Electromagnetic radiation influence on nonlinear charge and energy transport in biosystems.
Brizhik, L; Cruzeiro-Hansson, L; Eremko, A
1999-06-01
The influence of electromagnetic radiation (EMR) on charge and energy transport processes in biological systems is studied in the light of the soliton model. It is shown that in the spectrum of biological effects of EMR there are two frequency resonances corresponding to qualitatively different frequency dependent effects of EMR on solitons. One of them is connected with the quasiresonance dynamic response of solitons to the EMR. At EMR frequencies close to the dynamic resonance frequency the solitons absorb energy from the field and generate intensive vibrational modes in the macromolecule. The second EMR resonance is connected with soliton decay due to the quantum mechanical transition of the system from the bound soliton state into the excited unbound states.
NASA Astrophysics Data System (ADS)
Okamoto, Kentaro; Tanaka, Toshiyuki; Fujita, Wataru; Awaga, Kunio; Inabe, Tamotsu
2007-08-01
We here examine the electrical and magnetic properties of the isostructural NT3•MCl4 ( NT=naphtho [2,1- d :6,5- d' ]bis([1,2,3] dithiazole and M=Ga and Fe). The crystal structure of NT3•MCl4 consists of one-dimensional π -stacking chains of NT with strong interchain interactions caused by electrostatic Sδ+•••Nδ- contacts. This structure includes four NT molecules with significant differences in molecular structure and charge, exhibiting a characteristic charge ordering, namely, three-dimensional alternation of charge-rich (or -intermediate) and -poor molecules. NT3•GaCl4 and NT3•FeCl4 are found to be semiconductors with σRT˜0.5Scm-1 and to exhibit a nonlinear electrical transport at room temperature with a very low threshold field of 80Vcm-1 for the negative differential resistance. This threshold field significantly increases with a decrease in temperature. The X -band electron paramagnetic resonance (EPR) spectra of NT3•GaCl4 consist of a single-line absorption ascribable to that of the NT+ cation. When the sample is exposed to a current at room temperature, this signal exhibits a drastic decrease in intensity with little change in linewidth. This is attributed to the inhomogeneous formation of EPR-silent conducting pathways for the nonlinear transport. The temperature dependence of the EPR spin susceptibility χs of NT3•GaCl4 suggests a transition toward a spin-gap state below 20K ; χs exhibits a Bonner-Fisher-type temperature dependence above 20K , but gradually collapses to zero below this temperature.
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Charge transport in disordered materials
NASA Astrophysics Data System (ADS)
Gagorik, Adam Gerald
This thesis is focused on on using Monte Carlo simulation to extract device relevant properties, such as the current voltage behavior of transistors and the efficiency of photovoltaics, from the hopping transport of molecules. Specifically, simulation is used to study organic field-effect transistors (OFETs) and organic photo-voltaics (OPVs). For OFETs, the current was found to decrease with increasing concentration of traps and barriers in the system. As the barrier/trap concentration approaches 100%, the current recovers as carrier begin to travel through the manifold of connected trap states. Coulomb interactions between like charges are found to play a role in removing carriers from trap states. The equilibrium current in OFETs was found to be independent of charge injection method, however, the finite size of devices leads to an oscillatory current. Fourier transforms of the electrical current show peaks that vary non-linearly with device length, while being independent of device width. This has implications for the mobility of carriers in finite sized devices. Lastly, the presence of defects and high barriers (> 0.4 eV) was found to produce negative differential resistance in the saturation region of OFET curves, unlike traps. While defects and barriers prohibit carriers from reaching the drain at high voltages, the repulsive interaction between like charged carriers pushes charges around the defects. For OPVs, the effects of device morphology and charge delocalization were studied. Fill factors increased with domain size in monolayer isotropic morphologies, but decreased for band morphologies. In single-phase systems without Coulomb interactions, astonishingly high fill factors (. 70%) were found. In multilayer OPVs,a complex interplay of domain size, connectivity, tortuosity, interface trapping, and delocalization determined efficiency.
Irfan, Ahmad; Chaudhry, Aijaz Rasool; Muhammad, Shabbir; Al-Sehemi, Abdullah G
2017-08-01
Owing to their excellent electrochemical properties, graphenes found applications in several fields ranging from semiconductors, solar cells, field effect transistors, and nanoscale electronic devices as well as in nonlinear optical (NLO) applications. The structural features, electro-optical, charge transport and nonlinear optical properties of the boron-doped graphene (BG) compound 1 were studied using density functional theory methods The BG compound comprises a central electron deficient site of boron atoms, which can serve as electron acceptor while terminal alkoxy groups as donors leading to powerful donor-π-acceptor (D-π-A) configuration. The experimental crystal structure was successfully reproduced by optimized ground state geometry at PBE0/6-311G* level of theory for isolated molecule. The experimental lattice parameters, geometries, crystal presentation and alignment of molecules in the unit cells as well as their packing orientation of BG compound 1 was also efficiently reproduced by applying periodic boundary conditions (PBC) at PBE level. The comprehensive intramolecular charge transfer (CT) was realized from terminal rings of the HOMO to the electron deficient sites of boron atoms of the LUMO. The nature of BG compound 1 might be more towards hole transport even though its hole reorganization energy is twice than that of the electron one due to the significant higher hole transfer integral values. The superior hole transfer integrals and intrinsic mobility values of the BG compound 1 might lead remarkable hole transport contender as compared to many other organic materials. The narrow band gap, density of states profile, dielectric function, uniform conductivity functions and noteworthy electronic as well as CT properties revealed that the BG compound 1 might be proficient optoelectronic contestant having intermolecular CT as well as intramolecular CT with optimal stability. A comparison of static third-order polarizability <γ> of BG compound 1
Charge transport in organic semiconductors.
Bässler, Heinz; Köhler, Anna
2012-01-01
Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.
Nonlinear Transport In Gases, Traps And Surfaces
NASA Astrophysics Data System (ADS)
Šuvakov, M.; Marjanovic, S.
2010-07-01
We will present our numerical study of three different charge transport processes and we will compare properties, specially the nonlinearity, of these processes. First process is electron transport in gases in swarm regime. We used well tested Monte Carlo techique to investigate kinetic phenomena such as negative diferencial conductivity (NDC) or negative apsolute mobility (NAM). We explain these phenomena analysing the spatial profiles of the swarm and collision events. In the second part we will apply the same technique on positron transport to obtain the same level of understanding of positron transport as has been achieved for electrons. The influence of positronium formation, non-conservative process, is much larger than any comparable effects in electron transport due to attachment and/or ionisation. As a result several new phenomena have been observed, such as NDC for the bulk drift velocity. Additionaly, the same Monte Carlo technique is used for modeling and optimisation of Surko like positron traps in different geometries and field configurations. Third process we studied is the charge transport under voltage bias via single-electron tunnelings through the junctions between metallic particles on nanoparticle films. We show how the regular nanoparticle array and topologically inhomogeneous nanonetworks affect the charge transport. We find long-range correlations in the time series of charge fluctuation at individual nanoparticles and of flow along the junctions within the network. These correlations explain the occurrence of a large non-linearity in the simulated and experimentally measured current-voltage characteristics and non-Gaussian fluctuations of the current at the electrode.
ERIC Educational Resources Information Center
Vail, Kathleen R.
1994-01-01
In Antelope Valley, California, a regional transportation consortium, cooperatively run by six adjacent school districts, is operating an electric-powered school bus as a pilot project. Although the prototype bus cost nearly six times more than a traditional school bus, lower operating and maintenance expenses and safety factors appeal to many…
ERIC Educational Resources Information Center
Vail, Kathleen R.
1994-01-01
In Antelope Valley, California, a regional transportation consortium, cooperatively run by six adjacent school districts, is operating an electric-powered school bus as a pilot project. Although the prototype bus cost nearly six times more than a traditional school bus, lower operating and maintenance expenses and safety factors appeal to many…
Nonlinear dynamics and plasma transport
Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sageev, R.Z.
1993-01-01
This progress report details work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE since 1989. This program has been in cooperation with laboratories in theUSSR [now Russia and the Confederation of Independent States (CIS)]. The purpose of this program has been: To promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport. To promote cooperative scientific investigations between the US and CIS in the related areas of nonlinear science and plasma turbulence and transport. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. This allows for a deeper analysis and understanding of the system both analytically and numerically.
Nonlinear dynamics and plasma transport
Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.
1992-01-01
In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data.
Neoclassical Transport Including Collisional Nonlinearity
Candy, J.; Belli, E. A.
2011-06-10
In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Charge carrier transport in polyvinylcarbazole
NASA Astrophysics Data System (ADS)
Tyutnev, Andrey P.; Saenko, Vladimir S.; Pozhidaev, Evgenii D.; Kolesnikov, Vladislav A.
2006-07-01
A critical analysis of the existing time-of-flight (TOF) data in poly(N-vinylcarbazole) (PVK) proves that these are highly controversial with claims and counterclaims about charge carrier transport (dispersive versus Gaussian). It is felt that the TOF method taken alone is incapable of resolving the standing dilemma. As a final means to resolve it, we propose a combination of two varieties of the TOF technique using both sheet-like and uniform carrier generation modes in conjunction with radiation-induced conductivity measurements. All three techniques are realized using the ELA-50 electron gun facility. To demonstrate the effectiveness of our approach we report experimental data for PVK, which show that carrier transport in this polymer is indeed dispersive. Evidence is presented substantiating the gross interference the surface traps could exert on the shape of a TOF transient. As a result, a preflight part of the TOF signal should not be used for parameter evaluation.
Charges in nonlinear higher-spin theory
NASA Astrophysics Data System (ADS)
Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.
2017-03-01
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4 d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.
Collective transport of charges in charge density wave systems based on traveling soliton lattices
NASA Astrophysics Data System (ADS)
Rojo-Bravo, A.; Jacques, V. L. R.; Le Bolloc'h, D.
2016-11-01
Solitons are peculiar excitations that appear in a wide range of nonlinear systems such as in fluids or optics. We show here that the collective transport of charges observed in charge density wave (CDW) systems can be explained by using a similar theory based on a traveling soliton lattice. A coherent x-ray diffraction experiment performed in the sliding state of a CDW material reveals peculiar diffraction patterns in good agreement with this assumption. Therefore, the collective transport of charges in CDW systems may be due to a nonlinear interaction leading to a self-localized excitation, carrying charges without deformation through the sample, on top of the CDW ground state. This single theory explains why charges remain spatially correlated over very long distances and reconciles the main features of sliding CDW systems observed by transport measurements and diffraction. This approach highlights a new type of charge transport in CDW systems and opens perspectives in controlling correlated charges without dispersion over macroscopic distances.
Charge transport in nanoscale junctions.
Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas
2008-09-03
Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at
Charge Injection and Transport in Conjugated Polymers.
NASA Astrophysics Data System (ADS)
Malliaras, George
2007-03-01
We will overview the state-of-the-art in our understanding of charge injection and transport in conjugated polymers. We start by discussing the identifying characteristics of this class of materials, especially in relation with their structure and morphology. We follow by reviewing the advantages and limitations of experimental techniques that are used to probe charge transport. We then embark on a discussion of the fundamentals of charge transport in organics. We follow a didactic approach, where we start from transport in crystalline semiconductors and gradually introduce corrections for space charge effects, for the influence of disorder on mobility, for high charge densities, and for electric field-dependent charge densities. We compare with experimental data from polyfluorenes. We then shift our attention to charge injection. We review some of the recent theories and compared their predictions to experimental data, again from polyfluorenes. We close by proposing directions for future work.
Charge transport network dynamics in molecular aggregates
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.
Charge transport network dynamics in molecular aggregates
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-01-01
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ∼100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871
Analysis of electrolyte transport through charged nanopores
NASA Astrophysics Data System (ADS)
Peters, P. B.; van Roij, R.; Bazant, M. Z.; Biesheuvel, P. M.
2016-05-01
We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3 ×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968), 10.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.
Transport-Induced Inversion of Screening Ionic Charges in Nanochannels.
Zhu, Xin; Guo, Lingzi; Ni, Sheng; Zhang, Xingye; Liu, Yang
2016-12-15
This work reveals a counterintuitive but basic process of ionic screening in nanofluidic channels. Steady-state numerical simulations and mathematical analysis show that, under significant longitudinal ionic transport, the screening ionic charges can be locally inverted in the channels: their charge sign becomes the same as that of the channel surface charges. The process is identified to originate from the coupling of ionic electro-diffusion transport and junction two-dimensional electrostatics. This finding may expand our understanding of ionic screening and electrical double layers in nanochannels. Furthermore, the charge inversion process results in a body-force torque on channel fluids, which is a possible mechanism for vortex generation in the channels and their nonlinear current-voltage characteristics.
Nonlinear Ballistic Transport in an Atomically Thin Material.
Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R
2016-01-26
Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.
Role of Molecular Charge in Nucleocytoplasmic Transport
Goryaynov, Alexander; Yang, Weidong
2014-01-01
Transport of genetic materials and proteins between the nucleus and cytoplasm of eukaryotic cells is mediated by nuclear pore complexes (NPCs). A selective barrier formed by phenylalanine-glycine (FG) nucleoporins (Nups) with net positive charges in the NPC allows for passive diffusion of signal-independent small molecules and transport-receptor facilitated translocation of signal-dependent cargo molecules. Recently, negative surface charge was postulated to be another essential criterion for selective passage through the NPC. However, the charge-driven mechanism in determining the transport kinetics and spatial transport route for either passive diffusion or facilitated translocation remains obscure. Here we employed high-speed single-molecule fluorescence microscopy with an unprecedented spatiotemporal resolution of 9 nm and 400 µs to uncover these mechanistic fundamentals for nuclear transport of charged substrates through native NPCs. We found that electrostatic interaction between negative surface charges on transiting molecules and the positively charged FG Nups, although enhancing their probability of binding to the NPC, never plays a dominant role in determining their nuclear transport mode or spatial transport route. A 3D reconstruction of transport routes revealed that small signal-dependent endogenous cargo protein constructs with high positive surface charges that are destined to the nucleus, rather than repelled from the NPC as suggested in previous models, passively diffused through an axial central channel of the NPC in the absence of transport receptors. Finally, we postulated a comprehensive map of interactions between transiting molecules and FG Nups during nucleocytoplasmic transport by combining the effects of molecular size, signal and surface charge. PMID:24558427
Surface transport processes in charged porous media
Gabitto, Jorge; Tsouris, Costas
2017-03-03
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Ness, H; Dash, L K
2012-03-23
We calculate the nonequilibrium charge transport properties of nanoscale junctions in the steady state and extend the concept of charge susceptibility to the nonequilibrium conditions. We show that the nonequilibrium charge susceptibility is related to the nonlinear dynamical conductance. In spectroscopic terms, both contain the same features versus applied bias when charge fluctuation occurs in the corresponding electronic resonances. However, we show that, while the conductance exhibits features at biases corresponding to inelastic scattering with no charge fluctuations, the nonequilibrium charge susceptibility does not. We suggest that measuring both the nonequilibrium conductance and charge susceptibility in the same experiment will permit us to differentiate between different scattering processes in quantum transport.
Charge and spin transport in mesoscopic superconductors
Wolf, M J; Hübler, F; Kolenda, S
2014-01-01
Summary Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin. Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models. Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures. PMID:24605283
Charge-transport model for conducting polymers
NASA Astrophysics Data System (ADS)
Dongmin Kang, Stephen; Jeffrey Snyder, G.
2016-11-01
The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.
Charge-transport model for conducting polymers
NASA Astrophysics Data System (ADS)
Dongmin Kang, Stephen; Jeffrey Snyder, G.
2017-02-01
The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.
Weakly nonlinear electrophoresis of a highly charged colloidal particle
NASA Astrophysics Data System (ADS)
Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud
2013-05-01
At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.
Thermodynamic picture of ultrafast charge transport in graphene
Mics, Zoltán; Tielrooij, Klaas-Jan; Parvez, Khaled; Jensen, Søren A.; Ivanov, Ivan; Feng, Xinliang; Müllen, Klaus; Bonn, Mischa; Turchinovich, Dmitry
2015-01-01
The outstanding charge transport properties of graphene enable numerous electronic applications of this remarkable material, many of which are expected to operate at ultrahigh speeds. In the regime of ultrafast, sub-picosecond electric fields, however, the very high conduction properties of graphene are not necessarily preserved, with the physical picture explaining this behaviour remaining unclear. Here we show that in graphene, the charge transport on an ultrafast timescale is determined by a simple thermodynamic balance maintained within the graphene electronic system acting as a thermalized electron gas. The energy of ultrafast electric fields applied to graphene is converted into the thermal energy of its entire charge carrier population, near-instantaneously raising the electronic temperature. The dynamic interplay between heating and cooling of the electron gas ultimately defines the ultrafast conductivity of graphene, which in a highly nonlinear manner depends on the dynamics and the strength of the applied electric fields. PMID:26179498
Charge transfer and charge transport on the double helix
NASA Astrophysics Data System (ADS)
Armitage, N. P.; Briman, M.; Grüner, G.
2004-01-01
We present a short review of various experiments that measure charge transfer and charge transport in DNA. Some general comments are made on the possible connection between various chemistry-style charge transfer experiments that probe fluorescence quenching and remote oxidative damage and physics-style measurements that measure transport properties as defined typically in the solid-state. We then describe measurements performed by our group on the millimeter wave response of DNA. By measuring over a wide range of humidity conditions and comparing the response of single strand DNA and double strand DNA, we show that the appreciable AC conductivity of DNA is not due to photon assisted hopping between localized states, but instead due to dissipation from dipole motion in the surrounding water helix.
Charge Transport Processes in Molecular Junctions
NASA Astrophysics Data System (ADS)
Smith, Christopher Eugene
Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires
Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2017-06-01
We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.
Validating a quasi-linear transport model versus nonlinear simulations
NASA Astrophysics Data System (ADS)
Casati, A.; Bourdelle, C.; Garbet, X.; Imbeaux, F.; Candy, J.; Clairet, F.; Dif-Pradalier, G.; Falchetto, G.; Gerbaud, T.; Grandgirard, V.; Gürcan, Ö. D.; Hennequin, P.; Kinsey, J.; Ottaviani, M.; Sabot, R.; Sarazin, Y.; Vermare, L.; Waltz, R. E.
2009-08-01
In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport models are required. Nonlinear gyrokinetic electromagnetic simulations for all species are still too costly in terms of computing time. On the other hand, interestingly, the quasi-linear approximation seems to retain the relevant physics for fairly reproducing both experimental results and nonlinear gyrokinetic simulations. Quasi-linear fluxes are made of two parts: (1) the quasi-linear response of the transported quantities and (2) the saturated fluctuating electrostatic potential. The first one is shown to follow well nonlinear numerical predictions; the second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear fluxes computed by QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501) are shown to agree with the nonlinear predictions when varying various dimensionless parameters, such as the temperature gradients, the ion to electron temperature ratio, the dimensionless collisionality, the effective charge and ranging from ion temperature gradient to trapped electron modes turbulence.
Numerical methods for nonlinear hillslope transport laws
NASA Astrophysics Data System (ADS)
Perron, J. Taylor
2011-06-01
The numerical methods used to solve nonlinear sediment transport equations often set very restrictive limits on the stability and accuracy of landscape evolution models. This is especially true for hillslope transport laws in which sediment flux increases nonlinearly as the surface slope approaches a limiting value. Explicit-time finite difference methods applied to such laws are subject to fundamental limits on numerical stability that require time steps much shorter than the timescales over which landscapes evolve, creating a heavy computational burden. I present an implicit method for nonlinear hillslope transport that builds on a previously proposed approach to modeling alluvial sediment transport and improves stability and accuracy by avoiding the direct calculation of sediment flux. This method can be adapted to any transport law in which the expression for sediment flux is differentiable. Comparisons of numerical solutions with analytic solutions in one and two dimensions show that the implicit method retains the accuracy of a standard explicit method while permitting time steps several orders of magnitude longer than the maximum stable time step for the explicit method. The ability to take long time steps affords a substantial savings in overall computation time, despite the implicit method's higher per-iteration computational cost. Implicit models for hillslope evolution also offer a distinct advantage when modeling the response of hillslopes to incising channels.
Numerical Methods for Nonlinear Hillslope Transport Laws
NASA Astrophysics Data System (ADS)
Perron, J. T.
2008-12-01
The numerical methods used to solve nonlinear sediment transport equations often set restrictive limits on the stability and accuracy of landscape evolution models. This is especially true for hillslope transport laws in which sediment flux increases nonlinearly as the surface slope approaches a limiting value. Standard explicit finite difference methods applied to such laws are subject to fundamental limits on numerical stability that require time steps much shorter than the timescales over which landscapes evolve, creating a heavy computational burden. Methods that rely on cell-to-cell sediment routing schemes can introduce significant errors that may not be obvious unless the numerical solution is compared with a known solution. I present a new, implicit method for nonlinear hillslope transport that builds on a previously proposed approach to modeling alluvial sediment transport but avoids the use of a cell-to-cell sediment routing scheme. Comparisons of numerical solutions with analytic solutions in one and two dimensions show that the new method retains the accuracy of the explicit method while allowing timesteps several orders of magnitude longer than the maximum timesteps permitted by the explicit method. The method can be adapted to any transport law in which the expression for sediment flux is differentiable, including coupled systems in which sediment flux is a function of quantities such as soil depth.
Quantum Electromagnetic Nonlinearity Affecting Charges and Dipole Moments
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.; Shishmarev, A. A.
2017-03-01
Due to the nonlinearity of QED, a static charge becomes a magnetic dipole if placed in a magnetic field, and a magnetic monopole on the background is a combination of constant electric and magnetic fields. Already without external field, the cubic Maxwell equation for the field of a point charge has a soliton solution with a finite field energy and finite potential, the energy-momentum vector of a moving soliton being the same as that of a point massive particle. Equations are given for self-coupling dipole moments. Any theoretically found value for a multipole moment of a baryon or a meson should be subjected to nonlinear renormalization.
Charge Redistribution and Transport in Molecular Contacts.
Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J; Jelínek, Pavel; Pascual, J Ignacio
2015-09-25
The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C_{2}H_{2}) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C_{2}H_{2} molecule attributed to a weak overlap of their respective frontier orbitals.
Transport in charged colloids driven by thermoelectricity.
Würger, Alois
2008-09-05
We study the thermal diffusion coefficient D{T} of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.
Transport in mesoscopic charge density wave systems
NASA Astrophysics Data System (ADS)
Visscher, Mark Ivar
This thesis presents several theoretical studies on the electrical transport of charge density waves in mesoscopic systems. On this length scale the fields of mesoscopic physics and superconductivity merge with the physics of CDW's. The research is focussed on the demonstration of new (quantum) physics in both the quasi- particle and the collective transport modes. Using a Blonder-Tinkham-Klapwijk scattering approach, it is shown that the tunneling conductance reflects the local density of states, rather than the bulk density of states as in superconductors. The conductance depends also on the phase of the CDW relative to the interface. Characteristic oscillations remain present after an ensemble averaging. We investigate two types of Aharonov-Bohm effects in CDW conductors. It is noted that a parity effect exist for the number of electrons in the ring, which shifts the modulation of the observables with half of a flux quantum. The second problem addresses the collective CDW motion through an ensemble of columnar defects threaded by a magnetic flux. We show that the pinning properties of a single defect are periodically affected by the normal flux quantum. However, in an ensemble of uncorrelated Aharonov-Bohm rings, the effective (averaged) threshold field reflects a half flux quantum periodicity, similar to the Al'tshuler-Aronov-Spivak oscillations. These results are in qualitative agreement with experiments. We investigate the Josephson current through a superconductor-CDW-Superconductor (S/C/S) junction. For this system we formulate the kinetic equations within the Keldysh formalism. In the sliding regime, the narrow band noise frequency locks to the Josephson frequency. As a result, oscillations appear in the current-voltage characteristic, accompanied by plateaus in the collective CDW conductance. Furthermore, we investigate the 'Poor man's Josephson effect' in a C/N/C junction, in relation to the Josephson current through an S/N/S junction. The sliding
Electromagnetic radiation due to nonlinear oscillations of a charged drop
NASA Astrophysics Data System (ADS)
Shiryaeva, S. O.; Grigor'ev, A. N.; Kolbneva, N. Yu.
2016-03-01
The nonlinear oscillations of a spherical charged drop are asymptotically analyzed under the conditions of a multimode initial deformation of its equilibrium shape. It is found that if the spectrum of initially excited modes contains two adjacent modes, the translation mode of oscillations is excited among others. In this case, the center of the drop's charge oscillates about the equilibrium position, generating a dipole electromagnetic radiation. It is shown that the intensity of this radiation is many orders of magnitude higher than the intensity of the drop's radiation, which arises in calculations of the first order of smallness and is related to the drop's charged surface oscillations.
Towards a wave theory of charged beam transport: A collection of thoughts
NASA Technical Reports Server (NTRS)
Dattoli, G.; Mari, C.; Torre, A.
1992-01-01
We formulate in a rigorous way a wave theory of charged beam linear transport. The Wigner distribution function is introduced and provides the link with classical mechanics. Finally, the von Neumann equation is shown to coincide with the Liouville equation for the nonlinear transport.
Charge transport through inhomogeneous polymeric materials
NASA Astrophysics Data System (ADS)
Vakhshouri, Kiarash
The generation of unique properties through mixing of organic semiconductors has enabled improved performance and novel functionalities in organic electronic devices. In organic light emitting diodes (OLEDs), isolated phases of a second material within the photoactive layer can act as recombination centers, enhancing the overall device performance. Mixing of flexible polymer semiconductors with high-mobility small organic molecules can yield high-performance flexible thin film transistors. Solution-processed, bulk-heterojunction (BHJ), thin-film organic solar cells rely on the self-assembly of polymer/fullerene donor/acceptor mixtures to create the necessary morphology with a high interfacial area for efficient photocurrent generation. Efficient conversion of absorbed photons into photocurrent requires sufficiently intimate mixing of the donor and acceptor phases such that photogenerated excitons can easily find an interface, as well as a sufficiently large thermodynamic driving force for charge separation at the interface. At the same time, efficient transport of separated charges towards the electrodes requires a certain degree of phase segregation between the two materials, to enable ordered molecular packing within each phase and also minimize interfacial recombination. Despite the importance of creating inhomogeneous mixtures of organic semiconductors and the tremendous recent advances in the performance of the aforementioned devices, it remains a challenge to fully describe the optoelectronic properties of organic semiconductor mixtures and understand the effects of structural and morphological parameters on charge transport. Recently, it has been shown that highly regioregular poly(3-hexylthiophene) (RR-P3HT) and poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT) are promising materials for organic electronic applications due to the relatively high charge carrier mobility, high solubility in different organic solvents and acceptable film
Variational multiscale models for charge transport.
Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin
2012-01-01
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle
Variational multiscale models for charge transport
Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin
2012-01-01
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle
Charge transport in semiconductor nanocrystal quantum dots
NASA Astrophysics Data System (ADS)
Mentzel, Tamar Shoshana
In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The
Anomalous Charge Transport in Disordered Organic Semiconductors
Muniandy, S. V.; Woon, K. L.; Choo, K. Y.
2011-03-30
Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.
Charge Transport in Conjugated Block Copolymers
NASA Astrophysics Data System (ADS)
Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique
Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.
Temperature Dependence of DNA Charge Transport
NASA Astrophysics Data System (ADS)
Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason
2011-10-01
Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. DNA CT has been utilized in sensing proteins and DNA fragments, and it has been postulated that it may assist DNA damage prevention and repair. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare the cyclic and square wave voltammetry of distinct DNA sequences under identical experimental conditions. Accordingly, we compare well matched DNA duplexes to those containing a single base pair mismatch, which has been shown to attenuate CT. The yield of CT is shown to follow Arrhenius behavior, with increased activation energies for mismatches that structurally distort the duplex. These observations suggest that charge transport is thermally activated and highly dependent upon DNA conformation.
Metrology and Transport of Multiply Charged Ions
NASA Astrophysics Data System (ADS)
Kulkarni, Dhruva
The transport and interaction of singly- and multiply-charged ions with matter has been studied. The experiments were performed in an ultra-high vacuum environment. The low- and hyperthermal-energy ion beamline was used as a source of singly charged ions, while the CUEBIT facility was used as a source of multiply charged ions. The kinetic energy of the ion beam obtained from the CUEBIT is offset from the nominal value expected from the applied electrostatic potentials. These offsets were studied by measuring the kinetic energy of the beam using a retarding field analyzer (RFA). The offset was attributed to the space charge of the electron beam that is used to create the multiply charged ions. The charge density of the electron beam was varied by changing operational parameters of the electron beam, namely the electron beam current and the energy of the electron beam. Ion beams of Ar4+ and Ar8+ were extracted from the source and the offsets observed in the kinetic energy were related to the variation in the space charge potential of the electron beam. Measurements of these offsets, ranging from 100 eV/Q to 300 eV/Q, are significant and important for experiments that aim to utilize the potential energy of slow multiply charged ions. The transport of ions using capillaries has been studied to investigate the viability of ion-guiding as a means for a novel ion delivery mechanism. Results on transport through large bore capillaries (macrocapillaries) that probe both the geometric and ionguided mechanisms are presented. The angle- and position-dependent transport properties were found to depend on the material of the capillary (specifically, whether metal or insulator) and the geometry of the capillary. Rb+ ions at a kinetic energy of 1 keV were transmitted through metal and glass capillaries that were a few centimeters in length and a few millimeters in diameter. Oscillations were observed in the capillaries made of glass which were absent in the metal capillaries
Dust Charging and Transport on Surfaces
Wang, X.; Robertson, S.; Horanyi, M.
2011-11-29
In this paper, we review laboratory studies of dust transport on surfaces in plasmas, performed for a number of different mechanisms: 1) Dust particles were levitated in plasma sheaths by electrostatic forces balancing the gravitational force. 2) Dust was observed to spread over and lift off a surface that repels electrons in a plasma. 3) Dust was transported on surfaces having different secondary electron yields in plasma with an electron beam as a consequence of differential charging. 4) We also report a mechanism of dust transport by electric fields occurring at electron beam impact/shadow boundaries. These processes are candidates to explain the formation of dust ponds that were recently observed in craters on the asteroid Eros by the NEAR Shoemaker spacecraft.
Nonlinear Surface Transport in the Thin Double-Layer Limit
NASA Astrophysics Data System (ADS)
Chu, Kevin; Bazant, Martin
2006-03-01
At high applied electric fields, ionic transport within the double layer plays a significant role in the overall response of electrokinetic systems. It is well-known that surface transport processes, including surface electromigration, surface diffusion and surface advection, may impact the strength of electrokinetic phenomena by affecting both the zeta-potential and the magnitude of the tangential electric field. Therefore, it is important to include these effects when formulating the effective boundary conditions for the equations that govern electrokinetic flow outside of the double layer. In this talk, we discuss the application of a general formulation of ``surface conservation laws'' for diffuse boundary layers to derive effective boundary conditions that capture the physics of electrokinetic surface transport. Previous analyses (e.g. Deryagin & Dukhin 1969) are only valid for weak applied fields and are based on a linearization of the concentration and potential about a reference solution, but our results are fully nonlinear and hold at large applied fields as long as the double layer is sufficiently thin. We compare our nonlinear surface transport theory with existing linear analogues and apply it to the canonical problem of induced-charge electro-osmosis around a metal sphere or cylinder in a strong DC field.
Nonlinear Ballistic Transport in Graphene Devices
NASA Astrophysics Data System (ADS)
Farrokhi, M. Javad; Boland, Mathias; Nasseri, Mohsen; Strachan, Douglas
Through the extreme size scaling of electronic devices, there is great potential to achieve highly efficient and ultrafast electronics. By scaling down the channel length in graphene transistors to the point where the mean free path exceeds the relevant channel length, the electron transport can transition from a diffusive regime to an intrinsic ballistic regime. In such a regime, both quantum tunneling at the electrode-channel interface and the screening length, as determined by electrode-channel barrier width, can have a strong effect on current nonlinearity and asymmetric gate response. Here we discuss our experimental results on nangap electrodes to graphene channels that show quantitative agreement with an intrinsic ballistic model. Moreover, this behavior persists to room temperature and on standard oxide substrates, providing strong evidence for a new regime of nonlinearity in graphene devices that could be of potential use for electronic applications.
Longitudinal emittance growth due to nonlinear space charge effect
NASA Astrophysics Data System (ADS)
Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.
2012-03-01
Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.
Weak nonlinear surface-charging effects in electrolytic films.
Dean, D S; Horgan, R R
2003-11-01
A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.
Charged anisotropic matter with linear or nonlinear equation of state
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-15
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
Conformation sensitive charge transport in conjugated polymers
Mattias Andersson, L.; Hedström, Svante; Persson, Petter
2013-11-18
Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells.
Nonlinear chiral plasma transport in rotating coordinates
NASA Astrophysics Data System (ADS)
Dayi, Ömer F.; Kilinçarslan, Eda
2017-08-01
The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.
Modeling field emitter arrays using nonlinear line charge distribution
NASA Astrophysics Data System (ADS)
Biswas, Debabrata; Singh, Gaurav; Kumar, Raghwendra
2016-09-01
Modeling high aspect ratio field emitter arrays is a computational challenge due to the enormity of the resources involved. The line charge model (LCM) provides an alternate semi-analytical tool that has been used to model both infinite as well as finite sized arrays. It is shown that the linearly varying charge density used in the LCM generically mimics ellipsoidal emitters rather than a Cylindrical-Post-with-an-Ellipsoidal-Tip (CPET) that is typical of nanowires. Furthermore, generalizing the charge density beyond the linear regime allows for modeling shapes that are closer to a CPET. Emitters with a fixed base radius and a fixed apex radius are studied with a view to understanding the effect of nonlinearity on the tip enhancement factor and the emitter current in each case. Furthermore, an infinite square array of the CPET emitters is studied using the nonlinear line charge model, each having a height h =1500 μm and a base radius b =1.5 μm . It is found that for moderate external field strengths ( 0.3 -0.4 V /μm ), the array current density falls sharply for lattice spacings smaller than 4/3 h . Beyond this value, the maximal array current density can be observed over a range of lattice spacings and falls gradually thereafter.
Nonlinear evolution and final fate of (charged) superradiant instability
NASA Astrophysics Data System (ADS)
Green, Stephen; Bosch, Pablo; Lehner, Luis
2016-03-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordstrom-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Charge transport in single crystal organic semiconductors
NASA Astrophysics Data System (ADS)
Xie, Wei
Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form
Transport of 3D space charge dominated beams
NASA Astrophysics Data System (ADS)
Lü, Jian-Qin
2013-10-01
In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code.
Thermodynamics of charged black holes with a nonlinear electrodynamics source
Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian
2009-11-15
We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shown that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.
Thermodynamics of charged black holes with a nonlinear electrodynamics source
NASA Astrophysics Data System (ADS)
González, Hernán A.; Hassaïne, Mokhtar; Martínez, Cristián
2009-11-01
We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shown that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordström solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.
The charge state of electrostatically transported dust on regolith surfaces
NASA Astrophysics Data System (ADS)
Schwan, J.; Wang, X.; Hsu, H.-W.; Grün, E.; Horányi, M.
2017-04-01
The charge state of dust particles on regolith surfaces exposed to ultraviolet radiation or plasma is investigated for understanding the role of electrostatic dust transport in the surface evolution of airless planetary bodies. Our charge measurement shows that the regolith dust that can be electrostatically transported or lofted carries large negative charges. This result is consistent with our "patched charge model," which predicts that dust particles forming microcavities in the regolith surfaces can attain large negative charges by collecting photoelectrons and/or secondary electrons emitted from neighboring particles and the resulting repulsive forces between these negatively charged particles lead to their mobilization. The observed negative charge polarity is contrary to the generally expected positive charges on the regolith dust emitting photoelectrons. The measured negative charges are orders of magnitude larger than the prediction by classical charging models. Our laboratory measurements provide critical initial charging conditions for regolith dust dynamics studies.
Nonlinear stability in the transport of intense bunched beams
NASA Astrophysics Data System (ADS)
Corrêa da Silva, Thales M.; Rizzato, Felipe B.; Pakter, Renato; Levin, Yan
2016-11-01
The paper investigates the nonlinear coupling of envelope modes of oscillation for intense bunched beams. Initially, the analysis concentrates on the case of spherically symmetric beams for which longitudinal and transverse focusing forces are assumed to be the same. It is investigated how externally induced spherically symmetric breathing oscillations may nonlinearly drive the growth of ellipsoidal modes which can break the spherical beam symmetry. Next, a more general case in which the focusing forces are not symmetric such that the matched beam already presents an ellipsoidal shape is studied. It is found that depending on the parameters of the system, even a very small mismatch amplitude can drive an instability, which leads to an effective coupling of longitudinal and transversal envelope oscillations by means of the space-charge forces. Use is made of Poincaré plots and the stability index of periodic orbits to perform a detailed analysis of the location of the instability in the parameter space and how it affects the beam transport. Self-consistent numerical simulations are performed in order to verify the onset of the nonlinear instability and its effect on the evolution of the RMS size and emittance of the beam.
Nonlinear potential model of space-charge-limited electron beams
Litz, M.S.; Golden, J.
1995-11-01
A one-dimensional (1D) time-varying nonlinear theory based on the Duffing equation is applied to space-charge limited beams and specifically vircators. This theory classifies test particle trajectories in a modulated nonlinear potential. Two predictions of the theory that can be directly compared to experiment are the final state of electron trajectories and the oscillation frequency of the electrons m the potential well. Experimental measurements of electron flux recorded along the vircator chamber wall correlates well with the numerically integrated final state of electron trajectory in the 1D theory. The oscillation frequency measured in the experiment is shown to be a better match to the oscillation frequency calculated from the nonlinear potential as compared to a parabolic potential (that results from a linear restoring force). In the experiment, random initial conditions arise from beam thermalization and nonuniform electron emission at the surface of the cathode. However, these characteristics alone do not explain the experimentally observed fluctuations in rf power and frequency. The predictions of the time-varying nonlinear potential theory clearly exhibits trends that were observed in the experimental results, in the form of classes of particle trajectories, fluctuations in particle asymptotic states, and particle motion sensitive to the shape of the virtual cathode.
Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam; Momennia, M.
2016-03-01
Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions.
DNA Charge Transport over 34 nm
Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.
2011-01-01
Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation that is accessible to protein binding. Similar electron transfer rates are measured through 100-mer and 17-mer monolayers, consistent with rate-limiting electron tunneling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses most reports of molecular wires. PMID:21336329
Moderately nonlinear diffuse-charge dynamics under an ac voltage
NASA Astrophysics Data System (ADS)
Stout, Robert F.; Khair, Aditya S.
2015-09-01
The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.
Moderately nonlinear diffuse-charge dynamics under an ac voltage.
Stout, Robert F; Khair, Aditya S
2015-09-01
The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.
Charge quantization in the CP(1) nonlinear σ-model
NASA Astrophysics Data System (ADS)
Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.
2014-01-01
We investigate the consistency conditions for matter fields coupled to the four-dimensional (N=1 supersymmetric) CP(1) nonlinear sigma model (the coset space SU(2/U(1). We find that consistency requires that the U(1 charge of the matter be quantized, in units of half of the U(1 charge of the Nambu-Goldstone (NG) boson, if the matter has a nonsingular kinetic term and the dynamics respect the full group SU(2. We can then take the linearly realized group U(1 to comprise the weak hypercharge group U(1 of the Standard Model. Thus we have charge quantization without a Grand Unified Theory (GUT), completely avoiding problems like proton decay, doublet-triplet splitting, and magnetic monopoles. We briefly investigate the phenomenological implications of this model-building framework. The NG boson is fractionally charged and completely stable. It can be naturally light, avoiding constraints while being a component of dark matter or having applications in nuclear physics. We also comment on the extension to other NLSMs on coset spaces, which will be explored more fully in a followup paper.
Simulating charge transport in organic semiconductors and devices: a review
NASA Astrophysics Data System (ADS)
Groves, C.
2017-02-01
Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.
Charge Transport Characterization of Novel Electronic Materials.
NASA Astrophysics Data System (ADS)
Marcy, Henry Orlando, 5th.
1990-01-01
The work presented includes analysis of electronic transport data and related measurements for the following types of materials: molecular metals and conducting polymers based upon phthalocyanine (Pc) building blocks, new composites of conducting polymers with inorganic polymeric and layered materials, and both bulk and thin film samples of the high -T_{rm c} ceramic superconductors. To successfully study such a wide spectrum of materials, the charge transport instrumentation has evolved into multiple computer-controlled experimental arrangements which process data for temperature dependent ac and dc conductivity, thermoelectric power, critical current density, and other measurements, over the temperature range of 1.5 K to 400 K. The phthalocyanine-based molecular metals and conducting polymers exhibit some of the highest reported conductivities for environmentally stable organic conductors, and possess a unique structure which is inherently resistant to large structural transformations upon donor/acceptor doping. These properties are demonstrated primarily by results for Ni(Pc)(ClO_4) _{rm y} and { (Si(Pc)O) X_{rm y}}_{rm n}. The rigidly-enforced structure of the latter system of materials allows for controllable tuning of the band-filling and hence, the charge transport properties of an organic conductor, from insulating to metal-like behavior, without any major structural alterations of the polymeric backbone. Other types of polymeric samples for which results are presented consist of composite fibers formed from the rigid rod polymers, Kevlar and PBT, "alloyed" with the (Pc)-based conducting polymers, and new microlaminates formed by intercalating various conducting polymers into the van der Waals gap of inorganic, layered host materials. Significant success has been achieved in the fabrication of superconducting films of Y-Ba-Cu-O, Bi-Sr(Pb)-Ca-Cu -O, and Tl-Ba-Ca-Cu-O by organometallic chemical vapor deposition. Results are also presented for films prepared
Preface: Charge transport in nanoscale junctions
NASA Astrophysics Data System (ADS)
Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas
2008-09-01
Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at
Lateral Charge Transport in Silicon Nanomembranes
NASA Astrophysics Data System (ADS)
Hu, Weiwei
Silicon nanomembranes, also called SiNMs, Si thin sheets or films, are a great platform to study surface sciences, since the bulk is diminished and the surface-to-volume ratio is large. In a single crystalline material, atoms on the surface experience different forces, electric fields, thermodynamic surroundings, etc., than those within the bulk. Therefore, unique structural, mechanical, electronic, optical, and many other properties associated with surfaces overweigh bulk effects; novel phenomena emerge. In particular, electronic features of Si are of significance due to the extensive use of Si in integrated circuit devices and biochemical sensor technologies. As a result, especially with the size of transistors quickly decreasing nowadays, the exploration of electronic characteristics of Si surfaces become much more significant. This is also interesting as a topic within the area of fundamental surface science. Silicon-on-insulator (SOI) provides a new structure for studying charge transport in the SiNM, which is monocrystalline and sits on top of the SOI wafer. I use SOI based SiNMs with two surface orientations: Si (001) and Si (111). The former is pervasive in industrial applications while the latter has interesting metallic surface states when 7x7 reconstruction occurs on a clean surface. My goal is to measure/infer the sheet conductance in the true surface layer with different surface situations, and to further investigate the surface band structure and how carriers distribute and move accordingly. The biggest challenge is to eliminate interferences, e.g., bulk effects. The following are two solutions. 1) The thickness of the used SiNMs spans 40 nm to 500 nm, with a nominal doping level of 1015 cm -3 in our experiment. A straightforward calculation of areal dopant density indicates that charge carriers from the extrinsic doping are 1˜2 orders of magnitude fewer than the trap states at the interface between the buried oxide in SOI and the top SiNM, meaning
DNA charge transport over 34 nm
NASA Astrophysics Data System (ADS)
Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.
2011-03-01
Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.
31 CFR 337.2 - Transportation charges and risks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Transportation charges and risks. 337.2 Section 337.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... FEDERAL HOUSING ADMINISTRATION DEBENTURES Certificated Debentures § 337.2 Transportation charges and risks...
31 CFR 337.2 - Transportation charges and risks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Transportation charges and risks. 337.2 Section 337.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... GOVERNING FEDERAL HOUSING ADMINISTRATION DEBENTURES Certificated Debentures § 337.2 Transportation charges...
Metal oxide charge transport material doped with organic molecules
Forrest, Stephen R.; Lassiter, Brian E.
2016-08-30
Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.
Brownian dynamics determine universality of charge transport in ionic liquids
Sangoro, Joshua R; Iacob, Ciprian; Mierzwa, Michal; Paluch, Marian; Kremer, Friedrich
2012-01-01
Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.
31 CFR 337.2 - Transportation charges and risks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Transportation charges and risks. 337.2 Section 337.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... FEDERAL HOUSING ADMINISTRATION DEBENTURES Certificated Debentures § 337.2 Transportation charges and risks...
31 CFR 337.2 - Transportation charges and risks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Transportation charges and risks. 337.2 Section 337.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... FEDERAL HOUSING ADMINISTRATION DEBENTURES Certificated Debentures § 337.2 Transportation charges and risks...
Cosmin Obreja, Alexandru; Cristea, Dana; Radoi, Antonio; Gavrila, Raluca; Comanescu, Florin; Kusko, Cristian; Mihalache, Iuliana
2014-08-25
We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; De, Simanta
2016-09-01
The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.
Thermodynamic and quantum bounds on nonlinear dc thermoelectric transport
NASA Astrophysics Data System (ADS)
Whitney, Robert S.
2013-03-01
I consider the nonequilibrium dc transport of electrons through a quantum system with a thermoelectric response. This system may be any nanostructure or molecule modeled by the nonlinear scattering theory, which includes Hartree-like electrostatic interactions exactly, and certain dynamic interaction effects (decoherence and relaxation) phenomenologically. This theory is believed to be a reasonable model when single-electron charging effects are negligible. I derive three fundamental bounds for such quantum systems coupled to multiple macroscopic reservoirs, one of which may be superconducting. These bounds affect nonlinear heating (such as Joule heating), work and entropy production. Two bounds correspond to the first law and second law of thermodynamics in classical physics. The third bound is quantum (wavelength dependent), and is as important as the thermodynamic ones in limiting the capabilities of mesoscopic heat engines and refrigerators. The quantum bound also leads to Nernst's unattainability principle that the quantum system cannot cool a reservoir to absolute zero in a finite time, although it can get exponentially close.
Nonlinear Acceleration Methods for Even-Parity Neutron Transport
W. J. Martin; C. R. E. De Oliveira; H. Park
2010-05-01
Convergence acceleration methods for even-parity transport were developed that have the potential to speed up transport calculations and provide a natural avenue for an implicitly coupled multiphysics code. An investigation was performed into the acceleration properties of the introduction of a nonlinear quasi-diffusion-like tensor in linear and nonlinear solution schemes. Using the tensor reduced matrix as a preconditioner for the conjugate gradients method proves highly efficient and effective. The results for the linear and nonlinear case serve as the basis for further research into the application in a full three-dimensional spherical-harmonics even-parity transport code. Once moved into the nonlinear solution scheme, the implicit coupling of the convergence accelerated transport method into codes for other physics can be done seamlessly, providing an efficient, fully implicitly coupled multiphysics code with high order transport.
Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel
Batygin, Yuri Konstantinovich; Scheinker, Alexander; Kurennoy, Sergey; ...
2016-01-29
An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. We discuss a new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry. The resulting solution is applied to the problemmore » of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.« less
Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel
Batygin, Yuri Konstantinovich; Scheinker, Alexander; Kurennoy, Sergey; Li, Chao
2016-01-29
An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. We discuss a new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.
Sonnad, Kiran G.; Cary, John R.
2015-04-15
A procedure to obtain a near equilibrium phase space distribution function has been derived for beams with space charge effects in a generalized periodic focusing transport channel. The method utilizes the Lie transform perturbation theory to canonically transform to slowly oscillating phase space coordinates. The procedure results in transforming the periodic focusing system to a constant focusing one, where equilibrium distributions can be found. Transforming back to the original phase space coordinates yields an equilibrium distribution function corresponding to a constant focusing system along with perturbations resulting from the periodicity in the focusing. Examples used here include linear and nonlinear alternating gradient focusing systems. It is shown that the nonlinear focusing components can be chosen such that the system is close to integrability. The equilibrium distribution functions are numerically calculated, and their properties associated with the corresponding focusing system are discussed.
NONLINEAR EFFECTS IN PARTICLE TRANSPORT IN STOCHASTIC MAGNETIC FIELDS
Vlad, M.; Spineanu, F.; Croitoru, A.
2015-12-10
Collisional particle transport in stochastic magnetic fields is studied using a semi-analytical method. The aim is to determine the influence of the nonlinear effects that occur in the magnetic field line random walk on particle transport. We show that particle transport coefficients can be strongly influenced by the magnetic line trapping. The conditions that correspond to these nonlinear regimes are determined. We also analyze the effects produced by the space variation of the large-scale magnetic field. We show that an average drift is generated by the gradient of the magnetic field, which strongly increases and reverses its orientation in the nonlinear regime.
Charged relativistic fluids and non-linear electrodynamics
NASA Astrophysics Data System (ADS)
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
DNA Charge Transport within the Cell
Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.
2015-01-01
The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include Endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within E. coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. Based on these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780
Nonlinear ion transport in liquid and solid electrolytes
NASA Astrophysics Data System (ADS)
Roling, B.; Patro, L. N.; Burghaus, O.; Gräf, M.
2017-08-01
This paper describes nonlinear ion transport properties of liquid and solid electrolytes. Typically, the relation between ionic current density and electric field becomes nonlinear at electric fields above 50-100 kV/cm. We review the 1st and 2nd Wien effect found in classical strong and weak electrolyte solutions as well as the strong nonlinear ion transport effects observed for inorganic glasses and for polymer electrolytes. Furthermore, we give an overview over models describing nonlinear ion transport in electrolyte solutions, in glasses and in polymers. Recent results are presented for the nonlinear ionic conductivity of supercooled ionic liquids. We show that supercooled ionic liquids exhibit anomalous Wien effects, which are clearly distinct from the classical Wien effects. We also discuss the frequency dependence of higher-order conductivity and permittivity spectra of these liquids.
Charge transport in tri-p-tolylamine doped trinaphthalylbenzene glass
NASA Astrophysics Data System (ADS)
Lin, Liang-Bih; O'Reilly, James M.; Magin, Edward H.; Weiss, David S.; Jenekhe, Samson A.
2000-09-01
The charge transport properties of tri-p-tolylamine (TTA) doped trinaphthalylbenzene have been measured as a function of electric field and temperature. The charge mobilities of the composite are comparable to but somewhat lower than that of TTA doped polystyrene, a nonpolar polymeric host, at similar weight fractions. We suggest that the difference is due to inhomogeneity between the host and the dopant. The results suggest that, similar to polymer hosts in molecularly doped polymers, the molecular host only functions as an inert diluter and does not directly participate in the charge transport manifold. The results also substantiate the importance of molecular packing to charge hopping in disordered organic materials. The charge mobility data are analyzed with a disorder model due to Bässler and coworkers and a recently modified expression due to Novikov and coworkers [Phys. Rev. Lett. 81, 4472 (1998)]. Both models provide adequate descriptions of charge transport in organic amorphous materials.
Charge transport mechanism in lead oxide revealed by CELIV technique
Semeniuk, O.; Juska, G.; Oelerich, J.-O.; Wiemer, M.; Baranovskii, S. D.; Reznik, A.
2016-01-01
Although polycrystalline lead oxide (PbO) belongs to the most promising photoconductors for optoelectronic and large area detectors applications, the charge transport mechanism in this material still remains unclear. Combining the conventional time-of-flight and the photo-generated charge extraction by linear increasing voltage (photo-CELIV) techniques, we investigate the transport of holes which are shown to be the faster carriers in poly-PbO. Experimentally measured temperature and electric field dependences of the hole mobility suggest a highly dispersive transport. In order to analyze the transport features quantitatively, the theory of the photo-CELIV is extended to account for the dispersive nature of charge transport. While in other materials with dispersive transport the amount of dispersion usually depends on temperature, this is not the case in poly-PbO, which evidences that dispersive transport is caused by the spatial inhomogeneity of the material and not by the energy disorder. PMID:27628537
Beam transport and space charge compensation strategies (invited).
Meusel, O; Droba, M; Noll, D; Schulte, K; Schneider, P P; Wiesner, C
2016-02-01
The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.
Beam transport and space charge compensation strategies (invited)
Meusel, O. Droba, M.; Noll, D.; Schulte, K.; Schneider, P. P.; Wiesner, C.
2016-02-15
The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.
Yu, X.; Hsu, T.-J.; Hanes, D.M.
2010-01-01
Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.
Charge Transport in Reactive Mesogens and Liquid Crystal Polymer Networks
NASA Astrophysics Data System (ADS)
Kreouzis, T.; Whitehead, K. S.
Understanding the mechanisms of charge transport in organic semiconductor electronic devices is paramount to optimising performance. This chapter aims to provide an insight into methods of measuring and analysing charge transport with specific focus on cross-linkable systems, i.e., reactive mesogens (RMs) and liquid crystalline (LC) polymer networks. When cross-linked in a mesophase, RMs form solid layers which preserve the mesophase charge transport properties over extended temperature ranges. In contrast, liquid crystalline polymer networks form solid layers but continue to undergo thermotropic transitions as in the original system and carrier mobilities can be enhanced compared to the liquid crystal. Here we examine how the versatility of these compounds brings about such complex behaviour. We see that chemical factors such as reactive end groups and method of cross-linking affect the hole and electron transport characteristics separately and that physical changes in morphology and phase also significantly change the charge transport properties.
Charge transport properties of nanocrystals studied by electrostatic force microscopy
NASA Astrophysics Data System (ADS)
Hu, Zonghai
2005-03-01
Charge transport in semiconductor and metal nanocrystal multilayers between two electrodes is probed by electrostatic force microscopy. The in-plane charge diffusion coefficients are deduced from the charge distribution imaged in real time. Temperature dependence of the transport properties and effects of photoionization and oxidation are also investigated. Implications of these results on the transport mechanisms will be discussed. This work was supported by the ONR Young Investigator Award N000140410489, the American Chemical Society (ACS) PRF award # 41256-G10, and the startup funds at the University of Pennsylvania. MF acknowledges funding from the NSF IGERT program (Grant #DGE-0221664) and SENS.
Charge Transport by Superexchange in Molecular Host-Guest Systems.
Symalla, Franz; Friederich, Pascal; Massé, Andrea; Meded, Velimir; Coehoorn, Reinder; Bobbert, Peter; Wenzel, Wolfgang
2016-12-30
Charge transport in disordered organic semiconductors is generally described as a result of incoherent hopping between localized states. In this work, we focus on multicomponent emissive host-guest layers as used in organic light-emitting diodes (OLEDs), and show using multiscale ab initio based modeling that charge transport can be significantly enhanced by the coherent process of molecular superexchange. Superexchange increases the rate of emitter-to-emitter hopping, in particular if the emitter molecules act as relatively deep trap states, and allows for percolation path formation in charge transport at low guest concentrations.
Charge Transport by Superexchange in Molecular Host-Guest Systems
NASA Astrophysics Data System (ADS)
Symalla, Franz; Friederich, Pascal; Massé, Andrea; Meded, Velimir; Coehoorn, Reinder; Bobbert, Peter; Wenzel, Wolfgang
2016-12-01
Charge transport in disordered organic semiconductors is generally described as a result of incoherent hopping between localized states. In this work, we focus on multicomponent emissive host-guest layers as used in organic light-emitting diodes (OLEDs), and show using multiscale ab initio based modeling that charge transport can be significantly enhanced by the coherent process of molecular superexchange. Superexchange increases the rate of emitter-to-emitter hopping, in particular if the emitter molecules act as relatively deep trap states, and allows for percolation path formation in charge transport at low guest concentrations.
Nonlinear and frequency-dependent transport phenomena in low-dimensional conductors
NASA Astrophysics Data System (ADS)
Grüner, G.
1983-07-01
Nonlinear and frequency-dependent electrical conductivity is more a rule than an exception in materials with highly anisotropic electronic structure. Disorder leads to localization of the electronic wave functions, and the temperature-( T), electric field-( E), and frequency (ω)-dependent transport are due to random transfer rates between localized single particle states, a process fundamentally different from band transport. Interactions lead to collective modes, represented by a periodic modulation of the charge or spin density. The charge density wave (CDW) mode is pinned by impurities, but for small pinning forces, it can be depinned by moderate electric fields, leading to nonlinear conductivity due to a sliding CDW. Both classical and quantum models account for the field and frequency dependent response; they also describe current oscillation phenomena and effects which arise when both dc and ac excitations are applied. For strong pinning the collective mode cannot be depinned at small electric field strengths, but nonlinear (soliton) excitations of the collective modes may be responsible for the nonlinear conductivity observed. In all these cases field-and frequency-dependent transport is strongly related. This feature is reproduced by various models, and therefore a detailed study of σ( T, E,ω) is called for to distinguish between the various sources of novel transport phenomena in these new types of solids.
Modelling space-charge limited transport in discotic liquid crystals
NASA Astrophysics Data System (ADS)
Lever, L.; Bushby, R. J.; Kelsall, R. W.
2006-05-01
Using a self-consistent Monte Carlo/Poisson algorithm, we investigate space-charge limited conduction in discotic liquid crystal time of flight (TOF) experiments. The charge transport mechanism is via a semi-delocalised banding process, and two mechanisms of photo-generation of charge carriers are considered: excitons generated by the laser pulse, which quench at the anode, and processes, such as the Onsager mechanism, that lead to direct generation of free electron/hole pairs within the bulk. The nature of the space-charge limited TOF transient is investigated as a function of quantum yield of charge carriers and as a function of applied potential.
Enhanced energy transport owing to nonlinear interface interaction.
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-20
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications.
Enhanced energy transport owing to nonlinear interface interaction
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-01
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363
Perturbation theory for charged-particle transport in one dimension
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Lamkin, S. L.
1975-01-01
Perturbation theory, when applied to charged-particle transport, generates a series solution that requires a double quadrature per term. The continuity of higher-order terms leads to numerical evaluation of the series. The high rate of convergence of the series makes the method a practical tool for charged-particle transport problems. The coupling of the neutron component in the case of proton transport in tissue does not greatly alter the rate of convergence. The method holds promise for a practical high-energy proton transport theory.
Physics of Nonlinear Transport in Semiconductors.
1979-10-11
quantum transport , carrier-carrier interactions and screening, non-equilibrium phonon interactions, experimental aspects of hot carrier transport, high magnetic field effects, device effects, noise and diffusion, and optical excitation of hot carriers.
Nonlinear delta(f) Simulations of Collective Effects in Intense Charged Particle Beams
Hong Qin
2003-01-21
A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, et al., in Proc. of the Particle Accelerator Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles.
Control of Heat and Charge Transport in Nanostructured Hybrid Materials
2015-07-21
Lee, Joo-Hyoung, Galli, Giulia A., and Grossman, Jeffrey C., Nanoporous Si as an Efficient Thermoelectric Material . Nano Letters 8 (11), 3750 (2008...AFRL-OSR-VA-TR-2015-0204 CONTROL OF HEAT AND CHARGE TRANSPORT IN NANOSTRUCTURED HYBRID MATERIALS Akram Boukai UNIVERSITY OF MICHIGAN Final Report 07...SUBTITLE Control of Heat and Charge Transport in Nanostructured Hybrid Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0058 5c. PROGRAM
Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift
2015-05-18
SECURITY CLASSIFICATION OF: We studied the temperature-dependence of mass and charge transport ( ionic conductivity, self-diffusion, fluidity, and...Shift Report Title We studied the temperature-dependence of mass and charge transport ( ionic conductivity, self-diffusion, fluidity, and dielectric...and their electrolytes over a wide range of salt concentrations (including ionic liquids!). We also developed a molecular-level picture of mass
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.
1992-01-01
In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.
Ab-Initio Theory of Charge Transport in Organic Crystals
NASA Astrophysics Data System (ADS)
Hannewald, K.; Bobbert, P. A.
2005-06-01
A theory of charge transport in organic crystals is presented. Using a Holstein-Peierls model, an explicit expression for the charge-carrier mobilities as a function of temperature is obtained. Calculating all material parameters from ab initio calculations, the theory is applied to oligo-acene crystals and a brief comparison to experiment is given.
DNA Charge Transport for Sensing and Signaling
Sontz, Pamela A.; Muren, Natalie B.; Barton, Jacqueline K.
2012-01-01
Conspectus The DNA duplex is an exquisite macromolecular array that stores genetic information to encode proteins and regulate pathways, but its unique structure imparts chemical function that allows it also to mediate charge transport (CT). We have utilized diverse platforms to probe DNA CT, using spectroscopic, electrochemical, and even genetic methods. These studies have established powerful features of DNA CT chemistry. DNA CT can occur over long molecular distances as long as the bases are well stacked; perturbations in base stacking as arise with single base mismatches, DNA lesions, and the binding of some proteins that kink the DNA, all serve to inhibit DNA CT. Significantly, single molecule studies of DNA CT show that ground state CT can occur over 34 nm as long as the duplex is well stacked; one single base mismatch inhibits CT. The DNA duplex is an effective sensor for the integrity of the base pair stack. Moreover the efficiency of DNA CT is what one would expect for a stack of graphite sheets, equivalent to the stack of DNA base pairs, and independent of the sugar-phosphate backbone. Since DNA CT offers a means to carry out redox chemistry from a distance, we have considered how this chemistry might be used for long range signaling in a biological context. We have taken advantage of our chemical probes and platforms to characterize DNA CT also in the context of the cell. CT can occur over long distances, perhaps funneling damage to particular sites and insulating others from oxidative stress. Significantly, transcription factors that activate the genome to respond to oxidative stress can also be activated from a distance through DNA CT. Numerous proteins work to maintain the integrity of the genome and increasingly they have been found to contain [4Fe-4S] clusters that do not appear to carry out either structural or enzymatic roles. Using electrochemical methods, we find that DNA binding shifts the redox potentials of the clusters, activating them
Anomalous transport and generalized axial charge
NASA Astrophysics Data System (ADS)
Kirilin, Vladimir P.; Sadofyev, Andrey V.
2017-07-01
In this paper we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then, we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.
Topological charge algebra of optical vortices in nonlinear interactions
NASA Astrophysics Data System (ADS)
Shutova, Mariia; Zhdanova, Alexandra; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei
2016-05-01
Optical vortices find their use in multiple areas of research and technology; in particular, they provide an opportunity to generate short-pulse spatially-structured optical beams, which can be used to study ultrafast processes. In our work, we explore interactions of femtosecond optical vortices in nonlinear crystals. We investigate the transfer of orbital angular momentum among multiple (applied and generated) beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape the applied pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We then examine the transfer of optical angular momentum into each sideband and find that it follows a certain law that can be derived from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for the interacting beams. Presenter is supported by the Herman F. Heep and Minnie Belle Heep Texas A&M University Endowed Fund administered by the Texas A&M Foundation
Charge transport in electrically doped amorphous organic semiconductors.
Yoo, Seung-Jun; Kim, Jang-Joo
2015-06-01
This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ambipolar charge transport in "traditional" organic hole transport layers.
Khademi, S; Song, J Y; Wyatt, P B; Kreouzis, T; Gillin, W P
2012-05-02
Organic semiconductors are often labeled as electron or hole transport materials due to the primary role they perform in devices. However, despite these labels we have shown using time-of-flight that two of the traditional "hole transport materials" TPD and NPB are actually excellent electron transporters the electron transport properties of which are comparable to those for holes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scaling Theory for Percolative Charge Transport in Disordered Molecular Semiconductors
NASA Astrophysics Data System (ADS)
Cottaar, J.; Koster, L. J. A.; Coehoorn, R.; Bobbert, P. A.
2011-09-01
We present a scaling theory for charge transport in disordered molecular semiconductors that extends percolation theory by including bonds with conductances close to the percolating one in the random-resistor network representing charge hopping. A general and compact expression is given for the charge mobility for Miller-Abrahams and Marcus hopping on different lattices with Gaussian energy disorder, with parameters determined from numerically exact results. The charge-concentration dependence is universal. The model-specific temperature dependence can be used to distinguish between the hopping models.
Scaling theory for percolative charge transport in disordered molecular semiconductors.
Cottaar, J; Koster, L J A; Coehoorn, R; Bobbert, P A
2011-09-23
We present a scaling theory for charge transport in disordered molecular semiconductors that extends percolation theory by including bonds with conductances close to the percolating one in the random-resistor network representing charge hopping. A general and compact expression is given for the charge mobility for Miller-Abrahams and Marcus hopping on different lattices with Gaussian energy disorder, with parameters determined from numerically exact results. The charge-concentration dependence is universal. The model-specific temperature dependence can be used to distinguish between the hopping models.
Charge accumulation due to spin transport in magnetic multilayers
NASA Astrophysics Data System (ADS)
Zhu, Yao-Hui; Xu, Deng-Hui; Geng, Ai-Cong
2014-08-01
Starting with the Valet-Fert theory of the current-perpendicular-to-plane giant magnetoresistance, we studied the charge accumulation due to spin transport in magnetic multilayers by solving Poisson's equation analytically. Our results show that, in ferromagnetic layers, the charge accumulation has two exponential terms with opposite signs and different decaying lengths: the Thomas-Fermi screening length (on the order of angstrom) and the spin diffusion length (tens of nm in 3d ferromagnetic metals). The charge accumulation on the scale of the screening length is spin-unpolarized and also present in spin-independent transport in nonmagnetic multilayers. However, the charge accumulation on the scale of the spin diffusion length is spin-polarized and shows up only in ferromagnetic layers. Our analysis also provides new insights into the widely used quasi-neutrality approximation, which neglects the charge accumulation.
Nonlinear transport processes in tokamak plasmas. I. The collisional regimes
Sonnino, Giorgio; Peeters, Philippe
2008-06-15
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.
Nonlinear transport processes in tokamak plasmas. I. The collisional regimes
NASA Astrophysics Data System (ADS)
Sonnino, Giorgio; Peeters, Philippe
2008-06-01
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ("Onsager") transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlüter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 102. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 102 when the nonlinear contributions are duly taken into account but, there is still a factor of 102 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.
Understanding dispersive charge-transport in crystalline organic-semiconductors.
Yavuz, Ilhan; Lopez, Steven A
2016-12-21
The effect of short-range order and dispersivity on charge-transport for organic crystalline semiconductors are important and unresolved questions. This exploration is the first to discern the role of short-range order on charge-transport for crystalline organic semiconductors. A multimode computational approach (including Molecular Dynamics and kinetic Monte Carlo simulations) is employed to understand the hole mobility dispersivity of crystalline organic semiconductors. Crystalline organic solids feature a mesoscale region where dispersive charge-transport dominates; our calculations show a clear transition of charge-mobility from non-dispersive to dispersive. An empirical relationship between the dispersive and non-dispersive transport transition region and ideal simulation box thickness is put forth. The dispersive to non-dispersive transition region occurs when energetic disorder approaches 72 meV. Non-dispersive transport is observed for simulation box sizes greater than 3.7 nm, which corresponds to approximately 12 π-stacked layers in typical π-stacked organic solids. A qualitative relationship is deduced between the variability of measured dispersive hole and variability of computed dispersive hole mobilities and system size. This relationship will guide future charge-transport investigations of condensed-phase organic systems.
Transport equations for subdiffusion with nonlinear particle interaction.
Straka, P; Fedotov, S
2015-02-07
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.
Momentum transport from nonlinear mode coupling of magnetic fluctuations
Hansen; Almagri; Craig; Den Hartog DJ; Hegna; Prager; Sarff
2000-10-16
A cause of observed anomalous plasma momentum transport in a reversed-field pinch is determined experimentally. Magnetohydrodynamic theory predicts that nonlinear interactions involving triplets of tearing modes produce internal torques that redistribute momentum. Evidence for the nonlinear torque is acquired by detecting the correlation of momentum redistribution with the mode triplets, with the elimination of one of the modes in the triplet, and with the external driving of one of the modes.
The Asymmetric Active Coupler: Stable Nonlinear Supermodes and Directed Transport
Kominis, Yannis; Bountis, Tassos; Flach, Sergej
2016-01-01
We consider the asymmetric active coupler (AAC) consisting of two coupled dissimilar waveguides with gain and loss. We show that under generic conditions, not restricted by parity-time symmetry, there exist finite-power, constant-intensity nonlinear supermodes (NS), resulting from the balance between gain, loss, nonlinearity, coupling and dissimilarity. The system is shown to possess non-reciprocal dynamics enabling directed power transport functionality. PMID:27640818
Modeling taper charge with a non-linear equation
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1985-01-01
Work aimed at modeling the charge voltage and current characteristics of nickel-cadmium cells subject to taper charge is presented. Work reported at previous NASA Battery Workshops has shown that the voltage of cells subject to constant current charge and discharge can be modeled very accurately with the equation: voltage = A + (B/(C-X)) + De to the -Ex where A, B, D, and E are fit parameters and x is amp-hr of charge removed during discharge or returned during charge. In a constant current regime, x is also equivalent to time on charge or discharge.
Ion and water transport in charge-modified graphene nanopores
NASA Astrophysics Data System (ADS)
Qiu, Ying-Hua; Li, Kun; Chen, Wei-Yu; Si, Wei; Tan, Qi-Yan; Chen, Yun-Fei
2015-10-01
Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).
Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M
2010-04-01
Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.
Charge Transport Properties in Polymer Brushes
NASA Astrophysics Data System (ADS)
Moog, Mark; Tsui, Frank; Vonwald, Ian; You, Wei
Electrical transport properties in poly(3-methyl)thiophene (P3MT) brushes have been studied. The P3MT brushes correspond to a new type of surface-tethered, vertically oriented conjugated molecular wires, sandwiched between two metallic electrodes to form the electrode-molecule-electrode (EME) devices. P3MT is a highly conjugated polymer, a ''workhorse'' material for organic electronics and photonics. The P3MT brushes were grown on ITO surfaces with controlled length (between 2 and 100 nm). The top electrodes were transfer-printed Au films with lateral dimensions between 200 nm and 50 μm. I-V and differential conductance measurements were performed using conductive AFM and 4-terminal techniques. Tunneling and field-emission measurements in EME devices with molecular lengths < 5 nm show HOMO mediated direct hole tunneling with energy barriers of 0.3 and 0.5 eV at the respective interfaces with ITO and Au. The transport properties in longer brushes are indicative of the two quasi-Ohmic interfaces with a characteristic offset in the conductance minimum of 0.12 V biased toward the ITO. Temperature dependent parameters have been examined at various molecular lengths. The drift mobility and the interplay between intra- and intermolecular transport have been investigated.
Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors
2011-01-01
Charge carrier dynamics in an organic semiconductor can often be described in terms of charge hopping between localized states. The hopping rates depend on electronic coupling elements, reorganization energies, and driving forces, which vary as a function of position and orientation of the molecules. The exact evaluation of these contributions in a molecular assembly is computationally prohibitive. Various, often semiempirical, approximations are employed instead. In this work, we review some of these approaches and introduce a software toolkit which implements them. The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications. All implemented methods are illustrated by studying charge transport in amorphous films of tris-(8-hydroxyquinoline)aluminum, a common organic semiconductor. PMID:22076120
Transportable charge in a periodic alternating gradient system
Lee, E.P.; Fessenden, T.J.; Laslett, L.J.
1985-05-01
A simple set of formulas is derived which relate emittance, line charge density, matched maximum and average envelope radii, occupancy factors, and the (space charge) depressed and vacuum values of tune. This formulation is an improvement on the smooth limit approximation; deviations from exact (numerically determined) relations are on the order of +-2%, while the smooth limit values are in error by up to +-30%. This transport formalism is used to determine the limits of transportable line charge density in an electrostatic quadrupole array, with specific application to the low energy portion of the High Temperature Experiment of Heavy Ion Fusion Accelerator Research. The line charge density limit is found to be essentially proportional to the voltage on the pole faces and the fraction of occupied aperture area. A finite injection energy (greater than or equal to 2 MeV) is required to realize this limit, independent of particle mass.
Interactive design environment transportation channel of relativistic charged particle beams
NASA Astrophysics Data System (ADS)
Osadchuk, I. O.; Averyanov, G. P.; Budkin, V. A.
2017-01-01
Considered a modern implementation of a computer environment for the design of channels of transportation of high-energy charged particle beams. The environment includes a software package for the simulation of the dynamics of charged particles in the channel, operating means for changing parameters of the channel, the elements channel optimization and processing of the output characteristics of the beam with the graphical output the main output parameters.
NASA Astrophysics Data System (ADS)
Collins, George; Federici, John; Imura, Yuki; Catalani, Luiz H.
2012-02-01
Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further
Dimensionality of charge transport in organic field-effect transistors
NASA Astrophysics Data System (ADS)
Sharma, A.; van Oost, F. W. A.; Kemerink, M.; Bobbert, P. A.
2012-06-01
Application of a gate bias to an organic field-effect transistor leads to accumulation of charges in the organic semiconductor within a thin region near the gate dielectric. An important question is whether the charge transport in this region can be considered two-dimensional, or whether the possibility of charge motion in the third dimension, perpendicular to the accumulation layer, plays a crucial role. In order to answer this question we have performed Monte Carlo simulations of charge transport in organic field-effect transistor structures with varying thickness of the organic layer, taking into account all effects of energetic disorder and Coulomb interactions. We show that with increasing thickness of the semiconductor layer the source-drain current monotonically increases for weak disorder, whereas for strong disorder the current first increases and then decreases. Similarly, for a fixed layer thickness the mobility may either increase or decrease with increasing gate bias. We explain these results by the enhanced effect of state filling on the current for strong disorder, which competes with the effects of Coulomb interactions and charge motion in the third dimension. Our conclusion is that apart from the situation of a single monolayer, charge transport in an organic semiconductor layer should be considered three-dimensional, even at high gate bias.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
microelectromechanical (MEM) and nanoelectromechanical (NEM) sys- tems; • Electronic transport in graphene systems. 2 Accomplishments and New Findings 2.1 Nonlinear...generators. All these were collaborative works with Dr. David Dietz from AFRL at Kirtland AFB. 2.2 Electronic transport in graphene systems There is...tremendous interest in graphene recently due to its potential applications in nano-scale electronic devices and circuits. It is possible that future
SEM imaging of acoustically stimulated charge transport in solids
NASA Astrophysics Data System (ADS)
Emelin, Evgeny; Cho, H. D.; Insepov, Zeke; Lee, J. C.; Kang, Tae Won; Panin, Gennady; Roshchupkin, Dmitry; Tynyshtykbayev, Kurbangali
2017-06-01
Acoustically stimulated charge transport in solids was studied using the scanning electron microscopy method (SEM). The surface acoustic wave on the surface of the YZ-cut of a LiNbO3 crystal was visualized by registration of low-energy secondary electrons in SEM, and the charge distribution on the crystal surface was visualized using the electron beam induced current method. To register the induced current, an interdigital transducer structure was formed from graphene on the crystal surface. It was shown that the charge distribution on the crystal surface corresponds to the distribution of the acoustic wave field on the crystal surface.
Origin of traps and charge transport mechanism in hafnia
Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.
2014-12-01
In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.
Monte Carlo simulations of charge transport in heterogeneous organic semiconductors
NASA Astrophysics Data System (ADS)
Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta
2015-03-01
The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.
Simulation of bipolar charge transport in nanocomposite polymer films
NASA Astrophysics Data System (ADS)
Lean, Meng H.; Chu, Wei-Ping L.
2015-03-01
This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.
Elsaesser, Thomas Reimann, Klaus; Woerner, Michael
2015-06-07
Intense terahertz (THz) electric field transients with amplitudes up to several megavolts/centimeter and novel multidimensional techniques are the key ingredients of nonlinear THz spectroscopy, a new area of basic research. Both nonlinear light-matter interactions including the non-perturbative regime and THz driven charge transport give new insight into the character and dynamics of low-energy excitations of condensed matter and into quantum kinetic phenomena. This article provides an overview of recent progress in this field, combining an account of technological developments with selected prototype results for liquids and solids. The potential of nonlinear THz methods for future studies of low-frequency excitations of condensed-phase molecular systems is discussed as well.
NASA Astrophysics Data System (ADS)
Elsaesser, Thomas; Reimann, Klaus; Woerner, Michael
2015-06-01
Intense terahertz (THz) electric field transients with amplitudes up to several megavolts/centimeter and novel multidimensional techniques are the key ingredients of nonlinear THz spectroscopy, a new area of basic research. Both nonlinear light-matter interactions including the non-perturbative regime and THz driven charge transport give new insight into the character and dynamics of low-energy excitations of condensed matter and into quantum kinetic phenomena. This article provides an overview of recent progress in this field, combining an account of technological developments with selected prototype results for liquids and solids. The potential of nonlinear THz methods for future studies of low-frequency excitations of condensed-phase molecular systems is discussed as well.
Charge transport in a zigzag silicene nanoribbon
NASA Astrophysics Data System (ADS)
Mehrotra, Nakul; Kumar, Niraj; Sen, Arijit
2013-02-01
Nanoscale transport properties of a zigzag silicene nanoribbon (zSiNR) are studied using first-principles calculations based on the non-equilibrium Green's function approach. Our theoretical analysis demonstrates how the scattering wavefunctions in the device region can shed light on the conductance behavior of a nanoelectronic device, made up of 3-zSiNR, spanning the width of three hexagons. The lowering of conductance at 100 mV bias is due mainly to the dominant character of the lowest unoccupied molecular orbital (LUMO) in the transmission profile. A zSiNR, having higher conductance than germanene, can thus be a potential candidate for silicon-based nanoelectronic devices due to its rich optoelectronic properties.
Charge Transport across DNA-Based Three-Way Junctions.
Young, Ryan M; Singh, Arunoday P N; Thazhathveetil, Arun K; Cho, Vincent Y; Zhang, Yuqi; Renaud, Nicolas; Grozema, Ferdinand C; Beratan, David N; Ratner, Mark A; Schatz, George C; Berlin, Yuri A; Lewis, Frederick D; Wasielewski, Michael R
2015-04-22
DNA-based molecular electronics will require charges to be transported from one site within a 2D or 3D architecture to another. While this has been shown previously in linear, π-stacked DNA sequences, the dynamics and efficiency of charge transport across DNA three-way junction (3WJ) have yet to be determined. Here, we present an investigation of hole transport and trapping across a DNA-based three-way junction systems by a combination of femtosecond transient absorption spectroscopy and molecular dynamics simulations. Hole transport across the junction is proposed to be gated by conformational fluctuations in the ground state which bring the transiently populated hole carrier nucleobases into better aligned geometries on the nanosecond time scale, thus modulating the π-π electronic coupling along the base pair sequence.
Investigating anomalous transport of electrolytes in charged porous media
NASA Astrophysics Data System (ADS)
Skjøde Bolet, Asger Johannes; Mathiesen, Joachim
2017-04-01
Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.
Surface charge transport in Silicon (111) nanomembranes
NASA Astrophysics Data System (ADS)
Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Savage, Donald; Lagally, Max; The Lagally Group Team
Using thin sheets (``nanomembranes'') of atomically flat crystalline semiconductors, we are able to investigate surface electronic properties, using back-gated van der Pauw measurement in UHV. The thinness of the sheet diminishes the bulk contribution, and the back gate tunes the conductivity until the surface dominates, enabling experimental determination of surface conductance. We have previously shown that Si(001) surface states interact with the body of the membrane altering the conductivity of the system. Here, we extended our prior measurements to Si(111) in order to probe the electronic transport properties of the Si(111) 7 ×7 reconstruction. Sharp (7 ×7) LEED images attest to the cleanliness of the Si(111) surface. Preliminary results reveal a highly conductive Si(111) 7 ×7 surface with a sheet conductance Rs of order of μS/ □, for 110nm thick membrane, and Rs is a very slowly varying function of the back gate voltage. This is in strong contrast to Si(001) nanomembranes which have a minimum conductance several orders of magnitude lower, and hints to the metallic nature of the Si(111) surface. Research supported by DOE.
Theoretical characterization of charge transport in organic molecular crystals
NASA Astrophysics Data System (ADS)
Sanchez-Carrera, Roel S.
The rapid growth in the interest to explore new synthetic crystalline organic semiconductors and their subsequent device characterization has revived the debate on the development of theoretical models to better understand the intrinsic charge transport mechanisms in organic materials. At the moment, several charge-transport theories for organic molecular crystals have been proposed and have observed a comparable agreement with experimental results. However, these models are limited in scope and restricted to specific ranges of microscopic parameters and temperatures. A general description that is applicable in all parameter regimes is still unavailable. The first step towards a complete understanding of the problem associated with the charge transport in organic molecular crystals includes the development of a first-principles theoretical methodology to evaluate with high accuracy the main microscopic charge-transport parameters and their respective couplings with intra- and intermolecular vibrational degrees of freedom. In this thesis, we have developed a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. To predict the charge-transport phenomena in organic materials, we rely on the Marcus theory of electron-transfer reactions. Within this context, the nature of the intramolecular vibronic coupling in oligoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. This further led to investigation of the electron interactions with optical phonons in oligoacene single crystals. The lattice phonon modes were computed at both density functional theory (DFT) and empirical force field levels. The low-frequency optical modes are found to play a significant
NASA Astrophysics Data System (ADS)
Shukri, Seyfan Kelil
2017-01-01
We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.
Convective transport of electric charge within the planetary boundary layer
NASA Astrophysics Data System (ADS)
Nicoll, Keri; Harrison, Giles; Silva, Hugo; Silgado, Rui; Melgao, Marta
2017-04-01
Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also of major importance in determining the electrical charge structure of the lower atmosphere. This paper presents rare experimental measurements of vertical profiles of charge measured during fair weather conditions by specially instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. Space charge was measured directly using a sensitive electrometer, rather than the conventional method of deriving it from electric field measurements. The high frequency of balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller levels of charge (up to 20pC m-3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was much more complex, showing a dependence on lofting of surface aerosol due to daytime convection. This produced charge up to 92pC m-3 up to 500m above the surface. The diurnal variation in the integrated column of charge above the measurement site was also found to track closely with the diurnal variation in near surface charge as measured by an electric field mill at the same site, confirming the importance of the link between surface charge generation processes and aloft. Co-located lidar backscatter measurements were also made during the measurement campaign and will be discussed here in the context of the effect of aerosol on the vertical charge profile.
Quantifying the Solid State Charge Transport Characteristics of Radical Polymers
NASA Astrophysics Data System (ADS)
Baradwaj, Aditya; Rostro, Lizbeth; Boudouris, Bryan
2014-03-01
Radical polymers are an emerging class of functional macromolecules that have shown immense potential to transport charge in electrolyte-supported applications. However, quantifying the ability of these non-conjugated macromolecules to conduct charge has not been as well-studied in the solid state. Here, we present the characterization of the charge transport capability of a radical polymer, poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA) with well-defined molecular properties in the solid state. We show that charge transport occurs across the singularly occupied molecular orbital (SOMO) level of PTMA, and that this level is 5.2 eV removed from free vacuum. Additionally, we have measured the space-charge limited hole and electron mobility values of PTMA. We find that the mobility values of these radical polymers are of the same order (10-4 cm2 V-1 s-1) of many common conjugated polymers [ e . g . , poly(3-hexylthiophene) (P3HT)]. Furthermore, because the polymer backbone is non-conjugated, these macromolecules are extremely transparent. As such, we anticipate that radical polymers could become an important component of many transparent flexible electronic applications.
Solute transport under non-linear sorption and decay.
Serrano, S E
2001-04-01
Contaminant transport in aquifers is usually represented by a solution to the advective-dispersive differential equation. When the contaminant is subject to non-linear degradation or decay, or it is characterized by a chemical constituent that follows a non-linear sorption isotherm, the resulting differential equation is non-linear. Using the method of decomposition, series solutions were obtained for the non-linear equation. The series were used to derive and test "simulant" solutions that aries using the concept of double decomposition. Simulant solutions are closed-form analytic expressions that approximate part of the series These expression are simple, stable, and flexible. They permit an accurate forecasting of contaminant propagation .under non-linearity in laboratory or field investigations at early or prolonged times after the spill. In this article, the practical scenario of an instantaneous spill, and that of a constant concentration boundary condition, is studied for situations of non-linear decay, non-linear Freundlich isotherm, and non-linear Langmuir isotherm. The solutions are verified with limited well-known analytical solutions of the linear reactive and non-reactive equations with excellent agreement, and with limited finite difference solutions. Plumes undergoing non-linear decay experience a profile re-scaling with respect to that of linear decay, the degree of which is controlled by magnitude of the non-linear parameter b. The direction of the scaling (scaling up or scaling down with respect to the linear decay plume) is controlled by the magnitude of C (whether greater or less than 1) in relation to the magnitude of b (whether greater or less than 1). When C>1, values of b<1 produce plumes that experience less decay (i.e., are scaled up) than that of the linear decay, whereas values of b> 1 produce non-linear plumes that experience more decay (i.e., are scaled down) than that of the linear decay. The opposite effect is observed when
Defect states and charge transport in quantum dot solids
Brawand, Nicholas P.; Goldey, Matthew B.; Vörös, Márton; ...
2017-01-16
Defects at the surface of semiconductor quantum dots (QDs) give rise to electronic states within the gap, which are detrimental to charge transport properties of QD devices. We investigated charge transport in silicon quantum dots with deep and shallow defect levels, using ab initio calculations and constrained density functional theory. We found that shallow defects may be more detrimental to charge transport than deep ones, with associated transfer rates differing by up to 5 orders of magnitude for the small dots (1-2 nm) considered here. Hence, our results indicate that the common assumption, that the ability of defects to trapmore » charges is determined by their position in the energy gap of the QD, is too simplistic, and our findings call for a reassessment of the role played by shallow defects in QD devices. Altogether, our results highlight the key importance of taking into account the atomistic structural properties of QD surfaces when investigating transport properties.« less
Charge transport in highly aligned conjugated polymers (Presentation Recording)
NASA Astrophysics Data System (ADS)
O'Connor, Brendan; Xue, Xiao; Sun, Tianlei
2015-10-01
Charge transport in conjugated polymers has a complex dependence on film morphology. Aligning the polymer chains in the plane of the film simplifies the morphology of the system allowing for insight into the morphological dependence of charge transport. Highly aligned conjugated polymers have also been shown to lead to among the highest reported field effect mobilities in these materials to date. In this talk, a comparison will be made between aligned polymer films processed using two primary methods, nanostructured substrate assisted growth and mechanical strain. A number of polymer systems including P3HT, pBTTT, N2200, and PCDTPT are considered, and the processed films are analyzed in detail with optical spectroscopy, AFM, TEM, and X-ray scattering providing insight into the molecular features that allow for effective alignment. By contrasting the morphology of these films, several insights into underlying charge transport limitations can be made. A number of key morphological features that lead to high field effect mobility and charge transport anisotropy in these films will be discussed. In addition, several unique features of organic thin film transistor device behavior in these systems will be examined including the commonly observed gate voltage dependence of saturated field effect mobility.
[Hopping and superexchange mechanisms of charge transport to DNA].
Lakhno, V D; Sultanov, V B
2003-01-01
A theory for charge transport in nucleobase sequences was constructed in which the hole migration proceeds via hopping between guanines. Each hop over the adenine-thymine (A-T) bridge connecting neighboring guanines occurs by means of the superexchange mechanism. The experimental data and theoretical results for various types of nucleobase sequences are compared.
Physical constraints on charge transport through bacterial nanowires
Polizzi, Nicholas F.; Skourtis, Spiros S.
2012-01-01
Extracellular appendages of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 were recently shown to sustain currents of 1010 electrons per second over distances of 0.5 microns [El-Naggar et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18127]. However, the identity of the charge localizing sites and their organization along the “nanowire” remain unknown. We use theory to predict redox cofactor separation distances that would permit charge flow at rates of 1010 electrons per second over 0.5 microns for voltage biases of ≤1V, using a steady-state analysis governed by a non-adiabatic electron transport mechanism. We find the observed currents necessitate a multi-step hopping transport mechanism, with charge localizing sites separated by less than 1 nm and reorganization energies that rival the lowest known in biology. PMID:22470966
Coherent and incoherent charge transport in linear triple quantum dots.
Contreras-Pulido, L Debora; Bruderer, Martin
2017-03-15
One of the fundamental questions in quantum transport is how charge transfer through complex nanostructures is influenced by quantum coherence. We address this issue for linear triple quantum dots by comparing a Lindblad density matrix description with a Pauli rate equation approach and analyze the corresponding zero-frequency counting statistics of charge transfer. The impact of decaying coherences of the density matrix due to dephasing is also studied. Our findings reveal that the sensitivity to coherence shown by shot noise and skewness, in particular in the limit of large coupling to the drain reservoir, can be used to unambiguously evidence coherent processes involved in charge transport across triple quantum dots. Our analytical results are obtained by using the characteristic polynomial approach to full counting statistics.
Physical constraints on charge transport through bacterial nanowires
Polizzi, Nicholas F.; Skourtis, Spiros S.; Beratan, David N.
2012-01-01
Extracellular appendages of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 were recently shown to sustain currents of 10{sup 10} electrons per second over distances of 0.5 microns [El-Naggar et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18127]. However, the identity of the charge localizing sites and their organization along the “nanowire” remain unknown. We use theory to predict redox cofactor separation distances that would permit charge flow at rates of 10{sup 10} electrons per second over 0.5 microns for voltage biases of ≤1V, using a steady-state analysis governed by a non-adiabatic electron transport mechanism. We find the observed currents necessitate a multi-step hopping transport mechanism, with charge localizing sites separated by less than 1 nm and reorganization energies that rival the lowest known in biology.
Physical constraints on charge transport through bacterial nanowires
Polizzi, Nicholas F.; Skourtis, Spiros S.; Beratan, David N.
2011-10-17
Extracellular appendages of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 were recently shown to sustain currents of 10¹⁰ electrons per second over distances of 0.5 microns [El-Naggar et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18127]. However, the identity of the charge localizing sites and their organization along the “nanowire” remain unknown. We use theory to predict redox cofactor separation distances that would permit charge flow at rates of 10¹⁰ electrons per second over 0.5 microns for voltage biases of ≤1V, using a steady-state analysis governed by a non-adiabatic electron transport mechanism. We find the observed currents necessitate a multi-step hopping transport mechanism, with charge localizing sites separated by less than 1 nm and reorganization energies that rival the lowest known in biology.
Charge transport in disordered semiconducting polymers driven by nuclear tunneling
NASA Astrophysics Data System (ADS)
van der Kaap, N. J.; Katsouras, I.; Asadi, K.; Blom, P. W. M.; Koster, L. J. A.; de Leeuw, D. M.
2016-04-01
The current density-voltage (J -V ) characteristics of hole-only diodes based on poly(2-methoxy, 5-(2' ethyl-hexyloxy)-p -phenylene vinylene) (MEH-PPV) were measured at a wide temperature and field range. At high electric fields the temperature dependence of the transport vanishes, and all J -V sweeps converge to a power law. Nuclear tunneling theory predicts a power law at high fields that scales with the Kondo parameter. To model the J -V characteristics we have performed master-equation calculations to determine the dependence of charge carrier mobility on electric field, charge carrier density, temperature, and Kondo parameter, using nuclear tunneling transfer rates. We demonstrate that nuclear tunneling, unlike other semiclassical models, provides a consistent description of the charge transport for a large bias, temperature, and carrier density range.
Theory of charge transport in molecular junctions: From Coulomb blockade to coherent tunneling
Chang, Yao-Wen; Jin, Bih-Yaw
2014-08-14
We study charge transport through molecular junctions in the presence of electron-electron interaction using the nonequilibrium Green's function techniques and the renormalized perturbation theory. In the perturbation treatment, the zeroth-order Hamiltonian of the molecular junction is composed of independent single-impurity Anderson's models, which act as the channels where charges come through or occupy, and the interactions between different channels are treated as the perturbation. Using this scheme, the effects of molecule-lead, electron-electron, and hopping interactions are included nonperturbatively, and the charge transport processes can thus be studied in the intermediate parameter range from the Coulomb blockade to the coherent tunneling regimes. The concept of quasi-particles is introduced to describe the kinetic process of charge transport, and then the electric current can be studied and calculated. As a test study, the Hubbard model is used as the molecular Hamiltonian to simulate dimeric and trimeric molecular junctions. Various nonlinear current-voltage characteristics, including Coulomb blockade, negative differential resistance, rectification, and current hysteresis, are shown in the calculations, and the mechanisms are elucidated.
An Efficient Scheduling Scheme on Charging Stations for Smart Transportation
NASA Astrophysics Data System (ADS)
Kim, Hye-Jin; Lee, Junghoon; Park, Gyung-Leen; Kang, Min-Jae; Kang, Mikyung
This paper proposes a reservation-based scheduling scheme for the charging station to decide the service order of multiple requests, aiming at improving the satisfiability of electric vehicles. The proposed scheme makes it possible for a customer to reduce the charge cost and waiting time, while a station can extend the number of clients it can serve. A linear rank function is defined based on estimated arrival time, waiting time bound, and the amount of needed power, reducing the scheduling complexity. Receiving the requests from the clients, the power station decides the charge order by the rank function and then replies to the requesters with the waiting time and cost it can guarantee. Each requester can decide whether to charge at that station or try another station. This scheduler can evolve to integrate a new pricing policy and services, enriching the electric vehicle transport system.
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
Nonlinear parallel momentum transport in strong electrostatic turbulence
Wang, Lu Wen, Tiliang; Diamond, P. H.
2015-05-15
Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.
Charge pariticle transport in the non-isotropic turbulences
NASA Astrophysics Data System (ADS)
Sun, P.; Jokipii, J. R.
2015-12-01
The scattering and diffusion of energetic charged particles is not only important for understanding phenomena such as diffusive shock acceleration but it also is a natural probe of the statistical characteristics of magnetohydrodynamic (MHD) turbulence. Although Parker's transport equation (Parker 1965) allows us to describe the propagation of charged particles, the transport coefficients needed in the equation must be determined. Using Quasi-Linear Theory (QLT, e.g. Jokipii (1966)), one finds that coefficients can be related to the correlation function or power spectrum of homogeneous magnetic turbulence. However, different turbulence models will generally have a different influence on particle's scattering and diffusion. Among those models developed in MHD Turbulence, such as isotropic, Slab plus 2D (Tu & Marsch 1993; Gray et al 1996; Bieber et al 1996), etc. Here, using test-particle orbit simulations to calculate the transport coefficients, we study particle transport in synthesized asymmetric turbulence using the form first proposed by Goldreich & Sridhar (1995). We developed and introduce a systematic method to synthesize scale-dependent non-isotropic magnetic turbulences. We also developed and introduce a method to synthesize the 3d turbulent magnetic field from the observed solar wind time series dataset. We present the comparison of their effects on charge particle transport with previous theories and models.
Ion Transport Dynamics in Acid Variable Charge Subsoils
Qafoku, Nik; Sumner, Malcolm E.; Toma, Mitsuru
2005-06-06
This is a mini-review of the research work conducted by the authors with the objective of studying ion transport in variable charge subsoils collected from different areas around the world. An attempt is made in these studies to relate the unique behavior manifested during ionic transport in these subsoils with their mineralogical, physical and chemical properties, which are markedly different from those in soils from temperate regions. The variable charge subsoils have a relatively high salt sorption capacity and anion exchange capacity (AEC) that retards anions downward movement. The AEC correlates closely with the anion retardation coefficients. Ca2+ applied with gypsum in topsoil may be transported to the subsoil and may improve the subsoil chemical properties. These results may help in developing appropriate management strategies under a range of mineralogical, physical, and chemical conditions.
NASA Astrophysics Data System (ADS)
Wen, Jing; Zhang, Xitian; Gao, Hong
2016-02-01
It is generally accepted that the nonlinear I-V characteristics for semiconductor nanostructures are mainly induced by the Schottky contacts or by the space charge limited transport mechanism. We perform I-V measurements on undoped and doped In-Zn-O compound nanobelts and confirm that their intrinsic non-ohmic transport behaviors are not caused by these mechanisms. A model based on the hopping assisted trap state electrons transport process is introduced to explain the nonlinear I-V characteristics and to extract their electrical parameters. An understanding of this trap-state influenced carrier transport can advance the progress of nanomaterials applications and enable us to distinguish their intrinsic transport behaviors from contact effects. The results also indicate that the material has good electrical properties and can be used as a potential substitute for In2O3.
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Morozovsky, Nicholas V.; Kalinin, Sergei V.
2014-08-01
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.
2014-08-14
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.
Charge transport measurements of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Zhang, Lan
2005-07-01
Vertically aligned carbon nanofibers (VACNFs) have found a variety of electronic applications. To further realize these applications, a good understanding of the charge transport properties is essential. In this work, charge transport properties have been systematically measured for three types of VACNF forests with Ni as catalyst, namely VACNFs grown by direct current PECVD, and inductively coupled PECVD at both normal pressure and low pressure. The structure and composition of these nanofibers have also been investigated in detail prior to the charge transport measurements. Four-probe I-V measurements on individual nanofibers have been enabled by the fabrication of multiple metal ohmic contacts on individual fibers that exhibited resistance of only a few kO. An O2 plasma reactive ion etch method has been used to achieve ohmic contacts between the nanofibers and Ti/Au, Ag/Au, Cd/Au, and Cr/Au electrodes. Direct current VACNFs exhibit linear I-V behavior at room temperature, with a resistivity of approximately 4.2 x 10-3 O·cm. Our measurements are consistent with a dominant transport mechanism of electrons traveling through intergraphitic planes in the dc VACNFs. The resistivity of these fibers is almost independent of temperature, and the contact resistance decreases as temperature increases. Further studies reveal that the 10--15 nm thick graphitic outer layer dominates the charge transport properties of do VACNFs. This is demonstrated by comparison of charge transport properties of as-grown VACNFs and VACNFs with the outer layer partially removed by oxygen plasma reactive ion etch. The linear I-V behavior of the fibers does not vary as this outer layer becomes thinner, but displays a drastic shift to a rectifying behavior when this layer is completely stripped away from some regions of the nanofiber. This shift may be related with the compositional differences in the outer layer and the inner core of the nanofibers. Two-probe charge transport measurements on
Fedele, Renato; Jovanovic, Dusan
2004-12-01
Charged-particle beams are employed for a number of scientific and technological applications. The conventional description of their collective behavior is usually given in terms of the Vlasov equation. In the last 15 years some alternative descriptions have been developed in terms of a nonlinear Schroedinger equation governing the collective dynamics of the beam while interacting with the surrounding medium. This approach gives new insights, providing an alternative 'key of reading' of the charged-particle beam dynamics, and have been applied to a number of physical problems concerning conventional particle accelerating machines as well as plasma-based accelerator schemes. Remarkably, it is based on a mathematical formalism fully similar to those used for the propagation of e.m. radiation beams in nonlinear media a well as the nonlinear dynamics of the Bose-Einsten condensates.In this paper, a presentation of some significant nonlinear collective effects of a charged-particle beam in particle accelerators, that have been recently investigated in the framework of the above Schroedinger-like descriptions, is given.
The polydisperse cell model: Nonlinear screening and charge renormalization in colloidal mixtures
NASA Astrophysics Data System (ADS)
Torres, Aldemar; Téllez, Gabriel; van Roij, René
2008-04-01
We propose a model for the calculation of renormalized charges and osmotic properties of mixtures of highly charged colloidal particles. The model is a generalization of the cell model and the notion of charge renormalization as introduced by Alexander et al. [J. Chem. Phys. 80, 5776 (1984)]. The total solution is partitioned into as many different cells as components in the mixture. The radii of these cells are determined self-consistently for a given set of parameters from the solution of the nonlinear Poisson-Boltzmann equation with appropriate boundary conditions. This generalizes Alexanders's model where the (unique) Wigner-Seitz cell radius is solely fixed by the colloid packing fraction. We illustrate the technique by considering a binary mixture of the colloids with the same sign of charge. The present model can be used to calculate thermodynamic properties of highly charged colloidal mixtures at the level of linear theories, while taking the effect of nonlinear screening into account.
Effects of Transverse Physics on Nonlinear Evolution of Longitudinal Space-Charge Waves in Beams
K. Tian, I. Haber, R.A. Kishek, P.G. O'Shea, M. Reiser, D. Stratakis
2009-05-01
Longitudinal space-charge waves can introduce energy perturbations into charge particle beams and degrade the beam quality, which is critical to many modern applications of particle accelerators. Although many longitudinal phenomena arising from small perturbations can be explained by a one-dimensional cold fluid theory, nonlinear behavior of space-charge waves observed in experiments has not been well understood. In this paper, we summarize our recent investigation by means of more detailed measurements and self-consistent simulations. Combining the numerical capability of a PIC code, WARP, with the detailed initial conditions measured by our newly developed time resolved 6-D phase space mapping technique, we are able to construct a self consistent model for studying the complex physics of longitudinal dynamics of space-charge dominated beams. Results from simulation studies suggest that the unexplained nonlinear behavior of space-charge waves may be due to transverse mismatch or misalignment of beams.
Pore network model of electrokinetic transport through charged porous media
NASA Astrophysics Data System (ADS)
Obliger, Amaël; Jardat, Marie; Coelho, Daniel; Bekri, Samir; Rotenberg, Benjamin
2014-04-01
We introduce a method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt, and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore structure of the samples as networks of pores connected to each other by channels. The PNM approach is used to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic gradients across the sample. The complex pore structure of the material is captured by the distribution of channel diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the macroscopic coefficients and the corresponding ones for a single channel of average diameter.
Belzig, Wolfgang
2015-01-01
Summary We study analytically the Full Counting Statistics of the charge transport through a nanosystem consisting of a few electronic levels weakly coupled to a discrete vibrational mode. In the limit of large transport voltage bias the cumulant generating function can be evaluated explicitly based solely on the intuitive physical arguments and classical master equation description of the vibration mode. We find that for the undamped vibrational modes mutual dynamical interplay between electronic and vibronic degrees of freedom leads to strongly nonlinear (in voltage) transport characteristics of the nanosystem. In particular, we find that for large voltages the k-th cumulant of the current grows as V 2k to be contrasted with the linear dependence in case of more strongly externally damped and thus thermalized vibrational modes. PMID:26425436
Charge transport in nitro substituted oligo(phenylene-ethynylene) molecules
NASA Astrophysics Data System (ADS)
Cabassi, Marco Alberto
2007-12-01
This thesis presents research aimed at tackling two issues in the field of molecular electronics. The first issue is the large range of molecular conductance values reported by various research groups for identical molecules. This is addressed by studying the same molecule in dissimilar environments. The second issue is experimental uncertainty---whether the observed effects are inherent to the molecule or due to external causes. This is addressed by performing in-situ spectroscopy of the molecule as part of its electrical characterization. Oligo(phenylene-ethynylene)s are a well studied class of molecules in the field of molecular electronics, and this work focuses on charge transport through nitro substituted oligo(phenylene-ethynylene) molecules. The electrical characterization of these molecules was performed utilizing two testbeds. An electromigrated break-junction testbed was used to probe individual molecules, while a nanowire molecular junction testbed was used to probe self-assembled monolayers of the molecule. Experiments performed on individual molecules revealed a temperature dependent transition in the dominant charge transport mechanism. Above 50K, hopping is the dominant charge transport mechanism, while below 50K direct tunneling is the dominant charge transport mechanism. Experiments performed on self-assembled monolayers did not reveal any temperature dependent transitions. The dominant charge transport mechanism appears to be direct tunneling throughout the temperature range investigated. The results also indicate that molecules embedded in a self-assembled monolayer have significantly lower conductance than individual molecules. This is primarily due to a second charge transport mechanism (hopping) that opens up above 50K that is available only to individual molecules, and secondarily due to better potential screening properties of the self-assembled monolayers. Inelastic electron tunneling spectra obtained for the molecules in a self
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.; Fratalocchi, A.
2013-01-01
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter. PMID:23912934
A nonlinear feedback model for granular and surface charging
NASA Astrophysics Data System (ADS)
Shinbrot, Troy; Kozachkov, Leo; Siu, Theo
2015-03-01
Independent laboratories have experimentally demonstrated that identical materials brought into symmetric contact generate contact charges. Even the most basic features of this odd behavior remain to be explained. In this talk, we provide a simple, Ising-like, model that appears to account for many of the observed phenomena. We calculate the electric field acting on surface molecules in a lattice, and we show that if the molecules are polarizable, then infinitesimal random polarizations typically build exponentially rapidly in time. These polarizations self-assemble to produce surface patterns that come in two types, and we find that one of these types accounts for strong localized charging, while the other produces a weaker persistent surface charge pattern. We summarize predictions for both ideal surfaces and for defects in granular beds. This work was supported by NSF Grant DMR-1404792.
Nonlinear mixing of optical vortices with fractional topological charge in Raman sideband generation
NASA Astrophysics Data System (ADS)
Strohaber, J.; Boran, Y.; Sayrac, M.; Johnson, L.; Zhu, F.; Kolomenskii, A. A.; Schuessler, H. A.
2017-01-01
We studied the nonlinear parametric interaction of femtosecond fractionally-charged optical vortices in a Raman-active medium. Propagation of such beams was described using the Kirchhoff-Fresnel integrals by embedding a non-integer 2π phase step in a Gaussian beam profile. When using fractionally-charged pump or Stokes beams, we observed the production of new topological charge and phase discontinuities in the Raman field. These newly generated fractionally-charged Raman vortex beams were found to follow the same orbital angular momentum algebra derived by Strohaber et al (2012 Opt. Lett. 37 3411) for integer vortex beams.
Charge transport in metal oxide nanocrystal-based materials
NASA Astrophysics Data System (ADS)
Runnerstrom, Evan Lars
There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and
Nonlinear magnetic field transport in opening switch plasmas
Mason, R.J. ); Auer, P.L.; Sudan, R.N.; Oliver, B.V.; Seyler, C.E.; Greenly, J.B. )
1993-04-01
The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code ANTHEM [J. Comput. Phys. [bold 71], 429 (1987)] is studied. The focus is on early time behavior in the electron--magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of [bold v][sub [ital e
Superexchange Charge Transport in Loaded Metal Organic Frameworks.
Neumann, Tobias; Liu, Jianxi; Wächter, Tobias; Friederich, Pascal; Symalla, Franz; Welle, Alexander; Mugnaini, Veronica; Meded, Velimir; Zharnikov, Michael; Wöll, Christof; Wenzel, Wolfgang
2016-07-26
In the past, nanoporous metal-organic frameworks (MOFs) have been mostly studied for their huge potential with regard to gas storage and separation. More recently, the discovery that the electrical conductivity of a widely studied, highly insulating MOF, HKUST-1, improves dramatically when loaded with guest molecules has triggered a huge interest in the charge carrier transport properties of MOFs. The observed high conductivity, however, is difficult to reconcile with conventional transport mechanisms: neither simple hopping nor band transport models are consistent with the available experimental data. Here, we combine theoretical results and new experimental data to demonstrate that the observed conductivity can be explained by an extended hopping transport model including virtual hops through localized MOF states or molecular superexchange. Predictions of this model agree well with precise conductivity measurements, where experimental artifacts and the influence of defects are largely avoided by using well-defined samples and the Hg-drop junction approach.
Photoconducting Charge Mobility, and Nonlinear Optical Properties of DNA
2007-08-21
solutions. For the rotational and charge mobility measurements the films will be deposited on ITO coated glass substrates ith an over deposited aluminium ...wavelength will allow to measure also enhancement of cubic susceptibility due to eventual multiphoton excitations. 3. Dynamic holography to measure the... recrystallization from an absolute methanol solution. The hexadecyltrimethylammonium chloride (CTMA), poly(9-vinylcarbazole) (PVK), poly
Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133
Intrinsic Charge Transport in Organic Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Podzorov, Vitaly
2005-03-01
Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).
Engineering charge transport by heterostructuring solution-processed semiconductors
NASA Astrophysics Data System (ADS)
Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.
2017-06-01
Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.
Charge transport properties of CdMnTe radiation detectors
Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.
2012-04-11
Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.
On the mechanism of charge transport in low density polyethylene
NASA Astrophysics Data System (ADS)
Upadhyay, Avnish K.; Reddy, C. C.
2017-08-01
Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.
An alternative approach to charge transport in semiconducting electrodes
NASA Technical Reports Server (NTRS)
Thomchick, J.; Buoncristiani, A. M.
1980-01-01
The excess-carrier charge transport through the space-charge region of a semiconducting electrode is analyzed by a technique known as the flux method. In this approach reflection and transmission coefficients appropriate for a sheet of uniform semiconducting material describe its transport properties. A review is presented of the flux method showing that the results for a semiconductor electrode reduce in a limiting case to those previously found by Gaertner if the depletion layer is treated as a perfectly transmitting medium in which scattering and recombination are ignored. Then, in the framework of the flux method the depletion layer is considered more realistically by explicitly taking into account scattering and recombination processes which occur in this region.
The charge and spin transport properties in hexagonal silicene nanorings
NASA Astrophysics Data System (ADS)
Xu, N.; Zhang, H. Y.; Wu, X. Q.; Chen, Q.; Ding, J. W.
2017-09-01
Based on the tight-binding model, charge and spin transport properties of hexagonal silicene rings are investigated within the nonequilibrium Green’s function technique. The effects of external electric, magnetic and exchange fields are taken into account. The calculated results reveal that the hexagonal silicene nanorings act as a controllable spin filter. The near-perfect spin polarization can be achieved by adjusting the electric, magnetic and exchange fields. The calculated results offer new possibilities for silicene ring based spin nanodevices.
Charge transport in conducting polymers: insights from impedance spectroscopy.
Rubinson, Judith F; Kayinamura, Yohani P
2009-12-01
This tutorial review gives a brief introduction to impedance spectroscopy and discusses how it has been used to provide insight into charge transport through conducting polymers, particularly when the polymers are used as electrodes for solution studies or the design of electrodes for biomedical applications. As such it provides both an introduction to the topic and references to both classic and contemporary work for the more advanced reader.
Ambipolar charge transport in microcrystalline silicon thin-film transistors
Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut
2011-01-15
Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.
Anomalous charge transport in CeB{sub 6}
Ignatov, M.I. . E-mail: ignatov@lt.gpi.ru; Bogach, A.V.; Demishev, S.V.; Glushkov, V.V.; Levchenko, A.V.; Paderno, Yu.B.; Shitsevalova, N.Yu.; Sluchanko, N.E.
2006-09-15
The comprehensive study of conductivity {sigma}, Hall coefficient R{sub H} and Seebeck coefficient S has been carried out on high-quality single crystals of CeB{sub 6} in a wide range of temperatures 1.8-300K. An anomalous behavior of all transport characteristics ({sigma}, R{sub H}, S) was found for the first time in the vicinity of T*{approx}80K. The strong decrease of conductivity {sigma} as well as the unusual asymptotic behavior of Seebeck coefficient S(T){approx}-lnT observed below T* allowed us to conclude in favor of crossover between different regimes of charge transport in CeB{sub 6}. The pronounced change of Hall mobility {mu}{sub H}, which diminishes from the maximum value of 20cm{sup 2}/(Vs) at T* to the values of {approx}6cm{sup 2}/(Vs) at T{approx}10K, seems to be attributed to the strong enhancement of charge carriers scattering due to fast spin fluctuations on Ce-sites. The low-temperature anomalies of the charge transport characteristics are compared with the predictions of the Kondo-lattice model.
Charge transport through molecular rods with reduced pi-conjugation.
Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike
2008-10-24
A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.
NASA Astrophysics Data System (ADS)
Sugiura, Shiori; Shimada, Kazuo; Tajima, Naoya; Nishio, Yutaka; Terashima, Taichi; Isono, Takayuki; Kobayashi, Akiko; Zhou, Biao; Kato, Reizo; Uji, Shinya
2016-06-01
Resistance and dielectric constants have been measured in the antiferromagnetic insulating phase of the quasi-two-dimensional organic conductor λ-(BETS)2FeCl4 to understand charge transport. Nonlinear current-voltage characteristics are observed at low temperatures, which are explained by a charge transport model based on the electric-field dependent Coulomb potential between the thermally excited electron and hole. A small dip in the magnetic field dependence of the resistance is found at 1.2 T, which is ascribed to a spin-flop transition. The large difference between the in-plane and out-of-plane dielectric constants shows the two-dimensionality of the Coulomb potential, which is consistent with the charge transport model. The angular dependence of the metal-insulator transition field is determined, which suggests that the Zeeman effect of the 3d spins of the Fe ions plays an essential role.
Modelling hillslope evolution: linear and nonlinear transport relations
NASA Astrophysics Data System (ADS)
Martin, Yvonne
2000-08-01
Many recent models of landscape evolution have used a diffusion relation to simulate hillslope transport. In this study, a linear diffusion equation for slow, quasi-continuous mass movement (e.g., creep), which is based on a large data compilation, is adopted in the hillslope model. Transport relations for rapid, episodic mass movements are based on an extensive data set covering a 40-yr period from the Queen Charlotte Islands, British Columbia. A hyperbolic tangent relation, in which transport increases nonlinearly with gradient above some threshold gradient, provided the best fit to the data. Model runs were undertaken for typical hillslope profiles found in small drainage basins in the Queen Charlotte Islands. Results, based on linear diffusivity values defined in the present study, are compared to results based on diffusivities used in earlier studies. Linear diffusivities, adopted in several earlier studies, generally did not provide adequate approximations of hillslope evolution. The nonlinear transport relation was tested and found to provide acceptable simulations of hillslope evolution. Weathering is introduced into the final set of model runs. The incorporation of weathering into the model decreases the rate of hillslope change when theoretical rates of sediment transport exceed sediment supply. The incorporation of weathering into the model is essential to ensuring that transport rates at high gradients obtained in the model reasonably replicate conditions observed in real landscapes. An outline of landscape progression is proposed based on model results. Hillslope change initially occurs at a rapid rate following events that result in oversteepened gradients (e.g., tectonic forcing, glaciation, fluvial undercutting). Steep gradients are eventually eliminated and hillslope transport is reduced significantly.
Raman scattering studies and charge transport in polyfluorenes
NASA Astrophysics Data System (ADS)
Arif, Mohammad Ali Iftekhar
Organic semiconductors, such as short-chain oligomers and long-chain polymers, are now a core constituent in numerous organic and organic-inorganic hybrid technologies. Blue-emitting polyfluorenes (PFs) have emerged as especially attractive pi conjugated polymers (CP) due to their high luminescence efficiency and excellent electronic properties and thus great prospects for device applications. The performance of devices based on these polymers depends on side chain conformations, overall crystalline structure, and charge transport processes at the microscopic level. This project entails detailed Raman scattering studies and charge transport properties of two side chain substituted PFs: Poly(2,7-[9,9'-bis(2-ethylhexyl)] fluorene) (PF2/6) and Poly(9,9-(di-n,n-octyl) fluorene) (PF8). The structural properties of PFs are extremely sensitive to the choice of functionalizing side chains. PF8 adopts metastable structures that depend upon the thermal history and choice of solvents used in film forming conditions. Raman scattering techniques as a function of thermal cycling are used to monitor the changes in the backbone and side chain morphology of PF8. These studies establish a correlation between the conformational isomers and the side and main chain morphology. Theoretical modeling of the vibrational spectra of single chain oligomers in conjunction with the experimental results demonstrate the incompatibility of the beta phase, a low energy emitting chromophore, with the overall crystalline phase in PF8. Further, electroluminescence and photoluminescence measurements from PF-based light-emitting diodes (LEDs) are presented and discussed in terms of the crystalline phases and chain morphologies in the PFs. Charge carrier injection and transport properties of PF-based LEDs are presented using current-voltage (I--V) characteristic which is modeled by a space-charge-limited conduction (SCLC) for discrete and continuous traps. PF2/6 with a high level of molecular disorder is
Electromagnetic radiation from linearly and nonlinearly oscillating charge drops
NASA Astrophysics Data System (ADS)
Grigor'ev, A. I.; Shiryaeva, S. O.
2016-12-01
It has been shown that analytic calculations of the intensity of electromagnetic radiation from an oscillating charged drop in the approximation linear in the oscillation amplitude (small parameter is on the order of 0.1) give only the quadrupole component of the total radiation. The dipole component can only be obtained in calculations using higher-order approximations. Nevertheless, the intensity of the dipole radiation turns out to be substantially higher (by 14-15 orders of magnitude). This is because the decomposition of radiation from a system of charges into multipole components (differing even in the rates of decrease in the potential with the distance) is carried out using the expansion in a substantially smaller parameter, viz., the ratio of the size of the emitting system (in our case, a drop of radius 10 μm) to the distance to the point of observation in the wave zone of the emission of radiation (emitted wavelength) of 100-1000 m. As a result, this second small parameter is on the order of 10-7 to 10-8. On the other hand, in accordance with the field theory, the ratio of intensities of quadrupole and dipole radiations is proportional to the squared ratio of the hydrodynamic velocity of the oscillating surface of a charged drop to the velocity of propagation of an electromagnetic signal in vacuum (velocity of light), which yields a ratio of 10-14 to 10-15.
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
NASA Astrophysics Data System (ADS)
Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik
2017-05-01
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection-diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.
1994-01-01
The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, Kevin F.
1994-01-01
The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.
Space-Charge Transport Limits in Periodic Channels
Lund, S M; Chawla, S R
2005-05-16
It has been empirically observed in both experiments and particle-in-cell simulations that space-charge-dominated beams suffer strong emittance growth and particle losses in alternating gradient quadrupole transport channels when the undepressed phase advance {sigma}{sub 0} increases beyond about 85{sup o} per lattice period. Although this criteria has been used extensively in practical designs of intense beam transport lattices, no theory exists that explains the limit. We propose a mechanism for the transport limit resulting from classes of halo particle resonances near the core of the beam that allow near-edge particles to rapidly increase in oscillation amplitude when the space-charge intensity and the flutter of the matched beam envelope are both sufficiently large. Due to a finite beam edge and/or perturbations, this mechanism can result in dramatic halo-driven increases in statistical beam phase space area, lost particles, and degraded transport. A core-particle model for a uniform density elliptical beam in a periodic focusing lattice is applied to parametrically analyze this process.
Aggregate-mediated charge transport in ionomeric electrolytes
NASA Astrophysics Data System (ADS)
Lu, Keran; Maranas, Janna; Milner, Scott
Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.
Nonlinear closure relations theory for transport processes in nonequilibrium systems.
Sonnino, Giorgio
2009-05-01
A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ("Onsager") transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.
Charge Transport and Glassy Dynamics in Ionic Liquids
Sangoro, Joshua R; Kremer, Friedrich
2012-01-01
Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.
Nonlinear longitudinal space charge oscillations in relativistic electron beams.
Musumeci, P; Li, R K; Marinelli, A
2011-05-06
In this Letter we study the evolution of an initial periodic modulation in the temporal profile of a relativistic electron beam under the effect of longitudinal space-charge forces. Linear theory predicts a periodic exchange of the modulation between the density and the energy profiles at the beam plasma frequency. For large enough initial modulations, wave breaking occurs after 1/2 period of plasma oscillation leading to the formation of short current spikes. We confirm this effect by direct measurements on a ps-modulated electron beam from an rf photoinjector. These results are useful for the generation of intense electron pulse trains for advanced accelerator applications.
Nonlinear Longitudinal Space Charge Oscillations in Relativistic Electron Beams
Musumeci, P.; Li, R. K.; Marinelli, A.
2011-05-06
In this Letter we study the evolution of an initial periodic modulation in the temporal profile of a relativistic electron beam under the effect of longitudinal space-charge forces. Linear theory predicts a periodic exchange of the modulation between the density and the energy profiles at the beam plasma frequency. For large enough initial modulations, wave breaking occurs after 1/2 period of plasma oscillation leading to the formation of short current spikes. We confirm this effect by direct measurements on a ps-modulated electron beam from an rf photoinjector. These results are useful for the generation of intense electron pulse trains for advanced accelerator applications.
19 CFR 351.515 - Internal transport and freight charges for export shipments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false Internal transport and freight charges for export... Internal transport and freight charges for export shipments. (a) Benefit—(1) In general. In the case of internal transport and freight charges on export shipments, a benefit exists to the extent that the...
Charge transport in dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Yanagida, Masatoshi
2015-03-01
The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the {{I}3}- transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif < Jg. The J value becomes constant against light intensity, and is expressed as the saturated current (Jscs). The {{J}s} value depends on the thickness (d) of the TiO2 layer, the initial concentration (COX0), and the diffusion coefficient (DOXb) of {{I}3}-. These suitable parameters were determined by using the ion transport. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.
Normal and impaired charge transport in biological systems
NASA Astrophysics Data System (ADS)
Miller, John H.; Villagrán, Martha Y. Suárez; Maric, Sladjana; Briggs, James M.
2015-03-01
We examine the physics behind some of the causes (e.g., hole migration and localization that cause incorrect base pairing in DNA) and effects (due to amino acid replacements affecting mitochondrial charge transport) of disease-implicated point mutations, with emphasis on mutations affecting mitochondrial DNA (mtDNA). First we discuss hole transport and localization in DNA, including some of our quantum mechanical modeling results, as they relate to certain mutations in cancer. Next, we give an overview of electron and proton transport in the mitochondrial electron transport chain, and how such transport can become impaired by mutations implicated in neurodegenerative diseases, cancer, and other major illnesses. In particular, we report on our molecular dynamics (MD) studies of a leucine→arginine amino acid replacement in ATP synthase, encoded by the T→G point mutation at locus 8993 of mtDNA. This mutation causes Leigh syndrome, a devastating maternally inherited neuromuscular disorder, and has been found to trigger rapid tumor growth in prostate cancer cell lines. Our MD results suggest, for the first time, that this mutation adversely affects water channels that transport protons to and from the c-ring of the rotary motor ATP synthase, thus impairing the ability of the motor to produce ATP. Finally, we discuss possible future research topics for biological physics, such as mitochondrial complex I, a large proton-pumping machine whose physics remains poorly understood.
Nonlinear magnetic field transport in opening switch plasmas
NASA Astrophysics Data System (ADS)
Mason, R. J.; Auer, P. L.; Sudan, R. N.; Oliver, B. V.; Seyler, C. E.; Greenly, J. B.
1993-04-01
The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code anthem [J. Comput. Phys. 71, 429 (1987)] is studied. The focus is on early time behavior in the electron-magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of ve×B Hall forces. Through simulation, magnetic penetration and magnetic exclusion waves are characterized, due to the Hall effect in the presence of transverse density gradients, and the interaction of these Hall waves with nonlinear diffusive disturbances from electron velocity advection, (veṡ∇)ve, is studied. It is shown how these mechanisms give rise to the anode magnetic insulation layer, central diffusion, and cathode potential hill structures seen in earlier opening switch plasmas studies.
Organic Semiconductors: A Molecular Picture of the Charge-Transport and Energy-Transport Processes.
NASA Astrophysics Data System (ADS)
Brédas, Jean-Luc
2007-03-01
Conjugated organic oligomer and polymer materials are being increasingly considered for their incorporation as the active semiconductor elements in devices such as photo-voltaic cells, light-emitting diodes, or field-effects transistors. In the operation of these devices, electron-transfer and energy-transfer processes play a key role, for instance in the form of charge transport (in the bulk or across interfaces), energy transport, charge separation, or charge recombination [1]. Here, we provide a theoretical description of electron-transfer phenomena based on electron-transfer theory, which allows us to provide a molecular, chemically-oriented understanding. In this presentation, we focus on the parameters that impact the mobility of charge carriers [2], that is the electronic coupling within chains and between adjacent chains and the reorganization energy of the chains upon ionization. Materials under study include conjugated oligomers such as oligoacenes, oligothiophene-acenes, oligothiophenes, and oligothienacenes. [1] J.L. Br'edas, D. Beljonne, V. Coropceanu, and J. Cornil, ``Charge-Transfer and Energy-Transfer Processes in pi-Conjugated Oligomers and Polymers'', Chemical Reviews, 104, 4971-5004 (2004). [2] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Br'edas, ``Charge Transport in Organic Semiconductors'', Chemical Reviews, 107, xxx (2007).
On the definition of Burnett transport coefficients of the dense multi-element charged matter
NASA Astrophysics Data System (ADS)
Pavlov, G. A.
2003-06-01
To determine the Burnett transport coefficients of non-ideal multi-element charged matter the representations of conservation equations of matter as generalized Langevin equations are used. Mori's algorithm is revised to derive the equation of motion of a dynamical value operator of a system in the form of the generalized nonlinear Langevin equation. After transformation, using necessary variational derivatives, these equations are compared with the Burnett hydrodynamical conservation equations. In consequence, the response function expressions of transport coefficients corresponding to second-order derivatives of thermal disturbances are found in the long-wavelength and low-frequency limits. To establish a link between the results of the executed investigations and hydrodynamical problems the properties of the high derivative coefficients matrix of the set of conservation equations in the linearized Burnett approximation are discussed.
Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Jurchescu, Oana
Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.
Transient infrared spectroscopy of charge transport in emerging photovoltaic materials
NASA Astrophysics Data System (ADS)
Jeong, Kwang Seob
Colloidal quantum dot (CQD) photovoltaic and organic photovoltaic (OPV) materials are promising alternative light absorbers for solar cells. Both CQD photovoltaics and OPVs can be fabricated on flexible substrates using low-cost solution cast fabrication methods at room temperature. Although intense research has been done for the last two decades in both materials, photophysical events underlying the device performance remain unclear. Here, the origin of the charge transport state in PbS CQD solids was explored and identified. The charge transport state was investigated using various optical and electrical methods: ultrafast transient infrared spectroscopy (UFIR), microsecond transient infrared spectroscopy (TRIR), steady state absorption spectroscopy, steady state photoluminescence emission spectroscopy, temperature dependent TRIR, temperature dependent transient photoconductivity and temperature dependent transient short-circuit current measurements. Furthermore, it was found that the mobility-lifetime product, which is dependent on the surface passivation strategy, significantly influences the device performance in CQD solar cells. Additionally, it was examined how the dielectric permittivity influences the photophysics in organic photovoltaic materials in conjunction with device performance. The experiments revealed that the increase of dielectric permittivity leads to enhancement of the mobility-lifetime product. For efficient conversion of excitons into charge carriers, it was suggested that high surface area between electron donor and acceptor materials is necessary. The findings provide better understanding of the fundamental properties of CQD and OPV materials and suggest pathways to improve the efficiency of solar cell based on these materials.
Transport processes in magnetically confined plasmas in the nonlinear regime
Sonnino, Giorgio
2006-06-15
A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schlueter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schlueter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.
Nonlinear Transport and Noise Properties of Acoustic Phonons
NASA Astrophysics Data System (ADS)
Walczak, Kamil
We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.
Particle-like representation for the field of a moving point charge in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Gitman, D. M.; E Shabad, A.; Shishmarev, A. A.
2017-05-01
In a simple nonlinear model stemming from quantum electrodynamics wherein the pointlike charge has finite field-self-energy, we demonstrate that the latter can be presented as a soliton with its energy-momentum vector satisfying the standard mechanical relation characteristic of a free moving massive relativistic particle.
Charge transport and injection in amorphous organic electronic materials
NASA Astrophysics Data System (ADS)
Tse, Shing Chi
This thesis presents how we use various measuring techniques to study the charge transport and injection in organic electronic materials. Understanding charge transport and injection properties in organic solids is of vital importance for improving performance characteristics of organic electronic devices, including organic-light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field effect transistors (OFETs). The charge transport properties of amorphous organic materials, commonly used in organic electronic devices, are investigated by the means of carrier mobility measurements. Transient electroluminescence (EL) technique was used to evaluate the electron mobility of an electron transporting material--- tris(8-hydroxyquinoline) aluminum (Alq3). The results are in excellent agreement with independent time-of-flight (TOF) measurements. Then, the effect of dopants on electron transport was also examined. TOF technique was also used to examine the effects of tertiary-butyl (t-Bu) substitutions on anthracene derivatives (ADN). All ADN compounds were found to be ambipolar. As the degree of t-Bu substitution increases, the carrier mobilities decrease progressively. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap. In addition, from TOF measurements, two naphthylamine-based hole transporters, namely, N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'diamine (NPB) and 4,4',4"-tris(n-(2-naphthyl)-n-phenyl-amino)-triphenylamine (2TNATA) were found to possess electron-transporting (ET) abilities. An organic light-emitting diode that employed NPB as the ET material was demonstrated. The electron conducting mechanism of NPB and 2TNATA in relation to the hopping model will be discussed. Furthermore, the ET property of NPB applied in OLEDs will also be examined. Besides transient EL and TOF techniques, we also use dark-injection space-charge-limited current
Kinetic theory of nonlinear transport phenomena in complex plasmas
Mishra, S. K.; Sodha, M. S.
2013-03-15
In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.
Photoinduced charge-transfer materials for nonlinear optical applications
McBranch, Duncan W.
2006-10-24
A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.
Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams
Nikolas C. Logan and Ronald C. Davidson
2012-07-18
This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.
Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells
Bommisetty, Venkat
2011-06-23
This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.
Ion transport and rectification in a charged nanoscale cone
NASA Astrophysics Data System (ADS)
Yang, Fan; Zhang, Li; Mao, Qian; Stone, Howard
2015-11-01
The possibility of rectification for ion transport in nanofluidic systems offers a potential route for developing a nanofluidic diode that mimics a semiconductor diode or captures some features of a biological ion channel. The rectification phenomenon, in which a solution would be enriched in one ion, results from asymmetric effects in ionic transport that can be realized by discontinuities in surface charge, concentration differences across a pore, or an asymmetric pore shape such as a cone. In this paper, we focus on the latter two effects and seek to capture the rectification effect in simple terms with a non-dimensional model representative of the many systems studied to date. Specifically, we analyze the rectification phenomenon in a charged nanoscale cone with a concentration difference and/or an electrical potential difference across the pore. Based on the Poisson-Nernst-Planck model and the assumption of one-dimensional transport, we derive a model based on two coupled ordinary differential equations to determine significant parameters such as ionic current. We identify several dimensionless parameters that have not been recognized previously and study the influence of the dimensionless parameters on the rectification. The authors would like to thank The Center for Combustion Energy (CCE) of Tsinghua University for supporting this project.
Ion transport through macrocapillaries - Oscillations due to charge patch formation
NASA Astrophysics Data System (ADS)
Kulkarni, D. D.; Lyle, L. A. M.; Sosolik, C. E.
2016-09-01
We present results on ion transport through large bore capillaries (macrocapillaries) that probe both the geometric and ion-guided aspects of this ion delivery mechanism. We have demonstrated that guiding in macrocapillaries exhibits position- and angle-dependent transmission properties which are directly related to the capillary material (either metal or insulator) and geometry. Specifically, we have passed 1 keV Rb+ ions through glass and metal macrocapillaries, and have observed oscillations for the transmitted ion current passing through the insulating capillaries. Straightforward calculations show that these oscillations can be attributed to beam deflections from charge patches that form on the interior walls of the capillary. The absence of these oscillations in the metal capillary data serve as further confirmation of the role of charge patch formation.
Dust charging and transport on airless planetary bodies
NASA Astrophysics Data System (ADS)
Wang, X.; Schwan, J.; Hsu, H.-W.; Grün, E.; Horányi, M.
2016-06-01
We report on laboratory experiments to shed light on dust charging and transport that have been suggested to explain a variety of unusual phenomena on the surfaces of airless planetary bodies. We have recorded micron-sized insulating dust particles jumping to several centimeters high with an initial speed of ~0.6 m/s under ultraviolet illumination or exposure to plasmas, resulting in an equivalent height of ~0.11 m on the lunar surface that is comparable to the height of the so-called lunar horizon glow. Lofted large aggregates and surface mobilization are related to many space observations. We experimentally show that the emission and re-absorption of photoelectron and/or secondary electron at the walls of microcavities formed between neighboring dust particles below the surface are responsible for generating unexpectedly large negative charges and intense particle-particle repulsive forces to mobilize and lift off dust particles.
Charged Polymers Transport under Applied Electric Fields in Periodic Channels
Nedelcu, Sorin; Sommer, Jens-Uwe
2013-01-01
By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects. PMID:28811419
Threshold for Transportation Charge Review Cost Benefit Analysis
1990-07-01
ole ai m o of Informtion is erstimreto rq htC0Ccion.ieldn ttm for 1111~~n mnttc2os ieem goewnS data vnu’rnq*Ve.I..o e (d me oin in o t ae ata ne.ed. sn...S u ite 1 0 4 .A ln g tO n . V A 2 2 2 0 2 -4 1 0 2 . a n d to th e O ff ice o f M a n a q e m e n t d u d e t. P"o t R e d u t ian P c 0ot1 0 ? 0...charges after they are reviewed and approved. This cost-benefit analysis found that the transportation charge threshold rhould be changed to $190. e
Charge and energy transport in one-dimensional nanomaterials
NASA Astrophysics Data System (ADS)
Blaustein, Gail S.
This dissertation is comprised of two parts: Charge transport in DNA hair-pins and light transport in linear arrays of dielectric spherical particles. Experimental results suggest specific charge (hole) migration kinetics for stilbene-capped DNA hair-pins of the form Sa(AT)nSd, where Sa and Sd denote the acceptor and donor stilbene respectively and (AT) n a bridge of adenine-thymine base pairs of length n = 1 -- 7. Kinetics equations are derived from experimental data for both charge separation and recombination. Counterion binding to the radicalized stilbene ions is considered a significant contributor to charge migration kinetics. In the second part, bound modes infinite linear chains of dielectric particles of various lengths and particle materials are investigated. Through a unique application of the multisphere Mie scattering formalism, numerical methods are developed to calculate eigen-optical modes for various arrays of particles. Eigenmodes with the highest quality factor are identified by the application of a modified version of the Newton-Raphson algorithm. Convergence is strong using this algorithm for linear chains of up to several hundred particles. By comparing the dipolar approach with the more complex approach utilizing a combination of both dipolar and quadrupolar approaches, the dipolar approach is shown to have an accuracy of approximately 99%. The quality factor increases with the cubed value of the number of particles in agreement with previously developed theory. The effects of disordering of particle sizes and inter-particle distances as well as interference of guiding modes in "traffic circle" waveguide configurations will be discussed.
Modelling Charge Transport in DNA Using Transfer Matrices with Diagonal Terms
NASA Astrophysics Data System (ADS)
Wells, Stephen A.; Shih, Chi-Tin; Römer, Rudolf A.
There is increasing evidence that DNA can support a considerable degree of charge transport along the strand by hopping of holes from one base to another, and that this charge transport may be relevant to DNA regulation, damage detection and repair. A surprisingly useful amount of insight can be gained from the construction of simple tight-binding models of charge transport, which can be investigated using the transfer-matrix method. The data thus obtained indicate a correlation between DNA charge-transport properties and the locations of cancerous mutation. We review models for DNA charge transport and their extension to include more physically realistic diagonal-hopping terms.
Modelling Charge Transport in DNA Using Transfer Matrices with Diagonal Terms
NASA Astrophysics Data System (ADS)
Wells, Stephen A.; Shih, Chi-Tin; Römer, Rudolf A.
2010-12-01
There is increasing evidence that DNA can support a considerable degree of charge transport along the strand by hopping of holes from one base to another, and that this charge transport may be relevant to DNA regulation, damage detection and repair. A surprisingly useful amount of insight can be gained from the construction of simple tight-binding models of charge transport, which can be investigated using the transfer-matrix method. The data thus obtained indicate a correlation between DNA charge-transport properties and the locations of cancerous mutation. We review models for DNA charge transport and their extension to include more physically realistic diagonal-hopping terms.
Charge and Spin Transport in Dilute Magnetic Semiconductors
Ullrich, Carsten A.
2009-07-23
This proposal to the DOE outlines a three-year plan of research in theoretical and computational condensed-matter physics, with the aim of developing a microscopic theory for charge and spin dynamics in disordered materials with magnetic impurities. Important representatives of this class of materials are the dilute magnetic semiconductors (DMS), which have attracted great attention as a promising basis for spintronics devices. There is an intense experimental effort underway to study the transport properties of ferromagnetic DMS such as (Ga,Mn)As, and a number of interesting features have emerged: negative magnetoresistance, anomalous Hall effect, non-Drude dynamical conductivity, and resistivity maxima at the Curie temperature. Available theories have been able to account for some of these features, but at present we are still far away from a systematic microscopic understanding of transport in DMS. We propose to address this challenge by developing a theory of charge and spin dynamics based on a combination of the memory-function formalism and time-dependent density functional theory. This approach will be capable of dealing with two important issues: (a) the strong degree of correlated disorder in DMS, close to the localization transition (which invalidates the usual relaxation-time approximation to the Boltzmann equation), (b) the essentially unknown role of dynamical many-body effects such as spin Coulomb drag. We will calculate static and dynamical conductivities in DMS as functions of magnetic order and carrier density, which will advance our understanding of recent transport and infrared absorption measurements. Furthermore, we will study collective plasmon excitations in DMS (3D, 2D and quantum wells), whose linewidths could constitute a new experimental probe of the correlation of disorder, many-body effects and charge and spin dynamics in these materials.
Charge transport model to predict intrinsic reliability for dielectric materials
Ogden, Sean P.; Borja, Juan; Plawsky, Joel L. Gill, William N.; Lu, T.-M.; Yeap, Kong Boon
2015-09-28
Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.
Charge transport model to predict intrinsic reliability for dielectric materials
NASA Astrophysics Data System (ADS)
Ogden, Sean P.; Borja, Juan; Plawsky, Joel L.; Lu, T.-M.; Yeap, Kong Boon; Gill, William N.
2015-09-01
Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.
Xiao, Li; Wang, Changhao; Ye, Xiang; Luo, Ray
2016-08-25
Continuum solvation modeling based upon the Poisson-Boltzmann equation (PBE) is widely used in structural and functional analysis of biomolecules. In this work, we propose a charge-central interpretation of the full nonlinear PBE electrostatic interactions. The validity of the charge-central view or simply charge view, as formulated as a vacuum Poisson equation with effective charges, was first demonstrated by reproducing both electrostatic potentials and energies from the original solvated full nonlinear PBE. There are at least two benefits when the charge-central framework is applied. First the convergence analyses show that the use of polarization charges allows a much faster converging numerical procedure for electrostatic energy and forces calculation for the full nonlinear PBE. Second, the formulation of the solvated electrostatic interactions as effective charges in vacuum allows scalable algorithms to be deployed for large biomolecular systems. Here, we exploited the charge-view interpretation and developed a particle-particle particle-mesh (P3M) strategy for the full nonlinear PBE systems. We also studied the accuracy and convergence of solvation forces with the charge-view and the P3M methods. It is interesting to note that the convergence of both the charge-view and the P3M methods is more rapid than the original full nonlinear PBE method. Given the developments and validations documented here, we are working to adapt the P3M treatment of the full nonlinear PBE model to molecular dynamics simulations.
Charge transport in nanoscale vertical organic semiconductor pillar devices
Wilbers, Janine G. E.; Xu, Bojian; Bobbert, Peter A.; de Jong, Michel P.; van der Wiel, Wilfred G.
2017-01-01
We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation. PMID:28117371
Hydrodynamic charge and heat transport on inhomogeneous curved spaces
NASA Astrophysics Data System (ADS)
Scopelliti, Vincenzo; Schalm, Koenraad; Lucas, Andrew
2017-08-01
We develop the theory of hydrodynamic charge and heat transport in strongly interacting quasirelativistic systems on manifolds with inhomogeneous spatial curvature. In solid-state physics, this is analogous to strain disorder in the underlying lattice. In the hydrodynamic limit, we find that the thermal and electrical conductivities are dominated by viscous effects and that the thermal conductivity is most sensitive to this disorder. We compare the effects of inhomogeneity in the spatial metric to inhomogeneity in the chemical potential and discuss the extent to which our hydrodynamic theory is relevant for experimentally realizable condensed-matter systems, including suspended graphene at the Dirac point.
Acoustic charge transport technology investigation for advanced development transponder
NASA Technical Reports Server (NTRS)
Kayalar, S.
1993-01-01
Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.
Charge transport in nanoscale vertical organic semiconductor pillar devices.
Wilbers, Janine G E; Xu, Bojian; Bobbert, Peter A; de Jong, Michel P; van der Wiel, Wilfred G
2017-01-24
We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 10(6) A/m(2)). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation.
Charge transport in nanoscale vertical organic semiconductor pillar devices
NASA Astrophysics Data System (ADS)
Wilbers, Janine G. E.; Xu, Bojian; Bobbert, Peter A.; de Jong, Michel P.; van der Wiel, Wilfred G.
2017-01-01
We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation.
Stable All-Organic Radicals with Ambipolar Charge Transport.
Reig, Marta; Gozálvez, Cristian; Jankauskas, Vygintas; Gaidelis, Valentas; Grazulevicius, Juozas V; Fajarí, Lluís; Juliá, Luis; Velasco, Dolores
2016-12-19
A series of neutral long-lived purely organic radicals based on the stable [4-(N-carbazolyl)-2,6-dichlorophenyl]bis(2,4,6-trichlorophenyl)methyl radical adduct (Cbz-TTM) is reported herein. All compounds exhibit ambipolar charge-transport properties under ambient conditions owing to their radical character. High electron and hole mobilities up to 10(-2) and 10(-3) cm(2) V(-1) s(-1) , respectively, were achieved. Xerographic single-layered photoreceptors were fabricated from the radicals studied herein, exhibiting good xerographic photosensitivity across the visible spectrum.
Charge transport studies of proton and ion conducting materials
NASA Astrophysics Data System (ADS)
Versek, Craig Wm
The development of a high-throughput impedance spectroscopy instrumentation platform for conductivity characterization of ion transport materials is outlined. Collaborative studies using this system are summarized. Charge conduction mechanisms and conductivity data for small molecule proton conducting liquids, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and select mixtures of these compounds are documented. Furthermore, proton diffusivity measurements using a Pulse Field Gradient Nuclear Magnetic Resonance (PFG NMR) technique for imidazole and 1,2,3-triazole binary mixtures are compared. Studies of azole functionalized discotic and linear mesogens with conductivity, structural, and thermal characterizations are detailed.
Nonlinear transport in ionic liquid gated strontium titanate nanowires
Bretz-Sullivan, Terence M.; Goldman, A. M.
2015-09-14
Measurements of the current-voltage (I–V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I–V characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I–V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.
NASA Astrophysics Data System (ADS)
Tu, Xiuwen
2008-10-01
Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these
Nonlinear hopping transport in ring systems and open channels.
Einax, Mario; Körner, Martin; Maass, Philipp; Nitzan, Abraham
2010-01-21
We study the nonlinear hopping transport in one-dimensional rings and open channels. Analytical results are derived for the stationary current response to a constant bias without assuming any specific coupling of the rates to the external fields. It is shown that anomalous large effective jump lengths, as observed in recent experiments by taking the ratio of the third-order nonlinear and the linear conductivity, can occur already in ordered systems. Rectification effects due to site energy disorder in ring systems are expected to become irrelevant for large system sizes. In open channels, in contrast, rectification effects occur already for disorder in the jump barriers and do not vanish in the thermodynamic limit. Numerical solutions for a sinusoidal bias show that the ring system provides a good description for the transport behavior in the open channel for intermediate and high frequencies. For low frequencies temporal variations in the mean particle number have to be taken into account in the open channel, which cannot be captured in the more simple ring model.
Nonlinear electrokinetic transport in networks of microscale and nanoscale pores
NASA Astrophysics Data System (ADS)
Alizadeh, Shima; Andersen, Mathias B.; Mani, Ali
2012-11-01
The objective of this study is to develop the understanding of nonlinear electrohydrodynamic effects in a wide range of systems including lab-on-a-chip systems, electroosmotic pumps, and, in general, porous media with random or fabricated pore morphology. We present a continuum model in which these systems are described as massive networks of long and thin pores. The thickness of the pores can vary from nanoscale to microscale, corresponding to the highly overlapped electric double layers (EDL) to the thin double layer limit. Within each pore the transport in the wall-normal direction is assumed to be in equilibrium leading to a reduced order model for the axial transport of species in the form of a transient one-dimensional partial differential equation (PDE). PDEs from different pores are coupled through boundary conditions at the pore intersections by proper implementation of the conservation laws. We show that this model can capture important nonlinear dynamics, which are typically ignored in homogenized models. Specifically, our model captures concentration polarization shocks and flow recirculation zones respectively formed when micropores and nanopores are connected in series and in parallel. We present a comparison between our model and recent experiments in microfluidics, and will discuss applications in porous media modeling for energy storage and water purification systems.
NASA Astrophysics Data System (ADS)
Eftekhari, F.; Tavassoly, M. K.
In this paper, we will present a general formalism for constructing the nonlinear charge coherent states which in special case lead to the standard charge coherent states. The suQ(1, 1) algebra as a nonlinear deformed algebra realization of the introduced states is established. In addition, the corresponding even and odd nonlinear charge coherent states have also been introduced. The formalism has the potentiality to be applied to systems either with known "nonlinearity function" f(n) or solvable quantum system with known "discrete nondegenerate spectrum" en. As some physical appearances, a few known physical systems in the two mentioned categories have been considered. Finally, since the construction of nonclassical states is a central topic of quantum optics, nonclassical features and quantum statistical properties of the introduced states have been investigated by evaluating single- and two-mode squeezing, su(1, 1)-squeezing, Mandel parameter and antibunching effect (via g-correlation function) as well as some of their generalized forms we have introduced in the present paper.
DNA-mediated charge transport for DNA repair
Boon, Elizabeth M.; Livingston, Alison L.; Chmiel, Nikolas H.; David, Sheila S.; Barton, Jacqueline K.
2003-01-01
MutY, like many DNA base excision repair enzymes, contains a [4Fe4S]2+ cluster of undetermined function. Electrochemical studies of MutY bound to a DNA-modified gold electrode demonstrate that the [4Fe4S] cluster of MutY can be accessed in a DNA-mediated redox reaction. Although not detectable without DNA, the redox potential of DNA-bound MutY is ≈275 mV versus NHE, which is characteristic of HiPiP iron proteins. Binding to DNA is thus associated with a change in [4Fe4S]3+/2+ potential, activating the cluster toward oxidation. Given that DNA charge transport chemistry is exquisitely sensitive to perturbations in base pair structure, such as mismatches, we propose that this redox process of MutY bound to DNA exploits DNA charge transport and provides a DNA signaling mechanism to scan for mismatches and lesions in vivo. PMID:14559969
Controlling polymer translocation and ion transport via charge correlations.
Buyukdagli, Sahin; Ala-Nissila, T
2014-11-04
We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer.
Thermally activated charge transport in microbial protein nanowires.
Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma
2016-03-24
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.
Light-Induced Charge Transport within a Single Asymmetric Nanowire
Liu, Chong; Hwang, Yun Yeong; Jeong, Hoon Eui; Yang, Peidong
2011-01-21
Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photo-generated electrons and holes within a single asymmetric Si/TiO2 nanowire using Kelvin probe force microscopy (KPFM). Under UV illumination, higher surface potential was observed on the n-TiO₂ side, relative to the potential of the p-Si side, as a result of majority carriers’ recombination at the Si/TiO₂ interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure, with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered.
Thermally activated charge transport in microbial protein nanowires
Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma
2016-01-01
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596
Quantum charge transport and conformational dynamics of macromolecules.
Boninsegna, L; Faccioli, P
2012-06-07
We study the dynamics of quantum excitations inside macromolecules which can undergo conformational transitions. In the first part of the paper, we use the path integral formalism to rigorously derive a set of coupled equations of motion which simultaneously describe the molecular and quantum transport dynamics, and obey the fluctuation/dissipation relationship. We also introduce an algorithm which yields the most probable molecular and quantum transport pathways in rare, thermally activated reactions. In the second part of the paper, we apply this formalism to simulate the propagation of a quantum charge during the collapse of a polymer from an initial stretched conformation to a final globular state. We find that the charge dynamics is quenched when the chain reaches a molten globule state. Using random matrix theory we show that this transition is due to an increase of quantum localization driven by dynamical disorder. We argue that collapsing conducting polymers may represent a physical realization of quantum small-world networks with dynamical rewiring probability.
Effects of cytosine methylation on DNA charge transport
NASA Astrophysics Data System (ADS)
Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian
2012-04-01
The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.
Thermally activated charge transport in microbial protein nanowires
NASA Astrophysics Data System (ADS)
Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma
2016-03-01
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.
Simulating charge transport to understand the spectral response of Swept Charge Devices
NASA Astrophysics Data System (ADS)
Athiray, P. S.; Sreekumar, P.; Narendranath, S.; Gow, J. P. D.
2015-11-01
Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. Aims: The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs. Methods: Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum. Results: We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at
Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics
NASA Astrophysics Data System (ADS)
Scully, Shawn Ryan
Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of
Edward A. Startsev; Ronald C. Davidson; Hong Qin
2002-05-07
In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.
Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects
NASA Astrophysics Data System (ADS)
Kolomeisky, Eugene B.; Straley, Joseph P.
2017-01-01
Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and hole-rich regions, and finite extinction times for periodic charge profiles.
19 CFR 351.515 - Internal transport and freight charges for export shipments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... shipments. 351.515 Section 351.515 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... Internal transport and freight charges for export shipments. (a) Benefit—(1) In general. In the case of internal transport and freight charges on export shipments, a benefit exists to the extent that the charges...
Dijkstra, Arend G. E-mail: tanimura@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka E-mail: tanimura@kuchem.kyoto-u.ac.jp
2015-06-07
We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole, and exciton transfers can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional (2D) spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states during two different time periods.
Charge carrier transport properties in layer structured hexagonal boron nitride
Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.
2014-10-15
Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T{sub 0}){sup −α} with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.
Först, M.; Frano, A.; Kaiser, S.; ...
2014-11-17
In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
NASA Astrophysics Data System (ADS)
Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; Reinke, M. L.; White, A. E.; Ernst, D.; Podpaly, Y.; Candy, J.
2012-06-01
Nonlinear gyrokinetic simulations of impurity transport are compared to experimental impurity transport for the first time. The GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) was used to perform global, nonlinear gyrokinetic simulations of impurity transport for a standard Alcator C-Mod, L-mode discharge. The laser blow-off technique was combined with soft x-ray measurements of a single charge state of calcium to provide time-evolving profiles of this non-intrinsic, non-recycling impurity over a radial range of 0.0 ⩽ r/a ⩽ 0.6. Experimental transport coefficient profiles and their uncertainties were extracted from the measurements using the impurity transport code STRAHL and rigorous Monte Carlo error analysis. To best assess the agreement of gyrokinetic simulations with the experimental profiles, the sensitivity of the GYRO predicted impurity transport to a wide range of turbulence-relevant plasma parameters was investigated. A direct comparison of nonlinear gyrokinetic simulation and experiment is presented with an in depth discussion of error sources and a new data analysis methodology.
NASA Astrophysics Data System (ADS)
Mengistu, Demmelash H.; May, Sylvio
2008-09-01
The nonlinear Poisson-Boltzmann model is used to derive analytical expressions for the free energies of both mixed anionic-zwitterionic and mixed cationic-zwitterionic lipid membranes as function of the mole fraction of charged lipids. Accounting explicitly for the electrostatic properties of the zwitterionic lipid species affects the free energy of anionic and cationic membranes in a qualitatively different way: That of an anionic membrane changes monotonously as a function of the mole fraction of charged lipids, whereas it passes through a pronounced minimum for a cationic membrane.
An electrochemical model of the transport of charged molecules through the capillary glycocalyx.
Stace, T M; Damiano, E R
2001-01-01
An electrochemical theory of the glycocalyx surface layer on capillary endothelial cells is developed as a model to study the electrochemical dynamics of anionic molecular transport within capillaries. Combining a constitutive relationship for electrochemical transport, derived from Fick's and Ohm's laws, with the conservation of mass and Gauss's law from electrostatics, a system of three nonlinear, coupled, second-order, partial, integro-differential equations is obtained for the concentrations of the diffusing anionic molecules and the cations and anions in the blood. With the exception of small departures from electroneutrality that arise locally near the apical region of the glycocalyx, the model assumes that cations in the blood counterbalance the fixed negative charges bound to the macromolecular matrix of the glycocalyx in equilibrium. In the presence of anionic molecular tracers injected into the capillary lumen, the model predicts the size- and charge-dependent electrophoretic mobility of ions and tracers within the layer. In particular, the model predicts that anionic molecules are excluded from the glycocalyx at equilibrium and that the extent of this exclusion, which increases with increasing tracer and/or glycocalyx electronegativity, is a fundamental determinant of anionic molecular transport through the layer. The model equations were integrated numerically using a Crank-Nicolson finite-difference scheme and Newton-Raphson iteration. When the concentration of the anionic molecular tracer is small compared with the concentration of ions in the blood, a linearized version of the model can be obtained and solved as an eigenvalue problem. The results of the linear and nonlinear models were found to be in good agreement for this physiologically important case. Furthermore, if the fixed-charge density of the glycocalyx is of the order of the concentration of ions in the blood, or larger, or if the magnitude of the anionic molecular valence is large, a
An electrochemical model of the transport of charged molecules through the capillary glycocalyx.
Stace, T M; Damiano, E R
2001-04-01
An electrochemical theory of the glycocalyx surface layer on capillary endothelial cells is developed as a model to study the electrochemical dynamics of anionic molecular transport within capillaries. Combining a constitutive relationship for electrochemical transport, derived from Fick's and Ohm's laws, with the conservation of mass and Gauss's law from electrostatics, a system of three nonlinear, coupled, second-order, partial, integro-differential equations is obtained for the concentrations of the diffusing anionic molecules and the cations and anions in the blood. With the exception of small departures from electroneutrality that arise locally near the apical region of the glycocalyx, the model assumes that cations in the blood counterbalance the fixed negative charges bound to the macromolecular matrix of the glycocalyx in equilibrium. In the presence of anionic molecular tracers injected into the capillary lumen, the model predicts the size- and charge-dependent electrophoretic mobility of ions and tracers within the layer. In particular, the model predicts that anionic molecules are excluded from the glycocalyx at equilibrium and that the extent of this exclusion, which increases with increasing tracer and/or glycocalyx electronegativity, is a fundamental determinant of anionic molecular transport through the layer. The model equations were integrated numerically using a Crank-Nicolson finite-difference scheme and Newton-Raphson iteration. When the concentration of the anionic molecular tracer is small compared with the concentration of ions in the blood, a linearized version of the model can be obtained and solved as an eigenvalue problem. The results of the linear and nonlinear models were found to be in good agreement for this physiologically important case. Furthermore, if the fixed-charge density of the glycocalyx is of the order of the concentration of ions in the blood, or larger, or if the magnitude of the anionic molecular valence is large, a
Magnetically charged regular black hole in a model of nonlinear electrodynamics
Ma, Meng-Sen
2015-11-15
We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which we know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.
Thermal stability analysis of nonlinearly charged asymptotic AdS black hole solutions
NASA Astrophysics Data System (ADS)
Dehghani, M.; Hamidi, S. F.
2017-08-01
In this paper, the four-dimensional nonlinearly charged black hole solutions have been considered in the presence of the power Maxwell invariant electrodynamics. Two new classes of anti-de Sitter (AdS) black hole solutions have been introduced according to different amounts of the parameters in the nonlinear theory of electrodynamics. The conserved and thermodynamical quantities of either of the black hole classes have been calculated from geometrical and thermodynamical approaches, separately. It has been shown that the first law of black hole thermodynamics is satisfied for either of the AdS black hole solutions we just obtained. Through the canonical and grand canonical ensemble methods, the black hole thermal stability or phase transitions have been analyzed by considering the heat capacities with the fixed black hole charge and fixed electric potential, respectively. It has been found that the new AdS black holes are stable if some simple conditions are satisfied.
Tuning The Optical, Charge Injection, and Charge Transport Properties of Organic Electronic Devices
NASA Astrophysics Data System (ADS)
Zalar, Peter
Since the early 1900's, synthetic insulating polymers (plastics) have slowly taken over the role that traditional materials like wood or metal have had as basic components for construction, manufactured goods, and parts. Plastics allow for high throughput, low temperature processing, and control of bulk properties through molecular modifications. In the same way, pi-conjugated organic molecules are emerging as a possible substitute for inorganic materials due to their electronic properties. The semiconductive nature of pi-conjugated materials make them an attractive candidate to replace inorganic materials, primarily due to their promise for low cost and large-scale production of basic semiconducting devices such as light-emitting diodes, solar cells, and field-effect transistors. Before organic semiconductors can be realized as a commercial product, several hurdles must be cleared. The purpose of this dissertation is to address three distinct properties that dominate the functionality of devices harnessing these materials: (1) optical properties, (2) charge injection, and (3) charge transport. First, it is shown that the electron injection barrier in the emissive layer of polymer light-emitting diodes can be significantly reduced by processing of novel conjugated oligoelectrolytes or deoxyribonucleic acid atop the emissive layer. Next, the charge transport properties of several polymers could be modified by processing them from solvents containing small amounts of additives or by using regioregular and enantiopure chemical structures. It is then demonstrated that the optical and electronic properties of Lewis basic polymer structures can be readily modified by interactions with strongly electron-withdrawing Lewis acids. Through red-shifted absorption, photoluminescence, and electroluminescence, a single pi-conjugated backbone can be polychromatic. In addition, interaction with Lewis acids can remarkably p-dope the hole transport of the parent polymer, leading to a
Nonlinear transport of graphene in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Tian, Shibing; Wang, Pengjie; Liu, Xin; Zhu, Junbo; Fu, Hailong; Taniguchi, Takashi; Watanabe, Kenji; Chen, Jian-Hao; Lin, Xi
2017-03-01
We have studied the breakdown of the integer quantum Hall (QH) effect with fully broken symmetry, in an ultra-high mobility graphene device sandwiched between two single crystal hexagonal boron nitride substrates. The evolution and stabilities of the QH states are studied quantitatively through the nonlinear transport with dc Hall voltage bias. The mechanism of the QH breakdown in graphene and the movement of the Fermi energy with the electrical Hall field are discussed. This is the first study in which the stabilities of fully symmetry broken QH states are probed all together. Our results raise the possibility that the ν = ±6 states might be a better target for the quantum resistance standard.
Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2016-10-01
We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.
Nonlinear electrostatic ion-acoustic "oscilliton" waves driven by charge non-neutrality effects
NASA Astrophysics Data System (ADS)
Ma, J. Z. G.; Hirose, A.; St.-Maurice, J.-P.; Liu, W.
2011-01-01
Nonlinear "oscilliton" structures features a low-frequency (LF) solitary envelope, the amplitude of which is modulated violently by superimposed high-frequency (HF) oscillations. We have studied the charge non-neutrality effects on the excitation of electrostatic ion-acoustic (IA) oscillitons. A two-fluid, warm plasma model is employed, and a set of nonlinear self-similar equations is solved in a cylindrical geometry. Under charge-neutrality conditions, three conventional IA structures (namely, sinusoidal, sawtooth, and spicky/bipolar) are obtained. By contrast, under charge non-neutrality conditions, oscilliton structures are excited, where the LF envelope is in the sound-wave (SW) mode, while the HF ingredients include the IA mode and the ion-Langmiur (IL) mode. The amplitudes of the SW wave are violently modulated by the IA oscillations, whereas the upward sides of the IA amplitudes are modulated by the IL oscillations of smaller amplitudes, and the downward sides are modulated by hybrid IA/IL oscillations. The nonlinear oscillitons are found to be dependent not only upon the input parameters (e.g., the Mach number, the Debye length, and the initial temperature of particles), but on initial conditions as well.
Enhancement and electric charge-assisted tuning of nonlinear light generation in bipolar plasmonics.
Ding, Wei; Zhou, Liangcheng; Chou, Stephen Y
2014-05-14
We propose and experimentally demonstrate a new plasmonic nonlinear light generation (NLG) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only achieves high second-harmonic generation (SHG) enhancement (76-fold), large SHG tunability by bias (8%/V), wide tuning range (280%), 7.8 × 10(-9) conversion efficiency, and high stability but also exhibits a SHG tuning, that is bipolar rather than unipolar, not due to the third-order nonlinear polarization term, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose a new SHG tuning mechanism: the second-order nonlinear polarization term enhanced by plasmonic effects, changed by charge injection and negative oxygen vacancies movement, and is nearly 3 orders of magnitude larger than EFISH. p-CASH is a bipolar parallel-plate capacitor with thin layers of plasmonic nanostructures, a TiOx (semiconductor and nonlinear) and a SiO2 (insulator) sandwiched between two electrodes. Fabrication of p-CASH used nanoimprint on 4″ wafer and is scalable to wallpaper-sized areas. The new structure, new properties, and new understanding should open up various new designs and applications of NLG in various fields.
NASA Astrophysics Data System (ADS)
Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro
Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.
Lunar dust transport by photoelectric charging at sunset
NASA Technical Reports Server (NTRS)
Pelizzari, M. A.; Criswell, D. R.
1978-01-01
The motion of dust grains from a photoelectrically charged object at the moon's sunset terminator is studied with the aid of a simple model. It is shown that sunlit objects ranging in size from less than 0.01 cm to 5 cm in radius are responsible for the levitation of dust grains to heights of observed horizon glow. The transverse displacement of these grains is observed to be at least twice their maximum altitude, so that fitting the latter to horizon glow implies horizontal particle ranges typically 6 to 60 cm. Detachment of these grains from the sunlit areas takes place mainly along the contracting sunlight boundaries as the areas shrink during sunset. A high ratio of intergrain adhesion force to dust-grain weight is essential for the occurrence of horizon glow and significant dust transport from the subcentimeter sized sunlit areas.
Anisotropic charge transport in flavonoids as organic semiconductors
NASA Astrophysics Data System (ADS)
Hou, Chunyuan; Chen, Xin
2015-03-01
A quantum mechanical approach has been used to investigate on the potential for using two naturally occurring flavonoids: quercetin and luteolin as candidates for organic semiconductor. Selection of flavonoids enables to evaluate the effects of hydroxyl group structural features. The relationship between molecular packing and charge transport in flavonoids is presented. The calculated results indicate that quercetin should be an ideal candidate as high-performance p-type organic semiconductor material, while luteolin is predicted as n-type organic semiconductor material. The predicted maximum electron mobility value of quercetin is 0.075 cm2 V-1 s-1, which appears at the orientation angle near 91°/271° of conducting channel on the reference planes b-c. Theoretical investigation of natural semiconductors is helpful for designing higher performance electronic materials used in biochemical and industrial field to replace expensive and rare organic materials.
Charge transport in hybrid nanorod-polymer composite photovoltaiccells
Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.
2002-06-21
Charge transport in composites of inorganic nanorods and aconjugated polymer is investigated using a photovoltaic device structure.We show that the current-voltage (I-V) curves in the dark can be modelledusing the Shockley equation modified to include series and shuntresistance at low current levels, and using an improved model thatincorporates both the Shockley equation and the presence of a spacecharge limited region at high currents. Under illumination, theefficiency of photocurrent generation is found to be dependent on appliedbias. Furthermore, the photocurrent-light intensity dependence was foundto be sublinear. An analysis of the shunt resistance as a function oflight intensity suggests that the photocurrent as well as the fill factoris diminished as a result of increased photoconductivity of the activelayer at high light intensity. By studying the intensity dependence ofthe open circuit voltage for nanocrystals with different diameters andthus ! band gaps, it was inferred that Fermi-level pinning occurs at theinterface between the aluminum electrode and the nanocrystal.
Charge transport across the metal-polymer film boundary
NASA Astrophysics Data System (ADS)
Yumaguzin, Yu. M.; Salikhov, T. R.; Shayakhmetov, R. U.; Salikhov, R. B.
2016-08-01
Thin polyaniline films were fabricated by thermal vacuum evaporation from a Knudsen effusion cell. The conducting properties of films synthesized under different evaporation conditions were studied. The enhancement of the emission capacity of a wolfram tip coated with a polyaniline film of a nanometer thickness was demonstrated experimentally. A model of the discovered effect was proposed. The obtained Fowler-Nordheim current-voltage characteristics were used to estimate the change in the electronic work function occurring when a thin film is deposited on the tip surface. The effective temperature of electrons emitted from the polyaniline film was determined based on the results of analysis of energy distributions, and the specific features of charge transport in the metal-polyaniline-vacuum system were examined. A model of energy bands of the metal-polymer film contact was also constructed.
Charge transport through weakly open one-dimensional quantum wires
NASA Astrophysics Data System (ADS)
Kopnin, N. B.; Galperin, Y. M.; Vinokur, V. M.
2009-01-01
We consider resonant transmission through a gated finite-length quantum wire connected to leads via finite-transparency junctions, such that the escape time is much smaller than the energy relaxation time in the wire. The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-voltage (IV) curves show steplike dependence on the bias voltage determined by the distance between the quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and level spacing. If the system is tuned close to the resonance condition by the gate voltage, the low-voltage IV curve is ohmic. At large Coulomb energy and low temperatures, the conductance is temperature independent for any relationship between temperature, level spacing, and coupling between the wire and the leads.
Lunar dust transport by photoelectric charging at sunset
NASA Technical Reports Server (NTRS)
Pelizzari, M. A.; Criswell, D. R.
1978-01-01
The motion of dust grains from a photoelectrically charged object at the moon's sunset terminator is studied with the aid of a simple model. It is shown that sunlit objects ranging in size from less than 0.01 cm to 5 cm in radius are responsible for the levitation of dust grains to heights of observed horizon glow. The transverse displacement of these grains is observed to be at least twice their maximum altitude, so that fitting the latter to horizon glow implies horizontal particle ranges typically 6 to 60 cm. Detachment of these grains from the sunlit areas takes place mainly along the contracting sunlight boundaries as the areas shrink during sunset. A high ratio of intergrain adhesion force to dust-grain weight is essential for the occurrence of horizon glow and significant dust transport from the subcentimeter sized sunlit areas.
NASA Astrophysics Data System (ADS)
Olson, Benjamin Varberg
All-optical time-resolved measurement techniques provide a powerful tool for investigating critical parameters that determine the performance of infrared photodetector and emitter semiconductor materials. Narrow-bandgap InAs/GaSb type-II superlattices (T2SLs) have shown great promise as a next generation source of these materials, due to superior intrinsic properties and versatility. Unfortunately, InAs/GaSb T2SLs are plagued by parasitic Shockley-Read-Hall recombination centers that shorten the carrier lifetime and limit device performance. Ultrafast pump-probe techniques and time-resolved differential transmission measurements are used here to demonstrate that Ga-free InAs/InAsSb T2SLs and InAsSb alloys do not have this same limitation and thus have significantly longer carrier lifetimes. Measurements at 77 K provided minority carrier lifetimes of 9 mus and 3 mus for an unintentionally doped mid-wave infrared (MWIR) InAs/InAsSb T2SL and InAsSb alloy, respectively; a two order of magnitude increase compared to the 90 ns minority carrier lifetime measured in a comparable MWIR InAs/GaSb T2SL. Through temperature-dependent lifetime measurements, the various carrier recombination processes are differentiated and the dominant mechanisms identified for each material. These results demonstrate that these Ga-free materials are viable options over InAs/GaSb T2SLs for potentially improved infrared photodetectors. In addition to carrier lifetimes, the drift and diffusion of excited charge carriers through the superlattice growth layers (i.e. vertical transport) directly affects the performance of photodetectors and emitters. Unfortunately, there is a lack of information pertaining to vertical transport, primarily due to difficulties in making measurements on thin growth layers and the need for non-standard measurement techniques. However, all-optical ultrafast techniques are successfully used here to directly measure vertical diffusion in MWIR InAs/GaSb T2SLs. By optically
Transport of intense beams of highly charged ions
NASA Astrophysics Data System (ADS)
Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.
2005-10-01
The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.
Microscopic theory on charge transports of a correlated multiorbital system
NASA Astrophysics Data System (ADS)
Arakawa, Naoya
2016-07-01
Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.
DNA Charge Transport: From Chemical Principles to the Cell
Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.
2016-01-01
The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744
Charge Transport Mechanism in Thin Cuticles Holding Nandi Flame Seeds
Kipnusu, Wycliffe K.; Katana, Gabriel; Migwi, Charles M.; Rathore, I. V. S.; Sangoro, Joshua R.
2009-01-01
Metal-sample-metal sandwich configuration has been used to investigate DC conductivity in 4 μm thick Nandi flame [Spathodea campanulata P. Beauv.] seed cuticles. J-V characteristics showed ohmic conduction at low fields and space charge limited current at high fields. Charge mobility in ohmic region was 4.06 × 10−5 (m2V−1s−1). Temperature-dependent conductivity measurements have been carried out in the temperature range 320 K < T > 450 K. Activation energy within a temperature of 320 K–440 K was about 0.86 eV. Variable range hopping (VRH) is the main current transport mechanism at the range of 330–440 K. The VRH mechanism was analyzed based on Mott theory and the Mott parameters: density of localized states near the Fermi-level N(E F) ≈ 9.04 × 1019 (eV−1cm−3) and hopping distance R ≈ 1.44 × 10−7 cm, while the hopping energy (W) was in the range of 0.72 eV–0.98 eV. PMID:20130799
Metal Complexes for DNA-Mediated Charge Transport
Barton, Jacqueline K.; Olmon, Eric D.; Sontz, Pamela A.
2010-01-01
In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5′-GG-3′ sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of DNA CT to how the metal complexes are stacked in the helix. Experiments with cyclopropylamine-modified bases have revealed that charge occupation occurs at all sites along the bridge. Using Ir complexes, we have seen that the process of DNA-mediated reduction is very similar to that of DNA-mediated oxidation. Studies involving metalloproteins have, furthermore, shown that their redox activity is DNA-dependent and can be DNA-mediated. Long range DNA-mediated CT can facilitate the oxidation of DNA-bound base excision repair proteins to initiate a redox-active search for DNA lesions. DNA CT can also activate the transcription factor SoxR, triggering a cellular response to oxidative stress. Indeed, these studies show that within the cell, redox-active proteins may utilize the same chemistry as that of synthetic metal complexes in vitro, and these proteins may harness DNA-mediated CT to reduce damage to the genome and regulate cellular processes. PMID:21643528
Charge transport in single CuO nanowires
Wu, Junnan; Yin, Bo; Wu, Fei; Myung, Yoon; Banerjee, Parag
2014-11-03
Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K–400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (<0.89 × 10{sup 3 }V/cm), an ohmic conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, E{sub T} = 26.6 meV and trap density, N{sub T} = 3.4 × 10{sup 15 }cm{sup −3}. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm{sup 2}/V s and an effective hole concentration of 4 × 10{sup 18 }cm{sup −3} at 250 K.
Non-linear transport by solitons in nanofibers of polymers in high magnetic field
NASA Astrophysics Data System (ADS)
Kirova, N.; Brazovskii, S.; Choi, A.; Park, Y. W.
2012-06-01
Nonlinear local excitations like solitons, polarons, and bipolarons are known to be responsible for physical properties of conducting polymers. Recent experiments on nano-fibers in high electric and magnetic fields provide a further insight by demonstrating an effect of vanishing magnetoconductance (MC) in the polyacetylene (PA)-in contrast to other polymers. Here we present new experimental data and describe the theoretical model based on notion of solitons-dimerization kinks which can carry either the spin or the charge; they are allowed only in the PA with its degenerate ground state. The solitons experience a confinement force due to the interchange coupling which is erased by the electric field and disappears above critical field strength. The unbinding by tunneling allows for the transport of individual solitons, which sweeps off the spins residing at electronic intragap states associated with polarons, hence the vanishing MC.
Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts.
Bandari, Vineeth Kumar; Varadharajan, Lakshmi; Xu, Longqian; Jalil, Abdur Rehman; Devarajulu, Mirunalini; Siles, Pablo F; Zhu, Feng; Schmidt, Oliver G
2017-01-01
The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias.
Charge injection and transport properties of an organic light-emitting diode
Juhasz, Peter; Nevrela, Juraj; Micjan, Michal; Novota, Miroslav; Uhrik, Jan; Stuchlikova, Lubica; Jakabovic, Jan; Harmatha, Ladislav
2016-01-01
Summary The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport. PMID:26925351
Nonlinear dynamics of spin and charge in spin-Calogero model
Kulkarni, Manas; Franchini, Fabio; Abanov, Alexander G.
2009-10-15
The fully nonlinear dynamics of spin and charge in spin-Calogero model is studied. The latter is an integrable one-dimensional model of quantum spin-1/2 particles interacting through inverse-square interaction and exchange. Classical hydrodynamic equations of motion are written for this model in the regime where gradient corrections to the exact hydrodynamic formulation of the theory may be neglected. In this approximation variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set of decoupled Riemann-Hopf (or inviscid Burgers') equations for the dressed Fermi momenta. We study the dynamics of some nonequilibrium spin-charge configurations for times smaller than the time scale of the gradient catastrophe. We find an interesting interplay between spin and charge degrees of freedom. In the limit of large coupling constant the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry model.
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys. Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability
NASA Astrophysics Data System (ADS)
Bosch, Pablo; Green, Stephen R.; Lehner, Luis
2016-04-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Bardhan, Jaydeep P; Knepley, Matthew G
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, "Charge asymmetries in hydration of polar solutes," J. Phys. Chem. B 112, 2405-2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-10-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, "Charge asymmetries in hydration of polar solutes," J. Phys. Chem. B 112, 2405-2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.
Bosch, Pablo; Green, Stephen R; Lehner, Luis
2016-04-08
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
O'Regan, Brian C; Bakker, Klaas; Kroeze, Jessica; Smit, Herman; Sommeling, Paul; Durrant, James R
2006-08-31
Charge transport rate at open-circuit potential (V(oc)) is proposed as a new characterization method for dye-sensitized (DS) and other nanostructured solar cells. At V(oc), charge density is flat and measurable, which simplifies quantitative comparison of transport and charge density. Transport measured at V(oc) also allows meaningful comparison of charge transport rates between different treatments, temperatures, and types of cells. However, in typical DS cells, charge transport rates at V(oc) often cannot be measured by photocurrent transients or modulation techniques due to RC limitations and/or recombination losses. To circumvent this limitation, we show that charge transport at V(oc) can be determined directly from the transient photovoltage rise time using a simple, zero-free-parameter model. This method is not sensitive to RC limitation or recombination losses. In trap limited devices, such as DS cells, the comparison of transport rates between different devices or conditions is only valid when the Fermi level in the limiting conductor is at the same distance from the band edge. We show how to perform such comparisons, correcting for conduction band shifts using the density of states (DOS) distribution determined from the same photovoltage transients. Last we show that the relationship between measured transport rate and measured charge density is consistent with the trap limited transport model.
Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials
NASA Astrophysics Data System (ADS)
Majewski, Pawel W.
The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.
Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes
2016-01-01
The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006
Mass and charge transport in arbitrarily shaped microchannels
NASA Astrophysics Data System (ADS)
Bruus, Henrik; Asger Mortensen, Niels; Okkels, Fridolin; Hoejgaard Olesen, Laurits
2006-11-01
We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the problem of arbitrarily shaped cross sections and obtain general results in linear-response theory for the mass and charge transport coefficients which satisfy Onsager relations [1,2]. In the limit of non-overlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as half the hydraulic diameter R=2 A/P with A and P being the cross- sectional area and perimeter, respectively. In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro- hydrodynamic interactions.[1] N. A. Mortensen, F. Okkels, and H. Bruus, Phys. Rev. E 71, 057301 (2005) [2] N. A. Mortensen, L. H. Olesen, and H. Bruus, New J. Phys. 8, 37 (2006)
Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport
Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo
2015-10-19
The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.
A moment-preserving nonanalog method for charged particle transport.
Prinja, Anil K.; Franke, Brian Claude; Fichtl, Erin; Harding, Lee T.
2004-09-01
Extremely short collision mean free paths and near-singular elastic and inelastic differential cross sections (DCS) make analog Monte Carlo simulation an impractical tool for charged particle transport. The widely used alternative, the condensed history method, while efficient, also suffers from several limitations arising from the use of precomputed smooth distributions for sampling. There is much interest in developing computationally efficient algorithms that implement the correct transport mechanics. Here we present a nonanalog transport-based method that incorporates the correct transport mechanics and is computationally efficient for implementation in single event Monte Carlo codes. Our method systematically preserves important physics and is mathematically rigorous. It builds on higher order Fokker-Planck and Boltzmann Fokker-Planck representations of the scattering and energy-loss process, and we accordingly refer to it as a Generalized Boltzmann Fokker-Planck (GBFP) approach. We postulate the existence of nonanalog single collision scattering and energy-loss distributions (differential cross sections) and impose the constraint that the first few momentum transfer and energy loss moments be identical to corresponding analog values. This is effected through a decomposition or hybridizing scheme wherein the singular forward peaked, small energy-transfer collisions are isolated and de-singularized using different moment-preserving strategies, while the large angle, large energy-transfer collisions are described by the exact (analog) DCS or approximated to a high degree of accuracy. The inclusion of the latter component allows the higher angle and energy-loss moments to be accurately captured. This procedure yields a regularized transport model characterized by longer mean free paths and smoother scattering and energy transfer kernels than analog. In practice, acceptable accuracy is achieved with two rigorously preserved moments, but accuracy can be
Holm, D.D.; Kupershmidt, B.A.
1987-10-15
Four levels of nonlinear hydrodynamic description are presented for a nondissipative multicondensate solution of superfluids with vorticity. First, the multivelocity superfluid (MVSF) theory is extended to the case of a multivelocity superfluid plasma (MVSP), in which some of the superfluid condensates (protons, say) are charged and coupled electromagnetically to an additional, normal, charged fluid (electrons). The resulting drag-current density is derived due to the electromagnetic coupling of the condensates with the normal fluids. For the case of one charged condensate, the MVSP equations simplify to what we call superfluid Hall magnetohydrodynamics (SHMHD) in the approximation that displacement current and electron inertia are negligible, and local charge neutrality is imposed. The contribution of the charged condensate to the Hall drift force is determined. In turn, neglecting the Hall effect in SHMHD gives the equations of superfluid magnetohydrodynamics (SMHD). Each set of equations (MVSF, MVSP, SHMHD, and SMHD) is shown to be Hamiltonian and to possess a Poisson bracket associated with the dual space of a corresponding semidirect-product Lie algebra with a generalized two-cocycle defined on it. Topological conservation laws (helicities) associated with the kernels of these Lie algebras are also discussed as well as those associated physically with generalized Kelvin theorems for conservation of superfluid circulation around closed loops moving with the normal fluid.
2016-01-01
Summary As a sanity test for the theoretical method employed, studies on (steady-state) charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory’s correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the “extended molecule”). This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators). It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively). To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR) is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower) at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do) is a procedure that yields spurious structures in nonlinear ranges of current–voltage curves. PMID:27335734
NASA Astrophysics Data System (ADS)
Beléndez, A.; Fernández, E.; Rodes, J. J.; Fuentes, R.; Pascual, I.
2009-11-01
In a previous short communication [A. Beléndez, E. Fernández, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.
Microscopic modeling of charge transport in sensing proteins
NASA Astrophysics Data System (ADS)
Reggiani, Lino; Millithaler, Jean-Francois; Pennetta, Cecilia
2012-06-01
Sensing proteins (receptors) are nanostructures that exhibit very complex behaviors (ions pumping, conformational change, reaction catalysis, etc). They are constituted by a specific sequence of amino acids within a codified spatial organization. The functioning of these macromolecules is intrinsically connected with their spatial structure, which modifications are normally associated with their biological function. With the advance of nanotechnology, the investigation of the electrical properties of receptors has emerged as a demanding issue. Beside the fundamental interest, the possibility to exploit the electrical properties for the development of bioelectronic devices of new generations has attracted major interest. From the experimental side, we investigate three complementary kinds of measurements: (1) current-voltage (I-V) measurements in nanometric layers sandwiched between macroscopic contacts, (2) I-V measurements within an AFM environment in nanometric monolayers deposited on a conducting substrate, and (3) electrochemical impedance spectroscopy measurements on appropriate monolayers of self-assembled samples. From the theoretical side, a microscopic interpretation of these experiments is still a challenging issue. This paper reviews recent theoretical results carried out within the European project, Bioelectronic Olfactory Neuron Device, which provides a first quantitative interpretation of charge transport experiments exploiting static and dynamic electrical properties of several receptors. To this purpose, we have developed an impedance network protein analogue (INPA) which considers the interaction between neighboring amino acids within a given radius as responsible of charge transfer throughout the protein. The conformational change, due to the sensing action produced by the capture of the ligand (photon, odour), induces a modification of the spatial structure and, thus, of the electrical properties of the receptor. By a scaling procedure, the
Modeling energy and charge transports in pi-conjugated systems
NASA Astrophysics Data System (ADS)
Shin, Yongwoo
Carbon based pi-conjugated materials, such as conducting polymers, fullerene, carbon nanotubes, graphene, and conjugated dendrimers have attracted wide scientific attentions in the past three decades. This work presents the first unified model Hamiltonian that can accurately capture the low-energy excitations among all these pi-conjugated systems, even with the presence of defects and heterogeneous sites. Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter gamma scales the electronphonon coupling strength in aromatic rings and the other parameter epsilon specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), polyacenes, fullerene, carbon nanotubes, graphene, and graphene nanoribbons with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches. The charge and energy transports along -conjugated backbones can be modeled on the adiabatic potential energy surface. The adiabatic minimum-energy path of a self-trapped topological soliton is computed for trans-polyacetylene. The frequently cited activation barrier via a ridge shift of the hyper-tangent order parameter overestimates its true value by 14 orders of magnitude. Self-trapped solitons migrate along the Goldstone mode direction with continuously adjusted amplitudes so that a small-width soliton expands and a large-width soliton shrinks when they move uphill. A soliton with the critical width may migrate without any amplitude modifications. In an open chain as solitons move from the chain center toward a chain edge, the minimum-energy path first follows a tilted washboard. Such a generic constrained Goldstone mode relaxation
Photoinduced Charge Transport in a BHJ Solar Cell Controlled by an External Electric Field
Li, Yongqing; Feng, Yanting; Sun, Mengtao
2015-01-01
This study investigated theoretical photoinduced charge transport in a bulk heterojunction (BHJ) solar cell controlled by an external electric field. Our method for visualizing charge difference density identified the excited state properties of photoinduced charge transfer, and the charge transfer excited states were distinguished from local excited states during electronic transitions. Furthermore, the calculated rates for the charge transfer revealed that the charge transfer was strongly influenced by the external electric field. The external electric field accelerated the rate of charge transfer by up to one order when charge recombination was significantly restrained. Our research demonstrated that photoinduced charge transport controlled by an external electric field in a BHJ solar cell is efficient, and the exciton dissociation is not the limiting factor in organic solar cells.Our research should aid in the rational design of a novel conjugated system of organic solar cells. PMID:26353997
Nonlinear spin-thermoelectric transport in two-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Hwang, Sun-Yong; López, Rosa; Lee, Minchul; Sánchez, David
2014-09-01
We consider spin-polarized transport in a quantum spin Hall antidot system coupled to normal leads. Due to the helical nature of the conducting edge states, the screening potential at the dot region becomes spin dependent without external magnetic fields nor ferromagnetic contacts. Therefore, the electric current due to voltage or temperature differences becomes spin polarized, its degree of polarization being tuned with the dot level position or the base temperature. This spin-filter effect arises in the nonlinear transport regime only and has a purely interaction origin. Likewise, we find a spin polarization of the heat current, which is asymmetric with respect to the bias direction. Interestingly, our results show that a pure spin current can be generated by thermoelectric means: when a temperature gradient is applied, the created thermovoltage (Seebeck effect) induces a spin-polarized current for vanishingly small charge current. An analogous effect can be observed for the heat transport: a pure spin heat flows in response to a voltage shift even if the thermal current is zero.
Charge transport of lithium-salt-doped polyaniline
NASA Astrophysics Data System (ADS)
Jung, J. H.; Kim, B. H.; Moon, B. W.; Joo, J.; Chang, S. H.; Ryu, K. S.
2001-07-01
Charge transport properties, including temperature-dependent dc conductivity and thermoelectric power are reported for Li-salt (LiPF6, LiBF4, LiAsF6, LiCF3SO3, or LiClO4) -doped polyaniline (PAN) samples. The experiments of electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) are performed for the systems. The electrical and magnetic properties and the doping mechanism of various Li-salt-doped PAN samples are compared with those of hydrochloric-acid (HCl) -doped PAN samples. The PAN materials doped with LiPF6 have the highest dc conductivity (σdc~1 S/cm, at room temperature) in the Li-salt-doped PAN systems studied here. The temperature dependence of σdc of the systems follows a quasi-one-dimensional variable range hopping model, which is similar to that of HCl-doped PAN samples. As the molar concentration increases from ~10-4M to ~1M, the system is transformed from an insulating to conducting (non-metallic) state. From EPR experiments, we measure the temperature dependence of magnetic susceptibility, and obtain the density of states for various Li-salt-doped PANs with different doping levels. We observe the increase of the density of states as the molar concentration increases. From the analysis of nitrogen 1s peak obtained from XPS experiments, we estimate the doping level of the systems. We compare the effective doping thickness between HCl-doped PAN samples and Li-salt-doped PAN ones, based upon the results of XPS argon (Ar) ion sputtering experiments. The diffusion rate of Li+ or counterions and the dissociation constants of Li salt in doping solution play an important role for the effective doping and transport properties of the Li-salt-doped PAN samples.
Influence of nonlinear chemical reactions on the transport coefficients in oscillatory Couette flow
NASA Astrophysics Data System (ADS)
Barik, Swarup; Dalal, D. C.
2016-10-01
A multiple-scale method of averaging is applied to the study of transport of a chemical species in oscillatory Couette flow where the species may undergoes a reversible phase exchange with the boundary wall and nonlinear chemical reactions both within the fluid and at the boundary wall. Analytical expressions are obtained for transport coefficients. The results shows how the transport coefficients are influenced by the reversible phase exchange reaction kinetics and the rate and degree of the nonlinear decay chemical reaction.
Nanoscale study of perovskite solar cells for efficient charge transport
NASA Astrophysics Data System (ADS)
Adhikari, Nirmal
The effect of temperature, humidity and water on the grain boundary potential and charge transport within the grains of pervoskite films prepared by sequential deposition technique. Grain boundary potential of perovskite films exhibited variation in electrical properties with humidity level, temperature and water concentration in methyl ammonium iodide solution. X-ray diffraction (XRD) indicates the formation of PbI2 phase in perovskite film with increasing temperature, humidity and adding larger quantity of water in methyl ammonium iodide solution. It is found that optimum amount of lead iodide helps for the passivation of perovskite film. Spatial mapping of surface potential in the perovskite film exhibits higher positive potential at grain boundaries compared to the surface of the grains. Back recombination barrier between TiO2- perovskite increases to 378 meV for perovskite film annealed at 100 ºC for 15 min. Grain boundary potential barrier were found to increase from ˜35 meV to 80 meV for perovskite film exposed to 75% RH level compared to perovskite film kept inside glove box. Optimum amount of water which increases the solar cell performance by increasing the crystallinity of perovskite film was found to be 5% by volume of IPA. Results show strong correlation between temperature, humidity level, electronic grain boundary properties and device performance of perovskite solar cells.
Coherent pulses in the diffusive transport of charged particles`
NASA Technical Reports Server (NTRS)
Kota, J.
1994-01-01
We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.
Mass and charge transport in IPMC actuators with fractal interfaces
NASA Astrophysics Data System (ADS)
Chang, Longfei; Wu, Yucheng; Zhu, Zicai; Li, Heng
2016-04-01
Ionic Polymer-Metal Composite (IPMC) actuators have been attracting a growing interest in extensive applications, which consequently raises the demands on the accuracy of its theoretical modeling. For the last few years, rough landscape of the interface between the electrode and the ionic membrane of IPMC has been well-documented as one of the key elements to ensure a satisfied performance. However, in most of the available work, the interface morphology of IPMC was simplified with structural idealization, which lead to perplexity in the physical interpretation on its interface mechanism. In this paper, the quasi-random rough interface of IPMC was described with fractal dimension and scaling parameters. And the electro-chemical field was modeled by Poisson equation and a properly simplified Nernst-Planck equation set. Then, by simulation with Finite Element Method, a comprehensive analysis on he inner mass and charge transportation in IPMC actuators with different fractal interfaces was provided, which may be further adopted to instruct the performance-oriented interface design for ionic electro-active actuators. The results also verified that rough interface can impact the electrical and mechanical response of IPMC, not only from the respect of the real surface increase, but also from mass distribution difference caused by the complexity of the micro profile.
Charge transport through one-dimensional Moiré crystals
NASA Astrophysics Data System (ADS)
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-01
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.
Charge transport through one-dimensional Moiré crystals
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-01
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067
Charge transport in DNA nanowires connected to carbon nanotubes
NASA Astrophysics Data System (ADS)
Tan, Bikan; Hodak, Miroslav; Lu, Wenchang; Bernholc, J.
2015-08-01
DNA is perhaps the worlds most controllable nanowire, with potential applications in nanoelectronics and sensing. However, understanding of its charge transport (CT) properties remains elusive, with experiments reporting a wide range of behaviors from insulating to superconductive. We report extensive first-principle simulations that account for DNA's high flexibility and its native solvent environment. The results show that the CT along the DNA's long axis is strongly dependent on DNA's instantaneous conformation varying over many orders of magnitude. In high CT conformations, delocalized conductive states extending over up to 10 base pairs are found. Their low exponential decay constants further indicate that coherent CT, which is assumed to be active only over 2-3 base pairs in the commonly accepted DNA CT models, can act over much longer length scales. We also identify a simple geometrical rule that predicts CT properties of a given conformation with high accuracy. The effect of mismatched base pairs is also considered: while they decrease conductivities of specific DNA conformations, thermally induced conformational fluctuations wash out this effect. Overall, our results indicate that an immobilized partially dried poly(G)-poly(C) B-DNA is preferable for nanowire applications.
Yield modeling of acoustic charge transport transversal filters
NASA Technical Reports Server (NTRS)
Kenney, J. S.; May, G. S.; Hunt, W. D.
1995-01-01
This paper presents a yield model for acoustic charge transport transversal filters. This model differs from previous IC yield models in that it does not assume that individual failures of the nondestructive sensing taps necessarily cause a device failure. A redundancy in the number of taps included in the design is explained. Poisson statistics are used to describe the tap failures, weighted over a uniform defect density distribution. A representative design example is presented. The minimum number of taps needed to realize the filter is calculated, and tap weights for various numbers of redundant taps are calculated. The critical area for device failure is calculated for each level of redundancy. Yield is predicted for a range of defect densities and redundancies. To verify the model, a Monte Carlo simulation is performed on an equivalent circuit model of the device. The results of the yield model are then compared to the Monte Carlo simulation. Better than 95% agreement was obtained for the Poisson model with redundant taps ranging from 30% to 150% over the minimum.
Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo
Han, Hee-Sun; Martin, John D.; Lee, Jungmin; Harris, Daniel K.; Fukumura, Dai; Jain, Rakesh K.; Bawendi, Moungi
2013-01-01
Detailed Charge arrangements: A new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles. Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles. PMID:23255143
Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations
Perroni, Carmine Antonio; Ramaglia, Vincenzo Marigliano; Cataudella, Vittorio
2016-01-01
Summary Background: Soft nanosystems are electronic nanodevices, such as suspended carbon nanotubes or molecular junctions, whose transport properties are modulated by soft internal degrees of freedom, for example slow vibrational modes. Effects of the electron–vibration coupling on the charge and heat transport of soft nanoscopic systems are theoretically investigated in the presence of time-dependent perturbations, such as a forcing antenna or pumping terms between the leads and the nanosystem. A well-established approach valid for non-equilibrium adiabatic regimes is generalized to the case where external time-dependent perturbations are present. Then, a number of relevant applications of the method are reviewed for systems composed by a quantum dot (or molecule) described by a single electronic level coupled to a vibrational mode. Results: Before introducing time-dependent perturbations, the range of validity of the adiabatic approach is discussed showing that a very good agreement with the results of an exact quantum calculation is obtained in the limit of low level occupation. Then, we show that the interplay between the low frequency vibrational modes and the electronic degrees of freedom affects the thermoelectric properties within the linear response regime finding out that the phonon thermal conductance provides an important contribution to the figure of merit at room temperature. Our work has been stimulated by recent experimental results on carbon nanotube electromechanical devices working in the semiclassical regime (resonator frequencies in the megahertz range compared to an electronic hopping frequency of the order of tens of gigahertz) with extremely high quality factors. The nonlinear vibrational regime induced by the external antenna in such systems has been discussed within the non-perturbative adiabatic approach reproducing quantitatively the characteristic asymmetric shape of the current–frequency curves. Within the same set-up, we have
Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations.
Nocera, Alberto; Perroni, Carmine Antonio; Ramaglia, Vincenzo Marigliano; Cataudella, Vittorio
2016-01-01
Soft nanosystems are electronic nanodevices, such as suspended carbon nanotubes or molecular junctions, whose transport properties are modulated by soft internal degrees of freedom, for example slow vibrational modes. Effects of the electron-vibration coupling on the charge and heat transport of soft nanoscopic systems are theoretically investigated in the presence of time-dependent perturbations, such as a forcing antenna or pumping terms between the leads and the nanosystem. A well-established approach valid for non-equilibrium adiabatic regimes is generalized to the case where external time-dependent perturbations are present. Then, a number of relevant applications of the method are reviewed for systems composed by a quantum dot (or molecule) described by a single electronic level coupled to a vibrational mode. Before introducing time-dependent perturbations, the range of validity of the adiabatic approach is discussed showing that a very good agreement with the results of an exact quantum calculation is obtained in the limit of low level occupation. Then, we show that the interplay between the low frequency vibrational modes and the electronic degrees of freedom affects the thermoelectric properties within the linear response regime finding out that the phonon thermal conductance provides an important contribution to the figure of merit at room temperature. Our work has been stimulated by recent experimental results on carbon nanotube electromechanical devices working in the semiclassical regime (resonator frequencies in the megahertz range compared to an electronic hopping frequency of the order of tens of gigahertz) with extremely high quality factors. The nonlinear vibrational regime induced by the external antenna in such systems has been discussed within the non-perturbative adiabatic approach reproducing quantitatively the characteristic asymmetric shape of the current-frequency curves. Within the same set-up, we have proved that the antenna is able to
NASA Astrophysics Data System (ADS)
Kadashchuk, Andrey; Tong, Fei; Janneck, Robby; Fishchuk, Ivan I.; Mityashin, Alexander; Pavlica, Egon; Köhler, Anna; Heremans, Paul; Rolin, Cedric; Bratina, Gvido; Genoe, Jan
2017-09-01
We demonstrate that the degree of charge delocalization has a strong impact on polarization energy and thereby on the position of the transport band edge in organic semiconductors. This gives rise to long-range potential fluctuations, which govern the electronic transport through delocalized states in organic crystalline layers. This concept is employed to formulate an analytic model that explains a negative field dependence coupled with a positive temperature dependence of the charge mobility observed by a lateral time-of-flight technique in a high-mobility crystalline organic layer. This has important implications for the further understanding of the charge transport via delocalized states in organic semiconductors.
Li, Guochang; Chen, George E-mail: sli@mail.xjtu.edu.cn; Li, Shengtao E-mail: sli@mail.xjtu.edu.cn
2016-08-08
Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.
Fedila, D. Ali; Djebli, M.
2010-10-15
The effect of collision on small amplitude dust-acoustic waves is investigated for a plasma with positively charged dust grains. Taking into account the presence of different electron populations in thermal equilibrium, a modified Korteweg-de Vries equation is established. The existence conditions and nature of the waves, i.e., rarefactive or compressive, are found to be mainly dependent on the temperature and the density of the cold electrons. The present model is used to understand the salient features of the fully nonlinear dust-acoustic waves in the lower region of the Earth's ionosphere, at an altitude of {approx}85 km with the presence of an external heating source.
Linear and nonlinear waves on the charged surface of liquid hydrogen
NASA Astrophysics Data System (ADS)
Brazhnikov, M. Yu.; Kolmakov, G. V.; Levchenko, A. A.; Mezhov-Deglin, L. P.
2001-09-01
The results of research on the properties of linear and nonlinear waves on the charged surface of liquid hydrogen in a cylindrical cell are reported. It is found that the spectrum of oscillations of linear waves softens with increasing applied electric field. Weak turbulence in a system of capillary waves on the charged surface of liquid hydrogen is investigated. The formation of a Kolmogorov cascade is observed in the inertial interval from 100 Hz to 10 kHz. It is found that the correlation function of the deviation of the surface from its flat equilibrium state can be described by a power-law function of the frequency, with an exponent m=-3.7±0.3 when the surface is excited at a single resonance frequency, and m=-3.0±0.3 in the case of two-frequency excitation. The results of these studies are in qualitative agreement with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Shocron, Amit N.; Suss, Matthew E.
2017-03-01
Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.
NASA Astrophysics Data System (ADS)
Shocron, Amit N.; Suss, Matthew E.
2016-07-01
Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.
Charge flipping vortices in the discrete nonlinear Schrödinger trimer and hexamer
NASA Astrophysics Data System (ADS)
Jason, Peter; Johansson, Magnus
2015-02-01
We examine the existence and properties of charge flipping vortices (CFVs), vortices which periodically flip the topological charge, in three-site (trimer) and six-site (hexamer) discrete nonlinear Schrödinger lattices. We demonstrate numerically that CFVs exist as exact quasiperiodic solutions in continuous families which connect two different stationary solutions without topological charge, and that it is possible to interpret the dynamics of certain CFVs as the result of perturbations of these stationary solutions. The CFVs are calculated with high numerical accuracy and we may therefore accurately determine many of their properties, such as their energy and linear stability, and the CFVs are found to be stable over large parameter regimes. We also show that, like in earlier studies for lattices with a multiple of four sites, trimer and hexamer CFVs can be obtained by perturbing stationary constant amplitude vortices with certain linear eigenmodes. However, in contrast to the former case where the perturbation could be infinitesimal, the magnitude of the perturbations for trimers and hexamers must overcome a quite large threshold value. These CFVs may be interpreted as exact quasiperiodic CFVs, with a small perturbation applied. The concept of a charge flipping energy barrier is introduced and discussed.
NASA Astrophysics Data System (ADS)
López, Rosa; Sánchez, David
2013-07-01
We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.
NASA Astrophysics Data System (ADS)
Sanz Prat, A.; Lu, C.; Cirpka, O. A.
2014-12-01
Travel-time based models are presented as an alternative to traditional spatially explicit models to solve nonlinear reactive-transport problems. The main advantage of the travel-time approach is that it does not require multi-dimensional characterization of physical and chemical parameters, and transport is one-dimensional. Spatial dimensions are replaced by groundwater travel time, defined as the time required by a water particle to reach an observation point or the outflow boundary, respectively. The fundamental hypothesis is that locations of the same groundwater age exhibit the same reactive-species concentrations. This is true in strictly advective-reactive transport in steady-state flows if the coefficients of reactions are uniform and the concentration is uniform over the inflow boundary. We hypothesize that the assumption still holds when adding some dispersion in coupled flow and transport dynamics. We compare a two-dimensional, spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ by the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. We consider biodegradation of organic matter catalyzed by non-competitive inhibitive microbial populations. The simulated inflow contains oxygen, nitrate, and DOC. The domain contains growing aerobic and denitrifying bacteria, the latter being inhibited by oxygen. This system is computed in 1-D, and in 2-D heterogeneous domains. We conclude that the conceptualization of nonlinear bioreactive transport in complex multi-dimensional domains by quasi 1-D travel-time models is valid for steady-state flow if the reactants are introduced over a wide cross-section, flow is at quasi-steady state, and dispersive
Simulating the transport of heavy charged particles through trabecular spongiosa
NASA Astrophysics Data System (ADS)
Gersh, Jacob A.
As planning continues for manned missions far beyond Low Earth Orbit, a paramount concern remains the flight crew's exposure to galactic cosmic radiation. When humans exit the protective magnetic field of Earth, they become subject to bombardment by highly-reactive heavy charged (HZE) particles. A possible consequence of this two- to three-year-long mission is the onset of radiation-induced leukemia, a disorder with a latency period as short as two to three years. Because data on risk to humans from exposure to HZE particles is non-existent, studies of leukemia in animals are now underway to investigate the relative effectiveness of HZE exposures. Leukemogenesis can result from energy depositions occurring within marrow contained in the trabecular spongiosa. Trabecular spongiosa is found in flat bones and within the ends of long bones, and is characterized by an intricate matrix of interconnected bone tissue forming cavities that house marrow. The microscopic internal dimensions of spongiosa vary between species. As radiation traverses this region, interface-induced dose perturbations that occur at the interfaces between bone and marrow affect the patterns of energy deposition within the region. An aim of this project is to determine the extent by which tissue heterogeneity and microscopic dimensions have on patterns of energy deposition within the trabecular spongiosa. This leads to the development of PATHFIT, a computer code capable of generating simple quadric-based geometric models of trabecular spongiosa for both humans and mice based on actual experimentally-determined internal dimensions of trabecular spongiosa. Following the creation of spongiosa models, focus is placed on the development of HITSPAP, a hybrid Monte Carlo (MC) radiation transport code system that combines capabilities of the MC code PENELOPE and MC code PARTRAC. This code is capable of simulating the transport of HZE particles through accurate models of trabecular spongiosa. The final and
NASA Astrophysics Data System (ADS)
Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A.
2003-11-01
Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn-Sham Hamiltonian, defined in terms of the molecular orbitals on individual triphenylene molecules. This was realized by exploiting the unique feature of the Amsterdam density functional theory program that allows one to use molecular orbitals on individual molecules as a basis set in calculations on a system composed of two or more molecules. The charge transfer integrals obtained in this way differ significantly from values estimated from the energy splitting between the highest occupied molecular orbitals in a dimer. The difference is due to the nonzero spatial overlap between the molecular orbitals on adjacent molecules. Calculations were performed on unsubstituted and methoxy- or methylthio-substituted triphenylenes. Charge transfer integrals and site energies were computed as a function of the twist angle, stacking distance and lateral slide distance between adjacent molecules. The variation of the charge transfer integrals and site energies with these conformational degrees of freedom provide a qualitative explanation of the similarities and differences between the experimental charge carrier mobilities in different phases of alkoxy- and alkylthio-substituted triphenylenes. The data obtained from the present work can be used as input in quantitative studies of charge transport in columnar stacked triphenylene derivatives.
Charge Transport at Ti-Doped Hematite (001)/Aqueous Interfaces
Chatman, Shawn ME; Pearce, Carolyn I.; Rosso, Kevin M.
2015-03-10
Solid-state transport and electrochemical properties of Ti-doped hematite (001) epitaxial thin films (6.0, 8.3, and 16.6 at% Ti) were probed to achieve a better understanding of doped hematite for photoelectrochemical (PEC) applications. Room temperature resistivity measurements predict a resistivity minimum near 10 at% Ti doping, which can be rationalized as maximizing charge compensating Fe2+ concentration and Fe3+ electron accepting percolation pathways simultaneously. Temperature dependent resistivity data are consistent with small polaron hopping, revealing an activation energy that is Ti concentration dependent and commensurate with previously reported values (≈ 0.11 eV). In contact with inert electrolyte, linear Mott-Schottky data at various pH values indicate that there is predominantly a single donor for Ti-doped hematite at 6.0 at% Ti and 16.6 at% Ti concentrations. Two slope Mott-Schottky data at pH extremes indicate the presence of a second donor or surface state in the 8.3 at% Ti-doped film, with an energy level ≈ 0.7 eV below the Fermi level. Mott-Schottky plots indicate pH and Ti concentration dependent flatband potentials of -0.4 to -1.1 V vs. Ag/AgCl, commensurate with previously reported data. Flatband potentials exhibited super-Nernstian pH dependence ranging from -69.1 to -101.0 mV/pH. Carrier concentration data indicate that the Fermi energy of the Ti-doped system is Ti concentration dependent, with a minimum of 0.15 eV near 10 at% Ti. These energy level data allow us to construct an energy band diagram for Ti-doped hematite electrode/electrolyte interfaces, and to determine a Ti-doping concentration t
Nonlinear quantization of a degenerate charged Bose gas in an external Coulomb trap
Reinisch, Gilbert
2004-09-01
We consider a degenerate charged Bose-Coulomb gas populating several discrete stationary boson bound states that are located in a spherical-symmetrical central Coulombian potential. Each such state is defined, through appropriate boundary conditions and normalization, by a so-called 'nonlinear eigenstate' that is actually a solution of the coupled (linear) stationary Schroedinger-like Gross-Pitaevskii differential equation and the (nonlinear) Poisson equation. The corresponding eigenvalues allow us to define the energies of these degenerate boson states, much like the Koopmans orbital energy in atomic physics. This theory applies surprisingly well (compared with the corresponding Hartree-Fock results) to spherical-symmetrical s orbital states in atomic physics (i.e., bosonlike restricted orbital states where the additional spin degree of freedom is already integrated out). Finally the superposition of two such stationary nonlinear eigenstates is investigated and given a semiclassical physical significance similar to a Thomas-Fermi approach. The resulting concepts apply particularly well (namely within an average 1% error bar with respect to spectroscopic data) to the 1s{sup 2}-2s{sup 2} orbital states of the 3{<=}Z{<=}9 atomic subsystems.
Inerbaev, Talgat M; Saito, Shigeki; Belosludov, Rodion V; Mizuseki, Hiroshi; Takahashi, Masae; Kawazoe, Yoshiyuki
2006-12-21
As it has been found experimentally [K. Clays and B. Coe, Chem. Mater. 15, 642 (2003); B. J. Coe et al., 126, 10418 (2004)], elongation of the conjugation path length and N-arylation in stilbazolium chromophores both lead to substantial enhancement of the molecular optical nonlinearities. In the present contribution the authors perform a quantum chemical analysis of the excited state properties and quadratic nonlinear optical responses of a series of this type of dyes. Nonlinear optical responses are estimated by both finite-field and two-state model approaches that demonstrate an excellent qualitative mutual agreement. Time-dependent density functional theory calculations on the isolated cations predict redshift in the energy of the intramolecular charge transfer transition that is overestimated for cations with the longer conjugation path length. At the same time, in comparison with the Stark spectroscopy measurements the differences between the excited and ground state dipole moments are grossly underestimated for all compounds. The inclusion of solvent effect by polarizable continuum model affords a better agreement with experiment for these quantities. The authors' calculations demonstrate the crucial dependence of the electronic excitation properties on the way of the investigated compound geometry optimization. The origin of such dependence is discussed.
NASA Astrophysics Data System (ADS)
Inerbaev, Talgat M.; Saito, Shigeki; Belosludov, Rodion V.; Mizuseki, Hiroshi; Takahashi, Masae; Kawazoe, Yoshiyuki
2006-12-01
As it has been found experimentally [K. Clays and B. Coe, Chem. Mater. 15, 642 (2003); B. J. Coe et al., 126, 10418 (2004)], elongation of the conjugation path length and N-arylation in stilbazolium chromophores both lead to substantial enhancement of the molecular optical nonlinearities. In the present contribution the authors perform a quantum chemical analysis of the excited state properties and quadratic nonlinear optical responses of a series of this type of dyes. Nonlinear optical responses are estimated by both finite-field and two-state model approaches that demonstrate an excellent qualitative mutual agreement. Time-dependent density functional theory calculations on the isolated cations predict redshift in the energy of the intramolecular charge transfer transition that is overestimated for cations with the longer conjugation path length. At the same time, in comparison with the Stark spectroscopy measurements the differences between the excited and ground state dipole moments are grossly underestimated for all compounds. The inclusion of solvent effect by polarizable continuum model affords a better agreement with experiment for these quantities. The authors' calculations demonstrate the crucial dependence of the electronic excitation properties on the way of the investigated compound geometry optimization. The origin of such dependence is discussed.
NASA Astrophysics Data System (ADS)
Denra, Raicharan; Paul, Samit; Sarkar, Susmita
2016-12-01
In this paper, characteristics of small amplitude nonlinear dust acoustic wave have been investigated in a unmagnetized, collisionless, Lorentzian dusty plasma where electrons and ions are inertialess and modeled by generalized Lorentzian Kappa distribution. Dust grains are inertial and equilibrium dust charge is negative. Both adiabatic and nonadiabatic fluctuation of charges on dust grains have been taken under consideration. For adiabatic dust charge variation reductive perturbation analysis gives rise to a KdV equation that governs the nonlinear propagation of dust acoustic waves having soliton solutions. For nonadiabatic dust charge variation nonlinear propagation of dust acoustic wave obeys KdV-Burger equation and gives rise to dust acoustic shock waves. Numerical estimation for adiabatic grain charge variation shows the existence of rarefied soliton whose amplitude and width varies with grain charges. Amplitude and width of the soliton have been plotted for different electron Kappa indices keeping ion velocity distribution Maxwellian. For non adiabatic dust charge variation, ratio of the coefficients of Burger term and dispersion term have been plotted against charge fluctuation for different kappa indices. All these results approach to the results of Maxwellian plasma if both electron and ion kappa tends to infinity.
Gorelick, S.M.; Voss, C.I.; Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H.
1984-01-01
A simulation-management methodology is demonstrated for the rehabilitation of aquifers that have been subjected to chemical contamination. Finite element groundwater flow and contaminant transport simulation are combined with nonlinear optimization. The model is capable of determining well locations plus pumping and injection rates for groundwater quality control. Examples demonstrate linear or nonlinear objective functions subject to linear and nonlinear simulation and water management constraints. -from Authors
EDITORIAL: Charge transport in non-metallic solids
NASA Astrophysics Data System (ADS)
Youngs, Ian J.; Almond, Darryl P.
2009-03-01
Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of
Semiconductor drift chamber: an application of a novel charge transport scheme
Gatti, E.; Rehak, P.
1983-08-01
The purpose of this paper is to describe a novel charge tranport scheme in semiconductors in which the field responsible for the charge transport is independent of the depletion field. The application of the novel charge transport scheme leads to the following new semiconductor detectors: (1) Semiconductor Draft Chamber; (2) Ultra low capacitance - large semiconductor x-ray spectrometers and photodiodes; and (3) Fully depleted thick CCD. Special attention is paid to the concept of the Semiconductor Draft Chamber as a position sensing detector for high energy charged particles. Position resolution limiting factors are considered, and the values of the resolutions are given.
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Borah, B.
2013-09-01
We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries ( d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.
Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma
Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson
2001-01-30
The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.
NASA Astrophysics Data System (ADS)
Rana, Meenakshi; Singla, Nidhi; Chatterjee, Amrita; Shukla, Abhishek; Chowdhury, Papia
2016-12-01
Nonlinear Optical (NLO) properties of amine functionalized tetraphenylethylene (TPE-NH2) have been recorded and analyzed. The structural geometry, bonding features, harmonic vibrational frequencies (FTIR and Raman) of TPE-NH2 have been investigated by B3LYP density functional theory (DFT). Charge (Mulliken and natural) analysis, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMOs), 13C and 1H nuclear magnetic resonance (NMR) and molecular electrostatic potential (MEP) indicate the delocalization of charges over the donor-acceptor region by the increase of C-N bond length. The vibrational analysis on the basis of potential energy distribution (PED) confirms the charge transfer interaction between donor and acceptor groups, and that in turn validates the presence of the larger dipole moment (μ), polarizability and hyperpolarizabilities (α, β and γ) in TPE-NH2. Higher value of ionization potential (IP), electronegativity (χ), hardness (η), chemical potential (CP) and smaller HOMO-LUMO energy gap (Δε) validate TPE-NH2's strong candidature to be used as an NLO active material.
Nonlinear phenomena, turbulence and anomalous transport in fusion plasmas
Hidalgo, C.; Estrada, T.; Sanchez, E.; Branas, B.; Garcia-Cortes, I.; Van Milligen, B.P.; Balbin, R.; Pedrosa, M.A.; Sanchez, J.; Carreras, B.A.
1995-02-01
The nonlinear nature of the plasma turbulence, as measured by bicoherence analysis, has been studied in stellarator (ATF and W7AS) and tokamak (PBXM) devices. In ATF, little nonlinear interaction is found in the scrape-off layer region whereas the strength of the coupling is enhanced in the edge plasma region where the level of fluctuations is consistent with the theoretical expectations from resistive interchange modes. In W7AS the level of bicoherence is significantly smaller than in ATF. The comparison ATF/W7AS/PBXM suggest the important role of the magnetic shear to determine nonlinear behavior of the turbulence. The level of bicoherence also depends on the plasma conditions: in particular, it increases at the H-mode transition. The comparison between the nonlinear behavior of the turbulence in tokamaks and stellarators allows experimental verification of theoretical turbulence models.
Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes
Hatch, D. R.; Jenko, F.; Doerk, H.; Pueschel, M. J.; Terry, P. W.; Nevins, W. M.
2013-01-15
Subdominant, linearly stable microtearing modes are identified as the main mechanism for the development of magnetic stochasticity and transport in gyrokinetic simulations of electromagnetic ion temperature gradient driven plasma microturbulence. The linear eigenmode spectrum is examined in order to identify and characterize modes with tearing parity. Connections are demonstrated between microtearing modes and the nonlinear fluctuations that are responsible for the magnetic stochasticity and electromagnetic transport, and nonlinear coupling with zonal modes is identified as the salient nonlinear excitation mechanism. A simple model is presented, which relates the electromagnetic transport to the electrostatic transport. These results may provide a paradigm for the mechanisms responsible for electromagnetic stochasticity and transport, which can be examined in a broader range of scenarios and parameter regimes.
The role of space charge compensation for ion beam extraction and ion beam transport (invited)
Spädtke, Peter
2014-02-15
Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.
NASA Astrophysics Data System (ADS)
Mollinger, Sonya A.; Krajina, Brad; Noriega-Manez, Rodrigo J.; Salleo, Alberto; Spakowitz, Andrew J.
2015-10-01
Semiconducting polymers play an important role in a wide range of optical and electronic material applications. Polymer thin films that result in the highest performance typically have a complex semicrystalline morphology, indicating that considerable device improvement can be achieved through optimization of microstructural properties. However, the connection between molecular ordering and device performance is difficult to predict due to the current need for a mathematical theory of the physics that dictates charge transport in semiconducting polymers. It is experimentally suggested that efficient transport in such films occurs via connected networks of crystallites. We present an analytical and computational description of semicrystalline conjugated polymer materials that captures the impact of polymer conformation on charge transport in heterogeneous thin films. We first develop an analytical theory for the statistical behavior of a polymer emanating from a crystallite and predict the average distance to the first kink in the chain that traps a charge. We use this analysis to define the conditions for percolation and the consequent efficient transport through a semicrystalline material. We then establish a charge transport model using Monte Carlo simulations that predicts the multi-scale charge transport and crystallite connections. We approximate the thin film as a two-dimensional grid of crystallites embedded in amorphous polymer. The chain conformations in the amorphous region are determined by the wormlike chain model, and the crystallites are assigned fixed mobilities. We use this model to identify limits of charge transport at various time scales for varying fraction of crystallinity.
Water structure-dependent charge transport in proteins.
Gascoyne, P R; Pethig, R; Szent-Györgyi, A
1981-01-01
Dielectric and conductivity measurements are reported for bovine serum albumin as a function of hydration. Strong evidence is found for the existence of mobile charges whose short- and long-range hopping motion strongly depends on the physical state of the protein-bound water. These charges are considered to be protons. Insights into the nature of the electrical properties of protein-methylglyoxal complexes are provided, and the possibilities for correlated proton-electron motions are outlined. PMID:6264436
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.
NASA Astrophysics Data System (ADS)
Reeta Felscia, U.; Rajkumar, Beulah J. M.; Sankar, Pranitha; Philip, Reji; Briget Mary, M.
2017-09-01
The interaction of pyrene on silver has been investigated using both experimental and computational methods. Hyperpolarizabilities computed theoretically together with experimental nonlinear absorption from open aperture Z-scan measurements, point towards a possible use of pyrene adsorbed on silver in the rational design of NLO devices. Presence of a red shift in both simulated and experimental UV-Vis spectra confirms the adsorption on silver, which is due to the electrostatic interaction between silver and pyrene, inducing variations in the structural parameters of pyrene. Fukui calculations along with MEP plot predict the electrophilic nature of the silver cluster in the presence of pyrene, with NBO analysis revealing that the adsorption causes charge redistribution from the first three rings of pyrene towards the fourth ring, from where the 2p orbitals of carbon interact with the valence 5s orbitals of the cluster. This is further confirmed by the downshifting of ring breathing modes in both the experimental and theoretical Raman spectra.
NASA Astrophysics Data System (ADS)
Dymnikova, Irina; Galaktionov, Evgeny
2016-03-01
In nonlinear electrodynamics minimally coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have obligatory de Sitter center. By the Gürses-Gürsey algorithm they are transformed to regular axially symmetric solutions asymptotically Kerr-Newman for a distant observer. Rotation transforms de Sitter center into de Sitter equatorial disk embedded as a bridge into a de Sitter vacuum surface. The de Sitter surfaces satisfy p = -ρ and have properties of a perfect conductor and ideal diamagnetic. The Kerr ring singularity is replaced with the superconducting current which serves as a non-dissipative electromagnetic source of the asymptotically Kerr-Newman geometry. Violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media.
Numerical design of electron guns and space charge limited transport systems
Herrmannsfeldt, W.B.
1980-10-01
This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included.
Packwood, Daniel M; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki
2015-04-14
Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy "bonding"-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the "missing link" for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.
Packwood, Daniel M.; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki
2015-04-14
Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy “bonding”-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the “missing link” for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.
Electron transport and dielectric breakdown in silicon nitride using a charge transport model
NASA Astrophysics Data System (ADS)
Ogden, Sean P.; Lu, Toh-Ming; Plawsky, Joel L.
2016-10-01
Silicon nitride is an important material used in the electronics industry. As such, the electronic transport and reliability of these materials are important to study and understand. We report on a charge transport model to predict leakage current and failure trends based on previously published data for a stoichiometric silicon nitride dielectric. Failure occurs when the defect density increases to a critical value of approximately 6 × 1025 traps/m3. The model's parameters are determined using voltage ramp data only, and yet, the model is also able to predict constant voltage stress failure over a time scale ranging from minutes to months. The successful fit of the model to the experimental data validates our assumption that the dominant defect in the dielectric is the Si dangling bond, located approximately 2.2 eV below the conduction band. A comparison with previous SiCOH simulations shows SiN and SiCOH have similar defect-related material properties. It is also speculated that, based on the estimated parameter values of 2.75 eV for the defect formation activation energy, the materials' TDDB wear-out are caused by broken Si-H bonds, resulting in Si dangling bond defects.
Generation and transport of space charge waves in the University of Maryland Electron Ring (UMER)
Thangaraj, Jayakar C. T.; Beaudoin, Brian; Feldman, Donald; Kishek, Rami; Bernal, Santiago; Sutter, David; Reiser, Martin; O'Shea, Patrick
2009-01-22
An experimental study of longitudinal dynamics of space charge dominated beams is presented. We use drive-laser driven perturbations to study the evolution of space charge waves on an intese electron beam. Collective effects like propagation of space charge waves, superposition of waves and crossing of waves are presented and verified with 1-D cold fluid model theory. Multi-turn transport and other collective effects in UMER are discussed.
Spatial Configuration and Composition of Charge Modulates Transport into a Mucin Hydrogel Barrier
Li, Leon D.; Crouzier, Thomas; Sarkar, Aniruddh; Dunphy, Laura; Han, Jongyoon; Ribbeck, Katharina
2013-01-01
The mucus barrier is selectively permeable to a wide variety of molecules, proteins, and cells, and establishes gradients of these particulates to influence the uptake of nutrients, the defense against pathogens, and the delivery of drugs. Despite its importance for health and disease, the criteria that govern transport through the mucus barrier are largely unknown. Studies with uniformly functionalized nanoparticles have provided critical information about the relevance of particle size and net charge for mucus transport. However, these particles lack the detailed spatial arrangements of charge found in natural mucus-interacting substrates, such as certain viruses, which may have important consequences for transport through the mucus barrier. Using a novel, to our knowledge, microfluidic design that enables us to measure real-time transport gradients inside a hydrogel of mucins, the gel-forming glycoprotein component of mucus, we show that two peptides with the same net charge, but different charge arrangements, exhibit fundamentally different transport behaviors. Specifically, we show that certain configurations of positive and negative charges result in enhanced uptake into a mucin barrier, a remarkable effect that is not observed with either charge alone. Moreover, we show that the ionic strength within the mucin barrier strongly influences transport specificity, and that this effect depends on the detailed spatial arrangement of charge. These findings suggest that spatial charge distribution is a critical parameter to modulate transport through mucin-based barriers, and have concrete implications for the prediction of mucosal passage, and the design of drug delivery vehicles with tunable transport properties. PMID:24047986
Charge carrier transport in polycrystalline organic thin film based field effect transistors
NASA Astrophysics Data System (ADS)
Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis
2016-05-01
The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.
Lincker, Frédéric; Attias, André-Jean; Mathevet, Fabrice; Heinrich, Benoît; Donnio, Bertrand; Fave, Jean-Louis; Rannou, Patrice; Demadrille, Renaud
2012-03-28
We measured the charge carrier mobilities for two isomers of fluorenone-based liquid crystalline organic semiconductors from their isotropic down to crystalline states through one or two mesophases. Improved charge transport properties of melt-processed crystalline films were obtained for the isomer exhibiting a highly ordered mesophase below its disordered smectic phase. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia
2004-05-01
The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.
Charge Compensation Mechanism of a Na+-coupled, Secondary Active Glutamate Transporter*
Grewer, Christof; Zhang, Zhou; Mwaura, Juddy; Albers, Thomas; Schwartz, Alexander; Gameiro, Armanda
2012-01-01
Forward glutamate transport by the excitatory amino acid carrier EAAC1 is coupled to the inward movement of three Na+ and one proton and the subsequent outward movement of one K+ in a separate step. Based on indirect evidence, it was speculated that the cation binding sites bear a negative charge. However, little is known about the electrostatics of the transport process. Valences calculated using the Poisson-Boltzmann equation indicate that negative charge is transferred across the membrane when only one cation is bound. Consistently, transient currents were observed in response to voltage jumps when K+ was the only cation on both sides of the membrane. Furthermore, rapid extracellular K+ application to EAAC1 under single turnover conditions (K+ inside) resulted in outward transient current. We propose a charge compensation mechanism, in which the C-terminal transport domain bears an overall negative charge of −1.23. Charge compensation, together with distribution of charge movement over many steps in the transport cycle, as well as defocusing of the membrane electric field, may be combined strategies used by Na+-coupled transporters to avoid prohibitive activation barriers for charge translocation. PMID:22707712
Simulation of charge transport in pixelated CdTe
Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.
2014-01-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points. PMID:25729404
Simulation of charge transport in pixelated CdTe.
Kolstein, M; Ariño, G; Chmeissani, M; De Lorenzo, G
2014-12-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 10(6)). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm(3) using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.
Simulation of charge transport in pixelated CdTe
NASA Astrophysics Data System (ADS)
Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.
2014-12-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.
A baker's dozen of new particle flows for nonlinear filters, Bayesian decisions and transport
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2015-05-01
We describe a baker's dozen of new particle flows to compute Bayes' rule for nonlinear filters, Bayesian decisions and learning as well as transport. Several of these new flows were inspired by transport theory, but others were inspired by physics or statistics or Markov chain Monte Carlo methods.
NASA Astrophysics Data System (ADS)
Demidov, E. S.; Gusev, S. N.; Podol'skii, V. V.; Lesnikov, V. P.; Sdobnyakov, V. V.; Budarin, L. I.; Tronov, A. A.; Skopin, E. V.
2013-07-01
The electron transport properties of nanosized CoSi alloy layers deposited at a lowered temperature (350°C) from laser plasma onto single-crystalline gallium arsenide have been studied. An asymmetry of the current-voltage characteristic (CVC) in the longitudinal current transport in such layers has been found, which indicates the spin polarization of charge carriers, and a substantial (up to 18%) nonlinearity and a hysteresis (up to 4%) have been revealed both at room temperature and at 77 K for comparatively low current densities (up to 5 × 104 A/cm2). In repeated cycles of CVC measurements at 77 K, irreversible changes in the properties of the layers have been observed.
List, Nanna Holmgaard; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Bartkowiak, Wojciech; Ågren, Hans
2015-09-08
We establish the relationships between the metric of charge transfer excitation (Δr) for the bright ππ* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull π-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), Δr is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through Δr; if β ∼ (Δr)(k), then roughly, δ(TPA) ∼ (Δr)(k+1). Second, a simple power relation between Δr and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull π-conjugated systems through the metric of charge transfer.
Nonlinear electrostatic excitations of charged dust in degenerate ultra-dense quantum dusty plasmas
Abdelsalam, U. M.; Ali, S.; Kourakis, I.
2012-06-15
The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg-de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h=Z{sub d0}n{sub d0}/n{sub e0} affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.
Simulation of charged particle transport on the MPP
NASA Technical Reports Server (NTRS)
Earl, James A.
1987-01-01
Computations of cosmic ray transport based upon finite difference methods are afflicted by instabilities, inaccuracies, and artifacts. To avoid these problems, a Monte Carlo formulation was developed which is closely related not only to the finite difference formulation, but also to the underlying physics of transport phenomena. Implementations of this approach are currently running on the Massively Parallel Processor at Goddard, whose enormous computing power overwhelms the poor statistical accuracy that usually limits the use of stochastic methods. In a Monte Carlo simulation of rectilinear transport, the coherent and diffusive effects that appeared are in good quantitative agreement with both finite difference and analytical calculations.
NASA Astrophysics Data System (ADS)
Rosenzweig, J. B.; Barov, N.; Thompson, M. C.; Yoder, R.
2002-12-01
There has been much experimental and theoretical interest in blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity, and relativistic plasma effects become important or dominant. The physical bases for this persistence of linear response are pointed out. As a byproduct of our analysis, we re-examine the issue of field divergence as the point-charge limit is approached, suggesting an important modification of commonly held views of evading unphysical energy loss. Deviations from linear behavior are investigated using simulations with finite length beams. The peak accelerating field in the plasma wave excited behind a finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude well into the nonlinear regime. On the other hand, at large enough normalized charge, linear scaling of fields collapses, with serious consequences for plasma wave excitation efficiency. The dramatic implications of these results for observing the collapse of linear scaling in planned experiments are discussed.
Gate-voltage-dependent charge transport in multi-dispersed polymer thin films
NASA Astrophysics Data System (ADS)
Zhou, Ling; Bu, Laju; Li, Dongfan; Lu, Guanghao
2017-02-01
In semiconductor polymers, charge transport usually occurs via hopping between localized states, which are generally multi-dispersed due to multi-dispersed chemical structures, crystallinities, and phase segregations. We report a combined modeling and experimental study to investigate gate-voltage-dependent charge transport in field-effect transistors based on multi-dispersed polymers including semiconductor:semiconductor and semiconductor:insulator blends. Film-depth-dependent charge accumulation and transport are correlated with vertical composition profiles and film-depth-dependent energetic distribution of localized states. Even low gate-voltage could accumulate charges in any depth of the films, greatly increasing charge density in some (sub-) components for effective charge transport. Therefore, neither overall high crystallinity nor molecular ordering near the semiconductor-dielectric interface is necessarily required for high field-effect mobility (μFET). This study not only proposes a model for high effective μFET recently reported in some nearly amorphous polymer films and the "bislope feature" in their transfer characteristics but also helps improve transistor performances and exploit transistor operations via manipulating charge distribution in multi-dispersed films.
Kwan, T.; Booth, T.; Gray, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The next generation of electronic microchips will utilize components with sub-micron feature size and optoelectronic devices with picosecond response time. Fundamental understanding of the device performance can only be obtained through first principles physics modeling of charge transport and electromagnetic effects in realistic geometries with material interfaces and dispersive properties. We have developed a general model incorporating important physics such as charge transport processes in materials with multilevel band structures and electromagnetic effects to simulate device characteristics. Accurate treatment of material interfaces and boundaries is included. The Monte Carlo charge transport is coupled self-consistently to Maxwell`s equations to accurately model scattering processes in the presence of an externally biased potential. This detailed multidimensional simulation capability is compared with and verified by experimental data, and could become an industrial standard for benchmarking and improving the {open_quotes}reduced model{close_quotes} codes used for semiconductor design. Specific tasks are the extension of existing capabilities in particle-in-cell plasma simulation technique and Monte Carlo charge transport to study the physics of charged particle dynamics in realistic microelectronic devices, such as bipolar semiconductors, heterojunction transistors, and optoelectronic switches. Our approach has been based on the coupled particle-in-cell/Monte Carlo technique, which can simultaneously treat both electromagnetic wave propagation and charged-particle transport.
Extending transfer-matrix studies of charge transport in dsDNA: diagonal ladder model
NASA Astrophysics Data System (ADS)
Wells, Stephen; Roemer, Rudoph
2008-03-01
The π-stacking of aromatic bases along the axis of the DNA double helix suggests that DNA should be capable of supporting electron transport. This possibility has been investigated by a variety of experimental methods, including charge-transfer between intercalated dye molecules and direct measurement of conductivity in DNA molecules bridging two electrodes. In order to explore either the biological or nanotechnological significance of charge transport in DNA, we need theoretical models capable of predicting the influence of DNA sequence and structure on its charge transport properties. Transfer matrix methods have been used in conjunction with a ladder model of dsDNA (incorporating charge transfer between adjacent bases along a strand, and between hydrogen-bonded base pairs) to predict different transport properties for random, repetitive, or coding DNA sequences. It has been suggested that DNA charge transport may be involved in cellular mechanisms to detect and repair damage to DNA strands. We present extensions to the ladder model to allow for, firstly, charge transfer ``diagonally'' (from a base on a 5' strand to an adjacent base on a 3' strand, for example), and secondly, variations in hopping amplitudes due to bending of the helix (for example, in wrapping round a histone complex). Hence we take into account the extent of the electronic states and the geometry of the DNA strand in our modeling.
Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei
2011-09-01
Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.
A general relationship between disorder, aggregation and charge transport in conjugated polymers.
Noriega, Rodrigo; Rivnay, Jonathan; Vandewal, Koen; Koch, Felix P V; Stingelin, Natalie; Smith, Paul; Toney, Michael F; Salleo, Alberto
2013-11-01
Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials.
Charge transport in high mobility molecular semiconductors: classical models and new theories.
Troisi, Alessandro
2011-05-01
The theories developed since the fifties to describe charge transport in molecular crystals proved to be inadequate for the most promising classes of high mobility molecular semiconductors identified in the recent years, including for example pentacene and rubrene. After reviewing at an elementary level the classical theories, which still provide the language for the understanding of charge transport in these systems, this tutorial review outlines the recent experimental and computational evidence that prompted the development of new theories of charge transport in molecular crystals. A critical discussion will illustrate how very rarely it is possible to assume a charge hopping mechanism for high mobility organic crystals at any temperature. Recent models based on the effect of non-local electron-phonon coupling, dynamic disorder, coexistence of localized and delocalized states are reviewed. Additionally, a few more recent avenues of theoretical investigation, including the study of defect states, are discussed.
Analysis of the Contribution of Charge Transport in Iodine-125 induced DNA Damage
Ndlebe, Thabisile; Panyutin, Igor; Neumann, Ronald
2009-01-01
Auger electron emitters, like iodine-125, are the radionuclides of choice for gene-targeted radiotherapy. The highly localized damage they induced in DNA is produced by three mechanisms: direct damage by the emitted Auger electrons, indirect damage by diffusible free radicals produced by Auger electrons travelling in water, and charge neutralization of the residual, highly positively charged, tellurium daughter atom by stripping electrons from covalent bonds of neighboring residues. The purpose of our work was to determine whether these mechanisms proceed through an intermediate energy transfer step along DNA. It was proposed that this intermediate step proceeds through the charge transport mechanism in DNA. Conventional charge transport has been described as either a hopping mechanism initiated by charge injection into DNA and propagated by charge migration along the DNA, or a tunneling mechanism in which charge moves directly from a donor to an acceptor within DNA. Well-known barriers for the hopping mechanism were used to probe the role of charge transport in 125I induced DNA damage. We studied their effect on the distribution of DNA breaks produced by the decay of iodine-125 in samples frozen at −80°C. We found that these barriers had no measurable effect on the iodine-125 breaks distribution. PMID:20041764
NASA Astrophysics Data System (ADS)
Huang, Yanhui; Schadler, Linda S.
2016-08-01
The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.
Huang, Yanhui Schadler, Linda S.
2016-08-07
The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.
Shankla, Manish; Aksimentiev, Aleksei
2014-01-01
Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here, we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing. PMID:25296960
Study of Charge Carrier Transport in GaN Sensors.
Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas
2016-04-18
Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm²/Vs for electrons, and μh = 400 ± 80 cm²/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects.
Study of Charge Carrier Transport in GaN Sensors
Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas
2016-01-01
Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects. PMID:28773418
Teschome, Bezu; Facsko, Stefan; Schönherr, Tommy; Kerbusch, Jochen; Keller, Adrian; Erbe, Artur
2016-10-11
DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions, and fabricating photonic devices. Yet, little has been done toward the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represent a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurements exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.
Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure
Chen, Wei; Wang, Fei; Fang, Jingyue; Wang, Guang; Qin, Shiqiao; Zhang, Xue-Ao E-mail: xazhang@nudt.edu.cn; Wang, Chaocheng; Wang, Li E-mail: xazhang@nudt.edu.cn
2015-01-12
The metal-oxide-graphene heterostructures have abundant physical connotations. As one of the most important physical properties, the electric transport property of the gold-chromium oxide-graphene heterostructure has been studied. The experimental measurement shows that the conductive mechanism is dominated by the space-charge-limited transport, a kind of bulk transport of an insulator with charge traps. Combining the theoretical analysis, some key parameters such as the carrier mobility and trap energy also are obtained. The study of the characteristics of the metal-oxide-graphene heterostructures is helpful to investigate the graphene-based electronic and photoelectric devices.
Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure
NASA Astrophysics Data System (ADS)
Chen, Wei; Wang, Fei; Qin, Shiqiao; Fang, Jingyue; Wang, Chaocheng; Wang, Guang; Wang, Li; Zhang, Xue-Ao
2015-01-01
The metal-oxide-graphene heterostructures have abundant physical connotations. As one of the most important physical properties, the electric transport property of the gold-chromium oxide-graphene heterostructure has been studied. The experimental measurement shows that the conductive mechanism is dominated by the space-charge-limited transport, a kind of bulk transport of an insulator with charge traps. Combining the theoretical analysis, some key parameters such as the carrier mobility and trap energy also are obtained. The study of the characteristics of the metal-oxide-graphene heterostructures is helpful to investigate the graphene-based electronic and photoelectric devices.
High-frequency acoustic charge transport in GaAs nanowires.
Büyükköse, S; Hernández-Mínguez, A; Vratzov, B; Somaschini, C; Geelhaar, L; Riechert, H; van der Wiel, W G; Santos, P V
2014-04-04
The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short wavelength of the acoustic modulation, smaller than the length of the nanowire, allows the trapping of photo-generated electrons and holes at the spatially separated energy minima and maxima of conduction and valence bands, respectively, and their transport along the nanowire with a well defined acoustic velocity towards indium-doped recombination centers.
Optoelectronic properties and depth profile of charge transport in nanocrystal films
NASA Astrophysics Data System (ADS)
Aigner, Willi; Bienek, Oliver; Desta, Derese; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.
2017-07-01
We investigate the charge transport in nanocrystal (NC) films using field effect transistors (FETs) of silicon NCs. By studying films with various thicknesses in the dark and under illumination with photons with different penetration depths (UV and red light), we are able to predictably change the spatial distribution of charge carriers across the films' profile. The experimental data are compared with photoinduced charge carrier generation rates computed using finite-difference time-domain (FDTD) simulations complemented with optical measurements. This enables us to understand the optoelectronic properties of NC films and the depth profile dependence of the charge transport properties. From electrical measurements, we extract the total (bulk) photoinduced charge carrier densities (nphoto) and the photoinduced charge carrier densities in the FETs channel (nphoto*). We observe that the values of nphoto and their dependence on film thickness are similar for UV and red light illumination, whereas a significant difference is observed for the values of nphoto*. The dependencies of nphoto and nphoto* on film thickness and illumination wavelength are compared with data from FDTD simulations. Combining experimental data and simulation results, we find that charge carriers in the top rough surface of the films cannot contribute to the macroscopic charge transport. Moreover, we conclude that below the top rough surface of NC films, the efficiency of charge transport, including the charge carrier mobility, is homogeneous across the film thickness. Our work shows that the use of NC films as photoactive layers in applications requiring harvesting of strongly absorbed photons such as photodetectors and photovoltaics demands a very rigorous control over the films' roughness.
Effect of nonlinear instability on gravity-wave momentum transport
NASA Technical Reports Server (NTRS)
Dunkerton, Timothy J.
1987-01-01
This paper investigates the nonlinear instability of internal gravity waves and the effects of their nonlinear interaction on momentum flux, using simple theoretical and numerical models. From the result of an analysis of parametric instability of a two-dimensional internal gravity wave as discussed by Yeh and Liu (1981) and Klostermeyer (1982), a group trajectory length scale for a gravity wave packet was determined, expressed in terms of the dominant vertical wavelenght and the degree of convective saturation. It is shown that this analysis justifies the Eikonal saturation method for relatively transient packets, that are well below the saturation amplitude, propagating in a slowly varying mean flow. Conversely, linear theory fails for persistent disturbances and trasient wave packets near convective saturation.
Charge transport-driven selective oxidation of graphene.
Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young
2016-06-02
Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.
Ha, Dong -Gwang; Kim, Jang -Joo; Baldo, Marc A.
2016-04-29
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl) amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl) benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. Furthermore, the analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.
Acoustic charge transport induced by the surface acoustic wave in chemical doped graphene
NASA Astrophysics Data System (ADS)
Zheng, Shijun; Zhang, Hao; Feng, Zhihong; Yu, Yuanyuan; Zhang, Rui; Sun, Chongling; Liu, Jing; Duan, Xuexin; Pang, Wei; Zhang, Daihua
2016-10-01
A graphene/LiNbO3 hybrid device is used to investigate the acoustic induced charge transport in chemical doped graphene. The chemical doping of graphene via its physisorption of gas molecules affects the surface acoustic wave (SAW) charge carrier transport in a manner different from electric field drift. That transport induces doping dependent macroscopic acoustoelectric current. The chemical doping can manipulate majority carriers and induces unique acoustoelectric features. The observation is explained by a classical relaxation model. Eventually the device based on acoustoelectric current is proved to outperform the common chemiresistor for chemicals. Our finding provides insight into acoustic charge carrier transport during chemical doping. The doping affects interaction of carriers with SAW phonon and facilitates the understanding of nanoscale acoustoelectric effect. The exploration inspires potential acoustoelectric application for chemical detection involving emerging 2D nanomaterials.
Ha, Dong-Gwang; Kim, Jang-Joo; Baldo, Marc A.
2016-04-01
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.
Temperature dependence of charge transport in conjugated single molecule junctions
NASA Astrophysics Data System (ADS)
Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha
2011-03-01
Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.
Quasiclassical theory of charge transport in disordered interacting electron systems
NASA Astrophysics Data System (ADS)
Schwab, P.; Raimondi, R.
2003-10-01
We consider the corrections to the Boltzmann theory of electrical transport arising from the Coulomb interaction in disordered conductors. In this article the theory is formulated in terms of quasiclassical Green's functions. We demonstrate that the formalism is equivalent to the conventional diagrammatic technique by deriving the well-known Altshuler-Aronov corrections to the conductivity. Compared to the conventional approach, the quasiclassical theory has the advantage of being closer to the Boltzmann theory, and also allows description of interaction effects in the transport across interfaces, as well as non-equilibrium phenomena in the same theoretical framework. As an example, by applying the Zaitsev boundary conditions which were originally developed for superconductors, we obtain the P(E)-theory of the Coulomb blockade in tunnel junctions. Furthermore we summarize recent results obtained for the non-equilibrium transport in thin films, wires and fully coherent conductors.
Charge transport through a semiconductor quantum dot-ring nanostructure.
Kurpas, Marcin; Kędzierska, Barbara; Janus-Zygmunt, Iwona; Gorczyca-Goraj, Anna; Wach, Elżbieta; Zipper, Elżbieta; Maśka, Maciej M
2015-07-08
Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot-ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes.
Charge transport in photochemically modified molecularly doped polymers
NASA Astrophysics Data System (ADS)
Stasiak, James W.; Storch, Teresa J.; Mao, Erji
1995-08-01
Hole mobilities in p-diethylaminobenzaldehyde diphenylhydrazone (DEH) doped polycarbonate films are determined using the time-of-flight transient photocurrent technique. Measurements of hole transport parameters are determined over a range of electric fields before and after the samples are deliberately irradiated with UV light. UV irradiation of the hole transport molecule DEH results in the creation of a photoproduct, 1-phenyl-3-(4- diethylamino-1-phenyl)-1, 3-indazole with moderately high efficiency. Once formed, this photoproduct has been shown to act as a barrier to hole conduction. We exploit this photochemical reaction to examine the hole transport properties in a molecularly doped polymer system containing DEH doped polycarbonate. We propose that the increase in concentration of the photoproduct modifies the intrinsic order of the system and provides a unique probe to distinguish between the disorder formalism of Baessler and coworkers and models which propose polaron formation.
Nonlinear dynamics and plasma transport. Progress report, September 15, 1992--September 14, 1993
Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sageev, R.Z.
1993-05-01
This progress report details work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE since 1989. This program has been in cooperation with laboratories in theUSSR [now Russia and the Confederation of Independent States (CIS)]. The purpose of this program has been: To promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport. To promote cooperative scientific investigations between the US and CIS in the related areas of nonlinear science and plasma turbulence and transport. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. This allows for a deeper analysis and understanding of the system both analytically and numerically.
Charge transport-driven selective oxidation of graphene
NASA Astrophysics Data System (ADS)
Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C.; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young
2016-06-01
Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2
Charged-particle transport in turbulent astrophysical plasmas
NASA Technical Reports Server (NTRS)
Newman, C. E., Jr.
1972-01-01
The effect of electromagnetic fluctuations, or plasma turbulence, on the motion of the individual particles in a plasma is investigated. Two alternative methods are used to find a general equation governing the time-evolution of a distribution of charged particles subject to both an external force field and the random fields of the fluctuations. It is found that, for the high-temperature, low-density plasmas frequently encountered in the study of astrophysics, the presence of even a small amount of turbulence can have a very important effect on the behavior of the plasma. Two problems in which turbulence plays an important role are treated.
Variable range hopping and nonlinear transport in monolayer epitaxial graphene grown on SiC
NASA Astrophysics Data System (ADS)
Liu, Chieh-I.; Wu, Bi-Yi; Chuang, Chiashain; Lee, Ya-Chi; Ho, Yi-Ju; Yang, Yanfei; Elmquist, Randolph E.; Lo, Shun-Tsung; Liang, Chi-Te
2016-10-01
We report experimental results on variable range hopping (VRH) and nonlinear transport in monolayer epitaxial graphene. In the linear regime in which the conductance is independent of voltage, the resistance curve derivative analysis method can be used to unequivocally determine whether Mott VRH or Efros-Shklovskii VRH is the dominant transport mechanism in our devices. In the nonlinear regime in which the conductance shows a strong dependence on voltage, we find that our experimental results can be successfully described by existing theoretical models. We suggest that the observed vastly different exponents in the threshold voltage-temperature dependence require further experimental and theoretical studies.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.
2011-05-11
The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.
Computer-aided analysis of nonlinear problems in transport phenomena
NASA Technical Reports Server (NTRS)
Brown, R. A.; Scriven, L. E.; Silliman, W. J.
1980-01-01
The paper describes algorithms for equilibrium and steady-state problems with coefficients in the expansions derived by the Galerkin weighted residual method and calculated from the resulting sets of nonlinear algebraic equations by the Newton-Raphson method. Initial approximations are obtained from nearby solutions by continuation techniques as parameters are varied. The Newton-Raphson technique is preferred because the Jacobian of the solution is useful for continuation, for analyzing the stability of solutions, for detecting bifurcation of solution families, and for computing asymptotic estimates of the effects on any solution of small changes in parameters, boundary conditions, and boundary shape.
Nonlinear photon-assisted tunneling transport in optical gap antennas.
Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre
2014-05-14
We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Bozyigit, Deniz; Lin, Weyde M. M.; Yazdani, Nuri; Yarema, Olesya; Wood, Vanessa
2015-01-01
Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic–organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current–voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode–nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices. PMID:25625647
Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin
2015-02-03
The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.
NASA Astrophysics Data System (ADS)
Bozyigit, Deniz; Lin, Weyde M. M.; Yazdani, Nuri; Yarema, Olesya; Wood, Vanessa
2015-01-01
Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic-organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current-voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode-nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices.
Charge transport and localization in atomically coherent quantum dot solids
NASA Astrophysics Data System (ADS)
Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.; Kourkoutis, Lena F.; Wise, Frank; Hanrath, Tobias
2016-05-01
Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.
Charged Particle Transport in High-Energy-Density Matter
NASA Astrophysics Data System (ADS)
Stanton, Liam; Murillo, Michael
2016-10-01
Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot
NASA Astrophysics Data System (ADS)
Romero, Javier I.; Roura-Bas, Pablo; Aligia, Armando A.; Arrachea, Liliana
2017-06-01
We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T =0 , we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R0=h /(2 e2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.
Charge transport in disordered films of non-redox proteins
NASA Astrophysics Data System (ADS)
Pompa, P. P.; Della Torre, A.; del Mercato, L. L.; Chiuri, R.; Bramanti, A.; Calabi, F.; Maruccio, G.; Cingolani, R.; Rinaldi, R.
2006-07-01
Electrical conduction in solid state disordered multilayers of non-redox proteins is demonstrated by two-terminal transport experiments at the nanoscale and by scanning tunneling microscopy (STM/STS experiments). We also show that the conduction of the biomolecular films can be modulated by means of a gate field. These results may lead to the implementation of protein-based three-terminal nanodevices and open important new perspectives for a wide range of bioelectronic/biosensing applications.
Ferrell, Nicholas; Cameron, Kathleen O.; Groszek, Joseph J.; Hofmann, Christina L.; Li, Lingyan; Smith, Ross A.; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L.; Fissell, William H.
2013-01-01
Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. PMID:23561524
Optimization of Nonlinear Transport-Production Task of Medical Waste
NASA Astrophysics Data System (ADS)
Michlowicz, Edward
2012-09-01
The paper reflects on optimization of transportation - production tasks for the processing of medical waste. For the existing network of collection points and processing plants, according to its algorithm, the optimal allocation of tasks to the cost of transport to the respective plants has to be determined. It was assumed that the functions determining the processing costs are polynomials of the second degree. To solve the problem, a program written in MatLab environment equalization algorithm based on a marginal cost JCC was used.
Solution of a new nonlinear equation for the distribution of charge carriers in a semiconductor
NASA Astrophysics Data System (ADS)
Liboff, Richard L.; Schenter, Gregory K.
1986-11-01
The solution of a recently obtained nonlinear differential equation for the distribution function of charge carriers in a semiconductor in an electric field is derived. It is given by fSL(x)=\\{1+B[s/(x+s)]sex \\}-1. This solution represents the symmetric part of the total distribution function. The nondimensional energy and applied electric field are x and √s , respectively, and B is a constant determined by normalization. The total distribution is given by the above and its derivative and is found to be rotationally symmetric about the electric field. This distribution reduces to the shifted Fermi-Dirac distribution for small s and to the Druyvesteyn distribution in the classical limit. An analytic expression for electrical conductivity is derived together with an approximate expression for the chemical potential in the small-electric-field limit. A generalized criterion for the classical versus quantum domains is discussed relevant to the present study. It is found that otherwise quantum domains become classical for sufficiently large applied electric fields.
Charged Particle Energization and Transport in the Magnetotail during Substorms
NASA Astrophysics Data System (ADS)
Pan, Qingjiang
This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.
1993-01-01
This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.
Modeling interfacial charge transport of quantum dots using cyclic voltammetry
NASA Astrophysics Data System (ADS)
Tobias, Andrew K.; Jones, Marcus
2011-10-01
Quantum dot applications are numerous and range from photovoltaic devices and lasers, to bio labeling. Complexities in the electronic band structure of quantum dots create the necessity for analysis techniques that can accurately and reproducibly provide their absolute band energies. Cyclic voltammetry (CV) is a novel candidate for these studies and has the potential to become a useful tool in engineering new nanocrystal technology, by providing information necessary for predicting and modeling interfacial charge transfer to and from quantum dots. Advancing from previous reports of nanocrystal CV, a carbon paste electrode was utilized in an attempt to increase measured current by ensuring intimate contact between nanocrystals and the electrode. Our goal was to investigate band energies and model nanocrystal-molecule electron transfer systems.
Charge transport across tunable superlattice barriers in graphene
NASA Astrophysics Data System (ADS)
Dubey, Sudipta; Bhat, Ajay; Singh, Vibhor; Parikh, Pritesh; Prakash, Tanuj; Sebastian, Abhilash; Padmalekha, K. G.; Sengupta, Krishnendu; Tripathi, Vikram; Sensarma, Rajdeep; Deshmukh, Mandar
2013-03-01
We create an artificial superlattice structure in graphene using an array of top gate and a bottom gate. A superlattice potential modifies the band structure of graphene, so that extra Dirac points appear in the dispersion periodically as a function of the superlattice barrier height. Tuning the amplitude of the barrier thus gives us control over number of Dirac points generated. We have performed measurements on this superlattice structure. Oscillations in resistance are observed when the charge carrier induced by top gate and back gate are of opposite sign. In this region, the number of oscillations increases with increasing gate voltage. Measurements as a function of temperature show that these oscillations persist even at 70 K. The behaviour of these oscillations in presence of magnetic field is also observed. At low magnetic field we see weak localisation behaviour. At high magnetic field, the superlattice is a small perturbation and quantum Hall effect of pristine graphene is restored.
Subbanding, Charge Transport and Related Applications in Semiconductor Devices.
1977-10-01
These devices use a p-n homo -junction to confine the free electronic charge in the semiconductor to conducting regions so narrow as to exhibit...27.172 Table 6A ~0 ENERGY IN MILLI-ELECTRON VOLTS WC IN ANGSTROMS WC EC(6) ECC 7) EC(8) EC(9) ECC 10) 1.2 3669047 432.986 499.951 566.937 633.941 1.5...VC IN ANGSTROMS (6 ECC ) ECC7) EC(s) EC(9) ECCIS) 3t 236.132 279.167 322.269 365.257 418.319 1,’ 235;907 275;922 321� 364;976 408.013 I. 235,;635
An acoustic charge transport imager for high definition television applications
NASA Astrophysics Data System (ADS)
Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.
1993-09-01
This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.
Viani, Lucas; Olivier, Yoann; Athanasopoulos, Stavros; da Silva Filho, Demetrio A; Hulliger, Jürg; Brédas, Jean-Luc; Gierschner, Johannes; Cornil, Jérôme
2010-04-06
A great deal of interest has recently focused on host-guest systems consisting of one-dimensional collinear arrays of conjugated molecules encapsulated in the channels of organic or inorganic matrices. Such architectures allow for controlled charge and energy migration processes between the interacting guest molecules and are thus attractive in the field of organic electronics. In this context, we characterize here at a quantum-chemical level the molecular parameters governing charge transport in the hopping regime in 1D arrays built with different types of molecules. We investigate the influence of several parameters (such as the symmetry of the molecule, the presence of terminal substituents, and the molecular size) and define on that basis the molecular features required to maximize the charge carrier mobility within the channels. In particular, we demonstrate that a strong localization of the molecular orbitals in push-pull compounds is generally detrimental to the charge transport properties.
Heteroleptic cyclometalated Ir(III) complexes with charge transporting groups: A theoretical study
Padmaperuma, Asanga B.; Fernandez, Carlos A.
2012-09-13
Efficient and stable high energy organic light emitting devices (OLEDs) are a vital component of new generation general illumination solutions. However, large charge imbalances in the emissive layer of OLEDs lead to charge accumulation and subsequent side reactions which lowers the device efficiency and dramatically shortens operational lifetime. Radical changes in the way emitter materials are designed are needed to address this problem. Conventional approaches have only focused on color tuning; however, multi-functional emitter materials are needed to assist the transport of charge in the emissive layer. We propose to design and synthesize new organometallic iridium phosphorescent materials with bipolar charge transport properties to be used in high energy OLEDs and white light configurations
NASA Astrophysics Data System (ADS)
Lin, Tao; Liu, Xiaojun; Lou, Zhidong; Hou, Yanbing; Teng, Feng
2014-08-01
The charge injection and transport properties of six organic light-emitting molecules with push-pull structures were studied by theoretical calculations. The ground-state geometries for the neutral, cationic and anionic states were optimized using density functional theory. Subsequently, the ionization potentials and electron affinities were calculated. We computed the reorganization energies and the transfer integrals based on the Marcus electron transfer theory. It was found that in addition to being emitters the six compounds are multifunctional materials being capable of transport for both holes and electrons. Moreover, the double-branched compound DCDPC2 was found to have higher charge injection ability and better balanced charge transport properties than single-branched compounds.
Charge transport and structural dynamics in carboxylic-acid-based deep eutectic mixtures.
Griffin, Philip J; Cosby, Tyler; Holt, Adam P; Benson, Roberto S; Sangoro, Joshua R
2014-08-07
Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid.
Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films
Nagpal, Prashant; Klimov, Victor I.
2011-09-27
Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges.
Craciun, N I; Wildeman, J; Blom, P W M
2008-02-08
Charge transport models developed for disordered organic semiconductors predict a non-Arrhenius temperature dependence ln(mu) proportional, variant1/T(2) for the mobility mu. We demonstrate that in space-charge limited diodes the hole mobility (micro(h)) of a large variety of organic semiconductors shows a universal Arrhenius temperature dependence micro(h)(T) = micro(0)exp(-Delta/kT) at low fields, due to the presence of extrinsic carriers from the Ohmic contact. The transport in a range of organic semiconductors, with a variation in room temperature mobility of more than 6 orders of magnitude, is characterized by a universal mobility micro(0) of 30-40 cm(2)/V s. As a result, we can predict the full temperature dependence of their charge transport properties with only the mobility at one temperature known.
Isotropic charge transport in highly ordered regioregular poly(3-hexylthiophene) monolayer
NASA Astrophysics Data System (ADS)
Akai-Kasaya, M.; Okuaki, Y.; Nagano, S.; Saito, A.; Aono, M.; Kuwahara, Y.
2013-10-01
Charge transport anisotropy in π-stacked poly(3-hexylthiophene-2,5-diyl) (P3HT) monolayers was investigated. The monolayers were prepared using a Langmuir-Blodgett technique and were uniaxial but homogeneous two-dimensional sheets. Nanoscale electrical measurements were carried out using metal electrodes with a submicrometre gap between them in order to exclude breaches that occasionally occur along the chains. A remarkable degree of isotropy in both the conductivity and mobility was found. The conductivity isotropy implies that charge transport is dominated by fatal defects in polymers arising at structural and electrical discontinuities, even in the absence of large morphological defects. It was found that the mobility along the π-stacking direction can exceed that along the polymer chain in monolayers with good crystallinity. This high mobility along the π-stacking direction is thought to be an inherent charge transport characteristic that has so far been obscured in solid state conjugated polymers with complex microstructures.
Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films
Nagpal, Prashant; Klimov, Victor I.
2011-01-01
Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges. PMID:21952220
Goldey, Matthew B.; Brawand, Nicholas P.; Voros, Marton; ...
2017-04-20
The in silico design of novel complex materials for energy conversion requires accurate, ab initio simulation of charge transport. In this work, we present an implementation of constrained density functional theory (CDFT) for the calculation of parameters for charge transport in the hopping regime. We verify our implementation against literature results for molecular systems, and we discuss the dependence of results on numerical parameters and the choice of localization potentials. In addition, we compare CDFT results with those of other commonly used methods for simulating charge transport between nanoscale building blocks. As a result, we show that some of thesemore » methods give unphysical results for thermally disordered configurations, while CDFT proves to be a viable and robust approach.« less
NASA Astrophysics Data System (ADS)
Brenner, Thomas M.; Egger, David A.; Kronik, Leeor; Hodes, Gary; Cahen, David
2016-01-01
Solution-processed hybrid organic-inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion lengths, high optical absorption coefficients and impressive photovoltaic device performance. Recent results allow us to compare and contrast HOIP charge-transport characteristics to those of III-V semiconductors — benchmarks of photovoltaic (and light-emitting and laser diode) performance. In this Review, we summarize what is known and unknown about charge transport in HOIPs, with particular emphasis on their advantages as photovoltaic materials. Experimental and theoretical findings are integrated into one narrative, in which we highlight the fundamental questions that need to be addressed regarding the charge-transport properties of these materials and suggest future research directions.
NASA Technical Reports Server (NTRS)
Katz, Ira; Mandell, Myron; Roche, James C.; Purvis, Carolyn
1987-01-01
Secondary electrons control a spacecraft's response to a plasma environment. To accurately simulate spacecraft charging, the NASA Charging Analyzer Program (NASCAP) has mathematical models of the generation, emission and transport of secondary electrons. The importance of each of the processes and the physical basis for each of the NASCAP models are discussed. Calculations are presented which show that the NASCAP formulations are in good agreement with both laboratory and space experiments.
Third-order TRANSPORT: A computer program for designing charged particle beam transport systems
Carey, D.C.; Brown, K.L.; Rothacker, F.
1995-05-01
TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.
NASA Astrophysics Data System (ADS)
Bhakta, Subrata; Sarkar, Susmita
2017-07-01
In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma considering equilibrium dust charge positive and compared the results with those obtained in our recently published paper [Bhakta et al., Phys. Plasmas 24, 023704 (2017)] where the equilibrium dust charge was negative. In both papers, primary and secondary electrons are assumed to follow Boltzmann distribution with separate electron temperatures, ions are also Boltzmann distributed, and charged dust grains are inertial. Change in the nature of dust charge (negative to positive) gives rise to some opposite behaviour of wave propagation characteristics in dusty plasma when dust grains are charged by secondary electron emission mechanism. Both adiabatic and nonadiabatic dust charge variations have been separately considered in both the papers. The investigation in this paper shows that compressive dust acoustic soliton propagates in case of adiabatic dust charge variation whose amplitude increases and width decreases with an increase in the strength of the secondary electron emission. This is in contrast to the case of negative equilibrium dust charge which confirms the existence of rarefied dust acoustic soliton with decreasing amplitude and increasing width for an increase in the strength of the secondary electron emission. Nonadiabaticity of dust charge variation in both cases generates dust acoustic shock wave which is oscillatory for weak nonadiabaticity and monotonic for strong nonadiabaticity. For positive equilibrium dust charge, the amplitude of both oscillatory and monotonic shocks increases and oscillation of the oscillatory shock persists longer for stronger secondary electron emission. On the other hand for negative equilibrium dust charge, the amplitude of both the oscillatory and monotonic shocks diminishes with increasing secondary electron emission.
Quantum chemistry and charge transport in biomolecules with superconducting circuits
NASA Astrophysics Data System (ADS)
García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.
2016-06-01
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.
Quantum chemistry and charge transport in biomolecules with superconducting circuits
García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.
2016-01-01
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814
Quantum chemistry and charge transport in biomolecules with superconducting circuits.
García-Álvarez, L; Las Heras, U; Mezzacapo, A; Sanz, M; Solano, E; Lamata, L
2016-06-21
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.
NASA Astrophysics Data System (ADS)
Illera, S.; Prades, J. D.; Cirera, A.
2015-05-01
The role of different charge transport mechanisms in Si / Si O 2 structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO2 is the most relevant process. Besides, current trends in Si / Si O 2 superlattice structure have been properly reproduced.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
NASA Astrophysics Data System (ADS)
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-10-01
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—< {{\\tilde{v}}r}\\tilde{n}{{\\tilde{v}}θ}> is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux < {{\\tilde{v}}r}\\tilde{n}{{\\tilde{v}}θ}> in strong electrostatic turbulence is calculated using the Hasegawa-Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.
NASA Astrophysics Data System (ADS)
Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Brédas, Jean-Luc
2017-06-01
Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/embedded-charge (QM/EC) approach based on a combination of the long-range corrected ωB97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels.
Charge Transport in Polyaniline and Vapour Induced Structural Changes
NASA Astrophysics Data System (ADS)
Minto, C. D. G.; Vaughan, A. S.
1996-03-01
Camphor sulphonic acid protonation renders polyaniline soluble in both m-cresol and chloroform. Films cast from these solvents exhibit vastly differing transport properties. m-cresol cast films are metallic or lie on the metal/insulator transition, whereas those cast from chloroform are insulators. Similarly pellets of pressed doped polyaniline powder exhibit insulating characteristics. We present an investigation of such effects in polyaniline obtained from both insulating conditions (films and powders). We find that m-cresol -- vapour treatment of these materials causes a rapid increase both in the conductivity and the type of conduction, changing from an insulator to a material approaching the metal/insulator transition. Chloroform films actually take on characteristics of those cast from m-cresol, including a positive temperature coefficient of resistivity. Both starting materials exhibit similar X-ray scattering patterns, after exposure to vapour, the pattern becomes more similar to that which is found in m-cresol cast films. Conformational changes resulting from a strong polymer--interaction are discussed as the motivation for the improvements in transport properties.
Chauvin, N; Delferrière, O; Duperrier, R; Gobin, R; Nghiem, P A P; Uriot, D
2012-02-01
Over the last few years, the interest of the international scientific community for high power accelerators in the megawatt range has been increasing. For such machines, the ion source has to deliver a beam intensity that ranges from several tens up to a hundred of mA. One of the major challenges is to extract and transport the beam while minimizing the emittance growth and optimizing its injection into the radio frequency quadrupole. Consequently, it is crucial to perform precise simulations and cautious design of the low energy beam transport (LEBT) line. In particular, the beam dynamics calculations have to take into account not only the space charge effects but also the space charge compensation of the beam induced by ionization of the residual gas. The physical phenomena occurring in a high intensity LEBT and their possible effects on the beam are presented, with a particular emphasis on space charge compensation. Then, beam transport issues in different kind of LEBTs are briefly reviewed. The SOLMAXP particle-in-cell code dedicated to the modeling of the transport of charge particles under a space charge compensation regime is described. Finally, beam dynamics simulations results obtained with SOLMAXP are presented in the case of international fusion materials irradiation facility injector.
Influence of electromagnetic field on soliton-mediated charge transport in biological systems.
Brizhik, Larissa
2015-01-01
It is shown that electromagnetic fields affect dynamics of Davydov's solitons which provide charge transport processes in macromolecules during metabolism of the system. There is a resonant frequency of the field at which it can cause the transition of electrons from bound soliton states into delocalised states. Such decay of solitons reduces the effectiveness of charge transport, and, therefore, inhibits redox processes. Solitons radiate their own electromagnetic field of characteristic frequency determined by their average velocity. This self-radiated field leads to synchronization of soliton dynamics and charge transport processes, and is the source of the coherence in the system. Exposition of the system to the oscillating electromagnetic field of the frequency, which coincides with the eigen-frequency of solitons can enhance eigen-radiation of solitons, and, therefore, will enhance synchronization of charge transpor, stimulate the redox processes and increase coherence in the system. Electromagnetic oscillating field causes also ratchet phenomenon of solitons, i.e., drift of solitons in macromolecules in the presence of unbiased periodic field. Such additional drift enhances the charge transport processes. It is shown that temperature facilitates the ratchet drift. In particular, temperature fluctuations lead to the lowering of the critical value of the intensity and period of the field, above which the drift of solitons takes place. Moreover, there is a stochastic resonance in the soliton dynamics in external electromagnetic fields. This means, that there is some optimal temperature at which the drift of solitons is maximal.
Space-charge limited transport in large-area monolayer hexagonal boron nitride.
Mahvash, Farzaneh; Paradis, Etienne; Drouin, Dominique; Szkopek, Thomas; Siaj, Mohamed
2015-04-08
Hexagonal boron nitride (hBN) is a wide-gap material that has attracted significant attention as an ideal dielectric substrate for 2D crystal heterostructures. We report here the first observation of in-plane charge transport in large-area monolayer hBN, grown by chemical vapor deposition. The quadratic scaling of current with voltage at high bias corresponds to a space-charge limited conduction mechanism, with a room-temperature mobility reaching up to 0.01 cm(2)/(V s) at electric fields up to 100 kV/cm in the absence of dielectric breakdown. The observation of in-plane charge transport highlights the semiconducting nature of monolayer hBN, and identifies hBN as a wide-gap 2D crystal capable of supporting charge transport at high field. Future exploration of charge transport in hBN is motivated by the fundamental study of UV optoelectronics and the massive Dirac fermion spectrum of hBN.
Choi, Chang Kyoung; Fowlkes, Jason D.; Retterer, Scott T.; Siuti, Piro; Iyer, Sukanya; Doktycz, Mitchel J.
2010-01-01
The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including “supercharged” variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photo-bleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the spacing and density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems. PMID:20515056
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.
2013-06-01
The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).
Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue
As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.
Flywheel-Based Fast Charging Station – FFCS for Electric Vehicles and Public Transportation
NASA Astrophysics Data System (ADS)
Gabbar, Hossam A.; Othman, Ahmed M.
2017-08-01
This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”
In situ optical measurement of charge transport dynamics in organic photovoltaics.
Chow, Philip C Y; Bayliss, Sam L; Lakhwani, Girish; Greenham, Neil C; Friend, Richard H
2015-02-11
We present a novel experimental approach which allows extraction of both spatial and temporal information on charge dynamics in organic solar cells. Using the wavelength dependence of the photonic structure in these devices, we monitor the change in spatial overlap between the photogenerated hole distribution and the optical probe profile as a function of time. In a model system we find evidence for a buildup of the photogenerated hole population close to the hole-extracting electrode on a nanosecond time scale and show that this can limit charge transport through space-charge effects under operating conditions.
Wang, Dong; Chen, Liping; Zheng, Renhui; Wang, Linjun; Shi, Qiang
2010-02-28
We present a nonperturbative quantum master equation to investigate charge carrier transport in organic molecular crystals based on the Liouville space hierarchical equations of motion method, which extends the previous stochastic Liouville equation and generalized master equation methods to a full quantum treatment of the electron-phonon coupling. Diffusive motion of charge carriers in a one-dimensional model in the presence of nonlocal electron-phonon coupling was studied, and two different charge carrier diffusion mechanisms are observed for large and small average intermolecular couplings. The new method can also find applications in calculating spectra and energy transfer in various types of quantum aggregates where the perturbative treatments fail.
Vortex motion in the ionosphere and nonlinear transport
Southwood, D.J.; Kivelson, M.G.
1993-07-01
The relation between vorticity and ionospheric flow patterns is investigated by using a fluid mechanics approach in place of the more customary electromagnetic approach. The focus on the fluid features is justified by the observation that in the incompressible limit appropriate to the ionosphere, vorticity can be regarded as the source of the flow field. The authors show how vorticity can be introduced into the flow by local ionospheric conditions. However, in the cases of greatest interest, the vorticity is imposed by external sources, which can be in the magnetosphere or in the solar wind. As an important application, they consider traveling ionospheric vortices propagating around the polar cap boundary. They show that such traveling disturbances transport both momentum and magnetic flux in the direction of their phase velocity, typically antisunward. Like other intermittent disturbances of small scale, such as flux transfer events, individual traveling ionospheric vortices transport relatively little flux, but multiple disturbances could conceivably transport an important fraction of the polar cap magnetic flux from the dayside to the tail. 29 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Paul, Sanjoy
Organic electronics offer the possibility of producing low cost, flexible, and large area electronics. Organic semiconductors (OSCs) (organic polymers and crystals), used in organic electronics, are promising materials for novel optical and electronic devices such as organic light emitting diodes, organic field effect transistors, organic sensors, and organic photovoltaics (OPVs). OSCs are composed of molecules weakly held together via van der Walls forces rather than covalent bonds as in the case of inorganic semiconductors such as Si. The combined effect of small wave function overlap, spatial and energetic disorder in organic semiconducting materials lead to localization of charge carriers and, in many cases, hopping conduction. OSCs also differ from conventional semiconductors in that charges photogeneration (e.g., in OPVs) proceeds via the production, diffusion, and dissociation of excitons. Liquid crystalline OSCs (LCOSCs) are semiconductors with phases intermediate between the highly ordered crystalline and completely disordered liquid phases. These materials offer many advantages including facile alignment and the opportunity to study the effects of differing intermolecular geometries on transfer integrals, disorder-induced trapping, charge mobilities, and photogeneration efficiency. In this dissertation work, we explored the photogeneration and charge transport mechanisms in a few model smectic and discotic LCs to better understand the governing principles of photogeneration and charge transport using conventional and novel methods based on the pulsed laser time-of-flight charge carrier transport technique. Four major interrelated topics were considered in this research. First, a sample of smectic LC was aligned in order to compare the resulting hole mobility to that of an unaligned sample, with the aim of understanding how the intermolecular alignment over large length scales affects the hopping probability. The role of the polarization of the
Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin E-mail: chenwy@jlu.edu.cn Li, Hao; Shen, Liang; Chen, Weiyou E-mail: chenwy@jlu.edu.cn; Yan, Dawei E-mail: chenwy@jlu.edu.cn
2014-08-18
Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.
Charge Transport Properties of Durene Crystals from First-Principles.
Motta, Carlo; Sanvito, Stefano
2014-10-14
We establish a rigorous computational scheme for constructing an effective Hamiltonian to be used for the determination of the charge carrier mobility of pure organic crystals at finite temperature, which accounts for van der Waals interactions, and it includes vibrational contributions from the entire phonon spectrum of the crystal. Such an approach is based on the ab initio framework provided by density functional theory and the construction of a tight-binding effective model via Wannier transformation. The final Hamiltonian includes coupling of the electrons to the crystals phonons, which are also calculated from density functional theory. We apply this methodology to the case of durene, a small π-conjugated molecule, which forms a high-mobility herringbone-stacked crystal. We show that accounting correctly for dispersive forces is fundamental for obtaining a high-quality phonon spectrum, in agreement with experiments. Then, the mobility as a function of temperature is calculated along different crystallographic directions and the phonons most responsible for the scattering are identified.
``Franklin's Bells'' and charge transport as an undergraduate lab
NASA Astrophysics Data System (ADS)
Krotkov, R. V.; Tuominen, M. T.; Breuer, M. L.
2001-01-01
"Franklin's Bells" is a popular lecture demonstration in electricity but seems to have been overlooked as a quantitative undergraduate lab experiment. In our version, a charged ball oscillates back and forth between the plates of a capacitor. This paper has two purposes: one is to discuss some of the wide variety of experiments and calculations which this system affords, the other is to present an analysis of a particular situation in which the ball excites resonant modes of the plates. This excitation gives rise to unexpected steps in the graph of shuttle frequency versus the potential difference between the plates. The apparatus required to show the demonstration is available in most physics departments. Similarly, a quantitative experiment for an introductory undergraduate lab does not require any unusual equipment, nor particularly high voltages. (In our experiment, the highest voltage used was 600 V; this can probably be reduced by scaling down the apparatus.) The physical situation may be analyzed at many different levels, suitable for students in the freshman to senior years, and ranging from a qualitative understanding of the demonstration to computer calculations of chaotic dynamics. The apparatus may be a simple one appropriate to the introductory level, or, at an "Advanced Lab" level, a sophisticated one, with computer-controlled measurements and analysis of various parameters. It is surprising that such a rich system has been neglected in the traditional curriculum.
Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot
NASA Astrophysics Data System (ADS)
Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner
2016-08-01
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
A nonlinear positive method for solving the transport equation on course meshes
Walters, W.F.; Wareing, T.A.
1994-02-01
A new nonlinear S{sub n} transport differencing scheme for slab geometry is presented that is fourth order accurate for small meshes and is strictly positive. The new scheme has been coded into the existing ONELD code and tested. Numerical results to demonstrate the accuracy and positivity of this new scheme are presented.
Nonlinear dynamics and plasma transport. Progress report, September 15, 1991--September 14, 1992
Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.
1992-06-01
In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data.
Maharaj, S. K.; Bharuthram, R.; Pillay, S. R.; Singh, S. V.; Reddy, R. V.; Lakhina, G. S.
2008-09-07
In view of the observations of parallel (to Earth's magnetic field) spiky electric field structures by the FAST satellite, a theoretical study is conducted using a dusty plasma model comprising Boltzmann distributed hot and cool ions, Boltzmann electrons and a negatively charged cold dust fluid to investigate the existence of similar low frequency nonlinear electrostatic waves in a dusty plasma which could have a similar appearance as the observed waveforms. Charge separation effects are incorporated into our model by the inclusion of Poisson's equation as opposed to assuming quasineutrality. The system of nonlinear equations is then numerically solved. The resulting electric field structure is examined as a function of various plasma parameters such as Mach number, driving electric field amplitude, bulk dust drift speed, particle densities and particle temperatures.
Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning
2017-01-01
Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550
2016-01-01
While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transport on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. These insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing. PMID:28058280
Electrokinetic Transport in Nanochannels Grafted with Polyelectrolyte Brushes with End-Charging
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Chen, Guang
2015-11-01
Electrokinetic transport in nanochannels grafted with polyelectrolyte (PE) brushes is important for applications such as ion transport, ion manipulation, flow valving, etc. We discuss here a semi-analytical mean field theory approach to study electrokinetic transport in nanochannels grafted with polyelectrolyte brushes with end-charging. The model first probes the thermodynamics and the electrostatics of the PE brushes by appropriately accounting for the entropic (elastic), excluded volume, and electrostatic effects. The resulting knowledge on the electrostatic potential and the PE configuration is next used to obtain the electroosmotic transport. Results demonstrate the role of surface charges (at the end of the PE brushes) in modifying (shrinking or swelling) the brush height. This, in turn, alters the electroosmotic body force and the PE brush layer induced drag force on the fluid flow; therefore, the flow field eventually evolves from a non-trivial interplay of the PE electrostatic, entropic, and excluded volume effects.
Understanding charge transport in lead iodide perovskite thin-film field-effect transistors.
Senanayak, Satyaprasad P; Yang, Bingyan; Thomas, Tudor H; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H; Sirringhaus, Henning
2017-01-01
Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm(2)/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA(+) cations, and thermal vibrations of the lead halide inorganic cages.
Modeling of charge transport in ion bipolar junction transistors.
Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V
2014-06-17
Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.
Matrix engineering, state filling, and charge transport in PbSe quantum dot solids
NASA Astrophysics Data System (ADS)
Law, Matt
Colloidal semiconductor quantum dots (QDs) are attractive building blocks for solar photovoltaics (PV). In this talk, I will highlight our recent progress in designing PbX (X = S, Se, Te) QD thin film absorbers for next-generation PV. Basic requirements for QD absorber layers include efficient light absorption, charge separation, charge transport, and long-term stability. I begin by discussing QD film fabrication, charge transport physics, insights from theory, and evidence that the carrier diffusion length is short and limited by electronic states in the QD band gap. Studies of carrier mobility as a function of basic film parameters such as inter-QD spacing, QD size, and QD size distribution have led to a better understanding of charge transport within highly disordered QD films. Efforts to improve carrier mobility by enhancing inter-dot electronic coupling, passivating surface states, and implementing surface doping will be highlighted. Engineering the inter-QD matrix to produce QD/inorganic or QD/organic nanocomposites is presented as a powerful way to optimize coupling, remove surface states, eliminate hysteretic charge trapping and ion motion, and achieve long-term environmental stability for high-performance, robust QD films that feature good carrier multiplication efficiency. New results on the use of atomic layer deposition infilling of QD films to yield all-inorganic QD transistors free of the bias-stress effect will be presented, and the likely role of ion transport in QD optoelectronics discussed. The use of infrared transmission spectroscopy to understand state filling and study charge transport in QD thin film transistors will be presented.
El-Taibany, W. F.; Wadati, Miki; Sabry, R.
2007-03-15
Propagations of nonlinear dust acoustic (DA) solitary waves and shock waves in a nonuniform magnetized dusty plasma are investigated. The incorporation of the combined effects of nonthermally distributed ions, nonadiabatic dust charge fluctuation, and the inhomogeneity caused by nonuniform equilibrium values of particle density, charging variable, and particle potential on the waves leads to a significant modification to the nature of nonlinear DA solitary waves. The nonlinear wave evolution is governed by a modified Zakhavov-Kusnetsov-Burgers (MZKB) equation, whose coefficients are space dependent. Using a generalized expansion method, new solutions for the MZKB equation are obtained. The form of solutions consists of two parts; one of them is the amplitude factor and the other is a superposition of bell-shaped and kink-type shock waves. New solutions are classified into three categories. A type of the solution is determined depending on the nonthermal parameter. Findings in this investigation should be useful for understanding the ion acceleration mechanisms close to the Moon and also enhancing our knowledge on pickup ions around unmagnetized bodies, such as comets, Mars, and Venus, including medium inhomogeneities with nonadiabatic dust charging processes.
Measurements of Charge Transport in Arrays of Lead Selenide Nanocrystals
NASA Astrophysics Data System (ADS)
Maclean, Kenneth; Mentzel, Tamar; Geyer, Scott; Porter, Venda; Bawendi, Moungi; Kastner, Marc
2008-03-01
We report electrical transport measurements of self-assembled arrays of PbSe nanocrystals (NC). NCs ˜6.2 nm in diameter are colloidally synthesized and drop cast onto an inverted field effect structure. The NCs self assemble into hexagonal close-packed arrays with ˜2 nm inter-particle spacing. The current is immeasurable in as deposited arrays. After annealing at 400K for ˜30 minutes, the arrays become less ordered and the inter-particle spacing decreases to ˜1 nm as evinced from TEM images and glancing incidence small angle x-ray scattering experiments. As a result of these changes, the conductance increases by more than 6 orders of magnitude. We measure the current in these devices as a function of source-drain voltage, gate voltage and temperature. We find that the temperature dependence of the conduction is strong at zero-bias and grows weaker with application of a source-drain bias. This implies that the conductance is thermally activated and the field serves to reduce the activation energy. We also find that the gate modulates the activation energy to conduction.
Understanding charge transport in organometal halide field effect transistors
NASA Astrophysics Data System (ADS)
Senanayak, Satyaprasad P.; Yang, Bingyan; Sadhanala, Aditya; Friend, Richard, Prof. _., Sir; Sirrnighaus, Henning, , Prof.
Organometal halide based perovskite are emerging materials for wide range of electronic applications. A range of optoelectronic applications like high efficiency solar cells, color pure LEDs and optical pumped lasers have been demonstrated. Here, we report the demonstration of a high performance field effect transistor fabricated from iodide perovskite material at room temperature. The devices exhibit clean saturation behavior with electron μFET >3 cm2V-1s-1 and current modulation in the range of 106 - 107 which are till date the best performance achieved with these class of materials. This high performance is attributed to a combination of novel film fabrication technique and device engineering strategies. Detailed understanding of the observed band-like transport phenomenon is developed by tuning the different sources of dynamic and static disorder prevalent in the system. These finding are expected to pave way for developing next generation electronic application from perovskite materials. Authors acknowledge EPSRC for funding and SPS acknowledges Royal Society Newton Fellowship.
An Acoustic Charge Transport Imager for High Definition Television
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard
1999-01-01
This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode
NASA Astrophysics Data System (ADS)
Bale, Derek S.; Szeles, Csaba
2010-06-01
Under intense x-ray irradiation, wide band gap semiconductor radiation detectors fabricated from crystals with low hole transport properties develop a steady-state space charge distribution that results from a dynamic equilibrium between charge carrier dynamics and the incident photon field. At a high enough x-ray flux, this space charge can collapse the electric field within the detector, resulting in the paralyzation of photon counting (i.e., high-flux polarization). However, well before polarization causes a catastrophic device failure, there can be enough space charge present to significantly modify the electric field. A modified field affects the electron transport and, therefore, signal generation within the sensor, which can ultimately degrade the performance of high-rate photon counting electronics. In this study, we analytically solve the fundamental equation of charge conservation to derive the modified electron transport in the presence of an exponential space charge distribution that results from the incident x-rays. We use these space-time solutions to calculate and study the time dependence of the resulting charge-induced signals. The predicted induced signals are compared throughout with numerical solutions of the full charge transport equation. In addition, we present analogous closed-form signals for a uniform distribution relevant to a broader class of γ-ray applications. Finally, we use these solutions to derive a two-parameter family of modified Hecht curves that naturally predict a voltage offset that appears due to the space charge.
NASA Astrophysics Data System (ADS)
Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi
2015-05-01
Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.
Nonlinear alfvénic fast particle transport and losses
NASA Astrophysics Data System (ADS)
Schneller, M.; Lauber, Ph; García-Muñoz, M.; Brüdgam, M.; Günter, S.
2012-12-01
Magnetohydrodynamic instabilities like Toroidal Alfvén Eigenmodes or core-localized modes such as Beta Induced Alfvén Eigenmodes and Reversed Shear Alfvén Eigenmodes driven by fast particles can lead to significant redistribution and losses in fusion devices. This is observed in many ASDEX Upgrade discharges. The present work aims to understand the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Resonant mode coupling mechanisms are investigated using the drift kinetic HAGIS code [Pinches 1998]. Simulations were performed for different plasma equilibria, in particular for different q profiles, employing the availability of improved experimental data. A study was carried out, investigating double-resonant mode coupling with respect to various overlapping scenarios. It was found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Small radial mode distances, however can also lead to strong nonlinear mode stabilization of a linear dominant mode. With the extended version of HAGIS, losses were simulated and directly compared with experimental loss measurements. The losses' phase space distribution as well as their ejection signal is consistent with experimental data. Furthermore, it allowed to characterize them as prompt, resonant or stochastic. It was found that especially in multiple mode scenarios (with different mode frequencies), abundant incoherent losses occur in the lower energy range, due to a broad phase-space stochastization. The incoherent higher energetic losses are "prompt", i.e. their initial energy is too large for confined orbits.
NASA Astrophysics Data System (ADS)
Attinger, Sabine; Dimitrova, Jiva; Kinzelbach, Wolfgang
2009-05-01
This paper addresses the question of how spatial variability in the hydraulic and chemical properties of groundwater systems affects the transport and sorption behavior of pollutants at the field scale. In this paper, we limit our investigations on pollutants that adsorb according to an equilibrium controlled nonlinear Freundlich sorption isotherm. The new contribution of this paper is take into account not only spatially variable Freundlich distribution coefficients KS but spatially variable Freundlich nonlinearity parameters p as well. Using a homogenization theory approach, we shortly review the impact of spatially variable hydraulic properties on the transport and extend the theory to spatially variable chemical properties. We show that spatially variable Freundlich exponents cause a very different field scale transport and sorption behavior than spatial variations in the distribution coefficients only since in the first case field scale Freundlich parameters and field scale dispersion coefficients become concentration dependent. In particular, field scale retardation is much larger than small-scale retardation.
NASA Astrophysics Data System (ADS)
Kunwar, Ambarish; Mogilner, Alexander
2010-03-01
Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force-velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors.
Kunwar, Ambarish; Mogilner, Alexander
2010-02-10
Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force-velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors.
Kunwar, Ambarish; Mogilner, Alexander
2010-01-01
Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force–velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the ‘tug-of-war’ of the multiple opposing motors. PMID:20147778
NASA Astrophysics Data System (ADS)
Yimer, Y. Y.; Bobbert, P. A.; Coehoorn, R.
2008-08-01
We investigate charge transport in disordered organic host-guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site energies randomly drawn from the DOS, we obtain the dependence of the charge-carrier mobility on the relative guest concentration, the trap depth, the energetic disorder, the charge-carrier density and the electric field. At small and high guest concentrations, our work provides support for recent semi-analytical model results on the dependence of the mobility on the charge-carrier density at zero field. However, at the cross-over between the trap-limited and trap-to-trap hopping regimes, where the mobility attains a minimum, our results can almost be one order of magnitude larger than predicted semi-analytically. Furthermore, it is shown that field-induced detrapping can contribute strongly to the electric-field dependence of the mobility. A simple analytical expression is provided which describes the effect. This result can be used in continuum drift-diffusion models for charge transport in devices such as organic light-emitting diodes.
NASA Astrophysics Data System (ADS)
Cardia, R.; Malloci, G.; Bosin, A.; Serra, G.; Cappellini, G.
2016-10-01
We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.
Analysis of a model for transport of charged particles in a random magnetic field
NASA Technical Reports Server (NTRS)
Hanson, F. B.; Ramanathan, G. V.; Klimas, A.; Sandri, G.
1973-01-01
A model for the transport of charged particles in a random magnetic field is a Volterra integrodifferential equation with a long-range kernel. The integrodifferential equation is solved numerically with the method of Bellman, Kalaba, and Lockett (1966). The results are shown to be in excellent agreement with analytical asymptotic results.-
Analysis of Charge Carrier Transport in Organic Photovoltaic Thin Films and Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Han, Xu; Maroudas, Dimitrios
2014-03-01
We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological charge carrier transport models. These transient drift-diffusion-reaction models describe electron and hole transport and their trapping, detrapping, and recombination self-consistently with Poisson's equation for the electric field in the active layer. We predict transient currents in devices with active layers composed of P3HT, PCBM, and PBTDV polymers, as well as donor-acceptor blends. The propensity of the material to generate charge, zero-field carrier mobilities, as well as trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental data of photocurrent evolution. We have investigated effects of material structure and morphology by comparing the fitting outcomes for active layers consisting of both thin films and nanoparticle assemblies. We have also analyzed the effect on charge carrier transport of nanoparticle surface characteristics, as well as of thermal annealing of both thin-film and nanoparticle-assembly active layers. The model predictions provide valuable input toward synthesis of new nanoparticle assemblies that lead to improved OPV device performance.
Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires.
Geyer, Nadine; Fuhrmann, Bodo; Leipner, Hartmut S; Werner, Peter
2013-05-22
The charge transport mechanism during metal-assisted chemical etching of Si nanowires with contiguous metal films has been investigated. The experiments give a better insight how the charges and reaction products can penetrate to the etching front. The formation of a layer of porous Si between the metal film and the bulk Si is a prerequisite for the etching process. The electronic holes (positive charges) necessary for the etching of porous Si are generated at the surface of the metal in contact with the oxidative agent. Because of the insulating character of the thin walls of the porous Si, the transport of the electronic holes through this layer is not possible. Instead, it is found that the transport of electronic holes proceeds primarily by means of the Ag/Ag(+) redox pair circulating in the electrolyte and diffusing through the etched pores in the Si. The charge transport occurs without the ionic contribution at the positions where the metal is in direct contact with the Si. Here, an electropolishing process takes place, leading to an extensive removal of the Si and sinking in of the film into the Si substrate.
NASA Astrophysics Data System (ADS)
Edley, Michael; Jones, Treavor; Baxter, Jason
The dynamics of charge carrier transport and recombination and their dependence on physical and electrochemical length scales in extremely thin absorber (ETA) solar cells is vital to cell design. We used J-V characterization, transient photocurrent / photovoltage, and electrochemical impedance spectroscopy to study electron transport and interfacial recombination in ETA cell. ETA cells were composed of ZnO nanowires coated with an ultrathin (5 nm) CdS buffer layer and CdSe absorbers with thicknesses of 10 - 40 nm, with polysulfide electrolyte. In thinner absorbers near short circuit, the depletion region can extend radially into the nanowire, inhibiting interfacial recombination rate. However, depleting the periphery of the nanowire reduces the cross sectional area for charge transport, resulting in longer characteristic collection times. Thicker absorbers suffered more significant bias-dependent collection, and we conclude that slight radial penetration of the depletion region into the nanowires enhances charge collection. This work highlights the importance of considering the impact of depletion width on charge transport and interfacial recombination in the design of liquid junction, semiconductor-sensitized solar cells.
Reading charge transport from the spin dynamics on the surface of a topological insulator.
Liu, Xin; Sinova, Jairo
2013-10-18
Resolving the conductance of the topological surface states (TSSs) from the bulk contribution has been a great challenge for studying the transport properties of topological insulators. By developing a nonperturbative diffusion equation that describes fully the spin-charge dynamics in the strong spin-orbit coupling regime, we present a proposal to read the charge transport information of TSSs from its spin dynamics which can be isolated from the bulk contribution by the time-resolved second harmonic generation pump-probe measurement. We demonstrate the qualitatively different Dyaknov-Perel spin relaxation behavior between the TSSs and the two-dimensional spin-orbit coupling electron gas. The decay time of both in-plane and out-of-plane spin polarization is naturally proved to be identical to the charge transport time. The out-of-plane spin dynamics is shown to be in the experimentally reachable regime of the femtosecond pump-probe spectroscopy and thereby we suggest experiments to detect the charge transport properties of the TSSs from their unique spin dynamics.
Molecular charge mediated transport of a 13 kD protein across microporated skin.
Katikaneni, Sahitya; Badkar, Advait; Nema, Sandeep; Banga, Ajay K
2009-08-13
Transport of proteins across the skin is highly limited owing to their hydrophilic nature and large molecular size. This study was conducted to assess the skin transport abilities of a model protein across hairless rat skin during iontophoresis alone and in combination with microneedles as a function of molecular charge. The effect of microneedle pretreatment on electroosmotic flow was also investigated. Skin permeation experiments were carried out in vitro using daniplestim (DP) (MW, 12.76 kD; isoelectric point, 6.2) as a model protein molecule. The effect of molecular charge on protein transport was evaluated by performing studies in two different buffers--TRIS (pH 7.5) and acetate (pH 4.0). Iontophoretic transport mechanisms of DP varied with respect to molecular charge on the protein. The combination approach (iontophoresis and microneedles) gave much higher flux values compared to iontophoresis alone at both pH 4.0 and pH 7.5, however, the delivery in this case was also found to be charge dependent. The findings of this study indicate that electroosmosis persisted upon microporation, thus retaining skin's permselective properties. This enables us to explore the combination of microneedles and iontophoresis as a potential approach for delivery of proteins.
Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures
Moffatt, Robert
2016-01-01
In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.
Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.
Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard
2014-02-01
The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.
Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions
Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein
2014-02-15
The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.
NASA Astrophysics Data System (ADS)
Sahoo, S. R.; Parida, S. K.; Sahu, S.
2016-09-01
We present a density functional (DFT) study of the charge transport properties of CF3-naphthalene. Nature of charge transport is investigated using parameters such as reorganization energy (X), transfer integral (t), ionization potential (IP), electron affinity (EA), and carrier mobility (μ) computed through electronic structure calculations. We observe a decrease in X and IP from 2,6-DTFMNA to 1,5-DTFMNA, whereas, the EA is found to be enhanced, as a result p-type characteristics, with mild n-type signature, in the organic semiconductor gets increased. In addition, the HOMO-LUMO gap also gets reduced inferring more charge injection through the potential barrier. The maximum hole and electron mobility values for the substituted compound are obtained to be 2.17 cm2/ Vsec & 0.20 cm2/ Vsec, respectively.
Light-Emitting Organic Materials with Variable Charge Injection and Transport Properties
Chen, A. C.-A.; Wallace, J. U.; Wei, S. K.-H.; Zeng, L.; Shen, S. H.; Blenton, T. N.
2006-01-01
Novel light-emitting organic materials comprising conjugated oligomers chemically attached via a flexible spacer to an electron- or hole-conducting core were designed for tunable charge injection and transport properties. Representative glassy-isentropic and glassy-liquid-crystalline (i.e., noncrystaline solid) materials were synthesized and characterized; they were found to exhibit a glass transition temperature and a clearing point close to 140 and 250 C, respectively; an orientational order parameter of 0.75; a photoluminescence quantum yield up to 51%; and HOMO and LUMO energy levels intermediate between those of blue-emitting oligofluorenes and the ITO and Mg/Ag electrodes commonly used in organic light-emitting diodes, OLEDs. This class of materials will help to balance charge injection and transport and to spread out the charge recombination zone, thereby significantly improving the device efficiency and lifetime of unpolarized and polarized OLEDs.
A n-vector model for charge transport in molecular semiconductors.
Jackson, Nicholas E; Kohlstedt, Kevin L; Chen, Lin X; Ratner, Mark A
2016-11-28
We develop a lattice model utilizing coarse-grained molecular sites to study charge transport in molecular semiconducting materials. The model bridges atomistic descriptions and structureless lattice models by mapping molecular structure onto sets of spatial vectors isomorphic with spin vectors in a classical n-vector Heisenberg model. Specifically, this model incorporates molecular topology-dependent orientational and intermolecular coupling preferences, including the direct inclusion of spatially correlated transfer integrals and site energy disorder. This model contains the essential physics required to explicitly simulate the interplay of molecular topology and correlated structural disorder, and their effect on charge transport. As a demonstration of its utility, we apply this model to analyze the effects of long-range orientational correlations, molecular topology, and intermolecular interaction strength on charge motion in bulk molecular semiconductors.
A n-vector model for charge transport in molecular semiconductors
NASA Astrophysics Data System (ADS)
Jackson, Nicholas E.; Kohlstedt, Kevin L.; Chen, Lin X.; Ratner, Mark A.
2016-11-01
We develop a lattice model utilizing coarse-grained molecular sites to study charge transport in molecular semiconducting materials. The model bridges atomistic descriptions and structureless lattice models by mapping molecular structure onto sets of spatial vectors isomorphic with spin vectors in a classical n-vector Heisenberg model. Specifically, this model incorporates molecular topology-dependent orientational and intermolecular coupling preferences, including the direct inclusion of spatially correlated transfer integrals and site energy disorder. This model contains the essential physics required to explicitly simulate the interplay of molecular topology and correlated structural disorder, and their effect on charge transport. As a demonstration of its utility, we apply this model to analyze the effects of long-range orientational correlations, molecular topology, and intermolecular interaction strength on charge motion in bulk molecular semiconductors.
Spata, Michael
2012-08-01
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.
NASA Astrophysics Data System (ADS)
Jin, Wanqin; Toutianoush, Ali; Tieke, Bernd
2005-06-01
The transport of various neutral and charged aromatic compounds across poly(diallyl dimethylammonium chloride)/poly(sodium styrenesulfonate) (PDADMA/PSS) and poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) (PAH/PSS) multilayer membranes was investigated. The solutes were phenol (Ph), hydroquinone (1,4-BD), naphthalene (Np), pyrene (Py), triphenylene (Tp), alkali metal salts of benzene sulfonate (Bs), naphthalene 2-sulfonate (Ns), methyl orange (MO), and isomeric benzene disulfonates (1,2-, 1,3-BDS). For the neutral compounds, a size-selective transport was found, the transport being controlled by the pore size of the membrane and the size of the aromatic solute. The sieving effect from the membranes was so pronounced that mean pore sizes of 0.82 ± 0.09 and 0.67 ± 0.04 nm could be determined for PDADMA/PSS and PAH/PSS, respectively. Size exclusion leads to separation factors α(Ph/Py) ≈ 13 and α(Ph/Np) ≈ 28 using PDADMA/PSS and PAH/PSS membranes, respectively. For charged aromatic compounds, the transport is both size- and charge-selective. The charge-selectivity is based on Donnan rejection of permeating ions from the equally charged parts of the membrane, the rejection for dianions being much stronger than for monoanions comparable with the rejection of mono- and divalent inorganic ions. While size-based separation across PAH/PSS is only moderate (α(Bs/Ns) ≈ 4), the charge-based separation is high (α(Bs/1,3-BDS) ≈ 65).
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Teran, Natasha B; He, Guang S; Baev, Alexander; Shi, Yanrong; Swihart, Mark T; Prasad, Paras N; Marks, Tobin J; Reynolds, John R
2016-06-08
Exploiting synergistic cooperation between multiple sources of optical nonlinearity, we report the design, synthesis, and nonlinear optical properties of a series of electron-rich thiophene-containing donor-acceptor chromophores with condensed π-systems and sterically regulated inter-aryl twist angles. These structures couple two key mechanisms underlying optical nonlinearity, namely, (i) intramolecular charge transfer, greatly enhanced by increased electron density and reduced aromaticity at chromophore thiophene rings and (ii) a twisted chromophore geometry, producing a manifold of close-lying excited states and dipole moment changes between ground and excited states that are nearly twice that of untwisted systems. Spectroscopic, electrochemical, and nonlinear Z-scan measurements, combined with quantum chemical calculations, illuminate relationships between molecular structure and mechanisms of enhancement of the nonlinear refractive index. Experiment and calculations together reveal ground-state structures that are strongly responsive to the solvent polarity, leading to substantial negative solvatochromism (Δλ ≈ 10(2) nm) and prevailing zwitterionic/aromatic structures in the solid state and in polar solvents. Ground-to-excited-state energy gaps below 2.0 eV are obtained in condensed π-systems, with lower energy gaps for twisted versus untwisted systems. The real part of the second hyperpolarizability in the twisted structures is much greater than the imaginary part, with the highest twist angle chromophore giving |Re(γ)/Im(γ)| ≈ 100, making such chromophores very promising for all-optical-switching applications.
NASA Astrophysics Data System (ADS)
Riha, Shannon C.
2011-12-01
With the capability of producing nearly 600 TW annually, solar power is one renewable energy source with the potential to meet a large fraction of the world's burgeoning energy demand. To make solar technology cost-competitive with carbon-based fuels, cheaper devices need to be realized. Solution-processed solar cells from nanocrystal inks of earth abundant materials satisfy this requirement. Nonetheless, a major hurdle in commercializing such devices is poor charge transport through nanocrystal thin films. The efficiency of charge transport through nanocrystal thin films is strongly dependent on the quality of the nanocrystals, as well as their optoelectronic properties. Therefore, the first part of this dissertation is focused on synthesizing high quality nanocrystals of Cu2ZnSnS4, a promising earth abundant photovoltaic absorber material. The optoelectronic properties of the nanocrystals were tuned by altering the copper to zinc ratio, as well as by introducing selenium to create Cu2ZnSn(S1-xSe x)4 solid solutions. Photoelectrochemical characterization was used to test the Cu2ZnSnS4 and Cu2ZnSn(S 1-xSex)4 nanocrystal thin films. The results identify minority carrier diffusion and recombination via the redox shuttle as the major loss mechanisms hindering efficient charge transport through the nanocrystal thin films. One way to solve this issue is to sinter the nanocrystals together, creating large grains for efficient charge transport. Although this may be quick and effective, it can lead to the formation of structural defects, among other issues. To this end, using a different copper-based material, namely Cu2Se, and simple surface chemistry treatments, an alternative route to enhance charge transport through nanocrystals thin films is proposed.
Trust-region based solver for nonlinear transport in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Wang, Xiaochen; Tchelepi, Hamdi A.
2013-11-01
We describe a new nonlinear solver for immiscible two-phase transport in porous media, where viscous, buoyancy, and capillary forces are significant. The flux (fractional flow) function, F, is a nonlinear function of saturation and typically has inflection points and can be non-monotonic. The non-convexity and non-monotonicity of F are major sources of difficulty for nonlinear solvers of coupled multiphase flow and transport in natural porous media. We describe a modified Newton algorithm that employs trust regions of the flux function to guide the Newton iterations. The flux function is divided into saturation trust regions delineated by the inflection, unit-flux, and end points. The updates are performed such that two successive iterations cannot cross any trust-region boundary. If a crossing is detected, the saturation value is chopped back to the appropriate trust-region boundary. The proposed trust-region Newton solver, which is demonstrated across the parameter space of viscous, buoyancy and capillary effects, is a significant extension of the inflection-point strategy of Jenny et al. (JCP, 2009) [5] for viscous dominated flows. We analyze the discrete nonlinear transport equation obtained using finite-volume discretization with phase-based upstream weighting. Then, we prove convergence of the trust-region Newton method irrespective of the timestep size for single-cell problems. Numerical results across the full range of the parameter space of viscous, gravity and capillary forces indicate that our trust-region scheme is unconditionally convergent for 1D transport. That is, for a given choice of timestep size, the unique discrete solution is found independently of the initial guess. For problems dominated by buoyancy and capillarity, the trust-region Newton solver overcomes the often severe limits on timestep size associated with existing methods. To validate the effectiveness of the new nonlinear solver for large reservoir models with strong heterogeneity