technologies.

  3. Driving with Mild Cognitive Impairment or Dementia: Cognitive Test Performance and Proxy Report of Daily Life Function in Older Women.

    PubMed

    Vaughan, Leslie; Hogan, Patricia E; Rapp, Stephen R; Dugan, Elizabeth; Marottoli, Richard A; Snively, Beverly M; Shumaker, Sally A; Sink, Kaycee M

    2015-09-01

    To investigate associations between proxy report of cognitive and functional limitations and cognitive performance and current or former driving status in older women with mild cognitive impairment (MCI) and all-cause dementia. Cross-sectional data analysis of retrospectively identified older women with adjudicated MCI and all-cause dementia in the Women's Health Initiative Memory Study-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO). Academic medical center. Women (mean age ± standard deviation 83.7 ± 3.5) adjudicated with MCI or dementia during Year 1, 2, 3, or 4 of the WHIMS-ECHO follow-up period (N = 385). The telephone-administered cognitive battery included tests of attention, verbal learning and memory, verbal fluency, executive function, working memory, and global cognitive function plus self-report measures of depressive symptomatology. The Dementia Questionnaire (DQ) was administered to a knowledgeable proxy (family member, friend). Sixty percent of women with MCI and 40% of those with dementia are current drivers. Proxy reports of functional limitations in instrumental activities of daily living (IADLs) are associated with current driving status in women with MCI, whereas performance-based cognitive tests are not. In women with dementia, proxy reports of functional limitations in IADLs and performance-based cognitive tests are associated with current driving status, as expected. These findings have clinical implications for the importance of evaluating driving concurrently with other instrumental functional abilities in MCI and dementia. Additional work is needed to determine whether proxy report of cognitive and functional impairments should help guide referrals for driving assessment and rehabilitation or counseling for driving transition. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  4. An Exploratory Investigation: Are Driving Simulators Appropriate to Teach Pre-Driving Skills to Young Adults with Intellectual Disabilities?

    ERIC Educational Resources Information Center

    Brooks, Johnell O.; Mossey, Mary E.; Tyler, Peg; Collins, James C.

    2014-01-01

    Research examining driver training for young adults with intellectual disabilities has been limited since the 1970s. The current pilot and exploratory study investigated teaching pre-driving skills (i.e. lane keeping and speed maintenance) to young adults with intellectual disabilities using an interactive driving simulator to provide dynamic and…

  5. The Technique of Changing the Drive Method of Micro Step Drive and Sensorless Drive for Hybrid Stepping Motor

    NASA Astrophysics Data System (ADS)

    Yoneda, Makoto; Dohmeki, Hideo

    The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.

  6. The need for drugged driving per se laws: a commentary.

    PubMed

    DuPont, Robert L; Voas, Robert B; Walsh, J Michael; Shea, Corinne; Talpins, Stephen K; Neil, Mark M

    2012-01-01

    Triggered by the new federal commitment announced by the Office of National Drug Control Policy (ONCDP) to encourage states to enact drugged driving per se laws, this article reviews the reasons to establish such laws and the issues that may arise when trying to enforce them. A review of the state of drunk driving per se laws and their implications for drugged driving is presented, with a review of impaired driving enforcement procedures and drug testing technology. Currently, enforcement of drugged driving laws is an adjunct to the enforcement of laws regarding alcohol impairment. Drivers are apprehended when showing signs of alcohol intoxication and only in the relatively few cases where the blood alcohol concentration of the arrested driver does not account for the observed behavior is the possibility of drug impairment pursued. In most states, the term impaired driving covers both alcohol and drug impairment; thus, driver conviction records may not distinguish between the two different sources of impairment. As a result, enforcement statistics do not reflect the prevalence of drugged driving. Based on the analysis presented, this article recommends a number of steps that can be taken to evaluate current drugged driving enforcement procedures and to move toward the enactment of drug per se laws.

  7. Public Data Set: Initiation and Sustainment of Tokamak Plasmas with Local Helicity Injection as the Majority Current Drive

    DOE Data Explorer

    Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Pachicano, Jessica L. [University of Wisconsin-Madison] (ORCID:0000000207255693); Pierren, Christopher [University of Wisconsin-Madison] (ORCID:0000000228289825); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rhodes, Alexander T. [University of Wisconsin-Madison] (ORCID:0000000280735714); Richner, Nathan J. [University of Wisconsin-Madison] (ORCID:0000000155443915); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schaefer, Carolyn E. [University of Wisconsin-Madison] (ORCID:0000000248848727); Weberski, Justin D. [University of Wisconsin-Madison] (ORCID:0000000256267914)

    2018-05-22

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.M. Perry et al., 'Initiation and Sustainment of Tokamak Plasmas with Local Helicity Injection as the Majority Current Drive,' accepted for publication in Nuclear Fusion.

  8. Analysis of electric drive technologies for transit applications : battery-electric, hybrid-electric, and fuel cells.

    DOT National Transportation Integrated Search

    2005-08-01

    This report provides an overview of the current status of electric drive technologies for transit applications, covering battery-electric, hybrid-electric : and fuel cell buses. Based on input from the transit and electric drive industries, the analy...

  9. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  10. Current drive by helicon waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Manash Kumar; Bora, Dhiraj; ITER Organization, Cadarache Centre-building 519, 131008 St. Paul-Lez-Durance

    2009-01-01

    Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due tomore » the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.« less

  11. Off-axis current drive and real-time control of current profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.; JT-60 Team

    2008-04-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (qmin) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control qmin. The real-time control of qmin is demonstrated in a high-β plasma, where qmin follows the temporally changing reference qmin,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), qmin was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.

  12. Two-motor direct drive control for elevation axis of telescope

    NASA Astrophysics Data System (ADS)

    Tang, T.; Tan, Y.; Ren, G.

    2014-07-01

    Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.

  13. New PMOS LTPS TFT pixel for AMOLED to suppress the hysteresis effect on OLED current by employing a reset voltage driving

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hoon; Park, Sang-Geun; Han, Sang-Myeon; Han, Min-Koo; Park, Kee-Chan

    2008-03-01

    New PMOS LTPS (low temperature polycrystalline silicon)-thin film transistor (TFT) pixel circuit, which can suppress an OLED current error caused by the hysteresis of LTPS-TFT for active matrix organic light emitting diode (AMOLED) display, is proposed and fabricated. The proposed pixel circuit employs a reset voltage driving so that the sweep direction of gate voltage in the current driving TFT is not altered by the gate voltage in the previous frame. Our experimental results show that OLED current error of the proposed pixel is successfully suppressed because a reset voltage can enable the starting gate voltage for a desired one not to be varied, while that of the conventional 2-TFT pixel exceeds over 15% due to the hysteresis of LTPS-TFT.

  14. Effect of simulator training on fitness-to-drive after stroke: a 5-year follow-up of a randomized controlled trial.

    PubMed

    Devos, Hannes; Akinwuntan, Abiodun Emmanuel; Nieuwboer, Alice; Ringoot, Isabelle; Van Berghen, Karen; Tant, Mark; Kiekens, Carlotte; De Weerdt, Willy

    2010-01-01

    No long-term studies have been reported on the effect of training programs on driving after stroke. The authors' primary aim was to determine the effect of simulator versus cognitive rehabilitation therapy on fitness-to-drive at 5 years poststroke. A second aim was to investigate differences in clinical characteristics between stroke survivors who resumed and stopped driving. In a previously reported randomized controlled trial, 83 stroke survivors received 15 hours of simulator training (n = 42) or cognitive therapy (n = 41). In this 5-year follow-up study, 61 participants were reassessed. Fitness-to-drive decisions were obtained from medical, visual, neuropsychological, and on-road tests; 44 participants (simulator group, n = 21; cognitive group, n = 23) completed all assessments. The primary outcome measures were fitness-to-drive decision and current driving status. The authors found that 5 years after stroke, 18 of 30 participants (60%) in the simulator group were considered fit to drive, compared with 15 of 31 (48%) in the cognitive group (P = .36); 34 of 61 (56%) participants were driving. Current drivers were younger (P = .04), had higher Barthel scores (P = .008), had less comorbidity (P = .01), and were less severely depressed (P = .02) than those who gave up driving. The advantage of simulator-based driving training over cognitive rehabilitation therapy, evident at 6 months poststroke, had faded 5 years later. Poststroke drivers were younger and less severely affected and depressed than nondrivers.

  15. A State-by-State Analysis of Laws Dealing With Driving Under the Influence of Drugs

    DOT National Transportation Integrated Search

    2009-12-01

    This study reviewed each State statute regarding drug-impaired driving as of December 2008. There : is a high degree of variability across the States in the ways they approach drug-impaired driving. : Current laws in many States contain provisions ma...

  16. Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI

    DTIC Science & Technology

    2015-04-01

    virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task

  17. Agreements between ground-based and satellite-based observations. [of earth magnetospheric currents

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Weimer, D.; Iijima, T.; Ahn, B.-H.; Kamide, Y.

    1990-01-01

    The polar ionospheric parameters obtained by the meridian chain of magnetometers are compared with those obtained by satellites, and a number of ionospheric quantities including the distribution of the electric potential, field-aligned currents, ionospheric currents and their equatorial counterparts, and the relationship between the AE index and the cross-polar cap potential is determined. It is noted that the agreement observed between the ground-based and satellite-based results allows to reduce the search for the driving mechanism of the ionospheric Pedersen current to identifying the driving mechanism of the Pedersen counterpart current in the equatorial plane.

  18. Improving driving advice provided to cardiology patients on discharge.

    PubMed

    Vusirikala, Amoolya; Backhouse, Mark; Schimansky, Sarah

    2018-01-01

    Certain cardiac conditions can limit patients' ability to drive. It remains the doctors' responsibility to advise patients of any driving restrictions and is particularly important after certain diagnoses or procedures. We identified that the quality of documented advice was variable and frequently no written driving advice was recorded on discharge. It was apparent that there was a lack of awareness and knowledge of the current Driving and Vehicle Licensing Agency (DVLA) guidance among junior doctors. We therefore designed a quality improvement project using Plan-Do-Study-Act (PDSA) methodology to improve the provision of driving advice on discharge from a cardiology ward by focusing on staff education. After collecting baseline data, we created a template with cardiology-specific DVLA advice. During the second PDSA cycle, we improved the electronic template and also introduced a hard copy on the ward. During the third PDSA cycle, we incorporated information on DVLA guidance in the specialty induction session. We also evaluated junior doctors' confidence of providing driving advice before and after this intervention. Baseline measurements showed that 10% (9/92) of all discharge summaries included driving advice. This improved to 49% (34/69) after the third PDSA cycle. Importantly, after receiving information on driving advice in the induction, junior doctors felt more confident in providing driving advice to cardiology patients on discharge. In conclusion, the provision of driving advice on discharge is an important element of patient safety. However, clinicians' knowledge and awareness of current DVLA guidance is often limited. We demonstrated a significant increase in the provision of driving advice by introducing a standardised template.

  19. Improving driving advice provided to cardiology patients on discharge

    PubMed Central

    Vusirikala, Amoolya; Backhouse, Mark; Schimansky, Sarah

    2018-01-01

    Certain cardiac conditions can limit patients’ ability to drive. It remains the doctors' responsibility to advise patients of any driving restrictions and is particularly important after certain diagnoses or procedures. We identified that the quality of documented advice was variable and frequently no written driving advice was recorded on discharge. It was apparent that there was a lack of awareness and knowledge of the current Driving and Vehicle Licensing Agency (DVLA) guidance among junior doctors. We therefore designed a quality improvement project using Plan–Do–Study–Act (PDSA) methodology to improve the provision of driving advice on discharge from a cardiology ward by focusing on staff education. After collecting baseline data, we created a template with cardiology-specific DVLA advice. During the second PDSA cycle, we improved the electronic template and also introduced a hard copy on the ward. During the third PDSA cycle, we incorporated information on DVLA guidance in the specialty induction session. We also evaluated junior doctors’ confidence of providing driving advice before and after this intervention. Baseline measurements showed that 10% (9/92) of all discharge summaries included driving advice. This improved to 49% (34/69) after the third PDSA cycle. Importantly, after receiving information on driving advice in the induction, junior doctors felt more confident in providing driving advice to cardiology patients on discharge. In conclusion, the provision of driving advice on discharge is an important element of patient safety. However, clinicians’ knowledge and awareness of current DVLA guidance is often limited. We demonstrated a significant increase in the provision of driving advice by introducing a standardised template. PMID:29610769

  20. Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structuremore » to realize shape close to the theoretically optimized current profiles.« less

  1. Driving while alcohol impaired : a preliminary exploration of the issues and possible approaches.

    DOT National Transportation Integrated Search

    1989-01-01

    Under current Virginia law, a driver who has been drinking but does not have a BAC of 0.10% will likely not be arrested even if his/her driving ability is visibly impaired. A "driving while alcohol impaired" (DWAI) statute would provide law enforceme...

  2. Development of a National Item Bank for Tests of Driving Knowledge.

    ERIC Educational Resources Information Center

    Pollock, William T.; McDole, Thomas L.

    Materials intended for driving knowledge test development use by operational licensing and education agencies were prepared. Candidate test items were developed, using literature and operational practice sources, to reflect current state-of-knowledge with respect to principles of safe, efficient driving, to legal regulations, and to traffic…

  3. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  4. Current distribution in tissues with conducted electrical weapons operated in drive-stun mode.

    PubMed

    Panescu, Dorin; Kroll, Mark W; Brave, Michael

    2016-08-01

    The TASER® conducted electrical weapon (CEW) is best known for delivering electrical pulses that can temporarily incapacitate subjects by overriding normal motor control. The alternative drive-stun mode is less understood and the goal of this paper is to analyze the distribution of currents in tissues when the CEW is operated in this mode. Finite element modeling (FEM) was used to approximate current density in tissues with boundary electrical sources placed 40 mm apart. This separation was equivalent to the distance between drive-stun mode TASER X26™, X26P, X2 CEW electrodes located on the device itself and between those located on the expended CEW cartridge. The FEMs estimated the amount of current flowing through various body tissues located underneath the electrodes. The FEM simulated the attenuating effects of both a thin and of a normal layer of fat. The resulting current density distributions were used to compute the residual amount of current flowing through deeper layers of tissue. Numerical modeling estimated that the skin, fat and skeletal muscle layers passed at least 86% or 91% of total CEW current, assuming a thin or normal fat layer thickness, respectively. The current density and electric field strength only exceeded thresholds which have increased probability for ventricular fibrillation (VFTJ), or for cardiac capture (CCTE), in the skin and the subdermal fat layers. The fat layer provided significant attenuation of drive-stun CEW currents. Beyond the skeletal muscle layer, only fractional amounts of the total CEW current were estimated to flow. The regions presenting risk for VF induction or for cardiac capture were well away from the typical heart depth.

  5. Say it with flowers

    PubMed Central

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings. PMID:24598343

  6. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  7. Driving evaluation methods for able-bodied persons and individuals with lower extremity disabilities: a review of assessment modalities

    PubMed Central

    Greve, Julia Maria D'Andréa; Santos, Luciana; Alonso, Angelica Castilho; Tate, Denise G

    2015-01-01

    Assessing the driving abilities of individuals with disabilities is often a very challenging task because each medical condition is accompanied by physical impairments and because relative individual functional performance may vary depending on personal characteristics. We identified existing driving evaluation modalities for able-bodied and lower extremity-impaired subjects (spinal cord injury patients and amputees) and evaluated the potential relationships between driving performance and the motor component of driving. An extensive scoping review of the literature was conducted to identify driving assessment tools that are currently used for able-bodied individuals and for those with spinal cord injury or lower extremity amputation. The literature search focused on the assessment of the motor component of driving. References were electronically obtained via Medline from the PubMed, Ovid, Web of Science and Google Scholar databases. This article compares the current assessments of driving performance for those with lower extremity impairments with the assessments used for able-bodied persons. Very few articles were found concerning “Lower Extremity Disabilities,” thus confirming the need for further studies that can provide evidence and guidance for such assessments in the future. Little is known about the motor component of driving and its association with the other driving domains, such as vision and cognition. The available research demonstrates the need for a more evidenced-based understanding of how to best evaluate persons with lower extremity impairment. PMID:26375567

  8. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  9. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  10. Gate drive latching circuit for an auxiliary resonant commutation circuit

    NASA Technical Reports Server (NTRS)

    Delgado, Eladio Clemente (Inventor); Kheraluwala, Mustansir Hussainy (Inventor)

    1999-01-01

    A gate drive latching circuit for an auxiliary resonant commutation circuit for a power switching inverter includes a current monitor circuit providing a current signal to a pair of analog comparators to implement latching of one of a pair of auxiliary switching devices which are used to provide commutation current for commutating switching inverters in the circuit. Each of the pair of comparators feeds a latching circuit which responds to an active one of the comparators for latching the associated gate drive circuit for one of the pair of auxiliary commutating switches. An initial firing signal is applied to each of the commutating switches to gate each into conduction and the resulting current is monitored to determine current direction and therefore the one of the switches which is carrying current. The comparator provides a latching signal to the one of the auxiliary power switches which is actually conducting current and latches that particular power switch into an on state for the duration of current through the device. The latching circuit is so designed that the only time one of the auxiliary switching devices can be latched on is during the duration of an initial firing command signal.

  11. Parent and teen agreement on driving expectations prior to teen licensure.

    PubMed

    Hamann, Cara J; Ramirez, Marizen; Yang, Jingzhen; Chande, Vidya; Peek-Asa, Corinne

    2014-01-01

    To examine pre-licensure agreement on driving expectations and predictors of teen driving expectations among parent-teen dyads. Cross-sectional survey of 163 parent-teen dyads. Descriptive statistics, weighted Kappa coefficients, and linear regression were used to examine expectations about post-licensure teen driving. Teens reported high pre-licensure unsupervised driving (N = 79, 48.5%) and regular access to a car (N = 130, 81.8%). Parents and teens had low agreement on teen driving expectations (eg, after dark, κw = 0.23). Each time teens currently drove to/from school, their expectation of driving in risky conditions post-licensure increased (β = 0.21, p = .02). Pre-licensure improvement of parent-teen agreement on driving expectations are needed to have the greatest impact on preventing teens from driving in high risk conditions.

  12. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    PubMed

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  13. Survey of heating and current drive for K-DEMO

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; Bertelli, N.; Kim, K.

    2018-03-01

    We present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration with I_p=12.3 MA, a  =  2.1 m, R_o=6.8 m, B_o=7.4 T, \

  14. Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R. J.; Frederico, J.; Hogan, M. J.

    2010-11-04

    High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.

  15. Interpretation of steam drive pilots in the Belridge Diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, R.M.; Shahin, G.T.

    1995-12-31

    The South Belridge Diatomite Field contains more than 2.5 billion barrels of oil-in-place. Current primary and waterflood development are estimated to recover only a small fraction of this oil. Despite its low permeability, the diatomite may be a good candidate for the steam drive process, due to its thick oil column (1,000 ft), high porosity (50% to 65%), and high oil saturation (up to 70%). With these attributes, thermal expansion and decreased viscosity of reservoir fluids accelerate oil production, without significant heat loss to cap and base rock. Steam drive pilot operations have been conducted at South Belridge since 1986.more » This paper discusses the pilot projects and the 15-acre steam drive full-scale project currently being installed.« less

  16. Baseline tests of the Kordesh hybrid passenger vehicle

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.

    1978-01-01

    Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.

  17. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, E.; Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706; Anderson, J. K.

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm withmore » neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].« less

  18. The Effects of Low Dose-Rate Ionizing Radiation on the Shapes of Transients in the LM124 Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.

    2008-01-01

    Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.

  19. Low-jitter high-power thyristor array pulse driver and generator

    DOEpatents

    Hanks, Roy L.

    2002-01-01

    A method and apparatus for generating low-jitter, high-voltage and high-current pulses for driving low impedance loads such as detonator fuses uses a MOSFET driver which, when triggered, discharges a high-voltage pre-charged capacitor into the primary of a toroidal current-multiplying transformer with multiple isolated secondary windings. The secondary outputs are suitable for driving an array of thyristors that discharge a precharged high-voltage capacitor and thus generating the required high-voltage and high-current pulse.

  20. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter: EC wave physics and applications, M. Thumm: Source and transmission line development, and S. Cirant: ITER specific system designs). These summaries are included in this issue to give a more complete view of the technical meeting. Finally, it is appropriate to mention the future of this meeting series. With the ratification of the ITER agreement and the formation of the ITER International Organization, it was recognized that meetings conducted by outside agencies with an exclusive focus on ITER would be somewhat unusual. However, the participants at this meeting felt that the gathering of international experts with diverse specialities within EC wave physics and technology to focus on using EC waves in future fusion devices like ITER was extremely valuable. It was therefore recommended that this series of meetings continue, but with the broader focus on the application of EC waves to steady-state and burning plasma experiments including demonstration power plants. As the papers in this special issue show, the EC community is already taking seriously the challenges of applying EC waves to fusion devices with high neutron fluence and continuous operation at high reliability.

  1. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  2. Resting state synchrony in long-term abstinent alcoholics: Effects of a current major depressive disorder diagnosis.

    PubMed

    Fein, George; Camchong, Jazmin; Cardenas, Valerie A; Stenger, Andy

    2017-03-01

    Alcoholism is characterized by a lack of control over an impulsive and compulsive drive toward excessive alcohol consumption despite significant negative consequences; our previous work demonstrated that successful abstinence is characterized by decreased resting-state synchrony (RSS) as measured with functional magnetic resonance imaging (fMRI), within appetitive drive networks and increased RSS in emotion regulation and inhibitory executive control networks. Our hypothesis is that LTAA (Long-Term Abstinent Alcoholics) with a current major depressive disorder (MDD) drank primarily to deal with the negative affect associated with their MDD and not because of a heightened externalizing diathesis (including heightened appetitive drive), and consequently, in achieving and maintaining abstinence, such individuals would not exhibit the RSS adaptations characteristic of pure alcoholics. We studied 69 NSAC (Non Substance Abusing Controls) and 40 LTAA (8 with current MDD, 32 without a current MDD) using resting-state fMRI and seed based connectivity analyses. In the inhibitory executive control network (nucleus accumbens vs. left dorsolateral prefrontal cortex), LTAA with a current MDD showed increased synchrony compared to NSAC. In the emotion regulation executive control network (subgenual anterior cingulate cortex vs. right dorsolateral prefrontal cortex), LTAA with current MDD did not show increased RSS. In the appetitive drive networks (nucleus accumbens vs, aspects of the caudate nucleus and thalamus), LTAA with a current MDD did not show a reduction of RSS compared to NSAC, but LTAA without a current MDD did. These results suggest different pathways to their alcohol dependence in LTAA with vs. without a current MDD, and different patterns of brain activity in long-term abstinence, suggesting different treatment needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Resting state synchrony in long-term abstinent alcoholics: Effects of a current major depressive disorder diagnosis

    PubMed Central

    Fein, George; Camchong, Jazmin; Cardenas, Valerie A.; Stenger, Andy

    2017-01-01

    Alcoholism is characterized by a lack of control over an impulsive and compulsive drive toward excessive alcohol consumption despite significant negative consequences; our previous work demonstrated that successful abstinence is characterized by decreased resting-state synchrony (RSS) as measured with functional magnetic resonance imaging (fMRI), within appetitive drive networks and increased RSS in emotion regulation and inhibitory executive control networks. Our hypothesis is that LTAA (Long-Term Abstinent Alcoholics) with a current major depressive disorder (MDD) drank primarily to deal with the negative affect associated with their MDD and not because of a heightened externalizing diathesis (including heightened appetitive drive), and consequently, in achieving and maintaining abstinence, such individuals would not exhibit the RSS adaptations characteristic of pure alcoholics. We studied 69 NSAC (Non Substance Abusing Controls) and 40 LTAA (8 with current MDD, 32 without a current MDD) using resting-state fMRI and seed based connectivity analyses. In the inhibitory executive control network (nucleus accumbens vs. left dorsolateral prefrontal cortex), LTAA with a current MDD showed increased synchrony compared to NSAC. In the emotion regulation executive control network (subgenual anterior cingulate cortex vs. right dorsolateral prefrontal cortex), LTAA with current MDD did not show increased RSS. In the appetitive drive networks (nucleus accumbens vs, aspects of the caudate nucleus and thalamus), LTAA with a current MDD did not show a reduction of RSS compared to NSAC, but LTAA without a current MDD did. These results suggest different pathways to their alcohol dependence in LTAA with vs. without a current MDD, and different patterns of brain activity in long-term abstinence, suggesting different treatment needs. PMID:28262184

  4. From current-driven to neoclassically driven tearing modes.

    PubMed

    Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A

    2002-03-11

    In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.

  5. Vehicle Test Procedure Driving Schedules

    DOT National Transportation Integrated Search

    1977-03-01

    This report discusses the salient characteristics of driving schedules which are currently being used to determine automotive fuel economy, exhaust emissions, and component characteristics. The analyses discussed and the results reported highlight th...

  6. The Effects of Dextromethorphan on Driving Performance and the Standardized Field Sobriety Test.

    PubMed

    Perry, Paul J; Fredriksen, Kristian; Chew, Stephanie; Ip, Eric J; Lopes, Ingrid; Doroudgar, Shadi; Thomas, Kelan

    2015-09-01

    Dextromethorphan (DXM) is abused most commonly among adolescents as a recreational drug to generate a dissociative experience. The objective of the study was to assess driving with and without DXM ingestion. The effects of one-time maximum daily doses of DXM 120 mg versus a guaifenesin 400 mg dose were compared among 40 healthy subjects using a crossover design. Subjects' ability to drive was assessed by their performance in a driving simulator (STISIM® Drive driving simulator software) and by conducting a standardized field sobriety test (SFST) administered 1-h postdrug administration. The one-time dose of DXM 120 mg did not demonstrate driving impairment on the STISIM® Drive driving simulator or increase SFST failures compared to guaifenesin 400 mg. Doses greater than the currently recommended maximum daily dose of 120 mg are necessary to perturb driving behavior. © 2015 American Academy of Forensic Sciences.

  7. Safe driving practices and factors associated with motor-vehicle collisions among people with insulin-treated diabetes mellitus: Results from the Diabetes and Driving (DAD) study.

    PubMed

    Almigbal, Turky H; Alfaifi, Abdullah A; Aleid, Muath A; Billah, Baki; Alramadan, Mohammed J; Sheshah, Eman; AlMogbel, Turki A; Aldekhayel, Ghassan A; Batais, Mohammed Ali

    2018-06-01

    The aim of this study was to assess the prevalence of people with insulin-treated diabetes mellitus (ITDM) who have discussed issues related to diabetes and driving with their health care providers (HCPs). We also sought to determine the safe driving practices that are currently employed by this group. Finally, we investigated the factors that might increase the risk of motor-vehicle collisions (MVCs) among this group in Saudi Arabia. This cross-sectional study surveyed a representative sample of 429 current male drivers with ITDM using a structured questionnaire in Saudi Arabia. Most of the participants (76.5%) never discussed topics regarding diabetes and driving with their HCPs. The majority of the participants (61.8%) reported at least never doing one of the following: (a) carrying a blood glucose testing kit while driving, (b) testing their blood glucose level before driving or during a journey, or (c) having thought of a specific threshold of blood glucose level that would preclude driving. Three factors were associated with a higher risk of MVCs among participants with ITDM: (a) being on a basal/boluses regimen, (b) never having a discussion regarding diabetes and driving with their HCPs, and (c) having experienced hypoglycemia during driving. The majority of people with ITDM had not had a discussion regarding diabetes and driving with their HCPs, which was reflected by a lack of safe driving practices. People with ITDM should be encouraged to take precautions while driving in order to prevent future MVCs. This research highlights the importance of investing more effort in educating drivers who have diabetes about safe driving practices by their health care providers. Also, it will attracts the attention of policymakers for an urgent need to establish clear policies and procedures for dealing with drivers who have diabetes. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  8. The cold driver: Cold stress while driving results in dangerous behavior.

    PubMed

    Morris, Drew M; Pilcher, June J

    2016-10-01

    Cool vehicle cabin temperatures can induce short-term non-hypothermic cold stress. The current study created a cold condition to examine the impact of cold stress on driving behavior. Forty-four participants drove a high-fidelity driving simulator during a thermal neutral or local torso cooled condition. Participants performed additional tasks to assess attention, psychomotor vigilance, and manual dexterity. Skin temperature was significantly lower in the cold condition while internal temperature was unaffected. Participants who had higher subjective ratings of cold followed lead vehicles closer and started to brake later. Participants in the cold condition followed the lead car 22% (0.82s) closer and started braking 20% (2.35s) later when approaching a stop sign during the car-following task. No change in attention, psychomotor vigilance, or dexterity was observed. The current results suggest that cold environmental conditions can contribute to dangerous driving behaviors. Measures of cold perception were also shown to predict changes in driving behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Survey of heating and current drive for K-DEMO

    DOE PAGES

    Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; ...

    2018-01-22

    Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \

  10. Survey of heating and current drive for K-DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.

    Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \

  11. Dangers of Texting While Driving

    MedlinePlus

    ... it be shared with students and parents. State laws Currently there is no national ban on texting ... driving, but a number of states have passed laws banning texting or wireless phones or requiring hands- ...

  12. About increasing informativity of diagnostic system of asynchronous electric motor by extracting additional information from values of consumed current parameter

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Korolev, N.; Koteleva, N.

    2018-05-01

    This article is devoted to expanding the possibilities of assessing the technical state of the current consumption of asynchronous electric drives, as well as increasing the information capacity of diagnostic methods, in conditions of limited access to equipment and incompleteness of information. The method of spectral analysis of the electric drive current can be supplemented by an analysis of the components of the current of the Park's vector. The research of the hodograph evolution in the moment of appearance and development of defects was carried out using the example of current asymmetry in the phases of an induction motor. The result of the study is the new diagnostic parameters of the asynchronous electric drive. During the research, it was proved that the proposed diagnostic parameters allow determining the type and level of the defect. At the same time, there is no need to stop the equipment and taky it out of service for repair. Modern digital control and monitoring systems can use the proposed parameters based on the stator current of an electrical machine to improve the accuracy and reliability of obtaining diagnostic patterns and predicting their changes in order to improve the equipment maintenance systems. This approach can also be used in systems and objects where there are significant parasitic vibrations and unsteady loads. The extraction of useful information can be carried out in electric drive systems in the structure of which there is a power electric converter.

  13. Attentional Differences in a Driving Hazard Perception Task in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Sheppard, Elizabeth; van Loon, Editha; Underwood, Geoffrey; Ropar, Danielle

    2017-01-01

    The current study explored attentional processing of social and non-social stimuli in ASD within the context of a driving hazard perception task. Participants watched videos of road scenes and detected hazards while their eye movements were recorded. Although individuals with ASD demonstrated relatively good detection of driving hazards, they were…

  14. Low-power transcutaneous current stimulator for wearable applications.

    PubMed

    Karpul, David; Cohen, Gregory K; Gargiulo, Gaetano D; van Schaik, André; McIntyre, Sarah; Breen, Paul P

    2017-10-03

    Peripheral neuropathic desensitization associated with aging, diabetes, alcoholism and HIV/AIDS, affects tens of millions of people worldwide, and there is little or no treatment available to improve sensory function. Recent studies that apply imperceptible continuous vibration or electrical stimulation have shown promise in improving sensitivity in both diseased and healthy participants. This class of interventions only has an effect during application, necessitating the design of a wearable device for everyday use. We present a circuit that allows for a low-power, low-cost and small form factor implementation of a current stimulator for the continuous application of subthreshold currents. This circuit acts as a voltage-to-current converter and has been tested to drive + 1 to - 1 mA into a 60 k[Formula: see text] load from DC to 1 kHz. Driving a 60 k[Formula: see text] load with a 2 mA peak-to-peak 1 kHz sinusoid, the circuit draws less than 21 mA from a 9 V source. The minimum operating current of the circuit is less than 12 mA. Voltage compliance is ± 60 V with just 1.02 mA drawn by the high voltage current drive circuitry. The circuit was implemented as a compact 46 mm × 21 mm two-layer PCB highlighting its potential for use in a body-worn device. No design to the best of our knowledge presents comparably low quiescent power with such high voltage compliance. This makes the design uniquely appropriate for low-power transcutaneous current stimulation in wearable applications. Further development of driving and instrumentation circuitry is recommended.

  15. Parents' and peers' contribution to risky driving of male teen drivers.

    PubMed

    Taubman - Ben-Ari, Orit; Kaplan, Sigal; Lotan, Tsippy; Prato, Carlo Giacomo

    2015-05-01

    The current study joins efforts devoted to understanding the associations of parents' personality, attitude, and behavior, and to evaluating the added contribution of peers to the driving behavior of young drivers during their solo driving. The study combines data gathered using in-vehicle data recorders from actual driving of parents and their male teen driver with data collected from self-report questionnaires completed by the young drivers. The sample consists of 121 families, who participated in the study for 12 months, beginning with the licensure of the teen driver. The current examination concentrates on the last 3 months of this first year of driving. The experimental design was based on a random control assignment into three treatment groups (with different forms of feedback) and a control group (with no feedback). Findings indicate that the parents' (especially the fathers') sensation seeking, anxiety, and aggression, as well as their risky driving events rate were positively associated with higher risky driving of the young driver. In addition, parents' involvement in the intervention, either by feedback or by training, led to lower risky driving events rate of young drivers compared to the control group. Finally, higher cohesion and adaptability mitigated parents' model for risky driving, and peers norms' of risky driving were associated with higher risk by the teen drivers. We conclude by claiming that there is an unequivocal need to look at a full and complex set of antecedents in parents' personality, attitudes, and behavior, together with the contribution of peers to the young drivers' reckless driving, and address the practical implications for road safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  17. Adolescent Cellphone Use While Driving: An Overview of the Literature and Promising Future Directions for Prevention.

    PubMed

    Delgado, M Kit; Wanner, Kathryn J; McDonald, Catherine

    2016-06-16

    Motor vehicle crashes are the leading cause of death in adolescents, and drivers aged 16-19 are the most likely to die in distracted driving crashes. This paper provides an overview of the literature on adolescent cellphone use while driving, focusing on the crash risk, incidence, risk factors for engagement, and the effectiveness of current mitigation strategies. We conclude by discussing promising future approaches to prevent crashes related to cellphone use in adolescents. Handheld manipulation of the phone while driving has been shown to have a 3 to 4-fold increased risk of a near crash or crash, and eye glance duration greater than 2 seconds increases crash risk exponentially. Nearly half of U.S. high school students admit to texting while driving in the last month, but the frequency of use according to vehicle speed and high-risk situations remains unknown. Several risk factors are associated with cell phone use while driving including: parental cellphone use while driving, social norms for quick responses to text messages, and higher levels of temporal discounting. Given the limited effectiveness of current mitigation strategies such as educational campaigns and legal bans, a multi-pronged behavioral and technological approach addressing the above risk factors will be necessary to reduce this dangerous behavior in adolescents.

  18. The choice to text and drive in younger drivers: behavior may shape attitude.

    PubMed

    Atchley, Paul; Atwood, Stephanie; Boulton, Aaron

    2011-01-01

    Following a previous study that reported a large number of young adult drivers text and drive, the current study investigated this behavior by looking at patterns of use and driver assessment of the risk of the behavior. The data from the current study converge with and extended the previous work showing 70% of the 348 young adult drivers surveyed report initiating texts while driving while higher numbers reply to texts (81%) and read texts (92%) while driving. Additional drivers also report doing these behaviors, but only while stopped in traffic, showing only 2% never text and drive under any circumstances. The drivers indicated that they perceived these behaviors to be very risky and riskier than talking on a cell phone while driving, but perception of risk was a very weak predictor of behavior (for initiating texts) or had no effect on texting (for replying or reading texts while driving). In addition, a factor analysis of the perception of road conditions while texting revealed that making the choice to engage in texting (initiating) led drivers to perceive road conditions as being safer than if they replied to a text or read a text, suggesting that choosing to engage in the behavior itself changes attitudes toward risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Adolescent Cellphone Use While Driving: An Overview of the Literature and Promising Future Directions for Prevention

    PubMed Central

    Delgado, M. Kit; Wanner, Kathryn J.; McDonald, Catherine

    2016-01-01

    Motor vehicle crashes are the leading cause of death in adolescents, and drivers aged 16–19 are the most likely to die in distracted driving crashes. This paper provides an overview of the literature on adolescent cellphone use while driving, focusing on the crash risk, incidence, risk factors for engagement, and the effectiveness of current mitigation strategies. We conclude by discussing promising future approaches to prevent crashes related to cellphone use in adolescents. Handheld manipulation of the phone while driving has been shown to have a 3 to 4-fold increased risk of a near crash or crash, and eye glance duration greater than 2 seconds increases crash risk exponentially. Nearly half of U.S. high school students admit to texting while driving in the last month, but the frequency of use according to vehicle speed and high-risk situations remains unknown. Several risk factors are associated with cell phone use while driving including: parental cellphone use while driving, social norms for quick responses to text messages, and higher levels of temporal discounting. Given the limited effectiveness of current mitigation strategies such as educational campaigns and legal bans, a multi-pronged behavioral and technological approach addressing the above risk factors will be necessary to reduce this dangerous behavior in adolescents. PMID:27695663

  20. Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Hee-Sun; Lee, Won-Kyu; Park, Sang-Guen; Kuk, Seung-Hee; Han, Min-Koo

    2009-03-01

    A new hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) pixel circuit for active-matrix organic light emission diodes (AM-OLEDs), which significantly compensates the OLED current degradation by memorizing the threshold voltage of driving TFT and suppresses the threshold voltage shift of a-Si:H TFTs by negative bias annealing, is proposed and fabricated. During the first half of each frame, the driving TFT of the proposed pixel circuit supplies current to the OLED, which is determined by modified data voltage in the compensation scheme. The proposed pixel circuit was able to compensate the threshold voltage shift of the driving TFT as well as the OLED. During the remaining half of each frame, the proposed pixel circuit induces the recovery of the threshold voltage degradation of a-Si:H TFTs owing to the negative bias annealing. The experimental results show that the proposed pixel circuit was able to successfully compensate for the OLED current degradation and suppress the threshold voltage degradation of the driving TFT.

  1. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dewey, Sarah; Morison, James; Kwok, Ronald; Dickinson, Suzanne; Morison, David; Andersen, Roger

    2018-02-01

    Model and observational evidence has shown that ocean current speeds in the Beaufort Gyre have increased and recently stabilized. Because these currents rival ice drift speeds, we examine the potential for the Beaufort Gyre's shift from a system in which the wind drives the ice and the ice drives a passive ocean to one in which the ocean often, in the absence of high winds, drives the ice. The resultant stress exerted on the ocean by the ice and the resultant Ekman pumping are reversed, without any change in average wind stress curl. Through these curl reversals, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization. This manuscript constitutes one of the first observational studies of ice-ocean stress inclusive of geostrophic ocean currents, by making use of recently available remote sensing data.

  2. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    NASA Technical Reports Server (NTRS)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.

  3. Driving range estimation for electric vehicles based on driving condition identification and forecast

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Dai, Wei; Chen, Liao; Chen, Long; Wang, Limei

    2017-10-01

    With the impact of serious environmental pollution in our cities combined with the ongoing depletion of oil resources, electric vehicles are becoming highly favored as means of transport. Not only for the advantage of low noise, but for their high energy efficiency and zero pollution. The Power battery is used as the energy source of electric vehicles. However, it does currently still have a few shortcomings, noticeably the low energy density, with high costs and short cycle life results in limited mileage compared with conventional passenger vehicles. There is great difference in vehicle energy consumption rate under different environment and driving conditions. Estimation error of current driving range is relatively large due to without considering the effects of environmental temperature and driving conditions. The development of a driving range estimation method will have a great impact on the electric vehicles. A new driving range estimation model based on the combination of driving cycle identification and prediction is proposed and investigated. This model can effectively eliminate mileage errors and has good convergence with added robustness. Initially the identification of the driving cycle is based on Kernel Principal Component feature parameters and fuzzy C referring to clustering algorithm. Secondly, a fuzzy rule between the characteristic parameters and energy consumption is established under MATLAB/Simulink environment. Furthermore the Markov algorithm and BP(Back Propagation) neural network method is utilized to predict the future driving conditions to improve the accuracy of the remaining range estimation. Finally, driving range estimation method is carried out under the ECE 15 condition by using the rotary drum test bench, and the experimental results are compared with the estimation results. Results now show that the proposed driving range estimation method can not only estimate the remaining mileage, but also eliminate the fluctuation of the residual range under different driving conditions.

  4. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  5. Where the Rubber Hits the Road: What Home Healthcare Professionals Need to Know About Driving Safety for Persons With Dementia.

    PubMed

    Pastor, Diane K; Jones, Andrea; Arms, Tamatha

    2017-01-01

    Driving cessation for people with dementia is a significant personal safety and public health issue. Home healthcare professionals frequently encounter situations where patients/clients should not continue to drive, and family members are unaware of how to approach the issue. This article will inform readers of the current state of the healthcare driving assessment process, measures and instruments used to assess, and effective strategies and resources when working with families facing the dilemma of how and when to proceed with a driving cessation plan.

  6. Current drive by spheromak injection into a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.R.; Bellan, P.M.

    1990-04-30

    We report the first observation of current drive by injection of a spheromak plasma into a tokamak (Caltech ENCORE small reasearch tokamak) due to the process of helicity injection. After an abrupt 30% increase, the tokamak current decays by a factor of 3 due to plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply due to the injected spheromak plasma ({ital {bar n}}{sub 3} increases by a factor of 6) then becomes hollow, suggestive of an interchange instability.

  7. Ocular disease and driving.

    PubMed

    Wood, Joanne M; Black, Alex A

    2016-09-01

    As the driving population ages, the number of drivers with visual impairment resulting from ocular disease will increase given the age-related prevalence of ocular disease. The increase in visual impairment in the driving population has a number of implications for driving outcomes. This review summarises current research regarding the impact of common ocular diseases on driving ability and safety, with particular focus on cataract, glaucoma, age-related macular degeneration, hemianopia and diabetic retinopathy. The evidence considered includes self-reported driving outcomes, driving performance (on-road and simulator-based) and various motor vehicle crash indices. Collectively, this review demonstrates that driving ability and safety are negatively affected by ocular disease; however, further research is needed in this area. Older drivers with ocular disease need to be aware of the negative consequences of their ocular condition and in the case where treatment options are available, encouraged to seek these earlier for optimum driving safety and quality of life benefits. © 2016 Optometry Australia.

  8. Driving and Epilepsy: a Review of Important Issues.

    PubMed

    Kang, Joon Y; Mintzer, Scott

    2016-09-01

    Driving restrictions in people with epilepsy (PWE) is a highly contentious topic. The fundamental difficulty lies in achieving a balance between safety and practicality. The aim of this review is to provide an overview, history, and rationale behind current laws regarding driving restriction in PWE. We also discuss recent findings that may be helpful to practitioners during individual discussions with PWE including seizure recurrence risk after first seizure, recurrent seizure, and anticonvulsant with drawl and driving restrictions in patients with psychogenic non-epileptic seizures (PNES).

  9. Auto-magnetizing liners for magnetized inertial fusion

    DOE PAGES

    Slutz, S. A.; Jennings, C. A.; Awe, T. J.; ...

    2017-01-20

    Here, the MagLIF (Magnetized Liner Inertial Fusion) concept has demonstrated fusion-relevant plasma conditions on the Z accelerator using external field coils to magnetize the fuel before compression. We present a novel concept (AutoMag), which uses a composite liner with helical conduction paths separated by insulating material to provide fuel magnetization from the early part of the drive current, which by design rises slowly enough to avoid electrical breakdown of the insulators. Once the magnetization field is established, the drive current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path andmore » implode the liner in the conventional z-pinch manner. There are two important advantages to AutoMag over external field coils for the operation of MagLIF. Low inductance magnetically insulated power feeds can be used to increase the drive current, and AutoMag does not interfere with diagnostic access. Also, AutoMag enables a pathway to energy applications for MagLIF, since expensive field coils will not be damaged each shot. Finally, it should be possible to generate Field Reversed Configurations (FRC) by using both external field coils and AutoMag in opposite polarities. This would provide a means to studying FRC liner implosions on the 100 ns time scale.« less

  10. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    DOE PAGES

    Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...

    2014-06-26

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less

  11. Electron Cyclotron Current Drive Efficiency in General Tokamak Geometry and Its Application to Advanced Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Lin-Liu, Y. R.; Chan, V. S.; Luce, T. C.; Prater, R.

    1998-11-01

    Owing to relativistic mass shift in the cyclotron resonance condition, a simple and accurate interpolation formula for estimating the current drive efficiency, such as those(S.C. Chiu et al.), Nucl. Fusion 29, 2175 (1989).^,(D.A. Ehst and C.F.F. Karney, Nucl. Fusion 31), 1933 (1991). commonly used in FWCD, is not available in the case of ECCD. In this work, we model ECCD using the adjoint techniques. A semi-analytic adjoint function appropriate for general tokamak geometry is obtained using Fisch's relativistic collision model. Predictions of off-axis ECCD qualitatively and semi-quantitatively agrees with those of Cohen,(R.H. Cohen, Phys. Fluids 30), 2442 (1987). currently implemented in the raytracing code TORAY. The dependences of the current drive efficiency on the wave launch configuration and the plasma parameters will be presented. Strong absorption of the wave away from the resonance layer is shown to be an important factor in optimizing the off-axis ECCD for application to advanced tokamak operations.

  12. Say it with flowers: flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  13. Say it with flowers: Flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  14. Bipedal vs. unipedal: a comparison between one-foot and two-foot driving in a driving simulator.

    PubMed

    Wang, Dong-Yuan Debbie; Richard, F Dan; Cino, Cullen R; Blount, Trevin; Schmuller, Joseph

    2017-04-01

    Is it better to drive with one foot or with two feet? Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. The current study compared traditional unipedal (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (two-foot driving, using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator study. Each of 30 undergraduate participants drove in a simulated driving scenario. They responded to a STOP sign displayed on the centre of the screen by bringing their vehicle to a complete stop. Brake RT was shorter under the bipedal condition, while throttle RT showed advantage under the unipedal condition. Stopping time and distance showed a bipedal advantage, however. We discuss further limitations of the current study and implications in a driving task. Before drawing any conclusions from the simulator study, further on-road driving tests are necessary to confirm these obtained bipedal advantages. Practitioner Summary: Traditional unipedal (using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator were compared. Our results showed a bipedal advantage. Promotion: Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. Traditional (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a simulated driving study were compared. Throttle reaction time was faster in the unipedal condition whereas brake reaction time, stopping time and stopping distance showed a bipedal advantage. We discuss further theoretical issues and implications in a driving task.

  15. Prevalence and correlates of drink driving within patrons of Australian night-time entertainment precincts.

    PubMed

    Curtis, Ashlee; Coomber, Kerri; Hyder, Shannon; Droste, Nic; Pennay, Amy; Jenkinson, Rebecca; Mayshak, Richelle; Miller, Peter G

    2016-10-01

    Drink driving is a significant public health concern, and contributes to many road fatalities worldwide. The current study is the first to examine the prevalence and correlates of drink driving behavior in a sample of night-time entertainment precinct attendees in Australia. Interviews were conducted with 4214 night-time entertainment precinct attendees in two metropolitan and three regional cities in Australia. Seven correlates of self-reported drink driving were examined: gender, age, occupation, blood alcohol concentration (BAC), alcohol consumed prior to attending a licensed venue, energy drink consumption, and other drug consumption. Fourteen percent of night-time entertainment precinct attendees reported drink driving in the past three months. Bivariate logistic regression models indicated that males were significantly more likely than females to report drink driving in the past three months. Blue-collar workers and sales/clerical/administrative workers were significantly more likely to report drink driving behavior in the past three months than white-collar workers. The likelihood of reporting drink driving during the three months prior to interview significantly increased as BAC on the current night out increased, and when patrons reported engaging in pre-drinking or other drug use. The multivariate model presented a similar pattern of results, however BAC and pre-drinking on the night of the interview were no longer independent significant predictors. Males, blue collar/sales/clerical/administrative workers, and illicit drug consumers were more likely to report engaging in drink driving behavior than their counterparts. Interventions should focus on addressing the considerable proportion night-time entertainment precinct attendees who report engaging in drink driving behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mild Cognitive Impairment and driving: Does in-vehicle distraction affect driving performance?

    PubMed

    Beratis, Ion N; Pavlou, Dimosthenis; Papadimitriou, Eleonora; Andronas, Nikolaos; Kontaxopoulou, Dionysia; Fragkiadaki, Stella; Yannis, George; Papageorgiou, Sokratis G

    2017-06-01

    In-vehicle distraction is considered to be an important cause of road accidents. Drivers with Mild Cognitive Impairment (MCI), because of their attenuated cognitive resources, may be vulnerable to the effects of distraction; however, previous relevant research is lacking. The main objective of the current study was to explore the effect of in-vehicle distraction on the driving performance of MCI patients, by assessing their reaction time at unexpected incidents and accident probability. Thirteen patients with MCI (age: 64.5±7.2) and 12 cognitively intact individuals (age: 60.0±7.7), all active drivers were introduced in the study. The driving simulator experiment included three distraction conditions: (a) undistracted driving, (b) conversing with passenger and (c) conversing through a hand-held mobile phone. The mixed ANOVA models revealed a greater effect of distraction on MCI patients. Specifically, the use of mobile phone induced a more pronounced impact on reaction time and accident probability in the group of patients, as compared to healthy controls. On the other hand, in the driving condition "conversing with passenger" the interaction effects regarding reaction time and accident probability were not significant. Notably, the aforementioned findings concerning the MCI patients in the case of the mobile phone were observed despite the effort of the drivers to apply a compensatory strategy by reducing significantly their speed in this driving condition. Overall, the current findings indicate, for the first time, that a common driving practice, such as the use of mobile phone, may have a detrimental impact on the driving performance of individuals with MCI. Copyright © 2017. Published by Elsevier Ltd.

  17. Drive beam stabilisation in the CLIC Test Facility 3

    NASA Astrophysics Data System (ADS)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  18. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  19. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Ching-Lin Fan,; Hui-Lung Lai,; Jyu-Yu Chang,

    2010-05-01

    In this paper, we propose a novel pixel design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). The proposed threshold voltage compensation circuit, which comprised five transistors and two capacitors, has been verified to supply uniform output current by simulation work using the automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator. The driving scheme of this voltage programming method includes four periods: precharging, compensation, data input, and emission. The simulated results demonstrate excellent properties such as low error rate of OLED anode voltage variation (<1%) and high output current. The proposed pixel circuit shows high immunity to the threshold voltage deviation characteristics of both the driving poly-Si TFT and the OLED.

  20. The Quality and Accuracy of Mobile Apps to Prevent Driving After Drinking Alcohol.

    PubMed

    Wilson, Hollie; Stoyanov, Stoyan R; Gandabhai, Shailen; Baldwin, Alexander

    2016-08-08

    Driving after the consumption of alcohol represents a significant problem globally. Individual prevention countermeasures such as personalized mobile app aimed at preventing such behavior are widespread, but there is little research on their accuracy and evidence base. There has been no known assessment investigating the quality of such apps. This study aimed to determine the quality and accuracy of apps for drink driving prevention by conducting a review and evaluation of relevant mobile apps. A systematic app search was conducted following PRISMA guidelines. App quality was assessed using the Mobile App Rating Scale (MARS). Apps providing blood alcohol calculators (hereafter "calculators") were reviewed against current alcohol advice for accuracy. A total of 58 apps (30 iOS and 28 Android) met inclusion criteria and were included in the final analysis. Drink driving prevention apps had significantly lower engagement and overall quality scores than alcohol management apps. Most calculators provided conservative blood alcohol content (BAC) time until sober calculations. None of the apps had been evaluated to determine their efficacy in changing either drinking or driving behaviors. This novel study demonstrates that most drink driving prevention apps are not engaging and lack accuracy. They could be improved by increasing engagement features, such as gamification. Further research should examine the context and motivations for using apps to prevent driving after drinking in at-risk populations. Development of drink driving prevention apps should incorporate evidence-based information and guidance, lacking in current apps.

  1. The Quality and Accuracy of Mobile Apps to Prevent Driving After Drinking Alcohol

    PubMed Central

    Stoyanov, Stoyan R; Gandabhai, Shailen; Baldwin, Alexander

    2016-01-01

    Background Driving after the consumption of alcohol represents a significant problem globally. Individual prevention countermeasures such as personalized mobile apps aimed at preventing such behavior are widespread, but there is little research on their accuracy and evidence base. There has been no known assessment investigating the quality of such apps. Objective This study aimed to determine the quality and accuracy of apps for drink driving prevention by conducting a review and evaluation of relevant mobile apps. Methods A systematic app search was conducted following PRISMA guidelines. App quality was assessed using the Mobile App Rating Scale (MARS). Apps providing blood alcohol calculators (hereafter “calculators”) were reviewed against current alcohol advice for accuracy. Results A total of 58 apps (30 iOS and 28 Android) met inclusion criteria and were included in the final analysis. Drink driving prevention apps had significantly lower engagement and overall quality scores than alcohol management apps. Most calculators provided conservative blood alcohol content (BAC) time until sober calculations. None of the apps had been evaluated to determine their efficacy in changing either drinking or driving behaviors. Conclusions This novel study demonstrates that most drink driving prevention apps are not engaging and lack accuracy. They could be improved by increasing engagement features, such as gamification. Further research should examine the context and motivations for using apps to prevent driving after drinking in at-risk populations. Development of drink driving prevention apps should incorporate evidence-based information and guidance, lacking in current apps. PMID:27502956

  2. TFT-Directed Electroplating of RGB Luminescent Films without a Vacuum or Mask toward a Full-Color AMOLED Pixel Matrix.

    PubMed

    Wang, Rong; Zhang, Donglian; Xiong, You; Zhou, Xuehong; Liu, Cao; Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Liu, Linlin; Peng, Junbiao; Ma, Yuguang; Cao, Yong

    2018-05-30

    The thin-film transistor (TFT) driving circuit is a separate electronic component embedded within the panel itself to switch the current for each pixel in active-matrix organic light-emitting diode displays. We reported a TFT-directed dye electroplating method to fabricate pixels; this would be a new method to deposit films on prepatterned electrode for organic full-color display, where TFT driving circuit provide a switching current signal to drive and direct dye depositing on selected RGB pixels. A prototype patterned color pixel matrix was achieved, as high-quality light-emitting films with uniform morphology, pure RGB chromaticity, and stable output.

  3. Electric machine and current source inverter drive system

    DOEpatents

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  4. Modelling of piezoelectric actuator dynamics for active structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  5. Weber electrodynamics, part I. general theory, steady current effects

    NASA Astrophysics Data System (ADS)

    Wesley, J. P.

    1990-10-01

    The original Weber action at a distance theory, valid for slowly varying effects, is extended to time-retarded fields, valid for rapidly varying effects including radiation. A new law for the force on a charge moving in this field is derived (replacing the Lorentz force which violates Newton's third law). The limitations of the Maxwell theory are discussed. The Weber theory, in addition to predicting all of the usual electrodynamic results, predicts the following crucial results for slowly varying effects (where Maxwell theory fails): 1) the force on Ampere's bridge in agreement with the measurements of Moyssides and Pappas, 2) the tension required to rupture current carrying wires as observed by Graneau, 3) the force to drive the Graneau-Hering submarine, 4) the force to drive the mercury in Hering's pump, and 5) the force to drive the oscillations in a current carrying mercury wedge as observed by Phipps.

  6. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    NASA Astrophysics Data System (ADS)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  7. Ultrafast probing of magnetic field growth inside a laser-driven solenoid.

    PubMed

    Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

  8. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    NASA Astrophysics Data System (ADS)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  9. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    DOE PAGES

    Pinsker, Robert I.

    2015-09-24

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the lower hybrid range of frequencies (LHRF) are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. Here, the character of the ray paths of thesemore » waves in the LHRF is illustrated in slab and toroidal geometries. An upcoming experiment on one of these two wave modes, the “helicon” or “whistler”, to be carried out on the DIII-D tokamak, is described.« less

  10. Recent experimental results of KSTAR RF heating and current drive

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.

    2015-12-01

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  11. Redundant drive current imbalance problem of the Automatic Radiator Inspection Device (ARID)

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1992-01-01

    The Automatic Radiator Inspection Device (ARID) is a 4 Degree of Freedom (DOF) robot with redundant drive motors at each joint. The device is intended to automate the labor intensive task of space shuttle radiator inspection. For safety and redundancy, each joint is driven by two independent motor systems. Motors driving the same joint, however, draw vastly different currents. The concern was that the robot joints could be subjected to undue stress. It was the objective of this summer's project to determine the cause of this current imbalance. In addition it was to determine, in a quantitative manner, what was the cause, how serious the problem was in terms of damage or undue wear to the robot and find solutions if possible. It was concluded that most problems could be resolved with a better motor control design. This document discusses problems encountered and possible solutions.

  12. --No Title--

    Science.gov Websites

    when his car went into a ravine due to high waters. 8/8/2013 MO Jane McDonald 69 F Road Driving Brush Road Driving Appears victim tried to drive through high water on a road, but stalled. Got out to try the flooded area of a street when his car was swept away by the forceful current off of the road and

  13. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel J.

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less

  14. Are selective serotonin reuptake inhibitors safe for drivers? What is the evidence?

    PubMed

    Ravera, Silvia; Ramaekers, Johannes G; de Jong-van den Berg, Lolkje T W; de Gier, Johan J

    2012-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used medications to treat several psychiatric diseases and, above all, depression. They seem to be as effective as older antidepressants but have a different adverse effect profile. Despite their favorable safety profile, little is known about their influence on traffic safety. To conduct a literature review to summarize the current evidence on the role of SSRIs in traffic safety, particularly concerning undesirable effects that could potentially impair fitness to drive, experimental and pharmacoepidemiologic studies on driving impairment, 2 existing categorization systems for driving-impairing medications, and the European legislative procedures for assessing fitness to drive before issuing a driver's license and driving under the influence of medicines. The article search was performed in the following electronic databases: MEDLINE, PsycINFO, ScienceDirect, and SafetyLit. The English-language scientific literature was searched using key words such as SSRIs and psychomotor performance, car crash or traffic accident, and adverse effects. For inclusion in this review, papers had to be full-text articles, refer to possible driving-related adverse effects, and be experimental or pharmacoepidemiologic studies on SSRIs and traffic accident risks. No restrictions concerning publication year were applied. Ten articles were selected as background information on driving-related adverse effects, and 15 articles were selected regarding experimental and pharmacoepidemiologic work. Regarding SSRI adverse effects, the most reported undesirable effects referring to driving impairment were anxiety, agitation, sleep disturbances, headache, increased risk of suicidal behavior, and deliberate self-harm. Regarding the remaining issues addressed in this article, inconsistencies were found between the outcomes of the selected experimental and epidemiologic studies and between the 2 existing categorization systems under evaluation. Some pitfalls of the current legislative scenario were identified as well. Based on the current evidence, it was concluded that more experimental and epidemiologic research is needed to elucidate the relationship between SSRI use and traffic safety. Furthermore, a revision of the existing categorization systems and harmonized European legislation in the field of medication use and driving were highly recommended. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  15. The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team

    2018-01-01

    Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.

  16. Current Sensor Fault Reconstruction for PMSM Drives

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-01

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317

  17. Exact Large-Deviation Statistics for a Nonequilibrium Quantum Spin Chain

    NASA Astrophysics Data System (ADS)

    Žnidarič, Marko

    2014-01-01

    We consider a one-dimensional XX spin chain in a nonequilibrium setting with a Lindblad-type boundary driving. By calculating large-deviation rate function in the thermodynamic limit, a generalization of free energy to a nonequilibrium setting, we obtain a complete distribution of current, including closed expressions for lower-order cumulants. We also identify two phase-transition-like behaviors in either the thermodynamic limit, at which the current probability distribution becomes discontinuous, or at maximal driving, when the range of possible current values changes discontinuously. In the thermodynamic limit the current has a finite upper and lower bound. We also explicitly confirm nonequilibrium fluctuation relation and show that the current distribution is the same under mapping of the coupling strength Γ→1/Γ.

  18. The influence of cognitive impairment with no dementia on driving restriction and cessation in older adults.

    PubMed

    Kowalski, Kristina; Love, Janet; Tuokko, Holly; MacDonald, Stuart; Hultsch, David; Strauss, Esther

    2012-11-01

    Cognitively impaired older adults may be at increased risk of unsafe driving. Individuals with insight into their own impairments may minimize their risk by restricting or stopping driving. The purpose of this study was to examine the influence of cognitive impairment on driving status and driving habits and intentions. Participants were classified as cognitively impaired, no dementia single (CIND-single), CIND-multiple, or not cognitively impaired (NCI) and compared on their self-reported driving status, habits, and intentions to restrict or quit driving in the future. The groups differed significantly in driving status, but not in whether they restricted their driving or reduced their driving frequency. CIND-multiple group also had significantly higher intention to restrict/stop driving than the NCI group. Reasons for restricting and quitting driving were varied and many individuals reported multiple reasons, both external and internal, for their driving habits and intentions. Regardless of cognitive status, none of the current drivers were seriously thinking of restricting or quitting driving in the next 6 months. It will be important to determine, in future research, how driving practices change over time and what factors influence decisions to restrict or stop driving for people with cognitive impairment. Copyright © 2011. Published by Elsevier Ltd.

  19. Is the useful field of view a good predictor of at-fault crash risk in elderly Japanese drivers?

    PubMed

    Sakai, Hiroyuki; Uchiyama, Yuji; Takahara, Miwa; Doi, Shun'ichi; Kubota, Fumiko; Yoshimura, Takayoshi; Tachibana, Atsumichi; Kurahashi, Tetsuo

    2015-05-01

    Although age-related decline in the useful field of view (UFOV) is well recognized as a risk factor for at-fault crash involvement in elderly drivers, there is still room to study its applicability to elderly Japanese drivers. In the current study, we thus examined the relationship between UFOV and at-fault crash history in an elderly Japanese population. We also explored whether potential factors that create awareness of reduced driving fitness could be a trigger for the self-regulation of driving in elderly drivers. We measured UFOV and at-fault crash history from 151 community-dwelling Japanese aged 60 years or older, and compared UFOV of at-fault crash-free and crash-involved drivers. We also measured self-evaluated driving style using a questionnaire. UFOV in crash-involved drivers was significantly lower than that in crash-free drivers. No significant difference was found in self-evaluated driving style between crash-free and crash-involved drivers. In addition, there was no significant association between UFOV and self-evaluated driving style. The present study showed that UFOV is a good predictor of at-fault crash risk in elderly Japanese drivers. Furthermore, our data imply that it might be difficult for elderly drivers to adopt appropriate driving strategies commensurate with their current driving competence. © 2014 Japan Geriatrics Society.

  20. Update LADOTD policy on pile driving vibration management.

    DOT National Transportation Integrated Search

    2012-02-01

    The main objective of this project was to update the current Louisiana Department of Transportation and Development (LADOTD) policy on pile driving vibration risk management with a focus on how to determine an appropriate vibration monitoring area. T...

  1. Useful field of view in simulated driving: Reaction times and eye movements of drivers

    PubMed Central

    Seya, Yasuhiro; Nakayasu, Hidetoshi; Yagi, Tadasu

    2013-01-01

    To examine the spatial distribution of a useful field of view (UFOV) in driving, reaction times (RTs) and eye movements were measured in simulated driving. In the experiment, a normal or mirror-reversed letter “E” was presented on driving images with different eccentricities and directions from the current gaze position. The results showed significantly slower RTs in the upper and upper left directions than in the other directions. The RTs were significantly slower in the left directions than in the right directions. These results suggest that the UFOV in driving may be asymmetrical among the meridians in the visual field. PMID:24349688

  2. Spine-fan reconnection. The influence of temporal and spatial variation in the driver

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; Jain, R.; Pontin, D. I.

    2012-09-01

    Context. From observations, the atmosphere of the Sun has been shown to be highly dynamic with perturbations of the magnetic field often lacking temporal or spatial symmetry. Despite this, studies of the spine-fan reconnection mode at 3D nulls have so far focused on the very idealised case with symmetric driving of a fixed spatial extent. Aims: We investigate the spine-fan reconnection process for less idealised cases, focusing on asymmetric driving and drivers with different length scales. We look at the initial current sheet formation and whether the scalings developed in the idealised models are robust in more realistic situations. Methods: The investigation was carried out by numerically solving the resistive compressible 3D magnetohydrodynamic equations in a Cartesian box containing a linear null point. The spine-fan collapse was driven at the null through tangential boundary driving of the spine foot points. Results: We find significant differences in the initial current sheet formation with asymmetric driving. Notable is the displacement of the null point position as a function of driving velocity and resistivity (η). However, the scaling relations developed in the idealised case are found to be robust (albeit at reduced amplitudes) despite this extra complexity. Lastly, the spatial variation is also shown to play an important role in the initial current sheet formation through controlling the displacement of the spine foot points. Conclusions: We conclude that during the early stages of spine-fan reconnection both the temporal and spatial nature of the driving play important roles, with the idealised symmetrically driven case giving a "best case" for the rate of current development and connectivity change. As the most interesting eruptive events occur in relatively short time frames this work clearly shows the need for high temporal and spatial knowledge of the flows for accurate interpretation of the reconnection scenario. Lastly, since the scalings developed in the idealised case remain robust with more complex driving we can be more confident of their use in interpreting reconnection in complex magnetic field structures.

  3. [A literature review on epidemiologic research on sleep disturbances in the elderly].

    PubMed

    Doi, Yuriko

    2015-06-01

    One of the issues facing our super-aging society of Japan is to secure the elderly's safety and health. According to the latest 10-year statistics of the National Police Agency, the number of elderly driving deaths 75 years of age and over has risen 1.3 times from 2003 to 2013, whereas driving deaths decreased by less than half among the people under age 75 during the same period of time. This paper reviews the current literature on epidemiologic studies investigating the associations of sleep disturbances with adverse driving events and driving practice among elderly drivers. The results suggest a cognitive behavioral therapy for insomnia as a promising method for improving their driving capacity. Key words: elderly driving, epidemiology, sleep disturbances

  4. Conceptual Design for CLIC Gun Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Tao

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  5. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGES

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  6. Vision and Driving

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2010-01-01

    Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907

  7. Compact antenna for two-dimensional beam scan in the JT-60U electron cyclotron heating/current drive system

    NASA Astrophysics Data System (ADS)

    Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.

    2005-11-01

    A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68×0.54×0.2m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.

  8. Alpha effect of Alfv{acute e}n waves and current drive in reversed-field pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Prager, S.C.

    Circularly polarized Alfv{acute e}n waves give rise to an {alpha}-dynamo effect that can be exploited to drive parallel current. In a {open_quotes}laminar{close_quotes} magnetic the effect is weak and does not give rise to significant currents for realistic parameters (e.g., in tokamaks). However, in reversed-field pinches (RFPs) in which magnetic field in the plasma core is stochastic, a significant enhancement of the {alpha} effect occurs. Estimates of this effect show that it may be a realistic method of current generation in the present-day RFP experiments and possibly also in future RFP-based fusion reactors. {copyright} {ital 1998 American Institute of Physics.}

  9. A guide for statewide impaired-driving task forces.

    DOT National Transportation Integrated Search

    2009-09-01

    The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...

  10. Evaluation of the New Mexico ignition interlock program : traffic tech.

    DOT National Transportation Integrated Search

    2010-11-01

    Impaired driving is a major factor in vehicle crashes and traffic : fatalities. The use of ignition interlocks is growing as a : countermeasure to combat the high rate of offender recidivism : for driving while intoxicated (DWI). New Mexico currently...

  11. A Prospective Study of Loss of Consciousness in Epilepsy Using Virtual Reality Driving Simulation and Other Video Games

    PubMed Central

    Yang, Li; Morland, Thomas B.; Schmits, Kristen; Rawson, Elizabeth; Narasimhan, Poojitha; Motelow, Joshua E.; Purcaro, Michael J.; Peng, Kathy; Raouf, Saned; DeSalvo, Matthew N.; Oh, Taemin; Wilkerson, Jerome; Bod, Jessica; Srinivasan, Aditya; Kurashvili, Pimen; Anaya, Joseph; Manza, Peter; Danielson, Nathan; Ransom, Christopher B.; Huh, Linda; Elrich, Susan; Padin-Rosado, Jose; Naidu, Yamini; Detyniecki, Kamil; Hamid, Hamada; Fattahi, Pooia; Astur, Robert; Xiao, Bo; Duckrow, Robert B.; Blumenfeld, Hal

    2010-01-01

    Patients with epilepsy are at risk of traffic accidents when they have seizures while driving. However, driving is an essential part of normal daily life in many communities, and depriving patients of driving privileges can have profound consequences for their economic and social well being. In the current study, we collected ictal performance data from a driving simulator and two other video games in patients undergoing continuous video/EEG monitoring. We captured 22 seizures in 13 patients and found that driving impairment during seizures differed both in terms of magnitude and character, depending on the seizure type. Our study documents the feasibility of the prospective study of driving and other behaviors during seizures through the use of computer-based tasks. This methodology may be applied to further describe differential driving impairment in specific types of seizures and to gain data on anatomical networks disrupted in seizures that impair consciousness and driving safety. PMID:20537593

  12. Rapid Drinking is Associated with Increases in Driving-Related Risk-Taking

    PubMed Central

    Bernosky-Smith, Kimberly A.; Aston, Elizabeth R.; Liguori, Anthony

    2014-01-01

    Objective The rate of alcohol drinking has been shown to predict impairment on cognitive and behavioral tasks. The current study assessed the influence of speed of alcohol consumption within a laboratory-administered binge on self-reported attitudes toward driving and simulated driving ability. Method Forty moderate drinkers (20 female, 20 male) were recruited from the local community via advertisements for individuals who drank alcohol at least once per month. The equivalent of four standard alcohol drinks was consumed at the participant’s desired pace within a two-hour session. Results Correlation analyses revealed that, after alcohol drinking, mean simulated driving speed, time in excess of speed limit, collisions, and reported confidence in driving were all associated with rapid alcohol drinking. Conclusion Fast drinking may coincide with increased driving confidence due to the extended latency between the conclusion of drinking and the commencement of driving. However, this latency did not reduce alcohol-related driving impairment, as fast drinking was also associated with risky driving. PMID:23027650

  13. Rapid drinking is associated with increases in driving-related risk-taking.

    PubMed

    Bernosky-Smith, Kimberly A; Aston, Elizabeth R; Liguori, Anthony

    2012-11-01

    The rate of alcohol drinking has been shown to predict impairment on cognitive and behavioral tasks. The current study assessed the influence of speed of alcohol consumption within a laboratory-administered binge on self-reported attitudes toward driving and simulated driving ability. Forty moderate drinkers (20 female, 20 male) were recruited from the local community via advertisements for individuals who drank alcohol at least once per month. The equivalent of four standard alcohol drinks was consumed at the participant's desired pace within 2-h session. Correlation analyses revealed that, after alcohol drinking, mean simulated driving speed, time in excess of speed limit, collisions, and reported confidence in driving were all associated with rapid alcohol drinking. Fast drinking may coincide with increased driving confidence because of the extended latency between the conclusion of drinking and the commencement of driving. However, this latency did not reduce alcohol-related driving impairment, as fast drinking was also associated with risky driving. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Continuing to drive while sleepy: the influence of sleepiness countermeasures, motivation for driving sleepy, and risk perception.

    PubMed

    Watling, Christopher N; Armstrong, Kerry A; Obst, Patricia L; Smith, Simon S

    2014-12-01

    Driver sleepiness is a major contributor to road crashes. The current study sought to examine the association between perceptions of effectiveness of six sleepiness countermeasures and their relationship with self-reports of continuing to drive while sleepy among 309 drivers after controlling for the influence of age, sex, motivation for driving sleepy, and risk perception of sleepy driving. The results demonstrate that the variables of age, sex, motivation, and risk perception were significantly associated with self-reports of continuing to drive while sleepy and only one countermeasure was associated with self-reports of continuing to drive while sleepy. Further, it was found that age differences in self-reports of continuing to drive while sleepy was mediated by participants' motivation and risk perception. These findings highlight modifiable factors that could be focused on with interventions that seek to modify drivers' attitudes and behaviours of driving while sleepy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Risk factors for adverse driving outcomes in Dutch adults with ADHD and controls.

    PubMed

    Bron, Tannetje I; Bijlenga, Denise; Breuk, Minda; Michielsen, Marieke; Beekman, Aartjan T F; Kooij, J J Sandra

    2018-02-01

    To identify risk factors for adverse driving outcomes and unsafe driving among adults with and without ADHD in a Dutch sample. In this cross-sectional study, validated self-report questionnaires were used to compare driving history and current driving behavior between 330 adults diagnosed with ADHD and 330 controls. Adults with ADHD had significantly more adverse driving outcomes when compared to controls. Having an ADHD diagnosis significantly increased the odds for having had 3 or more vehicular crashes (OR = 2.72; p = .001). Driving frequency, male gender, age, high anxiety levels, high hostility levels, and alcohol use all significantly influenced the odds for unsafe driving behavior, for having had 12 or more traffic citations, and/or for having had 3 or more vehicular crashes. Alcohol use, and high levels of anxiety and hostility are highly prevalent among adults with ADHD, and they mediate the risk for negative driving outcomes in this group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Open problems of magnetic island control by electron cyclotron current drive

    DOE PAGES

    Grasso, Daniela; Lazzaro, E.; Borgogno, D.; ...

    2016-11-17

    This study reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.

  17. A proof of principle spheromak experiment: The next step on a recently opened path to economical fusion power

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Marklin, George; Nelson, Brian; Sutherland, Derek; HIT Team Team

    2013-10-01

    A proof of principle experiment to study closed-flux energy confinement of a spheromak sustained by imposed dynamo current drive is described. A two-fluid validated NIMROD code has simulated closed-flux sustainment on a stable spheromak using imposed dynamo current drive (IDCD), demonstrating that dynamo current drive is compatible with closed flux. (submitted for publication and see adjacent poster.(spsap)) HIT-SI, a = 0.25 m, has achieved 90 kA of toroidal current, current gains of nearly 4, and operation from 5.5 kHz to 68 kHz, demonstrating the robustness of the method.(spsap) Finally, a reactor design study using fusion technology developed for ITER and modern nuclear technology shows a design that is economically superior to coal.(spsap) The spheromak reactor and development path are about a factor of 10 less expensive than that of the tokamak/stellarator. These exciting results justify a proof of principle (PoP) confinement experiment of a spheromak sustained by IDCD. Such an experiment (R = 1.5 m, a = 1 m, Itor = 3 . 2 MA, n = 4e19/m3, T = 3 keV) is described in detail.

  18. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-05-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  19. Eccentric figure-eight coils for transcranial magnetic stimulation.

    PubMed

    Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi

    2015-01-01

    Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.

  20. Line length dependence of threshold current density and driving force in eutectic SnPb and SnAgCu solder electromigration

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang

    2008-04-01

    The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.

  1. Distraction produces over-additive increases in the degree to which alcohol impairs driving performance.

    PubMed

    Van Dyke, Nicholas A; Fillmore, Mark T

    2015-12-01

    Research indicates that alcohol intoxication and increased demands on drivers' attention from distractions (e.g., passengers and cell phones) contribute to poor driving performance and increased rates of traffic accidents and fatalities. The present study examined the separate and combined effects of alcohol and distraction on simulated driving performance at blood alcohol concentrations (BrACs) below the legal driving limit in the USA (i.e., 0.08 %). Fifty healthy adult drivers (36 men and 14 women) were tested in a driving simulator following a 0.65-g/kg dose of alcohol and a placebo. Drivers completed two drive tests: a distracted drive, which included a two-choice detection task, and an undistracted control drive. Multiple indicators of driving performance, such as drive speed, within-lane deviation, steering rate, and lane exceedances were measured. Alcohol and distraction each impaired measures of driving performance. Moreover, the magnitude of alcohol impairment was increased by at least twofold when tested under the distracting versus the undistracted condition. The findings highlight the need for a clearer understanding of how common distractions impact intoxicated drivers, especially at BrACs that are currently legal for driving in the USA.

  2. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  3. Chemical potential of quasi-equilibrium magnon gas driven by pure spin current.

    PubMed

    Demidov, V E; Urazhdin, S; Divinskiy, B; Bessonov, V D; Rinkevich, A B; Ustinov, V V; Demokritov, S O

    2017-11-17

    Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose-Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.

  4. Motorists' knowledge, attitudes and practices toward alcohol-impaired driving/riding in Ghana.

    PubMed

    Damsere-Derry, James; Palk, Gavan; King, Mark

    2017-01-02

    The main objective of this study was to establish the knowledge, attitudes, and practices toward drink driving/riding as a risk factor for road traffic crashes in 3 regional capitals in Ghana. The study used a face-to-face approach to randomly sample motorists who were accessing various services at fuel/gas stations, garages, and lorry terminals in 3 cities in Ghana. Over the previous 12 months, 24% of all motorists and 55% of motorists who were current alcohol users reported driving or riding a vehicle within an hour of alcohol intake. On average, motorists/riders who were current alcohol users consumed 4 standard drinks per drinking occasion. Generally, 83% of motorists who currently use alcohol walked, rode, or drove home after consuming alcohol away from their homes. Motorists/riders who reported drink driving were 4 times more likely to have had previous traffic violation arrests compared to those who reported no drink driving/riding (P =.001). Respondents were of the opinion that speeding was the major cause of traffic crashes, followed by driver carelessness, poor road conditions, inexperienced driving, and drink driving, in that order. Thirty-six percent of motorists who use alcohol had the perception that consuming between 6 and 15 standard drinks was the volume of alcohol that will take them to the legal blood alcohol concentration (BAC) limit of 0.08%. Compared to females, male motorists/riders were more likely to report drink driving (adjusted odds ratio [AOR] = 5.15; 95% confidence interval [CI], 2.31 to 11.47). Private motorists also reported a higher likelihood of drink driving compared to commercial drivers (AOR = 3.36; 95% CI, 1.88 to 6.02). Only 4% of motorists knew the legal BAC limit of Ghana and only 2% had ever been tested for drink driving/riding. The volumes of alcohol that motorists typically consume per drinking occasion were very high and their estimates of the number of drinks required to reach the legal BAC limit was also very high. Provision of authoritative information advising motorists about safe, responsible, or low-risk levels of alcohol consumption is imperative. Many traffic violations including drink driving were reported, thus suggesting a need for enhanced policing and enforcement. However, given the low level of knowledge of the legal BAC limit, educating motorists about how many drinks will approximate the legal BAC should be intensified prior to an increase in enforcement; otherwise, the desired outcome of enforcement may not be achieved.

  5. Driving Simulator Based Interactive Experiments : Understanding Driver Behavior, Cognition and Technology Uptake under Information and Communication Technologies

    DOT National Transportation Integrated Search

    2018-01-31

    Advanced Traveler Information Systems (ATIS) and in-vehicle information systems (IVIS) are becoming an integral part of the current driving experience. Although information through in-vehicle technologies provides assistance to drivers with diverse t...

  6. Cell phone use while driving in North Carolina : 2002 update report

    DOT National Transportation Integrated Search

    2002-12-01

    As a follow-on to an earlier study funded by the North Carolina Governor's Highway Safety Program, the current study was carried out to further understanding regarding the safety implications of cellular telephone use while driving. The study involve...

  7. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method.

    PubMed

    Qian, Cheng; Fan, Jiajie; Fang, Jiayi; Yu, Chaohua; Ren, Yi; Fan, Xuejun; Zhang, Guoqi

    2017-10-16

    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample's rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.

  8. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method

    PubMed Central

    Yu, Chaohua; Fan, Xuejun; Zhang, Guoqi

    2017-01-01

    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample’s rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs. PMID:29035300

  9. Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors.

    PubMed

    Dey, Anil W; Svensson, Johannes; Ek, Martin; Lind, Erik; Thelander, Claes; Wernersson, Lars-Erik

    2013-01-01

    The ever-growing demand on high-performance electronics has generated transistors with very impressive figures of merit (Radosavljevic et al., IEEE Int. Devices Meeting 2009, 1-4 and Cho et al., IEEE Int. Devices Meeting 2011, 15.1.1-15.1.4). The continued scaling of the supply voltage of field-effect transistors, such as tunnel field-effect transistors (TFETs), requires the implementation of advanced transistor architectures including FinFETs and nanowire devices. Moreover, integration of novel materials with high electron mobilities, such as III-V semiconductors and graphene, are also being considered to further enhance the device properties (del Alamo, Nature 2011, 479, 317-323, and Liao et al., Nature 2010, 467, 305-308). In nanowire devices, boosting the drive current at a fixed supply voltage or maintaining a constant drive current at a reduced supply voltage may be achieved by increasing the cross-sectional area of a device, however at the cost of deteriorated electrostatics. A gate-all-around nanowire device architecture is the most favorable electrostatic configuration to suppress short channel effects; however, the arrangement of arrays of parallel vertical nanowires to address the drive current predicament will require additional chip area. The use of a core-shell nanowire with a radial heterojunction in a transistor architecture provides an attractive means to address the drive current issue without compromising neither chip area nor device electrostatics. In addition to design advantages of a radial transistor architecture, we in this work illustrate the benefit in terms of drive current per unit chip area and compare the experimental data for axial GaSb/InAs Esaki diodes and TFETs to their radial counterparts and normalize the electrical data to the largest cross-sectional area of the nanowire, i.e. the occupied chip area, assuming a vertical device geometry. Our data on lateral devices show that radial Esaki diodes deliver almost 7 times higher peak current, Jpeak = 2310 kA/cm(2), than the maximum peak current of axial GaSb/InAs(Sb) Esaki diodes per unit chip area. The radial TFETs also deliver high peak current densities Jpeak = 1210 kA/cm(2), while their axial counterparts at most carry Jpeak = 77 kA/cm(2), normalized to the largest cross-sectional area of the nanowire.

  10. The dangers of rumination on the road: Predictors of risky driving.

    PubMed

    Suhr, Kyle A; Dula, Chris S

    2017-02-01

    Past studies found many different types of factors can influence dangerous driving behaviors. Driver inattention, such as driving under the influence or using a cell phone while driving, was found to contribute to risky driving behaviors. Rumination is a cognitive process that may also contribute to risky driving behaviors due to its influence on attention and limited executive processes. The present study explores the potential role of rumination in dangerous driving behavior endorsement. It was hypothesized that trait rumination would be significantly related to dangerous driving behaviors and that this relationship would be conditional to the sex of the participant. Six-hundred and fifty-three Southeastern university students were recruited to participate and asked to complete multiple questionnaires measuring anger rumination, thought content, driving anger, and dangerous driving behaviors. It was demonstrated that self-reported risky driving behaviors significantly predicted dangerous driving behavior endorsement on the Dula Dangerous Driving Index. Trait rumination scores were found to predict self-reported dangerous driving, aggressive driving, and risky driving behaviors as well as trait driving anger scores. However, no conditional effects based on the sex of the participant were found. It appeared males and females were equally likely to report dangerous driving behaviors, driving anger thoughts, and trait anger rumination. Findings from the current study may assist in understanding how cognitive processes influence different driving behaviors and help develop methods to re-direct attention to safe driving behaviors, and conversely away from ruminative thoughts that increase the likelihood of dangerous driving. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A novel 3-TFT voltage driving method of compensating V TH shift for a-Si:H TFT and OLED degradation for AMOLED

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Lung; Chou, Kuan-Wen; Chang, Fu-Chieh; Hung, Chia-Che

    2011-10-01

    This work demonstrates the feasibility of a novel pixel circuit by using three a-Si:H TFTs. The proposed circuit can stabilize the OLED current and provide an additional driving current to ameliorate the brightness degradation of the AMOLED. Measurement results indicate that the current degradation of the proposed circuit, caused by V TH variations, is less than 5% over more than 50,000 s at 60 °C, whereas that of a conventional 2T1C pixel circuit is larger than 34%. Furthermore, to ameliorate the decrease in luminance owing to the OLED degradation, the OLED current can be increased by 10% by analyzing the current degradation and modulating the detected voltage appropriately.

  12. Driving Behaviour Profile of Drivers with Autism Spectrum Disorder (ASD).

    PubMed

    Chee, Derserri Y; Lee, Hoe C; Patomella, Ann-Helen; Falkmer, Torbjörn

    2017-09-01

    The symptomatology of autism spectrum disorder (ASD) can make driving risky, but little is known about the on-road driving behaviour of individuals with ASD. This study assessed and compared the on-road driving performance of drivers with and without ASD, and explored how the symptomatology of ASD hinders or facilitates on-road driving performance. Sixteen drivers with ASD and 21 typically-developed drivers participated in the study. Drivers with ASD underperformed in vehicle manoeuvring, especially at left-turns, right-turns and pedestrian crossings. However, drivers with ASD outperformed the TD group in aspects related to rule-following such as using the indicator at roundabouts and checking for cross-traffic when approaching intersections. Drivers with ASD in the current study presented with a range of capabilities and weaknesses during driving.

  13. Cell Phone Ring Suppression and HUD Caller ID: Effectiveness in Reducing Momentary Driver Distraction under Varying Workload Levels

    NASA Astrophysics Data System (ADS)

    Nowakowski, C.; Friedman, D.; Green, P.

    2001-10-01

    The purpose of the current experiment is to provide a preliminary driving simulator assessment of several hands-free design solutions with regard to the task of answering the phone while driving. Specifically, the following questions were examined: (1) Does the location of a caller ID display and the phone buttons (two HUD (Head Up Display) locations vs. phone cradle) affect either the time to answer the phone or driving performance; (2) Does the presence or absence of a ring affect either the time to answer the phone or driving performance; (3) Does increased driving workload (visual demand) affect either the time to answer the phone or driving performance; (4) What were the initial driver reactions to a HUD-based call timer.

  14. The anti-fatigue driving system design based on the eye blink detect

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Song, Xin; Zhang, Li; Yu, Jie

    2017-01-01

    Traffic accident is one of the severe social problems in the world, but the appraisal and prevention of the fatigue driving is still a difficult problem that can not be solved. This paper is to study the results of fatigue driving and the existing antifatigue driving products, collecting brain wave with the TGAM (ThinkGear AM) Brain Wave Sensor Chip. We analyze the collected waveform based on eye blink detect algorithm to work out current situation of the driver. According to the analysis results, Sound Module and controllable speed car will make a series of feedback. Finally, an effective Anti- Fatigue Driving System is designed based on all above.

  15. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  16. Overview of ECRH experimental results

    NASA Astrophysics Data System (ADS)

    Lloyd, Brian

    1998-08-01

    A review of the present status of electron cyclotron heating and current drive experiments in toroidal fusion devices is presented. In addition to basic heating and current drive studies the review also addresses advances in wave physics and the application of electron cyclotron waves for instability control, transport studies, pre-ionization/start-up assist, etc. A comprehensive overview is given with particular emphasis on recent advances since the major review of Erckmann and Gasparino (1994) ( 36 1869), including results from the latest generation of high-power, high-frequency experiments.

  17. A Drive Method for Small Inductance PM Motor Under No-Load Condition

    NASA Astrophysics Data System (ADS)

    Tanaka, Daisuke; Ohishi, Kiyoshi

    The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.

  18. Psychopathology and traffic violations in subjects who have lost their driving license.

    PubMed

    Valero, S; Bosch, R; Corominas, M; Giannoni, A; Barrau, V; Ramos-Quiroga, J A; Casas, M

    2017-07-01

    The persistence of risky behaviors while driving and traffic accidents despite campaigns to increase awareness suggest that there may be underlying causes that maintain proneness to traffic violations. The aim of the current study was to assess: a) the prevalence of psychopathology in a sample of people who have lost their driving license due to former traffic violations and b) the discriminatory capacity of each psychopathological disorder to differentiate among people with high and low proneness to perform risky behaviors while driving. 383 participants in a course to recover their driving license after its loss due to previous traffic violations were included. The International Neuropsychiatric Interview (M.I.N.I.) according to DSM-IV was used to assess psychopathology. Between 67% and 76.2% of the participants had been affected by a lifetime psychopathological disorder until the moment of assessment. The most prevalent diagnoses were substance abuse including alcohol (52.5-62.7%), ADHD (19.7-28.5%), depression (7.9-14.4%) and anxiety (3.6-12.4%). Substance abuse and ADHD also showed the strongest set of associations with specific risk behaviors, but ADHD emerged as the most discriminant disorder to distinguish between those people at high and low risk of while driving. The results of the current study suggest that addressing psychopathology explicitly to prevent risky behaviors and recidivism while driving would provide benefits in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S. K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.; Mishra, K.

    2015-08-01

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention-release) rate of 1-6 × 1018 H/s is dominant and 70-80% of injected H2 can be retained in PFMs. However, immediately after plasma termination the H2 release rate enhances to ∼1019 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.

  20. Driving in Early-Stage Alzheimer's Disease: An Integrative Review of the Literature.

    PubMed

    Davis, Rebecca L; Ohman, Jennifer M

    2017-03-01

    One of the most difficult decisions for individuals with Alzheimer's disease (AD) is when to stop driving. Because driving is a fundamental activity linked to socialization, independent functioning, and well-being, making the decision to stop driving is not easy. Cognitive decline in older adults can lead to getting lost while driving, difficulty detecting and avoiding hazards, as well as increased errors while driving due to compromised judgment and difficulty in making decisions. The purpose of the current literature review was to synthesize evidence regarding how individuals with early-stage AD, their families, and providers make determinations about driving safety, interventions to increase driving safety, and methods to assist cessation and coping for individuals with early-stage AD. The evidence shows that changes in driving ability start early and progress throughout the trajectory of AD. Some individuals with mild cognitive impairment or early-stage AD may be safe to drive for a period of time. Support groups aimed at helping with the transition have been shown to be helpful for individuals who stop driving. Research and practice must support interventions to help individuals maintain safety while driving, as well as cope with driving cessation. [Res Gerontol Nurs. 2017; 10(2):86-100.]. Copyright 2016, SLACK Incorporated.

  1. Alcohol control in Virginia : planning documents for use by agencies of the Commonwealth.

    DOT National Transportation Integrated Search

    1982-01-01

    The Governor's Task Force to Combat Drunk Driving was created to confront the problem of drunken driving in Virginia, and to ascertain Virginia's current efforts to address this problem so that these efforts could be assessed and appropriate changes ...

  2. Flow enhancement of deformable self-driven objects by countercurrent

    NASA Astrophysics Data System (ADS)

    Mashiko, Takashi; Fujiwara, Takashi

    2016-10-01

    We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB

  3. System simulation of direct-current speed regulation based on Simulink

    NASA Astrophysics Data System (ADS)

    Yang, Meiying

    2018-06-01

    Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.

  4. Driving Cessation and Dementia: Results of the Prospective Registry on Dementia in Austria (PRODEM)

    PubMed Central

    Seiler, Stephan; Schmidt, Helena; Lechner, Anita; Benke, Thomas; Sanin, Guenter; Ransmayr, Gerhard; Lehner, Riccarda; Dal-Bianco, Peter; Santer, Peter; Linortner, Patricia; Eggers, Christian; Haider, Bernhard; Uranues, Margarete; Marksteiner, Josef; Leblhuber, Friedrich; Kapeller, Peter; Bancher, Christian; Schmidt, Reinhold

    2012-01-01

    Objective To assess the influence of cognitive, functional and behavioral factors, co-morbidities as well as caregiver characteristics on driving cessation in dementia patients. Methods The study cohort consists of those 240 dementia cases of the ongoing prospective registry on dementia in Austria (PRODEM) who were former or current car-drivers (mean age 74.2 (±8.8) years, 39.6% females, 80.8% Alzheimer’s disease). Reasons for driving cessation were assessed with the patients’ caregivers. Standardized questionnaires were used to evaluate patient- and caregiver characteristics. Cognitive functioning was determined by Mini-Mental State Examination (MMSE), the CERAD neuropsychological test battery and Clinical Dementia Rating (CDR), activities of daily living (ADL) by the Disability Assessment for Dementia, behavior by the Neuropsychiatric Inventory (NPI) and caregiver burden by the Zarit burden scale. Results Among subjects who had ceased driving, 136 (93.8%) did so because of “Unacceptable risk” according to caregiver’s judgment. Car accidents and revocation of the driving license were responsible in 8 (5.5%) and 1(0.7%) participant, respectively. Female gender (OR 5.057; 95%CI 1.803–14.180; p = 0.002), constructional abilities (OR 0.611; 95%CI 0.445–0.839; p = 0.002) and impairment in Activities of Daily Living (OR 0.941; 95%CI 0.911–0.973; p<0.001) were the only significant and independent associates of driving cessation. In multivariate analysis none of the currently proposed screening tools for assessment of fitness to drive in elderly subjects including the MMSE and CDR were significantly associated with driving cessation. Conclusion The risk-estimate of caregivers, but not car accidents or revocation of the driving license determines if dementia patients cease driving. Female gender and increasing impairment in constructional abilities and ADL raise the probability for driving cessation. If any of these factors also relates to undesired traffic situations needs to be determined before recommendations for their inclusion into practice parameters for the assessment of driving abilities in the elderly can be derived from our data. PMID:23300746

  5. The relationship of dangerous driving with traffic offenses: A study on an adapted measure of dangerous driving.

    PubMed

    Iliescu, Dragoş; Sârbescu, Paul

    2013-03-01

    Using data from three different samples and more than 1000 participants, the current study examines differences in dangerous driving in terms of age, gender, professional driving, as well as the relationship of dangerous driving with behavioral indicators (mileage) and criteria (traffic offenses). The study uses an adapted (Romanian) version of the Dula Dangerous Driving Index (DDDI, Dula and Ballard, 2003) and also reports data on the psychometric characteristics of this measure. Findings suggest that the Romanian version of the DDDI has sound psychometric properties. Dangerous driving is higher in males and occasional drivers, is not correlated with mileage and is significantly related with speeding as a traffic offense, both self-reported and objectively measured. The utility of predictive models including dangerous driving is not very large: logistic regression models have a significant fit to the data, but their misclassification rate (especially in terms of sensitivity) is unacceptable high. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A compact rail-to-rail CMOS buffer amplifier with very low quiescent current

    NASA Astrophysics Data System (ADS)

    Arslan, Emre; Yıldız, Merih; Minaei, Shahram

    2015-06-01

    In this work, a very compact, rail-to-rail, high-speed buffer amplifier for liquid crystal display (LCD) applications is proposed. Compared to other buffer amplifiers, the proposed circuit has a very simple architecture, occupies a small number of transistors and also has a large driving capacity with very low quiescent current. It is composed of two complementary differential input stages to provide rail-to-rail driving capacity. The push-pull transistors are directly connected to the differential input stage, and the output is taken from an inverter. The proposed buffer circuit is laid out using Mentor Graphics IC Station layout editor using AMS 0.35 μm process parameters. It is shown by post-layout simulations that the proposed buffer can drive a 1 nF capacitive load within a small settling time under a full voltage swing, while drawing only 1.6 μA quiescent current from a 3.3 V power supply.

  7. Recent experimental results of KSTAR RF heating and current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control Systemmore » (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.« less

  8. Novel Driving Method for Two-Dimensional and Three-Dimensional Switchable Active Matrix Organic Light-Emitting Diode Displays for Emission and Programming Time Extension

    NASA Astrophysics Data System (ADS)

    In, Hai-Jung; Kwon, Oh-Kyong

    2012-03-01

    A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.

  9. Driving simulation for evaluation and rehabilitation of driving after stroke.

    PubMed

    Akinwuntan, Abiodun Emmanuel; Wachtel, Jerry; Rosen, Peter Newman

    2012-08-01

    Driving is an important activity of daily living. Loss of driving privileges can lead to depression, decreased access to medical care, and increased healthcare costs. The ability to drive is often affected after stroke. In approximately 30% of stroke survivors, it is clear from the onset that driving will no longer be possible. Approximately 33% of survivors will be able to return to driving with little or no retraining, and 35% will require driving-related rehabilitation before they can resume safe driving again. The ability to drive is not routinely evaluated after stroke, and there is no established rehabilitation program for poststroke driving. When driving evaluation does occur, it is not always clear which tests are the most salient for accurately assessing poststroke driving ability. Investigators have examined the efficacy of various methodologies to predict driving performance after stroke and have found mixed results, with each method having unique weaknesses, including poor predictive ability, poor face validity, poor sensitivity or specificity, and limited reliability. Here we review common models of driving to gain insight into why single-construct visual or cognitive off-road measures are inadequate for evaluating driving, a complex and dynamic activity that involves timely interaction of multiple motor, visual, cognitive, and perceptual skills. We also examine the potential for driving simulators to overcome the problems currently faced in the evaluation and rehabilitation of driving after stroke. Finally, we offer suggestions for the future direction of simulator-based poststroke driving evaluation and training. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Encouraging full time use of safety belts among current part-time users

    DOT National Transportation Integrated Search

    1991-01-01

    A large percentage of drivers report using their seat belts only some of the time. Most part-time users report they buckle up only for highway driving because they believe that driving around their community does not expose them to a significant risk...

  11. CAEP position statement on cellphone use while driving.

    PubMed

    Huang, Dayan; Kapur, Atul K; Ling, Patrick; Purssell, Roy; Henneberry, Ryan J; Champagne, Chantelle R; Lee, Victoria K; Francescutti, Louis H

    2010-07-01

    Distracted driving caused by cellphone use is a significant source of needless injuries. These injuries place unnecessary financial burden, emotional stress and health care resource misuse on society. This paper states the Canadian Association of Emergency Physician's (CAEP's) position on cellphone use while driving. In recent years, numerous studies were conducted on the danger of cellphone use while driving. Research has shown that cellphone use while driving negatively impacts cognitive functions, visual fields, reaction time and overall driving performances. Some studies found that cellphone use is as dangerous as driving under the influence of alcohol. Moreover, vehicle crash rates were shown to be significantly higher when drivers used cellphones. Countermeasures have been implemented in recent years. Over 50 countries worldwide have laws limiting the use of cellphones while driving. Six Canadian provinces, Newfoundland and Labrador, Nova Scotia, Quebec, Ontario, British Columbia and Saskatchewan, currently have legislation prohibiting cellphone use. Other provinces are considering implementing similar bans. As emergency physicians, we must advocate for injury prevention. Cell phone related road traumas are avoidable. CAEP supports all measures to ban cellphone use while driving.

  12. A novel robust speed controller scheme for PMBLDC motor.

    PubMed

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.

  13. Small Screen Use and Driving Safety.

    PubMed

    Atchley, Paul; Strayer, David L

    2017-11-01

    The increased availability of "small screens," wireless devices with Internet-enabled connections, and their associated applications has almost overnight changed the way that we interact with our phones. The current work outlines some of the aspects of this problem as it relates to the influence of small screens on driving safety. Small screens are highly compelling to drivers, both for the information they convey and because the ability to ignore them while driving is impaired by cognitive resources used by the driving task itself. However, much is unknown about why people make choices to multitask while driving. Given the safety risks, it is recommended that parents, the public, and regulators take a stand against the use of Internet-enabled small screens unrelated to driving when the vehicle is in motion. Copyright © 2017 by the American Academy of Pediatrics.

  14. The Helicity Injected Torus (HIT) Program

    NASA Astrophysics Data System (ADS)

    Jarboe, T. R.; Gu, P.; Hamp, W.; Izzo, V.; Jewell, P.; Liptac, J.; McCollam, K. J.; Nelson, B. A.; Raman, R.; Redd, A. J.; Shumlak, U.; Sieck, P. E.; Smith, R. J.; Jain, K. K.; Nagata, M.; Uyama, T.

    2000-10-01

    The purpose of the Helicity Injected Torus (HIT) program is to develop current drive techniques for low-aspect-ratio toroidal plasmas. The present HIT-II spherical tokamak experiment is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. The HIT-II device itself is modestly sized (major radius R = 0.3 m, minor radius a = 0.2 m, with an on-axis magnetic field of up to Bo = 0.5 T), but has demonstrated toroidal plasma currents of up to 200 kA, using either CHI or transformer drive. An overview of ongoing research on HIT-II plasmas, including recent results, will be presented. An electron-locking model has been developed for helicity injection current drive; a description of this model will be presented, as well as comparisons to experimental results from the HIT and HIT-II devices. Empirical results from both the HIT program and past spheromak research, buttressed by theoretical developments, have led to the design of the upcoming HIT-SI (Helicity Injected Torus with Steady Inductive helicity injection) device (T.R. Jarboe, Fusion Technology 36, p. 85, 1999). HIT-SI will be able to form a high-beta spheromak, a low aspect ratio RFP or a spherical tokamak using constant inductive helicity injection. The HIT-SI design and construction progress will be presented.

  15. The analysis of the quality of the frequency control of induction motor carried out on the basis of the processes in the rotor circuit

    NASA Astrophysics Data System (ADS)

    Kodkin, V. L.; Anikin, A. S.; Baldenkov, A. A.

    2018-01-01

    The results of researches of asynchronous electric drives with the frequency control which are carried out for the purpose of establishment of causes and effect relationships between a control method, the implementable standard frequency converter of the Schneider Electric company (ATV-71, ATV-32) and its efficiency are given in article. Tests with asynchronous motors with wound rotor were for the first time carried out. It allowed registering during the experiments the instantaneous values not only the stator currents, but also rotor currents. Authors for the first time applied spectrum analysis of stator and rotor currents, it showed that «sensorless vector» control leads to origin of high-frequency harmonicas with the considerable amplitude and, as a result of they are non-sinusoidal of the created torque and inefficiency of the electric drive. The accelerations that are carried out during the researches to 94, 157 and 251 Rad/s confirmed this feature of vector control that appears incapable to linearize the asynchronous electric drive as it was supposed authors of a method. These results do not contradict theoretical provisions if not to neglect assumptions which usually become in case of an output of the equations of vector control. Unfortunately, the modern researchers do not subject these assumptions to doubts. Continued studies make it possible to create an effective frequency management of asynchronous electric drives required for current technology.

  16. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energymore » and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.« less

  17. Helicopter Drive System on-Condition Maintenance Capability (UH-1/AH-1)

    DTIC Science & Technology

    1976-07-01

    Capability 17 2.2 FACTORS LIMITING THE PERFORMANCE OF THE STUDY . . 18 2.3 ASSUMPTIONS USED IN THE ANALYSIS 20 2.3.1 Assembly Operability 20 2.3.2...DRIVE SYSTEM COMPONENTS AND THEIR EFFECTIVITY 64 2 AIRCRAFT TECHNICAL MANUALS USED DURING THE STUDY 66 3 DRIVE SYSTEM COMPONENTS DA2410 RECORDS...the federal stock number, and current effectivity of these assemblies. The general approach used was to examine the overhaul and acci- dent records

  18. Canadian psychiatrists' current attitudes, practices, and knowledge regarding fitness to drive in individuals with mental illness: a cross-Canada survey.

    PubMed

    Ménard, Ingrid; Korner-Bitensky, Nicol; Dobbs, Bonnie; Casacalenda, Nicola; Beck, Philip R; Dippsych, C M; Gélinas, Isabelle; Molnar, Frank J; Naglie, Gary

    2006-11-01

    To assess current attitudes, practices, and knowledge of Canadian psychiatrists regarding fitness to drive in individuals with mental illness and to explore variations according to provincial legislation. We carried out a national cross-sectional survey, using a random sample of psychiatrists. We used a mail survey to collect data. In total, 248 psychiatrists participated; the response rate was 54.2% on traced subjects. The majority (64.1%) reported that they strongly agreed or agreed that addressing patients' fitness to drive is an important issue. However, only 18.0% of respondents were always aware of whether their patients were active drivers. One-fourth strongly agreed or agreed that they were confident in their ability to evaluate fitness to drive. In discretionary provinces, 29.3% of psychiatrists reported not knowing their provincial legislation, as did 14.6% of psychiatrists in mandatory provinces; of those responding, 54.0% from discretionary provinces and 2.8% from mandatory provinces gave incorrect answers. Psychiatrists' responses demonstrate a broad range of attitudes, practices, and knowledge. There appears to be a large gap between what is expected of psychiatrists and their readiness and self-perceived ability to make informed clinical decisions related to driving safety. There is a clear need for education and guidelines to assist psychiatrists in decision making about driving fitness.

  19. Distraction produces over-additive increases in the degree to which alcohol impairs driving performance

    PubMed Central

    Van Dyke, Nicholas A.; Fillmore, Mark T.

    2015-01-01

    Rationale Research indicates that alcohol intoxication and increased demands on drivers’ attention from distractions (e.g. passengers and cell phones) contribute to poor driving performance and increased rates of traffic accidents and fatalities. Objectives The present study examined the separate and combined effects of alcohol and distraction on simulated driving performance at blood alcohol concentrations (BrACs) below the legal driving limit in the United States (i.e. 0.08%). Methods Fifty healthy adult drivers (36 men and 14 women) were tested in a driving simulator following a 0.65 g/kg dose of alcohol and a placebo. Drivers completed two drive tests; a distracted drive, which included a two-choice detection task, and an undistracted control drive. Multiple indicators of driving performance, such as drive speed, within-lane deviation, steering rate, and lane exceedances were measured. Results Alcohol and distraction each impaired measures of driving performance. Moreover, the magnitude of alcohol impairment was increased by at least two-fold when tested under the distracting versus the undistracted condition. Conclusions The findings highlight the need for a clearer understanding of how common distractions impact intoxicated drivers, especially at BrACs that are currently legal for driving in the United States. PMID:26349918

  20. Name that tune: Mitigation of driver fatigue via a song naming game.

    PubMed

    Trumbo, Michael C; Jones, Aaron P; Robinson, Charles S H; Cole, Kerstan; Morrow, James D

    2017-11-01

    Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. Though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources to the task of driving and attenuating fatigue. In the current study, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session. Copyright © 2017. Published by Elsevier Ltd.

  1. Study of the time-resolved, 3-dimensional current density distribution in solid metallic liners at 1 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.

    We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less

  2. Study of the time-resolved, 3-dimensional current density distribution in solid metallic liners at 1 MA

    DOE PAGES

    Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...

    2016-09-01

    We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less

  3. First demonstration of HF-driven ionospheric currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  4. Autonomous driving in urban environments: approaches, lessons and challenges.

    PubMed

    Campbell, Mark; Egerstedt, Magnus; How, Jonathan P; Murray, Richard M

    2010-10-13

    The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

  5. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  6. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  7. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Effects of MHD instabilities on neutral beam current drive

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-05-01

    Neutral beam injection (NBI) is one of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility. However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. A new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ∼50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  9. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE PAGES

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-04-20

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  10. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Wilson; R.E. Bell; S. Bernabei

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less

  11. Effects of MHD instabilities on neutral beam current drive

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  12. Liquid crystal television custom drive circuit

    NASA Astrophysics Data System (ADS)

    Loudin, Jeffrey A.

    1994-03-01

    A new drive circuit for the liquid crystal display (LCD) of the InFocus TVT-6000TM video projector is currently under development at the U.S. Army Missile Command. The new circuit will allow individual pixel control of the LCD. This paper will discuss results of the effort to date.

  13. Series transistors isolate amplifier from flyback voltage

    NASA Technical Reports Server (NTRS)

    Banks, W.

    1967-01-01

    Circuit enables high sawtooth currents to be passed through a deflection coil and isolate the coil driving amplifier from the flyback voltage. It incorporates a switch consisting of transistors in series with the driving amplifier and deflection coil. The switch disconnects the deflection coil from the amplifier during the retrace time.

  14. Improved memory word line configuration allows high storage density

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Plated wire memory word drive line allows high storage density, good plated wire transmission and a simplified memory plane configuration. A half-turn word drive line with a magnetic keeper is used. The ground plane provides the return path for both the word current and the plated wire transmission line.

  15. A Note on Diffusive Mass Transport.

    ERIC Educational Resources Information Center

    Haynes, Henry W., Jr.

    1986-01-01

    Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)

  16. Design criteria monograph on centrifugal flow turbopumps

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph reviews and assesses current design practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in end product, and greater efficiency in design effort. Review should be of interest to manufacturers and users of pumps, power drives, turbine drives, and rotary equipment in general.

  17. Driving Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on driving occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include intercity busdrivers, local transit busdrivers,…

  18. Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls

    NASA Astrophysics Data System (ADS)

    Sylvia, Somaia Sarwat

    The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium "cold" carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory. For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale. Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is higher in the discrete doping model compared to the homogeneous doping model. The relative variation in the ON current decreases as the average doping density and/or NW diameter increases. For the largest 8 nm NW studied, the coefficient of variation in the ON current is ˜15% at a doping density of 1.5 x 1020 cm--3. Results from full self-consistent non-equilibrium Green's function calculations and semi-classical calculations are compared.

  19. Vehicle ownership and other predictors of teenagers risky driving behavior: Evidence from a naturalistic driving study.

    PubMed

    Gershon, Pnina; Ehsani, Johnathon; Zhu, Chunming; O'Brien, Fearghal; Klauer, Sheila; Dingus, Tom; Simons-Morton, Bruce

    2018-06-08

    Risky driving behavior may contribute to the high crash risk among teenage drivers. The current naturalistic driving study assessed predictors for teenagers' kinematic risky driving (KRD) behavior and the interdependencies between them. The private vehicles of 81 novice teenage drivers were equipped with data acquisition system that recorded driving kinematics, miles driven, and video recordings of the driver, passengers and the driving environment. Psychosocial measures were collected using questionnaires administered at licensure. Poisson regression analyses and model selection were used to assess factors associated with teens' risky driving behavior and the interactions between them. Driving own vs shared vehicle, driving during the day vs at night, and driving alone vs with passengers were significantly associated with higher KRD rates (Incidence rate ratios (IRRs) of 1.60, 1.41, and 1.28, respectively). Teenagers reporting higher vs lower levels of parental trust had significantly lower KRD rates (IRR = 0.58). KRD rates were 88% higher among teenagers driving with a passenger in their own vehicle compared to teenagers driving with a passenger in a shared vehicle. Similarly, KRD rates during the day were 74% higher among teenagers driving their own vehicle compared to those driving a shared vehicle. Novice teenagers' risky driving behavior varied according to driver attributes and contextual aspects of the driving environment. As such, examining teenagers' risky driving behavior should take into account multiple contributing factors and their interactions. The variability in risky driving according to the driving context can inform the development of targeted interventions to reduce the crash risk of novice teenage drivers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Electropneumatic transducer automatically limits motor current

    NASA Technical Reports Server (NTRS)

    Lovitt, T. F.

    1966-01-01

    Pneumatic controller regulates the load on a centrifugal freon compressor in a water cooling system, thus limiting the current input to an electric motor driving it. An electromechanical transducer monitoring the motor input current sends out air signals which indicate changes in the current to the pneumatic controller.

  1. Direct and indirect effects of impulsivity traits on drinking and driving in young adults.

    PubMed

    Treloar, Hayley R; Morris, David H; Pedersen, Sarah L; McCarthy, Denis M

    2012-09-01

    Impulsivity is strongly associated with alcohol-related risk-taking behavior, and this association has been found to be mediated by alcohol cognitions. The current study expanded this literature by comparing the relative association of distinct impulsivity traits with a specific risky behavior--drinking and driving. We then tested whether drinking-and-driving expectancies uniquely mediated this relation over and above other cognitions about alcohol and drinking and driving. College student drivers (n = 816; 53.6% women) completed a paper-and-pencil survey in small groups. Self-report measures assessed alcohol use, impulsivity traits, alcohol expectancies, drinking-and-driving cognitions (i.e., expectancies, attitudes, beliefs), and drinking and driving. Although all impulsivity traits were correlated with drinking and driving, only urgency uniquely contributed to drinking and driving. Indirect effect tests indicated that drinking-and-driving convenience expectancies partially mediated this association as well as that between (lack of) perseverance and drinking and driving. These results remained significant after controlling for alcohol expectancies and other drinking-and-driving cognitions. These findings highlight the importance of distinguishing among impulsivity traits to improve theoretical models of the processes by which personality leads to specific alcohol-related consequences. In addition, results extend previous research by providing evidence for the unique importance of expectancies regarding the convenience of drinking and driving over and above more global alcohol expectancies and other drinking-and-driving cognitions.

  2. Self-rated driving habits among older adults with clinically-defined mild cognitive impairment, clinically-defined dementia, and normal cognition.

    PubMed

    O'Connor, Melissa L; Edwards, Jerri D; Bannon, Yvonne

    2013-12-01

    Older adults with clinically-defined dementia may report reducing their driving more than cognitively normal controls. However, it is unclear how these groups compare to individuals with clinically-defined mild cognitive impairment (MCI) in terms of driving behaviors. The current study investigated self-reported driving habits among adults age 60 and older with clinical MCI (n=41), clinical mild dementia (n=40), and normal cognition (n=43). Participants reported their driving status, driving frequency (days per week), and how often they avoided accessing the community, making left turns, driving at night, driving in unfamiliar areas, driving on high-traffic roads, and driving in bad weather. After adjusting for education, a MANCOVA revealed that participants with MCI and dementia avoided unfamiliar areas and high-traffic roads significantly more than normal participants. Participants with dementia also avoided left turns and accessing the community more than those with normal cognition and MCI (p<0.05 for all). The other driving variables did not significantly differ between groups. Thus, older adults with clinically-defined MCI, as well as those with dementia, avoided some complex driving situations more than cognitively intact adults. However, all diagnostic groups had similar rates of driving cessation and frequency. Future research should examine the safety implications of such findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, D.B.; Unseren, M.A.

    1995-03-28

    A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.

  4. TRANSP: status and planning

    NASA Astrophysics Data System (ADS)

    Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.

    2016-10-01

    TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.

  5. The inductive, steady-state sustainment of stable spheromaks

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  6. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    NASA Astrophysics Data System (ADS)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  7. A European approach to categorizing medicines for fitness to drive: outcomes of the DRUID project

    PubMed Central

    Ravera, Silvia; Monteiro, Susana P; de Gier, Johan Jacob; van der Linden, Trudy; Gómez-Talegón, Trinidad; Álvarez, F Javier

    2012-01-01

    AIMS To illustrate (i) the criteria and the development of the DRUID categorization system, (ii) the number of medicines that have currently been categorized, (iii) the added value of the DRUID categorization system and (iv) the next steps in the implementation of the DRUID system. METHODS The development of the DRUID categorization system was based on several criteria. The following steps were considered: (i) conditions of use of the medicine, (ii) pharmacodynamic and pharmacokinetic data, (iii) pharmacovigilance data, including prevalence of undesirable effects, (iv) experimental and epidemiological data, (v) additional data derived from the patient information leaflet, existing categorization systems and (vi) final categorization. DRUID proposed four tiered categories for medicines and driving. RESULTS In total, 3054 medicines were reviewed and over 1541 medicines were categorized (the rest were no longer on the EU market). Nearly half of the 1541 medicines were categorized 0 (no or negligible influence on fitness to drive), about 26% were placed in category I (minor influence on fitness to drive) and 17% were categorized as II or III (moderate or severe influence on fitness to drive). CONCLUSIONS The current DRUID categorization system established and defined standardized and harmonized criteria to categorize commonly used medications, based on their influence on fitness to drive. Further efforts are needed to implement the DRUID categorization system at a European level and further activities should be undertaken in order to reinforce the awareness of health care professionals and patients on the effects of medicines on fitness to drive. PMID:22452358

  8. A model for prediction of the transient rolling resistance of tyres based on inner-liner temperatures

    NASA Astrophysics Data System (ADS)

    Greiner, Matthias; Unrau, Hans-Joachim; Gauterin, Frank

    2018-01-01

    Measurements of rolling resistance in thermal equilibrium of a tyre, like measurements according to ISO 28580, do not allow statements about rolling resistances under other driving conditions. Such statements, however, are necessary to determine the energy consumption in driving cycles. Especially for the proper calculation of electric-vehicle remaining ranges and the selection of the respective driving strategies, the real amount of energy consumption is required. This paper presents a model approach, which by means of only one standardised rolling resistance measurement can be parameterised and, considering the present driving speed and tyre temperature, can predict the respective current rolling resistance.

  9. Fluid equations in the presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-01

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  10. Fluid equations in the presence of electron cyclotron current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G.; Kruger, Scott E.

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  11. Consensus statements on occupational therapy education and professional development related to driving and community mobility.

    PubMed

    Stav, Wendy B

    2014-04-01

    Professional and postprofessional education for occupational therapy practitioners in the area of driving and community mobility has been inconsistent and not sufficient to meet the growing community mobility needs of the aging population. This article reviews the current expectations of entry-level occupational therapy education, the postprofessional credentialing opportunities, and the professional development path for occupational therapy practitioners. Finally, consensus statements are presented to move both entry-level and professional education forward in the area of driving and community mobility.

  12. Design and realization of high voltage disconnector condition monitoring system

    NASA Astrophysics Data System (ADS)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  13. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    NASA Astrophysics Data System (ADS)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  14. Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Na, Jun-Seok; Kwon, Oh-Kyong

    2014-01-01

    We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.

  15. Sex Differences in the Effects of Marijuana on Simulated Driving Performance†

    PubMed Central

    Anderson, Beth M.; Rizzo, Matthew; Block, Robert I.; Pearlson, Godfrey D.; O'Leary, Daniel S.

    2011-01-01

    In the United States, one in six teenagers has driven under the influence of marijuana. Driving under the influence of marijuana and alcohol is equally prevalent, despite the fact that marijuana use is less common than alcohol use. Much of the research examining the effects of marijuana on driving performance was conducted in the 1970s and led to equivocal findings. During that time, few studies included women and driving simulators were rudimentary. Further, the potency of marijuana commonly used recreationally has increased. This study examined sex differences in the acute effects of marijuana on driving performance using a realistic, validated driving simulator. Eighty-five subjects (n = 50 males, 35 females) participated in this between-subjects, double-blind, placebo controlled study. In addition to an uneventful, baseline segment of driving, participants were challenged with collision avoidance and distracted driving scenarios. Under the influence of marijuana, participants decreased their speed and failed to show expected practice effects during a distracted drive. No differences were found during the baseline driving segment or collision avoidance scenarios. No differences attributable to sex were observed. This study enhances the current literature by identifying distracted driving and the integration of prior experience as particularly problematic under the influence of marijuana. PMID:20464803

  16. Examining relationships between anxiety and dangerous driving.

    PubMed

    Dula, Chris S; Adams, Cristi L; Miesner, Michael T; Leonard, Robin L

    2010-11-01

    Driving anxiety that has developed following crashes has been studied relatively frequently, but anxiety per se and its effects on driving has not as yet garnered much attention in the literature. The current study included 1121 participants and found higher levels of general anxiety were related to a wide variety of dangerous driving behaviors. While there were clear and expected sex differences on many dangerous driving variables, there were still more such differences with regard to anxiety levels and independent of sex, higher levels of anxiety were associated with greater levels of dangerous driving. Of particular import, it was found that the high anxiety group had caused significantly more crashes and engaged in more DUI episodes than the low and/or medium anxiety groups. Taken as a whole, the results suggest there is a tremendous need for more research in the area of anxiety and dangerous driving and that interventions for highly anxious drivers may well be warranted. 2010 Elsevier Ltd. All rights reserved.

  17. Current CRISPR gene drive systems are likely to be highly invasive in wild populations.

    PubMed

    Noble, Charleston; Adlam, Ben; Church, George M; Esvelt, Kevin M; Nowak, Martin A

    2018-06-19

    Recent reports have suggested that self-propagating CRISPR-based gene drive systems are unlikely to efficiently invade wild populations due to drive-resistant alleles that prevent cutting. Here we develop mathematical models based on existing empirical data to explicitly test this assumption for population alteration drives. Our models show that although resistance prevents spread to fixation in large populations, even the least effective drive systems reported to date are likely to be highly invasive. Releasing a small number of organisms will often cause invasion of the local population, followed by invasion of additional populations connected by very low rates of gene flow. Hence, initiating contained field trials as tentatively endorsed by the National Academies report on gene drive could potentially result in unintended spread to additional populations. Our mathematical results suggest that self-propagating gene drive is best suited to applications such as malaria prevention that seek to affect all wild populations of the target species. © 2018, Noble et al.

  18. Self-report measures of distractibility as correlates of simulated driving performance.

    PubMed

    Kass, Steven J; Beede, Kristen E; Vodanovich, Stephen J

    2010-05-01

    The present study investigated the relationship between self-reported measures pertaining to attention difficulties and simulated driving performance while distracted. Thirty-six licensed drivers participated in a simulator driving task while engaged in a cell phone conversation. The participants completed questionnaires assessing their tendency toward boredom, cognitive failures, and behaviors associated with attention deficit and hyperactivity. Scores on these measures were significantly correlated with various driving outcomes (e.g., speed, lane maintenance, reaction time). Significant relationships were also found between one aspect of boredom proneness (i.e., inability to generate interest or concentrate) and self-reports of past driving behavior (moving violations). The current study may aid in the understanding of how individual differences in driver distractibility may contribute to unsafe driving behaviors and accident involvement. Additionally, such measures may assist in the identification of individuals at risk for committing driving errors due to being easily distracted. The benefits and limitations of conducting and interpreting simulation research are discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. 75 FR 27768 - Current Connection, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ..., Motions To Intervene, and Competing Applications May 11, 2010. On March 30, 2010, Current Connection, LLC.... Applicant Contact: Timothy D. Smith, CEO, Current Connection, LLC, 1300 Rankin Drive, Troy, MI 48083; phone... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13694-000] Current...

  20. Brain activity during driving with distraction: an immersive fMRI study

    PubMed Central

    Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757

Top