Sample records for nonlinear analog circuits

  1. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  2. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    PubMed

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  3. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    PubMed

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  4. Computer modeling of batteries from nonlinear circuit elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waaben, S.; Dyer, C.K.; Federico, J.

    1985-06-01

    Circuit analogs for a single battery cell have previously been composed of resistors, capacitors, and inductors. This work introduces a nonlinear circuit model for cell behavior. The circuit is configured around the PIN junction diode, whose charge-storage behavior has features similar to those of electrochemical cells. A user-friendly integrated circuit simulation computer program has reproduced a variety of complex cell responses including electrica isolation effects causing capacity loss, as well as potentiodynamic peaks and discharge phenomena hitherto thought to be thermodynamic in origin. However, in this work, they are shown to be simply due to spatial distribution of stored chargemore » within a practical electrode.« less

  5. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits

    PubMed Central

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-01-01

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.10056.001 PMID:26705334

  6. Neuron Bifurcations in an Analog Electronic Burster

    NASA Astrophysics Data System (ADS)

    Savino, Guillermo V.; Formigli, Carlos M.

    2007-05-01

    Although bursting electrical activity is typical in some brain neurons and biological excitable systems, its functions and mechanisms of generation are yet unknown. In modeling such complex oscillations, analog electronic models are faster than mathematical ones, whether phenomenologically or theoretically based. We show experimentally that bursting oscillator circuits can be greatly simplified by using the nonlinear characteristics of two bipolar transistors. Since our circuit qualitatively mimics Hodgkin and Huxley model neurons bursting activity, and bifurcations originating neuro-computational properties, it is not only a caricature but a realistic model.

  7. Classical analogs for Rabi-oscillations, Ramsey-fringes, and spin-echo in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Marchese, J. E.; Cirillo, M.; Grønbech-Jensen, N.

    2007-08-01

    We investigate the results of recently published experiments on the quantum behavior of Josephson circuits in terms of the classical modeling based on the resistively and capacitively-shunted (RCSJ) junction model. Our analysis shows evidence for a close analogy between the nonlinear behavior of a pulsed microwave-driven Josephson junction at low temperature and low dissipation and the experimental observations reported for the Josephson circuits. Specifically, we demonstrate that Rabi-oscillations, Ramsey-fringes, and spin-echo observations are not phenomena with a unique quantum interpretation. In fact, they are natural consequences of transients to phase-locking in classical nonlinear dynamics and can be observed in a purely classical model of a Josephson junction when the experimental recipe for the application of microwaves is followed and the experimental detection scheme followed. We therefore conclude that classical nonlinear dynamics can contribute to the understanding of relevant experimental observations of Josephson response to various microwave perturbations at very low temperature and low dissipation.

  8. Fast Neural Solution Of A Nonlinear Wave Equation

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Toomarian, Nikzad

    1996-01-01

    Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).

  9. Quantum Nonlinear Optics without Photons

    NASA Astrophysics Data System (ADS)

    Macrı, Vincenzo

    Here we propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear optical process is coherent and reversible, so that the couple of excited atoms can transfer back the excitation to the first one: the analogous for atoms of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be expanded to consider other nonlinear inter-atomic processes as the four-qubit mixing and is an attractive architecture for the realization of quantum devices on a chip.

  10. Deterministic quantum nonlinear optics with single atoms and virtual photons

    NASA Astrophysics Data System (ADS)

    Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco

    2017-06-01

    We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.

  11. Stability of the Baseline Holder in Readout Circuits For Radiation Detectors

    PubMed Central

    Chen, Y.; Cui, Y.; O’Connor, P.; Seo, Y.; Camarda, G. S.; Hossain, A.; Roy, U.; Yang, G.; James, R. B.

    2016-01-01

    Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation. To resolve this problem, we used large-signal analyses to study the circuit’s stability. We found that a relatively small gain for the error amplifier and a small current in the non-linear stage of the BLH are required to enhance stability in large-signal analysis, which will compromise the properties of the BLH. These findings were verified by SPICE simulations. In this paper, we present our detailed analysis of the BLH circuits, and propose an improved version of them that have only minimal self-triggered fluctuations. We summarize the design considerations both for the stability and the properties of the BLH circuits. PMID:27182081

  12. A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.

    PubMed

    Woo, Sung Sik; Kim, Jaewook; Sarpeshkar, Rahul

    2018-04-01

    Prior work has shown that compact analog circuits can faithfully represent and model fundamental biomolecular circuits via efficient log-domain cytomorphic transistor equivalents. Such circuits have emphasized basis functions that are dominant in genetic transcription and translation networks and deoxyribonucleic acid (DNA)-protein binding. Here, we report a system featuring digitally programmable 0.35 μm BiCMOS analog cytomorphic chips that enable arbitrary biochemical reaction networks to be exactly represented thus enabling compact and easy composition of protein networks as well. Since all biomolecular networks can be represented as chemical reaction networks, our protein networks also include the former genetic network circuits as a special case. The cytomorphic analog protein circuits use one fundamental association-dissociation-degradation building-block circuit that can be configured digitally to exactly represent any zeroth-, first-, and second-order reaction including loading, dynamics, nonlinearity, and interactions with other building-block circuits. To address a divergence issue caused by random variations in chip fabrication processes, we propose a unique way of performing computation based on total variables and conservation laws, which we instantiate at both the circuit and network levels. Thus, scalable systems that operate with finite error over infinite time can be built. We show how the building-block circuits can be composed to form various network topologies, such as cascade, fan-out, fan-in, loop, dimerization, or arbitrary networks using total variables. We demonstrate results from a system that combines interacting cytomorphic chips to simulate a cancer pathway and a glycolysis pathway. Both simulations are consistent with conventional software simulations. Our highly parallel digitally programmable analog cytomorphic systems can lead to a useful design, analysis, and simulation tool for studying arbitrary large-scale biological networks in systems and synthetic biology.

  13. Neural Networks For Demodulation Of Phase-Modulated Signals

    NASA Technical Reports Server (NTRS)

    Altes, Richard A.

    1995-01-01

    Hopfield neural networks proposed for demodulating quadrature phase-shift-keyed (QPSK) signals carrying digital information. Networks solve nonlinear integral equations prior demodulation circuits cannot solve. Consists of set of N operational amplifiers connected in parallel, with weighted feedback from output terminal of each amplifier to input terminals of other amplifiers. Used to solve signal processing problems. Implemented as analog very-large-scale integrated circuit that achieves rapid convergence. Alternatively, implemented as digital simulation of such circuit. Also used to improve phase estimation performance over that of phase-locked loop.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, David S; Mikkilineni, Aravind K; Rose, Derek C

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilizemore » measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.« less

  15. Stochastic modular analysis for gene circuits: interplay among retroactivity, nonlinearity, and stochasticity.

    PubMed

    Kim, Kyung Hyuk; Sauro, Herbert M

    2015-01-01

    This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.

  16. Quantum nonlinear optics without photons

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  17. Nonlinear system analysis in bipolar integrated circuits

    NASA Astrophysics Data System (ADS)

    Fang, T. F.; Whalen, J. J.

    1980-01-01

    Since analog bipolar integrated circuits (IC's) have become important components in modern communication systems, the study of the Radio Frequency Interference (RFI) effects in bipolar IC amplifiers is an important subject for electromagnetic compatibility (EMC) engineering. The investigation has focused on using the nonlinear circuit analysis program (NCAP) to predict RF demodulation effects in broadband bipolar IC amplifiers. The audio frequency (AF) voltage at the IC amplifier output terminal caused by an amplitude modulated (AM) RF signal at the IC amplifier input terminal was calculated and compared to measured values. Two broadband IC amplifiers were investigated: (1) a cascode circuit using a CA3026 dual differential pair; (2) a unity gain voltage follower circuit using a micro A741 operational amplifier (op amp). Before using NCAP for RFI analysis, the model parameters for each bipolar junction transistor (BJT) in the integrated circuit were determined. Probe measurement techniques, manufacturer's data, and other researcher's data were used to obtain the required NCAP BJT model parameter values. An important contribution included in this effort is a complete set of NCAP BJT model parameters for most of the transistor types used in linear IC's.

  18. Sensitivity and Switching Delay in Trigger Circuits; SENSIBILITA E RITARDO ENI CIRCUITI A SCATTO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lotto, I.; Stanchi, L.

    The problem of regeneration in trigger circuits is studied, particularly in relation to switching delay and switching time. The factors that affect the speed, such as the threshold as a function of the input signal duration, are examined. The sensitivity of the circuit is also discussed. The characteristics of the dipole equivalent to a trigger circuit are determined, and the switching delay and switching rise time are examined using considerable simplifications (circuits with constant parameters) and graphical methods. For the particular case of a transistor circuit, the equation of the equivalent circuit is derived taking into account the nonlinearity ofmore » the parameters. This equation is processed by means of an analog computer. Using experimental data, the circuits are classified according to their sensitivity and the switching delay. A merit figure is obtained for synthetically evaluating different circuits and optimizing circuit sensitivity and speed. (auth)« less

  19. A novel CMOS transducer for giant magnetoresistance sensors.

    PubMed

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  20. Full analogue electronic realisation of the Hodgkin-Huxley neuronal dynamics in weak-inversion CMOS.

    PubMed

    Lazaridis, E; Drakakis, E M; Barahona, M

    2007-01-01

    This paper presents a non-linear analog synthesis path towards the modeling and full implementation of the Hodgkin-Huxley neuronal dynamics in silicon. The proposed circuits have been realized in weak-inversion CMOS technology and take advantage of both log-domain and translinear transistor-level techniques.

  1. Wafer-scalable high-performance CVD graphene devices and analog circuits

    NASA Astrophysics Data System (ADS)

    Tao, Li; Lee, Jongho; Li, Huifeng; Piner, Richard; Ruoff, Rodney; Akinwande, Deji

    2013-03-01

    Graphene field effect transistors (GFETs) will serve as an essential component for functional modules like amplifier and frequency doublers in analog circuits. The performance of these modules is directly related to the mobility of charge carriers in GFETs, which per this study has been greatly improved. Low-field electrostatic measurements show field mobility values up to 12k cm2/Vs at ambient conditions with our newly developed scalable CVD graphene. For both hole and electron transport, fabricated GFETs offer substantial amplification for small and large signals at quasi-static frequencies limited only by external capacitances at high-frequencies. GFETs biased at the peak transconductance point featured high small-signal gain with eventual output power compression similar to conventional transistor amplifiers. GFETs operating around the Dirac voltage afforded positive conversion gain for the first time, to our knowledge, in experimental graphene frequency doublers. This work suggests a realistic prospect for high performance linear and non-linear analog circuits based on the unique electron-hole symmetry and fast transport now accessible in wafer-scalable CVD graphene. *Support from NSF CAREER award (ECCS-1150034) and the W. M. Keck Foundation are appreicated.

  2. A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters

    NASA Astrophysics Data System (ADS)

    Weber, H.; Widemann, C.; Mathis, W.

    2013-07-01

    In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.

  3. A cryogenic DAC operating down to 4.2 K

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.; Lehmann, T.

    2016-04-01

    This paper presents a 10 bit CMOS current steering digital to analog converter (DAC) that operates from room temperature to as low as 4.2 K. It works as the core part of a cryogenic Silicon quantum computer controller circuit producing rapid control gate voltage pulses for quantum bits (qubits) initialization. An improved analog calibration method with a unique unit current cell design is included in the D/A converter structure to overcome the extended cryogenic nonlinear and mismatch effects. The DAC retains its 10 bit linear monotonic behavior over the wide temperature range and it drives a 50 Ω load to 516 mV with a full scale rise time of 10 ns. The differential non-linearity (DNL) of the converter is 0.35LSB while its average power consumption is 32.18 mW from a 3 V power supply. The complete converter is fabricated using a commercial 0.5 μm 1 poly 3 metal Silicon on Sapphire (SOS) CMOS process. He briefly worked as a Lecturer in the Stamford University Bangladesh prior to starting his Ph.D. in 2012 in the School of Electrical Engineering and Telecommunications, UNSW. His Ph.D. research is focused on cryogenic electronics for Quantum Computer Interface. His main research interests are in designing data converters for ultra-low temperature electronics and biomedical applications. He spent two years as a Research Fellow at the University of Edinburgh, U.K., where he worked with biologically inspired artificial neural systems. From 1997 to 2000, he was an Assistant Professor in electronics at the Technical University of Denmark, working with low-power low-noise low-voltage analog and mixed analog-digital integrated circuits. From 2001 to 2003 he was Principal Engineer with Cochlear Ltd., Australia, where he was involved in the design of the world's first fully implantable cochlear implant. Today he is Associate Professor in microelectronics at the University of New South Wales, Australia. He has authored over 100 journal papers, conference papers, book chapters and patents in microelectronic circuit design for a range of applications. His main research interests are in solid-state circuits and systems (analog and digital), biomedical microelectronics, ultra-low temperature electronics, nanometre CMOS, and green electronics.

  4. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  5. Analog bus driver and multiplexer

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Hancock, Bruce (Inventor); Cunningham, Thomas J. (Inventor)

    2012-01-01

    For a source-follower signal chain, the ohmic drop in the selection switch causes unacceptable voltage offset, non-linearity, and reduced small signal gain. For an op amp signal chain, the required bias current and the output noise rises rapidly with increasing the array format due to a rapid increase in the effective capacitance caused by the Miller effect boosting up the contribution of the bus capacitance. A new switched source-follower signal chain circuit overcomes limitations of existing op-amp based or source follower based circuits used in column multiplexers and data readout. This will improve performance of CMOS imagers, and focal plane read-out integrated circuits for detectors of infrared or ultraviolet light.

  6. A Standard for RF Modulation Factor,

    DTIC Science & Technology

    1979-09-01

    Mathematics of Physics and Chemistry, pp. 474-477 (D. Van Nostrand Co., Inc., New York, N.Y., 1943). [23] Graybill , F. A., An Introduction to Linear ...circuit model . The primary limitation on the quadratic technique is the linearity and bandwidth of the analog multiplier. A high speed (5 MHz...o ...... . ..... 39 7.2.1. Nonlinearity Model ............................................... 41 7.2.2. Model Parameters

  7. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

    PubMed

    Florescu, Dorian; Coca, Daniel

    2018-03-01

    Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.

  8. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  9. Quantum Nonlinear Optics without real Photons

    NASA Astrophysics Data System (ADS)

    Macrí, Vincenzo; Frisk Kockum, Anton; Stassi, Roberto; di Stefano, Omar; Savasta, Salvatore; Nori, Franco

    We propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially-separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual, rather than real, photons. This nonlinear optical process is coherent and reversible, so that the two excited atoms can transfer back the excitation to the first one: the atomic analogue of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be extended to consider other nonlinear interatomic processes, e.g. four-qubit mixing, and is an attractive architecture for the realization of quantum devices on a chip. Univ. of Michigan, USA.

  10. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  11. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  12. Memristor-based cellular nonlinear/neural network: design, analysis, and applications.

    PubMed

    Duan, Shukai; Hu, Xiaofang; Dong, Zhekang; Wang, Lidan; Mazumder, Pinaki

    2015-06-01

    Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current-voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.

  13. Electrical Circuits and Water Analogies

    ERIC Educational Resources Information Center

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  14. Jump Resonance in Fractional Order Circuits

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Caponetto, Riccardo; Famoso, Carlo; Fortuna, Luigi

    The occurrence of an hysteretic loop in the frequency response of a driven nonlinear system is a phenomenon deeply investigated in nonlinear control theory. Such a phenomenon, which is linked to the multistable behavior of the system, is called jump resonance, since the magnitude of the frequency response is subjected to an abrupt jump up/down with respect to the increasing/decreasing of the frequency of the driving signal. In this paper, we aim at investigating fractional order nonlinear systems showing jump resonance, that is systems in which the order of the derivative is noninteger and their frequency response has a magnitude that is a multivalued function in a given range of frequencies. Furthermore, a strategy for designing fractional order systems showing jump resonance is presented along with the procedure to design and implement an analog circuit based on the approximation of the fractional order derivative. An extensive numerical analysis allows one to assess that the phenomenon is robust to the difference in the derivative order, enlightening the first example of a system with order lower than two which is able to demonstrate a jump resonance behavior.

  15. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  16. Analog Fault Diagnosis of Large-Scale Electronic Circuits.

    DTIC Science & Technology

    1983-08-01

    is invertible. Note that Eq. G - Government Expenditure on Goods (26) is in general nonlinear while Equation (27) is and Services linear. The latter...is achieved at the expense of T - Taxes on Income more test points. 4 R = Government Regulator Navid and Willson, Jr., (71 considered the diagnosis...Theoretically, both approaches are still under development and all seem feasible. It is the purpose of this report to compare these two approaches numerically by

  17. Analog current mode analog/digital converter

    NASA Technical Reports Server (NTRS)

    Hadidi, Khayrollah (Inventor)

    1996-01-01

    An improved subranging or comparator circuit is provided for an analog-to-digital converter. As a subranging circuit, the circuit produces a residual signal representing the difference between an analog input signal and an analog of a digital representation. This is achieved by subdividing the digital representation into two or more parts and subtracting from the analog input signal analogs of each of the individual digital portions. In another aspect of the present invention, the subranging circuit comprises two sets of differential input pairs in which the transconductance of one differential input pair is scaled relative to the transconductance of the other differential input pair. As a consequence, the same resistor string may be used for two different digital-to-analog converters of the subranging circuit.

  18. A new 4D chaotic system with hidden attractor and its engineering applications: Analog circuit design and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Abdolmohammadi, Hamid Reza; Khalaf, Abdul Jalil M.; Panahi, Shirin; Rajagopal, Karthikeyan; Pham, Viet-Thanh; Jafari, Sajad

    2018-06-01

    Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.

  19. An analog neural hardware implementation using charge-injection multipliers and neutron-specific gain control.

    PubMed

    Massengill, L W; Mundie, D B

    1992-01-01

    A neural network IC based on a dynamic charge injection is described. The hardware design is space and power efficient, and achieves massive parallelism of analog inner products via charge-based multipliers and spatially distributed summing buses. Basic synaptic cells are constructed of exponential pulse-decay modulation (EPDM) dynamic injection multipliers operating sequentially on propagating signal vectors and locally stored analog weights. Individually adjustable gain controls on each neutron reduce the effects of limited weight dynamic range. A hardware simulator/trainer has been developed which incorporates the physical (nonideal) characteristics of actual circuit components into the training process, thus absorbing nonlinearities and parametric deviations into the macroscopic performance of the network. Results show that charge-based techniques may achieve a high degree of neural density and throughput using standard CMOS processes.

  20. Conic section function neural network circuitry for offline signature recognition.

    PubMed

    Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay

    2010-04-01

    In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.

  1. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Geoff; Yabuki, Tomohide; Monachon, Christian; Wu, Junqiao; Dames, Chris

    2017-12-01

    Interest in new thermal diodes, regulators, and switches has been rapidly growing because these components have the potential for rich transport phenomena that cannot be achieved using traditional thermal resistors and capacitors. Each of these thermal components has a signature functionality: Thermal diodes can rectify heat currents, thermal regulators can maintain a desired temperature, and thermal switches can actively control the heat transfer. Here, we review the fundamental physical mechanisms of switchable and nonlinear heat transfer which have been harnessed to make thermal diodes, switches, and regulators. The review focuses on experimental demonstrations, mainly near room temperature, and spans the fields of heat conduction, convection, and radiation. We emphasize the changes in thermal properties across phase transitions and thermal switching using electric and magnetic fields. After surveying fundamental mechanisms, we present various nonlinear and active thermal circuits that are based on analogies with well-known electrical circuits, and analyze potential applications in solid-state refrigeration and waste heat scavenging.

  2. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.

    PubMed

    Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan

    2016-06-09

    Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  3. Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads

    NASA Astrophysics Data System (ADS)

    Kotzev, Miroslav; Bi, Xiaotang; Kreitlow, Matthias; Gronwald, Frank

    2017-09-01

    In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.

  4. Antimonotonicity, Chaos and Multiple Attractors in a Novel Autonomous Jerk Circuit

    NASA Astrophysics Data System (ADS)

    Kengne, J.; Negou, A. Nguomkam; Njitacke, Z. T.

    2017-06-01

    We perform a systematic analysis of a system consisting of a novel jerk circuit obtained by replacing the single semiconductor diode of the original jerk circuit described in [Sprott, 2011a] with a pair of semiconductor diodes connected in antiparallel. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a control system with nonlinear velocity feedback. The stability of the (unique) fixed point, the local bifurcations, and the discrete symmetries of the model equations are discussed. The complex behavior of the system is categorized in terms of its parameters by using bifurcation diagrams, Lyapunov exponents, time series, Poincaré sections, and basins of attraction. Antimonotonicity, period doubling bifurcation, symmetry restoring crises, chaos, and coexisting bifurcations are reported. More interestingly, one of the key contributions of this work is the finding of various regions in the parameters’ space in which the proposed (“elegant”) jerk circuit experiences the unusual phenomenon of multiple competing attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). The basins of attraction of various coexisting attractors display complexity (i.e. fractal basins boundaries), thus suggesting possible jumps between coexisting attractors in experiment. Results of theoretical analyses are perfectly traced by laboratory experimental measurements. To the best of the authors’ knowledge, the jerk circuit/system introduced in this work represents the simplest electrical circuit (only a quadruple op amplifier chip without any analog multiplier chip) reported to date capable of four disconnected periodic and chaotic attractors for the same parameters setting.

  5. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments.

  6. A Novel Prediction Method about Single Components of Analog Circuits Based on Complex Field Modeling

    PubMed Central

    Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853

  7. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    PubMed Central

    Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan

    2016-01-01

    Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928

  8. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  9. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  10. A Novel Analog Integrated Circuit Design Course Covering Design, Layout, and Resulting Chip Measurement

    ERIC Educational Resources Information Center

    Lin, Wei-Liang; Cheng, Wang-Chuan; Wu, Chen-Hao; Wu, Hai-Ming; Wu, Chang-Yu; Ho, Kuan-Hsuan; Chan, Chueh-An

    2010-01-01

    This work describes a novel, first-year graduate-level analog integrated circuit (IC) design course. The course teaches students analog circuit design; an external manufacturer then produces their designs in three different silicon chips. The students, working in pairs, then test these chips to verify their success. All work is completed within…

  11. An evaluation of the Intel 2920 digital signal processing integrated circuit

    NASA Technical Reports Server (NTRS)

    Heller, J.

    1981-01-01

    The circuit consists of a digital to analog converter, accumulator, read write memory and UV erasable read only memory. The circuit can convert an analog signal to a digital representation, perform mathematical operations on the digital signal and subsequently convert the digital signal to an analog output. Development software tailored for programming the 2920 is presented.

  12. Bistable metamaterial for switching and cascading elastic vibrations

    PubMed Central

    Foehr, André; Daraio, Chiara

    2017-01-01

    The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663

  13. Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays

    NASA Technical Reports Server (NTRS)

    Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard

    1999-01-01

    Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.

  14. A CCD Monolithic LMS Adaptive Analog Signal Processor Integrated Circuit.

    DTIC Science & Technology

    1980-03-01

    adaptive filter with electrically- reprogrammable MOS analog conductance weights. I The analog and digital peripheral MOS on-chip circuits are provided with...electrically reprogrammable analog weights at tap positions along a CCD analog delay line in order to form a basic linear combiner for adaptive filtering...electrically reprogrammable analog conductance weights was introduced with the use of non-volatile MNOS memory 6-7 transistors biased in their triode

  15. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    PubMed

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  16. State-variable analysis of non-linear circuits with a desk computer

    NASA Technical Reports Server (NTRS)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  17. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  18. Another Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Thibodeau, Phillip E.; Sullender, Craig C.

    1993-01-01

    Lightweight, low-power circuit provides noncontact measurement of alternating or direct current of many ampheres in main conductor. Advantages of circuit over other nulling Hall-effect current-measuring circuits is stability and accuracy increased by putting both analog-to-digital and digital-to-analog converters in nulling feedback loop. Converters and rest of circuit designed for operation at sampling rate of 100 kHz, but rate changed to alter time or frequency response of circuit.

  19. Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Harne, Ryan L.

    2018-05-01

    Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.

  20. An analog silicon retina with multichip configuration.

    PubMed

    Kameda, Seiji; Yagi, Tetsuya

    2006-01-01

    The neuromorphic silicon retina is a novel analog very large scale integrated circuit that emulates the structure and the function of the retinal neuronal circuit. We fabricated a neuromorphic silicon retina, in which sample/hold circuits were embedded to generate fluctuation-suppressed outputs in the previous study [1]. The applications of this silicon retina, however, are limited because of a low spatial resolution and computational variability. In this paper, we have fabricated a multichip silicon retina in which the functional network circuits are divided into two chips: the photoreceptor network chip (P chip) and the horizontal cell network chip (H chip). The output images of the P chip are transferred to the H chip with analog voltages through the line-parallel transfer bus. The sample/hold circuits embedded in the P and H chips compensate for the pattern noise generated on the circuits, including the analog communication pathway. Using the multichip silicon retina together with an off-chip differential amplifier, spatial filtering of the image with an odd- and an even-symmetric orientation selective receptive fields was carried out in real time. The analog data transfer method in the present multichip silicon retina is useful to design analog neuromorphic multichip systems that mimic the hierarchical structure of neuronal networks in the visual system.

  1. Experimental study of the robust global synchronization of Brockett oscillators

    NASA Astrophysics Data System (ADS)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2017-12-01

    This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

  2. Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Baranauskas, Gytis (Inventor); Lim, Boon H. (Inventor); Baranauskas, Dalius (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor)

    2017-01-01

    According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.

  3. Picosecond Resolution Time-to-Digital Converter Using Gm-C Integrator and SAR-ADC

    NASA Astrophysics Data System (ADS)

    Xu, Zule; Miyahara, Masaya; Matsuzawa, Akira

    2014-04-01

    A picosecond resolution time-to-digital converter (TDC) is presented. The resolution of a conventional delay chain TDC is limited by the delay of a logic buffer. Various types of recent TDCs are successful in breaking this limitation, but they require a significant calibration effort to achieve picosecond resolution with a sufficient linear range. To address these issues, we propose a simple method to break the resolution limitation without any calibration: a Gm-C integrator followed by a successive approximation register analog-to-digital converter (SAR-ADC). This translates the time interval into charge, and then the charge is quantized. A prototype chip was fabricated in 90 nm CMOS. The measurement results reveal a 1 ps resolution, a -0.6/0.7 LSB differential nonlinearity (DNL), a -1.1/2.3 LSB integral nonlinearity (INL), and a 9-bit range. The measured 11.74 ps single-shot precision is caused by the noise of the integrator. We analyze the noise of the integrator and propose an improved front-end circuit to reduce this noise. The proposal is verified by simulations showing the maximum single-shot precision is less than 1 ps. The proposed front-end circuit can also diminish the mismatch effects.

  4. Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms

    NASA Astrophysics Data System (ADS)

    Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.

    2017-11-01

    Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.

  5. Expediting analog design retargeting by design knowledge re-use and circuit synthesis: a practical example on a Delta-Sigma modulator

    NASA Astrophysics Data System (ADS)

    Webb, Matthew; Tang, Hua

    2016-08-01

    In the past decade or two, due to constant and rapid technology changes, analog design re-use or design retargeting to newer technologies has been brought to the table in order to expedite the design process and improve time-to-market. If properly conducted, analog design retargeting could significantly cut down design cycle compared to designs starting from the scratch. In this article, we present an empirical and general method for efficient analog design retargeting by design knowledge re-use and circuit synthesis (CS). The method first identifies circuit blocks that compose the source system and extracts the performance parameter specifications of each circuit block. Then, for each circuit block, it scales the values of design variables (DV) from the source design to derive an initial design in the target technology. Depending on the performance of this initial target design, a design space is defined for synthesis. Subsequently, each circuit block is automatically synthesised using state-of-art analog synthesis tools based on a combination of global and local optimisation techniques to achieve comparable performance specifications to those extracted from the source system. Finally, the overall system is composed of those synthesised circuit blocks in the target technology. We illustrate the method using a practical example of a complex Delta-Sigma modulator (DSM) circuit.

  6. MOSFET analog memory circuit achieves long duration signal storage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  7. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  8. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  9. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  10. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  11. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  12. A SPICE2 Model for the M732 Analog Timer Integrated Circuit.

    DTIC Science & Technology

    1982-06-01

    I AD-All? 019 ARMY ARMAMENT RESEARCH AND DEVELOPMENT C01MAND DOVER-ETC F/ S 1/ I A SPICES MODEL FOR THE M739 ANALOG TIMER INTEGRATED CIRCUIT. (U) I...JUN $I .J P TOBAK UNCLASSIFIED AR ID-20Di S I-AD-E06 3 NL ADI- A SPICE2 MODEL FOR THE M3 ANALOG TIMR INTERNATED CIRCIT, JOHN P. TOMA DTIC JUNE 1992 13...ARrIID-TR-82001 -;AZ/ 4 " 4. TITLE (and Subtitle) S . TYPE OF REPORT & PERIOD COVERED A SPICE2 MODEL FOR THE M732 ANALOG TIMER Final INTEGRATED CIRCUIT

  13. Analog integrated circuits design for processing physiological signals.

    PubMed

    Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting

    2010-01-01

    Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.

  14. Postirradiation Effects In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Barnes, Charles E.

    1993-01-01

    Two reports discuss postirradiation effects in integrated circuits. Presents examples of postirradiation measurements of performances of integrated circuits of five different types: dual complementary metal oxide/semiconductor (CMOS) flip-flop; CMOS analog multiplier; two CMOS multiplying digital-to-analog converters; electrically erasable programmable read-only memory; and semiconductor/oxide/semiconductor octal buffer driver.

  15. Analogies as Tools for Meaning Making in Elementary Science Education: How Do They Work in Classroom Settings?

    ERIC Educational Resources Information Center

    Guerra-Ramos, Maria Teresa

    2011-01-01

    In this paper there is a critical overview of the role of analogies as tools for meaning making in science education, their advantages and disadvantages. Two empirical studies on the use of analogies in primary classrooms are discussed and analysed. In the first study, the "string circuit" analogy was used in the teaching of electric circuits with…

  16. Numerical Solution of Laminar and Turbulent Boundary Layer Equations Including Transition, and Experimenmtal Study of a Flat Plate with a Blunt Fin at Incidence.

    DTIC Science & Technology

    1986-03-01

    93 3.6.5.4 Data Acquisition- Electrical Analog. . 95 3.6.6 Co-axial Thermocouple Gages ...... 97 3.6.6.1 Theory .................... 101 3.6.6.2...Preparation of Liquid Crystal Model . . . 233 Appendix G: Digital Image Processing . ........ 235 Appendix H: Electrical Analog Circuits ....... . 237...m. 232 H.la Thermal Circuit ..... ................. . 237 H.Ib Electrical Circuit ..... ............... 237 H.2 Electrical Analog Using Equal Sections

  17. The importance of explicitly mapping instructional analogies in science education

    NASA Astrophysics Data System (ADS)

    Asay, Loretta Johnson

    Analogies are ubiquitous during instruction in science classrooms, yet research about the effectiveness of using analogies has produced mixed results. An aspect seldom studied is a model of instruction when using analogies. The few existing models for instruction with analogies have not often been examined quantitatively. The Teaching With Analogies (TWA) model (Glynn, 1991) is one of the models frequently cited in the variety of research about analogies. The TWA model outlines steps for instruction, including the step of explicitly mapping the features of the source to the target. An experimental study was conducted to examine the effects of explicitly mapping the features of the source and target in an analogy during computer-based instruction about electrical circuits. Explicit mapping was compared to no mapping and to a control with no analogy. Participants were ninth- and tenth-grade biology students who were each randomly assigned to one of three conditions (no analogy module, analogy module, or explicitly mapped analogy module) for computer-based instruction. Subjects took a pre-test before the instruction, which was used to assign them to a level of previous knowledge about electrical circuits for analysis of any differential effects. After the instruction modules, students took a post-test about electrical circuits. Two weeks later, they took a delayed post-test. No advantage was found for explicitly mapping the analogy. Learning patterns were the same, regardless of the type of instruction. Those who knew the least about electrical circuits, based on the pre-test, made the most gains. After the two-week delay, this group maintained the largest amount of their gain. Implications exist for science education classrooms, as analogy use should be based on research about effective practices. Further studies are suggested to foster the building of research-based models for classroom instruction with analogies.

  18. Adaptive Circuits for the 0.5-V Nanoscale CMOS Era

    NASA Astrophysics Data System (ADS)

    Itoh, Kiyoo; Yamaoka, Masanao; Oshima, Takashi

    The minimum operating voltage, Vmin, of nanoscale CMOS LSIs is investigated to breach the 1-V wall that we are facing in the 65-nm device generation, and open the door to the below 0.5-V era. A new method using speed variation is proposed to evaluate Vmin. It shows that Vmin is very sensitive to the lowest necessary threshold voltage, Vt0, of MOSFETs and to threshold-voltage variations, ΔVt, which become more significant with device scaling. There is thus a need for low-Vt0 circuits and ΔVt-immune MOSFETs to reduce Vmin. For memory-rich LSIs, the SRAM block is particularly problematic because it has the highest Vmin. Various techniques are thus proposed to reduce the Vmin: using RAM repair, shortening the data line, up-sizing, and using more relaxed MOSFET scaling. To effectively reduce Vmin of other circuit blocks, dual-Vt0 and dual-VDD circuits using gate-source reverse biasing, temporary activation, and series connection of another small low-Vt0 MOSFET are proposed. They are dynamic logic circuits enabling the power-delay product of the conventional static CMOS inverter to be reduced to 0.09 at a 0.2-V supply, and a DRAM dynamic sense amplifier and power switches operable at below 0.5V. In addition, a fully-depleted structure (FD-SOI) and fin-type structure (FinFET) for Vt-immune MOSFETs are discussed in terms of their low-voltage potential and challenges. As a result, the height up-scalable FinFETs turns out to be quite effective to reduce Vmin to less than 0.5V, if combined with the low-Vt0 circuits. For mixed-signal LSIs, investigation of low-voltage potential of analog circuits, especially for comparators and operational amplifiers, reveals that simple inverter op-amps, in which the low gain and nonlinearity are compensated for by digitally assisted analog designs, are crucial to 0.5-V operations. Finally, it is emphasized that the development of relevant devices and fabrication processes is the key to the achievement of 0.5-V nanoscale LSIs.

  19. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  20. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    PubMed Central

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  1. SEMICONDUCTOR INTEGRATED CIRCUITS: A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth

    NASA Astrophysics Data System (ADS)

    Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang

    2010-05-01

    A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.

  2. Configurable hardware integrate and fire neurons for sparse approximation.

    PubMed

    Shapero, Samuel; Rozell, Christopher; Hasler, Paul

    2013-09-01

    Sparse approximation is an important optimization problem in signal and image processing applications. A Hopfield-Network-like system of integrate and fire (IF) neurons is proposed as a solution, using the Locally Competitive Algorithm (LCA) to solve an overcomplete L1 sparse approximation problem. A scalable system architecture is described, including IF neurons with a nonlinear firing function, and current-based synapses to provide linear computation. A network of 18 neurons with 12 inputs is implemented on the RASP 2.9v chip, a Field Programmable Analog Array (FPAA) with directly programmable floating gate elements. Said system uses over 1400 floating gates, the largest system programmed on a FPAA to date. The circuit successfully reproduced the outputs of a digital optimization program, converging to within 4.8% RMS, and an objective cost only 1.7% higher on average. The active circuit consumed 559 μA of current at 2.4 V and converges on solutions in 25 μs, with measurement of the converged spike rate taking an additional 1 ms. Extrapolating the scaling trends to a N=1000 node system, the spiking LCA compares favorably with state-of-the-art digital solutions, and analog solutions using a non-spiking approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Shot-Noise-Limited Dual-Beam Detector for Atmospheric Trace-Gas Monitoring with Near-Infrared Diode Lasers

    NASA Astrophysics Data System (ADS)

    Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard

    2000-10-01

    A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.

  4. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  5. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  6. Demodulation Radio Frequency Interference Effects in Operational Amplifier Circuits

    NASA Astrophysics Data System (ADS)

    Sutu, Yue-Hong

    A series of investigations have been carried out to determine RFI effects in analog circuits using monolithic integrated operational amplifiers (op amps) as active devices. The specific RFI effect investigated is how amplitude-modulated (AM) RF signals are demodulated in op amp circuits to produce undesired low frequency responses at AM-modulation frequency. The undesired demodulation responses were shown to be characterized by a second-order nonlinear transfer function. Four representative op amp types investigated were the 741 bipolar op amp, the LM10 bipolar op amp, the LF355 JFET-Bipolar op amp, and the CA081 MOS-Bipolar op amp. Two op amp circuits were investigated. The first circuit was a noninverting unity voltage gain buffer circuit. The second circuit was an inverting op amp configuration. In the second circuit, the investigation includes the effects of an RFI suppression capacitor in the feedback path. Approximately 30 units of each op amp type were tested to determine the statistical variations of RFI demodulation effects in the two op amp circuits. The Nonlinear Circuit Analysis Program, NCAP, was used to simulate the demodulation RFI response. In the simulation, the op amp was replaced with its incremental macromodel. Values of macromodel parameters were obtained from previous investigations and manufacturer's data sheets. Some key results of this work are: (1) The RFI demodulation effects are 10 to 20 dB lower in CA081 and LF355 FET-bipolar op amp than in 741 and LM10 bipolar op amp except above 40 MHz where the LM10 RFI response begins to approach that of CA081. (2) The experimental mean values for 30 741 op amps show that RFI demodulation responses in the inverting amplifier with a 27 pF feedback capacitor were suppressed from 10 to 35 dB over the RF frequency range 0.1 to 150 MHz except at 0.15 MHz where only 3.5 dB suppression was observed. (3) The NCAP program can predict RFI demodulation responses in 741 and LF355 unity gain buffer circuits within 6 and 7 dB respectively for RF frequencies 0.1 to 400 MHz except near the resonant frequencies for the LF355 circuit. (4) The NCAP simulations suggest that the resonances of the LF355 unity gain buffer circuit are related to small parasitic capacitance values of the order of 1 to 5 pF. (5) The NCAP sensitivity analysis indicates that variations in a second-order transfer function are sensitive to some macromodel parameters.

  7. Development of analog watch with minute repeater

    NASA Astrophysics Data System (ADS)

    Okigami, Tomio; Aoyama, Shigeru; Osa, Takashi; Igarashi, Kiyotaka; Ikegami, Tomomi

    A complementary metal oxide semiconductor with large scale integration was developed for an electronic minute repeater. It is equipped with the synthetic struck sound circuit to generate natural struck sound necessary for the minute repeater. This circuit consists of an envelope curve drawing circuit, frequency mixer, polyphonic mixer, and booster circuit made by using analog circuit technology. This large scale integration is a single chip microcomputer with motor drivers and input ports in addition to the synthetic struck sound circuit, and it is possible to make an electronic system of minute repeater at a very low cost in comparison with the conventional type.

  8. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  9. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  10. SEMICONDUCTOR INTEGRATED CIRCUITS: A high performance 90 nm CMOS SAR ADC with hybrid architecture

    NASA Astrophysics Data System (ADS)

    Xingyuan, Tong; Jianming, Chen; Zhangming, Zhu; Yintang, Yang

    2010-01-01

    A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238 × 214 μm2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.

  11. Hybrid measurement chains for the SAS-C spacecraft. [advantages over analog signal processing circuits

    NASA Technical Reports Server (NTRS)

    Goeke, R. F.

    1975-01-01

    Spacecraft electronic systems usually demand tight packaging. It was this consideration which initially forced us to consider hybrid circuits for the analog signal processing circuits in the Small Astronomy Satellite-C (SAS-C) scientific payload. We gradually discovered that increased reliability, low power consumption, and reduced program costs all followed. This paper will attempt to share our laboratory's first experience with hybrid circuits and indicate those areas which we found to be important.

  12. Analog hardware for delta-backpropagation neural networks

    NASA Technical Reports Server (NTRS)

    Eberhardt, Silvio P. (Inventor)

    1992-01-01

    This is a fully parallel analog backpropagation learning processor which comprises a plurality of programmable resistive memory elements serving as synapse connections whose values can be weighted during learning with buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in a plurality of neuron layers in accordance with delta-backpropagation algorithms modified so as to control weight changes due to circuit drift.

  13. Synthetic analog computation in living cells.

    PubMed

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  14. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  15. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    PubMed Central

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via gmC circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  16. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    PubMed

    Casson, Alexander J

    2015-12-17

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.

  17. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  18. Fast, Low-Power, Hysteretic Level-Detector Circuit

    NASA Technical Reports Server (NTRS)

    Arditti, Mordechai

    1993-01-01

    Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.

  19. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    ERIC Educational Resources Information Center

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  20. Modelling nonlinearity in piezoceramic transducers: From equations to nonlinear equivalent circuits.

    PubMed

    Parenthoine, D; Tran-Huu-Hue, L-P; Haumesser, L; Vander Meulen, F; Lematre, M; Lethiecq, M

    2011-02-01

    Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can be represented by controlled sources that are added to the classical hexapole used to model piezoelectric ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlinear response of a transducer taking into account the acoustic loads on the rear and front faces. A generalisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled resonator are compared to theoretical calculations from the proposed model. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Variability-aware double-patterning layout optimization for analog circuits

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Lee, Zhao Chuan; Tseng, I.-Lun; Ong, Jonathan Yoong Seang

    2018-03-01

    The semiconductor industry has adopted multi-patterning techniques to manage the delay in the extreme ultraviolet lithography technology. During the design process of double-patterning lithography layout masks, two polygons are assigned to different masks if their spacing is less than the minimum printable spacing. With these additional design constraints, it is very difficult to find experienced layout-design engineers who have a good understanding of the circuit to manually optimize the mask layers in order to minimize color-induced circuit variations. In this work, we investigate the impact of double-patterning lithography on analog circuits and provide quantitative analysis for our designers to select the optimal mask to minimize the circuit's mismatch. To overcome the problem and improve the turn-around time, we proposed our smart "anchoring" placement technique to optimize mask decomposition for analog circuits. We have developed a software prototype that is capable of providing anchoring markers in the layout, allowing industry standard tools to perform automated color decomposition process.

  2. Analog Computation by DNA Strand Displacement Circuits.

    PubMed

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2016-08-19

    DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include addition, subtraction, and multiplication gates. The input and output of these gates are analog, which means that they are directly represented by the concentrations of the input and output DNA strands, respectively, without requiring a threshold for converting to Boolean signals. We provide detailed domain designs and kinetic simulations of the gates to demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials can also be computed by DNA circuits built upon our architecture.

  3. A Hearing Aid Primer 1

    ERIC Educational Resources Information Center

    Yetter, Carol J.

    2009-01-01

    This hearing aid primer is designed to define the differences among the three levels of hearing instrument technology: conventional analog circuit technology (most basic), digitally programmable/analog circuit technology (moderately advanced), and fully digital technology (most advanced). Both moderate and advanced technologies mean that hearing…

  4. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    NASA Astrophysics Data System (ADS)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  5. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm.

    PubMed

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  6. An Autonomous Circuit for the Measurement of Photovoltaic Devices Parameters.

    DTIC Science & Technology

    1986-09-01

    Comparison Data, Gallium Arsenide ................ 80 A 7 A,. TABLE OF SYMBOLS A Curve Fitting Constant ADC Analog to Digital Converter AMO Air-Mass-Zero...in Radiation Fluence in the Logarithmic Region CMOS Complementary Metal-Oxide Semiconductor DAC Digital to Analog Converter DC Direct Current Dp Hole...characteristics of individual solar cells. A novel circuit is developed that uses a microprocessor controlled Digital to Analog Converter (DAC) to obtain

  7. Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications

    DTIC Science & Technology

    2012-02-07

    circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic

  8. Analog design optimization methodology for ultralow-power circuits using intuitive inversion-level and saturation-level parameters

    NASA Astrophysics Data System (ADS)

    Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki

    2014-01-01

    A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.

  9. Synthetic Analog and Digital Circuits for Cellular Computation and Memory

    PubMed Central

    Purcell, Oliver; Lu, Timothy K.

    2014-01-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene circuits that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. PMID:24794536

  10. Nanofluidic Transistor Circuits

    NASA Astrophysics Data System (ADS)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  11. Reconstruction of audio waveforms from spike trains of artificial cochlea models

    PubMed Central

    Zai, Anja T.; Bhargava, Saurabh; Mesgarani, Nima; Liu, Shih-Chii

    2015-01-01

    Spiking cochlea models describe the analog processing and spike generation process within the biological cochlea. Reconstructing the audio input from the artificial cochlea spikes is therefore useful for understanding the fidelity of the information preserved in the spikes. The reconstruction process is challenging particularly for spikes from the mixed signal (analog/digital) integrated circuit (IC) cochleas because of multiple non-linearities in the model and the additional variance caused by random transistor mismatch. This work proposes an offline method for reconstructing the audio input from spike responses of both a particular spike-based hardware model called the AEREAR2 cochlea and an equivalent software cochlea model. This method was previously used to reconstruct the auditory stimulus based on the peri-stimulus histogram of spike responses recorded in the ferret auditory cortex. The reconstructed audio from the hardware cochlea is evaluated against an analogous software model using objective measures of speech quality and intelligibility; and further tested in a word recognition task. The reconstructed audio under low signal-to-noise (SNR) conditions (SNR < –5 dB) gives a better classification performance than the original SNR input in this word recognition task. PMID:26528113

  12. Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits

    NASA Astrophysics Data System (ADS)

    Kleinfeld, D.; Mehta, S. B.

    The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.

  13. Associative Pattern Recognition In Analog VLSI Circuits

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  14. Analog Delta-Back-Propagation Neural-Network Circuitry

    NASA Technical Reports Server (NTRS)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  15. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  16. Optimized pulsed write schemes improve linearity and write speed for low-power organic neuromorphic devices

    NASA Astrophysics Data System (ADS)

    Keene, Scott T.; Melianas, Armantas; Fuller, Elliot J.; van de Burgt, Yoeri; Talin, A. Alec; Salleo, Alberto

    2018-06-01

    Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non-idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write-selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (~170 fJ · µm‑2). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.

  17. Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency

    NASA Astrophysics Data System (ADS)

    Ebeling, W.; Feistel, R.

    2017-06-01

    First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.

  18. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    PubMed

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  19. Three-dimensional laser velocimeter simultaneity detector

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor)

    1990-01-01

    A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.

  20. Theoretical and Analog Studies of the Effects of Nonlinear Stability Derivatives on the Longitudinal Motions of an Aircraft in Response to Step Control Deflections and to the Influence of Proportional Automatic Control

    NASA Technical Reports Server (NTRS)

    Curfman, Howard J , Jr

    1955-01-01

    Through theoretical and analog results the effects of two nonlinear stability derivatives on the longitudinal motions of an aircraft have been investigated. Nonlinear functions of pitching-moment and lift coefficients with angle of attack were considered. Analog results of aircraft motions in response to step elevator deflections and to the action of the proportional control systems are presented. The occurrence of continuous hunting oscillations was predicted and demonstrated for the attitude stabilization system with proportional control for certain nonlinear pitching-moment variations and autopilot adjustments.

  1. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    NASA Astrophysics Data System (ADS)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  2. Optical analog data link with simple self-test feature

    DOEpatents

    Witkover, Richard L.

    1986-01-01

    A communications circuit for optically transmitting analog data signals free of excessive ripple, while having rapid response time. The invention is further characterized by being adapted to provide an immediate indication of the failure of the optical transmission link of the circuit. Commercially available voltage to frequency converter chips are used in conjunction with suitable wiring arrays and in combination with readily available indicator means for constructing the communication circuit of the invention. A V/F converter in the communications circuit is coupled to an offset adjustment means to cause the converter to continuously produce a string of output voltage pulses having a frequency of about 1 Khz responsive to the input analog signal to the converter being zero. The continuous presence of the 1 Khz frequency on the optical transmission link is monitored at the receiving end of the communication circuit and the indicator means is connected to immediately provide an easily detected indication of a failure of the optical transmission link to transmit the 1 Khz frequency pulses.

  3. Optical analog data link with simple self-test feature

    DOEpatents

    Witkover, R.L.

    1984-02-01

    A communications circuit for optically transmitting analog data signals free of excessive ripple, while having rapid response time. The invention is further characterized by being adapted to provide an immediate indication of the failure of the optical transmission link of the circuit. Commerically available voltage to frequency converter chips are used in conjunction with suitable wiring arrays and in combination with readily available indicator means for constructing the communication circuit of the invention. A V/F converter in the communications circuit is coupled to an offset adjustment means to cause the converter to continuously produce a string of output voltage pulses having a frequency of about 1Khz responsive to the input analog signal to the converter being zero. The continuous presence of the 1Khz frequency on the optical transmission link is monitored at the receiving end of the communication circuit and the indicator means is connected to immediately provide an easily detected indication of a failure of the optical transmission link to transmit the 1Khz frequency pulses.

  4. System Control for the Transitional DCS. Appendices.

    DTIC Science & Technology

    1978-12-01

    the deployment of the AN/TTC-39 circuit switch. This is a hybrid analog/digital switch providing the following services: o Non- secure analog telephone...service. o Non- secure 16 Kb/s digital telephone service. o Secure 16 Kb/s digital telephone service with automatic key distribution and end to end... security . o Analog circuits to support current inventory 50 Kb/sec and 9.6 Kb/sec secure digital communications. In the deployment model for this study

  5. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi-Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. The author wishes to acknowledge discussions with I. Arrazola, A. Mezzacapo, J. S. Pedernales, and E. Solano, and support from Ramon y Cajal Grant RYC-2012-11391, Spanish MINECO/FEDER FIS2015-69983-P, UPV/EHU UFI 11/55 and Project EHUA14/04.

  6. Analog self-powered harvester achieving switching pause control to increase harvested energy

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Asahina, Kei

    2017-05-01

    In this paper, we propose a self-powered analog controller circuit to increase the efficiency of electrical energy harvesting from vibrational energy using piezoelectric materials. Although the existing synchronized switch harvesting on inductor (SSHI) method is designed to produce efficient harvesting, its switching operation generates a vibration-suppression effect that reduces the harvested levels of electrical energy. To solve this problem, the authors proposed—in a previous paper—a switching method that takes this vibration-suppression effect into account. This method temporarily pauses the switching operation, allowing the recovery of the mechanical displacement and, therefore, of the piezoelectric voltage. In this paper, we propose a self-powered analog circuit to implement this switching control method. Self-powered vibration harvesting is achieved in this study by attaching a newly designed circuit to an existing analog controller for SSHI. This circuit aims to effectively implement the aforementioned new switching control strategy, where switching is paused in some vibration peaks, in order to allow motion recovery and a consequent increase in the harvested energy. Harvesting experiments performed using the proposed circuit reveal that the proposed method can increase the energy stored in the storage capacitor by a factor of 8.5 relative to the conventional SSHI circuit. This proposed technique is useful to increase the harvested energy especially for piezoelectric systems having large coupling factor.

  7. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    NASA Astrophysics Data System (ADS)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  8. Functional Laser Trimming Of Thin Film Resistors On Silicon ICs

    NASA Astrophysics Data System (ADS)

    Mueller, Michael J.; Mickanin, Wes

    1986-07-01

    Modern Laser Wafer Trimming (LWT) technology achieves exceptional analog circuit performance and precision while maintain-ing the advantages of high production throughput and yield. Microprocessor-driven instrumentation has both emphasized the role of data conversion circuits and demanded sophisticated signal conditioning functions. Advanced analog semiconductor circuits with bandwidths over 1 GHz, and high precision, trimmable, thin-film resistors meet many of todays emerging circuit requirements. Critical to meeting these requirements are optimum choices of laser characteristics, proper materials, trimming process control, accurate modeling of trimmed resistor performance, and appropriate circuit design. Once limited exclusively to hand-crafted, custom integrated circuits, designs are now available in semi-custom circuit configurations. These are similar to those provided for digital designs and supported by computer-aided design (CAD) tools. Integrated with fully automated measurement and trimming systems, these quality circuits can now be produced in quantity to meet the requirements of communications, instrumentation, and signal processing markets.

  9. Biological Signal Processing with a Genetic Toggle Switch

    PubMed Central

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  10. Digital phase-locked-loop speed sensor for accuracy improvement in analog speed controls. [feedback control and integrated circuits

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1975-01-01

    A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.

  11. Analog cosmological particle generation in a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Jing, Jiliang; Dragan, Andrzej

    2017-06-01

    We propose the use of a waveguidelike transmission line based on direct-current superconducting quantum interference devices (dc-SQUID) and demonstrate that the node flux in this transmission line behaves in the same way as quantum fields in an expanding (or contracting) universe. We show how to detect the analog cosmological particle generation and analyze its feasibility with current circuit quantum electrodynamics (cQED) technology. Our setup in principle paves a new way for the exploration of analog quantum gravitational effects.

  12. Developing a 300C Analog Tool for EGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normann, Randy

    2015-03-23

    This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.

  13. Correlation Between Analog Noise Measurements and the Expected Bit Error Rate of a Digital Signal Propagating Through Passive Components

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Theofylaktos, Onoufrios

    2012-01-01

    A method of determining the bit error rate (BER) of a digital circuit from the measurement of the analog S-parameters of the circuit has been developed. The method is based on the measurement of the noise and the standard deviation of the noise in the S-parameters. Once the standard deviation and the mean of the S-parameters are known, the BER of the circuit can be calculated using the normal Gaussian function.

  14. Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material

    NASA Astrophysics Data System (ADS)

    Hesti, R.; Maknun, J.; Feranie, S.

    2017-09-01

    Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.

  15. Neural activation in the "reward circuit" shows a nonlinear response to facial attractiveness.

    PubMed

    Liang, Xiaoyun; Zebrowitz, Leslie A; Zhang, Yi

    2010-01-01

    Positive behavioral responses to attractive faces have led neuroscientists to investigate underlying neural mechanisms in a "reward circuit" that includes brain regions innervated by dopamine pathways. Using male faces ranging from attractive to extremely unattractive, disfigured ones, this study is the first to demonstrate heightened responses to both rewarding and aversive faces in numerous areas of this putative reward circuit. Parametric analyses employing orthogonal linear and nonlinear regressors revealed positive nonlinear effects in anterior cingulate cortex, lateral orbital frontal cortex (LOFC), striatum (nucleus accumbens, caudate, putamen), and ventral tegmental area, in addition to replicating previously documented linear effects in medial orbital frontal cortex (MOFC) and LOFC and nonlinear effects in amygdala and MOFC. The widespread nonlinear responses are consistent with single cell recordings in animals showing responses to both rewarding and aversive stimuli, and with some human fMRI investigations of non-face stimuli. They indicate that the reward circuit does not process face valence with any simple dissociation of function across structures. Perceiver gender modulated some responses to our male faces: Women showed stronger linear effects, and men showed stronger nonlinear effects, which may have functional implications. Our discovery of nonlinear responses to attractiveness throughout the reward circuit echoes the history of amygdala research: Early work indicated a linear response to threatening stimuli, including faces; later work also revealed a nonlinear response with heightened activation to affectively salient stimuli regardless of valence. The challenge remains to determine how such dual coding influences feelings, such as pleasure and pain, and guides goal-related behavioral responses, such as approach and avoidance.

  16. Base drive circuit

    DOEpatents

    Lange, A.C.

    1995-04-04

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  17. Analog Nonvolatile Computer Memory Circuits

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd

    2007-01-01

    In nonvolatile random-access memory (RAM) circuits of a proposed type, digital data would be stored in analog form in ferroelectric field-effect transistors (FFETs). This type of memory circuit would offer advantages over prior volatile and nonvolatile types: In a conventional complementary metal oxide/semiconductor static RAM, six transistors must be used to store one bit, and storage is volatile in that data are lost when power is turned off. In a conventional dynamic RAM, three transistors must be used to store one bit, and the stored bit must be refreshed every few milliseconds. In contrast, in a RAM according to the proposal, data would be retained when power was turned off, each memory cell would contain only two FFETs, and the cell could store multiple bits (the exact number of bits depending on the specific design). Conventional flash memory circuits afford nonvolatile storage, but they operate at reading and writing times of the order of thousands of conventional computer memory reading and writing times and, hence, are suitable for use only as off-line storage devices. In addition, flash memories cease to function after limited numbers of writing cycles. The proposed memory circuits would not be subject to either of these limitations. Prior developmental nonvolatile ferroelectric memories are limited to one bit per cell, whereas, as stated above, the proposed memories would not be so limited. The design of a memory circuit according to the proposal must reflect the fact that FFET storage is only partly nonvolatile, in that the signal stored in an FFET decays gradually over time. (Retention times of some advanced FFETs exceed ten years.) Instead of storing a single bit of data as either a positively or negatively saturated state in a ferroelectric device, each memory cell according to the proposal would store two values. The two FFETs in each cell would be denoted the storage FFET and the control FFET. The storage FFET would store an analog signal value, between the positive and negative FFET saturation values. This signal value would represent a numerical value of interest corresponding to multiple bits: for example, if the memory circuit were designed to distinguish among 16 different analog values, then each cell could store 4 bits. Simultaneously with writing the signal value in the storage FFET, a negative saturation signal value would be stored in the control FFET. The decay of this control-FFET signal from the saturation value would serve as a model of the decay, for use in regenerating the numerical value of interest from its decaying analog signal value. The memory circuit would include addressing, reading, and writing circuitry that would have features in common with the corresponding parts of other memory circuits, but would also have several distinctive features. The writing circuitry would include a digital-to-analog converter (DAC); the reading circuitry would include an analog-to-digital converter (ADC). For writing a numerical value of interest in a given cell, that cell would be addressed, the saturation value would be written in the control FFET in that cell, and the non-saturation analog value representing the numerical value of interest would be generated by use of the DAC and stored in the storage FFET in that cell. For reading the numerical value of interest stored in a given cell, the cell would be addressed, the ADC would convert the decaying control and storage analog signal values to digital values, and an associated fast digital processing circuit would regenerate the numerical value from digital values.

  18. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system.

    PubMed

    Wang, Chunhua; Liu, Xiaoming; Xia, Hu

    2017-03-01

    In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

  19. Realization of rapid debugging for detection circuit of optical fiber gas sensor: Using an analog signal source

    NASA Astrophysics Data System (ADS)

    Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang

    2015-03-01

    An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.

  20. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  1. Synthetic analog and digital circuits for cellular computation and memory.

    PubMed

    Purcell, Oliver; Lu, Timothy K

    2014-10-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene networks that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Millimeter-wave interconnects for microwave-frequency quantum machines

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  3. A case study analysing the process of analogy-based learning in a teaching unit about simple electric circuits

    NASA Astrophysics Data System (ADS)

    Paatz, Roland; Ryder, James; Schwedes, Hannelore; Scott, Philip

    2004-09-01

    The purpose of this case study is to analyse the learning processes of a 16-year-old student as she learns about simple electric circuits in response to an analogy-based teaching sequence. Analogical thinking processes are modelled by a sequence of four steps according to Gentner's structure mapping theory (activate base domain, postulate local matches, connect them to a global match, draw candidate inferences). We consider whether Gentner's theory can be used to account for the details of this specific teaching/learning context. The case study involved video-taping teaching and learning activities in a 10th-grade high school course in Germany. Teaching used water flow through pipes as an analogy for electrical circuits. Using Gentner's theory, relational nets were created from the student's statements at different stages of her learning. Overall, these nets reflect the four steps outlined earlier. We also consider to what extent the learning processes revealed by this case study are different from previous analyses of contexts in which no analogical knowledge is available.

  4. Superconducting analog-to-digital converter with a triple-junction reversible flip-flop bidirectional counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.S.

    1993-07-13

    A high-performance superconducting analog-to-digital converter is described, comprising: a bidirectional binary counter having n stages of triple-junction reversible flip-flops connected together in a cascade arrangement from the least significant bit (LSB) to the most significant bit (MSB) where n is the number of bits of the digital output, each triple-junction reversible flip-flop including first, second and third shunted Josephson tunnel junctions and a superconducting inductor connected in a bridge circuit, the Josephson junctions and the inductor forming upper and lower portions of the flip-flop, each reversible flip-flop being a bistable logic circuit in which the direction of the circulating currentmore » determines the state of the circuit; and means for applying an analog input current to the bidirectional counter; wherein the bidirectional counter algebraically counts incremental changes in the analog input current, increasing the binary count for positive incremental changes in the analog current and decreasing the binary count for negative incremental changes in the current, and wherein the counter does not require a gate bias, thus minimizing power dissipation.« less

  5. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    PubMed

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  7. Analysis and modeling of a family of two-transistor parallel inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1973-01-01

    A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.

  8. Model, analysis, and evaluation of the effects of analog VLSI arithmetic on linear subspace-based image recognition.

    PubMed

    Carvajal, Gonzalo; Figueroa, Miguel

    2014-07-01

    Typical image recognition systems operate in two stages: feature extraction to reduce the dimensionality of the input space, and classification based on the extracted features. Analog Very Large Scale Integration (VLSI) is an attractive technology to achieve compact and low-power implementations of these computationally intensive tasks for portable embedded devices. However, device mismatch limits the resolution of the circuits fabricated with this technology. Traditional layout techniques to reduce the mismatch aim to increase the resolution at the transistor level, without considering the intended application. Relating mismatch parameters to specific effects in the application level would allow designers to apply focalized mismatch compensation techniques according to predefined performance/cost tradeoffs. This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  10. A circuit model for nonlinear simulation of radio-frequency filters using bulk acoustic wave resonators.

    PubMed

    Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya

    2008-04-01

    This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.

  11. A generalized analog implementation of piecewise linear neuron models using CCII building blocks.

    PubMed

    Soleimani, Hamid; Ahmadi, Arash; Bavandpour, Mohammad; Sharifipoor, Ozra

    2014-03-01

    This paper presents a set of reconfigurable analog implementations of piecewise linear spiking neuron models using second generation current conveyor (CCII) building blocks. With the same topology and circuit elements, without W/L modification which is impossible after circuit fabrication, these circuits can produce different behaviors, similar to the biological neurons, both for a single neuron as well as a network of neurons just by tuning reference current and voltage sources. The models are investigated, in terms of analog implementation feasibility and costs, targeting large scale hardware implementations. Results show that, in order to gain the best performance, area and accuracy; these models can be compromised. Simulation results are presented for different neuron behaviors with CMOS 350 nm technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.

    PubMed

    Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L

    2017-10-11

    Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.

  13. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  14. A Power Conditioning Stage Based on Analog-Circuit MPPT Control and a Superbuck Converter for Thermoelectric Generators in Spacecraft Power Systems

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan

    2014-06-01

    A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.

  15. A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits

    NASA Astrophysics Data System (ADS)

    Moradi, Behzad; Mirzaei, Abdolreza

    2016-11-01

    A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.

  16. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422

  17. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.

    PubMed

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.

  18. Multiplicative stochastic processes in nonlinear systems: Noise-induced transition from the overdamped to the inertial regime

    NASA Astrophysics Data System (ADS)

    Faetti, Sandro; Festa, Crescenzo; Fronzoni, Leone; Grigolini, Paolo; Martano, Paolo

    1984-12-01

    An experimental apparatus is set up to check, via analog circuits, the recent theoretical predictions of Graham and Schenzle

    [Phys. Rev. A 26, 1676 (1982)]
    on a Brownian particle with damping γ in the presence of a fluctuating double-well potential, the fluctuations of which are characterized by the correlation time 1/λ. They pointed out the basic role played in the overdamped regime by the parameter r≡γ/λ, which leads the system either to the Itô regime (r→0) or the Stratonovich one (r→∞). In the weak-noise region, these predictions are found to be correct. It is shown furthermore that with increasing intensity of the multiplicative noise the system exhibits a gradual transition from this to an inertial regime which can be accounted for by using the approach recently followed by Seshadri, West, and Lindenberg
    [Physica (Utrecht) A 107, 219 (1981)]
    . It is also shown that this transition is a synergic effect based on the cooperation of nonlinearity, inertia, and energy pumping.

  19. A high SFDR 6-bit 20-MS/s SAR ADC based on time-domain comparator

    NASA Astrophysics Data System (ADS)

    Xue, Han; Hua, Fan; Qi, Wei; Huazhong, Yang

    2013-08-01

    This paper presents a 6-bit 20-MS/s high spurious-free dynamic range (SFDR) and low power successive approximation register analog to digital converter (SAR ADC) for the radio-frequency (RF) transceiver front-end, especially for wireless sensor network (WSN) applications. This ADC adopts the modified common-centroid symmetry layout and the successive approximation register reset circuit to improve the linearity and dynamic range. Prototyped in a 0.18-μm 1P6M CMOS technology, the ADC performs a peak SFDR of 55.32 dB and effective number of bits (ENOB) of 5.1 bit for 10 MS/s. At the sample rate of 20 MS/s and the Nyquist input frequency, the 47.39-dB SFDR and 4.6-ENOB are achieved. The differential nonlinearity (DNL) is less than 0.83 LSB and the integral nonlinearity (INL) is less than 0.82 LSB. The experimental results indicate that this SAR ADC consumes a total of 522 μW power and occupies 0.98 mm2.

  20. Design of a Multi-Level/Analog Ferroelectric Memory Device

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2006-01-01

    Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  1. Why do large and small scales couple in a turbulent boundary layer?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.

    2011-11-01

    Correlation measurement, which is not definitive, suggests that large and small scales in a turbulent boundary layer (TBL) couple. A TBL is modeled as a jungle of interacting nonlinear oscillators to explore the origin of the coupling. These oscillators have the inherent property of self-sustainability, disturbance rejection, and of self-referential phase reset whereby several oscillators can phase align (or have constant phase difference between them) when an ``external'' impulse is applied. Consequently, these properties of a TBL are accounted for: self-sustainability, return of the wake component after a disturbance is removed, and the formation of the 18o large structures, which are composed of a sequential train of hairpin vortices. The nonlinear ordinary differential equations of the oscillators are solved using an analog circuit for rapid solution. The post-bifurcation limit cycles are determined. A small scale and a large scale are akin to two different oscillators. The state variables from the two disparate interacting oscillators are shown to couple and the small scales appear at certain regions of the phase of the large scale. The coupling is a consequence of the nonlinear oscillatory behavior. Although state planes exist where the disparate scales appear de-superposed, all scales in a TBL are in fact coupled and they cannot be monochromatically isolated.

  2. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, Thomas E.; Dallum, Gregory E.

    1998-01-01

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground.

  3. Base drive circuit

    DOEpatents

    Lange, Arnold C.

    1995-01-01

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  4. Measurement of control system response using an analog operational circuit

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1978-01-01

    Ten basic steps are established for an analog method that measures control system response parameters. An example shows how these steps were used on a speed control portion of an auxiliary power unit. The equations and calculations necessary to describe this subsystem are given. The mechanization schematic and simulation diagram for obtaining the measured response parameters of the control system using an analog circuit are explained. Methods for investigating the various effects of the control parameters are described. It is concluded that the optimum system should be underdamped enough to be slightly oscillatory during transients.

  5. Modeling from Local to Subsystem Level Effects in Analog and Digital Circuits Due to Space Induced Single Event Transients

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    2011-01-01

    Single Event Transients in analog and digital electronics from space generated high energetic nuclear particles can disrupt either temporarily and sometimes permanently the functionality and performance of electronics in space vehicles. This work first provides some insights into the modeling of SET in electronic circuits that can be used in SPICE-like simulators. The work is then directed to present methodologies, one of which was developed by this author, for the assessment of SET at different levels of integration in electronics, from the circuit level to the subsystem level.

  6. Fault diagnosis for analog circuits utilizing time-frequency features and improved VVRKFA

    NASA Astrophysics Data System (ADS)

    He, Wei; He, Yigang; Luo, Qiwu; Zhang, Chaolong

    2018-04-01

    This paper proposes a novel scheme for analog circuit fault diagnosis utilizing features extracted from the time-frequency representations of signals and an improved vector-valued regularized kernel function approximation (VVRKFA). First, the cross-wavelet transform is employed to yield the energy-phase distribution of the fault signals over the time and frequency domain. Since the distribution is high-dimensional, a supervised dimensionality reduction technique—the bilateral 2D linear discriminant analysis—is applied to build a concise feature set from the distributions. Finally, VVRKFA is utilized to locate the fault. In order to improve the classification performance, the quantum-behaved particle swarm optimization technique is employed to gradually tune the learning parameter of the VVRKFA classifier. The experimental results for the analog circuit faults classification have demonstrated that the proposed diagnosis scheme has an advantage over other approaches.

  7. An Analog Computer for Electronic Engineering Education

    ERIC Educational Resources Information Center

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  8. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, T.E.; Dallum, G.E.

    1998-09-08

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground. 5 figs.

  9. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  10. Measurement and Analysis of Multiple Output Transient Propagation in BJT Analog Circuits

    NASA Astrophysics Data System (ADS)

    Roche, Nicolas J.-H.; Khachatrian, A.; Warner, J. H.; Buchner, S. P.; McMorrow, D.; Clymer, D. A.

    2016-08-01

    The propagation of Analog Single Event Transients (ASETs) to multiple outputs of Bipolar Junction Transistor (BJTs) Integrated Circuits (ICs) is reported for the first time. The results demonstrate that ASETs can appear at several outputs of a BJT amplifier or comparator as a result of a single ion or single laser pulse strike at a single physical location on the chip of a large-scale integrated BJT analog circuit. This is independent of interconnect cross-talk or charge-sharing effects. Laser experiments, together with SPICE simulations and analysis of the ASET's propagation in the s-domain are used to explain how multiple-output transients (MOTs) are generated and propagate in the device. This study demonstrates that both the charge collection associated with an ASET and the ASET's shape, commonly used to characterize the propagation of SETs in devices and systems, are unable to explain quantitatively how MOTs propagate through an integrated analog circuit. The analysis methodology adopted here involves combining the Fourier transform of the propagating signal and the current-source transfer function in the s-domain. This approach reveals the mechanisms involved in the transient signal propagation from its point of generation to one or more outputs without the signal following a continuous interconnect path.

  11. Rapid evolution of analog circuits configured on a field programmable transistor array

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Ferguson, M. I.; Zebulum, R. S.; Keymeulen, D.; Duong, V.; Daud, T.

    2002-01-01

    The purpose of this paper is to illustrate evolution of analog circuits on a stand-alone board-level evolvable system (SABLES). SABLES is part of an effort to achieve integrated evolvable systems. SABLES provides autonomous, fast (tens to hundreds of seconds), on-chip circuit evolution involving about 100,000 circuit evaluations. Its main components are a JPL Field Programmable Transistor Array (FPTA) chip used as transistor-level reconfigurable hardware, and a TI DSP that implements the evolutionary algorithm controlling the FPTA reconfiguration. The paper details an example of evolution on SABLES and points out to certain transient and memory effects that affect the stability of solutions obtained reusing the same piece of hardware for rapid testing of individuals during evolution.

  12. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    PubMed Central

    Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157

  13. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    PubMed

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  14. Display nonlinearity in digital image processing for visual communications

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1992-11-01

    The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.

  15. Display nonlinearity in digital image processing for visual communications

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1991-11-01

    The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.

  16. Design and implementation of JOM-3 Overhauser magnetometer analog circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jiang, Xue; Zhao, Jianchang; Zhang, Shuang; Guo, Xin; Zhou, Tingting

    2017-09-01

    Overhauser magnetometer, a kind of static-magnetic measurement system based on the Overhauser effect, has been widely used in archaeological exploration, mineral resources exploration, oil and gas basin structure detection, prediction of engineering exploration environment, earthquakes and volcanic eruotions, object magnetic measurement and underground buried booty exploration. Overhauser magnetometer plays an important role in the application of magnetic field measurement for its characteristics of small size, low power consumption and high sensitivity. This paper researches the design and the application of the analog circuit of JOM-3 Overhauser magnetometer. First, the Larmor signal output by the probe is very weak. In order to obtain the signal with high signal to noise rstio(SNR), the design of pre-amplifier circuit is the key to improve the quality of the system signal. Second, in this paper, the effectual step which could improve the frequency characters of bandpass filter amplifier circuit were put forward, and theoretical analysis was made for it. Third, the shaping circuit shapes the amplified sine signal into a square wave signal which is suitable for detecting the rising edge. Fourth, this design elaborated the optimized choice of tuning circuit, so the measurement range of the magnetic field can be covered. Last, integrated analog circuit testing system was formed to detect waveform of each module. By calculating the standard deviation, the sensitivity of the improved Overhauser magnetometer is 0.047nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.

  17. Transistor analogs of emergent iono-neuronal dynamics.

    PubMed

    Rachmuth, Guy; Poon, Chi-Sang

    2008-06-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.

  18. Chaotic behaviors of operational amplifiers.

    PubMed

    Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min

    2004-04-01

    We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.

  19. Faster Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.

    1993-01-01

    Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.

  20. Simple photometer circuits using modular electronic components

    NASA Technical Reports Server (NTRS)

    Wampler, J. E.

    1975-01-01

    Operational and peak holding amplifiers are discussed as useful circuits for bioluminescence assays. Circuit diagrams are provided. While analog methods can give a good integration on short time scales, digital methods were found best for long term integration in bioluminescence assays. Power supplies, a general photometer circuit with ratio capability, and variations in the basic photometer design are also considered.

  1. The plastic scintillator detector calibration circuit for DAMPE

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.

  2. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  3. Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study

    PubMed Central

    Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.

    2013-01-01

    This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550

  4. Weddings, Electric Circuits, and the Corner Grocery Store

    NASA Astrophysics Data System (ADS)

    Fischer, Mark

    2001-10-01

    When discussing electric circuits in most physics and physical science courses, students often struggle with the rules for adding resistors wired in series and in parallel. Traditionally, these rules are motivated by analogies to water pumped through pipes, analogies that are at least as unfamiliar to most students as electricity itself. The activities presented here model the behavior of series and parallel electric circuits by wedding receiving lines and grocery store checkout lanes respectively, two circumstances with which most students have had experience. The activity is easy to perform and can be done qualitatively or quantitatively, and can even be augmented to model more sophisticated circuits. Thus, the activity described is appropriate for basic physical science courses as well as majors courses and will engage students from middle school through college.

  5. Analog pulse processor

    DOEpatents

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  6. Product assurance technology for custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Jennings, G. A.; Moore, B. T.; Nixon, R. H.; Pina, C. A.; Sayah, H. R.; Sievers, M. W.; Stahlberg, N. F.

    1985-01-01

    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification.

  7. Quantitative evaluation method for nonlinear characteristics of piezoelectric transducers under high stress with complex nonlinear elastic constant

    NASA Astrophysics Data System (ADS)

    Miyake, Susumu; Kasashima, Takashi; Yamazaki, Masato; Okimura, Yasuyuki; Nagata, Hajime; Hosaka, Hiroshi; Morita, Takeshi

    2018-07-01

    The high power properties of piezoelectric transducers were evaluated considering a complex nonlinear elastic constant. The piezoelectric LCR equivalent circuit with nonlinear circuit parameters was utilized to measure them. The deformed admittance curve of piezoelectric transducers was measured under a high stress and the complex nonlinear elastic constant was calculated by curve fitting. Transducers with various piezoelectric materials, Pb(Zr,Ti)O3, (K,Na)NbO3, and Ba(Zr,Ti)O3–(Ba,Ca)TiO3, were investigated by the proposed method. The measured complex nonlinear elastic constant strongly depends on the linear elastic and piezoelectric constants. This relationship indicates that piezoelectric high power properties can be controlled by modifying the linear elastic and piezoelectric constants.

  8. Microwave Photonic Architecture for Direction Finding of LPI Emitters: Front End Analog Circuit Design and Component Characterization

    DTIC Science & Technology

    2016-09-01

    design to control the phase shifters was complex, and the calibration process was time consuming. During the redesign process, we carried out...signals in time domain with a maximum sampling frequency of 20 Giga samples per second. In the previous tests of the design , the performance of...PHOTONIC ARCHITECTURE FOR DIRECTION FINDING OF LPI EMITTERS: FRONT-END ANALOG CIRCUIT DESIGN AND COMPONENT CHARACTERIZATION by Chew K. Tan

  9. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  10. DISTRIBUTED RC NETWORKS WITH RATIONAL TRANSFER FUNCTIONS,

    DTIC Science & Technology

    A distributed RC circuit analogous to a continuously tapped transmission line can be made to have a rational short-circuit transfer admittance and...one rational shortcircuit driving-point admittance. A subcircuit of the same structure has a rational open circuit transfer impedance and one rational ...open circuit driving-point impedance. Hence, rational transfer functions may be obtained while considering either generator impedance or load

  11. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  12. Analog Binaural Circuits for Detecting and Locating Leaks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2003-01-01

    Very-large-scale integrated (VLSI) analog binaural signal-processing circuits have been proposed for use in detecting and locating leaks that emit noise in the ultrasonic frequency range. These circuits would be designed to function even in the presence of intense lower-frequency background noise that could include sounds associated with flow and pumping. Each of the proposed circuits would include the approximate electronic equivalent of a right and a left cochlea plus correlator circuits. A pair of transducers (microphones or accelerometers), corresponding to right and left ears, would provide the inputs to their respective cochleas from different locations (e.g., from different positions along a pipe). The correlation circuits plus some additional external circuits would determine the difference between the times of arrival of a common leak sound at the two transducers. Then the distance along the pipe from either transducer to the leak could be estimated from the time difference and the speed of sound along the pipe. If three or more pairs of transducers and cochlear/correlator circuits were available and could suitably be positioned, it should be possible to locate a leak in three dimensions by use of sound propagating through air.

  13. Circuits in the Sun: Solar Panel Physics

    ERIC Educational Resources Information Center

    Gfroerer, Tim

    2013-01-01

    Typical commercial solar panels consist of approximately 60 individual photovoltaic cells connected in series. Since the usual Kirchhoff rules apply, the current is uniform throughout the circuit, while the electric potential of the individual devices is cumulative. Hence, a solar panel is a good analog of a simple resistive series circuit, except…

  14. Circuit II--A Conversational Graphical Interface.

    ERIC Educational Resources Information Center

    Singer, Ronald A.

    1993-01-01

    Provides an overview of Circuit II, an interactive system that provides users with a graphical representation of an electronic circuit within which questions may be posed and manipulated, and discusses how mouse selections have analogous roles to certain natural language features, such as anaphora, deixis, and ellipsis. (13 references) (EA)

  15. Laser dynamics: The system dynamics and network theory of optoelectronic integrated circuit design

    NASA Astrophysics Data System (ADS)

    Tarng, Tom Shinming-T. K.

    Laser dynamics is the system dynamics, communication and network theory for the design of opto-electronic integrated circuit (OEIC). Combining the optical network theory and optical communication theory, the system analysis and design for the OEIC fundamental building blocks is considered. These building blocks include the direct current modulation, inject light modulation, wideband filter, super-gain optical amplifier, E/O and O/O optical bistability and current-controlled optical oscillator. Based on the rate equations, the phase diagram and phase portrait analysis is applied to the theoretical studies and numerical simulation. The OEIC system design methodologies are developed for the OEIC design. Stimulating-field-dependent rate equations are used to model the line-width narrowing/broadening mechanism for the CW mode and frequency chirp of semiconductor lasers. The momentary spectra are carrier-density-dependent. Furthermore, the phase portrait analysis and the nonlinear refractive index is used to simulate the single mode frequency chirp. The average spectra of chaos, period doubling, period pulsing, multi-loops and analog modulation are generated and analyzed. The bifurcation-chirp design chart with modulation depth and modulation frequency as parameters is provided for design purpose.

  16. Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, J. F.; Conesa, M.; Alhama, I.

    2016-11-01

    Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.

  17. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia

    2016-07-01

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.

  18. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: ludovico.minati@ifj.edu; Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków; Candia, Antonio de

    2016-07-15

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-ordermore » one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.« less

  19. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit theory, using lumped circuit elements, to electromagnetics, using distributed electrical quantities. We show this development using first principles, but, in a more general sense, Maxwell's equations of electromagnetics could be applied.

  20. Nonlinearity characterization of temperature sensing systems for integrated circuit testing by intermodulation products monitoring.

    PubMed

    Altet, J; Mateo, D; Perpiñà, X; Grauby, S; Dilhaire, S; Jordà, X

    2011-09-01

    This work presents an alternative characterization strategy to quantify the nonlinear behavior of temperature sensing systems. The proposed approach relies on measuring the temperature under thermal sinusoidal steady state and observing the intermodulation products that are generated within the sensing system itself due to its nonlinear temperature-output voltage characteristics. From such intermodulation products, second-order interception points can be calculated as a figure of merit of the measuring system nonlinear behavior. In this scenario, the present work first shows a theoretical analysis. Second, it reports the experimental results obtained with three thermal sensing techniques used in integrated circuits. © 2011 American Institute of Physics

  1. Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force

    NASA Astrophysics Data System (ADS)

    Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan

    2018-01-01

    We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.

  2. Inexpensive robots used to teach dc circuits and electronics

    NASA Astrophysics Data System (ADS)

    Sidebottom, David L.

    2017-05-01

    This article describes inexpensive, autonomous robots, built without microprocessors, used in a college-level introductory physics laboratory course to motivate student learning of dc circuits. Detailed circuit descriptions are provided as well as a week-by-week course plan that can guide students from elementary dc circuits, through Kirchhoff's laws, and into simple analog integrated circuits with the motivational incentive of building an autonomous robot that can compete with others in a public arena.

  3. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  4. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  5. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  6. Real Time Digital Control of a Magnetostrictive Actuator

    NASA Technical Reports Server (NTRS)

    Zrostlik, Rick L.; Hall, David L.; Flatau, Alison B.

    1996-01-01

    The use of the magnetostrictive material Terfenol-D as a motion source in active vibration control (AVC) systems are being studied. Currently it is of limited use due to the nonlinear nature of the strain versus magnetization curve and the magnetic hysteresis in the Terfenol-D. One manifestation of these nonlinearities is waveform distortion in the output velocity of the transducer. For Terfenol-D to be used in ever greater numbers of AVC systems, these nonlinearities must be addressed. In this study the nonlinearities are treated as disturbances to a linear system. The acceleration output is used in simple analog and digital feedback control schemes to improve linearity of the transducer. In addition, the use of a Terfenol-D actuator in an AVC system is verified. Both analog and digital controllers are implemented and results compared. A cantilever beam system is considered for AVC applications. The second thrust of this presentation is the reduction of harmonic distortions. Two conclusions can be reached from this work. One, the linearization of Terfenol-D transducers is possible with the use of feedback controllers, both digital and analog. Second, Terfenol-D is a viable motion source in active vibration control systems utilizing either analog or digital controllers.

  7. System and circuitry to provide stable transconductance for biasing

    NASA Technical Reports Server (NTRS)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor)

    2012-01-01

    An amplifier system can include an input amplifier configured to receive an analog input signal and provide an amplified signal corresponding to the analog input signal. A tracking loop is configured to employ delta modulation for tracking the amplified signal, the tracking loop providing a corresponding output signal. A biasing circuit is configured to adjust a bias current to maintain stable transconductance over temperature variations, the biasing circuit providing at least one bias signal for biasing at least one of the input amplifier and the tracking loop, whereby the circuitry receiving the at least one bias signal exhibits stable performance over the temperature variations. In another embodiment the biasing circuit can be utilized in other applications.

  8. Stream simulation in an analog model of the ground-water system on Long Island, New York

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Getzen, Rufus T.

    1977-01-01

    The stream circuits of an electric analog model of the ground-water system of Long Island were modified to more accurately represent the relationahip between streamflow and ground-water levels. Assumptions for use of the revised circuits are (1) that streams are strictly gaining, and (2) that ground-water seepage into the streams is proportional to the difference between streambed elevation and the average water-table elevation near the stream. No seepage into streams occurs when ground-water levels drop below the streambed elevation. Regional simulation of the 1962-68 drought on Long Island was significantly improved by use of the revised stream circuits.

  9. A power-efficient analog integrated circuit for amplification and detection of neural signals.

    PubMed

    Borghi, T; Bonfanti, A; Gusmeroli, R; Zambra, G; Spinelli, A S

    2008-01-01

    We present a neural amplifier that optimizes the trade-off between power consumption and noise performance down to the best so far reported. In the perspective of realizing a fully autonomous implantable system we also address the problem of spike detection by using a new simple algorithm and we discuss the implementation with analog integrated circuits. Implemented in 0.35-microm CMOS technology and with total current consumption of about 20 microA, the whole circuit occupies an area of 0.18 mm(2). Reduced power consumption and small area make it suited to be used in chronic multichannel recording systems for neural prosthetics and neuroscience experiments.

  10. The design of radiation-hardened ICs for space - A compendium of approaches

    NASA Technical Reports Server (NTRS)

    Kerns, Sherra E.; Shafer, B. D; Rockett, L. R., Jr.; Pridmore, J. S.; Berndt, D. F.

    1988-01-01

    Several technologies, including bulk and epi CMOS, CMOS/SOI-SOS (silicon-on-insulator-silicon-on-sapphire), CML (current-mode logic), ECL (emitter-coupled logic), analog bipolar (JI, single-poly DI, and SOI) and GaAs E/D (enhancement/depletion) heterojunction MESFET, are discussed. The discussion includes the direct effects of space radiation on microelectronic materials and devices, how these effects are evidenced in circuit and device design parameter variations, the particular effects of most significance to each functional class of circuit, specific techniques for hardening high-speed circuits, design examples for integrated systems, including operational amplifiers and A/D (analog/digital) converters, and the computer simulation of radiation effects on microelectronic ISs.

  11. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  12. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  13. Normal modes of a superconducting transmission-line resonator with embedded lumped element circuit components

    NASA Astrophysics Data System (ADS)

    Mortensen, Henrik Lund; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-11-01

    We present a method to identify the coupled, normal modes of a superconducting transmission line with an embedded lumped element circuit. We evaluate the effective transmission-line nonlinearities in the case of Kerr-like Josephson interactions in the circuit and in the case where the embedded circuit constitutes a qubit degree of freedom, which is Rabi coupled to the field in the transmission line. Our theory quantitatively accounts for the very high and positive Kerr nonlinearities observed in a recent experiment [M. Rehák, P. Neilinger, M. Grajcar, G. Oelsner, U. Hübner, E. Il'ichev, and H.-G. Meyer, Appl. Phys. Lett. 104, 162604 (2014), 10.1063/1.4873719], and we can evaluate the accomplishments of modified versions of the experimental circuit.

  14. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; hide

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  15. A stochastic differential equation analysis of cerebrospinal fluid dynamics.

    PubMed

    Raman, Kalyan

    2011-01-18

    Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  16. Fast-synchronizing high-fidelity spread-spectrum receiver

    DOEpatents

    Moore, Michael Roy; Smith, Stephen Fulton; Emery, Michael Steven

    2004-06-01

    A fast-synchronizing receiver having a circuit including an equalizer configured for manipulating an analog signal; a detector in communication with the equalizer; a filter in communication with the detector; an oscillator in communication with the filter; a gate for receiving the manipulated signal; a circuit portion for synchronizing and tracking the manipulated signal; a summing circuit in communication with the circuit portion; and an output gate.

  17. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described andmore » examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers.« less

  18. Configurable analog-digital conversion using the neural engineering framework

    PubMed Central

    Mayr, Christian G.; Partzsch, Johannes; Noack, Marko; Schüffny, Rene

    2014-01-01

    Efficient Analog-Digital Converters (ADC) are one of the mainstays of mixed-signal integrated circuit design. Besides the conventional ADCs used in mainstream ICs, there have been various attempts in the past to utilize neuromorphic networks to accomplish an efficient crossing between analog and digital domains, i.e., to build neurally inspired ADCs. Generally, these have suffered from the same problems as conventional ADCs, that is they require high-precision, handcrafted analog circuits and are thus not technology portable. In this paper, we present an ADC based on the Neural Engineering Framework (NEF). It carries out a large fraction of the overall ADC process in the digital domain, i.e., it is easily portable across technologies. The analog-digital conversion takes full advantage of the high degree of parallelism inherent in neuromorphic networks, making for a very scalable ADC. In addition, it has a number of features not commonly found in conventional ADCs, such as a runtime reconfigurability of the ADC sampling rate, resolution and transfer characteristic. PMID:25100933

  19. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  20. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  1. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  2. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  3. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  4. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    NASA Astrophysics Data System (ADS)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  5. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    NASA Astrophysics Data System (ADS)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  6. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Signal to Noise Ratio SPICE Simulation Program with Integrated Circuit Emphasis TIFF Tagged Image File Format USC University of Southern California xvii...sources can create errors in digital circuits. These effects can be simulated using Simulation Program with Integrated Circuit Emphasis ( SPICE ) or...compute summary statistics. 4.1 Circuit Simulations Noisy analog circuits can be simulated in SPICE or Cadence SpectreTM software via noisy voltage

  7. Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition.

    PubMed

    Truong, Son Ngoc; Ham, Seok-Jin; Min, Kyeong-Sik

    2014-01-01

    In this paper, a neuromorphic crossbar circuit with binary memristors is proposed for speech recognition. The binary memristors which are based on filamentary-switching mechanism can be found more popularly and are easy to be fabricated than analog memristors that are rare in materials and need a more complicated fabrication process. Thus, we develop a neuromorphic crossbar circuit using filamentary-switching binary memristors not using interface-switching analog memristors. The proposed binary memristor crossbar can recognize five vowels with 4-bit 64 input channels. The proposed crossbar is tested by 2,500 speech samples and verified to be able to recognize 89.2% of the tested samples. From the statistical simulation, the recognition rate of the binary memristor crossbar is estimated to be degraded very little from 89.2% to 80%, though the percentage variation in memristance is increased very much from 0% to 15%. In contrast, the analog memristor crossbar loses its recognition rate significantly from 96% to 9% for the same percentage variation in memristance.

  8. Tribotronic Tuning Diode for Active Analog Signal Modulation.

    PubMed

    Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin

    2017-01-24

    Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.

  9. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    NASA Astrophysics Data System (ADS)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  10. Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification

    PubMed Central

    White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina

    2013-01-01

    A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 μm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765

  11. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a Field Programmable Transistor Array (FPTA). The performance of these evolved controllers is compared to that of a conventional proportional-integral (PI) controller.

  12. A Design Methodology for Optoelectronic VLSI

    DTIC Science & Technology

    2007-01-01

    current gets converted to a CMOS voltage level through a transimpedance amplifier circuit called a receiver. The output of the receiver is then...change the current flowing from the diode to a voltage that the logic inputs can use. That circuit is called a receiver. It is a transimpedance amplifier ...incorpo- rate random access memory circuits, SRAM or dynamic RAM (DRAM). These circuits use weak internal analog signals that are amplified by sense

  13. Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.

    1993-01-01

    Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.

  14. Analog Ranging Modem Code Processor and Generator

    DOT National Transportation Integrated Search

    1974-05-01

    The report details technical development efforts to implement an analog ranging modem using recently developed linear integrated circuits where possible. The breadboard hardware is capable of acquiring frequency and phase of a weak signal in a high n...

  15. Subranging technique using superconducting technology

    DOEpatents

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  16. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  17. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  18. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  19. Design techniques for low-voltage analog integrated circuits

    NASA Astrophysics Data System (ADS)

    Rakús, Matej; Stopjaková, Viera; Arbet, Daniel

    2017-08-01

    In this paper, a review and analysis of different design techniques for (ultra) low-voltage integrated circuits (IC) are performed. This analysis shows that the most suitable design methods for low-voltage analog IC design in a standard CMOS process include techniques using bulk-driven MOS transistors, dynamic threshold MOS transistors and MOS transistors operating in weak or moderate inversion regions. The main advantage of such techniques is that there is no need for any modification of standard CMOS structure or process. Basic circuit building blocks like differential amplifiers or current mirrors designed using these approaches are able to operate with the power supply voltage of 600 mV (or even lower), which is the key feature towards integrated systems for modern portable applications.

  20. 33 Years of Continuous Solar Radio Flux Observations

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2015-10-01

    In 1982, after development and testing of several analog receiver concepts, I started continuous solar radio flux observations at 230 MHz. My instruments for the observations were based on cheap commercial components out of consumer TV electronics. The main components included a TV-tuner (at that time analog), intermediate frequency (IF) amplifier and video-detector taken from used TV sets. The 5.5 MHz wide video signal was fed into an integrating circuit, in fact a low pass filter, followed by dc-offset circuit and dc-amplifier built with four ua741 and CA3140 operational amplifier integrated circuits. At that time the signal was recorded with a Heathkit stripchart recorder and ink pen; an example is shown in figure 1.

  1. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    ERIC Educational Resources Information Center

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  2. Injection Locking Techniques for Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-01

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  3. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics. We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar to crossover phenomena in statistical mechanics. The theoretical results are supported by computer simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic neuronal networks and their functional consequences.

  4. 100 Gbps Wireless System and Circuit Design Using Parallel Spread-Spectrum Sequencing

    NASA Astrophysics Data System (ADS)

    Scheytt, J. Christoph; Javed, Abdul Rehman; Bammidi, Eswara Rao; KrishneGowda, Karthik; Kallfass, Ingmar; Kraemer, Rolf

    2017-09-01

    In this article mixed analog/digital signal processing techniques based on parallel spread-spectrum sequencing (PSSS) and radio frequency (RF) carrier synchronization for ultra-broadband wireless communication are investigated on system and circuit level.

  5. Hybrid ECG signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Circuit with high common-mode rejection has ability to filter and amplify accepted analog electrocardiogram (ECG) signals of varying amplitude, shape, and polarity. In addition, low power circuit develops standardized pulses that can be counted and averaged by heart/breath rate processor.

  6. Teaching Oscillations with a Small Computer.

    ERIC Educational Resources Information Center

    Calvo, J. L.; And Others

    1983-01-01

    Describes a simple, inexpensive electronic circuit used as a small analog computer in an experimental approach to the study of oscillations. Includes circuit diagram and an example of the method using steps followed by students studying underdamped oscillatory motion. (JN)

  7. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  8. A nonlinear macromodel of the bipolar integrated circuit operational amplifier for electromagnetic interference analysis

    NASA Astrophysics Data System (ADS)

    Chen, G. K. C.

    1981-06-01

    A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.

  9. Circuit for echo and noise suppression of accoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, Douglas S.; Scott, Douglas D.

    1993-01-01

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.

  10. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  11. Fingerprinted circuits and methods of making and identifying the same

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael Ian (Inventor)

    2011-01-01

    A circuit having a fingerprint for identification of a particular instantiation of the circuit is disclosed. The circuit may include a plurality of digital circuits or gates. Each of the digital circuits or gates is responsive to a configuration voltage applied to its analog input for controlling whether or not the digital circuit or gate performs its intended digital function and each of the digital circuits or gates transitioning between its functional state and its at least one other state when the configuration voltage equals a boundary voltage. The boundary voltage varies between different instantiations of the circuit for a majority of the digital circuits or gates and these differing boundary voltages serving to identify (or fingerprint) different instantiations of the same circuit.

  12. Fingerprinted circuits and methods of making and identifying the same

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael Ian (Inventor)

    2012-01-01

    A circuit having a fingerprint for identification of a particular instantiation of the circuit is disclosed. The circuit may include a plurality of digital circuits or gates. Each of the digital circuits or gates is responsive to a configuration voltage applied to its analog input for controlling whether or not the digital circuit or gate performs its intended digital function and each of the digital circuits or gates transitioning between its functional state and its at least one other state when the configuration voltage equals a boundary voltage. The boundary voltage varies between different instantiations of the circuit for a majority of the digital circuits or gates and these differing boundary voltages serving to identify (or fingerprint) different instantiations of the same circuit.

  13. Optical domain analog to digital conversion methods and apparatus

    DOEpatents

    Vawter, Gregory A

    2014-05-13

    Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.

  14. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  15. An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.

    PubMed

    Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih

    2013-01-01

    This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems.

  16. Design and status of the RF-digitizer integrated circuit

    NASA Technical Reports Server (NTRS)

    Rayhrer, B.; Lam, B.; Young, L. E.; Srinivasan, J. M.; Thomas, J. B.

    1991-01-01

    An integrated circuit currently under development samples a bandpass-limited signal at a radio frequency in quadrature and then performs a simple sum-and-dump operation in order to filter and lower the rate of the samples. Downconversion to baseband is carried out by the sampling step itself through the aliasing effect of an appropriately selected subharmonic sampling frequency. Two complete RF digitizer circuits with these functions will be implemented with analog and digital elements on one GaAs substrate. An input signal, with a carrier frequency as high as 8 GHz, can be sampled at a rate as high as 600 Msamples/sec for each quadrature component. The initial version of the chip will sign-sample (1-bit) the input RF signal. The chip will contain a synthesizer to generate a sample frequency that is a selectable integer multiple of an input reference frequency. In addition to the usual advantages of compactness and reliability associated with integrated circuits, the single chip will replace several steps required by standard analog downconversion. Furthermore, when a very high initial sample rate is selected, the presampling analog filters can be given very large bandwidths, thereby greatly reducing phase and delay instabilities typically introduced by such filters, as well as phase and delay variation due to Doppler changes.

  17. The inside-out supercapacitor: induced charge storage in reduced graphene oxide.

    PubMed

    Martin, Samuel T; Akbari, Abozar; Chakraborty Banerjee, Parama; Neild, Adrian; Majumder, Mainak

    2016-11-30

    Iontronic circuits are built using components which are analogous to those used in electronic circuits, however they involve the movement of ions in an electrolyte rather than electrons in a metal or semiconductor. Developments in these circuits' performance have led to applications in biological sensing, interfacing and drug delivery. While transistors, diodes and elementary logic circuits have been demonstrated for ionic circuits if more complex circuits are to be realized, the precident set by electrical circuits suggests that a component which is analogous to an electrical capacitor is required. Herein, an ionic supercapacitor is reported, our experiments show that charge may be stored in a conductive porous reduced graphene oxide film that is contacted by two isolated aqueous solutions and that this concept extends to an arbitrary polarizable sample. Parametric studies indicate that the conductivity and porosity of this film play important roles in the resultant device's performance. This ionic capacitor has a specific capacitance of 8.6 F cm -3 at 1 mV s -1 and demonstrates the ability to filter and smooth signals in an electrolyte at a variety of low frequencies. The device has the same interfaces as a supercapacitor but their arrangement is changed, hence the name inside-out supercapacitor.

  18. Nonlinear relaxation algorithms for circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, R.A.

    Circuit simulation is an important Computer-Aided Design (CAD) tool in the design of Integrated Circuits (IC). However, the standard techniques used in programs such as SPICE result in very long computer-run times when applied to large problems. In order to reduce the overall run time, a number of new approaches to circuit simulation were developed and are described. These methods are based on nonlinear relaxation techniques and exploit the relative inactivity of large circuits. Simple waveform-processing techniques are described to determine the maximum possible speed improvement that can be obtained by exploiting this property of large circuits. Three simulation algorithmsmore » are described, two of which are based on the Iterated Timing Analysis (ITA) method and a third based on the Waveform-Relaxation Newton (WRN) method. New programs that incorporate these techniques were developed and used to simulate a variety of industrial circuits. The results from these simulations are provided. The techniques are shown to be much faster than the standard approach. In addition, a number of parallel aspects of these algorithms are described, and a general space-time model of parallel-task scheduling is developed.« less

  19. Optical Dark Rogue Wave

    NASA Astrophysics Data System (ADS)

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  20. Optical Dark Rogue Wave.

    PubMed

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-11

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  1. Optical Dark Rogue Wave

    PubMed Central

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099

  2. Design and Analysis of Compact DNA Strand Displacement Circuits for Analog Computation Using Autocatalytic Amplifiers.

    PubMed

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2018-01-19

    A main goal in DNA computing is to build DNA circuits to compute designated functions using a minimal number of DNA strands. Here, we propose a novel architecture to build compact DNA strand displacement circuits to compute a broad scope of functions in an analog fashion. A circuit by this architecture is composed of three autocatalytic amplifiers, and the amplifiers interact to perform computation. We show DNA circuits to compute functions sqrt(x), ln(x) and exp(x) for x in tunable ranges with simulation results. A key innovation in our architecture, inspired by Napier's use of logarithm transforms to compute square roots on a slide rule, is to make use of autocatalytic amplifiers to do logarithmic and exponential transforms in concentration and time. In particular, we convert from the input that is encoded by the initial concentration of the input DNA strand, to time, and then back again to the output encoded by the concentration of the output DNA strand at equilibrium. This combined use of strand-concentration and time encoding of computational values may have impact on other forms of molecular computation.

  3. Ferroelectric Field-Effect Transistor Differential Amplifier Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat D.

    2008-01-01

    There has been considerable research investigating the Ferroelectric Field-Effect Transistor (FeFET) in memory circuits. However, very little research has been performed in applying the FeFET to analog circuits. This paper investigates the use of FeFETs in a common analog circuit, the differential amplifier. The two input Metal-Oxide-Semiconductor (MOS) transistors in a general MOS differential amplifier circuit are replaced with FeFETs. Resistors are used in place of the other three MOS transistors. The FeFET model used in the analysis has been previously reported and was based on experimental device data. Because of the FeFET hysteresis, the FeFET differential amplifier has four different operating modes depending on whether the FeFETs are positively or negatively polarized. The FeFET differential amplifier operation in the different modes was analyzed by calculating the amplifier voltage transfer and gain characteristics shown in figures 2 through 5. Comparisons were made between the FeFET differential amplifier and the standard MOS differential amplifier. Possible applications and benefits of the FeFET differential amplifier are discussed.

  4. Generating multi-double-scroll attractors via nonautonomous approach.

    PubMed

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  5. A novel double-convection chaotic attractor, its adaptive control and circuit simulation

    NASA Astrophysics Data System (ADS)

    Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.

  6. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  7. Analog and RF performance of a multigate FinFET at nano scale

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek

    2016-12-01

    In this paper, analog and RF performance of the Fin field effect transistor (FET) at Nano scale is observed through 3D simulation. FinFET devices like rectangular gate all around (RE-GAA) FinFET, cylindrical gate all around (CY-GAA) FinFET and triple gate (TG) FinFET are observed. The figure of merit (FOMs) such as input-output characteristics, trans-conductance (gm), output-conductance (gd), intrinsic gain (gm/gd), gate capacitance (gate to source and total gate capacitance), unity gain cut-off frequency (ft), trans-conductance generation factor (TGF), gain frequency product (GFP), gain bandwidth product (GBP) and gain transconductance frequency product (GTFP) are observed. The analog performance of a FinFETs are observed by realising source follower circuit with NMOS transistor as a current source. The source follower circuit gain is observed. It has been observed that maximum capacitance is observed in case gate all around condition. Rectangular gate all around has the highest transconductance. In the source follower circuit, the gain curve (Vout/Vin) is sharper for TG-FinFET.

  8. Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Cheng, Jianqing; Chen, Jingwei; He, Yunze

    2017-02-01

    Instead of analog electronic circuits and components, digital controllers that are capable of active multi-resonant piezoelectric shunting are applied to elastic metamaterials integrated with piezoelectric patches. Thanks to recently introduced digital control techniques, shunting strategies are possible now with transfer functions that can hardly be realized with analog circuits. As an example, the ‘pole-zero’ method is developed to design single- or multi-resonant bandgaps by adjusting poles and zeros in the transfer function of piezoelectric shunting directly. Large simultaneous attenuations in up to three frequency bands at deep subwavelength scale (with normalized frequency as low as 0.077) are achieved. The underlying physical mechanism is attributable to the negative group velocity of the flexural wave within bandgaps. As digital controllers can be readily adapted via wireless broadcasting, the bandgaps can be tuned easily unlike the electric components in analog shunting circuits, which must be tuned one by one manually. The theoretical results are verified experimentally with the measured vibration transmission properties, where large insulations of up to 20 dB in low-frequency ranges are observed.

  9. Period doubling induced by thermal noise amplification in genetic circuits

    PubMed Central

    Ruocco, G.; Fratalocchi, A.

    2014-01-01

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise. PMID:25404210

  10. Period doubling induced by thermal noise amplification in genetic circuits.

    PubMed

    Ruocco, G; Fratalocchi, A

    2014-11-18

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an "elemental" genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.

  11. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  12. Low-temperature crack-free Si3N4 nonlinear photonic circuits for CMOS-compatible optoelectronic co-integration

    NASA Astrophysics Data System (ADS)

    Casale, Marco; Kerdiles, Sebastien; Brianceau, Pierre; Hugues, Vincent; El Dirani, Houssein; Sciancalepore, Corrado

    2017-02-01

    In this communication, authors report for the first time on the fabrication and testing of Si3N4 non-linear photonic circuits for CMOS-compatible monolithic co-integration with silicon-based optoelectronics. In particular, a novel process has been developed to fabricate low-loss crack-free Si3N4 750-nm-thick films for Kerr-based nonlinear functions featuring full thermal budget compatibility with existing Silicon photonics and front-end Si optoelectronics. Briefly, differently from previous and state-of-the-art works, our nonlinear nitride-based platform has been realized without resorting to commonly-used high-temperature annealing ( 1200°C) of the film and its silica upper-cladding used to break N-H bonds otherwise causing absorption in the C-band and destroying its nonlinear functionality. Furthermore, no complex and fabrication-intolerant Damascene process - as recently reported earlier this year - aimed at controlling cracks generated in thick tensile-strained Si3N4 films has been used as well. Instead, a tailored Si3N4 multiple-step film deposition in 200-mm LPCVD-based reactor and subsequent low-temperature (400°C) PECVD oxide encapsulation have been used to fabricate the nonlinear micro-resonant circuits aiming at generating optical frequency combs via optical parametric oscillators (OPOs), thus allowing the monolithic co-integration of such nonlinear functions on existing CMOS-compatible optoelectronics, for both active and passive components such as, for instance, silicon modulators and wavelength (de-)multiplexers. Experimental evidence based on wafer-level statistics show nitride-based 112-μm-radius ring resonators using such low-temperature crack-free nitride film exhibiting quality factors exceeding Q >3 x 105, thus paving the way to low-threshold power-efficient Kerr-based comb sources and dissipative temporal solitons in the C-band featuring full thermal processing compatibility with Si photonic integrated circuits (Si-PICs).

  13. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure.

    PubMed

    Mehdizadeh, Farhad; Soroosh, Mohammad; Alipour-Banaei, Hamed; Farshidi, Ebrahim

    2017-03-01

    In this paper, we propose what we believe is a novel all-optical analog-to-digital converter (ADC) based on photonic crystals. The proposed structure is composed of a nonlinear triplexer and an optical coder. The nonlinear triplexer is for creating discrete levels in the continuous optical input signal, and the optical coder is for generating a 2-bit standard binary code out of the discrete levels coming from the nonlinear triplexer. Controlling the resonant mode of the resonant rings through optical intensity is the main objective and working mechanism of the proposed structure. The maximum delay time obtained for the proposed structure was about 5 ps and the total footprint is about 1520  μm2.

  14. Wireless sensor platform for harsh environments

    NASA Technical Reports Server (NTRS)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor); Toygur, Lemi (Inventor); He, Yunli (Inventor)

    2009-01-01

    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna.

  15. Designed cell consortia as fragrance-programmable analog-to-digital converters.

    PubMed

    Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin

    2017-03-01

    Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.

  16. An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit.

    PubMed

    Tao Tang; Wang Ling Goh; Lei Yao; Jia Hao Cheong; Yuan Gao

    2017-07-01

    This paper describes an integrated multichannel neural recording analog front end (AFE) with a novel area-efficient driven right leg (DRL) circuit to improve the system common mode rejection ratio (CMRR). The proposed AFE consists of an AC-coupled low-noise programmable-gain amplifier, an area-efficient DRL block and a 10-bit SAR ADC. Compared to conventional DRL circuit, the proposed capacitor-less DRL design achieves 90% chip area reduction with enhanced CMRR performance, making it ideal for multichannel biomedical recording applications. The AFE circuit has been designed in a standard 0.18-μm CMOS process. Post-layout simulation results show that the AFE provides two gain settings of 54dB/60dB while consuming 1 μA per channel under a supply voltage of 1 V. The input-referred noise of the AFE integrated from 1 Hz to 10k Hz is only 4 μVrms and the CMRR is 110 dB.

  17. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  18. On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    NASA Astrophysics Data System (ADS)

    Castro-Lopez, Rafael; Fernandez, Francisco V.; Rodriguez Vazquez, Angel

    2005-06-01

    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.

  19. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities

    PubMed Central

    Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki

    2011-01-01

    Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543

  20. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  1. Coherent detection and digital signal processing for fiber optic communications

    NASA Astrophysics Data System (ADS)

    Ip, Ezra

    The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due to cycle slips. In systems where nonlinear effects are concentrated mostly at fiber locations with small accumulated dispersion, nonlinear phase de-rotation is a low-complexity algorithm that can partially mitigate nonlinear effects. For systems with arbitrary dispersion maps, however, backpropagation is the only universal technique that can jointly compensate dispersion and fiber nonlinearity. Backpropagation requires solving the nonlinear Schrodinger equation at the receiver, and has high computational cost. Backpropagation is most effective when dispersion compensation fibers are removed, and when signal processing is performed at three times oversampling. Backpropagation can improve system performance and increase transmission distance. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gb/s should become practical in the near future.

  2. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pairmore » of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.« less

  3. Video Surveillance: All Eyes Turn to IP

    ERIC Educational Resources Information Center

    Raths, David

    2011-01-01

    Many university officials recognize the need to upgrade their older analog video surveillance systems. In a 2010 survey by "Campus Safety" magazine, half of university respondents expressed dissatisfaction with the quality and coverage of their current video surveillance systems. Among the limitations of analog closed-circuit television…

  4. Electronics. Module 3: Digital Logic Application. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed; Murphy, Mark

    This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…

  5. An ADC Interface for the Apple II.

    ERIC Educational Resources Information Center

    Leiker, P. Steven

    1990-01-01

    Described is the construction of a simple analog-to-digital convertor circuit to interface an Apple II+ microcomputer to a light sensor used in conjunction with a holographic gear inspector. A list of parts, circuit diagram, and a simple BASIC program for the convertor are provided. (CW)

  6. A Global Electric Circuit on Mars

    NASA Technical Reports Server (NTRS)

    Delory, G. T.; Farrell, W. M.; Desch, M. D.

    2001-01-01

    We describe conditions on the surface of Mars conducive to the formation of a martian global electric circuit, in a direct analogy to the terrestrial case where atmospheric currents and electric fields are generated worldwide through the charging in thunderstorms. Additional information is contained in the original extended abstract.

  7. Carbon Nanotubes as FET Channel: Analog Design Optimization considering CNT Parameter Variability

    NASA Astrophysics Data System (ADS)

    Samar Ansari, Mohd.; Tripathi, S. K.

    2017-08-01

    Carbon nanotubes (CNTs), both single-walled as well as multi-walled, have been employed in a plethora of applications pertinent to semiconductor materials and devices including, but not limited to, biotechnology, material science, nanoelectronics and nano-electro mechanical systems (NEMS). The Carbon Nanotube Field Effect Transistor (CNFET) is one such electronic device which effectively utilizes CNTs to achieve a boost in the channel conduction thereby yielding superior performance over standard MOSFETs. This paper explores the effects of variability in CNT physical parameters viz. nanotube diameter, pitch, and number of CNT in the transistor channel, on the performance of a chosen analog circuit. It is further shown that from the analyses performed, an optimal design of the CNFETs can be derived for optimizing the performance of the analog circuit as per a given specification set.

  8. SEMICONDUCTOR INTEGRATED CIRCUITS A 10-bit 200-kS/s SAR ADC IP core for a touch screen SoC

    NASA Astrophysics Data System (ADS)

    Xingyuan, Tong; Yintang, Yang; Zhangming, Zhu; Wenfang, Sheng

    2010-10-01

    Based on a 5 MSBs (most-significant-bits)-plus-5 LSBs (least-significant-bits) C-R hybrid D/A conversion and low-offset pseudo-differential comparison approach, with capacitor array axially symmetric layout topology and resistor string low gradient mismatch placement method, an 8-channel 10-bit 200-kS/s SAR ADC (successive-approximation-register analog-to-digital converter) IP core for a touch screen SoC (system-on-chip) is implemented in a 0.18 μm 1P5M CMOS logic process. Design considerations for the touch screen SAR ADC are included. With a 1.8 V power supply, the DNL (differential non-linearity) and INL (integral non-linearity) of this converter are measured to be about 0.32 LSB and 0.81 LSB respectively. With an input frequency of 91 kHz at 200-kS/s sampling rate, the spurious-free dynamic range and effective-number-of-bits are measured to be 63.2 dB and 9.15 bits respectively, and the power is about 136 μW. This converter occupies an area of about 0.08 mm2. The design results show that it is very suitable for touch screen SoC applications.

  9. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certainmore » control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.« less

  10. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.

    PubMed

    Minati, Ludovico

    2015-12-01

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  11. Generating multi-double-scroll attractors via nonautonomous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Qinghui; Xie, Qingguo, E-mail: qgxie@mail.hust.edu.cn; Shen, Yi

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify themore » availability and feasibility of this method.« less

  12. A low-noise low-power EEG acquisition node for scalable brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2007-05-01

    Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.

  13. TVC actuator model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Baslock, R. W.

    1977-01-01

    A prototype Space Shuttle Main Engine (SSME) Thrust Vector Control (TVC) Actuator analog model was successfully completed. The prototype, mounted on five printed circuit (PC) boards, was delivered to NASA, checked out and tested using a modular replacement technique on an analog computer. In all cases, the prototype model performed within the recording techniques of the analog computer which is well within the tolerances of the specifications.

  14. Low-power analog integrated circuits for wireless ECG acquisition systems.

    PubMed

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.

  15. Qualitative-Modeling-Based Silicon Neurons and Their Networks

    PubMed Central

    Kohno, Takashi; Sekikawa, Munehisa; Li, Jing; Nanami, Takuya; Aihara, Kazuyuki

    2016-01-01

    The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance. PMID:27378842

  16. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-06

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  18. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  19. High speed, long distance, data transmission multiplexing circuit

    DOEpatents

    Mariotti, Razvan

    1991-01-01

    A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100 Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit.

  20. Digital circuits for computer applications: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.

  1. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  2. Geometric Theory of Reduction of Nonlinear Control Systems

    NASA Astrophysics Data System (ADS)

    Elkin, V. I.

    2018-02-01

    The foundations of a differential geometric theory of nonlinear control systems are described on the basis of categorical concepts (isomorphism, factorization, restrictions) by analogy with classical mathematical theories (of linear spaces, groups, etc.).

  3. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less

  4. A megahertz-frequency tunable piecewise-linear electromechanical resonator realized via nonlinear feedback

    NASA Astrophysics Data System (ADS)

    Bajaj, Nikhil; Chiu, George T.-C.; Rhoads, Jeffrey F.

    2018-07-01

    Vibration-based sensing modalities traditionally have relied upon monitoring small shifts in natural frequency in order to detect structural changes (such as those in mass or stiffness). In contrast, bifurcation-based sensing schemes rely on the detection of a qualitative change in the behavior of a system as a parameter is varied. This can produce easy-to-detect changes in response amplitude with high sensitivity to structural change, but requires resonant devices with specific dynamic behavior which is not always easily reproduced. Desirable behavior for such devices can be produced reliably via nonlinear feedback circuitry, but has in past efforts been largely limited to sub-MHz operation, partially due to the time delay limitations present in certain nonlinear feedback circuits, such as multipliers. This work demonstrates the design and implementation of a piecewise-linear resonator realized via diode- and integrated circuit-based feedback electronics and a quartz crystal resonator. The proposed system is fabricated and characterized, and the creation and selective placement of the bifurcation points of the overall electromechanical system is demonstrated by tuning the circuit gains. The demonstrated circuit operates at 16 MHz. Preliminary modeling and analysis is presented that qualitatively agrees with the experimentally-observed behavior.

  5. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  6. Temperature-Adaptive Circuits on Reconfigurable Analog Arrays

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas

    2006-01-01

    Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).

  7. Nonlinear system identification technique validation

    NASA Astrophysics Data System (ADS)

    Rudko, M.; Bussgang, J. J.

    1982-01-01

    This final technical report describes the results obtained by SIGNATRON, Inc. of Lexington MA on Air Force Contract F30602-80-C-0104 for Rome Air Development Center. The objective of this effort is to develop a technique for identifying system response of nonlinear circuits by measurements of output response to known inputs. The report describes results of a study into the system identification technique based on the pencil-of-function method previously explored by Jain (1974) and Ewen (1979). The procedure identified roles of the linear response and is intended as a first step in nonlinear response and is intended as a first step in nonlinear circuit identification. There are serious implementation problems associated with the original approach such as loss of accuracy due to repeated integrations, lack of good measures of accuracy and computational iteration to identify the number of poles.

  8. Full-Circle Resolver-to-Linear-Analog Converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Smith, Dennis A.; Howard, David E.

    2005-01-01

    A circuit generates sinusoidal excitation signals for a shaft-angle resolver and, like the arctangent circuit described in the preceding article, generates an analog voltage proportional to the shaft angle. The disadvantages of the circuit described in the preceding article arise from the fact that it must be made from precise analog subcircuits, including a functional block capable of implementing some trigonometric identities; this circuitry tends to be expensive, sensitive to noise, and susceptible to errors caused by temperature-induced drifts and imprecise matching of gains and phases. These disadvantages are overcome by the design of the present circuit. The present circuit (see figure) includes an excitation circuit, which generates signals Ksin(Omega(t)) and Kcos(Omega(t)) [where K is an amplitude, Omega denotes 2(pi)x a carrier frequency (the design value of which is 10 kHz), and t denotes time]. These signals are applied to the excitation terminals of a shaft-angle resolver, causing the resolver to put out signals C sin(Omega(t)-Theta) and C cos(Omega(t)-Theta). The cosine excitation signal and the cosine resolver output signal are processed through inverting comparator circuits, which are configured to function as inverting squarers, to obtain logic-level or square-wave signals .-LL[cos(Omega(t)] and -LL[cos(Omega(t)-Theta)], respectively. These signals are fed as inputs to a block containing digital logic circuits that effectively measure the phase difference (which equals Theta between the two logic-level signals). The output of this block is a pulse-width-modulated signal, PWM(Theta), the time-averaged value of which ranges from 0 to 5 VDC as Theta ranges from .180 to +180deg. PWM(Theta) is fed to a block of amplifying and level-shifting circuitry, which converts the input PWM waveform to an output waveform that switches between precise reference voltage levels of +10 and -10 V. This waveform is processed by a two-pole, low-pass filter, which removes the carrier-frequency component. The final output signal is a DC potential, proportional to Theta that ranges continuously from -10 V at Theta = -180deg to +10 V at Theta = +180deg..

  9. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Manipulation of a photonic quantum memory

    NASA Astrophysics Data System (ADS)

    Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.

    2015-03-01

    Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.

  10. Design of a specialized computer for on-line monitoring of cardiac stroke volume

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1972-01-01

    The design of a specialized analog computer for on-line determination of cardiac stroke volume by means of a modified version of the pressure pulse contour method is presented. The design consists of an analog circuit for computation and a timing circuit for detecting necessary events on the pressure waveform. Readouts of arterial pressures, systolic duration, heart rate, percent change in stroke volume, and percent change in cardiac output are provided for monitoring cardiac patients. Laboratory results showed that computational accuracy was within 3 percent, while animal experiments verified the operational capability of the computer. Patient safety considerations are also discussed.

  11. Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks

    PubMed Central

    Hellen, Edward H.; Dana, Syamal K.; Kurths, Jürgen; Kehler, Elizabeth; Sinha, Sudeshna

    2013-01-01

    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic. PMID:24124531

  12. A 1.26 μW Cytomimetic IC Emulating Complex Nonlinear Mammalian Cell Cycle Dynamics: Synthesis, Simulation and Proof-of-Concept Measured Results.

    PubMed

    Houssein, Alexandros; Papadimitriou, Konstantinos I; Drakakis, Emmanuel M

    2015-08-01

    Cytomimetic circuits represent a novel, ultra low-power, continuous-time, continuous-value class of circuits, capable of mapping on silicon cellular and molecular dynamics modelled by means of nonlinear ordinary differential equations (ODEs). Such monolithic circuits are in principle able to emulate on chip, single or multiple cell operations in a highly parallel fashion. Cytomimetic topologies can be synthesized by adopting the Nonlinear Bernoulli Cell Formalism (NBCF), a mathematical framework that exploits the striking similarities between the equations describing weakly-inverted Metal-Oxide Semiconductor (MOS) devices and coupled nonlinear ODEs, typically appearing in models of naturally encountered biochemical systems. The NBCF maps biological state variables onto strictly positive subthreshold MOS circuit currents. This paper presents the synthesis, the simulation and proof-of-concept chip results corresponding to the emulation of a complex cellular network mechanism, the skeleton model for the network of Cyclin-dependent Kinases (CdKs) driving the mammalian cell cycle. This five variable nonlinear biological model, when appropriate model parameter values are assigned, can exhibit multiple oscillatory behaviors, varying from simple periodic oscillations, to complex oscillations such as quasi-periodicity and chaos. The validity of our approach is verified by simulated results with realistic process parameters from the commercially available AMS 0.35 μm technology and by chip measurements. The fabricated chip occupies an area of 2.27 mm2 and consumes a power of 1.26 μW from a power supply of 3 V. The presented cytomimetic topology follows closely the behavior of its biological counterpart, exhibiting similar time-dependent solutions of the Cdk complexes, the transcription factors and the proteins.

  13. Second-order nonlinearity induced transparency.

    PubMed

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  14. Phase-locked loops. [in analog and digital circuits communication system

    NASA Technical Reports Server (NTRS)

    Gupta, S. C.

    1975-01-01

    An attempt to systematically outline the work done in the area of phase-locked loops which are now used in modern communication system design is presented. The analog phase-locked loops are well documented in several books but discrete, analog-digital, and digital phase-locked loop work is scattered. Apart from discussing the various analysis, design, and application aspects of phase-locked loops, a number of references are given in the bibliography.

  15. Hierarchical CAD Tools for Radiation Hardened Mixed Signal Electronic Circuits

    DTIC Science & Technology

    2005-01-28

    11 Figure 3: Schematic of Analog and Digital Components 12 Figure 4: Dose Rate Syntax 14 Figure 5: Single Event Effects (SEE) Syntax 15 Figure 6...Harmony-AMS simulation of a Digital Phase Locked Loop 19 Figure 10: SEE results from DPLL Simulation 20 Figure 11: Published results used for validation...analog and digital circuitry. Combining the analog and digital elements onto a single chip has several advantages, but also creates unique challenges

  16. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  17. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  18. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  19. QPPM receiver for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.

    1994-01-01

    A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.

  20. Probing the non-linear transient response of a carbon nanotube mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan

    2017-11-01

    Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.

  1. High-precision buffer circuit for suppression of regenerative oscillation

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Hare, David A.; Tcheng, Ping

    1995-01-01

    Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.

  2. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    NASA Astrophysics Data System (ADS)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  3. Synchronization of unidirectionally coupled Mackey-Glass analog circuits with frequency bandwidth limitations.

    PubMed

    Kim, Min-Young; Sramek, Christopher; Uchida, Atsushi; Roy, Rajarshi

    2006-07-01

    Synchronization of chaotic systems has been studied extensively, and especially, the possible applications to the communication systems motivated many research areas. We demonstrate the effect of the frequency bandwidth limitations in the communication channel on the synchronization of two unidirectionally coupled Mackey-Glass (MG) analog circuits, both numerically and experimentally. MG system is known to generate high dimensional chaotic signals. The chaotic signal generated from the drive MG system is modified by a low pass filter and is then transmitted to the response MG system. Our results show that the inclusion of the dominant frequency component of the original drive signals is crucial to achieve synchronization between the drive and response circuits. The maximum cross correlation and the corresponding time shift reveal that the frequency-dependent coupling introduced by the low pass filtering effect in the communication channel change the quality of synchronization.

  4. A visually guided collision warning system with a neuromorphic architecture.

    PubMed

    Okuno, Hirotsugu; Yagi, Tetsuya

    2008-12-01

    We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.

  5. Modeling selective attention using a neuromorphic analog VLSI device.

    PubMed

    Indiveri, G

    2000-12-01

    Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.

  6. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  7. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  8. Asymmetric Memory Circuit Would Resist Soft Errors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Perlman, Marvin

    1990-01-01

    Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.

  9. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    NASA Technical Reports Server (NTRS)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  10. An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.

    PubMed

    Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent

    2012-10-01

    We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.

  11. 6H-SiC Transistor Integrated Circuits Demonstrating Prolonged Operation at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith, Roger; Ferrier, Terry; Krasowski, Michael J.; hide

    2008-01-01

    The NASA Glenn Research Center is developing very high temperature semiconductor integrated circuits (ICs) for use in the hot sections of aircraft engines and for Venus exploration where ambient temperatures are well above the approximately 300 degrees Centigrade effective limit of silicon-on-insulator IC technology. In order for beneficial technology insertion to occur, such transistor ICs must be capable of prolonged operation in such harsh environments. This paper reports on the fabrication and long-term 500 degrees Centigrade operation of 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). Simple analog amplifier and digital logic gate ICs have now demonstrated thousands of hours of continuous 500 degrees Centigrade operation in oxidizing air atmosphere with minimal changes in relevant electrical parameters. Electrical characterization and modeling of transistors and circuits at temperatures from 24 degrees Centigrade to 500 degrees Centigrade is also described. Desired analog and digital IC functionality spanning this temperature range was demonstrated without changing the input signals or power supply voltages.

  12. A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System.

    PubMed

    Wu, Chung-Yu; Cheng, Cheng-Hsiang; Chen, Zhi-Xin

    2018-06-01

    In this paper, a 16-channel analog front-end (AFE) electrocorticography signal acquisition circuit for a closed-loop seizure control system is presented. It is composed of 16 input protection circuits, 16 auto-reset chopper-stabilized capacitive-coupled instrumentation amplifiers (AR-CSCCIA) with bandpass filters, 16 programmable transconductance gain amplifiers, a multiplexer, a transimpedance amplifier, and a 128-kS/s 10-bit delta-modulated successive-approximation-register analog-to-digital converter (SAR ADC). In closed-loop seizure control system applications, the stimulator shares the same electrode with the AFE amplifier for effective suppression of epileptic seizures. To prevent from overstress in MOS devices caused by high stimulation voltage, an input protection circuit with a high-voltage-tolerant switch is proposed for the AFE amplifier. Moreover, low input-referred noise is achieved by using the chopper modulation technique in the AR-CSCCIA. To reduce the undesired effects of chopper modulation, an improved offset reduction loop is proposed to reduce the output offset generated by input chopper mismatches. The digital ripple reduction loop is also used to reduce the chopper ripple. The fabricated AFE amplifier has 49.1-/59.4-/67.9-dB programmable gain and 2.02-μVrms input referred noise in a bandwidth of 0.59-117 Hz. The measured power consumption of the AFE amplifier is 3.26 μW per channel, and the noise efficiency factor is 3.36. The in vivo animal test has been successfully performed to verify the functions. It is shown that the proposed AFE acquisition circuit is suitable for implantable closed-loop seizure control systems.

  13. Hardware implementation of an adaptive resonance theory (ART) neural network using compensated operational amplifiers

    NASA Astrophysics Data System (ADS)

    Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Christodoulou, Christos G.

    1994-03-01

    This paper presents an analog circuit design and implementation for an adaptive resonance theory neural network architecture called the augmented ART1 neural network (AART1-NN). Practical monolithic operational amplifiers (Op-Amps) LM741 and LM318 are selected to implement the circuit, and a simple compensation scheme is developed to adjust the Op-Amp electrical characteristics to meet the design requirement. A 7-node prototype circuit has been designed and verified using the Pspice circuit simulator run on a Sun workstation. Results simulated from the AART1-NN circuit using the LM741, LM318, and ideal Op-Amps are presented and compared.

  14. Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; Boutin, Samuel; Blais, Alexandre

    2017-04-01

    Photonic cat states stored in high-Q resonators show great promise for hardware efficient universal quantum computing. We propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use of a two-photon drive. Significantly, we show that this preparation is robust against single-photon loss. An outcome of this observation is that a two-photon drive can eliminate undesirable phase evolution induced by a Kerr nonlinearity. By exploiting the concept of transitionless quantum driving, we moreover demonstrate how non-adiabatic initialization of cat states is possible. Finally, we present a universal set of quantum logical gates that can be performed on the engineered eigenspace of such a two-photon driven resonator and discuss a possible realization using superconducting circuits. The robustness of the engineered subspace to higher-order circuit nonlinearities makes this implementation favorable for scalable quantum computation.

  15. A study of the parallel algorithm for large-scale DC simulation of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Cortés Udave, Diego Ernesto; Ogrodzki, Jan; Gutiérrez de Anda, Miguel Angel

    Newton-Raphson DC analysis of large-scale nonlinear circuits may be an extremely time consuming process even if sparse matrix techniques and bypassing of nonlinear models calculation are used. A slight decrease in the time required for this task may be enabled on multi-core, multithread computers if the calculation of the mathematical models for the nonlinear elements as well as the stamp management of the sparse matrix entries are managed through concurrent processes. This numerical complexity can be further reduced via the circuit decomposition and parallel solution of blocks taking as a departure point the BBD matrix structure. This block-parallel approach may give a considerable profit though it is strongly dependent on the system topology and, of course, on the processor type. This contribution presents the easy-parallelizable decomposition-based algorithm for DC simulation and provides a detailed study of its effectiveness.

  16. Towards fully analog hardware reservoir computing for speech recognition

    NASA Astrophysics Data System (ADS)

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Haelterman, Marc; Schrauwen, Benjamin; Massar, Serge

    2012-09-01

    Reservoir computing is a very recent, neural network inspired unconventional computation technique, where a recurrent nonlinear system is used in conjunction with a linear readout to perform complex calculations, leveraging its inherent internal dynamics. In this paper we show the operation of an optoelectronic reservoir computer in which both the nonlinear recurrent part and the readout layer are implemented in hardware for a speech recognition application. The performance obtained is close to the one of to state-of-the-art digital reservoirs, while the analog architecture opens the way to ultrafast computation.

  17. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon.

    PubMed

    Chang, Lin; Pfeiffer, Martin H P; Volet, Nicolas; Zervas, Michael; Peters, Jon D; Manganelli, Costanza L; Stanton, Eric J; Li, Yifei; Kippenberg, Tobias J; Bowers, John E

    2017-02-15

    An ideal photonic integrated circuit for nonlinear photonic applications requires high optical nonlinearities and low loss. This work demonstrates a heterogeneous platform by bonding lithium niobate (LN) thin films onto a silicon nitride (Si3N4) waveguide layer on silicon. It not only provides large second- and third-order nonlinear coefficients, but also shows low propagation loss in both the Si3N4 and the LN-Si3N4 waveguides. The tapers enable low-loss-mode transitions between these two waveguides. This platform is essential for various on-chip applications, e.g., modulators, frequency conversions, and quantum communications.

  18. An assessment of a conical horn waveguide to represent the human eardrum

    NASA Astrophysics Data System (ADS)

    Fields, Taylor N.; Schnetzer, Lucia; Brister, Eileen; Yates, Charles W.; Withnell, Robert H.

    2018-05-01

    This study examined a model of the acoustic input impedance of the ear that includes a waveguide model of the eardrum. The eardrum was modeled as a lossless conical-horn with rigid walls. The ear canal was modeled as a one-dimensional lossy transmission line. The output impedance of the eardrum, the middle ear, and the cochlea, was modeled as a circuit analog. The model was fit to acoustic input impedance data from human ears using a nonlinear least-squares fit. The impact of a conical-horn shape for the eardrum was quantified by comparison with the eardrum modeled as a near-flat surface. The model provided a good match to the data over the frequency range examined. A conical-horn model of the human eardrum provided gain at high frequencies, most notably above 1–2 kHz, with a broader middle-ear frequency response. This finding may suggest that eardrum shape plays an important role in sound transmission to the cochlea.

  19. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  20. Analog hardware implementation of neocognitron networks

    NASA Astrophysics Data System (ADS)

    Inigo, Rafael M.; Bonde, Allen, Jr.; Holcombe, Bradford

    1990-08-01

    This paper deals with the analog implementation of neocognitron based neural networks. All of Fukushima''s and related work on the neocognitron is based on digital computer simulations. To fully take advantage of the power of this network paradigm an analog electronic approach is proposed. We first implemented a 6-by-6 sensor network with discrete analog components and fixed weights. The network was given weight values to recognize the characters U L and F. These characters are recognized regardless of their location on the sensor and with various levels of distortion and noise. The network performance has also shown an excellent correlation with software simulation results. Next we implemented a variable weight network which can be trained to recognize simple patterns by means of self-organization. The adaptable weights were implemented with PETs configured as voltage-controlled resistors. To implement a variable weight there must be some type of " memory" to store the weight value and hold it while the value is reinforced or incremented. Two methods were evaluated: an analog sample-hold circuit and a digital storage scheme using binary counters. The latter is preferable for VLSI implementation because it uses standard components and does not require the use of capacitors. The analog design and implementation of these small-scale networks demonstrates the feasibility of implementing more complicated ANNs in electronic hardware. The circuits developed can also be designed for VLSI implementation. 1.

  1. Performance of In-Pixel Circuits for Photon Counting Arrays (PCAs) Based on Polycrystalline Silicon TFTs

    PubMed Central

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2017-01-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si) — a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance — information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% FWHM at 70 keV; and the digital components should work well even in the presence of significant TFT variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm. PMID:26878107

  2. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-07

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  3. Heterojunction bipolar transistor technology for data acquisition and communication

    NASA Technical Reports Server (NTRS)

    Wang, C.; Chang, M.; Beccue, S.; Nubling, R.; Zampardi, P.; Sheng, N.; Pierson, R.

    1992-01-01

    Heterojunction Bipolar Transistor (HBT) technology has emerged as one of the most promising technologies for ultrahigh-speed integrated circuits. HBT circuits for digital and analog applications, data conversion, and power amplification have been realized, with speed performance well above 20 GHz. At Rockwell, a baseline AlGaAs/GaAs HBT technology has been established in a manufacturing facility. This paper describes the HBT technology, transistor characteristics, and HBT circuits for data acquisition and communication.

  4. Data acquisition channel apparatus

    NASA Astrophysics Data System (ADS)

    Higgins, C. H.; Skipper, J. D.

    1985-10-01

    Dicussed is a hybrid integrated circuit data acquisition channel apparatus employing an operational amplifier fed by a low current differential bipolar transistor preamplifier having separate feedback gain and signal gain determining elements and providing an amplified signal output to a sample and hold and analog-to-digital converter circuits. The disclosed apparatus operates with low energy and small space requirements and is capable of operations without the sample and hold circuit where the nature of the applied input signal permits.

  5. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  6. Flexible implementation of front-end bioelectric signal amplifier using FPAA for telemedicine system.

    PubMed

    Chan, U Fai; Chan, Wai Wong; Pun, Sio Hang; Vai, Mang I; Mak, Peng Un

    2007-01-01

    Traditional/Current electronic circuits for Telemedicine have significant performance on certain bioelectric signal detection. However, it is rarely seen that can handle multiple signals without changing of hardware. This paper introduces a general front-end amplifier for various bioelectric signals based on Field Programmable Analogy Array (FPAA) Technology. Employing FPAA technology, the implemented amplifier can be adapted for various bioelectric signals without alternating the circuitry while its compact size (core parts < 2 cm2) provides an alternative solution for miniaturized Telemedicine system and Wearable Devices. The proposed design implementation has demonstrated, through successfully ECG and EMG signal extractions, a quick way to miniaturize analog biomedical circuit in a convenient and cost effective way.

  7. Through-the-earth radio

    DOEpatents

    Reagor, David [Los Alamos, NM; Vasquez-Dominguez, Jose [Los Alamos, NM

    2006-05-09

    A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.

  8. Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators

    NASA Astrophysics Data System (ADS)

    Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua

    2017-12-01

    Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.

  9. User-friendly design approach for analog layout design

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Lee, Zhao Chuan; Tripathi, Vikas; Perez, Valerio; Ong, Yoong Seang; Hui, Chiu Wing

    2017-03-01

    Analog circuits are sensitives to the changes in the layout environment conditions, manufacturing processes, and variations. This paper presents analog verification flow with five types of analogfocused layout constraint checks to assist engineers in identifying any potential device mismatch and layout drawing mistakes. Compared to several solutions, our approach only requires layout design, which is sufficient to recognize all the matched devices. Our approach simplifies the data preparation and allows seamless integration into the layout environment with minimum disruption to the custom layout flow. Our user-friendly analog verification flow provides the engineer with more confident with their layouts quality.

  10. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, D.R.

    1983-12-29

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  11. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, David R.

    1986-01-01

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  12. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  13. COED Transactions, Vol. X, No. 9, September 1978. Use of the Analog/Hybrid Computer in Boundary Layer and Convection Studies.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…

  14. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.

    PubMed

    Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M

    2014-08-29

    We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

  15. Conceptual Resources for Constructing the Concepts of Electricity: The Role of Models, Analogies and Imagination

    ERIC Educational Resources Information Center

    Taber, Keith S.; de Trafford, Tom; Quail, Teresa

    2006-01-01

    The topic of electricity offers considerable challenge for the teacher hoping to provide students with an insight into scientific ways of thinking about circuits. The concepts used to make sense of electric circuits are abstract and students are expected to develop conceptual models of the relationship between non-observable qualities (current,…

  16. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  17. Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo

    2017-11-01

    Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.

  18. Circuit-level simulation of transistor lasers and its application to modelling of microwave photonic links

    NASA Astrophysics Data System (ADS)

    Iezekiel, Stavros; Christou, Andreas

    2015-03-01

    Equivalent circuit models of a transistor laser are used to investigate the suitability of this relatively new device for analog microwave photonic links. The three-terminal nature of the device enables transistor-based circuit design techniques to be applied to optoelectronic transmitter design. To this end, we investigate the application of balanced microwave amplifier topologies in order to enable low-noise links to be realized with reduced intermodulation distortion and improved RF impedance matching compared to conventional microwave photonic links.

  19. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    PubMed

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  20. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    PubMed

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-02

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  1. An area and power-efficient analog li-ion battery charger circuit.

    PubMed

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  2. Circuit transients due to negative bias arcs-II. [on solar cell power systems in low earth orbit

    NASA Technical Reports Server (NTRS)

    Metz, R. N.

    1986-01-01

    Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.

  3. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient

    NASA Astrophysics Data System (ADS)

    Hande, Vinayak; Shojaei Baghini, Maryam

    2015-08-01

    A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2

  4. RADC SCAT automated sneak circuit analysis tool

    NASA Astrophysics Data System (ADS)

    Depalma, Edward L.

    The sneak circuit analysis tool (SCAT) provides a PC-based system for real-time identification (during the design phase) of sneak paths and design concerns. The tool utilizes an expert system shell to assist the analyst so that prior experience with sneak analysis is not necessary for performance. Both sneak circuits and design concerns are targeted by this tool, with both digital and analog circuits being examined. SCAT focuses the analysis at the assembly level, rather than the entire system, so that most sneak problems can be identified and corrected by the responsible design engineer in a timely manner. The SCAT program identifies the sneak circuits to the designer, who then decides what course of action is necessary.

  5. Multifunctional Logic Gate Controlled by Temperature

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A complementary metal oxide/semiconductor (CMOS) electronic circuit has been designed to function as a NAND gate at a temperature between 0 and 80 deg C and as a NOR gate at temperatures from 120 to 200 C. In the intermediate temperature range of 80 to 120 C, this circuit is expected to perform a function intermediate between NAND and NOR with degraded noise margin. The process of designing the circuit and the planned fabrication and testing of the circuit are parts of demonstration of polymorphic electronics a technological discipline that emphasizes designing the same circuit to perform different analog and/or digital functions under different conditions. In this case, the different conditions are different temperatures.

  6. Fast-scale non-linear distortion analysis of peak-current-controlled buck-boost inverters

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Shuai; Yi, Chuanzhi; Guan, Weimin

    2018-02-01

    This paper deals with fast-scale non-linear distortion behaviours including asymmetrical period-doubling bifurcation and zero-crossing distortion in peak-current-controlled buck-boost inverters. The underlying mechanisms of the fast-scale non-linear distortion behaviours in inverters are revealed. The folded bifurcation diagram is presented to analyse the asymmetrical phenomenon of fast-scale period-doubling bifurcation. In view of the effect of phase shift and current ripple, the analytical expressions for one pair of critical phase angles are derived by using the design-oriented geometrical current approach. It is shown that the phase shift between inductor current and capacitor voltage should be responsible for the zero-crossing distortion phenomenon. These results obtained here are useful to optimise the circuit design and improve the circuit performance.

  7. New non-linear photovoltaic effect in uniform bipolar semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitudemore » is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.« less

  8. Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback

    NASA Astrophysics Data System (ADS)

    Zverev, V. V.; Rubinstein, B. Ya.

    1991-04-01

    We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.

  9. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  10. A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC

    NASA Technical Reports Server (NTRS)

    Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.

    2012-01-01

    Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.

  11. Substrate noise coupling: a pain for mixed-signal systems (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Wambacq, Piet; Van der Plas, Geert; Donnay, Stephane; Badaroglu, Mustafa; Soens, Charlotte

    2005-06-01

    Crosstalk from digital to analog in mixed-signal ICs is recognized as one of the major roadblocks for systems-on-chip (SoC) in future CMOS technologies. This crosstalk mainly happens via the semiconducting silicon substrate, which is usually treated as a ground node by analog and RF designers. The substrate noise coupling problem leads more and more to malfunctioning or extra design iterations. One of the reasons is that the phenomenon of substrate noise coupling is difficult to model and hence difficult to understand. It can be caused by the switching of thousands or millions of gates and depends on layout details. From the generation side (the digital domain), coping with the large amount of noise generators can be solved by macromodeling. On the other hand, the impact of substrate noise on the analog circuits requires careful modeling at the level of transistors and parasitics of layout, power supply, package, PCB, Comparison to measurements of macromodeling at the digital side and careful modeling at the analog side, shows that both the generation and the impact of substrate noise can be predicted with an accuracy of a few dB. In addition, this combination of macromodeling at the digital side and careful modeling at the analog side leads to an understanding of the problem, which can be used for digital low-noise design techniques to minimize the generation of noise, and substrate noise immune design of analog/RF circuits.

  12. The Effect of Combining Analogy-Based Simulation and Laboratory Activities on Turkish Elementary School Students' Understanding of Simple Electric Circuits

    ERIC Educational Resources Information Center

    Unlu, Zeynep Koyunlu; Dokme, Ibilge

    2011-01-01

    The purpose of this study was to investigate whether the combination of both analogy-based simulation and laboratory activities as a teaching tool was more effective than utilizing them separately in teaching the concepts of simple electricity. The quasi-experimental design that involved 66 seventh grade students from urban Turkish elementary…

  13. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  14. Automatic Single Event Effects Sensitivity Analysis of a 13-Bit Successive Approximation ADC

    NASA Astrophysics Data System (ADS)

    Márquez, F.; Muñoz, F.; Palomo, F. R.; Sanz, L.; López-Morillo, E.; Aguirre, M. A.; Jiménez, A.

    2015-08-01

    This paper presents Analog Fault Tolerant University of Seville Debugging System (AFTU), a tool to evaluate the Single-Event Effect (SEE) sensitivity of analog/mixed signal microelectronic circuits at transistor level. As analog cells can behave in an unpredictable way when critical areas interact with the particle hitting, there is a need for designers to have a software tool that allows an automatic and exhaustive analysis of Single-Event Effects influence. AFTU takes the test-bench SPECTRE design, emulates radiation conditions and automatically evaluates vulnerabilities using user-defined heuristics. To illustrate the utility of the tool, the SEE sensitivity of a 13-bits Successive Approximation Analog-to-Digital Converter (ADC) has been analysed. This circuit was selected not only because it was designed for space applications, but also due to the fact that a manual SEE sensitivity analysis would be too time-consuming. After a user-defined test campaign, it was detected that some voltage transients were propagated to a node where a parasitic diode was activated, affecting the offset cancelation, and therefore the whole resolution of the ADC. A simple modification of the scheme solved the problem, as it was verified with another automatic SEE sensitivity analysis.

  15. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  16. Varying self-inductance and energy storage in a sheared force-free arcade. [of coronal loops

    NASA Technical Reports Server (NTRS)

    Zuccarello, F.; Burm, H.; Kuperus, M.; Raadu, M.; Spicer, D. S.

    1987-01-01

    An electric circuit analogy is used to model the build-up and storage of magnetic energy in the coronal loops known to exist in the atmosphere of the sun. The present parameterization of magnetic energy storage in an electric circuit analog uses a bulk current I flowing in the circuit and a self-inductance L. Because the self-inductance is determined by the geometry of the magnetic configuration any change in its dimensions will change L. If L is increased, the amount of magnetic energy stored and the rate at which magnetic energy is stored are both increased. One way of increasing L is to shear the magnetic field lines and increase their effective geometrical length. Using the force-free field approximation for a magnetic arcade whose field lines are sheared by photospheric motions, it is demonstrated that the increase of magnetic energy is initially due to the increase of the current intensity I and later mainly due to the increase of the self-inductance.

  17. Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment

    NASA Astrophysics Data System (ADS)

    Kleczek, Rafal

    2017-01-01

    The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.

  18. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  19. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  20. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  1. Dynamical Systems in Circuit Designer's Eyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odyniec, M.

    Examples of nonlinear circuit design are given. Focus of the design process is on theory and engineering methods (as opposed to numerical analysis). Modeling is related to measurements It is seen that the phase plane is still very useful with proper models Harmonic balance/describing function offers powerful insight (via the combination of simulation with circuit and ODE theory). Measurement and simulation capabilities increased, especially harmonics measurements (since sinusoids are easy to generate)

  2. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  3. [Design of High Frequency Signal Detecting Circuit of Human Body Impedance Used for Ultrashort Wave Diathermy Apparatus].

    PubMed

    Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen

    2016-02-01

    The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.

  4. Theoretical and experimental investigation of a rectenna element for microwave power transmission

    NASA Technical Reports Server (NTRS)

    Mcspadden, James O.; Yoo, Taewhan; Chang, Kai

    1992-01-01

    A microstrip measurement system has been designed to analyze packaged GaAs Schottky barrier diodes under small and large signal conditions. The nonlinear equivalent circuit parameters of the diode are determined using a small signal test method that analyzes the diode's scattering parameters at various bias levels. The experimental results of a 2.45 GHz diode are verified using a nonlinear circuit simulation program based on a multireflection algorithm. A 35 GHz rectenna has been built using a microstrip patch antenna and Ka-band mixer diode. The measured efficiency was 29 percent at 120 mW input power. A frequency selective surface is designed using an equivalent circuit model to reduce the second harmonic radiations for a 2.45 GHz rectenna. Theoretical results are found to be in fairly good agreement with experiments.

  5. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao

    2016-08-15

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less

  6. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    NASA Astrophysics Data System (ADS)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  7. Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Eichler, C.; Petta, J. R.

    2018-06-01

    We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency L C resonator. By applying sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of optomechanical effects in a fully superconducting platform and could enable quantum optics experiments with photons in the yet unexplored radio frequency band.

  8. A subthreshold aVLSI implementation of the Izhikevich simple neuron model.

    PubMed

    Rangan, Venkat; Ghosh, Abhishek; Aparin, Vladimir; Cauwenberghs, Gert

    2010-01-01

    We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics. The low power operation and compact analog VLSI realization make the architecture suitable for human-machine interface applications in neural prostheses and implantable bioelectronics, as well as large-scale neural emulation tools for computational neuroscience.

  9. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  10. Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network

    NASA Astrophysics Data System (ADS)

    Cohen, Marc H.; Andreou, Andreas G.

    1992-05-01

    The translinear circuits in subthreshold MOS technology and current-mode design techniques for the implementation of neuromorphic analog network processing are investigated. The architecture, also known as the Herault-Jutten network, performs an independent component analysis and is essentially a continuous-time recursive linear adaptive filter. Analog I/O interface, weight coefficients, and adaptation blocks are all integrated on the chip. A small network with six neurons and 30 synapses was fabricated in a 2-microns n-well double-polysilicon, double-metal CMOS process. Circuit designs at the transistor level yield area-efficient implementations for neurons, synapses, and the adaptation blocks. The design methodology and constraints as well as test results from the fabricated chips are discussed.

  11. Four-gate transistor analog multiplier circuit

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)

    2011-01-01

    A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.

  12. Nonlinear Circuit Concepts -- An Elementary Experiment.

    ERIC Educational Resources Information Center

    Matolyak, J.; And Others

    1983-01-01

    Describes equipment and procedures for an experiment using diodes to introduce non-linear electronic devices in a freshman physics laboratory. The experiment involves calculation and plotting of the characteristic-curve and load-line to predict the operating point and compare prediction to experimentally determined values. Background information…

  13. Optical digital to analog conversion performance analysis for indoor set-up conditions

    NASA Astrophysics Data System (ADS)

    Dobesch, Aleš; Alves, Luis Nero; Wilfert, Otakar; Ribeiro, Carlos Gaspar

    2017-10-01

    In visible light communication (VLC) the optical digital to analog conversion (ODAC) approach was proposed as a suitable driving technique able to overcome light-emitting diode's (LED) non-linear characteristic. This concept is analogous to an electrical digital-to-analog converter (EDAC). In other words, digital bits are binary weighted to represent an analog signal. The method supports elementary on-off based modulations able to exploit the essence of LED's non-linear characteristic allowing simultaneous lighting and communication. In the ODAC concept the reconstruction error does not simply rely upon the converter bit depth as in case of EDAC. It rather depends on communication system set-up and geometrical relation between emitter and receiver as well. The paper describes simulation results presenting the ODAC's error performance taking into account: the optical channel, the LED's half power angle (HPA) and the receiver field of view (FOV). The set-up under consideration examines indoor conditions for a square room with 4 m length and 3 m height, operating with one dominant wavelength (blue) and having walls with a reflection coefficient of 0.8. The achieved results reveal that reconstruction error increases for higher data rates as a result of interference due to multipath propagation.

  14. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.

    PubMed

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-14

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  15. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit

    NASA Astrophysics Data System (ADS)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-01

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  16. Grey-box state-space identification of nonlinear mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Noël, J. P.; Schoukens, J.

    2018-05-01

    The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.

  17. DC isolation and protection system and circuit

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A. (Inventor); Kellogg, Gary V. (Inventor)

    1991-01-01

    A precision analog electronic circuit that is capable of sending accurate signals to an external device that has hostile electric characteristics, including the presence of very large common mode voltages. The circuit is also capable of surviving applications of normal mode overvoltages of up to 120 VAC/VDC for unlimited periods of time without damage or degradation. First, the circuit isolates the DC signal output from the computer. Means are then provided for amplifying the isolated DC signal. Further means are provided for stabilizing and protecting the isolating and amplifying means, and the isolated and amplified DC signal which is output to the external device, against overvoltages and overcurrents.

  18. NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K

    NASA Technical Reports Server (NTRS)

    Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.

    1994-01-01

    We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.

  19. A Low-Complexity Circuit for On-Sensor Concurrent A/D Conversion and Compression

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    A low-complexity circuit for on-sensor compression is presented. The proposed circuit achieves complexity savings by combining a single-slope analog-to-digital converter with a Golomb-Rice entropy encoder and by implementing a low-complexity adaptation rule. The adaptation rule monitors the output codewords and minimizes their length by incrementing or decrementing the value of the Golomb-Rice coding parameter k. Its hardware implementation is one order of magnitude lower than existing adaptive algorithms. The compression circuit has been fabricated using a 0.35 micrometers CMOS technology and occupies an area of 0.0918 mm2. Test measurements confirm the validity of the design

  20. An estimation of the input conductivity characteristic of some resistive (percolation) structures composed of elements having a two-term polynomial characteristic

    NASA Astrophysics Data System (ADS)

    Gluskin, Emanuel

    2007-07-01

    A specific circuit connection is suggested for the calculation of the input conductivity (current caused by voltage) characteristic i in= F( v in) of a 1-port named “ f-circuit”, composed of similar conductors described by conductive characteristic of the type f( v)= D mv m+D nv n. It is assumed that such circuit models can be relevant to the theory of percolation structures [S.W. Kenkel, J.P. Straley, Percolation theory of nonlinear circuit elements, Phys. Rev. Lett. 49(11)(1982)767-770; J.P. Straley, S.W. Kenkel, Percolation theory for nonlinear conductors, Phys. Rev. B 29(11)(1984)6299-6305; R. Rammal, A.-M.S. Trembley, Resistance noise in nonlinear resistor networks, Phys. Rev. Lett. 58(4)(1987)415-418; Ch.P. Hatsell, A quasi-power theorem for bulk conductors: comments on Rheoencephalography, IEEE Trans. Biomed. Eng. 38(7)(1991)665-669; L. Venkataraman, Y.S. Hong, P. Kim, Electron transport in a multichannel one-dimensional conductor: molybdenum selenide nanowires, Phys. Rev. Lett 96(076601)(2006)076601-1-076601-4; A.A. Snarskii, K.V. Slipchenko, A.A. Sevryukov, Critical behavior in two-phase, highly inhomogeneous composites, J. Exp. Theor. Phy. 89(4)(1999)788-799; A.A. Snarskii, M. Zhenirovskiy, Effective conductivity of non-linear composites, Physica B 322(2002)84-91], in a state not far from the percolation threshold, even though the main result seems to be sufficiently interesting by itself and one can expect that other interesting applications for such conductive structures will be found. The f-circuit is constructed here from two power-law “ α-circuits”, f( v)∼ vα, of the same topology [E. Gluskin, One-ports composed of power-law resistors, IEEE Trans. CAS-II 51(9)(2004)464-467], but having different α. In this construction, named “ f-connection”, the respective nodes of the α-circuits are short-circuited, and the respective branches become connected in parallel, which causes f(.) to be an additive function; thus f( v)= D mv m+D nv n is obtained for each element of the connection. It appears that i in of the connection is close to the sum of the input currents of the independent α-circuits, connected to the same voltage source. Since precise calculation of the input current of the connection is extremely difficult, this result seems to be valuable for calculation of F(.). The reason for the unexpectedly high precision of the approximation is explained in basic circuit terms, and will be given in more detail in a separate circuit-theory publication.

  1. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-03-15

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performedmore » simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.« less

  2. Microcircuit Modeling and Simulation beyond Ohm's Law

    ERIC Educational Resources Information Center

    Saxena, T.; Chek, D. C. Y.; Tan, M. L. P.; Arora, V. K.

    2011-01-01

    Circuit theory textbooks rely heavily on the applicability of Ohm's law, which collapses as electronic components reach micro- and nanoscale dimensions. Circuit analysis is examined in the regime where the applied voltage V is greater than the critical voltage V[subscript c], which triggers the nonlinear behavior. The critical voltage is infinity…

  3. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics

    NASA Astrophysics Data System (ADS)

    El Dirani, Houssein; Monat, Christelle; Brision, Stéphane; Olivier, Nicolas; Jany, Christophe; Letartre, Xavier; Pu, Minhao; Girouard, Peter D.; Hagedorn Frandsen, Lars; Semenova, Elizaveta; Katsuo Oxenløwe, Leif; Yvind, Kresten; Sciancalepore, Corrado

    2018-02-01

    In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).

  4. Multifunctional Logic Gate Controlled by Supply Voltage

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A complementary metal oxide/semiconductor (CMOS) electronic circuit functions as a NAND gate at a power-supply potential (V(sub dd)) of 3.3 V and as NOR gate for V(sub dd) = 1.8 V. In the intermediate V(sub dd) range of 1.8 to 3.3 V, this circuit performs a function intermediate between NAND and NOR with degraded noise margin. Like the circuit of the immediately preceding article, this circuit serves as a demonstration of the evolutionary approach to design of polymorphic electronics -- a technological discipline that emphasizes evolution of the design of a circuit to perform different analog and/or digital functions under different conditions. In this instance, the different conditions are different values of V(sub dd).

  5. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

    PubMed Central

    Hayden, Luke; Liu, Jintao; Wiggins, Chris H.; Süel, Gürol M.; Walczak, Aleksandra M.

    2016-01-01

    Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. PMID:27003682

  6. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

    PubMed

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  7. Applying analog integrated circuits for HERO protection

    NASA Technical Reports Server (NTRS)

    Willis, Kenneth E.; Blachowski, Thomas J.

    1994-01-01

    One of the most efficient methods for protecting electro-explosive devices (EED's) from HERO and ESD is to shield the EED in a conducting shell (Faraday cage). Electrical energy is transferred to the bridge by means of a magnetic coupling which passes through a portion of the conducting shell that is made from a magnetically permeable but electrically conducting material. This technique was perfected by ML Aviation, a U.K. company, in the early 80's, and was called a Radio Frequency Attenuation Connector (RFAC). It is now in wide use in the U.K. Previously, the disadvantage of RFAC over more conventional methods was its relatively high cost, largely driven by a thick film hybrid circuit used to switch the primary of the transformer. Recently, through a licensing agreement, this technology has been transferred to the U.S. and significant cost reductions and performance improvements have been achieved by the introduction of analog integrated circuits. An integrated circuit performs the following functions: (1) Chops the DC input to a signal suitable for driving the primary of the transformer; (2) Verifies the input voltage is above a threshold; (3) Verifies the input voltage is valid for a pre set time before enabling the device; (4) Provides thermal protection of the circuit; and (5) Provides an external input for independent logic level enabling of the power transfer mechanism. This paper describes the new RFAC product and its applications.

  8. Experimental Chaos - Proceedings of the 3rd Conference

    NASA Astrophysics Data System (ADS)

    Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep

    1996-10-01

    The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina

  9. Pattern classification using charge transfer devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.

  10. Design and Implementation of Readout Circuit with Threshold Voltage Compensation on Glass Substrate for Touch Panel Applications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ta; Ker, Ming-Dou; Wang, Tzu-Ming

    2011-03-01

    A new on-panel readout circuit with threshold voltage compensation for capacitive sensor in low temperature polycrystalline silicon (poly-Si) thin-film transistor (LTPS-TFT) process has been proposed. In order to compensate the threshold voltage variation from LTPS process variation, the proposed readout circuit applies a novel compensation approach with switch capacitor technique. In addition, a 4-bit analog-to-digital converter (ADC) is added to identify different sensed capacitor values and further enhances the overall resolution of touch panel.

  11. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2015-01-01

    A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.

  12. Implementation of a Readout Circuit on SOI Technology for the Signal Conditioning of a Neutron Detector in Harsh Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Krit, S.; Coulie-Castellani, K.; Rahajandraibe, W.

    2015-07-01

    A transistor level implementation of the analog block of a readout system on SOI process is presented here. This system is dedicated to the signal conditioning of a neutron detector in harsh environment. The different parts of the readout circuits are defined. The harsh environment constraints (crossing particle effect, high temperatures) are also detailed and modeled in the circuit in order to test and evaluate the characteristics of the designed block when working under these conditions. (authors)

  13. Techniques for the design and simulation of interdigitated MSM photodetectors

    NASA Astrophysics Data System (ADS)

    Cahill, Laurence W.

    1997-04-01

    The metal-semiconductor (MSM) photodetector attracts a great deal of interest as a result of its high bandwidth and low fabrication costs. In this paper a broad-band circuit model for the interdigitated MSM photodetector is presented. The circuit model can be used for both design and simulation purposes. The circuit model can also take into account nonlinear effects so that the practical behavior of the photodetector can be more faithfully represented.

  14. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    PubMed

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, C.; Boshier, M. G.

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  16. Complementary Metal-Oxide-Silicon (CMOS)-Memristor Hybrid Nanoelectronics for Advanced Encryption Standard (AES) Encryption

    DTIC Science & Technology

    2016-04-01

    with Al top electrodes and Cu bottom electrodes. ................... 9 Figure 4. SPICE netlist structure...memory elements play a part in logic gate. 4.4.2 Simulation SPICE Simulation Program for Integrated Circuits Emphasis ( SPICE ) is a general-purpose...analog circuit simulator that was developed at the Electronics Research Laboratory of the University of California, Berkeley [6]. In 1975, SPICE

  17. Topical Meeting of Broadband Analog and Digital Optoelectronics

    DTIC Science & Technology

    1992-01-01

    effects [2]. Laser nonlinearitics can be minimised by careful design of the device to maximise the relaxation oscillation resonance frequency [2...feedback loop ultimately limits the stability of the circuit and determines the maximum frequency of operation. With hybrid circuit constructioi. this...range and number of accessible frequency channels), the tuning lever, and the filter selectivity (which determines the side-mode suppression ratio (SMSR

  18. Analog Microcontroller Model for an Energy Harvesting Round Counter

    DTIC Science & Technology

    2012-07-01

    densities representing the duration of ≥ for all scaled piezo ................................7 1 INTRODUCTION An accurate count...limited surface area available for mounting piezos on the gun system. Figure 1. Equivalent circuit model for a piezoelectric transducer...circuit model for the linear I-V relationships is parallel combination of six stages, each of which is comprised of a series combination of a resistor , DC

  19. A design method for high performance seismic data acquisition based on oversampling delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shanghua; Xue, Bing

    2017-04-01

    The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.

  20. All-Digital Baseband 65nm PLL/FPLL Clock Multiplier using 10-cell Library

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  1. ALL-Digital Baseband 65nm PLL/FPLL Clock Multiplier Using 10-Cell Library

    NASA Technical Reports Server (NTRS)

    Schuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li; Madala, Shridhar

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  2. Nonlinear Wave Chaos and the Random Coupling Model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ott, Edward; Antonsen, Thomas M.; Anlage, Steven

    The Random Coupling Model (RCM) has been shown to successfully predict the statistical properties of linear wave chaotic cavities in the highly over-moded regime. It is of interest to extend the RCM to strongly nonlinear systems. To introduce nonlinearity, an active nonlinear circuit is connected to two ports of the wave chaotic 1/4-bowtie cavity. The active nonlinear circuit consists of a frequency multiplier, an amplifier and several passive filters. It acts to double the input frequency in the range from 3.5 GHz to 5 GHz, and operates for microwaves going in only one direction. Measurements are taken between two additional ports of the cavity and we measure the statistics of the second harmonic voltage over an ensemble of realizations of the scattering system. We developed an RCM-based model of this system as two chaotic cavities coupled by means of a nonlinear transfer function. The harmonics received at the output are predicted to be the product of three statistical quantities that describe the three elements correspondingly. Statistical results from simulation, RCM-based modeling, and direct experimental measurements will be compared. ONR under Grant No. N000141512134, AFOSR under COE Grant FA9550-15-1-0171,0 and the Maryland Center for Nanophysics and Advanced Materials.

  3. The MSPICE simulation of a saturating transformer

    NASA Astrophysics Data System (ADS)

    Maclean, David N.

    A transformer is simulated using a nonlinear saturating magnetic model. Hysteresis and gradual smooth reduction of core permeability are achieved with standard SPICE networks and functions. The equations that define the nonlinear inductance and the MSPICE circuits used to simulate them are derived. A hierarchy of circuit complexity that is based on the structured logic design subcircuit method is used. An example of a push-pull buck regulator being operated in an unbalanced condition is given. Noise ripple on the input power cable generates a dc offset current in the transformer. The example demonstrates how avionics power equipment can be evaluated for large-signal ac, dc, and transient behavior.

  4. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  5. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.

    PubMed

    Hu, Yuantai; Xue, Huan; Hu, Ting; Hu, Hongping

    2008-01-01

    This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times.

  6. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  7. A back-illuminated megapixel CMOS image sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  8. Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators.

    PubMed

    Eichler, C; Petta, J R

    2018-06-01

    We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC resonator. By applying sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of optomechanical effects in a fully superconducting platform and could enable quantum optics experiments with photons in the yet unexplored radio frequency band.

  9. Analog CMOS design for optical coherence tomography signal detection and processing.

    PubMed

    Xu, Wei; Mathine, David L; Barton, Jennifer K

    2008-02-01

    A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.

  10. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.

    PubMed

    Parthasarathy, S; Manikandakumar, K

    2007-12-01

    We consider a simple nonautonomous dissipative nonlinear electronic circuit consisting of Chua's diode as the only nonlinear element, which exhibit a typical period doubling bifurcation route to chaotic oscillations. In this paper, we show that the effect of additional periodic pulses in this Murali-Lakshmanan-Chua (MLC) circuit results in novel multiple-period-doubling bifurcation behavior, prior to the onset of chaos, by using both numerical and some experimental simulations. In the chaotic regime, this circuit exhibits a rich variety of dynamical behavior including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures, and so on. For certain types of periodic pulses, this circuit also admits transcritical bifurcations preceding the onset of multiple-period-doubling bifurcations. We have characterized our numerical simulation results by using Lyapunov exponents, correlation dimension, and power spectrum, which are found to be in good agreement with the experimental observations. Further controlling and synchronization of chaos in this periodically pulsed MLC circuit have been achieved by using suitable methods. We have also shown that the chaotic attractor becomes more complicated and their corresponding return maps are no longer simple for large n-periodic pulses. The above study also indicates that one can generate any desired n-period-doubling bifurcation behavior by applying n-periodic pulses to a chaotic system.

  11. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    PubMed Central

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  12. Integrated Circuit Design of 3 Electrode Sensing System Using Two-Stage Operational Amplifier

    NASA Astrophysics Data System (ADS)

    Rani, S.; Abdullah, W. F. H.; Zain, Z. M.; N, Aqmar N. Z.

    2018-03-01

    This paper presents the design of a two-stage operational amplifier(op amp) for 3-electrode sensing system readout circuits. The designs have been simulated using 0.13μm CMOS technology from Silterra (Malaysia) with Mentor graphics tools. The purpose of this projects is mainly to design a miniature interfacing circuit to detect the redox reaction in the form of current using standard analog modules. The potentiostat consists of several op amps combined together in order to analyse the signal coming from the 3-electrode sensing system. This op amp design will be used in potentiostat circuit device and to analyse the functionality for each module of the system.

  13. Learning the Art of Electronics

    NASA Astrophysics Data System (ADS)

    Hayes, Thomas C.; Horowitz, Paul

    2016-03-01

    1. DC circuits; 2. RC circuits; 3. Diode circuits; 4. Transistors I; 5. Transistors II; 6. Operational amplifiers I; 7. Operational amplifiers II: nice positive feedback; 8. Operational amplifiers III; 9. Operational amplifiers IV: nasty positive feedback; 10. Operational amplifiers V: PID motor control loop; 11. Voltage regulators; 12. MOSFET switches; 13. Group audio project; 14. Logic gates; 15. Logic compilers, sequential circuits, flip-flops; 16. Counters; 17. Memory: state machines; 18. Analog to digital: phase-locked loop; 19. Microcontrollers and microprocessors I: processor/controller; 20. I/O, first assembly language; 21. Bit operations; 22. Interrupt: ADC and DAC; 23. Moving pointers, serial buses; 24. Dallas Standalone Micro, SiLabs SPI RAM; 25. Toys in the attic; Appendices; Index.

  14. Memristive Model of the Barnacle Giant Muscle Fibers

    NASA Astrophysics Data System (ADS)

    Sah, Maheshwar Pd.; Kim, Hyongsuk; Eroglu, Abdullah; Chua, Leon

    The generation of action potentials (oscillations) in biological systems is a complex, yet poorly understood nonlinear dynamical phenomenon involving ions. This paper reveals that the time-varying calcium ion and the time-varying potassium ion, which are essential for generating action potentials in Barnacle giant muscle fibers are in fact generic memristors in the perspective of electrical circuit theory. We will show that these two ions exhibit all the fingerprints of memristors from the equations of the Morris-Lecar model of the Barnacle giant muscle fibers. This paper also gives a textbook reference to understand the difference between memristor and nonlinear resistor via analysis of the potassium ion-channel memristor and calcium ion-channel nonlinear resistor. We will also present a comprehensive in-depth analysis of the generation of action potentials (oscillations) in memristive Morris-Lecar model using small-signal circuit model and the Hopf bifurcation theorem.

  15. Modelling nonlinearity in superconducting split ring resonator and its effects on metamaterial structures

    NASA Astrophysics Data System (ADS)

    Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.

    2017-09-01

    Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).

  16. A FPGA-based Measurement System for Nonvolatile Semiconductor Memory Characterization

    NASA Astrophysics Data System (ADS)

    Bu, Jiankang; White, Marvin

    2002-03-01

    Low voltage, long retention, high density SONOS nonvolatile semiconductor memory (NVSM) devices are ideally suited for PCMCIA, FLASH and 'smart' cards. The SONOS memory transistor requires characterization with an accurate, rapid measurement system with minimum disturbance to the device. The FPGA-based measurement system includes three parts: 1) a pattern generator implemented with XILINX FPGAs and corresponding software, 2) a high-speed, constant-current, threshold voltage detection circuit, 3) and a data evaluation program, implemented with a LABVIEW program. Fig. 1 shows the general block diagram of the FPGA-based measurement system. The function generator is designed and simulated with XILINX Foundation Software. Under the control of the specific erase/write/read pulses, the analog detect circuit applies operational modes to the SONOS device under test (DUT) and determines the change of the memory-state of the SONOS nonvolatile memory transistor. The TEK460 digitizes the analog threshold voltage output and sends to the PC computer. The data is filtered and averaged with a LABVIEWTM program running on the PC computer and displayed on the monitor in real time. We have implemented the pattern generator with XILINX FPGAs. Fig. 2 shows the block diagram of the pattern generator. We realized the logic control by a method of state machine design. Fig. 3 shows a small part of the state machine. The flexibility of the FPGAs enhances the capabilities of this system and allows measurement variations without hardware changes. The characterization of the nonvolatile memory transistor device under test (DUT), as function of programming voltage and time, is achieved by a high-speed, constant-current threshold voltage detection circuit. The analog detection circuit incorporating fast analog switches controlled digitally with the FPGAs. The schematic circuit diagram is shown in Fig. 4. The various operational modes for the DUT are realized with control signals applied to the analog switches (SW) as shown in Fig. 5. A LABVIEWTM program, on a PC platform, collects and processes the data. The data is displayed on the monitor in real time. This time-domain filtering reduces the digitizing error. Fig. 6 shows the data processing. SONOS nonvolatile semiconductor memories are characterized by erase/write, retention and endurance measurements. Fig. 7 shows the erase/write characteristics of an n-Channel, 5V prog-rammable SONOS memory transistor. Fig.8 shows the retention characteristic of the same SONOS transistor. We have used this system to characterize SONOS nonvolatile semiconductor memory transistors. The attractive features of the test system design lies in the cost-effectiveness and flexibility of the test pattern implementation, fast read-out of memory state, low power, high precision determination of the device threshold voltage, and perhaps most importantly, minimum disturbance, which is indispensable for nonvolatile memory characterization.

  17. A gradient system solution to Potts mean field equations and its electronic implementation.

    PubMed

    Urahama, K; Ueno, S

    1993-03-01

    A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.

  18. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

    PubMed Central

    Bharioke, Arjun; Chklovskii, Dmitri B.

    2015-01-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  19. Fast collimated neutron flux measurement using stilbene scintillator and flashy analog-to-digital converter in JT-60U

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Itoga, T.; Okuji, T.; Nakhostin, M.; Shinohara, K.; Hayashi, T.; Sukegawa, A.; Baba, M.; Nishitani, T.

    2006-10-01

    A line-integrated neutron emission profile is routinely measured using the radial neutron collimator system in JT-60U tokamak. Stilbene neuron detectors (SNDs), which combine a stilbene organic crystal scintillation detector (SD) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure collimated neutron flux. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ˜1×105counts/s due to the analog PSD circuit. To overcome this issue, a digital signal processing system (DSPS) using a flash analog-to-digital converter (Acqiris DC252, 8GHz, 10bits) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from photomultiplier of the SD are directory stored and digitized. Then, the PSD between neutrons and gamma rays is performed using software. The DSPS has been installed in the vertical neutron collimator system in JT-60U and applied to deuterium experiments. It is confirmed that the PSD is sufficiently performed and collimated neutron flux is successfully measured with count rate up to ˜5×105counts/s without the effect of pileup of detected pulses. The performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.

  20. Analog circuit for the measurement of phase difference between two noisy sine-wave signals

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    A simple circuit was designed to measure the phase difference between two noisy sine waves. It locks over a wide range of frequencies and produces an output proportional to the phase difference of rapidly varying signals. A square wave locked in frequency and phase to the first signal is produced by a phase-locked loop and is amplified by an operational amplifier.

  1. Instrumented Glove Measures Positions Of Fingers

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  2. Telecommunications Systems Career Ladder, AFSC 307XO.

    DTIC Science & Technology

    1981-01-01

    standard test tone levels perform impulse noise tests make in-service or out-of- service quality check.s on composite signal transmission levels Even...service or out-of- service quality control (QC) reports maintain trouble and restoration record forms (DD Form 1443) direct circuit or system checks...include: perform fault isolation on analog circuits make in-service or out-of- service quality checks on voice frequency carrier telegraph (VFCT) terminals

  3. A low cost amplifier and acquisition system for cortical-electroncephalography in non-human applications.

    PubMed

    Viggiano, A; Coppola, G

    2014-04-01

    A simple circuit is described to make an AC-amplifier and an analog-to-digital converter in a single, compact solution, for use in basic research, but not on humans. The circuit sends data to and is powered from a common USB port of modern computers; using proper firmware and driver the communication with the device is an emulated RS232 serial port.

  4. A Low Cost Amplifier and Acquisition System for Cortical-Electroncephalography in Non-Human Applications

    PubMed Central

    Viggiano, A; Coppola, G

    2014-01-01

    A simple circuit is described to make an AC-amplifier and an analog-to-digital converter in a single, compact solution, for use in basic research, but not on humans. The circuit sends data to and is powered from a common USB port of modern computers; using proper firmware and driver the communication with the device is an emulated RS232 serial port. PMID:24809030

  5. The Sponge Resistor Model--A Hydrodynamic Analog to Illustrate Ohm's Law, the Resistor Equation R=?l/A, and Resistors in Series and Parallel

    ERIC Educational Resources Information Center

    Pfister, Hans

    2014-01-01

    Physics students encountering electric circuits for the first time often ask why adding more resistors to a circuit sometimes increases and sometimes decreases the resulting total resistance. It appears that these students have an inadequate understanding of current flow and resistance. Students who do not adopt a model of current, voltage, and…

  6. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications

    PubMed Central

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O.

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n2 memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach. PMID:26578867

  7. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications.

    PubMed

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

  8. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.

    2014-01-01

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847

  9. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide.

    PubMed

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A

    2014-11-24

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.

  10. Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range

    DOE PAGES

    Guo, Peijun; Chang, Robert P. H.; Schaller, Richard D.

    2017-06-09

    Dynamic control of the optical response of materials at visible wavelengths is key to future metamaterials and photonic integrated circuits. Here we demonstrate large amplitude, negative optical nonlinearity (Δ n from -0.05 to -0.09) of indium oxide nanorod arrays in the full-visible range. We experimentally quantify and theoretically calculate the optical nonlinearity, which arises from the modifications of interband optical transitions. Furthermore, the approach towards negative optical nonlinearity can be generalized to other transparent semiconductors and opens door to reconfigurable, sub-wavelength optical components.

  11. The Elementary Operations of Human Vision Are Not Reducible to Template-Matching

    PubMed Central

    Neri, Peter

    2015-01-01

    It is generally acknowledged that biological vision presents nonlinear characteristics, yet linear filtering accounts of visual processing are ubiquitous. The template-matching operation implemented by the linear-nonlinear cascade (linear filter followed by static nonlinearity) is the most widely adopted computational tool in systems neuroscience. This simple model achieves remarkable explanatory power while retaining analytical tractability, potentially extending its reach to a wide range of systems and levels in sensory processing. The extent of its applicability to human behaviour, however, remains unclear. Because sensory stimuli possess multiple attributes (e.g. position, orientation, size), the issue of applicability may be asked by considering each attribute one at a time in relation to a family of linear-nonlinear models, or by considering all attributes collectively in relation to a specified implementation of the linear-nonlinear cascade. We demonstrate that human visual processing can operate under conditions that are indistinguishable from linear-nonlinear transduction with respect to substantially different stimulus attributes of a uniquely specified target signal with associated behavioural task. However, no specific implementation of a linear-nonlinear cascade is able to account for the entire collection of results across attributes; a satisfactory account at this level requires the introduction of a small gain-control circuit, resulting in a model that no longer belongs to the linear-nonlinear family. Our results inform and constrain efforts at obtaining and interpreting comprehensive characterizations of the human sensory process by demonstrating its inescapably nonlinear nature, even under conditions that have been painstakingly fine-tuned to facilitate template-matching behaviour and to produce results that, at some level of inspection, do conform to linear filtering predictions. They also suggest that compliance with linear transduction may be the targeted outcome of carefully crafted nonlinear circuits, rather than default behaviour exhibited by basic components. PMID:26556758

  12. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.

    PubMed

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-03-15

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.

  13. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease

    PubMed Central

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-01-01

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285

  14. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.

    PubMed

    Mehta, M M; Chandrasekhar, V

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  15. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mehta, M. M.; Chandrasekhar, V.

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  16. The design of CMOS general-purpose analog front-end circuit with tunable gain and bandwidth for biopotential signal recording systems.

    PubMed

    Chen, Wei-Ming; Yang, Wen-Chia; Tsai, Tzung-Yun; Chiueh, Herming; Wu, Chung-Yu

    2011-01-01

    In this paper an 8-channel CMOS general-purpose analog front-end (AFE) circuit with tunable gain and bandwidth for biopotential signal recording systems is presented. The proposed AFE consists of eight chopper stabilized pre-amplifiers, an 8-to-1 analog multiplexer, and a programmable gain amplifier. It can be used to sense and amplify different kinds of biopotential signals, such as electrocorticogram (ECoG), electrocardiogram (ECG) and electromyogram (EMG). The AFE chip is designed and fabricated in 0.18-μm CMOS technology. The measured maximum gain of AFE is 60.8 dB. The low cutoff frequency can achieve as low as 0.8 Hz and high cutoff frequency can be adjusted from 200 Hz to 10 kHz to suit for different kinds of biopotential signals. The measured input-referred noise is 0.9 μV(rms), with the power consumption of 18μW per channel at 1.8-V power supply. And the noise efficiency factor (NEF) is only 1.3 for pre-amplifier.

  17. A Low-cost 4 Bit, 10 Giga-samples-per-second Analog-to-digital Converter Printed Circuit Board Assembly for FPGA-based Backends

    NASA Astrophysics Data System (ADS)

    Jiang, Homin; Yu, Chen-Yu; Kubo, Derek; Chen, Ming-Tang; Guzzino, Kim

    2016-11-01

    In this study, a 4 bit, 10 giga-samples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was designed, manufactured, and characterized for digitizing radio telescopes. For this purpose, an Adsantec ANST7120A-KMA flash ADC chip was used. Together with the field-programmable gate array platform, developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the PCBA enables data acquisition with a wide bandwidth and simplifies the intermediate frequency section. In the current version, the PCBA and the chip exhibit an analog bandwidth of 10 GHz (3 dB loss) and 20 GHz, respectively, which facilitates second, third, and even fourth Nyquist sampling. The following average performance parameters were obtained from the first and second Nyquist zones of the three boards: a spurious-free dynamic range of 31.35/30.45 dB, a signal-to-noise and distortion ratio of 22.95/21.83 dB, and an effective number of bits of 3.65/3.43, respectively.

  18. 'Soft' amplifier circuits based on field-effect ionic transistors.

    PubMed

    Boon, Niels; Olvera de la Cruz, Monica

    2015-06-28

    Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.

  19. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  20. Nonlinear modal resonances in low-gravity slosh-spacecraft systems

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    1991-01-01

    Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.

  1. Conversion of cardiac performance data in analog form for digital computer entry

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1972-01-01

    A system is presented which will reduce analog cardiac performance data and convert the results to digital form for direct entry into a commercial time-shared computer. Circuits are discussed which perform the measurement and digital conversion of instantaneous systolic and diastolic parameters from the analog blood pressure waveform. Digital averaging over a selected number of heart cycles is performed on these measurements, as well as those of flow and heart rate. The determination of average cardiac output and peripheral resistance, including trends, is the end result after processing by digital computer.

  2. An experimental study of nonlinear dynamic system identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1990-01-01

    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  3. Chaos in a neural network circuit

    NASA Astrophysics Data System (ADS)

    Kepler, Thomas B.; Datt, Sumeet; Meyer, Robert B.; Abott, L. F.

    1990-12-01

    We have constructed a neural network circuit of four clipped, high-grain, integrating operational amplifiers coupled to each other through an array of digitally programmable resistor ladders (MDACs). In addition to fixed-point and cyclic behavior, the circuit exhibits chaotic behavior with complex strange attractors which are approached through period doubling, intermittent attractor expansion and/or quasiperiodic pathways. Couplings between the nonlinear circuit elements are controlled by a computer which can automatically search through the space of couplings for interesting phenomena. We report some initial statistical results relating the behavior of the network to properties of its coupling matrix. Through these results and further research the circuit should help resolve fundamental issues concerning chaos in neural networks.

  4. Experimental industrial signal acquisition board in a large scientific device

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangzhen; Ren, Bin

    2018-02-01

    In order to measure the industrial signal of neutrino experiment, a set of general-purpose industrial data acquisition board has been designed. It includes the function of switch signal input and output, and the function of analog signal input. The main components are signal isolation amplifier and filter circuit, ADC circuit, microcomputer systems and isolated communication interface circuit. Through the practical experiments, it shows that the system is flexible, reliable, convenient and economical, and the system has characters of high definition and strong anti-interference ability. Thus, the system fully meets the design requirements.

  5. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  6. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  7. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses

    PubMed Central

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities. PMID:25972778

  8. Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Román; Frieman, Joshua A.

    1999-07-01

    We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.

  9. Inflight characterization and correction of Planck/HFI analog to digital converter nonlinearity

    NASA Astrophysics Data System (ADS)

    Sauvé, A.; Couchot, F.; Patanchon, G.; Montier, L.

    2016-07-01

    The Planck Satellite launched in 2009 was targeted to observe the anisotropies of the Cosmic Microwave Back-ground (CMB) to an unprecedented sensitivity. While the Analog to Digital Converter of the HFI (High Frequency Instrument) readout electronics had not been properly characterized on ground, it has been shown to add a systematic nonlinearity effect up to 2% of the cosmological signal. This was a limiting factor for CMB science at large angular scale. We will present the in-flight analysis and method used to characterize and correct this effect down to 0.05% level. We also discuss how to avoid this kind of complex issue for future missions.

  10. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  11. The dynamics of a stabilised Wien bridge oscillator

    NASA Astrophysics Data System (ADS)

    Lerner, L.

    2016-11-01

    We present for the first time analytic solutions for the nonlinear dynamics of a Wien bridge oscillator stabilised by three common methods: an incandescent lamp, signal diodes, and the field effect transistor. The results can be used to optimise oscillator design, and agree well with measurements. The effect of operational amplifier marginal nonlinearity on oscillator performance at high frequencies is clarified. The oscillator circuits and their analysis can be used to demonstrate nonlinear dynamics in the undergraduate laboratory.

  12. Fault detection in digital and analog circuits using an i(DD) temporal analysis technique

    NASA Technical Reports Server (NTRS)

    Beasley, J.; Magallanes, D.; Vridhagiri, A.; Ramamurthy, Hema; Deyong, Mark

    1993-01-01

    An i(sub DD) temporal analysis technique which is used to detect defects (faults) and fabrication variations in both digital and analog IC's by pulsing the power supply rails and analyzing the temporal data obtained from the resulting transient rail currents is presented. A simple bias voltage is required for all the inputs, to excite the defects. Data from hardware tests supporting this technique are presented.

  13. Analog storage integrated circuit

    DOEpatents

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  14. Analog storage integrated circuit

    DOEpatents

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  15. Evolution of Analog Circuits on Field Programmable Transistor Arrays

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Keymeulen, D.; Zebulum, R.; Thakoor, A.; Daud, T.; Klimeck, G.; Jin, Y.; Tawel, R.; Duong, V.

    2000-01-01

    Evolvable Hardware (EHW) refers to HW design and self-reconfiguration using evolutionary/genetic mechanisms. The paper presents an overview of some key concepts of EHW, describing also a set of selected applications.

  16. Five Bit, Five Gigasample TED Analog-to-Digital Converter Development.

    DTIC Science & Technology

    1981-06-01

    pliers. TRW uses two sources at present: materials grown by Horizontal I Bridgman technique from Crystal Specialties, and Czochralski from MRI. The...the circuit modelling and circuit design tasks. A number of design iterations were required to arrive at a satisfactory design. In or-der to riake...made by modeling the TELD as a voltage-controlled current generator with a built-in time delay between impressed voltage and output current. Based on

  17. Analog Integrated Circuit Design for Spike Time Dependent Encoder and Reservoir in Reservoir Computing Processors

    DTIC Science & Technology

    2018-01-01

    14. ABSTRACT The objective of this effort was to: (a) develop novel and fundamental methodologies for data representation using hardware-based spike...Distribution Unlimited. 1 1.0 SUMMARY This effort is a critical part of an overall program to develop novel and fundamental methodologies for data...to fabrication a dynamic-reservoir circuit that utilizes sensory encoding methodologies similar to those employed in biological brains. Inspired

  18. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  19. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  20. Silicon-Germanium Films Grown on Sapphire for Ka-Band Communications Applications

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    NASA's vision in the space communications area is to develop a broadband data network in which there is a high degree of interconnectivity among the various satellite systems, ground stations, and wired systems. To accomplish this goal, we will need complex electronic circuits integrating analog and digital data handling at the Ka-band (26 to 40 GHz). The purpose of this project is to show the feasibility of a new technology for Ka-band communications applications, namely silicon germanium (SiGe) on sapphire. This new technology will have several advantages in comparison to the existing silicon-substrate- based circuits. The main advantages are extremely low parasitic reactances that enable much higher quality active and passive components, better device isolation, higher radiation tolerance, and the integration of digital and analog circuitry on a single chip.

  1. SEM analysis of ionizing radiation effects in an analog to digital converter /AD571/

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Perret, J.; Evans, K. C.

    1981-01-01

    The considered investigation is concerned with the study of the total-dose degradation mechanisms in an IIL analog to digital (A/D) converter. The A/D converter is a 10 digit device having nine separate functional units on the chip which encompass several hundred transistors and circuit elements. It was the objective of the described research to find the radiation sensitive elements by a systematic search of the devices on the LSI chip. The employed technique using a scanning electron microscope to determine the functional blocks of an integrated circuit which are sensitive to ionizing radiation and then progressively zeroing in on the soft components within those blocks, proved extremely successful on the AD571. Four functional blocks were found to be sensitive to radiation, including the Voltage Reference, DAC, IIL Clock, and IIL SAR.

  2. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less

  3. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  4. A Bidirectional Neural Interface IC with Chopper Stabilized BioADC Array and Charge Balanced Stimulator

    PubMed Central

    Greenwald, Elliot; So, Ernest; Wang, Qihong; Mollazadeh, Mohsen; Maier, Christoph; Etienne-Cummings, Ralph; Cauwenberghs, Gert; Thakor, Nitish

    2016-01-01

    We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ΔΣ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5V supply, the analog and digital circuits in each recording channel draw on average 1.54 μA and 2.13 μA of supply current, respectively. The bioADCs achieve an SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications. PMID:27845676

  5. Novel δ-doped partially insulated junctionless transistor for mixed signal integrated circuits

    NASA Astrophysics Data System (ADS)

    Patil, Ganesh C.; Bonge, Vijaysinh H.; Malode, Mayur M.; Jain, Rahul G.

    2016-02-01

    In this paper, δ-doped partially insulated junctionless transistor (δ-Pi-OXJLT) has been proposed which shows that, employing highly doped δ-region below the channel not only reduces the off-state leakage current (IOFF) and short channel effects (SCEs) but also reduce the requirements of scaling channel thickness of junctionless transistor (JLT). The comparative analysis of digital and analog circuit performance of proposed δ-Pi-OXJLT, bulk planar (BP) JLT and silicon-on-insulator (SOI) JLT has also been carried out. The digital parameters analyzed in this work are, on-state drive current (ION), IOFF, ION/IOFF ratio, static power dissipation (PSTAT) whereas the analog parameters analyzed includes, transconductance (GM), transconductance generation factor (GM/IDS), intrinsic gain (GMRO) and cut-off frequency (fT) of the devices. In addition, scaling behavior of the devices is studied for various channel lengths by using the parameters such as drain induced barrier lowering (DIBL) and sub-threshold swing (SS). It has been found that, the proposed δ-Pi-OXJLT shows significant reduction in IOFF, DIBL and SS over BPJLT and SOIJLT devices. Further, ION and ION/IOFF ratio in the case of proposed δ-Pi-OXJLT also improves over the BPJLT device. Furthermore, the improvement in analog figures of merit, GM, GM/IDS, GMRO and fT in the case of proposed δ-Pi-OXJLT clearly shows that the proposed δ-Pi-OXJLT is the promising device for mixed signal integrated circuits.

  6. Trap Healing for High-Performance Low-Voltage Polymer Transistors and Solution-Based Analog Amplifiers on Foil.

    PubMed

    Pecunia, Vincenzo; Nikolka, Mark; Sou, Antony; Nasrallah, Iyad; Amin, Atefeh Y; McCulloch, Iain; Sirringhaus, Henning

    2017-06-01

    Solution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation. The present study focuses on state-of-the-art polymer thin-film transistors based on poly(indacenodithiophene-benzothiadiazole) and shows that the general paradigm for low-voltage operation via an enhanced gate-to-channel capacitive coupling is unable to deliver high-performance device behavior. The order-of-magnitude longitudinal-field reduction demanded by low-voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap-reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low-voltage high-mobility operation. This approach is readily applicable to low-voltage circuit integration, as this work exemplifies by demonstrating high-performance analog differential amplifiers operating at a battery-compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low-voltage polymer transistors for solution-based analog electronics that meets performance and power-dissipation requirements for a range of battery-powered smart-sensing applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior.

    PubMed

    Lillvis, Joshua L; Katz, Paul S

    2013-02-06

    Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most likely evolved independently in two species: Tritonia diomedea and Pleurobranchaea californica (Mollusca, Gastropoda, Opisthobranchia, Nudipleura). Individuals of both species exhibit escape swimming behaviors consisting of repeated dorsal-ventral whole-body flexions. The central pattern generator (CPG) circuits underlying these behaviors contain homologous identified neurons: DSI and C2 in Tritonia and As and A1 in Pleurobranchaea. Homologs of these neurons also can be found in Hermissenda crassicornis where they are named CPT and C2, respectively. However, members of this species do not exhibit an analogous swimming behavior. In Tritonia and Pleurobranchaea, but not in Hermissenda, the serotonergic DSI homologs modulated the strength of synapses made by C2 homologs. Furthermore, the serotonin receptor antagonist methysergide blocked this neuromodulation and the swimming behavior. Additionally, in Pleurobranchaea, the robustness of swimming correlated with the extent of the synaptic modulation. Finally, injection of serotonin induced the swimming behavior in Tritonia and Pleurobranchaea, but not in Hermissenda. This suggests that the analogous swimming behaviors of Tritonia and Pleurobranchaea share a common dependence on serotonergic neuromodulation. Thus, neuromodulation may provide a mechanism that enables species to acquire analogous behaviors independently using homologous neural circuit components.

  8. Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit

    NASA Astrophysics Data System (ADS)

    Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen

    This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.

  9. Study of CMOS-SOI Integrated Temperature Sensing Circuits for On-Chip Temperature Monitoring.

    PubMed

    Malits, Maria; Brouk, Igor; Nemirovsky, Yael

    2018-05-19

    This paper investigates the concepts, performance and limitations of temperature sensing circuits realized in complementary metal-oxide-semiconductor (CMOS) silicon on insulator (SOI) technology. It is shown that the MOSFET threshold voltage ( V t ) can be used to accurately measure the chip local temperature by using a V t extractor circuit. Furthermore, the circuit's performance is compared to standard circuits used to generate an accurate output current or voltage proportional to the absolute temperature, i.e., proportional-to-absolute temperature (PTAT), in terms of linearity, sensitivity, power consumption, speed, accuracy and calibration needs. It is shown that the V t extractor circuit is a better solution to determine the temperature of low power, analog and mixed-signal designs due to its accuracy, low power consumption and no need for calibration. The circuit has been designed using 1 µm partially depleted (PD) CMOS-SOI technology, and demonstrates a measurement inaccuracy of ±1.5 K across 300 K⁻500 K temperature range while consuming only 30 µW during operation.

  10. Effects of proprioceptive circuit exercise on knee joint pain and muscle function in patients with knee osteoarthritis.

    PubMed

    Ju, Sung-Bum; Park, Gi Duck; Kim, Sang-Soo

    2015-08-01

    [Purpose] This study applied proprioceptive circuit exercise to patients with degenerative knee osteoarthritis and examined its effects on knee joint muscle function and the level of pain. [Subjects] In this study, 14 patients with knee osteoarthritis in two groups, a proprioceptive circuit exercise group (n = 7) and control group (n = 7), were examined. [Methods] IsoMed 2000 (D&R Ferstl GmbH, Hemau, Germany) was used to assess knee joint muscle function, and a Visual Analog Scale was used to measure pain level. [Results] In the proprioceptive circuit exercise group, knee joint muscle function and pain levels improved significantly, whereas in the control group, no significant improvement was observed. [Conclusion] A proprioceptive circuit exercise may be an effective way to strengthen knee joint muscle function and reduce pain in patients with knee osteoarthritis.

  11. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  12. Toward Evolvable Hardware Chips: Experiments with a Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    1998-01-01

    Evolvable Hardware is reconfigurable hardware that self-configures under the control of an evolutionary algorithm. We search for a hardware configuration can be performed using software models or, faster and more accurate, directly in reconfigurable hardware. Several experiments have demonstrated the possibility to automatically synthesize both digital and analog circuits. The paper introduces an approach to automated synthesis of CMOS circuits, based on evolution on a Programmable Transistor Array (PTA). The approach is illustrated with a software experiment showing evolutionary synthesis of a circuit with a desired DC characteristic. A hardware implementation of a test PTA chip is then described, and the same evolutionary experiment is performed on the chip demonstrating circuit synthesis/self-configuration directly in hardware.

  13. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  14. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  15. Theoretical and experimental studies of error in square-law detector circuits

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.; Hearn, C. P.; Williams, J. B.

    1984-01-01

    Square law detector circuits to determine errors from the ideal input/output characteristic function were investigated. The nonlinear circuit response is analyzed by a power series expansion containing terms through the fourth degree, from which the significant deviation from square law can be predicted. Both fixed bias current and flexible bias current configurations are considered. The latter case corresponds with the situation where the mean current can change with the application of a signal. Experimental investigations of the circuit arrangements are described. Agreement between the analytical models and the experimental results are established. Factors which contribute to differences under certain conditions are outlined.

  16. Microwave, Semiconductor Research - Materials, Devices and Circuits.

    DTIC Science & Technology

    1984-03-01

    Phenomena, Gamisch/Partenkirchen, Germany, 1982 (Springer-Verlag, Berlin). 3. "Observation of nonlinear refractive index in molecular liquids by...in non-walled dielectric waveguide including a novel use of transverse resonance equivalent circuits for the treatment of dispersion in graded index ...number) This program covers the growth and assessment of Gallium Arsenide, and related compounds and alloys, for use in microwave, millimeter, and

  17. Nonreciprocal Signal Routing in an Active Quantum Network

    NASA Astrophysics Data System (ADS)

    Tureci, Hakan E.; Metelmann, Anja

    As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain driven linear or non-linear elements judiciously embedded in the circuit offer a viable solution. We present a general strategy for routing non-reciprocally quantum signals between two sites of a given lattice of resonators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of superconducting non-linear elements on the links connecting the nodes of the main lattice. Solutions for spatially selective driving of the link-elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to non-reciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the scattering matrix of the network. The presented strategy provides a design space that is governed by a dynamically tunable non-Hermitian generator that can be used to minimize the added quantum noise as well. This work was supported by the U.S. Army Research Office (ARO) under Grant No. W911NF-15-1-0299.

  18. An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks.

    PubMed

    Chen, Huan-Yuan; Chen, Chih-Chang; Hwang, Wen-Jyi

    2017-09-28

    This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting.

  19. An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks

    PubMed Central

    Chen, Huan-Yuan; Chen, Chih-Chang

    2017-01-01

    This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting. PMID:28956859

  20. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

Top