Sample records for nonlinear cluster dynamics

  1. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    NASA Astrophysics Data System (ADS)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  2. A recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure.

    PubMed

    Liao, Fuyuan; Jan, Yih-Kuen

    2012-06-01

    This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.

  3. Cross-entropy clustering framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Tongal, Hakan; Sivakumar, Bellie

    2017-09-01

    There is an increasing interest in catchment classification and regionalization in hydrology, as they are useful for identification of appropriate model complexity and transfer of information from gauged catchments to ungauged ones, among others. This study introduces a nonlinear cross-entropy clustering (CEC) method for classification of catchments. The method specifically considers embedding dimension (m), sample entropy (SampEn), and coefficient of variation (CV) to represent dimensionality, complexity, and variability of the time series, respectively. The method is applied to daily streamflow time series from 217 gauging stations across Australia. The results suggest that a combination of linear and nonlinear parameters (i.e. m, SampEn, and CV), representing different aspects of the underlying dynamics of streamflows, could be useful for determining distinct patterns of flow generation mechanisms within a nonlinear clustering framework. For the 217 streamflow time series, nine hydrologically homogeneous clusters that have distinct patterns of flow regime characteristics and specific dominant hydrological attributes with different climatic features are obtained. Comparison of the results with those obtained using the widely employed k-means clustering method (which results in five clusters, with the loss of some information about the features of the clusters) suggests the superiority of the cross-entropy clustering method. The outcomes from this study provide a useful guideline for employing the nonlinear dynamic approaches based on hydrologic signatures and for gaining an improved understanding of streamflow variability at a large scale.

  4. Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters

    NASA Astrophysics Data System (ADS)

    Domps, A.; Reinhard, P.-G.; Suraud, E.

    1998-06-01

    We propose a time-dependent Thomas-Fermi approach to the (nonlinear) dynamics of many-fermion systems. The approach relies on a hydrodynamical picture describing the system in terms of collective flow. We investigate in particular an application to electron dynamics in metal clusters. We make extensive comparisons with fully fledged quantal dynamical calculations and find overall good agreement. The approach thus provides a reliable and inexpensive scheme to study the electronic response of large metal clusters.

  5. Sparsity enabled cluster reduced-order models for control

    NASA Astrophysics Data System (ADS)

    Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.

    2018-01-01

    Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.

  6. Cluster-based control of a separating flow over a smoothly contoured ramp

    NASA Astrophysics Data System (ADS)

    Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek

    2017-12-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.

  7. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  8. Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?

    NASA Astrophysics Data System (ADS)

    Bentes, Sónia R.; Menezes, Rui; Mendes, Diana A.

    2008-06-01

    Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomenon is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.

  9. Molecular dynamics study of Al and Ni 3Al sputtering by Al clusters bombardment

    NASA Astrophysics Data System (ADS)

    Zhurkin, Eugeni E.; Kolesnikov, Anton S.

    2002-06-01

    The sputtering of Al and Ni 3Al (1 0 0) surfaces induced by impact of Al ions and Al N clusters ( N=2,4,6,9,13,55) with energies of 100 and 500 eV/atom is studied at atomic scale by means of classical molecular dynamics (MD). The MD code we used implements many-body tight binding potential splined to ZBL at short distances. Special attention has been paid to model dense cascades: we used quite big computation cells with lateral periodic and damped boundary conditions. In addition, long simulation times (10-25 ps) and representative statistics (up to 1000 runs per each case) were considered. The total sputtering yields, energy and time spectrums of sputtered particles, as well as preferential sputtering of compound target were analyzed, both in the linear and non-linear regimes. The significant "cluster enhancement" of sputtering yield was found for cluster sizes N⩾13. In parallel, we estimated collision cascade features depending on cluster size in order to interpret the nature of observed non-linear effects.

  10. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    PubMed

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  11. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models

    PubMed Central

    2011-01-01

    Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852

  12. Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering

    NASA Astrophysics Data System (ADS)

    Habbi, Ahcène; Zelmat, Mimoun

    2008-10-01

    This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.

  13. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    PubMed

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  14. Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks.

    PubMed

    Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari

    2015-02-01

    Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal) brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform (TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate recurrence network measures, the average clustering coefficient C and assortativity R, and the bivariate recurrence network measure, the average cross-clustering coefficient C(cross), can successfully distinguish between the focal and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path length L, and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence test based on the average cross-clustering coefficient C(cross) is independent of the outcome of the randomness test based on the average clustering coefficient C. Thus, the univariate and bivariate recurrence network measures provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion, recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.

  15. Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks

    NASA Astrophysics Data System (ADS)

    Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari

    2015-02-01

    Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal) brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform (TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate recurrence network measures, the average clustering coefficient C and assortativity R , and the bivariate recurrence network measure, the average cross-clustering coefficient Ccross, can successfully distinguish between the focal and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path length L , and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence test based on the average cross-clustering coefficient Ccross is independent of the outcome of the randomness test based on the average clustering coefficient C . Thus, the univariate and bivariate recurrence network measures provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion, recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.

  16. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

    PubMed Central

    Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797

  17. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    PubMed

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  18. State estimation and prediction using clustered particle filters.

    PubMed

    Lee, Yoonsang; Majda, Andrew J

    2016-12-20

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.

  19. State estimation and prediction using clustered particle filters

    PubMed Central

    Lee, Yoonsang; Majda, Andrew J.

    2016-01-01

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332

  20. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    PubMed

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  2. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  3. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  4. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  5. Phase-selective entrainment of nonlinear oscillator ensembles

    DOE PAGES

    Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.; ...

    2016-03-18

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less

  6. Phase-selective entrainment of nonlinear oscillator ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less

  7. Phase-selective entrainment of nonlinear oscillator ensembles

    NASA Astrophysics Data System (ADS)

    Zlotnik, Anatoly; Nagao, Raphael; Kiss, István Z.; Li-Shin, Jr.

    2016-03-01

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.

  8. Speculative behavior and asset price dynamics.

    PubMed

    Westerhoff, Frank

    2003-07-01

    This paper deals with speculative trading. Guided by empirical observations, a nonlinear deterministic asset pricing model is developed in which traders repeatedly choose between technical and fundamental analysis to determine their orders. The interaction between the trading rules produces complex dynamics. The model endogenously replicates the stylized facts of excess volatility, high trading volumes, shifts in the level of asset prices, and volatility clustering.

  9. Frequency clusters in self-excited dust density waves

    NASA Astrophysics Data System (ADS)

    Menzel, Kristoffer O.; Arp, Oliver; Piel, Alexander

    2010-11-01

    Self-excited dust density waves were studied under microgravity conditions. Their non-sinusoidal shape and high degrees of modulation suggests that nonlinear effects play an important role in their spatio-temporal dynamics. The resulting complex wave pattern is analyzed in great detail by means of the Hilbert transform, which provides instantaneous wave attributes, such as the phase and the frequency. Our analysis showed that the spatial frequency distribution of the DDWs is usually not constant over the dust cloud. In contrast, the wave field is divided into regions of different but almost constant frequencies [1]. The boundaries of these so-called frequency clusters coincide with the locations of phase defects in the wave field. It is found that the size of the clusters depends on the strength of spatial gradients in the plasma parameters. We attribute the formation of frequency clusters to synchronization phenomena as a consequence of the nonlinear character of the wave.[1] K. O. Menzel, O. Arp, A.Piel, Phys. Rev. Lett. 104, 235002 (2010)

  10. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  11. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  12. Classical plasma dynamics of Mie-oscillations in atomic clusters

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; El-Khawaldeh, A.

    2018-04-01

    Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].

  13. Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wang, J.; Wang, B. T.

    2018-02-01

    Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.

  14. Nonlinear dynamics of the cellular-automaton ``game of Life''

    NASA Astrophysics Data System (ADS)

    Garcia, J. B. C.; Gomes, M. A. F.; Jyh, T. I.; Ren, T. I.; Sales, T. R. M.

    1993-11-01

    A statistical analysis of the ``game of Life'' due to Conway [Berlekamp, Conway, and Guy, Winning Ways for Your Mathematical Plays (Academic, New York, 1982), Vol. 2] is reported. The results are based on extensive computer simulations starting with uncorrelated distributions of live sites at t=0. The number n(s,t) of clusters of s live sites at time t, the mean cluster size s¯(t), and the diversity of sizes among other statistical functions are obtained. The dependence of the statistical functions with the initial density of live sites is examined. Several scaling relations as well as static and dynamic critical exponents are found.

  15. Estimating Ω from Galaxy Redshifts: Linear Flow Distortions and Nonlinear Clustering

    NASA Astrophysics Data System (ADS)

    Bromley, B. C.; Warren, M. S.; Zurek, W. H.

    1997-02-01

    We propose a method to determine the cosmic mass density Ω from redshift-space distortions induced by large-scale flows in the presence of nonlinear clustering. Nonlinear structures in redshift space, such as fingers of God, can contaminate distortions from linear flows on scales as large as several times the small-scale pairwise velocity dispersion σv. Following Peacock & Dodds, we work in the Fourier domain and propose a model to describe the anisotropy in the redshift-space power spectrum; tests with high-resolution numerical data demonstrate that the model is robust for both mass and biased galaxy halos on translinear scales and above. On the basis of this model, we propose an estimator of the linear growth parameter β = Ω0.6/b, where b measures bias, derived from sampling functions that are tuned to eliminate distortions from nonlinear clustering. The measure is tested on the numerical data and found to recover the true value of β to within ~10%. An analysis of IRAS 1.2 Jy galaxies yields β=0.8+0.4-0.3 at a scale of 1000 km s-1, which is close to optimal given the shot noise and finite size of the survey. This measurement is consistent with dynamical estimates of β derived from both real-space and redshift-space information. The importance of the method presented here is that nonlinear clustering effects are removed to enable linear correlation anisotropy measurements on scales approaching the translinear regime. We discuss implications for analyses of forthcoming optical redshift surveys in which the dispersion is more than a factor of 2 greater than in the IRAS data.

  16. A new similarity index for nonlinear signal analysis based on local extrema patterns

    NASA Astrophysics Data System (ADS)

    Niknazar, Hamid; Motie Nasrabadi, Ali; Shamsollahi, Mohammad Bagher

    2018-02-01

    Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By adding time information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography (EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a real-world application tool.

  17. Testing approximations for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Coles, Peter; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    The accuracy of various analytic approximations for following the evolution of cosmological density fluctuations into the nonlinear regime is investigated. The Zel'dovich approximation is found to be consistently the best approximation scheme. It is extremely accurate for power spectra characterized by n = -1 or less; when the approximation is 'enhanced' by truncating highly nonlinear Fourier modes the approximation is excellent even for n = +1. The performance of linear theory is less spectrum-dependent, but this approximation is less accurate than the Zel'dovich one for all cases because of the failure to treat dynamics. The lognormal approximation generally provides a very poor fit to the spatial pattern.

  18. Graph partitions and cluster synchronization in networks of oscillators

    PubMed Central

    Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio

    2017-01-01

    Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454

  19. Distant star clusters of the Milky Way in MOND

    NASA Astrophysics Data System (ADS)

    Haghi, H.; Baumgardt, H.; Kroupa, P.

    2011-03-01

    We determine the mean velocity dispersion of six Galactic outer halo globular clusters, AM 1, Eridanus, Pal 3, Pal 4, Pal 15, and Arp 2 in the weak acceleration regime to test classical vs. modified Newtonian dynamics (MOND). Owing to the nonlinearity of MOND's Poisson equation, beyond tidal effects, the internal dynamics of clusters is affected by the external field in which they are immersed. For the studied clusters, particle accelerations are much lower than the critical acceleration a0 of MOND, but the motion of stars is neither dominated by internal accelerations (ai ≫ ae) nor external accelerations (ae ≫ ai). We use the N-body code N-MODY in our analysis, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti et al. (2006, ApJ, 640, 741) to derive the line-of-sight velocity dispersion by adding the external field effect. We show that Newtonian dynamics predicts a low-velocity dispersion for each cluster, while in modified Newtonian dynamics the velocity dispersion is much higher. We calculate the minimum number of measured stars necessary to distinguish between Newtonian gravity and MOND with the Kolmogorov-Smirnov test. We also show that for most clusters it is necessary to measure the velocities of between 30 to 80 stars to distinguish between both cases. Therefore the observational measurement of the line-of-sight velocity dispersion of these clusters will provide a test for MOND.

  20. Fourier imaging of non-linear structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less

  1. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Phay J.; Knight, Chris

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  2. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE PAGES

    Ho, Phay J.; Knight, Chris

    2017-04-28

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  3. Gravitational clustering in the expanding universe - Controlled high-resolution studies in two dimensions

    NASA Technical Reports Server (NTRS)

    Beacom, John Francis; Dominik, Kurt G.; Melott, Adrian L.; Perkins, Sam P.; Shandarin, Sergei F.

    1991-01-01

    Results are presented from a series of gravitational clustering simulations in two dimensions. These simulations are a significant departure from previous work, since in two dimensions one can have large dynamic range in both length scale and mass using present computer technology. Controlled experiments were conducted by varying the slope of power-law initial density fluctuation spectra and varying cutoffs at large k, while holding constant the phases of individual Fourier components and the scale of nonlinearity. Filaments are found in many different simulations, even with pure power-law initial conditions. By direct comparison, filaments, called 'second-generation pancakes' are shown to arise as a consequence of mild nonlinearity on scales much larger than the correlation length and are not relics of an initial lattice or due to sparse sampling of the Fourier components. Bumps of low amplitude in the two-point correlation are found to be generic but usually only statistical fluctuations. Power spectra are much easier to relate to initial conditions, and seem to follow a simple triangular shape (on log-log plot) in the nonlinear regime. The rms density fluctuation with Gaussian smoothing is the most stable indicator of nonlinearity.

  4. Association schemes perspective of microbubble cluster in ultrasonic fields.

    PubMed

    Behnia, S; Yahyavi, M; Habibpourbisafar, R

    2018-06-01

    Dynamics of a cluster of chaotic oscillators on a network are studied using coupled maps. By introducing the association schemes, we obtain coupling strength in the adjacency matrices form, which satisfies Markov matrices property. We remark that in general, the stability region of the cluster of oscillators at the synchronization state is characterized by Lyapunov exponent which can be defined based on the N-coupled map. As a detailed physical example, dynamics of microbubble cluster in an ultrasonic field are studied using coupled maps. Microbubble cluster dynamics have an indicative highly active nonlinear phenomenon, were not easy to be explained. In this paper, a cluster of microbubbles with a thin elastic shell based on the modified Keller-Herring equation in an ultrasonic field is demonstrated in the framework of the globally coupled map. On the other hand, a relation between the microbubble elements is replaced by a relation between the vertices. Based on this method, the stability region of microbubbles pulsations at complete synchronization state has been obtained analytically. In this way, distances between microbubbles as coupling strength play the crucial role. In the stability region, we thus observe that the problem of study of dynamics of N-microbubble oscillators reduce to that of a single microbubble. Therefore, the important parameters of the isolated microbubble such as applied pressure, driving frequency and the initial radius have effective behavior on the synchronization state. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping.

    PubMed

    Frickenhaus, Stephan; Kannan, Srinivasaraghavan; Zacharias, Martin

    2009-02-01

    A direct conformational clustering and mapping approach for peptide conformations based on backbone dihedral angles has been developed and applied to compare conformational sampling of Met-enkephalin using two molecular dynamics (MD) methods. Efficient clustering in dihedrals has been achieved by evaluating all combinations resulting from independent clustering of each dihedral angle distribution, thus resolving all conformational substates. In contrast, Cartesian clustering was unable to accurately distinguish between all substates. Projection of clusters on dihedral principal component (PCA) subspaces did not result in efficient separation of highly populated clusters. However, representation in a nonlinear metric by Sammon mapping was able to separate well the 48 highest populated clusters in just two dimensions. In addition, this approach also allowed us to visualize the transition frequencies between clusters efficiently. Significantly, higher transition frequencies between more distinct conformational substates were found for a recently developed biasing-potential replica exchange MD simulation method allowing faster sampling of possible substates compared to conventional MD simulations. Although the number of theoretically possible clusters grows exponentially with peptide length, in practice, the number of clusters is only limited by the sampling size (typically much smaller), and therefore the method is well suited also for large systems. The approach could be useful to rapidly and accurately evaluate conformational sampling during MD simulations, to compare different sampling strategies and eventually to detect kinetic bottlenecks in folding pathways.

  6. Delayed-feedback chimera states: Forced multiclusters and stochastic resonance

    NASA Astrophysics Data System (ADS)

    Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.

    2016-07-01

    A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

  7. Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques

    NASA Astrophysics Data System (ADS)

    Somov, Yevgeny

    2014-12-01

    Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov function method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.

  8. Self-Organization of Metal Nanoparticles in Light: Electrodynamics-Molecular Dynamics Simulations and Optical Binding Experiments.

    PubMed

    McCormack, Patrick; Han, Fei; Yan, Zijie

    2018-02-01

    Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.

  9. Nonlinear Dynamics and Chaos in Astrophysics: A Festschrift in Honor of George Contopoulos

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Gottesman, Stephen T.; Kandrup, Henry E.

    1998-12-01

    The annals of the New York Academy of Sciences is a compilation of work in the area of nonlinear dynamics and chaos in Astrophysics. Sections included are: From Quasars to Extraordinary N-body Problems; Dynamical Spectra and the Onset of Chaos; Orbital Complexity, Short-Time Lyapunov Exponents, and Phase Space Transport in Time-Independent Hamiltonian Systems; Bifurcations of Periodic Orbits in Axisymmetric Scalefree Potentials; Irregular Period-Tripling Bifurcations in Axisymmetric Scalefree Potentials; Negative Energy Modes and Gravitational Instability of Interpenetrating Fluids; Invariants and Labels in Lie-Poisson Systems; From Jupiter's Great Red Spot to the Structure of Galaxies: Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems; N-Body Simulations of Galaxies and Groups of Galaxies with the Marseille GRAPE Systems; On Nonlinear Dynamics of Three-Dimensional Astrophysical Disks; Satellites as Probes of the Masses of Spiral Galaxies; Chaos in the Centers of Galaxies; Counterrotating Galaxies and Accretion Disks; Global Spiral Patterns in Galaxies: Complexity and Simplicity; Candidates for Abundance Gradients at Intermediate Red-Shift Clusters; Scaling Regimes in the Distribution of Galaxies; Recent Progress in the Study of One-Dimensional Gravitating Systems; Modeling the Time Variability of Black Hole Candidates; Stellar Oscillons; Chaos in Cosmological Hamiltonians; and Phase Space Transport in Noisy Hamiltonian Systems.

  10. Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, Yevgeny, E-mail: e-somov@mail.ru

    Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov functionmore » method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.« less

  11. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

    PubMed Central

    Chen, Yun; Yang, Hui

    2016-01-01

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering. PMID:27966581

  12. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures.

    PubMed

    Chen, Yun; Yang, Hui

    2016-12-14

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.

  13. Nonlinear dynamics of the complex multi-scale network

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Kirsanov, Daniil; Goremyko, Mikhail; Andreev, Andrey; Hramov, Alexander E.

    2018-04-01

    In this paper, we study the complex multi-scale network of nonlocally coupled oscillators for the appearance of chimera states. Chimera is a special state in which, in addition to the asynchronous cluster, there are also completely synchronous parts in the system. We show that the increase of nodes in subgroups leads to the destruction of the synchronous interaction within the common ring and to the narrowing of the chimera region.

  14. Scattering Response of Sucrose Clusters with Intense XFEL Pulses in Water Window

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Benedikt Daurer, Benedikt; Bielecki, Johan; Hantke, Max; Maia, Filipe; Knight, Chris; Hajdu, Janos; Young, Linda; Bostedt, Christoph

    2017-04-01

    We present a combined experimental and theoretical study about the effects of non-linear x-ray ionization dynamics on the scattering response of molecular clusters in the soft x-ray regime that includes and goes beyond the water window. Nanosized sucrose clusters were irradiated with intense XFEL pulses (photon energy from 500 to 1500 eV and pulse duration of 180 fs). Surprisingly, the measured scattering signals near the oxygen K-edge in the water window are found to be substantially smaller than those at higher photon energies. We employ Monte-Carlo/Molecular Dynamics calculations to investigate the x-ray processes as a function of pulse parameters (photon energy, bandwidth and pulse duration) and cluster size. We demonstrate the important role of resonant excitation (RE) in the molecular scattering response in the water window. In particular, 1s ->2p RE cycling enabled in the oxygen atom/ion provide additional ionization pathways which, combined with the long pulse duration, lead to substantial reduction in scattering power of sugar clusters for photon energies just below the oxygen K-edge. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  15. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  16. The MICE grand challenge lightcone simulation - I. Dark matter clustering

    NASA Astrophysics Data System (ADS)

    Fosalba, P.; Crocce, M.; Gaztañaga, E.; Castander, F. J.

    2015-04-01

    We present a new N-body simulation from the Marenostrum Institut de Ciències de l'Espai (MICE) collaboration, the MICE Grand Challenge (MICE-GC), containing about 70 billion dark matter particles in a (3 Gpc h-1)3 comoving volume. Given its large volume and fine spatial resolution, spanning over five orders of magnitude in dynamic range, it allows an accurate modelling of the growth of structure in the universe from the linear through the highly non-linear regime of gravitational clustering. We validate the dark matter simulation outputs using 3D and 2D clustering statistics, and discuss mass-resolution effects in the non-linear regime by comparing to previous simulations and the latest numerical fits. We show that the MICE-GC run allows for a measurement of the BAO feature with per cent level accuracy and compare it to state-of-the-art theoretical models. We also use sub-arcmin resolution pixelized 2D maps of the dark matter counts in the lightcone to make tomographic analyses in real and redshift space. Our analysis shows the simulation reproduces the Kaiser effect on large scales, whereas we find a significant suppression of power on non-linear scales relative to the real space clustering. We complete our validation by presenting an analysis of the three-point correlation function in this and previous MICE simulations, finding further evidence for mass-resolution effects. This is the first of a series of three papers in which we present the MICE-GC simulation, along with a wide and deep mock galaxy catalogue built from it. This mock is made publicly available through a dedicated web portal, http://cosmohub.pic.es.

  17. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system.

    PubMed

    Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang

    2017-10-30

    In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.

  18. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    NASA Astrophysics Data System (ADS)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the Arctic basin. The intermediate mode, with negative anomalies centered on the East Siberian shelf and positive anomalies along the North American side of the basin, has predominately dynamic characteristics. The associated sea ice concentration (SIC) clusters vary more between different seasons and months, but the SIC patterns are physically framed by the SIT cluster patterns.

  19. Experimental design for dynamics identification of cellular processes.

    PubMed

    Dinh, Vu; Rundell, Ann E; Buzzard, Gregery T

    2014-03-01

    We address the problem of using nonlinear models to design experiments to characterize the dynamics of cellular processes by using the approach of the Maximally Informative Next Experiment (MINE), which was introduced in W. Dong et al. (PLoS ONE 3(8):e3105, 2008) and independently in M.M. Donahue et al. (IET Syst. Biol. 4:249-262, 2010). In this approach, existing data is used to define a probability distribution on the parameters; the next measurement point is the one that yields the largest model output variance with this distribution. Building upon this approach, we introduce the Expected Dynamics Estimator (EDE), which is the expected value using this distribution of the output as a function of time. We prove the consistency of this estimator (uniform convergence to true dynamics) even when the chosen experiments cluster in a finite set of points. We extend this proof of consistency to various practical assumptions on noisy data and moderate levels of model mismatch. Through the derivation and proof, we develop a relaxed version of MINE that is more computationally tractable and robust than the original formulation. The results are illustrated with numerical examples on two nonlinear ordinary differential equation models of biomolecular and cellular processes.

  20. Nonlinear softening of unconsolidated granular earth materials

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; Johnson, Paul A.

    2017-09-01

    Unconsolidated granular earth materials exhibit softening behavior due to external perturbations such as seismic waves, namely, the wave speed and elastic modulus decrease upon increasing the strain amplitude above dynamics strains of about 10-6 under near-surface conditions. In this letter, we describe a theoretical model for such behavior. The model is based on the idea that shear transformation zones—clusters of grains that are loose and susceptible to contact changes, particle displacement, and rearrangement—are responsible for plastic deformation and softening of the material. We apply the theory to experiments on simulated fault gouge composed of glass beads and demonstrate that the theory predicts nonlinear resonance shifts, reduction of the P wave modulus, and attenuation, in agreement with experiments. The theory thus offers insights on the nature of nonlinear elastic properties of a granular medium and potentially into phenomena such as triggering on earthquake faults.

  1. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  2. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  3. ISM stripping from cluster galaxies and inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1990-01-01

    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.

  4. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  5. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  6. A Well-Posed, Objective and Dynamic Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin

    The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.

  7. Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Román; Frieman, Joshua A.

    1999-07-01

    We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.

  8. The Universe at Moderate Redshift

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1997-01-01

    The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.

  9. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  10. Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kechen; Li, Jun; Lin, Chensheng

    2004-04-21

    The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.

  11. Comparison of dynamical approximation schemes for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1994-01-01

    We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of approximation by truncation, i.e., smoothing the initial conditions by various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was crosscorrelation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(exp 2, sub G)) where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. All other schemes, including those proposed as generalizations of the Zel'dovich approximation created by adding forces, were in fact generally worse by this measure. By explicitly checking, we verified that the success of our best-choice was a result of the best treatment of the phases of nonlinear Fourier components. Of all schemes tested, the adhesion approximation produced the most accurate nonlinear power spectrum and density distribution, but its phase errors suggest mass condensations were moved to slightly the wrong location. Due to its better reproduction of the mass density distribution function and power spectrum, it might be preferred for some uses. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present.

  12. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    NASA Astrophysics Data System (ADS)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.

  13. Evaluating the component contribution to nonlinear optical performances using stable [Ni4O4] cuboidal clusters as models.

    PubMed

    Hao, Zhi-Min; Chao, Meng-Yao; Liu, Yan; Song, Ying-Lin; Yang, Jun-Yi; Ding, Lifeng; Zhang, Wen-Hua; Lang, Jian-Ping

    2018-06-19

    Five stable clusters sharing the cuboidal [Ni4O4] skeleton are subjected to third-order nonlinear optical (NLO) property measurements. Preliminary results suggest that the NLO property is largely defined by the cluster core skeleton and the directly coordinated atoms, with limited contribution from the heavy atoms peripherally attached to the aromatic ligands.

  14. The stable clustering ansatz, consistency relations and gravity dual of large-scale structure

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2018-02-01

    Gravitational clustering in the nonlinear regime remains poorly understood. Gravity dual of gravitational clustering has recently been proposed as a means to study the nonlinear regime. The stable clustering ansatz remains a key ingredient to our understanding of gravitational clustering in the highly nonlinear regime. We study certain aspects of violation of the stable clustering ansatz in the gravity dual of Large Scale Structure (LSS). We extend the recent studies of gravitational clustering using AdS gravity dual to take into account possible departure from the stable clustering ansatz and to arbitrary dimensions. Next, we extend the recently introduced consistency relations to arbitrary dimensions. We use the consistency relations to test the commonly used models of gravitational clustering including the halo models and hierarchical ansätze. In particular we establish a tower of consistency relations for the hierarchical amplitudes: Q, Ra, Rb, Sa,Sb,Sc etc. as a functions of the scaled peculiar velocity h. We also study the variants of popular halo models in this context. In contrast to recent claims, none of these models, in their simplest incarnation, seem to satisfy the consistency relations in the soft limit.

  15. On the origin of nonlinear elasticity in disparate rocks

    DOE PAGES

    Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; ...

    2015-03-31

    Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10 -7 < ϵ < 10 -5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis usingmore » model independent statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.« less

  16. Enhanced diffusion on oscillating surfaces through synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui

    2018-02-01

    The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.

  17. THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Gregory G.

    2016-08-20

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less

  18. The Dynamic Quasiperpendicular Shock: Cluster Discoveries

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Balikhin, M.; Walker, S. N.; Schwartz, S.; Sundkvist, D.; Lobzin, V.; Gedalin, M.; Bale, S. D.; Mozer, F.; Soucek, J.; Hobara, Y.; Comisel, H.

    The physics of collisionless shocks is a very broad topic which has been studied for more than five decades. However, there are a number of important issues which remain unresolved. The energy repartition amongst particle populations in quasiperpendicular shocks is a multi-scale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. The most important processes take place in the close vicinity of the major magnetic transition or ramp region. The distribution of electromagnetic fields in this region determines the characteristics of ion reflection and thus defines the conditions for ion heating and energy dissipation for supercritical shocks and also the region where an important part of electron heating takes place. In other words, the ramp region determines the main characteristics of energy repartition. All these processes are crucially dependent upon the characteristic spatial scales of the ramp and foot region provided that the shock is stationary. The process of shock formation consists of the steepening of a large amplitude nonlinear wave. At some point in its evolution the steepening is arrested by processes occurring within the shock transition. From the earliest studies of collisionless shocks these processes were identified as nonlinearity, dissipation, and dispersion. Their relative role determines the scales of electric and magnetic fields, and so control the characteristics of processes such as ion reflection, electron heating and particle acceleration. The determination of the scales of the electric and magnetic field is one of the key issues in the physics of collisionless shocks. Moreover, it is well known that under certain conditions shocks manifest a nonstationary dynamic behaviour called reformation. It was suggested that the transition from stationary to nonstationary quasiperiodic dynamics is related to gradients, e.g. scales of the ramp region and its associated whistler waves that form a precursor wave train. This implies that the ramp region should be considered as the source of these waves. All these questions have been studied making use observations from the Cluster satellites. The Cluster project continues to provide a unique viewpoint from which to study the scales of shocks. During its lifetime the inter-satellite distance between the Cluster satellites has varied from 100 km to 10000 km allowing scientists to use the data best adapted for the given scientific objective.

  19. A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    NASA Astrophysics Data System (ADS)

    Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.

    2011-05-01

    Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by modes around a maximal scale ˜ρilT/λmfp, where lT is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by our interest in the dynamics of galaxy cluster plasmas (which are used as the main astrophysical example), but its relevance to solar wind and accretion flow plasmas is also briefly discussed.

  20. Two color laser driven THz generation in clustered plasma

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Uma, R.; Kumar, Pawan

    2017-07-01

    A scheme of terahertz (THz) generation, using nonlinear mixing of two color laser (fundamental ω1 and slightly frequency shifted second harmonic ω2 ) in clustered plasma, is investigated. The lasers exert ponderomotive force on cluster electrons and drive density perturbations at 2 ω1 and ω2-ω1 . The density perturbations beat with the oscillatory velocities to produce nonlinear current at ω2-2 ω1 , generating THz radiation. The radiation is enhanced due to cluster plasmon resonance and by phase matching introduced through a density ripple. The generation involves third order nonlinearity and does not require a magnetic field or inhomogeneity to sustain it. We report THz power conversion efficiency ˜ 10-4 at 1 μm and 0.5 μm wavelengths with intensity ˜ 3 ×1014W/cm 2 .

  1. Linking spatially distributed biogeochemical data with a two-host life-cycle pathogen:A model of whirling disease dynamics in salmonid fishes in the Intermountain West

    NASA Astrophysics Data System (ADS)

    Fytilis, N.; Lamb, R.; Stevens, L.; Morrissey, L. A.; Kerans, B.; Rizzo, D. M.

    2010-12-01

    Fish diseases are often caused by waterborne parasites, making them ideal systems for modeling the non-linear relationships between biogeochemical features and disease dynamics. Myxobolus cerebralis, the causative agent of whirling disease, has been a major contributor to the loss of wild rainbow trout populations in numerous streams within the Intermountain West (Colorado, Idaho, Montana, Utah, Wyoming). The parasite alternates between an invertebrate and vertebrate host, being transmitted between the sediment feeding worm T.Tubifex and salmonid fishes. A greater understanding of the linkage between biological stream integrity, geomorphic features, water quality parameters and whirling disease risk is needed to improve current management techniques. Biodiversity and abundance of the worm communities are influenced by biogeochemical features and linked to disease severity in fish. We collected and identified ~700 worms from eight sites using molecular genetic probes and a taxonomic key. Additionally, ~1700 worms were identified using only a taxonomic key. Our work examines the links between worm community structure and biogeochemical features. We use a modified Self-Organizing-Map (SOM), which is a non-parametric clustering method based on an artificial neural network (ANN). Clustering methods are particularly attractive for exploratory data analyses because they do not require either the target number of groupings or the data structure be specified at the outset. ANN clustering methods have been shown to be more robust and to account for more data variability than traditional methods when applied to clustering geo-hydrochemical and microbiological datasets. The SOM highlights spatial variation of worm community structure between sites; and is used in tandem with expert knowledge (Lamb and Kerans) of local worm communities and a Madison River, MT physiochemical dataset (GIS-derived layers, water quality parameters). We iteratively clustered the physiochemical data and then compared the resulting groups to site-specific worm community structures. The SOM mined patterns from this highly dimensional data and produced 2-D visualizations of the data clusters. This process, in concert with iterative feedback with stream ecologists, led to the adaptation of new nonlinear relations and suggests new subsets of input parameters that guide the next round of SOM simulations, expand the pool of concepts, hone existing hypotheses, generate new hypotheses, and so on. The methodologies developed here helped mine the relationship between dominant biogeochemical features and the distribution of an alternative host of a vertebrate disease. This collaboration between modelers, field ecologists and geneticists will prove useful in guiding future data gathering and modeling efforts. (i.e., identifying missing data gaps and sampling frequency), and will enable more effective, high-volume hypothesis generation that, in turn, will better guide complex experimental designs providing integrated understanding of disease dynamics.

  2. Predictive Multiple Model Switching Control with the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2000-01-01

    A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.

    Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less

  4. Formation of rarefaction waves in origami-based metamaterials

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.

    2016-04-01

    We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.

  5. Nonlinear dynamo in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  6. Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadtke, J.B.; Bulsara, A.

    These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)

  7. Reservoir Computing Beyond Memory-Nonlinearity Trade-off.

    PubMed

    Inubushi, Masanobu; Yoshimura, Kazuyuki

    2017-08-31

    Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be expected to shed light on how information is stored and processed in nonlinear dynamical systems, potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir endowed with both linear and nonlinear dynamics and show that it improves the performance of information processing. Interestingly, for some tasks, significant improvements are observed by adding a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, the effect of the mixture reservoir is numerically verified for a simple function approximation task and for more complex tasks.

  8. The void spectrum in two-dimensional numerical simulations of gravitational clustering

    NASA Technical Reports Server (NTRS)

    Kauffmann, Guinevere; Melott, Adrian L.

    1992-01-01

    An algorithm for deriving a spectrum of void sizes from two-dimensional high-resolution numerical simulations of gravitational clustering is tested, and it is verified that it produces the correct results where those results can be anticipated. The method is used to study the growth of voids as clustering proceeds. It is found that the most stable indicator of the characteristic void 'size' in the simulations is the mean fractional area covered by voids of diameter d, in a density field smoothed at its correlation length. Very accurate scaling behavior is found in power-law numerical models as they evolve. Eventually, this scaling breaks down as the nonlinearity reaches larger scales. It is shown that this breakdown is a manifestation of the undesirable effect of boundary conditions on simulations, even with the very large dynamic range possible here. A simple criterion is suggested for deciding when simulations with modest large-scale power may systematically underestimate the frequency of larger voids.

  9. Deep Neural Network Emulation of a High-Order, WENO-Limited, Space-Time Reconstruction

    NASA Astrophysics Data System (ADS)

    Norman, M. R.; Hall, D. M.

    2017-12-01

    Deep Neural Networks (DNNs) have been used to emulate a number of processes in atmospheric models, including radiation and even so-called super-parameterization of moist convection. In each scenario, the DNN provides a good representation of the process even for inputs that have not been encountered before. More notably, they provide an emulation at a fraction of the cost of the original routine, giving speed-ups of 30× and even up to 200× compared to the runtime costs of the original routines. However, to our knowledge there has not been an investigation into using DNNs to emulate the dynamics. The most likely reason for this is that dynamics operators are typically both linear and low cost, meaning they cannot be sped up by a non-linear DNN emulation. However, there exist high-cost non-linear space-time dynamics operators that significantly reduce the number of parallel data transfers necessary to complete an atmospheric simulation. The WENO-limited Finite-Volume method with ADER-DT time integration is a prime example of this - needing only two parallel communications per large, fully limited time step. However, it comes at a high cost in terms of computation, which is why many would hesitate to use it. This talk investigates DNN emulation of the WENO-limited space-time finite-volume reconstruction procedure - the most expensive portion of this method, which densely clusters a large amount of non-linear computation. Different training techniques and network architectures are tested, and the accuracy and speed-up of each is given.

  10. Clustering Heart Rate Dynamics Is Associated with β-Adrenergic Receptor Polymorphisms: Analysis by Information-Based Similarity Index

    PubMed Central

    Yang, Albert C.; Tsai, Shih-Jen; Hong, Chen-Jee; Wang, Cynthia; Chen, Tai-Jui; Liou, Ying-Jay; Peng, Chung-Kang

    2011-01-01

    Background Genetic polymorphisms in the gene encoding the β-adrenergic receptors (β-AR) have a pivotal role in the functions of the autonomic nervous system. Using heart rate variability (HRV) as an indicator of autonomic function, we present a bottom-up genotype–phenotype analysis to investigate the association between β-AR gene polymorphisms and heart rate dynamics. Methods A total of 221 healthy Han Chinese adults (59 males and 162 females, aged 33.6±10.8 years, range 19 to 63 years) were recruited and genotyped for three common β-AR polymorphisms: β1-AR Ser49Gly, β2-AR Arg16Gly and β2-AR Gln27Glu. Each subject underwent two hours of electrocardiogram monitoring at rest. We applied an information-based similarity (IBS) index to measure the pairwise dissimilarity of heart rate dynamics among study subjects. Results With the aid of agglomerative hierarchical cluster analysis, we categorized subjects into major clusters, which were found to have significantly different distributions of β2-AR Arg16Gly genotype. Furthermore, the non-randomness index, a nonlinear HRV measure derived from the IBS method, was significantly lower in Arg16 homozygotes than in Gly16 carriers. The non-randomness index was negatively correlated with parasympathetic-related HRV variables and positively correlated with those HRV indices reflecting a sympathovagal shift toward sympathetic activity. Conclusions We demonstrate a bottom-up categorization approach combining the IBS method and hierarchical cluster analysis to detect subgroups of subjects with HRV phenotypes associated with β-AR polymorphisms. Our results provide evidence that β2-AR polymorphisms are significantly associated with the acceleration/deceleration pattern of heart rate oscillation, reflecting the underlying mode of autonomic nervous system control. PMID:21573230

  11. Comparison of dynamical approximation schemes for nonlinear gravitaional clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1994-01-01

    We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the lognormal approximation, the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of the approximation by truncation, i.e., by smoothing the initial conditions with various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was cross-correlation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(sub G(exp 2)), where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present. This in turn provides a natural explanation for the presence of sheets and filaments in the observed galaxy distribution. Use of the approximation scheme can permit extremely rapid generation of large numbers of realizations of model universes with good accuracy down to galaxy group mass scales.

  12. M-Isomap: Orthogonal Constrained Marginal Isomap for Nonlinear Dimensionality Reduction.

    PubMed

    Zhang, Zhao; Chow, Tommy W S; Zhao, Mingbo

    2013-02-01

    Isomap is a well-known nonlinear dimensionality reduction (DR) method, aiming at preserving geodesic distances of all similarity pairs for delivering highly nonlinear manifolds. Isomap is efficient in visualizing synthetic data sets, but it usually delivers unsatisfactory results in benchmark cases. This paper incorporates the pairwise constraints into Isomap and proposes a marginal Isomap (M-Isomap) for manifold learning. The pairwise Cannot-Link and Must-Link constraints are used to specify the types of neighborhoods. M-Isomap computes the shortest path distances over constrained neighborhood graphs and guides the nonlinear DR through separating the interclass neighbors. As a result, large margins between both interand intraclass clusters are delivered and enhanced compactness of intracluster points is achieved at the same time. The validity of M-Isomap is examined by extensive simulations over synthetic, University of California, Irvine, and benchmark real Olivetti Research Library, YALE, and CMU Pose, Illumination, and Expression databases. The data visualization and clustering power of M-Isomap are compared with those of six related DR methods. The visualization results show that M-Isomap is able to deliver more separate clusters. Clustering evaluations also demonstrate that M-Isomap delivers comparable or even better results than some state-of-the-art DR algorithms.

  13. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  14. Formation of rarefaction waves in origami-based metamaterials

    DOE PAGES

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; ...

    2016-04-15

    Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less

  15. Nonlinear machine learning and design of reconfigurable digital colloids.

    PubMed

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  16. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  17. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  18. Nonlinearities of heart rate variability in animal models of impaired cardiac control: contribution of different time scales.

    PubMed

    Silva, Luiz Eduardo Virgilio; Lataro, Renata Maria; Castania, Jaci Airton; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens; Porta, Alberto

    2017-08-01

    Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV. Copyright © 2017 the American Physiological Society.

  19. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  20. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  1. Selective two-photon absorption in carbon dots: a piece of the photoluminescence emission puzzle.

    PubMed

    Santos, Carla I M; Mariz, Inês F A; Pinto, Sandra N; Gonçalves, Gil; Bdikin, Igor; Marques, Paula A A P; Neves, Maria Graça P M S; Martinho, José M G; Maçôas, Ermelinda M S

    2018-06-22

    Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.

  2. Halo correlations in nonlinear cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.; Schaeffer, R.

    1999-09-01

    The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.

  3. Geographical variation of cerebrovascular disease in New York State: the correlation with income

    PubMed Central

    Han, Daikwon; Carrow, Shannon S; Rogerson, Peter A; Munschauer, Frederick E

    2005-01-01

    Background Income is known to be associated with cerebrovascular disease; however, little is known about the more detailed relationship between cerebrovascular disease and income. We examined the hypothesis that the geographical distribution of cerebrovascular disease in New York State may be predicted by a nonlinear model using income as a surrogate socioeconomic risk factor. Results We used spatial clustering methods to identify areas with high and low prevalence of cerebrovascular disease at the ZIP code level after smoothing rates and correcting for edge effects; geographic locations of high and low clusters of cerebrovascular disease in New York State were identified with and without income adjustment. To examine effects of income, we calculated the excess number of cases using a non-linear regression with cerebrovascular disease rates taken as the dependent variable and income and income squared taken as independent variables. The resulting regression equation was: excess rate = 32.075 - 1.22*10-4(income) + 8.068*10-10(income2), and both income and income squared variables were significant at the 0.01 level. When income was included as a covariate in the non-linear regression, the number and size of clusters of high cerebrovascular disease prevalence decreased. Some 87 ZIP codes exceeded the critical value of the local statistic yielding a relative risk of 1.2. The majority of low cerebrovascular disease prevalence geographic clusters disappeared when the non-linear income effect was included. For linear regression, the excess rate of cerebrovascular disease falls with income; each $10,000 increase in median income of each ZIP code resulted in an average reduction of 3.83 observed cases. The significant nonlinear effect indicates a lessening of this income effect with increasing income. Conclusion Income is a non-linear predictor of excess cerebrovascular disease rates, with both low and high observed cerebrovascular disease rate areas associated with higher income. Income alone explains a significant amount of the geographical variance in cerebrovascular disease across New York State since both high and low clusters of cerebrovascular disease dissipate or disappear with income adjustment. Geographical modeling, including non-linear effects of income, may allow for better identification of other non-traditional risk factors. PMID:16242043

  4. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  5. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  6. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  7. Real and financial market interactions in a multiplier-accelerator model: Nonlinear dynamics, multistability and stylized facts

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Naimzada, A.; Pecora, N.

    2017-10-01

    In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.

  8. Real and financial market interactions in a multiplier-accelerator model: Nonlinear dynamics, multistability and stylized facts.

    PubMed

    Cavalli, F; Naimzada, A; Pecora, N

    2017-10-01

    In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.

  9. Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

    NASA Astrophysics Data System (ADS)

    Jatuviriyapornchai, Watthanan; Grosskinsky, Stefan

    2016-05-01

    Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data.

  10. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    USGS Publications Warehouse

    Barbour, Andrew J.

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the pore pressure response in fluid-saturated rock near active faults is controlled by shear strain accumulation associated with tectonic loading, which implies a strong feedback between fault strength and permeability: dynamic triggering susceptibilities may vary in space and also in time.

  11. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy ofmore » M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.« less

  12. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    NASA Astrophysics Data System (ADS)

    Stevanović Hedrih, K.

    2008-02-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  13. Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Joyce, Michael; Sicard, François

    2013-03-01

    One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.

  14. Soliton interactions and the formation of solitonic patterns

    NASA Astrophysics Data System (ADS)

    Sears, Suzanne M.

    From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.

  15. Nonlinear management of the angular momentum of soliton clusters: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Fratalocchi, Andrea; Piccardi, Armando; Peccianti, Marco; Assanto, Gaetano

    2007-06-01

    We demonstrate, both theoretically and experimentally, how to acquire nonlinear control over the angular momentum of a cluster of solitary waves. Our results, stemming from a universal theoretical model, show that the angular momentum can be adjusted by acting on the global energy input in the system. The phenomenon is experimentally ascertained in nematic liquid crystals by observing a power-dependent rotation of a two-soliton ensemble.

  16. Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.

    PubMed

    Müller, Viktor; Lindenberger, Ulman

    2012-07-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.

  17. Mastodon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin Leigh; Veeraraghavan, Swetha; Bolisetti, Chandrakanth

    MASTODON has the capability to model stochastic nonlinear soil-structure interaction (NLSSI) in a dynamic probabilistic risk assessment framework. The NLSSI simulations include structural dynamics, time integration, dynamic porous media flow, nonlinear hysteretic soil constitutive models, geometric nonlinearities (gapping, sliding, and uplift). MASTODON is also the MOOSE based master application for dynamic PRA of external hazards.

  18. Nonlinear dynamics that appears in the dynamical model of drying process of a polymer solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-01-01

    We have proposed and modified the dynamical model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through some meetings and so on. Though basic equations of the dynamical model have characteristic nonlinearity, character of the nonlinearity has not been studied enough yet. In this paper, at first, we derive nonlinear equations from the dynamical model of drying process of polymer solution. Then we introduce results of numerical simulations of the nonlinear equations and consider roles of various parameters. Some of them are indirectly concerned in strength of non-equilibriumity. Through this study, we approach essential qualities of nonlinearity in non-equilibrium process of drying process.

  19. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line indexmore » versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-stepmore » pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.« less

  1. Cluster flight control for fractionated spacecraft on an elliptic orbit

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin

    2016-08-01

    This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.

  2. Some Aspects of Nonlinear Dynamics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  3. Analysis of nonlinear relationships in dual epidemics, and its application to the management of grapevine downy and powdery mildews.

    PubMed

    Savary, Serge; Delbac, Lionel; Rochas, Amélie; Taisant, Guillaume; Willocquet, Laetitia

    2009-08-01

    Dual epidemics are defined as epidemics developing on two or several plant organs in the course of a cropping season. Agricultural pathosystems where such epidemics develop are often very important, because the harvestable part is one of the organs affected. These epidemics also are often difficult to manage, because the linkage between epidemiological components occurring on different organs is poorly understood, and because prediction of the risk toward the harvestable organs is difficult. In the case of downy mildew (DM) and powdery mildew (PM) of grapevine, nonlinear modeling and logistic regression indicated nonlinearity in the foliage-cluster relationships. Nonlinear modeling enabled the parameterization of a transmission coefficient that numerically links the two components, leaves and clusters, in DM and PM epidemics. Logistic regression analysis yielded a series of probabilistic models that enabled predicting preset levels of cluster infection risks based on DM and PM severities on the foliage at successive crop stages. The usefulness of this framework for tactical decision-making for disease control is discussed.

  4. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    PubMed

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  5. Effects of Inertial and Geometric Nonlinearities in the Simulation of Flexible Aircraft Dynamics

    NASA Astrophysics Data System (ADS)

    Bun Tse, Bosco Chun

    This thesis examines the relative importance of the inertial and geometric nonlinearities in modelling the dynamics of a flexible aircraft. Inertial nonlinearities are derived by employing an exact definition of the velocity distribution and lead to coupling between the rigid body and elastic motions. The geometric nonlinearities are obtained by applying nonlinear theory of elasticity to the deformations. Peters' finite state unsteady aerodynamic model is used to evaluate the aerodynamic forces. Three approximate models obtained by excluding certain combinations of nonlinear terms are compared with that of the complete dynamics equations to obtain an indication of which terms are required for an accurate representation of the flexible aircraft behavior. A generic business jet model is used for the analysis. The results indicate that the nonlinear terms have a significant effect for more flexible aircraft, especially the geometric nonlinearities which leads to increased damping in the dynamics.

  6. Virtual-pulse time integral methodology: A new explicit approach for computational dynamics - Theoretical developments for general nonlinear structural dynamics

    NASA Technical Reports Server (NTRS)

    Chen, Xiaoqin; Tamma, Kumar K.; Sha, Desong

    1993-01-01

    The present paper describes a new explicit virtual-pulse time integral methodology for nonlinear structural dynamics problems. The purpose of the paper is to provide the theoretical basis of the methodology and to demonstrate applicability of the proposed formulations to nonlinear dynamic structures. Different from the existing numerical methods such as direct time integrations or mode superposition techniques, the proposed methodology offers new perspectives and methodology of development, and possesses several unique and attractive computational characteristics. The methodology is tested and compared with the implicit Newmark method (trapezoidal rule) through a nonlinear softening and hardening spring dynamic models. The numerical results indicate that the proposed explicit virtual-pulse time integral methodology is an excellent alternative for solving general nonlinear dynamic problems.

  7. Fluctuating micro-heterogeneity in water-tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-05-01

    Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with xTBA ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at xTBA ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, xTBA ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

  8. Fluctuating micro-heterogeneity in water-tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies.

    PubMed

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-05-21

    Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

  9. Statistical Mechanical Theory of Coupled Slow Dynamics in Glassy Polymer-Molecule Mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth

    The microscopic Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids and glasses is generalized to polymer-molecule mixtures. The key idea is to account for dynamic coupling between molecule and polymer segment motion. For describing the molecule hopping event, a temporal casuality condition is formulated to self-consistently determine a dimensionless degree of matrix distortion relative to the molecule jump distance based on the concept of coupled dynamic free energies. Implementation for real materials employs an established Kuhn sphere model of the polymer liquid and a quantitative mapping to a hard particle reference system guided by the experimental equation-of-state. The theory makes predictions for the mixture dynamic shear modulus, activated relaxation time and diffusivity of both species, and mixture glass transition temperature as a function of molecule-Kuhn segment size ratio and attraction strength, composition and temperature. Model calculations illustrate the dynamical behavior in three distinct mixture regimes (fully miscible, bridging, clustering) controlled by the molecule-polymer interaction or chi-parameter. Applications to specific experimental systems will be discussed.

  10. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  11. Theoretical investigation of the force and dynamically coupled torsional-axial-lateral dynamic response of eared rotors

    NASA Technical Reports Server (NTRS)

    David, J. W.; Mitchell, L. D.

    1982-01-01

    Difficulties in solution methodology to be used to deal with the potentially higher nonlinear rotor equations when dynamic coupling is included. A solution methodology is selected to solve the nonlinear differential equations. The selected method was verified to give good results even at large nonlinearity levels. The transfer matrix methodology is extended to the solution of nonlinear problems.

  12. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    PubMed

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  13. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Borland, Michael

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  14. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  15. Neurobiologically Inspired Approaches to Nonlinear Process Control and Modeling

    DTIC Science & Technology

    1999-12-31

    incorporates second messenger reaction kinetics and calcium dynamics to represent the nonlinear dynamics and the crucial role of neuromodulation in local...reflex). The dynamic neuromodulation as a mechanism for the nonlinear attenuation is the novel result of this study. Ear- lier simulations have shown

  16. Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems

    EPA Science Inventory

    Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...

  17. Order reduction, identification and localization studies of dynamical systems

    NASA Astrophysics Data System (ADS)

    Ma, Xianghong

    In this thesis methods are developed for performing order reduction, system identification and induction of nonlinear localization in complex mechanical dynamic systems. General techniques are proposed for constructing low-order models of linear and nonlinear mechanical systems; in addition, novel mechanical designs are considered for inducing nonlinear localization phenomena for the purpose of enhancing their dynamical performance. The thesis is in three major parts. In the first part, the transient dynamics of an impulsively loaded multi-bay truss is numerically computed by employing the Direct Global Matrix (DGM) approach. The approach is applicable to large-scale flexible structures with periodicity. Karhunen-Loeve (K-L) decomposition is used to discretize the dynamics of the truss and to create the low-order models of the truss. The leading order K-L modes are recovered by an experiment, which shows the feasibility of K-L based order reduction technique. In the second part of the thesis, nonlinear localization in dynamical systems is studied through two applications. In the seismic base isolation study, it is shown that the dynamics are sensitive to the presence of nonlinear elements and that passive motion confinement can be induced under proper design. In the coupled rod system, numerical simulation of the transient dynamics shows that a nonlinear backlash spring can induce either nonlinear localization or delocalization in the form of beat phenomena. K-L decomposition and poincare maps are utilized to study the nonlinear effects. The study shows that nonlinear localization can be induced in complex structures through backlash. In the third and final part of the thesis, a new technique based on Green!s function method is proposed to identify the dynamics of practical bolted joints. By modeling the difference between the dynamics of the bolted structure and the corresponding unbolted one, one constructs a nonparametric model for the joint dynamics. Two applications are given with a bolted beam and a truss joint in order to show the applicability of the technique.

  18. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  19. Databases for the Global Dynamics of Multiparameter Nonlinear Systems

    DTIC Science & Technology

    2014-03-05

    AFRL-OSR-VA-TR-2014-0078 DATABASES FOR THE GLOBAL DYNAMICS OF MULTIPARAMETER NONLINEAR SYSTEMS Konstantin Mischaikow RUTGERS THE STATE UNIVERSITY OF...University of New Jersey ASB III, Rutgers Plaza New Brunswick, NJ 08807 DATABASES FOR THE GLOBAL DYNAMICS OF MULTIPARAMETER NONLINEAR SYSTEMS ...dynamical systems . We refer to the output as a Database for Global Dynamics since it allows the user to query for information about the existence and

  20. Elements of decisional dynamics: An agent-based approach applied to artificial financial market

    NASA Astrophysics Data System (ADS)

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  1. Elements of decisional dynamics: An agent-based approach applied to artificial financial market.

    PubMed

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  2. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.

    PubMed

    Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi

    2008-03-01

    In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.

  3. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    PubMed

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  4. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  5. Independent-Cluster Parametrizations of Wave Functions in Model Field Theories III. The Coupled-Cluster Phase Spaces and Their Geometrical Structure

    NASA Astrophysics Data System (ADS)

    Arponen, J. S.; Bishop, R. F.

    1993-11-01

    In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.

  6. Nonlinear dynamic range transformation in visual communication channels.

    PubMed

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  7. Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward

    1991-01-01

    It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.

  8. Econometric testing on linear and nonlinear dynamic relation between stock prices and macroeconomy in China

    NASA Astrophysics Data System (ADS)

    Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei

    2018-03-01

    Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.

  9. Turbulent Reconnection Rates from Cluster Observations in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre

    2011-01-01

    The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetosheath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

  10. Turbulent Reconnection Rates from Cluster Observations in the Magneto sheath

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre

    2011-01-01

    The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetos heath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

  11. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  12. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  13. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less

  14. Multipolar moments of weak lensing signal around clusters. Weighing filaments in harmonic space

    NASA Astrophysics Data System (ADS)

    Gouin, C.; Gavazzi, R.; Codis, S.; Pichon, C.; Peirani, S.; Dubois, Y.

    2017-09-01

    Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and topology of the cosmic web, in particular in the vicinity of lensing clusters. Aims: Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental effects on galaxy formation. Methods: Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture multipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions from perturbation theory and spherical collapse. Results: The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster (ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are presented. The prospects of measuring this signal are estimated for current and future lensing data sets. Conclusions: The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and warm dark matter.

  15. Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.

    2017-12-01

    We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  16. The Modified Dynamics is Conducive to Galactic Warp Formation

    NASA Astrophysics Data System (ADS)

    Brada, Rafael; Milgrom, Mordehai

    2000-03-01

    There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.

  17. An effective description of dark matter and dark energy in the mildly non-linear regime

    DOE PAGES

    Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo

    2017-05-18

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  18. An effective description of dark matter and dark energy in the mildly non-linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  19. An effective description of dark matter and dark energy in the mildly non-linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo; Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  20. Nonlinearity in the vertical transmissibility of seating: the role of the human body apparent mass and seat dynamic stiffness

    NASA Astrophysics Data System (ADS)

    Tufano, Saverio; Griffin, Michael J.

    2013-01-01

    The efficiency of a seat in reducing vibration depends on the characteristics of the vibration, the dynamic characteristics of the seat, and the dynamic characteristics of the person sitting on the seat. However, it is not known whether seat cushions influence the dynamic response of the human body, whether the human body influences the dynamic response of seat cushions, or the relative importance of human body nonlinearity and seat nonlinearity in causing nonlinearity in measures of seat transmissibility. This study was designed to investigate the nonlinearity of the coupled seat and human body systems and to compare the apparent mass of the human body supported on rigid and foam seats. A frequency domain model was used to identify the dynamic parameters of seat foams and investigate their dependence on the subject-sitting weight and hip breadth. With 15 subjects, the force and acceleration at the seat base and acceleration at the subject interface were measured during random vertical vibration excitation (0.25-25 Hz) at each of five vibration magnitudes, (0.25-1.6 ms-2 r.m.s.) with four seating conditions (rigid flat seat and three foam cushions). The measurements are presented in terms of the subject's apparent mass on the rigid and foam seat surfaces, and the transmissibility and dynamic stiffness of each of the foam cushions. Both the human body and the foams showed nonlinear softening behaviour, which resulted in nonlinear cushion transmissibility. The apparent masses of subjects sitting on the rigid seat and on foam cushions were similar, but with an apparent increase in damping when sitting on the foams. The foam dynamic stiffness showed complex correlations with characteristics of the human body, which differed between foams. The nonlinearities in cushion transmissibilities, expressed in terms of changes in resonance frequencies and moduli, were more dependent on human body nonlinearity than on cushion nonlinearity.

  1. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    ERIC Educational Resources Information Center

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  2. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.

    PubMed

    Dini, Danilo; Calvete, Mário J F; Hanack, Michael

    2016-11-23

    The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.

  3. Recent developments of artificial intelligence in drying of fresh food: A review.

    PubMed

    Sun, Qing; Zhang, Min; Mujumdar, Arun S

    2018-03-01

    Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.

  4. Quantitative theory of driven nonlinear brain dynamics.

    PubMed

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Nonlinear problems in flight dynamics

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1984-01-01

    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.

  6. Nonlinear flight control design using backstepping methodology

    NASA Astrophysics Data System (ADS)

    Tran, Thanh Trung

    The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by eliminating the pseudo control transformations. In the second part, the research focuses on nonlinear control design for flight dynamics of aircraft motion. Some assumptions on aerodynamics of the aircraft are addressed to transform full nonlinear flight dynamics into the canonical strict-feedback form. The assumptions are also analyzed, validated, and compared to show the advantages and disadvantages of the design models. With the achieved models, investigation focuses on formulating the backstepping control laws and provides an advanced control algorithm for nonlinear flight dynamics of the aircraft. Experimental and simulation studies are successfully implemented to validate the proposed control method. Advancement of nonlinear backstepping control theory and its application to nonlinear flight control are achieved in the dissertation research.

  7. A method for analyzing temporal patterns of variability of a time series from Poincare plots.

    PubMed

    Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E

    2012-07-01

    The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.

  8. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    PubMed

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Clustered Multi-Task Learning for Automatic Radar Target Recognition

    PubMed Central

    Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua

    2017-01-01

    Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267

  10. Noise-driven switching and chaotic itinerancy among dynamic states in a three-mode intracavity second-harmonic generation laser operating on a Λ transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan

    2003-09-01

    We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.

  11. An experimental study of nonlinear dynamic system identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1990-01-01

    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  12. Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies.

    PubMed

    Huang, Yangxin; Lu, Xiaosun; Chen, Jiaqing; Liang, Juan; Zangmeister, Miriam

    2017-10-27

    Longitudinal and time-to-event data are often observed together. Finite mixture models are currently used to analyze nonlinear heterogeneous longitudinal data, which, by releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, can cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, and be associated with clinically important time-to-event data. This article develops a joint modeling approach to a finite mixture of NLME models for longitudinal data and proportional hazard Cox model for time-to-event data, linked by individual latent class indicators, under a Bayesian framework. The proposed joint models and method are applied to a real AIDS clinical trial data set, followed by simulation studies to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and Cox model are fitted separately.

  13. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?

    PubMed

    Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A

    2017-12-01

    Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.

  14. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for rigid casings

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Meingast, Markus; Legrand, Mathias

    2015-02-01

    This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

  15. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    PubMed

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  16. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  17. Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L. D.; David, J. W.

    1983-01-01

    The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.

  18. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  19. Why the soliton wavelet transform is useful for nonlinear dynamic phenomena

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1992-10-01

    If signal analyses were perfect without noise and clutters, then any transform can be equally chosen to represent the signal without any loss of information. However, if the analysis using Fourier transform (FT) happens to be a nonlinear dynamic phenomenon, the effect of nonlinearity must be postponed until a later time when a complicated mode-mode coupling is attempted without the assurance of any convergence. Alternatively, there exists a new paradigm of linear transforms called wavelet transform (WT) developed for French oil explorations. Such a WT enjoys the linear superposition principle, the computational efficiency, and the signal/noise ratio enhancement for a nonsinusoidal and nonstationary signal. Our extensions to a dynamic WT and furthermore to an adaptive WT are possible due to the fact that there exists a large set of square-integrable functions that are special solutions of the nonlinear dynamic medium and could be adopted for the WT. In order to analyze nonlinear dynamics phenomena in ocean, we are naturally led to the construction of a soliton mother wavelet. This common sense of 'pay the nonlinear price now and enjoy the linearity later' is certainly useful to probe any nonlinear dynamics. Research directions in wavelets, such as adaptivity, and neural network implementations are indicated, e.g., tailoring an active sonar profile for explorations.

  20. Writing with a Personal Voice.

    ERIC Educational Resources Information Center

    Rico, Gabriele Lusser

    1985-01-01

    Clustering is a nonlinear brainstorming technique that can encourage children's natural writing ability by helping them draw on their need to make patterns out of their experience. Tips for introducing cluster writing into the classroom are offered. (MT)

  1. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we improved the redshift space distortion growth rate measurement precision by a factor of 2.5 using customized clustering statistics in the non-linear regime that were immunized against observational systematics. We look forward to addressing the unique challenges of modeling and empirically characterizing the WFIRST galaxies and observational systematics.

  2. Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU

    NASA Astrophysics Data System (ADS)

    Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji

    2016-12-01

    Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.

  3. Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in the process of sudden load increase transient

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo

    2016-12-01

    In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.

  4. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  5. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  6. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys. Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Nishiura, T.; Kawano, H.; Hosoda, H.; Nishida, M.

    2012-06-01

    Competition between the invariant plane (IP) condition at the habit plane, the twin orientation relation (OR) and the kinematic compatibility (KC) at the junction plane (JP) of self-accommodated B19‧ martensite in Ti-Ni was investigated via the geometrically nonlinear theory to understand the habit plane variant (HPV) clusters presented in Parts I and II of this work. As the IP condition cannot be satisfied simultaneously with KC, an additional rotation Q is necessary to form compatible JPs for all HPV pairs. The rotation J necessary to form the exact twin OR between the major correspondence variants (CVs) in each HPV was also examined. The observed HPV cluster was not the cluster with the smallest Q but the one satisfying Q = J with a { ? 1}B19‧ type I twin at JP. Both Q and J are crucial to understanding the various HPV clusters in realistic transformations. Finally, a scheme for the ideal HPV cluster composed of six HPVs is also proposed.

  7. Linear and non-linear dynamic models of a geared rotor-bearing system

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet; Singh, Rajendra

    1990-01-01

    A three degree of freedom non-linear model of a geared rotor-bearing system with gear backlash and radial clearances in rolling element bearings is proposed here. This reduced order model can be used to describe the transverse-torsional motion of the system. It is justified by comparing the eigen solutions yielded by corresponding linear model with the finite element method results. Nature of nonlinearities in bearings is examined and two approximate nonlinear stiffness functions are proposed. These approximate bearing models are verified by comparing their frequency responses with the results given by the exact form of nonlinearity. The proposed nonlinear dynamic model of the geared rotor-bearing system can be used to investigate the dynamic behavior and chaos.

  8. Nonlinear Light Dynamics in Multi-Core Structures

    DTIC Science & Technology

    2017-02-27

    be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a

  9. Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings

    PubMed Central

    Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso

    2015-01-01

    Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002

  10. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    PubMed

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  11. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  12. Structural stability of nonlinear population dynamics.

    PubMed

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  13. Structural stability of nonlinear population dynamics

    NASA Astrophysics Data System (ADS)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  14. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  15. Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force

    NASA Astrophysics Data System (ADS)

    Lu, S. F.; Zhang, W.; Song, X. J.

    2017-09-01

    Using Reddy's high-order shear theory for laminated plates and Hamilton's principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom (DOF) nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics, including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.

  16. Analysis of Nonlinear Dynamics by Square Matrix Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Li Hua

    The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. Andmore » more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.« less

  17. Nonlinear dynamics of planetary gears using analytical and finite element models

    NASA Astrophysics Data System (ADS)

    Ambarisha, Vijaya Kumar; Parker, Robert G.

    2007-05-01

    Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.

  18. Vibrational corrections to the second hyperpolarizabilities of Al{sub n}P{sub n} clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feitoza, Luan; Instituto Federal de Brasília–IFB, Campus Planaltina, 73380-900 Brasília, DF; Silveira, Orlando

    2015-12-14

    In this work, we report results of vibrational corrections to the second hyperpolarizabilities of Al{sub 2}P{sub 2}, Al{sub 3}P{sub 3}, Al{sub 4}P{sub 4}, Al{sub 6}P{sub 6}, and Al{sub 9}P{sub 9} clusters. The vibrational corrections were calculated through the perturbation theoretic method of Bishop and Kirtman and also using a variational methodology at the second order Møller-Plesset perturbation theory level with the aug-cc-pVDZ basis set. Results show that the vibrational corrections are important, accounting for more than half of the corresponding electronic second hyperpolarizabilities at the static limit. Comparisons between results obtained through both methods show very good agreements for themore » terms [α{sup 2}] and [μβ] but significant differences for the term [μ{sup 2}α]. Dynamic vibrational corrections to the second hyperpolarizabilities related to the dc-second harmonic generation, intensity dependent refractive index, and dc-Kerr nonlinear optical processes are also reported.« less

  19. Transient slowing down relaxation dynamics of the supercooled dusty plasma liquid after quenching.

    PubMed

    Su, Yen-Shuo; Io, Chong-Wai; I, Lin

    2012-07-01

    The spatiotemporal evolutions of microstructure and motion in the transient relaxation toward the steady supercooled liquid state after quenching a dusty plasma Wigner liquid, formed by charged dust particles suspended in a low pressure discharge, are experimentally investigated through direct optical microscopy. It is found that the quenched liquid slowly evolves to a colder state with more heterogeneities in structure and motion. Hopping particles and defects appear in the form of clusters with multiscale cluster size distributions. Via the structure rearrangement induced by the reduced thermal agitation from the cold thermal bath after quenching, the temporarily stored strain energy can be cascaded through the network to different newly distorted regions and dissipated after transferring to nonlinearly coupled motions with different scales. It leads to the observed self-similar multiscale slowing down relaxation with power law increases of structural order and structural relaxation time, the similar power law decreases of particle motions at different time scales, and the stronger and slower fluctuations with increasing waiting time toward the new steady state.

  20. Non-linear clustering in the cold plus hot dark matter model

    NASA Astrophysics Data System (ADS)

    Bonometto, Silvio A.; Borgani, Stefano; Ghigna, Sebastiano; Klypin, Anatoly; Primack, Joel R.

    1995-03-01

    The main aim of this work is to find out if hierarchical scaling, observed in galaxy clustering, can be dynamically explained by studying N-body simulations. Previous analyses of dark matter (DM) particle distributions indicated heavy distortions with respect to the hierarchical pattern. Here, we shall describe how such distortions are to be interpreted and why they can be fully reconciled with the observed galaxy clustering. This aim is achieved by using high-resolution (512^3 grid-points) particle-mesh (PM) N-body simulations to follow the development of non-linear clustering in a Omega=1 universe, dominated either by cold dark matter (CDM) or by a mixture of cold+hot dark matter (CHDM) with Omega_cold=0.6, and Omega_hot=0.3 and Omega_baryon=0.1 a simulation box of side 100 Mpc (h=0.5) is used. We analyse two CHDM realizations with biasing factor b=1.5 (COBE normalization), starting from different initial random numbers, and compare them with CDM simulations with b=1 (COBE-compatible) and b=1.5. We evaluate high-order correlation functions and the void probability function (VPF). Correlation functions are obtained from both counts in cells and counts of neighbours. The analysis is carried out for DM particles and for galaxies identified as massive haloes of the evolved density field. We confirm that clustering of DM particles systematically exhibits deviations from hierarchical scaling, although the deviation increases somewhat in redshift space. Deviations from the hierarchical scaling of DM particles are found to be related to the spectrum shape, in a way that indicates that such distortions arise from finite sampling effects. We identify galaxy positions in the simulations and show that, quite differently from the DM particle background, galaxies follow hierarchical scaling (S_q=xi_q/& xgr^q-1_2=consta nt) far more closely, with reduced skewness and kurtosis coefficients S_3~2.5 and S_4~7.5, in general agreement with observational results. Unlike DM, the scaling of galaxy clustering is must marginally affected by redshift distortions and is obtained for both CDM and CHDM models. Hierarchical scaling in simulations is confirmed by VPF analysis. Also in this case, we find substantial agreement with observational findings.

  1. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  2. Equivalent reduced model technique development for nonlinear system dynamic response

    NASA Astrophysics Data System (ADS)

    Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2013-04-01

    The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.

  3. A solar cycle dependence of nonlinearity in magnetospheric activity

    NASA Astrophysics Data System (ADS)

    Johnson, Jay R.; Wing, Simon

    2005-04-01

    The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  4. Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1999-01-01

    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.

  5. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.

    PubMed

    Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang

    2017-06-12

    Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.

  6. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    PubMed

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  7. Nonlinear Oscillators in Space Physics

    NASA Technical Reports Server (NTRS)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  8. The Importance of Nonlinear Transformations Use in Medical Data Analysis.

    PubMed

    Shachar, Netta; Mitelpunkt, Alexis; Kozlovski, Tal; Galili, Tal; Frostig, Tzviel; Brill, Barak; Marcus-Kalish, Mira; Benjamini, Yoav

    2018-05-11

    The accumulation of data and its accessibility through easier-to-use platforms will allow data scientists and practitioners who are less sophisticated data analysts to get answers by using big data for many purposes in multiple ways. Data scientists working with medical data are aware of the importance of preprocessing, yet in many cases, the potential benefits of using nonlinear transformations is overlooked. Our aim is to present a semi-automated approach of symmetry-aiming transformations tailored for medical data analysis and its advantages. We describe 10 commonly encountered data types used in the medical field and the relevant transformations for each data type. Data from the Alzheimer's Disease Neuroimaging Initiative study, Parkinson's disease hospital cohort, and disease-simulating data were used to demonstrate the approach and its benefits. Symmetry-targeted monotone transformations were applied, and the advantages gained in variance, stability, linearity, and clustering are demonstrated. An open source application implementing the described methods was developed. Both linearity of relationships and increase of stability of variability improved after applying proper nonlinear transformation. Clustering simulated nonsymmetric data gave low agreement to the generating clusters (Rand value=0.681), while capturing the original structure after applying nonlinear transformation to symmetry (Rand value=0.986). This work presents the use of nonlinear transformations for medical data and the importance of their semi-automated choice. Using the described approach, the data analyst increases the ability to create simpler, more robust and translational models, thereby facilitating the interpretation and implementation of the analysis by medical practitioners. Applying nonlinear transformations as part of the preprocessing is essential to the quality and interpretability of results. ©Netta Shachar, Alexis Mitelpunkt, Tal Kozlovski, Tal Galili, Tzviel Frostig, Barak Brill, Mira Marcus-Kalish, Yoav Benjamini. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.05.2018.

  9. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  10. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    PubMed

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  11. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    PubMed

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  12. Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Han, Qinkai; Luo, Ruizhi; Qing, Tao

    2017-10-01

    Moment wheel assemblies (MWA) have been widely used in spacecraft attitude control and large angle slewing maneuvers over the years. Understanding and controlling vibration of MWAs is a crucial factor to achieving the desired level of payload performance. Dynamic modeling of a MWA with nonlinear rolling bearing supports is conducted. An improved load distribution analysis is proposed to more accurately obtain the contact deformations and angles between the rolling balls and raceways. Then, the bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. The effects of preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication could all be reflected in the nonlinear bearing forces. Considering the mass imbalances of the flywheel, flexibility of supporting structures and rolling bearing nonlinearity, the dynamic model of a typical MWA is established based upon the energy theorem. Dynamic tests are conducted to verify the nonlinear dynamic model. The influences of flywheel mass eccentricity and inner/outer waviness amplitudes on the dynamic responses are discussed in detail. The obtained results would be useful for the design and vibration control of the MWA system.

  13. Use of the dynamic stiffness method to interpret experimental data from a nonlinear system

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.

    2018-05-01

    The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.

  14. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    PubMed

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  15. New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.

  16. The analysis of non-linear dynamic behavior (including snap-through) of postbuckled plates by simple analytical solution

    NASA Technical Reports Server (NTRS)

    Ng, C. F.

    1988-01-01

    Static postbuckling and nonlinear dynamic analysis of plates are usually accomplished by multimode analyses, although the methods are complicated and do not give straightforward understanding of the nonlinear behavior. Assuming single-mode transverse displacement, a simple formula is derived for the transverse load displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the static postbuckling displacement and nonlinear dynamic responses of postbuckled plates under sinusoidal or random excitation. Regions with softening and hardening spring behavior are identified. Also, the highly nonlinear motion of snap-through and its effects on the overall dynamic response can be easily interpreted using the single-mode formula. Theoretical results are compared with experimental results obtained using a buckled aluminum panel, using discrete frequency and broadband point excitation. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are found.

  17. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  18. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  19. Walking dynamics of the passive compass-gait model under OGY-based control: Emergence of bifurcations and chaos

    NASA Astrophysics Data System (ADS)

    Gritli, Hassène; Belghith, Safya

    2017-06-01

    An analysis of the passive dynamic walking of a compass-gait biped model under the OGY-based control approach using the impulsive hybrid nonlinear dynamics is presented in this paper. We describe our strategy for the development of a simplified analytical expression of a controlled hybrid Poincaré map and then for the design of a state-feedback control. Our control methodology is based mainly on the linearization of the impulsive hybrid nonlinear dynamics around a desired nominal one-periodic hybrid limit cycle. Our analysis of the controlled walking dynamics is achieved by means of bifurcation diagrams. Some interesting nonlinear phenomena are displayed, such as the period-doubling bifurcation, the cyclic-fold bifurcation, the period remerging, the period bubbling and chaos. A comparison between the raised phenomena in the impulsive hybrid nonlinear dynamics and the hybrid Poincaré map under control was also presented.

  20. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  1. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays.

    PubMed

    Tseng, Jui-Pin

    2017-02-01

    This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nonlinear screening of dust grains and structurization of dusty plasma: II. formation and stability of dust structures

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-10-01

    The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.

  3. Combination of automated high throughput platforms, flow cytometry, and hierarchical clustering to detect cell state.

    PubMed

    Kitsos, Christine M; Bhamidipati, Phani; Melnikova, Irena; Cash, Ethan P; McNulty, Chris; Furman, Julia; Cima, Michael J; Levinson, Douglas

    2007-01-01

    This study examined whether hierarchical clustering could be used to detect cell states induced by treatment combinations that were generated through automation and high-throughput (HT) technology. Data-mining techniques were used to analyze the large experimental data sets to determine whether nonlinear, non-obvious responses could be extracted from the data. Unary, binary, and ternary combinations of pharmacological factors (examples of stimuli) were used to induce differentiation of HL-60 cells using a HT automated approach. Cell profiles were analyzed by incorporating hierarchical clustering methods on data collected by flow cytometry. Data-mining techniques were used to explore the combinatorial space for nonlinear, unexpected events. Additional small-scale, follow-up experiments were performed on cellular profiles of interest. Multiple, distinct cellular profiles were detected using hierarchical clustering of expressed cell-surface antigens. Data-mining of this large, complex data set retrieved cases of both factor dominance and cooperativity, as well as atypical cellular profiles. Follow-up experiments found that treatment combinations producing "atypical cell types" made those cells more susceptible to apoptosis. CONCLUSIONS Hierarchical clustering and other data-mining techniques were applied to analyze large data sets from HT flow cytometry. From each sample, the data set was filtered and used to define discrete, usable states that were then related back to their original formulations. Analysis of resultant cell populations induced by a multitude of treatments identified unexpected phenotypes and nonlinear response profiles.

  4. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    NASA Astrophysics Data System (ADS)

    Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun

    2015-06-01

    In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  5. Energy spectra of X-ray clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Avni, Y.

    1976-01-01

    A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.

  6. Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.

    PubMed

    Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P

    2007-11-28

    Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10< or =n< or =20, exhibit significant non-Boltzmann variations. Using phase space theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.

  7. The chaotic dynamical aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Tepikian, S.

    1985-10-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles.« less

  8. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    NASA Technical Reports Server (NTRS)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  9. Testing for nonlinear dependence in financial markets.

    PubMed

    Dore, Mohammed; Matilla-Garcia, Mariano; Marin, Manuel Ruiz

    2011-07-01

    This article addresses the question of improving the detection of nonlinear dependence by means of recently developed nonparametric tests. To this end a generalized version of BDS test and a new test based on symbolic dynamics are used on realizations from a well-known artificial market for which the dynamic equation governing the market is known. Comparisons with other tests for detecting nonlinearity are also provided. We show that the test based on symbolic dynamics outperforms other tests with the advantage that it depends only on one free parameter, namely the embedding dimension. This does not hold for other tests for nonlinearity.

  10. Nonlinear dynamics under varying temperature conditions of the resonating beams of a differential resonant accelerometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto

    2018-07-01

    In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.

  11. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.

    PubMed

    Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F

    2016-10-21

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  12. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-10-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  13. Nonlinear dynamics of cortical responses to color in the human cVEP.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  14. Nonlinear spherical perturbations in quintessence models of dark energy

    NASA Astrophysics Data System (ADS)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  15. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  16. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    NASA Astrophysics Data System (ADS)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.

  17. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less

  18. Modeling of biologically motivated self-learning equivalent-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for image fragments clustering and recognition

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2018-03-01

    The biologically-motivated self-learning equivalence-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for fragments images clustering and recognition will be discussed. We shall consider these neural structures and their spatial-invariant equivalental models (SIEMs) based on proposed equivalent two-dimensional functions of image similarity and the corresponding matrix-matrix (or tensor) procedures using as basic operations of continuous logic and nonlinear processing. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalent weighing of input patterns. We show that these SL_EC_RMNSs have several advantages, such as the self-study and self-identification of features and signs of the similarity of fragments, ability to clustering and recognize of image fragments with best efficiency and strong mutual correlation. The proposed combined with learning-recognition clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively continuous logic and nonlinear processing algorithms and to k-average method or method the winner takes all (WTA). The experimental results confirmed that fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an images of different dimensions (a reference array) and fragments with diferent dimensions for clustering is carried out. The experiments, using the software environment Mathcad showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. The experimental results show that such models can be successfully used for auto- and hetero-associative recognition. Also they can be used to explain some mechanisms, known as "the reinforcementinhibition concept". Also we demonstrate a real model experiments, which confirm that the nonlinear processing by equivalent function allow to determine the neuron-winners and customize the weight matrix. At the end of the report, we will show how to use the obtained results and to propose new more efficient hardware architecture of SL_EC_RMNS based on matrix-tensor multipliers. Also we estimate the parameters and performance of such architectures.

  19. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  20. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    PubMed

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.

  1. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Parameter and Structure Inference for Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  3. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    PubMed

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  4. Dynamics of a movable micromirror in a nonlinear optical cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Tarun; ManMohan; Bhattacherjee, Aranya B.

    We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a chi{sup (3)} medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that the displacement spectrum of the micromirror could be used as a tool to detect the photon blockade effect. Moreover the ability to control the photon number fluctuation by tuning the Kerr nonlinearity emerges as a new handle to coherently control the dynamics of the micromirror, which further could be useful in the realization ofmore » tuneable quantum-mechanical devices. We also found that the temperature of the micromechanical mirror increases with increasing Kerr nonlinearity.« less

  5. Coupling nonlinear optical waves to photoreactive and phase-separating soft matter: Current status and perspectives

    NASA Astrophysics Data System (ADS)

    Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.

    2017-10-01

    Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.

  6. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeo, F., E-mail: francesco.romeo@uniroma1.it; Manevitch, L. I.; Bergman, L. A.

    2015-05-15

    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensionalmore » projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.« less

  7. Nearest clusters based partial least squares discriminant analysis for the classification of spectral data.

    PubMed

    Song, Weiran; Wang, Hui; Maguire, Paul; Nibouche, Omar

    2018-06-07

    Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most effective multivariate analysis methods for spectral data analysis, which extracts latent variables and uses them to predict responses. In particular, it is an effective method for handling high-dimensional and collinear spectral data. However, PLS-DA does not explicitly address data multimodality, i.e., within-class multimodal distribution of data. In this paper, we present a novel method termed nearest clusters based PLS-DA (NCPLS-DA) for addressing the multimodality and nonlinearity issues explicitly and improving the performance of PLS-DA on spectral data classification. The new method applies hierarchical clustering to divide samples into clusters and calculates the corresponding centre of every cluster. For a given query point, only clusters whose centres are nearest to such a query point are used for PLS-DA. Such a method can provide a simple and effective tool for separating multimodal and nonlinear classes into clusters which are locally linear and unimodal. Experimental results on 17 datasets, including 12 UCI and 5 spectral datasets, show that NCPLS-DA can outperform 4 baseline methods, namely, PLS-DA, kernel PLS-DA, local PLS-DA and k-NN, achieving the highest classification accuracy most of the time. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy

    NASA Astrophysics Data System (ADS)

    Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.

    2018-01-01

    In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

  9. Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.

    2017-12-01

    Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.

  10. Nonlinear dynamics as an engine of computation.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2017-03-06

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  11. Nonlinear dynamics as an engine of computation

    PubMed Central

    Lindner, John F.; Ditto, William L.

    2017-01-01

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics—cybernetical physics—opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115619

  12. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    PubMed

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  13. Nonlinear analysis of pupillary dynamics.

    PubMed

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  14. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  15. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    PubMed

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  16. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models

    PubMed Central

    Xing, W. W.; Triantafyllidis, V.

    2017-01-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327

  17. Exploring the Internal Dynamics of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration

    2018-01-01

    Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.

  18. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

    PubMed Central

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  19. An Analytical Dynamics Approach to the Control of Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Mylapilli, Harshavardhan

    A new and novel approach to the control of nonlinear mechanical systems is presented in this study. The approach is inspired by recent results in analytical dynamics that deal with the theory of constrained motion. The control requirements on the dynamical system are viewed from an analytical dynamics perspective and the theory of constrained motion is used to recast these control requirements as constraints on the dynamical system. Explicit closed form expressions for the generalized nonlinear control forces are obtained by using the fundamental equation of mechanics. The control so obtained is optimal at each instant of time and causes the constraints to be exactly satisfied. No linearizations and/or approximations of the nonlinear dynamical system are made, and no a priori structure is imposed on the nature of nonlinear controller. Three examples dealing with highly nonlinear complex dynamical systems that are chosen from diverse areas of discrete and continuum mechanics are presented to demonstrate the control approach. The first example deals with the energy control of underactuated inhomogeneous nonlinear lattices (or chains), the second example deals with the synchronization of the motion of multiple coupled slave gyros with that of a master gyro, and the final example deals with the control of incompressible hyperelastic rubber-like thin cantilever beams. Numerical simulations accompanying these examples show the ease, simplicity and the efficacy with which the control methodology can be applied and the accuracy with which the desired control objectives can be met.

  20. Nonlinear dynamic analysis of D α signals for type I edge localized modes characterization on JET with a carbon wall

    NASA Astrophysics Data System (ADS)

    Cannas, Barbara; Fanni, Alessandra; Murari, Andrea; Pisano, Fabio; Contributors, JET

    2018-02-01

    In this paper, the dynamic characteristics of type-I ELM time-series from the JET tokamak, the world’s largest magnetic confinement plasma physics experiment, have been investigated. The dynamic analysis has been focused on the detection of nonlinear structure in D α radiation time series. Firstly, the method of surrogate data has been applied to evaluate the statistical significance of the null hypothesis of static nonlinear distortion of an underlying Gaussian linear process. Several nonlinear statistics have been evaluated, such us the time delayed mutual information, the correlation dimension and the maximal Lyapunov exponent. The obtained results allow us to reject the null hypothesis, giving evidence of underlying nonlinear dynamics. Moreover, no evidence of low-dimensional chaos has been found; indeed, the analysed time series are better characterized by the power law sensitivity to initial conditions which can suggest a motion at the ‘edge of chaos’, at the border between chaotic and regular non-chaotic dynamics. This uncertainty makes it necessary to further investigate about the nature of the nonlinear dynamics. For this purpose, a second surrogate test to distinguish chaotic orbits from pseudo-periodic orbits has been applied. In this case, we cannot reject the null hypothesis which means that the ELM time series is possibly pseudo-periodic. In order to reproduce pseudo-periodic dynamical properties, a periodic state-of-the-art model, proposed to reproduce the ELM cycle, has been corrupted by a dynamical noise, obtaining time series qualitatively in agreement with experimental time series.

  1. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  2. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    NASA Astrophysics Data System (ADS)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  3. Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering.

    PubMed

    Yang, Guang; Raschke, Felix; Barrick, Thomas R; Howe, Franklyn A

    2015-09-01

    To investigate whether nonlinear dimensionality reduction improves unsupervised classification of (1) H MRS brain tumor data compared with a linear method. In vivo single-voxel (1) H magnetic resonance spectroscopy (55 patients) and (1) H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With (1) H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of (1) H MRSI data after cluster analysis. © 2014 Wiley Periodicals, Inc.

  4. Global Optimal Trajectory in Chaos and NP-Hardness

    NASA Astrophysics Data System (ADS)

    Latorre, Vittorio; Gao, David Yang

    This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.

  5. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    PubMed

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  6. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations

    PubMed Central

    Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622

  7. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  8. Employment of CB models for non-linear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  9. The dynamics of a stabilised Wien bridge oscillator

    NASA Astrophysics Data System (ADS)

    Lerner, L.

    2016-11-01

    We present for the first time analytic solutions for the nonlinear dynamics of a Wien bridge oscillator stabilised by three common methods: an incandescent lamp, signal diodes, and the field effect transistor. The results can be used to optimise oscillator design, and agree well with measurements. The effect of operational amplifier marginal nonlinearity on oscillator performance at high frequencies is clarified. The oscillator circuits and their analysis can be used to demonstrate nonlinear dynamics in the undergraduate laboratory.

  10. A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system.

    PubMed

    Chen, Yun; Yang, Hui

    2013-01-01

    Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.

  11. A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems

    PubMed Central

    Mandic, D. P.; Ryan, K.; Basu, B.; Pakrashi, V.

    2016-01-01

    Although vibration monitoring is a popular method to monitor and assess dynamic structures, quantification of linearity or nonlinearity of the dynamic responses remains a challenging problem. We investigate the delay vector variance (DVV) method in this regard in a comprehensive manner to establish the degree to which a change in signal nonlinearity can be related to system nonlinearity and how a change in system parameters affects the nonlinearity in the dynamic response of the system. A wide range of theoretical situations are considered in this regard using a single degree of freedom (SDOF) system to obtain numerical benchmarks. A number of experiments are then carried out using a physical SDOF model in the laboratory. Finally, a composite wind turbine blade is tested for different excitations and the dynamic responses are measured at a number of points to extend the investigation to continuum structures. The dynamic responses were measured using accelerometers, strain gauges and a Laser Doppler vibrometer. This comprehensive study creates a numerical and experimental benchmark for structurally dynamical systems where output-only information is typically available, especially in the context of DVV. The study also allows for comparative analysis between different systems driven by the similar input. PMID:26909175

  12. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine

    PubMed Central

    Pietak, Alexis; Levin, Michael

    2016-01-01

    Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581

  13. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex

    PubMed Central

    Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David

    2016-01-01

    The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510

  14. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1980-01-01

    Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.

  15. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  16. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics

    PubMed Central

    Kashima, Kenji

    2016-01-01

    Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780

  17. Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2018-02-01

    Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.

  18. Non-linear dynamic analysis of geared systems, part 2

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.

  19. Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric

    2018-01-01

    This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..

  20. An introduction to chaos theory in CFD

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    1990-01-01

    The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.

  1. Synthesis, characterization and optical non-linearity of two heterobimetallic copper clusters containing tetraselenometalates

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Feng; Zhang, Chi; Song, Ying-Lin; Xin, Xin-Quan

    2000-07-01

    Cluster [{MoCu 3Se 3Br}(PPh 3) 3Se]·3THF·H 2O ( 1·3THF·H 2O) was prepared from reaction of [Et 4N] 2[MoSe] 4, Cu(PPh 3) 2NO 3 and Et 4N·Br in CH 2Cl 2 solution; also, 1 can be also obtained from the reaction of [MoSe 4Cu 4Py 6Br 2] and excess PPh 3 in a DMF-CH 2Cl 2 mixture solvent. The 95Mo NMR technique was used to monitor the above two reaction processes. X-ray crystallographic structure determination shows that it contains a strongly distorted cubane-like {MoCu 3Se 3Br} core. The coordination of the central Mo atom and each Cu atom are distorted from tetrahedral. Cluster [{WCu 3Se 3Cl}(PPh 3) 3Se] ( 2) was synthesized by the reaction of [Et 4N] 2[WSe] 4 and Cu(PPh 3) 2Cl in the solid state for nonlinear optical (NLO) studies. Its structure was reported by Ibers (Inorg. Chem. 31 (1992) 4365). The NLO properties of clusters 1 and 2 were studied. Both NLO absorption and refraction were obtained, and their effective third-order non-linearities were detected with α2=3.4×10 -10 and 5.9×10 -10 m/W and n2=-1.5×10 -17 and -1.3×10 -17 m 2/W , respectively, for the same concentration CH 2Cl 2 solution of 1 and 2. Influence of skeletal atoms to nonlinear absorption is also discussed in the paper.

  2. Fuzzy model-based servo and model following control for nonlinear systems.

    PubMed

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  3. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  4. Bounded tracking for nonminimum phase nonlinear systems with fast zero dynamics

    DOT National Transportation Integrated Search

    1996-12-01

    A PostScript file. In this paper, tracking control laws for nonminimum phase nonlinear systems with both fast and slow, possibly unstable, zero dynamics are derived. The fast zero dynamics arise from a perturbation of a nominal system. These fast zer...

  5. Nonlinear identification of the total baroreflex arc: chronic hypertension model.

    PubMed

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna

    2016-05-01

    The total baroreflex arc is the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP). Its linear dynamic functioning has been shown to be preserved in spontaneously hypertensive rats (SHR). However, the system is known to exhibit nonlinear dynamic behaviors. The aim of this study was to establish nonlinear dynamic models of the total arc (and its subsystems) in hypertensive rats and to compare these models with previously published models for normotensive rats. Hypertensive rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned. The carotid sinus regions were isolated and attached to a servo-controlled piston pump. AP and sympathetic nerve activity were measured while CSP was controlled via the pump using Gaussian white noise stimulation. Second-order, nonlinear dynamics models were developed by application of nonparametric system identification to a portion of the measurements. The models of the total arc predicted AP 21-43% better (P < 0.005) than conventional linear dynamic models in response to a new portion of the CSP measurement. The linear and nonlinear terms of these validated models were compared with the corresponding terms of an analogous model for normotensive rats. The nonlinear gains for the hypertensive rats were significantly larger than those for the normotensive rats [-0.38 ± 0.04 (unitless) vs. -0.22 ± 0.03, P < 0.01], whereas the linear gains were similar. Hence, nonlinear dynamic functioning of the sympathetically mediated total arc may enhance baroreflex buffering of AP increases more in SHR than normotensive rats. Copyright © 2016 the American Physiological Society.

  6. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Culick, Fred E. C.; Jahnke, Craig C.

    1988-01-01

    Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.

  7. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-07

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

  8. Vowel selection and its effects on perturbation and nonlinear dynamic measures.

    PubMed

    Maccallum, Julia K; Zhang, Yu; Jiang, Jack J

    2011-01-01

    Acoustic analysis of voice is typically conducted on recordings of sustained vowel phonation. This study applied perturbation and nonlinear dynamic analyses to the vowels /a/, /i/, and /u/ in order to determine vowel selection effects on analysis. Forty subjects (20 males and 20 females) with normal voices participated in recording. Traditional parameters of fundamental frequency, signal-to-noise ratio, percent jitter, and percent shimmer were calculated for the signals using CSpeech. Nonlinear dynamic parameters of correlation dimension and second-order entropy were also calculated. Perturbation analysis results were largely incongruous in this study and in previous research. Fundamental frequency results corroborated previous work, indicating higher fundamental frequency for /i/ and /u/ and lower fundamental frequency for /a/. Signal-to-noise ratio results showed that /i/ and /u/ have greater harmonic levels than /a/. Results of nonlinear dynamic analysis suggested that more complex activity may be evident in /a/ than in /i/ or /u/. Percent jitter and percent shimmer may not be useful for description of acoustic differences between vowels. Fundamental frequency, signal-to-noise ratio, and nonlinear dynamic parameters may be applied to characterize /a/ as having lower frequency, higher noise, and greater nonlinear components than /i/ and /u/. Copyright © 2010 S. Karger AG, Basel.

  9. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    PubMed

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  10. Analysis of dynamic channel power equalization by using nonlinear amplifying Sagnac interferometer for ASK-WDM optical transmission

    NASA Astrophysics Data System (ADS)

    Qu, Feng; Liu, Xiaoming; Zhao, Jianhui

    2004-05-01

    A power equalization using an asymmetric nonlinear amplifying Sagnac interferometer (NASI) for ASK modulation is studied numerically. A nonreciprocal phase bias was proposed to be introduced into the structure. The nonreciprocal phase bias reduces not only the demanding for amplifier power or fiber non-linearity, but also increase the dynamic input power range. The power equalization is demonstrated for RZ modulation by nonlinear phase analysis and eye diagram simulation.

  11. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    NASA Astrophysics Data System (ADS)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  12. Application of non-linear dynamics to the characterization of cardiac electrical instability

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Cohen, R. J.

    1987-01-01

    Beat-to-beat alternation in the morphology of the ECG has been previously observed in hearts susceptible to fibrillation. In addition, fibrillation has been characterized by some as a chaotic state. Period doubling phenomena, such as alternation, and the onset of chaos have been connected by non-linear dynamical systems theory. In this paper, we describe the use of a technique from nonlinear dynamics theory, the construction of a first return nap, to assess the susceptibility to fibrillation threshhold in canine experiments.

  13. An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R.

    2007-01-01

    In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…

  14. Cluster dynamics transcending chemical dynamics toward nuclear fusion

    PubMed Central

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-01-01

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D2)n, (HT)n, (CD4)n, (DI)n, (CD3I)n, and (CH3I)n clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D2)n clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., 12C(P,γ)13N driven by CE of (CH3I)n clusters, were explored. PMID:16740666

  15. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  16. Simultaneous multigrid techniques for nonlinear eigenvalue problems: Solutions of the nonlinear Schrödinger-Poisson eigenvalue problem in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Costiner, Sorin; Ta'asan, Shlomo

    1995-07-01

    Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.

  17. Two Studies of Complex Nonlinear Systems: Engineered Granular Crystals and Coarse-Graining Optimization Problems

    NASA Astrophysics Data System (ADS)

    Pozharskiy, Dmitry

    In recent years a nonlinear, acoustic metamaterial, named granular crystals, has gained prominence due to its high accessibility, both experimentally and computationally. The observation of a wide range of dynamical phenomena in the system, due to its inherent nonlinearities, has suggested its importance in many engineering applications related to wave propagation. In the first part of this dissertation, we explore the nonlinear dynamics of damped-driven granular crystals. In one case, we consider a highly nonlinear setting, also known as a sonic vacuum, and derive a nonlinear analogue of a linear spectrum, corresponding to resonant periodic propagation and antiresonances. Experimental studies confirm the computational findings and the assimilation of experimental data into a numerical model is demonstrated. In the second case, global bifurcations in a precompressed granular crystal are examined, and their involvement in the appearance of chaotic dynamics is demonstrated. Both results highlight the importance of exploring the nonlinear dynamics, to gain insight into how a granular crystal responds to different external excitations. In the second part, we borrow established ideas from coarse-graining of dynamical systems, and extend them to optimization problems. We combine manifold learning algorithms, such as Diffusion Maps, with stochastic optimization methods, such as Simulated Annealing, and show that we can retrieve an ensemble, of few, important parameters that should be explored in detail. This framework can lead to acceleration of convergence when dealing with complex, high-dimensional optimization, and could potentially be applied to design engineered granular crystals.

  18. Nonlinear elasticity in resonance experiments

    NASA Astrophysics Data System (ADS)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  19. Nonlinear dynamics of the human lumbar intervertebral disc.

    PubMed

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dynamics of nonlinear feedback control.

    PubMed

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  1. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  2. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  3. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  4. Active turnover regulates pattern formation and stress transmission in disordered acto-myosin networks

    NASA Astrophysics Data System (ADS)

    McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret

    The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.

  5. Nonlinear dynamics and control of a vibrating rectangular plate

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    1983-01-01

    The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.

  6. N-soliton interactions: Effects of linear and nonlinear gain and loss

    NASA Astrophysics Data System (ADS)

    Carretero-González, R.; Gerdjikov, V. S.; Todorov, M. D.

    2017-10-01

    We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.

  7. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  8. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  9. Understanding the Current Dynamical States of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2008-09-01

    We appear to be on the verge of a major paradigm shift in our understanding of the current dynamical states of Galactic globular clusters. Fregeau (2008) brought together two recent theoretical breakthroughs as well as an observational breakthrough made possible by Chandra -- that a globular cluster's X-ray source population scales with its dynamical encounter frequency -- to persuasively argue that we have misunderstood the dynamical states of Galactic globular clusters. The observational evidence hinges on Chandra results from clusters which are classified as "core collapsed," of which there are only a handful of observations. I propose a nearly complete census with Chandra of the rest of the "core collapsed" globular clusters.

  10. Nonlinear quantum Rabi model in trapped ions

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique

    2018-02-01

    We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.

  11. Nonlinear dynamic phenomena in the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Edighoffer, H. H.; Park, K. C.

    1981-01-01

    The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.

  12. Dynamical age differences among coeval star clusters as revealed by blue stragglers.

    PubMed

    Ferraro, F R; Lanzoni, B; Dalessandro, E; Beccari, G; Pasquato, M; Miocchi, P; Rood, R T; Sigurdsson, S; Sills, A; Vesperini, E; Mapelli, M; Contreras, R; Sanna, N; Mucciarelli, A

    2012-12-20

    Globular star clusters that formed at the same cosmic time may have evolved rather differently from the dynamical point of view (because that evolution depends on the internal environment) through a variety of processes that tend progressively to segregate stars more massive than the average towards the cluster centre. Therefore clusters with the same chronological age may have reached quite different stages of their dynamical history (that is, they may have different 'dynamical ages'). Blue straggler stars have masses greater than those at the turn-off point on the main sequence and therefore must be the result of either a collision or a mass-transfer event. Because they are among the most massive and luminous objects in old clusters, they can be used as test particles with which to probe dynamical evolution. Here we report that globular clusters can be grouped into a few distinct families on the basis of the radial distribution of blue stragglers. This grouping corresponds well to an effective ranking of the dynamical stage reached by stellar systems, thereby permitting a direct measure of the cluster dynamical age purely from observed properties.

  13. Effect of motor dynamics on nonlinear feedback robot arm control

    NASA Technical Reports Server (NTRS)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping

    1991-01-01

    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  14. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  15. Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data

    NASA Astrophysics Data System (ADS)

    Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn

    2018-06-01

    The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.

  16. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  17. Nonlinear dynamics of the magnetosphere and space weather

    NASA Technical Reports Server (NTRS)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  18. Directed dynamical influence is more detectable with noise

    PubMed Central

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-01-01

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence. PMID:27066763

  19. Directed dynamical influence is more detectable with noise.

    PubMed

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-04-12

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

  20. Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel

    2013-01-01

    This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…

  1. Experimental Chaos - Proceedings of the 3rd Conference

    NASA Astrophysics Data System (ADS)

    Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep

    1996-10-01

    The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina

  2. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Comparing cluster-level dynamic treatment regimens using sequential, multiple assignment, randomized trials: Regression estimation and sample size considerations.

    PubMed

    NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel

    2017-08-01

    Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.

  4. Nonlinear system guidance in the presence of transmission zero dynamics

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  5. Nonlinear dimensionality reduction of data lying on the multicluster manifold.

    PubMed

    Meng, Deyu; Leung, Yee; Fung, Tung; Xu, Zongben

    2008-08-01

    A new method, which is called decomposition-composition (D-C) method, is proposed for the nonlinear dimensionality reduction (NLDR) of data lying on the multicluster manifold. The main idea is first to decompose a given data set into clusters and independently calculate the low-dimensional embeddings of each cluster by the decomposition procedure. Based on the intercluster connections, the embeddings of all clusters are then composed into their proper positions and orientations by the composition procedure. Different from other NLDR methods for multicluster data, which consider associatively the intracluster and intercluster information, the D-C method capitalizes on the separate employment of the intracluster neighborhood structures and the intercluster topologies for effective dimensionality reduction. This, on one hand, isometrically preserves the rigid-body shapes of the clusters in the embedding process and, on the other hand, guarantees the proper locations and orientations of all clusters. The theoretical arguments are supported by a series of experiments performed on the synthetic and real-life data sets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically analyzed and experimentally demonstrated. Related strategies for automatic parameter selection are also examined.

  6. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  7. Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.

    PubMed

    Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R

    2015-12-01

    The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.

  8. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  9. A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control

    NASA Astrophysics Data System (ADS)

    Han, Dongju

    2018-05-01

    Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.

  10. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e(z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e(z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z>0.14.

  11. Influence of chemical reactions on the nonlinear dynamics of dissipative flows

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Korshunov, A. M.; Beklemishev, V. V.

    2015-08-01

    The nonlinear dynamics of resistive flow with a chemical reaction is studied. Proceeding from the Lagrangian description, the influence of a chemical reaction on the development of fluid singularities is considered.

  12. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  13. Dynamics of Galaxy Clusters and Expectations from Astro-H

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.

  14. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    DOE PAGES

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; ...

    2015-06-22

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplifiedmore » by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.« less

  15. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    PubMed Central

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-01-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  16. Linearity and nonlinearity of basin response as a function of scale: Discussion of alternative definitions

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Jothityangkoon, C.; Menabde, M.

    2002-02-01

    Two uses of the terms ``linearity'' and ``nonlinearity'' appear in recent literature. The first definition of nonlinearity is with respect to the dynamical property such as the rainfall-runoff response of a catchment, and nonlinearity in this sense refers to a nonlinear dependence of the storm response on the magnitude of the rainfall inputs [Minshall, 1960; Wang et al., 1981]. The second definition of nonlinearity [Huang and Willgoose, 1993; Goodrich et al., 1997] is with respect to the dependence of a catchment statistical property, such as the mean annual flood, on the area of the catchment. They are both linked to important and interconnected hydrologic concepts, and furthermore, the change of nonlinearity with area (scale) has been an important motivation for hydrologic research. While both definitions are correct mathematically, they refer to hydrologically different concepts. In this paper we show that nonlinearity in the dynamical sense and that in the statistical sense can exist independently of each other (i.e., can be unrelated). If not carefully distinguished, the existence of these two definitions can lead to a catchment's response being described as being both linear and nonlinear at the same time. We therefore recommend separating these definitions by reserving the term ``nonlinearity'' for the classical, dynamical definition with respect to rainfall inputs, while adopting the term ``scaling relationship'' for the dependence of a catchment hydrological property on catchment area.

  17. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    PubMed

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  18. Koopman operator theory: Past, present, and future

    NASA Astrophysics Data System (ADS)

    Brunton, Steven; Kaiser, Eurika; Kutz, Nathan

    2017-11-01

    Koopman operator theory has emerged as a dominant method to represent nonlinear dynamics in terms of an infinite-dimensional linear operator. The Koopman operator acts on the space of all possible measurement functions of the system state, advancing these measurements with the flow of the dynamics. A linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. Dynamic mode decomposition has become the leading data-driven method to approximate the Koopman operator, although there are still open questions and challenges around how to obtain accurate approximations for strongly nonlinear systems. This talk will provide an introductory overview of modern Koopman operator theory, reviewing the basics and describing recent theoretical and algorithmic developments. Particular emphasis will be placed on the use of data-driven Koopman theory to characterize and control high-dimensional fluid dynamic systems. This talk will also address key advances in the rapidly growing fields of machine learning and data science that are likely to drive future developments.

  19. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  20. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    PubMed

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  1. The Creative Chaos: Speculations on the Connection Between Non-Linear Dynamics and the Creative Process

    NASA Astrophysics Data System (ADS)

    Zausner, Tobi

    Chaos theory may provide models for creativity and for the personality of the artist. A collection of speculative hypotheses examines the connection between art and such fundamentals of non-linear dynamics as iteration, dissipative processes, open systems, entropy, sensitivity to stimuli, autocatalysis, subsystems, bifurcations, randomness, unpredictability, irreversibility, increasing levels of organization, far-from-equilibrium conditions, strange attractors, period doubling, intermittency and self-similar fractal organization. Non-linear dynamics may also explain why certain individuals suffer mental disorders while others remain intact during a lifetime of sustained creative output.

  2. The Dynamics of Cognitive Performance: What Has Been Learnt from Empirical Research in Science Education

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios

    2017-01-01

    This paper discusses investigations in science education addressing the nonlinear dynamical hypothesis. Learning science is a suitable field for applying interdisciplinary research and predominately for testing psychological theories. It was demonstrated that in this area the paradigm of complexity and nonlinear dynamics have offered theoretical…

  3. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Han, Qinkai; Zhou, Daning

    2017-02-01

    In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.

  4. Principles and Algorithms for Natural and Engineered Systems

    DTIC Science & Technology

    2014-12-16

    Toolbox for MATLAB into C/C++. The target for the calibration is a 2D black and white checkerboard pattern. In a typical set of calibration images...errors the dynamic clusters typically contain entangled trajectories i.e. links form between two different dynamic clusters (see Figures 8 and 9). To...all dynamic clusters is L, and the average number of trajectories a given dynamic cluster are entangled with for its entire length is known as the

  5. Cold dark energy constraints from the abundance of galaxy clusters

    DOE PAGES

    Heneka, Caroline; Rapetti, David; Cataneo, Matteo; ...

    2017-10-05

    We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less

  6. Cold dark energy constraints from the abundance of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneka, Caroline; Rapetti, David; Cataneo, Matteo

    We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less

  7. The periodic structure of the natural record, and nonlinear dynamics.

    USGS Publications Warehouse

    Shaw, H.R.

    1987-01-01

    This paper addresses how nonlinear dynamics can contribute to interpretations of the geologic record and evolutionary processes. Background is given to explain why nonlinear concepts are important. A resume of personal research is offered to illustrate why I think nonlinear processes fit with observations on geological and cosmological time series data. The fabric of universal periodicity arrays generated by nonlinear processes is illustrated by means of a simple computer mode. I conclude with implications concerning patterns of evolution, stratigraphic boundary events, and close correlations of major geologically instantaneous events (such as impacts or massive volcanic episodes) with any sharply defined boundary in the geologic column. - from Author

  8. From local to global measurements of nonclassical nonlinear elastic effects in geomaterials

    DOE PAGES

    Lott, Martin; Remillieux, Marcel C.; Le Bas, Pierre-Yves; ...

    2016-09-07

    Here, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). Finally, after correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly.

  9. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor

    PubMed Central

    Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878

  10. Static Methods in the Design of Nonlinear Automatic Control Systems,

    DTIC Science & Technology

    1984-06-27

    227 Chapter VI. Ways of Decrease of the Number of Statistical Nodes During the Research of Nonlinear Systems...at present occupies the central place. This region of research was called the statistical dynamics of nonlinear H automatic control systems...receives further development in the numerous research of Soviet and C foreign scientists. Special role in the development of the statistical dynamics of

  11. ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.

    PubMed

    Liang, Hua; Miao, Hongyu; Wu, Hulin

    2010-03-01

    Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.

  12. Infectious diseases in space and time: noise and nonlinearity in epidemiological dynamics

    NASA Astrophysics Data System (ADS)

    Grenfell, Bryan

    2005-03-01

    I illustrate the impact of noise and nonlinearity on the spatio-temporal dynamics and evolution of epidemics using mathematical models and analyses of detailed epidemiological data from childhood infections, such as measles.

  13. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  14. Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle.

    PubMed

    Prado, Igor Afonso Acampora; Pereira, Mateus de Freitas Virgílio; de Castro, Davi Ferreira; Dos Santos, Davi Antônio; Balthazar, Jose Manoel

    2018-06-01

    The present paper is concerned with the design and experimental evaluation of optimal control laws for the nonlinear attitude dynamics of a multirotor aerial vehicle. Three design methods based on Hamilton-Jacobi-Bellman equation are taken into account. The first one is a linear control with guarantee of stability for nonlinear systems. The second and third are a nonlinear suboptimal control techniques. These techniques are based on an optimal control design approach that takes into account the nonlinearities present in the vehicle dynamics. The stability Proof of the closed-loop system is presented. The performance of the control system designed is evaluated via simulations and also via an experimental scheme using the Quanser 3-DOF Hover. The experiments show the effectiveness of the linear control method over the nonlinear strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  16. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches

    NASA Astrophysics Data System (ADS)

    Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando

    2016-11-01

    This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.

  17. Analysis of helicopter flight dynamics through modeling and simulation of primary flight control actuation system

    NASA Astrophysics Data System (ADS)

    Nelson, Hunter Barton

    A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.

  18. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    PubMed

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  19. MSC products for the simulation of tire behavior

    NASA Technical Reports Server (NTRS)

    Muskivitch, John C.

    1995-01-01

    The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.

  20. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  1. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  2. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    PubMed

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  3. Symmetry breaking in the opinion dynamics of a multi-group project organization

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang

    2012-10-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.

  4. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    NASA Astrophysics Data System (ADS)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  5. Dynamic Time Expansion and Compression Using Nonlinear Waveguides

    DOEpatents

    Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi

    2004-06-22

    Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  6. Dynamic time expansion and compression using nonlinear waveguides

    DOEpatents

    Findikoglu, Alp T [Los Alamos, NM; Hahn, Sangkoo F [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2004-06-22

    Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  7. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  8. COMBINED DELAY AND GRAPH EMBEDDING OF EPILEPTIC DISCHARGES IN EEG REVEALS COMPLEX AND RECURRENT NONLINEAR DYNAMICS.

    PubMed

    Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K

    2015-04-01

    The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.

  9. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  10. Nonlinear dynamics and cavity cooling of levitated nanoparticles

    NASA Astrophysics Data System (ADS)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-09-01

    We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.

  11. Sensitivity of peptide conformational dynamics on clustering of a classical molecular dynamics trajectory

    NASA Astrophysics Data System (ADS)

    Jensen, Christian H.; Nerukh, Dmitry; Glen, Robert C.

    2008-03-01

    We investigate the sensitivity of a Markov model with states and transition probabilities obtained from clustering a molecular dynamics trajectory. We have examined a 500ns molecular dynamics trajectory of the peptide valine-proline-alanine-leucine in explicit water. The sensitivity is quantified by varying the boundaries of the clusters and investigating the resulting variation in transition probabilities and the average transition time between states. In this way, we represent the effect of clustering using different clustering algorithms. It is found that in terms of the investigated quantities, the peptide dynamics described by the Markov model is sensitive to the clustering; in particular, the average transition times are found to vary up to 46%. Moreover, inclusion of nonphysical sparsely populated clusters can lead to serious errors of up to 814%. In the investigation, the time step used in the transition matrix is determined by the minimum time scale on which the system behaves approximately Markovian. This time step is found to be about 100ps. It is concluded that the description of peptide dynamics with transition matrices should be performed with care, and that using standard clustering algorithms to obtain states and transition probabilities may not always produce reliable results.

  12. A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics

    NASA Technical Reports Server (NTRS)

    Ozguven, H. Nevzat

    1991-01-01

    A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.

  13. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  14. Force and Moment Approach for Achievable Dynamics Using Nonlinear Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Bacon, Barton J.

    1999-01-01

    This paper describes a general form of nonlinear dynamic inversion control for use in a generic nonlinear simulation to evaluate candidate augmented aircraft dynamics. The implementation is specifically tailored to the task of quickly assessing an aircraft's control power requirements and defining the achievable dynamic set. The achievable set is evaluated while undergoing complex mission maneuvers, and perfect tracking will be accomplished when the desired dynamics are achievable. Variables are extracted directly from the simulation model each iteration, so robustness is not an issue. Included in this paper is a description of the implementation of the forces and moments from simulation variables, the calculation of control effectiveness coefficients, methods for implementing different types of aerodynamic and thrust vectoring controls, adjustments for control effector failures, and the allocation approach used. A few examples illustrate the perfect tracking results obtained.

  15. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  16. The effects of five-order nonlinear on the dynamics of dark solitons in optical fiber.

    PubMed

    He, Feng-Tao; Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce.

  17. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    PubMed Central

    Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce. PMID:23818814

  18. Optical nonlinear properties and dynamics of interband transitions in multilayer MoS2 structures under femtosecond excitation at a wavelength of 514 nm

    NASA Astrophysics Data System (ADS)

    Khudyakov, D. V.; Borodkin, A. A.; Mazin, D. D.; Lobach, A. S.; Vartapetov, S. K.

    2018-02-01

    The optical nonlinear absorption and bleaching of aqueous suspensions of multilayer MoS2 sheets (structural modification 2H) under excitation by a 400-fs pulse at a wavelength of 514 nm is investigated using longitudinal scanning. The sample exhibits nonlinear absorption at intensities up to 15 GW cm-2, while a further increase in intensity to 70 GW cm-2 causes nonlinear bleaching with a relative change in transmission to 14%. The dynamics of interband transitions in the picosecond range is studied by femtosecond laser photolysis. The relaxation time of photoexcited excitons is measured to be 20 ± 2 ps. The transition dynamics is calculated in the three-level approximation, and the absorption cross sections of photoinduced electron transitions from the valence band to the conduction band and from the first to the second conduction band are estimated. It is shown that the optical nonlinear properties of suspensions of multilayer 2H MoS2 sheets are mainly determined by the dynamics of single-photon interband transitions.

  19. Linear and nonlinear dynamics of isospectral granular chains

    NASA Astrophysics Data System (ADS)

    Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.

    2017-04-01

    We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.

  20. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  1. Efficient loads analyses of Shuttle-payloads using dynamic models with linear or nonlinear interfaces

    NASA Technical Reports Server (NTRS)

    Spanos, P. D.; Cao, T. T.; Hamilton, D. A.; Nelson, D. A. R.

    1989-01-01

    An efficient method for the load analysis of Shuttle-payload systems with linear or nonlinear attachment interfaces is presented which allows the kinematics of the interface degrees of freedom at a given time to be evaluated without calculating the combined system modal representation of the Space Shuttle and its payload. For the case of a nonlinear dynamic model, an iterative procedure is employed to converge the nonlinear terms of the equations of motion to reliable values. Results are presented for a Shuttle abort landing event.

  2. Neural network based adaptive control for nonlinear dynamic regimes

    NASA Astrophysics Data System (ADS)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  3. Digit replacement: A generic map for nonlinear dynamical systems.

    PubMed

    García-Morales, Vladimir

    2016-09-01

    A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.

  4. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  5. Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback.

    PubMed

    Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime

    2016-12-01

    We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.

  6. Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves

    NASA Astrophysics Data System (ADS)

    Yi, Taishan; Chen, Yuming; Wu, Jianhong

    Reaction diffusion equations with delayed nonlinear reaction terms are used as prototypes to motivate an appropriate abstract formulation of dynamical systems with unimodal nonlinearity. For such non-monotone dynamical systems, we develop a general comparison principle and show how this general comparison principle, coupled with some existing results for monotone dynamical systems, can be used to establish results on the asymptotic speeds of spread and travelling waves. We illustrate our main results by an integral equation which includes a nonlocal delayed reaction diffusion equation and a nonlocal delayed lattice differential system in an unbounded domain, with the non-monotone nonlinearities including the Ricker birth function and the Mackey-Glass hematopoiesis feedback.

  7. A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.

    2014-12-01

    Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.

  8. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    PubMed

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identifying Complex Dynamics in Social Systems: A New Methodological Approach Applied to Study School Segregation

    ERIC Educational Resources Information Center

    Spaiser, Viktoria; Hedström, Peter; Ranganathan, Shyam; Jansson, Kim; Nordvik, Monica K.; Sumpter, David J. T.

    2018-01-01

    It is widely recognized that segregation processes are often the result of complex nonlinear dynamics. Empirical analyses of complex dynamics are however rare, because there is a lack of appropriate empirical modeling techniques that are capable of capturing complex patterns and nonlinearities. At the same time, we know that many social phenomena…

  10. Dynamical evolution of globular-cluster systems in clusters of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  11. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    PubMed

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.

  12. Simulation of noisy dynamical system by Deep Learning

    NASA Astrophysics Data System (ADS)

    Yeo, Kyongmin

    2017-11-01

    Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.

  13. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  14. Chaotic dynamical aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Tepikian, S.

    1985-01-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator designs have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take a tremendous amount of computing time. In this review the method of determining chaotic orbit and applying the method to nonlinear problems in accelerator physics is discussed. We then discuss the scaling properties and effect of random sextupoles.« less

  15. Nonlinear Wave Propagation

    DTIC Science & Technology

    2009-02-09

    grey) soliton , to a nearly linear wavetrain at the front moving with its group velocity ; like KdV the NLS DSW has two speeds. The 1-D NLS theory was...studies of wave phenomena in nonlinear optics include ultrashort pulse dynamics in mode- locked lasers, dynamics and perturbations of dark solitons ...nonlinear Kerr response and has a large normal group - velocity dispersion (GVD). This requires a set of prisms and/or mirrors specially designed to have

  16. Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates

    DOE PAGES

    Old, L.; Wojtak, R.; Pearce, F. R.; ...

    2017-12-20

    With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less

  17. Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Old, L.; Wojtak, R.; Pearce, F. R.

    With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less

  18. Scale-free networks as an epiphenomenon of memory

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Hamma, A.; Di Ventra, M.

    2015-01-01

    Many realistic networks are scale free, with small characteristic path lengths, high clustering, and power law in their degree distribution. They can be obtained by dynamical networks in which a preferential attachment process takes place. However, this mechanism is non-local, in the sense that it requires knowledge of the whole graph in order for the graph to be updated. Instead, if preferential attachment and realistic networks occur in physical systems, these features need to emerge from a local model. In this paper, we propose a local model and show that a possible ingredient (which is often underrated) for obtaining scale-free networks with local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive elements with memory such as memristors, and thus can be tested experimentally.

  19. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  20. Parametric spatiotemporal oscillation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  1. Galilean-invariant scalar fields can strengthen gravitational lensing.

    PubMed

    Wyman, Mark

    2011-05-20

    The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.

  2. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  3. Nonlinear coherent structures of Alfvén wave in a collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Sayanee; Chakrabarti, Nikhil; Ghosh, Samiran

    2016-07-15

    The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödingermore » equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.« less

  4. Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks.

    PubMed

    Xue, Hongqi; Wu, Shuang; Wu, Yichao; Ramirez Idarraga, Juan C; Wu, Hulin

    2018-05-02

    Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  6. Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness

    NASA Astrophysics Data System (ADS)

    Wu, R. Q.; Zhang, W.; Yao, M. H.

    2018-02-01

    In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.

  7. Control of the permeability loss-peak frequency of Ni81Fe19 thin films through laser ablation of triangular and square cluster geometries

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Lumpp, J. K.

    2000-01-01

    Laser ablation arrays of triangular and square shaped clusters, comprised of 23 micrometers diam circular holes, are defined upon 100 nm thick Ni81Fe19 films used to control the rf permeability spectra. Cluster-to-cluster spacing is varied from 200 to 600 micrometers. For each geometry it is found that the loss peak frequency and permeability magnitude shift lower, in a step-wise fashion, at a cluster-to-cluster spacing between 275 and 300 micrometers. The nonlinear shift in the behavior of the permeability spectra correlates with a dramatic increase in domain wall density. c2000 American Institute of Physics.

  8. Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.

    PubMed

    Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav

    2018-05-14

    Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.

  9. Modeling dynamic interactions and coherence between marine zooplankton and fishes linked to environmental variability

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George

    2014-03-01

    The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.

  10. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  11. ISS method for coordination control of nonlinear dynamical agents under directed topology.

    PubMed

    Wang, Xiangke; Qin, Jiahu; Yu, Changbin

    2014-10-01

    The problems of coordination of multiagent systems with second-order locally Lipschitz continuous nonlinear dynamics under directed interaction topology are investigated in this paper. A completely nonlinear input-to-state stability (ISS)-based framework, drawing on ISS methods, with the aid of results from graph theory, matrix theory, and the ISS cyclic-small-gain theorem, is proposed for the coordination problem under directed topology, which can effectively tackle the technical challenges caused by locally Lipschitz continuous dynamics. Two coordination problems, i.e., flocking with a virtual leader and containment control, are considered. For both problems, it is assumed that only a portion of the agents can obtain the information from the leader(s). For the first problem, the proposed strategy is shown effective in driving a group of nonlinear dynamical agents reach the prespecified geometric pattern under the condition that at least one agent in each strongly connected component of the information-interconnection digraph with zero in-degree has access to the state information of the virtual leader; and the strategy proposed for the second problem can guarantee the nonlinear dynamical agents moving to the convex hull spanned by the positions of multiple leaders under the condition that for each agent there exists at least one leader that has a directed path to this agent.

  12. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-01-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.

  13. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  14. Dynamical mechanism of antifreeze proteins to prevent ice growth

    NASA Astrophysics Data System (ADS)

    Kutschan, B.; Morawetz, K.; Thoms, S.

    2014-08-01

    The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.

  15. Cluster formation in Hessdalen lights

    NASA Astrophysics Data System (ADS)

    Paiva, G. S.; Taft, C. A.

    2012-05-01

    In this paper we show a mechanism of light ball cluster formation in Hessdalen lights (HL) by the nonlinear interaction of ion-acoustic and dusty-acoustic waves with low frequency geoelectromagnetic waves in dusty plasmas. Our theoretical model shows that the velocity of ejected light balls by HL cluster is of about 104 m s-1 in a good agreement with the observed velocity of some ejected light balls, which is estimated as 2×104 m s-1.

  16. Dynamical principles in neuroscience

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  17. Dynamical principles in neuroscience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less

  18. Nonlinear vibration of a coupled high- Tc superconducting levitation system

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Inoue, T.; Ura, H.

    2004-10-01

    High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.

  19. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  20. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  1. Decoupling nonclassical nonlinear behavior of elastic wave types

    DOE PAGES

    Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...

    2016-03-01

    In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less

  2. Using waveform information in nonlinear data assimilation

    NASA Astrophysics Data System (ADS)

    Rey, Daniel; Eldridge, Michael; Morone, Uriel; Abarbanel, Henry D. I.; Parlitz, Ulrich; Schumann-Bischoff, Jan

    2014-12-01

    Information in measurements of a nonlinear dynamical system can be transferred to a quantitative model of the observed system to establish its fixed parameters and unobserved state variables. After this learning period is complete, one may predict the model response to new forces and, when successful, these predictions will match additional observations. This adjustment process encounters problems when the model is nonlinear and chaotic because dynamical instability impedes the transfer of information from the data to the model when the number of measurements at each observation time is insufficient. We discuss the use of information in the waveform of the data, realized through a time delayed collection of measurements, to provide additional stability and accuracy to this search procedure. Several examples are explored, including a few familiar nonlinear dynamical systems and small networks of Colpitts oscillators.

  3. Mirror Instability: Quasi-linear Effects

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Travnicek, P. M.; Passot, T.; Sulem, P.; Kuznetsov, E. A.

    2008-12-01

    Nonlinear properties of the mirror instability are investigated by direct integration of the quasi-linear diffusion equation [Shapiro and Shevchenko, 1964] near threshold. The simulation results are compared to the results of standard hybrid simulations [Califano et al., 2008] and discussed in the context of the nonlinear dynamical model by Kuznetsov et al. [2007]. References: Califano, F., P. Hellinger, E. Kuznetsov, T. Passot, P. L. Sulem, and P. M. Travnicek (2008), Nonlinear mirror mode dynamics: Simulations and modeling, J. Geophys. Res., 113, A08219, doi:10.1029/2007JA012898. Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003 . Shapiro, V. D., and V. I. Shevchenko (1964), Quasilinear theory of instability of a plasma with an anisotropic ion velocity distribution, Sov. JETP, 18, 1109.

  4. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  5. Nonlinear Dynamics and Quantum Transport in Small Systems

    DTIC Science & Technology

    2012-02-22

    2.3 Nonlinear wave and chaos in optical metamaterials 2.3.1 Transient chaos in optical metamaterials We investigated the dynamics of light rays in two...equations can be modeled by a set of ordinary differential equations for light rays . We found that transient chaotic dynamics, hyperbolic or nonhyperbolic...are common in optical metamaterial systems. Due to the analogy between light- ray dynamics in metamaterials and the motion of light and matter as

  6. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    NASA Astrophysics Data System (ADS)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  7. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  8. A Novel Nonlinear Piezoelectric Energy Harvesting System Based on Linear-Element Coupling: Design, Modeling and Dynamic Analysis.

    PubMed

    Zhou, Shengxi; Yan, Bo; Inman, Daniel J

    2018-05-09

    This paper presents a novel nonlinear piezoelectric energy harvesting system which consists of linear piezoelectric energy harvesters connected by linear springs. In principle, the presented nonlinear system can improve broadband energy harvesting efficiency where magnets are forbidden. The linear spring inevitably produces the nonlinear spring force on the connected harvesters, because of the geometrical relationship and the time-varying relative displacement between two adjacent harvesters. Therefore, the presented nonlinear system has strong nonlinear characteristics. A theoretical model of the presented nonlinear system is deduced, based on Euler-Bernoulli beam theory, Kirchhoff’s law, piezoelectric theory and the relevant geometrical relationship. The energy harvesting enhancement of the presented nonlinear system (when n = 2, 3) is numerically verified by comparing with its linear counterparts. In the case study, the output power area of the presented nonlinear system with two and three energy harvesters is 268.8% and 339.8% of their linear counterparts, respectively. In addition, the nonlinear dynamic response characteristics are analyzed via bifurcation diagrams, Poincare maps of the phase trajectory, and the spectrum of the output voltage.

  9. Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.

    PubMed

    Ryzhov, Eugene A

    2017-11-01

    The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.

  10. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  11. SU-F-R-33: Can CT and CBCT Be Used Simultaneously for Radiomics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, R; Wang, J; Zhong, H

    2016-06-15

    Purpose: To investigate whether CBCT and CT can be used in radiomics analysis simultaneously. To establish a batch correction method for radiomics in two similar image modalities. Methods: Four sites including rectum, bladder, femoral head and lung were considered as region of interest (ROI) in this study. For each site, 10 treatment planning CT images were collected. And 10 CBCT images which came from same site of same patient were acquired at first radiotherapy fraction. 253 radiomics features, which were selected by our test-retest study at rectum cancer CT (ICC>0.8), were calculated for both CBCT and CT images in MATLAB.more » Simple scaling (z-score) and nonlinear correction methods were applied to the CBCT radiomics features. The Pearson Correlation Coefficient was calculated to analyze the correlation between radiomics features of CT and CBCT images before and after correction. Cluster analysis of mixed data (for each site, 5 CT and 5 CBCT data are randomly selected) was implemented to validate the feasibility to merge radiomics data from CBCT and CT. The consistency of clustering result and site grouping was verified by a chi-square test for different datasets respectively. Results: For simple scaling, 234 of the 253 features have correlation coefficient ρ>0.8 among which 154 features haveρ>0.9 . For radiomics data after nonlinear correction, 240 of the 253 features have ρ>0.8 among which 220 features have ρ>0.9. Cluster analysis of mixed data shows that data of four sites was almost precisely separated for simple scaling(p=1.29 * 10{sup −7}, χ{sup 2} test) and nonlinear correction (p=5.98 * 10{sup −7}, χ{sup 2} test), which is similar to the cluster result of CT data (p=4.52 * 10{sup −8}, χ{sup 2} test). Conclusion: Radiomics data from CBCT can be merged with those from CT by simple scaling or nonlinear correction for radiomics analysis.« less

  12. Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations

    Treesearch

    Patrick C. Tobin; Ottar N. Bjornstad

    2005-01-01

    Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...

  13. Efficient computational nonlinear dynamic analysis using modal modification response technique

    NASA Astrophysics Data System (ADS)

    Marinone, Timothy; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2012-08-01

    Generally, structural systems contain nonlinear characteristics in many cases. These nonlinear systems require significant computational resources for solution of the equations of motion. Much of the model, however, is linear where the nonlinearity results from discrete local elements connecting different components together. Using a component mode synthesis approach, a nonlinear model can be developed by interconnecting these linear components with highly nonlinear connection elements. The approach presented in this paper, the Modal Modification Response Technique (MMRT), is a very efficient technique that has been created to address this specific class of nonlinear problem. By utilizing a Structural Dynamics Modification (SDM) approach in conjunction with mode superposition, a significantly smaller set of matrices are required for use in the direct integration of the equations of motion. The approach will be compared to traditional analytical approaches to make evident the usefulness of the technique for a variety of test cases.

  14. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  15. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  16. Dynamics of metastable breathers in nonlinear chains in acoustic vacuum

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Mohan, T. R. Krishna

    2009-03-01

    The study of the dynamics of one-dimensional chains with both harmonic and nonlinear interactions, as in the Fermi-Pasta-Ulam and related problems, has played a central role in efforts to identify the broad consequences of nonlinearity in these systems. Nevertheless, little is known about the dynamical behavior of purely nonlinear chains where there is a complete absence of the harmonic term, and hence sound propagation is not admissible, i.e., under conditions of “acoustic vacuum.” Here we study the dynamics of highly localized excitations, or breathers, which are known to be initiated by the quasistatic stretching of the bonds between adjacent particles. We show via detailed particle-dynamics-based studies that many low-energy pulses also form in the vicinity of the perturbation, and the breathers that form are “fragile” in the sense that they can be easily delocalized by scattering events in the system. We show that the localized excitations eventually disperse, allowing the system to attain an equilibrium-like state that is realizable in acoustic vacuum. We conclude with a discussion of how the dynamics is affected by the presence of acoustic oscillations.

  17. Koopman Operator Framework for Time Series Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  18. Growing complex network of citations of scientific papers: Modeling and measurements

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  19. An Overview of the History of Cluster Conferences

    NASA Astrophysics Data System (ADS)

    Horiuchi, H.

    2017-06-01

    An overview is given on the historical development of the cluster conference series which started at Bohum in 1969. I start with the discussion of the philosophy of Karl Wildermuth and then I make a review on the main subjects and topics in cluster conferences. Since the cluster dynamics is a main nuclear dynamics together with the mean-field dynamics, we see that development of the cluster conference has been along with the rises of many new subjects in nuclear physics itself. Examples of them include superheavy nuclei, nuclear astrophysics, neutron-rich nuclei, cluster-gas states and ab initio calculations. Finally I discuss that more activities in and attention to cluster physics are seen in recent days.

  20. Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.

    2012-02-01

    We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.

  1. HIFLUGCS: X-ray luminosity-dynamical mass relation and its implications for mass calibrations with the SPIDERS and 4MOST surveys

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping

    2017-03-01

    We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.

  2. Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes.

    PubMed

    Cannistraci, Carlo Vittorio; Ravasi, Timothy; Montevecchi, Franco Maria; Ideker, Trey; Alessio, Massimo

    2010-09-15

    Nonlinear small datasets, which are characterized by low numbers of samples and very high numbers of measures, occur frequently in computational biology, and pose problems in their investigation. Unsupervised hybrid-two-phase (H2P) procedures-specifically dimension reduction (DR), coupled with clustering-provide valuable assistance, not only for unsupervised data classification, but also for visualization of the patterns hidden in high-dimensional feature space. 'Minimum Curvilinearity' (MC) is a principle that-for small datasets-suggests the approximation of curvilinear sample distances in the feature space by pair-wise distances over their minimum spanning tree (MST), and thus avoids the introduction of any tuning parameter. MC is used to design two novel forms of nonlinear machine learning (NML): Minimum Curvilinear embedding (MCE) for DR, and Minimum Curvilinear affinity propagation (MCAP) for clustering. Compared with several other unsupervised and supervised algorithms, MCE and MCAP, whether individually or combined in H2P, overcome the limits of classical approaches. High performance was attained in the visualization and classification of: (i) pain patients (proteomic measurements) in peripheral neuropathy; (ii) human organ tissues (genomic transcription factor measurements) on the basis of their embryological origin. MC provides a valuable framework to estimate nonlinear distances in small datasets. Its extension to large datasets is prefigured for novel NMLs. Classification of neuropathic pain by proteomic profiles offers new insights for future molecular and systems biology characterization of pain. Improvements in tissue embryological classification refine results obtained in an earlier study, and suggest a possible reinterpretation of skin attribution as mesodermal. https://sites.google.com/site/carlovittoriocannistraci/home.

  3. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  4. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  5. Modeling and possible implementation of self-learning equivalence-convolutional neural structures for auto-encoding-decoding and clusterization of images

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-08-01

    Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. We show that the implementation of SLECNS based on known equivalentors or traditional correlators is possible if they are based on proposed equivalental two-dimensional functions of image similarity. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalental weighing of input patterns. Real model experiments in Mathcad are demonstrated, which confirm that non-linear processing on equivalent functions allows you to determine the neuron winners and adjust the weight matrix. Experimental results have shown that such models can be successfully used for auto- and hetero-associative recognition. They can also be used to explain some mechanisms known as "focus" and "competing gain-inhibition concept". The SLECNS architecture and hardware implementations of its basic nodes based on multi-channel convolvers and correlators with time integration are proposed. The parameters and performance of such architectures are estimated.

  6. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  7. Finite elements and fluid dynamics. [instability effects on solution of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Fix, G.

    1975-01-01

    Difficulties concerning a use of the finite element method in the solution of the nonlinear equations of fluid dynamics are partly related to various 'hidden' instabilities which often arise in fluid calculations. The instabilities are typically due to boundary effects or nonlinearities. It is shown that in certain cases these instabilities can be avoided if certain conservation laws are satisfied, and that the latter are often intimately related to finite elements.

  8. Nonlinear maneuver autopilot for the F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Badgett, M. E.; Walker, R. A.

    1989-01-01

    A methodology is described for the development of flight test trajectory control laws based on singular perturbation methodology and nonlinear dynamic modeling. The control design methodology is applied to a detailed nonlinear six degree-of-freedom simulation of the F-15 and results for a level accelerations, pushover/pullup maneuver, zoom and pushover maneuver, excess thrust windup turn, constant thrust windup turn, and a constant dynamic pressure/constant load factor trajectory are presented.

  9. Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-04-01

    We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.

  10. Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.

    PubMed

    Venkataraman, Vinay; Turaga, Pavan

    2016-12-01

    This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.

  11. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  12. Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hsien

    2015-06-01

    This paper studies the dynamics of a network-based SIS epidemic model with nonmonotone incidence rate. This type of nonlinear incidence can be used to describe the psychological effect of certain diseases spread in a contact network at high infective levels. We first find a threshold value for the transmission rate. This value completely determines the dynamics of the model and interestingly, the threshold is not dependent on the functional form of the nonlinear incidence rate. Furthermore, if the transmission rate is less than or equal to the threshold value, the disease will die out. Otherwise, it will be permanent. Numerical experiments are given to illustrate the theoretical results. We also consider the effect of the nonlinear incidence on the epidemic dynamics.

  13. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

    PubMed Central

    Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

  14. Is there evidence for the existence of nonlinear behavior within the interplanetary solar sector structure?

    NASA Astrophysics Data System (ADS)

    Brown, A. G.; Francis, N. M.; Broomhead, D. S.; Cannon, P. S.; Akram, A.

    1999-06-01

    Using data from the Sweden and Britain Radar Experiment (SABRE) VHF coherent radar, Yeoman et al. [1990] found evidence for two and four sector structures during the declining phase of solar cycle (SC) 21. No such obvious harmonic features were present during the ascending phase of SC 22. It was suggested that the structure of the heliospheric current sheet might exhibit nonlinear behavior during the latter period. A direct test of this suggestion, using established nonlinear methods, would require the computation of the fractal dimension of the data, for example. However, the quality of the SABRE data is insufficient for this purpose. Therefore we have tried to answer a simpler question: Is there any evidence that the SABRE data was generated by a (low-dimensional) nonlinear process? If this were the case, it would be a powerful indicator of nonlinear behavior in the solar current sheet. Our approach has been to use a system of orthogonal linear filters to separate the data into linearly uncorrelated time series. We then look for nonlinear dynamical relationships between these time series, using radial basis function models (which can be thought of as a class of neural networks). The presence of such a relationship, indicated by the ability to model one filter output given another, would equate to the presence of nonlinear properties within the data. Using this technique, evidence is found for the presence of low-level nonlinear behavior during both phases of the solar cycle investigated in this study. The evidence for nonlinear behavior is stronger during the descending phase of SC 21. However, it is not possible to distinguish between nonlinear dynamics and a nonlinearly transformed colored Gaussian noise process in either instance, using the available data. Therefore, in conclusion, we find insufficient evidence within the SABRE data set to support the suggestion of increased nonlinear dynamical behavior during the ascending phase of SC 22. In fact, nonlinear dynamics would seem to exert very little influence within the measurement time series at all, given the observed data. Therefore it is likely that stochastic or unresolved high-dimensional nonlinear mechanisms are responsible for the observed spectrum complexity during the ascending phase of SC 22.

  15. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining

    PubMed Central

    Truccolo, Wilson

    2017-01-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305

  16. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    PubMed

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  17. The brain as a dynamic physical system.

    PubMed

    McKenna, T M; McMullen, T A; Shlesinger, M F

    1994-06-01

    The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.

  18. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    PubMed

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  19. Non-linear models for the detection of impaired cerebral blood flow autoregulation

    PubMed Central

    Miranda, Rodrigo; Katsogridakis, Emmanuel

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model’s derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired. PMID:29381724

  20. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  1. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique.

    PubMed

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  2. Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.

    PubMed

    Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian

    2018-06-01

    In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.

  3. Deformation of the Galactic Centre stellar cusp due to the gravity of a growing gas disc

    NASA Astrophysics Data System (ADS)

    Kaur, Karamveer; Sridhar, S.

    2018-06-01

    The nuclear star cluster surrounding the massive black hole at the Galactic Centre consists of young and old stars, with most of the stellar mass in an extended, cuspy distribution of old stars. The compact cluster of young stars was probably born in situ in a massive accretion disc around the black hole. We investigate the effect of the growing gravity of the disc on the orbits of the old stars, using an integrable model of the deformation of a spherical star cluster with anisotropic velocity dispersions. A formula for the perturbed phase-space distribution function is derived using linear theory, and new density and surface density profiles are computed. The cusp undergoes a spheroidal deformation with the flattening increasing strongly at smaller distances from the black hole; the intrinsic axis ratio ˜0.8 at ˜0.15 pc. Stellar orbits are deformed such that they spend more time near the disc plane and sample the dense inner parts of the disc; this could result in enhanced stripping of the envelopes of red giant stars. Linear theory accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic capture into resonance is needed to understand orbits whose apsides librate. The mechanism is a generic dynamical process, and it may be common in galactic nuclei.

  4. Nonlinear Earthquake Analysis of Reinforced Concrete Frames with Fiber and Bernoulli-Euler Beam-Column Element

    PubMed Central

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667

  5. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Li, Qingpin; Yan, Bo; Luo, Yajun; Zhang, Xinong

    2018-05-01

    In order to improve the isolation performance of passive Stewart platforms, the negative stiffness magnetic spring (NSMS) is employed to construct high static low dynamic stiffness (HSLDS) struts. With the NSMS, the resonance frequencies of the platform can be reduced effectively without deteriorating its load bearing capacity. The model of the Stewart isolation platform with HSLDS struts is presented and the stiffness characteristic of its struts is studied firstly. Then the nonlinear dynamic model of the platform including both geometry nonlinearity and stiffness nonlinearity is established; and its simplified dynamic model is derived under the condition of small vibration. The effect of nonlinearity on the isolation performance is also evaluated. Finally, a prototype is built and the isolation performance is tested. Both simulated and experimental results demonstrate that, by using the NSMS, the resonance frequencies of the Stewart isolator are reduced and the isolation performance in all six directions is improved: the isolation frequency band is increased and extended to a lower-frequency level.

  6. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    PubMed

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  7. Modelling the influence of sensory dynamics on linear and nonlinear driver steering control

    NASA Astrophysics Data System (ADS)

    Nash, C. J.; Cole, D. J.

    2018-05-01

    A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.

  8. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates

    NASA Astrophysics Data System (ADS)

    Eshmatov, B. Kh.

    2007-03-01

    This paper describes the analyses of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates. The models are based on the Kirchhoff-Love (K.L.) hypothesis and Reissner-Mindlin (R.M.) generalized theory (with the incorporation of shear deformation and rotatory inertia) in geometrically nonlinear statements. It provides justification for the choice of the weakly singular Koltunov-Rzhanitsyn type kernel, with three rheological parameters. In addition, the implication of each relaxation kernel parameter has been studied. To solve problems of viscoelastic systems with weakly singular kernels of relaxation, a numerical method has been used, based on quadrature formulae. With a combination of the Bubnov-Galerkin and the presented method, problems of nonlinear vibrations and dynamic stability in viscoelastic orthotropic rectangular plates have been solved, according to the K.L. and R.M. hypotheses. A comparison of the results obtained via these theories is also presented. In all problems, the convergence of the Bubnov-Galerkin method has been investigated. The implications of material viscoelasticity on vibration and dynamic stability are presented graphically.

  9. Reflections on the nature of non-linear responses of the climate to forcing

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter

    2017-04-01

    On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009

  10. Nonlinear elasticity in rocks: A comprehensive three-dimensional description

    DOE PAGES

    Lott, Martin; Remillieux, Marcel; Garnier, Vincent; ...

    2017-07-17

    Here we study theoretically and experimentally the mechanisms of nonlinear and nonequilibrium dynamics in geomaterials through dynamic acoustoelasticity testing. In the proposed theoretical formulation, the classical theory of nonlinear elasticity is extended to include the effects of conditioning. This formulation is adapted to the context of dynamic acoustoelasticity testing in which a low-frequency “pump” wave induces a strain field in the sample and modulates the propagation of a high-frequency “probe” wave. Experiments are conducted to validate the formulation in a long thin bar of Berea sandstone. Several configurations of the pump and probe are examined: the pump successively consists ofmore » the first longitudinal and first torsional mode of vibration of the sample while the probe is successively based on (pressure) $P$ and (shear) $S$ waves. The theoretical predictions reproduce many features of the elastic response observed experimentally, in particular, the coupling between nonlinear and nonequilibrium dynamics and the three-dimensional effects resulting from the tensorial nature of elasticity.« less

  11. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a <100> wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  12. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

    NASA Astrophysics Data System (ADS)

    Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  13. Entanglement Concentration for Arbitrary Four-Photon Cluster State Assisted with Single Photons

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Yang; Cai, Chun; Liu, Jiong; Zhou, Lan; Sheng, Yu-Bo

    2016-02-01

    We present an entanglement concentration protocol (ECP) to concentrate arbitrary four-photon less-entangled cluster state into maximally entangled cluster state. Different from other ECPs for cluster state, we only exploit the single photon as auxiliary, which makes this protocol feasible and economic. In our ECP, the concentrated maximally entangled state can be retained for further application and the discarded state can be reused for a higher success probability. This ECP works with the help of cross-Kerr nonlinearity and conventional photon detectors. This ECP may be useful in future one-way quantum computation.

  14. The clustering of primordial black holes

    NASA Astrophysics Data System (ADS)

    Chisholm, James R.

    2005-12-01

    We investigate the spatial clustering properties of primordial black holes (PBHs). With minimal assumptions, we show that PBHs are created highly clustered. They constitute an isocurvature perturbation that is non-linear upon horizon entry. Using the peak-background split model of bias, we compute the PBH two-point correlation function and power spectrum. A consequence of this is that PBHs cannot serve as the majority of dark matter in the universe. We show that this clustering leads to PBH mergers which spoil the mass-creation time relation. We examine the prospect of PBHs being the seeds of Supermassive Black Holes as well.

  15. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  16. Active Brownian agents with concentration-dependent chemotactic sensitivity.

    PubMed

    Meyer, Marcel; Schimansky-Geier, Lutz; Romanczuk, Pawel

    2014-02-01

    We study a biologically motivated model of overdamped, autochemotactic Brownian agents with concentration-dependent chemotactic sensitivity. The agents in our model move stochastically and produce a chemical ligand at their current position. The ligand concentration obeys a reaction-diffusion equation and acts as a chemoattractant for the agents, which bias their motion towards higher concentrations of the dynamically altered chemical field. We explore the impact of concentration-dependent response to chemoattractant gradients on large-scale pattern formation, by deriving a coarse-grained macroscopic description of the individual-based model, and compare the conditions for emergence of inhomogeneous solutions for different variants of the chemotactic sensitivity. We focus primarily on the so-called receptor-law sensitivity, which models a nonlinear decrease of chemotactic sensitivity with increasing ligand concentration. Our results reveal qualitative differences between the receptor law, the constant chemotactic response, and the so-called log law, with respect to stability of the homogeneous solution, as well as the emergence of different patterns (labyrinthine structures, clusters, and bubbles) via spinodal decomposition or nucleation. We discuss two limiting cases, where the model can be reduced to the dynamics of single species: (I) the agent density governed by a density-dependent effective diffusion coefficient and (II) the ligand field with an effective bistable, time-dependent reaction rate. In the end, we turn to single clusters of agents, studying domain growth and determining mean characteristics of the stationary inhomogeneous state. Analytical results are confirmed and extended by large-scale GPU simulations of the individual based model.

  17. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.

  18. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.

  19. Nonlinear dynamics and predictability in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Kimoto, M.; Neelin, J. D.

    1991-01-01

    Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.

  20. Toward Control of Universal Scaling in Critical Dynamics

    DTIC Science & Technology

    2016-01-27

    program that aims to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Uwe Tauber Uwe C. T? uber , Michel Pleimling, Daniel J. Stilwell 611102 c. THIS PAGE The public reporting burden...to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems, namely

  1. Veering and nonlinear interactions of a clamped beam in bending and torsion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, David A.; Hill, Thomas L.; Neild, Simon A.; Cooper, Jonathan E.

    2018-03-01

    Understanding the linear and nonlinear dynamic behaviour of beams is critical for the design of many engineering structures such as spacecraft antennae, aircraft wings, and turbine blades. When the eigenvalues of such structures are closely-spaced, nonlinearity may lead to interactions between the underlying linear normal modes (LNMs). This work considers a clamped-clamped beam which exhibits nonlinear behaviour due to axial tension from large amplitudes of deformation. An additional cross-beam, mounted transversely and with a movable mass at each tip, allows tuning of the primary torsion LNM such that it is close to the primary bending LNM. Perturbing the location of one mass relative to that of the other leads to veering between the eigenvalues of the bending and torsion LNMs. For a number of selected geometries in the region of veering, a nonlinear reduced order model (NLROM) is created and the nonlinear normal modes (NNMs) are used to describe the underlying nonlinear behaviour of the structure. The relationship between the 'closeness' of the eigenvalues and the nonlinear dynamic behaviour is demonstrated in the NNM backbone curves, and veering-like behaviour is observed. Finally, the forced and damped dynamics of the structure are predicted using several analytical and numerical tools and are compared to experimental measurements. As well as showing a good agreement between the predicted and measured responses, phenomena such as a 1:1 internal resonance and quasi-periodic behaviour are identified.

  2. A method for reducing the order of nonlinear dynamic systems

    NASA Astrophysics Data System (ADS)

    Masri, S. F.; Miller, R. K.; Sassi, H.; Caughey, T. K.

    1984-06-01

    An approximate method that uses conventional condensation techniques for linear systems together with the nonparametric identification of the reduced-order model generalized nonlinear restoring forces is presented for reducing the order of discrete multidegree-of-freedom dynamic systems that possess arbitrary nonlinear characteristics. The utility of the proposed method is demonstrated by considering a redundant three-dimensional finite-element model half of whose elements incorporate hysteretic properties. A nonlinear reduced-order model, of one-third the order of the original model, is developed on the basis of wideband stationary random excitation and the validity of the reduced-order model is subsequently demonstrated by its ability to predict with adequate accuracy the transient response of the original nonlinear model under a different nonstationary random excitation.

  3. Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob

    2007-01-01

    For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.

  4. Observability of nonlinear dynamics: normalized results and a time-series approach.

    PubMed

    Aguirre, Luis A; Bastos, Saulo B; Alves, Marcela A; Letellier, Christophe

    2008-03-01

    This paper investigates the observability of nonlinear dynamical systems. Two difficulties associated with previous studies are dealt with. First, a normalized degree observability is defined. This permits the comparison of different systems, which was not generally possible before. Second, a time-series approach is proposed based on omnidirectional nonlinear correlation functions to rank a set of time series of a system in terms of their potential use to reconstruct the original dynamics without requiring the knowledge of the system equations. The two approaches proposed in this paper and a former method were applied to five benchmark systems and an overall agreement of over 92% was found.

  5. Wavepacket dynamics in a family of nonlinear Fibonacci lattices

    NASA Astrophysics Data System (ADS)

    Pandey, Mohit; Campbell, David

    We examine the dynamics of a quantum particle in a variety of one-dimensional Fibonacci lattices (which are shifted from each other) in the presence of interaction. To describe the nonlinear interactions we employ the discrete nonlinear Schrödinger (DNLS) equation. Using a single-site localized state in the lattice as our initial condition, we evolve the wavepacket numerically using DNLS equation. We compute the root-mean-square width of the wavepacket as it evolves in time and show how the ``global location'' of initial wavepacket affects the dynamics. We compare and contrast our results with earlier studies of related but distinct models.

  6. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    PubMed

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  7. Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity

    NASA Astrophysics Data System (ADS)

    Lisitano, D.; Jiffri, S.; Bonisoli, E.; Mottershead, J. E.

    2018-03-01

    Input-output partial feedback linearisation is demonstrated experimentally for the first time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom lumped mass system with a piecewise-linear spring. The output degree of freedom is located away from the nonlinearity so that the partial feedback linearisation possesses nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm stability of the overall system. A tuned numerical model is developed for use in the controller and to produce numerical outputs for comparison with experimental closed-loop results. A new limitation of the feedback linearisation method is discovered in the case of lumped mass systems - that the input and output must share the same degrees of freedom.

  8. FITTING NONLINEAR ORDINARY DIFFERENTIAL EQUATION MODELS WITH RANDOM EFFECTS AND UNKNOWN INITIAL CONDITIONS USING THE STOCHASTIC APPROXIMATION EXPECTATION–MAXIMIZATION (SAEM) ALGORITHM

    PubMed Central

    Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew

    2014-01-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456

  9. A nonlinear control method based on ANFIS and multiple models for a class of SISO nonlinear systems and its application.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong

    2011-11-01

    This paper presents a novel nonlinear control strategy for a class of uncertain single-input and single-output discrete-time nonlinear systems with unstable zero-dynamics. The proposed method combines adaptive-network-based fuzzy inference system (ANFIS) with multiple models, where a linear robust controller, an ANFIS-based nonlinear controller and a switching mechanism are integrated using multiple models technique. It has been shown that the linear controller can ensure the boundedness of the input and output signals and the nonlinear controller can improve the dynamic performance of the closed loop system. Moreover, it has also been shown that the use of the switching mechanism can simultaneously guarantee the closed loop stability and improve its performance. As a result, the controller has the following three outstanding features compared with existing control strategies. First, this method relaxes the assumption of commonly-used uniform boundedness on the unmodeled dynamics and thus enhances its applicability. Second, since ANFIS is used to estimate and compensate the effect caused by the unmodeled dynamics, the convergence rate of neural network learning has been increased. Third, a "one-to-one mapping" technique is adapted to guarantee the universal approximation property of ANFIS. The proposed controller is applied to a numerical example and a pulverizing process of an alumina sintering system, respectively, where its effectiveness has been justified.

  10. Clustering effects in ionic polymers: Molecular dynamics simulations.

    PubMed

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S

    2015-08-01

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.

  11. Soliton microdynamics of the generation of new-type nonlinear surface vibrations, dissociation, and surfing diffusion in diatomic crystals of the uranium nitride type

    NASA Astrophysics Data System (ADS)

    Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.

    2014-09-01

    The microdynamics of large-amplitude nonlinear vibrations of uranium nitride diatomic lattices has been investigated using the computer simulation and neutron scattering methods at temperatures T = 600-2500°C near the thresholds of the dissociation and destruction of the reactor fuel materials. It has been found using the computer simulation that, in the spectral gap between the frequency bands of acoustic and optical phonons in crystals with an open surface, there are resonances of new-type harmonic surface vibrations and a gap-filling band of their genetic successors, i.e., nonlinear surface vibrations. Experimental measurements of the slow neutron scattering spectra of uranium nitride on the DIN-2PI neutron spectrometer have revealed resonances and bands of these surface vibrations in the spectral gap, as well as higher optical vibration overtones. It has been shown that the solitons and bisolitons initiate the formation and collapse of dynamic pores with the generation of surface vibrations at the boundaries of the cavities, evaporation of atoms and atomic clusters, formation of cracks, and destruction of the material. It has been demonstrated that the mass transfer of nitrogen in cracks and along grain boundaries can occur through the revealed microdynamics mechanism of the surfing diffusion of light nitrogen atoms at large-amplitude soliton waves propagating in the stabilizing sublattice of heavy uranium atoms and in the nitrogen sublattice.

  12. Dividing traffic cluster into parts by signal control

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2018-02-01

    When a cluster of vehicles with various speeds moves through the series of signals, the cluster breaks down by stopping at signals and results in smaller groups of vehicles. We present the nonlinear-map model of the motion of vehicles controlled by the signals. We study the breakup of a cluster of vehicles through the series of signals. The cluster of vehicles is divided into various groups by controlling the cycle time of signals. The vehicles within each group move with the same mean velocity. The breakup of the traffic cluster depends highly on the signal control. The dependence of dividing on both cycle time and vehicular speed is clarified. Also, we investigate the effect of the irregular interval between signals on dividing.

  13. Cluster growth mechanisms in Lennard-Jones fluids: A comparison between molecular dynamics and Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Lee, Jumin; Kim, Jun Soo

    2015-03-01

    We present a simulation study on the mechanisms of a phase separation in dilute fluids of Lennard-Jones (LJ) particles as a model of self-interacting molecules. Molecular dynamics (MD) and Brownian dynamics (BD) simulations of the LJ fluids are employed to model the condensation of a liquid droplet in the vapor phase and the mesoscopic aggregation in the solution phase, respectively. With emphasis on the cluster growth at late times well beyond the nucleation stage, we find that the growth mechanisms can be qualitatively different: cluster diffusion and coalescence in the MD simulations and Ostwald ripening in the BD simulations. We also show that the rates of the cluster growth have distinct scaling behaviors during cluster growth. This work suggests that in the solution phase the random Brownian nature of the solute dynamics may lead to the Ostwald ripening that is qualitatively different from the cluster coalescence in the vapor phase.

  14. Application of Contraction Mappings to the Control of Nonlinear Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Killingsworth, W. R., Jr.

    1972-01-01

    The theoretical and applied aspects of successive approximation techniques are considered for the determination of controls for nonlinear dynamical systems. Particular emphasis is placed upon the methods of contraction mappings and modified contraction mappings. It is shown that application of the Pontryagin principle to the optimal nonlinear regulator problem results in necessary conditions for optimality in the form of a two point boundary value problem (TPBVP). The TPBVP is represented by an operator equation and functional analytic results on the iterative solution of operator equations are applied. The general convergence theorems are translated and applied to those operators arising from the optimal regulation of nonlinear systems. It is shown that simply structured matrices and similarity transformations may be used to facilitate the calculation of the matrix Green functions and the evaluation of the convergence criteria. A controllability theory based on the integral representation of TPBVP's, the implicit function theorem, and contraction mappings is developed for nonlinear dynamical systems. Contraction mappings are theoretically and practically applied to a nonlinear control problem with bounded input control and the Lipschitz norm is used to prove convergence for the nondifferentiable operator. A dynamic model representing community drug usage is developed and the contraction mappings method is used to study the optimal regulation of the nonlinear system.

  15. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  16. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE PAGES

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.; ...

    2017-10-18

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  17. Nonlinear Dynamics and the Growth of Literature.

    ERIC Educational Resources Information Center

    Tabah, Albert N.

    1992-01-01

    Discussion of nonlinear dynamic mechanisms focuses on whether information production and dissemination can be described by similar mechanisms. The exponential versus linear growth of literature is discussed, the time factor is considered, an example using literature from the field of superconductivity is given, and implications for information…

  18. Corepressive interaction and clustering of degrade-and-fire oscillators

    PubMed Central

    Fernandez, Bastien; Tsimring, Lev S.

    2016-01-01

    Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a delayed negative feedback loop as their core element. Here we study the synchronization of DF oscillators coupled through a common repressor field. For weak coupling, initially distinct oscillators remain desynchronized. For stronger coupling, oscillators can be forced to wait in the repressed state until the global repressor field is sufficiently degraded, and then they fire simultaneously forming a synchronized cluster. Our analytical theory provides necessary and sufficient conditions for clustering and specifies the maximum number of clusters that can be formed in the asymptotic regime. We find that in the thermodynamic limit a phase transition occurs at a certain coupling strength from the weakly clustered regime with only microscopic clusters to a strongly clustered regime where at least one giant cluster has to be present. PMID:22181453

  19. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    PubMed

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the "translation-free" molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics.

  20. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

Top